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Abstract

Computing global illumination (GI) in virtual scenes becomes increasingly at-
tractive even for real-time applications nowadays. GI delivers important cues in
the perception of 3D virtual scenes, which is important for material and architec-
tural design. Therefore, for photo-realistic rendering in the design and even the
game industry, GI has become indispensable. While the computer simulation of
realistic global lighting is well-studied and often considered as solved, computing
it efficiently is not. Saving computation costs is therefore the main motivation
of current research in GI. Efficient algorithms have to take various aspects into
account, such as the algorithmic complexity and convergence, its mapping to
parallel processing hardware, and the knowledge of certain lighting properties
including the capabilities of the human visual system.

In this dissertation we exploit both low-level and high-level coherence in the
practical design of GI algorithms for a variety of target applications ranging
from high-quality production rendering to dynamic real-time rendering. We also
focus on automatic rendering-accuracy control to approximate GI in such a way
that the error is perceptually unified in the result images, thereby taking not
only into account the limitations of the human visual system but also later video
compression with an MPEG encoder. In addition, this dissertation provides many
ideas and supplementary material, which complements published work and could
be of practical relevance.





Kurzfassung

Die Berechnung globaler Beleuchtung in virtuellen 3D-Szenen ist heutzutage selbst
in Echtzeit-Anwendungen kaum mehr wegzudenken. Mittels globaler Beleuchtung
wird die Wahrnehmung von virtuellen Szenen und Materialien viel realistischer.
Daher sind Algorithmen zur globalen Beleuchtungsberechnung in der Industrie
sehr gefragt. Obwohl die Computersimulation von realistischer globaler Beleuch-
tung oft als gelöst betrachtet wird, sind die Berechnungen dafür immer noch sehr
komplex und die Ergebnisse konvergieren langsam. Somit ist die Hauptmotiva-
tion aktueller Forschung, die Kosten dieser Berechnungen so gering wie möglich
zu halten. Abgesehen von der Komplexität und Konvergenz eines Algorithmus
zur globalen Beleuchtungsberechnung werden heute oft weitere Aspekte in Be-
tracht gezogen. So spielen z.B. die Parallelisierung für verteiltes Rechnen auf
mehreren (Grafik-) Prozessoren, die menschliche visuelle Wahrnehmung und ins-
besondere die Ausnutzung bestimmter Lichteigenschaften eine wichtige Rolle in
der Entwicklung effizienter Algorithmen.

In dieser Dissertation nutzen wir die Kohärenz der Beleuchtung aus, um praktis-
che Algorithmen für ein grosses Anwendungsspektrum, von dynamischen Echtzei-
tanwendungen bis zu Anwendungen, die hochqualitative Ergebnisse liefern, zu
entwickeln. Dabei berücksichtigen wir nicht nur die Defizite in der menschlichen
visuellen Wahrnehmung, um Berechnungsfehler in Bildern möglichst uniform zu
verteilen, sondern auch die verlustreiche Videokompression von Einzelbildern
durch einen MPEG-Kodierer. Ausserdem umfasst diese Dissertation praktisches
Ergänzungsmaterial und viele Ideen, die den Inhalt der schon publizierten Ar-
beiten bereichern.





Summary

This thesis introduces new efficient global illumination and caching algorithms
specifically designed for sparse sampling and interpolation of lighting compu-
tations. Further, we consider the problem of exploiting temporal coherence in
global illumination computations with focus on the specialized applications: video
streaming and superresolution for rendered frames of an animation sequence. The
methods are separated into chapters according to publications, which we summa-
rize below.

Photon Ray Splatting

Photon density estimation is a very general approach for computing global illu-
mination in synthetic scenes and can simulate all possible lighting effects very
efficiently. However, by its nature photon density estimation is only capable of
producing low-pass filtered illumination and is biased. Therefore, it is mainly
intended for fast previewing or as input for second pass Monte Carlo integration.
The goal of our work in Chapter 4 is to improve the quality of photon density
estimation in order to produce more reliable results, which are also more robust
against complex geometry. We achieve this by using a novel density estimation
metric that is better suited for photon density estimation as it exploits additional
knowledge gathered during photon sampling. More specifically, the traditional
point density estimation borrowed from statistics is replaced by density estima-
tion over photon rays. In contrast to previous work our metric decouples the
density estimation entirely from the surface topology and is able to compute the
illumination for geometry where the actual surface area is small or difficult to
estimate, e.g., thin objects and wrinkled or “bump-mapped” surfaces. To facili-
tate the necessary nearest-neighbor-search for photon rays, we reverse the density
estimation, which transforms the problem into a simpler one: searching for point
data in a conical ray frustum, which we simply refer to as ray splatting. Compared
with standard photon density estimation, we obtain better image quality with the
same number of photons because more photons contribute to a pixel using the
same kernel width, which reduces variance. Further combined with multi-stage
filtering, our method leads to fast rendering of images with acceptable quality
for low-frequency indirect illumination. Additionally, we show how our method
can be extended with state-of-the-art techniques in global illumination such as
radiance caching and non-diffuse lighting on moderately glossy BRDFs.



Like for all photon density estimation techniques the main limitation of our ray
splatting is the neglected visibility in the density estimation footprint, which
may result in light-leaking and blurred shadow boundaries. In follow-up work we
extend our ray splatting with a method that preserves visibility using approximate
volumetric occlusion tests in a hierarchical, discrete scene representation, which
we quickly obtain by voxelizing synthetic scenes using programmable rasterization
hardware. This way, our photon density estimation becomes less sensitive to the
bandwidth selection and can even produce direct lighting in moderately complex
scenes with acceptable quality.

Anisotropic Radiance Cache Splatting

High-quality production rendering has high demands on the visual richness of
the lighting computation. Although our ray splatting improves the quality of the
lighting reconstruction with photon density estimation, for production rendering
purposes its quality is still moderate. Low-frequency noise may be visible and
besides, our ray splatting is, like all photon density estimation methods, view-
independent and therefore not efficient when computing illumination on glossy
surfaces. Therefore, Monte Carlo integration with view-dependent importance
sampling of the radiance function is the method of choice. However, Monte
Carlo methods converge very slowly and are too expensive for computing high-
resolution images. On the other hand, the indirect lighting before scattering
with the BRDF is smooth and well suited for interpolation. Therefore, dedicated
caching algorithms compute indirect lighting on demand at sparse surface loca-
tions and interpolate. This technique is called irradiance caching. In order to
make irradiance caching practical, several heuristics have been proposed mak-
ing the algorithm complex and difficult to control even for an experienced user.
Hence, usual settings for tuning irradiance caching are overly conservative. One
problem arises from the fact that irradiance caching is very sensitive to noise in
the Monte Carlo integration because during interpolation high-frequency noise
is turned into lower frequencies, which eventually leads to visible artifacts. The
cause for the varying noise is blind importance sampling in the Monte Carlo in-
tegration without accounting for the lighting distribution. Another downside is
the lazy generation of the cache data structure, which has been proposed in times
where memory resources were scarce and whose performance and reconstruction
quality is highly depending on the pixel traversal order and the number of the pix-
els in the image. Hence, in Chapter 6 we propose a radiance caching system with
convenient control over the computation error. On one hand, we achieve this with
a deterministic and perceptually conservative algorithm based on hierarchical ra-
diosity called lightcuts, which replaces the traditional view-dependent integration
pass. Thereby, we extend the lightcuts method to be used for traditional radiance
caching in the hemispherical harmonics basis and derive translational and rota-
tional gradients needed for higher-order interpolation. And second, we propose



an adaptive two-layered caching data structure, which computes direct and indi-
rect lighting in parallel, while respecting perceptual error criteria. To make our
system more robust, we further apply an iterative cache refinement inspired by
previous work, which we improve with anisotropic cache interpolation that better
preserves lighting discontinuities and reduces the number of cache records needed
for convergence. Overall, the method is suitable for high-quality walk-through
animations and generates frames in less than a minute.

Render to MPEG

Another aspect of rendering is how to process and store the resulting video frames
of animations, which is also becoming more important for bandwidth-limited
streaming applications. So far, rendering animation frames and subsequent video
encoding are two individual processes, which poses two main problems: First,
stochastic noise in the rendered images is often preserved in the video and con-
sumes extra bandwidth, while subtle details in shading might be eliminated by
the quantizer of a lossy video encoder. Second, video encoding wastes a lot of
computational power by computing motion vectors for minimizing residuals in the
block matching between frames, whereas motion vectors can easily be computed
precisely in the preceding rendering step. Therefore, in Chapter 7 we propose a
technique, which couples a state-of-the-art global illumination renderer with an
MPEG-2 encoder. Thereby, we exploit knowledge from the video encoder to steer
the rendering. More precisely, we relax the rendering for pixels where an esti-
mated upper error bound becomes smaller than the quantization error such that
further details in the signal would be removed anyway. Our rendering is based
on the lightcuts algorithm, which we have already utilized for efficient radiance
caching in Chapter 6. However, here we exploit another useful property of light-
cuts: the explicit control over the pixel-error. Apart from the quantization error,
we also incorporate a perceptual error metric. This metric is directly computed
in the frequency domain effectively using the discrete cosine transform inherent
to MPEG encoding. Since all perceptual error metrics require knowledge of the
lighting but the lighting computation is controlled by the error thresholds, pre-
vious perceptual rendering algorithms rely on too conservative assumptions, e.g.,
only consider the direct illumination. We show how to obtain the error thresh-
olds before the actual lighting computation by motion-compensated warping of
the thresholds derived from previous frame.



Spatio-Temporal Upsampling for Superresolution

For saving expensive pixel computations, in offline rendering it is common prac-
tice to employ adaptive caching algorithms that exploit coherence in the shading.
However, regarding coherence in animations is not only important for offline
rendering but can also help to speedup real-time rendering on graphics hard-
ware. Recent advances in programmable graphics hardware facilitate real-time
computations of complex shading and lighting algorithms. Unfortunately, the in-
tegration of a sophisticated adaptive caching algorithm like the one we presented
in Chapter 6 is not suited for parallel processing on graphics hardware. Con-
sequently, current GPU methods only marginally exploit spatial and temporal
coherence. Furthermore, so far there exists no practical GPU algorithm which
caches in space and time simultaneously. Hence, the goal of the method described
in Chapter 8 is to provide a GPU-friendly architecture for speeding up costly real-
time shading and lighting computations. For that we propose a framework for
upsampling dynamic low-resolution results to high-resolution. The method runs
in a single geometry pass entirely on the GPU and poses only a small constant
overhead since no adaptive sampling nor any hole-filling step as for previous work
is required. We achieve this by mixing a temporal and spatial strategy combined
in a unified spatio-temporal upsampling algorithm. The first ingredient is a tem-
porally interleaved sampling scheme, which ensures that frames are converging if
shading is static. To compensate for dynamic scene motion, efficient reprojection
techniques are applied. Second, an edge-preserving bilateral filter is used for spa-
tially upsamping low resolution frames. The resulting spatio-temporal bilateral
filter adapts to temporal gradients and geometric edges and provides fast response
for dynamic shading. As a side-effect our method allows for temporal filtering of
noisy signals. In addition, we propose a few extensions, such as antialiasing and
a multi-scale approach, where low-frequency shading terms can be computed at
a coarser scale.
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Introduction

This thesis proposes several methods for accelerating intensive lighting and shad-
ing computations, which are applicable to various target applications reaching
from high-quality off-line rendering to real-time rendering on graphics hardware.
In this chapter, we motivate our accomplished research and give the reader a
quick overview of the thesis and its contributions. At the end, we outline the
structure of the whole thesis.

1 Motivation

Photo-realistic rendering has been and is one of the driving forces in computer
graphics since the beginning. The probably most involved part in photo-realistic
image synthesis is global illumination (GI). The word “global” refers to the fact
that the illumination of an object depends on the light it receives from all other
(non-occluded) objects. In this sense, computing the indirect illumination even
at a single point requires consideration of the entire scene model. Even worse,
this computation is of recursive nature since GI, in fact, relates to an infinite-
dimensional integration problem. Despite of its complexity, solving the “com-
plete” illumination is very attractive as it is one of the important perceptual
cues of our visual system that gives us an impression of “photo-realism”. For
example, without indirect illumination surface-materials cannot be faithfully re-
produced [NKGR06] and may even be misinterpreted as the correct visualization
of a different material [K0̌5a]. Perhaps the crudest approximation that was intro-
duced in image synthesis is to ignore the indirect illumination and only solve the
direct illumination, which is usually much simpler to compute. While for certain
applications pure direct illumination can be sufficient, it is easy to construct a
scene where indirect lighting is the dominant or even the only light contribution
to a virtual camera. Therefore, much research has been devoted to the topic of
approximating the indirect illumination in a perceptually plausible manner.

On the other side, the computational hardware has evolved quickly over the last
decade. Nowadays GI, although only coarsely approximated or precomputed, is
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even considered in real-time applications like games, which are the driving force
of photo-realistic rendering and graphics hardware development. Because of the
urgent desire for real-time GI in the past, many GI algorithms were designed
based on crude approximations and heuristics solely for game-like applications
in the spirit of “looks-good”. There the main objective is to get the best possible
quality in real-time by exploiting parallel processing on modern graphics hard-
ware. Nevertheless, computing GI in real-time remains challenging and cannot be
compromised with simple heuristics. Therefore, a large gap between interactive
but approximative GI techniques and high-quality photo-realistic methods had
emerged in the past. This gap is nowadays slowly closing with faster and faster
graphics hardware allowing computer games to take over advanced techniques,
which have previously been dedicated to slow off-line rendering.

The contributions in this thesis are situated somewhere in-between high-quality
production and real-time rendering covering a wider range of applications. We
propose techniques that can converge to a high-quality solution as required by
engineering applications and also give approximative but satisfactory results in
short rendering times. We therefore aim at closing the gap between those ex-
tremes at a rather high level while still keeping future extensions in mind for
adaptation to real-time rendering on parallel graphics hardware.

So far, in the movie and design industry the computation of single frames is in
the order of minutes to hours rather than milliseconds because high-quality or
predictive rendering is still very brute-force based on a vast amount of samples
to compute the illumination exactly. On the other hand, just for visual enter-
tainment unbiased results are not needed and one can simplify computations by
making use of certain lighting properties. The key observation is: indirect light-
ing is spatially smooth and correlates with the local geometry, i.e. 3D points with
similar location and orientation are likely to have similar illumination. This in
turn allows us to compute illumination sparsely and interpolate afterwards. The
computational savings, at least theoretical, are usually immense (two to three
orders of magnitude). For example, for the synthetic scenes that we used in
this dissertation, the indirect illumination can be reconstructed with high qual-
ity from only 2,000–20,000 samples as opposed to millions for high-resolution
images. Therefore, this technique referred to as irradiance caching has become
the de-facto standard and is widely used in the movie industry [TL04, CB04].
Although not directly applicable to parallel processing in computer games, the
idea of sparse sampling and smart interpolation techniques is slowly entering the
game industry, which is confronted with increasing display resolutions. In con-
trast, here adaptive “optimal” sampling is traded with parallelism for coherent
processing.

Despite the recent advances in rendering algorithms, several issues have gained
little attention so far. For example direct lighting has mainly been considered
as inexpensive enough to be computed in a brute-force, exact manner. This is
not true for complex scenes with many area lights. Second, the indirect light-
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ing is not only spatially coherent but also temporally. But temporal smoothness
in the lighting function is little exploited in most approximative GI algorithms.
This is particularly surprising as temporal coherence has been heavily exploited
in video compression. By taking advantage of temporal and spatial coherence we
can achieve much more robust results even leveraging the lack of spatial adap-
tivity in games since in most situations lighting is either spatially or temporally
coherent. Therefore, one aspect of this thesis is how to exploit temporal and
spatial coherence in lighting computation. Another often neglected topic for ir-
radiance caching is how to make irradiance caching practical and robust. For
most algorithms the computation of the cache samples is too conservative and
parameters are manually controlled by an experienced user. Overly conservative
cache settings may quickly outweigh the initial performance gains by exhaustive
cache searching and interpolation with non-trivial weighting functions. Thus, one
objective of this thesis is to reconcile these differing goals: speedup, generality,
and simplified user-control of caching techniques.

The contributions in this thesis are two-fold: first, we propose a novel technique
for approximating the indirect illumination based on better radiance estimation
with photon maps that exploits additional information gathered during photon
sampling. The second contribution consists of novel approaches for the reduction
of pixel computations, either by efficient space and time caching with sophis-
ticated perceptually-motivated interpolation or by exploiting the limits of the
human visual system and video compression. In this context we propose two
caching techniques designed either for real-time or off-line rendering.

2 Main Contributions

This section gives a list of all my publications and their contributions. The
work in this thesis is based on these five publications: [HHK∗07a,HS07,HKMS08,
HMS09,HEMS10], whose contributions are summarized below.

The work in [HHK∗07a] has been published in the proceedings of the Eurograph-
ics ’07 conference and improves traditional photon mapping. More specifically,
it introduces a new density estimation metric tailored for photon density esti-
mation. Additionally, the paper proposes several new extensions, which are also
applicable to traditional photon mapping. In summary we proposed:

• A new photon density estimation metric that leads to reduced bias
in the radiance estimate in particular for complex 3D scenes.

• A novel way for efficient bandwidth selection for photon splatting
approaches, which is the most critical part of any density estimation.

• An acceleration data structure for searching points in a conical
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frustum.

• Post-process image-filtering to suppress noise in the radiance estimate while
preserving gradients.

Overall, the method is very general as it is based on photon density estimation
and it is well-suited for generating reliable previews within a few seconds for
arbitrary shading in complex scenes. Additionally, in a follow-up paper [HS07]
published in Pacific Graphics ’07, we extended the method with a light-weight
approximation of the visibility term that is hidden in the density estimation
kernel. This extension allows for reproducing sharp boundaries in the illumination
with fewer photons on the expense of a slightly more complex photon traversal.

The work published in the Eurographics ’09 proceedings [HMS09] is intended
to speedup the computation of global illumination in high-quality production-
style rendering. It is based on two well-known algorithms, radiance caching
[KGPB05, WRC88] and lightcuts [WFA∗05], which speedup the global illumi-
nation computation. Although both algorithms seem to be orthogonal, their
combination is not trivial and has not been considered before. How to practically
integrate lightcuts into radiance caching and achieve substantial performance
gains is therefore the main contribution of [HMS09], which is further described
in Chapter 6. In summary, the contributions are:

• Novel combination of radiance caching with lightcuts (hierarchical in-
stant radiosity), which leads to a significant speedup and reduces the space
of user-parameters compared to traditional radiance caching algorithms.

• An improved radiance cache interpolation with anisotropic reconstruc-
tion and translational and rotational radiance gradients for light-
cuts, which better adapts to the lighting function and avoids blurring across
edges (e.g., indirect shadows).

• Two-layered radiance caching for simultaneous computation of direct
and indirect lighting, where the two layers mutually steer the cache refine-
ment by incorporating perceptual masking thresholds.

The focus in [HKMS08] is perceptual rendering in the context of animation se-
quences. The paper has been published in the proceedings of Eurographics ’08
conference. Here the novelty is a perceptual error metric that takes advantage of
the lossy video compression of rendered animation frames. This way we are able
to adapt the rendering quality and convergence of a global illumination algorithm
not only to the human perception but also to the compression level of standard
MPEG encoders, which has not been considered so far. The method is described
in Chapter 7 and its contributions are:

• A novel perceptual error-metric based on the discrete cosine trans-
form, which takes into account the quantization of an MPEG encoder.

• A strategy for the prediction of perceptual error thresholds that steer



Chapter 1: Introduction 27

the global illumination computation of a frame, which are based on the
thresholds computed from previous frames in an animation sequence.

• Adaptation of the lightcuts algorithm to dynamic scenes.

The method described in Chapter 8 is specifically designed for real-time rendering
on the GPU and is based on my recent publication [HEMS10] in ACM Siggraph
Symposium on Interactive 3D Graphics and Games 2010. According to feedback
from the game industry the method will have some impact in the future game
development. Its contributions are:

• An efficient upsampling scheme for dynamic low-resolution frames, which
exploits both temporal and spatial coherence.

• Lightweight single-pass upsampling well-suited for realtime GPU
shading.

• A novel GPU-suitable interleaving pattern for sparse sampling over
space and time.

• A proposal for adapting the exponential filter weights, used for re-
projection caching, to temporal pixel gradients for faster response and
attenuation of noise.

3 Thesis Outline

The basis of the thesis are my published papers and their content is separated
into individual chapters, which are organized in two main categories: global il-
lumination algorithms and sparse sampling and reconstruction techniques. As
some chapters describe extensions to methods introduced in previous chapters
we may eventually cross-refer.

In addition to my published work, there are several new sections with novel con-
tributions making the individual methods more comprehensible and profound. In
particular Chapters 4, 6 and 8 extend the originally published material signifi-
cantly.

The thesis is organized as follows. In the next chapter we will review the back-
ground knowledge in realistic image synthesis and visual perception, which is
needed in order to understand the proposed methods in this thesis. We will
then outline related work in Chapter 3. The actual contributions of this the-
sis begin with algorithms targeted at efficient global illumination rendering. In
Chapter 4 we present an approximative global illumination method, photon ray
splatting, which is then extended with approximate indirect visibility queries de-
scribed in Chapter 5. In Chapter 6 we propose a method aiming at high-quality
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and robust global illumination rendering based on the well-known lightcuts algo-
rithm [WFA∗05], which we extended for use with radiance caching. As opposed
to previous chapters, in Chapter 7 we focus on perceptual issues of lighting com-
putations and how to adapt the rendering quality to the lossy video compression.
At last, in Chapter 8 we present a different approach that exploits spatial and
in particular temporal coherence of shading in dynamic 3D scenes, which maps
well to current parallel graphics hardware. Finally, we conclude in Chapter 9 and
collect ideas for future research.
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4 Naming Convention

In the following chapters we will use the symbols and naming convention shown
below.

x,y,z, . . . Scalar values

x,y, . . . Points

~x,~u, . . . Vectors

~u,~v,~n local tangent frame ~u,~v and surface normal vector ~n

x0,x1, ... Light path vertices (e.g. photon hitpoints, x0 origin on light source)

ωo,ωi Outgoing and incoming light directions, respectively

θ,φ Polar angle and azimuthal angle relative to surface normal

Φ(x,ω) Incoming flux (photon) at x from direction ω

L(x,ωo),L(x,ωi) Radiance in direction ω leaving x and arriving at x, respectively

E(x) Irradiance at x

Kh(x,y) Normalized 2D Kernel function at x with bandwidth h: Kh(x,y) =
1
hK
(
‖x−y‖

h

)
Kh(x,y,ω) Normalized 2D kernel function Kh(x,y) with domain oriented perpen-

dicular to ω

dω Differential solid angle for direction ω

dA,∆A Differential surface area, finite surface area

dA⊥
θ

Projected differential surface area, dA⊥
θ

= dA · cosθ

V (x,y) Visibility predicate, if x, y are mutually visible then V (x,y) = 1, else
V (x,y) = 0

fs(xi−1,xi,xi+1) BRDF describing scattering of light: xi−1→ xi→ xi+1

fs(x,ωi,ωo) BRDF at x for scattering light from incident direction ωi to outgoing
direction ωo

p(x) Probability density function (pdf)

p(y|x) Conditional pdf for sampling light path vertex y given vertex x

Y m
l (θ,φ) Spherical harmonics (SH) basis function of degree m, band l, with index

i = l(l + 1) + m

f m
l (θ,φ) BRDF SH coefficients for the outgoing direction ωo = (θ,φ)

λm
l SH coefficients representing incoming radiance
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Background

1 Radiometry and Photometry

Light is a complicated phenomenon and it is still not completely understood.
Since the earliest days human beings have been fascinated by the perception of
light because it carries the richest source of information to the human’s most pow-
erful sense. Many theories explaining light have been proposed over the centuries.
In former days the Greeks believed that “light” starts in our eye which is ema-
nating rays that touch the environment we see. Interestingly, this phenomenon
is mathematically valid and is heavily exploited in Computer Graphics as the
importance or potential transport, which flows in opposite direction of radiant
energy. It took about 1000 years before the scientist Alhazen (A.D. 956-1038)
described the light by straight rays and modeled the eye with a pinhole camera
called camera obscura. More than 600 years later, Christiaan Huygens and Isaac
Newton came up with two different novel theories. Huygens demonstrated the
wave optics of light whereas Newton supported his light particle theory and ar-
gued heavily against Huygens wave model. From the 19th century on, researchers
like Augustin Fresnel and Thomas Young studied effects such as polarization and
diffraction. James Maxwell further described the properties of electromagnetic
waves and in the 20th century several physicians, Max Planck, Albert Einstein,
Werner Heisenberg amongst others manifested the light quantum theory, the cra-
dle of the photon. At that time it became clear that light could not be explained
by either theory. This formalized the dualism of light established by the field of
quantum mechanics. Therein, light is classified into ray/wave optics, and photon
(particle) optics. For most computer graphics applications, like the ones pre-
sented in this thesis, we are mostly concerned with a highly abstract model based
on ray optics, even for photon mapping [Jen01]. We further neglect important
properties of light, e.g., the time-propagation of light. Nevertheless, even with
such simplified models we can simulate most light phenomena that we are able
to see in our daily life in a plausible way.
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1.1 Light Terminology

In order to describe light and the transport of energy, basic terminologies must be
introduced. There are two different definitions, the radiometry which is physically
based and the photometry, which takes into account the human eye’s sensitivity
to various wavelength. We will first introduce the radiometric quantities together
with their corresponding units, which is more accepted in science and generally
used in computer graphics. The smallest quantity in lighting is the photon. The
energy of a photon with wavelength λ is eλ = h·c

λ
where h is the Planck’s constant

h≈ 6.63 · 10−34J · s and c is the speed of light.

• Radiant energy Q is the total energy gathered over time from all nλ photons
for each wavelengths λ measured in watts W per second s

Q =
∞∫

0

nλeλdλ [W · s] . (2.1)

• Radiant flux Φ is defined as radiant energy per time

Φ =
dQ
dt

[W ] (2.2)

It represents the time rate of flow of radiant energy, which is captured by
photons.

• Irradiance/ Radiosity : the general terminology radiant flux area density is
usually separated into irradiance E and radiosity B, also known as radiant
exitance. It represents the flux density on a surface which is defined as
radiant flux per differential area

E(x) =
dΦ
dA

[
W
m2

]
. (2.3)

The difference between irradiance and radiosity is that irradiance corre-
sponds to the flux arriving on a surface and radiosity corresponds to the
scattered flux leaving the surface.

• Radiant intensity I represents the directional density of flux (i.e., the flux
coming from a certain direction) and is defined as flux per differential solid
angle dω

I(dω) =
dΦ
dω

[
W
sr

]
(2.4)

The solid angle is explained in Section 1.2.

• Radiance L can be considered as a product of directional density and area
density of flux which is dependent on the surface orientation (therefore
the division by the cosine of the polar angle θ). It is probably the most
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important quantity in computer graphics because this is what we measure
with ray tracing. It is defined as radiant flux per differential solid angle per
differential projected area.

L(x,ω) =
dE

cosθ dω
=

d2Φ
cosθ dω dA

[
W

m2 · sr

]
(2.5)

Informally, it can be understood as the number of photons per time arriv-
ing on a surface with area dA and from a certain direction ω with small
angular deviation defined by the solid angle dω. Therefore, radiance is a
five-dimensional quantity. Another important aspect is that radiance stays
constant along a line in vacuum. We can also refine the radiance defini-
tion to include the wavelength, which gives us the spectral radiance Lλ, the
radiance for a certain differential wavelength.

1.1.1 The Relationship between Radiometric Quantities

From the definitions of the radiometric quantities, the following relationship can
be derived:

Φ =
∫
A

E(x)dA =
∫
A

∫
Ω

L(x,ω)(ω ·~n)dω dA, (2.6)

where ~n is the surface normal at x and ω ·~n = cosθ. If the complete radiance
field on a surface is available then the irradiance/radiosity can be computed by
integrating the incident/exitant radiance field over all directions. The inciden-
t/exitant flux is computed by integrating the irradiance/radiosity over the area.

1.1.2 Photometry

The difference between radiometry and photometry is that photometric quantities
include the visual response of the average observer. For example, luminous flux
Φv is the visual response to radiant flux

Φv =
∫
Λ

ΦλV (λ)dλ, (2.7)

where V (λ) is the luminous efficiency function, which measures the visual re-
sponse of a standard observer, see Fig. 2.1. And Λ is the visible spectrum (≈ 380
nm – 780 nm). Illuminance, Ev, is the counterpart to irradiance and luminous
exitance, Mv, to radiosity or radiant exitance, respectively. Luminous intensity,
Iv, is the photometric quantity that corresponds to radiant flux and luminance
is the photometric equivalent of radiance. The radiometric quantities are often
preferred in global illumination algorithms but the visual response plays an im-
portant role when rendered images are post-processed before display via tone
mapping (see Section 4.4).
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Fig. 2.1 – Luminous efficiency function

CIE spectral luminous efficiency curve for photopic (day light) and scotopic (night) vi-
sion. Data downloaded from http: // www. cvrl. org/ .

1.2 Solid Angle

In order to integrate functions over the hemisphere which becomes necessary for
computing radiometric quantities, a specific measure defined on the hemisphere
is needed. This is the solid angle. The finite solid angle Ω corresponds to the
projection of a surface onto the unit sphere

Ω =
A
r2 , (2.8)

where A is the projected area on the sphere with radius r. Scientifically, the solid
angle is dimensionless but for convenience it is expressed in steradians [sr]. The
differential solid angle dω can be thought of as the angular size of an infinitesimal
thin beam. When parametrized in spherical coordinates, the beam direction
ω is expressed as (θ,φ), corresponding to the polar (longitude) and azimuthal
(latitude) angle, respectively. And its size is defined as the infinitesimal area on
the unit sphere computed as the product of the longitude arc dθ and the latitude
arc sinθ dφ (see Fig. 2.2 (a)). The transformation from a differential surface with
differential area dAy, distance ry and orientation θy to a differential solid angle
dω is given by

dω =
cosθydAy

r2
y

. (2.9)

This relationship is visualized in Fig. 2.2 (b).

http://www.cvrl.org/
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Fig. 2.2 – A geometric interpretation of the solid angle

(a) The area subtended by a differential solid angle dω is the product of the differential
length of the longitude arc dθ and the latitude arc sinθ dφ. (b) The differential solid
angle dω subtended by a differential area dAy is equal to dAy cosθy/r2, where θy is the
angle between dAy’s surface normal and the vector to the point x and r is the distance
from x to y. In other words, dω is the projection of the differential area dAy onto the
unit sphere around point x.

2 Light Interaction with Surfaces

Light alone is not very valuable for us, but the interaction with the scene model
(the illumination) shows the variety of our environment. Looking at arbitrary real
surfaces reveals the complexity of such light interaction. Instead of physically
simulating the light scattering inside a surface’s material, in computer graph-
ics light-surface-interactions at micro-scopic scale are treated as a “black-box”
and only the measured radiance as a result of the scattering event is observed.
However, in real world light is reflected and transmitted in numerous ways and
the general light-surface interaction is a 9-dimensional problem (ignoring time-
dependency), depending on the wavelength, the incident and reflected direction,
the surface location of the incident and even the location of the exitant radiance.
To describe this kind of scattering by a mathematical function suitable for sim-
ulation with a computer is generally difficult because of the high-dimensionality
of the problem. Therefore, one first reduces the dimension to 8 by neglecting
wavelength dependencies and considering only a few (usually three) constant ba-
sis functions of the continuous color spectrum. Functions of this general type
are still inappropriate for efficient representation and simulation by a computer.
Besides many materials, especially artificial ones, do not change across the sur-
face and few materials exhibit noticeable sub-surface scattering effects. In case a
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material is homogeneous we can reduce the scattering to 6 dimensions discard-
ing the spatial variation. The type of functions is called bidirectional scattering
surface reflectance distribution function or short BSSRDF . On the other hand, if
we assume that a material varies across a surface but does not show visible sub-
surface scattering effects, there is no need to consider the surface neighborhood
around a point of a light scattering event but assume that incident and exitant
location of the light are the same. This type is classified as bidirectional texture
function BTF [Dis98, MMS∗05]. Although, the acquisition and storage of such
6D functions is still expensive and time consuming, BTFs convey much more re-
alism and are therefore often used for predictive and photo-realistic rendering in
the movie and design industry. The measured data can become very large (sev-
eral GBytes) for a single material but is quite redundant, which imposes various
compression schemes. Note that measured BTFs inherently include sub-surface
scattering effects.

The BSSRDF accounts for all sub-surface scattering effects of light such as scat-
tering in translucent materials (e.g., milk, skin, snow, alabaster) excluding time-
(e.g. phosphorescence) and wavelength-dependent effects (e.g. fluorescence).
Subsurface scattering is the dominant effect in many organic materials [NKGR06].
However, similar to BTFs, BSSRDFs are still too complex for efficient interactive
simulations and are mostly addressed by off-line computations.

For interactive or real-time applications the complex light scattering in materi-
als is further simplified. In many cases, the materials are invariant with respect
to sub-surface scattering and the two spatial degrees of freedom in the BTF
can be resolved by a surface subdivision to piecewise constant materials. In
this case the scattering function is restricted to 4 dimensions and a new name
is assigned for this representation: bidirectional scattering distribution function
(BSDF). In a lighting simulation it is a common practice to separate reflecting
(upper hemisphere) and transmitting properties (lower hemisphere of directions)
of a material. This is why BSDFs of reflected and transmitted light are usually
considered separately and are called BRDF (Bi-directional Reflectance Distribu-
tion Function) and BTDF (Bi-directional Transmittance Distribution Function)
respectively. However, for simplicity, we will not regard transmitting properties
of a material here.

2.1 The BRDF

The BRDF , denoted by fs, describes the interaction of light with a surface ne-
glecting sub-surface scattering events – we simply assume the light is reflected at
the same location it is arriving. The BRDF is defined as

fs(x,ωi,ωo) =
dL(x,ωo)
dE(x,ωi)

=
dL(x,ωo)

L(x,ωi)cosθidωi

[
1
sr

]
(2.10)
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and tells us what fraction of the differential irradiance dE coming from direction
ωi with infinitesimal small solid angle dωi is reflected at surface point x towards
direction ωo. A BRDF can yield any positive value even approaching infinity in
case of a perfect (however idealized) mirror where all but one infinitesimal small
direction are zero resulting in a dirac impulse. Intuitively, the BRDF can be
understood as a probability density function which describes the probability of
a photon coming from direction ωi to be reflected in direction ωo. However, a
BRDF does not need to integrate to one over the hemisphere of directions. In
fact, it integrates to something lower than one, which is referred to as energy
conservation and states that the reflected radiant energy can not exceed the
incident radiant energy, i.e.,∫

Ω

fs(x,ωi,ωo)cosθidωi ≤ 1. (2.11)

Having the full (hemispherical) incident radiance field available, we can build a
local illumination model: the reflected radiance in all directions ωo:

Lr(x,ωo) =
∫
Ωi

fs(x,ωi,ωo)dE(x,ωi) =
∫
Ωi

fs(x,ωi,ωo)Li(x,ωi)cosθidωi, (2.12)

where the cosine term is computed as cosθi =~nx ·ωi, the dot product of the normal
at surface point x and the incoming light direction ωi.
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Fig. 2.3 – A geometric interpretation of the BRDF

A geometric interpretation of the BRDF for a point on a surface. The BRDF function
gives the ratio of radiance Lo reflected in direction (θo,φo) to the differential irradiance
dEi of differential solid angle dω from direction (θi,φi). In case of an isotropic BRDF,
only the difference ∆φ = φo−φi in the latitude angles φi and φo is regarded.

The BRDF has four dimensions as it depends on four angles (ωi,ωo) = (θi,φi,θo,φo)
giving 4 degrees of freedom. However, for most materials the rotation around the
surface normal is often redundant. In such case of isotropic materials only the
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relative latitude angle of incident to reflected direction (φi−φo) is important (see
Fig. 2.3). Therefore, the BRDF of isotropic materials can be reduced to three
dimensions. Another simplification can be made for diffuse surfaces because they
are hardly view-dependent. We assume that all incident light is equally dis-
tributed in all directions resulting in a constant BRDF at a surface point, which
can easily be modulated by a texture. Such a surface is called Lambertian. Most
walls and wallpapers of indoor environments are very close to be Lambertian.

Physically correct BRDFs obey the Helmholtz law of reciprocity, which states
that the BRDF is independent of the light-flow direction:

fs(x,ωi,ωo) = fs(x,ωo,ωi) (2.13)

This is a fundamental law most global illumination algorithms make use of, since
it enables to trace light paths in both directions: from the eye and from the light
source.

2.2 Shading Models

Usually in rendering, material properties are only dealt with statistically at mi-
croscopic scale (i.e., material structure is beyond the light wavelength), which
is represented by the BRDF introduced in the previous section. Because of the
high-dimensionality of the BRDF (4D), a lookup table of real measured data can
become very large and inconvenient for efficient rendering. On the other hand,
many materials consist of low frequency BRDFs with simple shapes that can
be efficiently compressed or even modeled with analytical models called shad-
ing models, which can be fitted to the measured data. Typically, only angular
material-variations are modeled with analytic shading models, while the spatial
variation is attained separately by a modulation of the model’s parameters with
so-called textures. Such texture modulation can either be represented with proce-
dural functions (procedural textures) or with sampled images parametrized and
glued to 2D surfaces, or 3D objects in case of 3D textures. Shading models are
very popular in rendering and have the advantage of low storage costs, efficient
computation, and easier importance sampling of the BRDF (see Section 3.5).
Therefore, we will not regard measured and compressed BRDFs but rather use
shading models in the sequel.

Various shading models of different complexity have been proposed and a com-
prehensive introduction is out of the scope of this thesis. Shading models can be
classified into empirical models, often non-physically correct (e.g., Phong [Pho75],
Blinn [Bli77]) and physically-based models (e.g., Cook-Torrance [CT81], Ward
[War92], Schlick [Sch94]).

A common assumption of all popular shading models is the decomposition into
a diffuse (Lambertian) and glossy component. The diffuse part is constant and
hence invariant with the viewing direction. The more complex glossy part is
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often modeled by one [Pho75, Bli77] or several specular lobes [LFTG97] usually
oriented close to the mirror direction of the view point. This principle eases
also the computation of the reflected radiance and is exploited in many global
illumination algorithms, e.g., radiosity-based finite-element algorithms, photon
mapping [Jen96].

3 Rendering and Image Formation

Rendering is a specific field in computer graphics dealing with the synthesis of
images and can be divided into non-photo-realistic and photo-realistic rendering.
We will focus on photo-realistic rendering, which is the synthesis of naturalistic-
looking images. It can be regarded as the process of simulating the physical light
transport within the limits of perception in a virtual three-dimensional scene that
is observed through a virtual camera. Thereby, physical processes and phenom-
ena of light are adapted to our perceptual and device specific limits. Although
often obeying physical laws, the execution steps of rendering algorithms in partic-
ular the order of the computation does not need to be physically related. What
matters is the final outcome and speed/convergence of its computation. The
outcome is usually either a single image or in case of an animation a frame in
a video sequence. The main focus of photo-realistic rendering is the efficiency
of the simulation of various real-world lighting and shading effects. This is dif-
ferent to other fields in computer graphic dealing with measured data because
in rendering we can nearly always obtain ground-truth results by simply apply-
ing unbiased algorithms. Hence, what matters is the quality-time tradeoff in the
computation. Rendering algorithms are classified as interactive or real-time if the
time to compute one displayable frame is within a fraction of a second or with-
out any noticeable delay, respectively. Algorithms, which take several seconds,
minutes or even hours and more to compute a frame are referred to as off-line.

3.1 Digital Images

Images are perhaps the most common data structure in rendering and represent
a visual signal on a 2D sensor like a camera CCD or the human retina. They are
often used as input, e.g., textures, and are usually the output of the computation
that can directly be visualized. More formally we interpret an image of width w
and height h as a mapping

I : [0,w)× [0,h)→R. (2.14)

This definition in Eq. 2.14 is for a continuous image. In practice, we have to deal
with digital images, discretized to a certain resolution w×h sampled on a regular
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2D grid at integer positions, which are named picture elements or short pixels.
Those pixels form a matrix of scalar (= grey values) or vector (= color) data.

Such discretization boils down to a 2D sampling problem. According to sampling
theory, if we assume the image signal is band-limited, we need to sample it at
least at twice the highest frequency, the Nyquist frequency, to avoid aliasing . In
practice this is not always feasible as an image can consist of infinitely many fre-
quencies. Therefore, the input image signal needs to be properly low-pass filtered
(blurred) before sampling it at lower frequencies. This process is referred to as
anti-aliasing . While for real image acquisition with optical camera devices a blur
filter can be sufficient to band-limit the image signal, in synthetic image render-
ing the image signal is largely unknown before sampling it. Therefore, to reduce
aliasing it is necessary to compute the image at a higher resolution than the final
image resolution, which is called super-sampling . However, simply computing
the image regularly at higher and higher resolutions, does not solve the problem
in general as it can still suffer from aliasing at even higher-frequencies. Hence,
a common approach is to transform aliasing into stochastic noise by employing
irregular sampling patterns to distribute sub-pixel samples. Common methods
are Poisson disc, stratified random, pseudo-random sampling [PH04].

Different image representations like Wavelets, Fourier basis, Discrete cosine trans-
form (DCT), Hough space, analytic 2D vector graphics were developed each one
better suited for specific tasks like for example compression, filtering and process-
ing, manipulation, or object recognition. In terms of synthetic image rendering
the digital image is usually formed by a projection of 3D data to a virtual screen,
the digital imaging sensor.

3.2 3D Scene Representation

Realistic image synthesis is the process of computing a virtual camera view in
a three-dimensional scene. For this purpose a geometric model of a 3D scene is
necessary, which can have very different representations (e.g., points, polygons,
implicit surfaces, splines surfaces, etc.). Most popular and efficient in terms of
rendering are the 3D representations based on simple primitives as listed below.

3.2.1 Image-Based Rendering

The traditional approach of computer graphics is to create a geometric model
in 3D and project it onto a two-dimensional image. Conversely, in image-based
modeling and rendering (IBMR) we do not know the (exact) 3D model of the
scene but only know a set of two-dimensional images representing different camera
views in this scene. Knowing the camera position and orientation corresponding
to those images, we can directly compute novel views by interpolating the nearest
images. In IBMR we skip the manual 3D modeling stage and can deal with
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real-world scenes independent of their complexity. On the other hand, unless
a huge amount of images is used, artifact-free blending of the images requires
to estimate depth values, which is a slow and non-trivial task. Further, view-
dependent glossy materials and dynamic scenes are difficult to handle and require
many images in order to faithfully reproduce new images. IBMR is not only
a useful and appealing approach when the scene geometry is unknown. It is
becoming also more and more interesting in real-time rendering of synthetic 3D
scenes where the exact depth information is known for free. However, here the
goals are slightly different: saving computation costs by either performing 3D
computations in 2D image space thereby exploiting the implicit grid structure of
the images [RGS09, BS08, KBW06, RSC87] or image-based warping and caching
for boosting the frame-rate [YNS∗09,SaLY∗08a,NSL∗07]. The latter concept has
been also exploited in Chapter 8.

3.2.2 Point Representation

3D points are the most simple and fundamental geometry-defining entities. Points
as display primitives were already considered in [LW85]. They are more general
than an image-based pixel representation discussed previously. Based on their
fundamental simplicity, points are applicable in a variety of research topics in
computer graphics. First of all, since points are the raw output of 3D scan-
ners, they are important in geometry processing, modeling and visualization.
Points are a simple and attractive multi-resolution representation for smooth
and detailed objects as often found in nature. In terms of rendering the major
challenge of point-based rendering (PBR) algorithms is to achieve a continuous
interpolation between discrete point samples that are irregularly distributed on
smooth surfaces. However, in case of synthetic, artificial objects they become
less appealing since sharp features require a higher density of points and hybrid
polygon-point representations are preferable. Nevertheless, in rendering they are
often useful when exact geometry is not needed, like for example in low-frequency
lighting computations [REG∗09,RGK∗08,LZT∗08].

3.2.3 Voxel Representation

A voxel (volume element) is the 3D pendant to a pixel in 2D. A voxel represents
a value in a regular grid in three dimensional space. In contrast to points and
polygons, voxels (and pixels) themselves do not have their position explicitly
encoded along with their values. Instead, the position of a voxel is inferred based
upon its position relative to other voxels. Voxels are a natural represention of
regularly-sampled spaces that are non-homogeneously filled and are frequently
used in the visualization and analysis of medical and scientific data.

In real-time rendering the voxel representation is becoming increasingly attrac-
tive [CNL∗09,ED06,DCB∗04] due to the ability of efficient 3D rasterization and
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real-time volume rendering with well-defined level-of-detail on current GPUs.
The downside is the increased memory consumption, which quickly reaches the
order of Gigabytes instead of Megabytes as for 2D images (e.g., a voxel grid of
resolution 20483 requires 32 Gigabytes of memory for 4-Byte-voxels and still 1
Gigabyte for binary voxels). The voxel representation has also been exploited
in Chapter 5 as a means of approximate but fast visibility queries of “volumetric
rays”.

3.2.4 Polygonal 3D Scenes

Polygons are the common choice for representing and approximating surfaces
of 3D objects. Often 3D polygonal objects are modeled by artists and engineers
using specialized CAD software. The basic object used in polygonal modeling is a
vertex , a point in three dimensional space. Two vertices connected by a straight
line define an edge and three vertices, connected to each other by three edges
form a triangle, which is the simplest polygon in Euclidean space. More complex
polygons can be created out of multiple triangles. Four sided polygons, referred
to as quads, and triangles are the most common shapes used in rendering and
modeling. A group of polygons which are connected together by shared vertices
is referred to as a mesh.

Polygons are well suited for rasterization and therefore the method of choice for
real-time computer graphics. The main disadvantage is that polygons are in-
capable of accurately representing curved surfaces, so a large number of them
must be used to approximate curves in a visually pleasing manner. Polygonal
meshes may also become inefficient when triangles become smaller than a pixel
during rasterization. This can be avoided with the help of level-of-detail adap-
tation but this is generally more difficult for polygonal meshes than for points
or voxels and usually, for the same object, several meshes of different complexity
are precomputed offline and kept in memory.
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3.3 Determining Visibility

Computing the visibility between any two surfaces is the crucial part of any
(global) illumination algorithms. Visibility causes discontinuities and is in gen-
eral not conservatively predictable and therefore requires explicit evaluation via
rasterization or raytracing. Thus, the efficiency of a global illumination algorithm
is mainly determined by the number and coherence of its visibility queries.

3.3.1 Rasterization

Rasterization is perhaps the most common technique for generating views of
three-dimensional polygonal scenes. Individual polygons are projected into screen-
space and for every screen pixel covered by the projected polygon, the visibility
to the camera is determined by the z-buffer algorithm such that only those pix-
els are kept, which are closest to the camera. This discretization of polygons to
pixels is called rasterization. Basically, the entire scene, after projection to nor-
malized device coordinates, is sampled at regular intervals (rasterized) forming a
uniform grid representing the image. The advantage of rasterization methods is
the coherent processing of neighoring pixels, which fits well to parallel processing
hardware. It is most efficient if all polygons are visible and if the polygon count
is small. On the other hand, the major limitation of rasterization methods is the
lack of local adaptation. Usually, the entire scene is rasterized even though only
sparse point-to-point visibility is needed.

3.3.2 Raytracing

Raytracing is a more natural and general way of computing synthetic views of
three-dimensional scenes. It is not limited to polygonal scenes and, as the name
states, better resembles the ray-based nature of light. Therefore, it is more con-
venient in terms of physical simulation and software implementation since each
“light-ray” has atomic nature representing radiance from a single direction and
point in space (ignoring volumetric effects), which can be determined by comput-
ing the nearest intersection with all surfaces in the 3D scene model. However,
simply testing every surface for possible intersection with each ray sequentially is
computationally intensive and not well scalable. Therefore, efficient search data
structures often referred to as raytracing acceleration structures that adapt to
scene complexity and enable sub-linear intersection queries become very impor-
tant and are still a hot topic in current research. Raytracing is the method of
choice when it comes to simulating complex camera lenses and all kind of lighting
effects.

This flexibility comes at a high price: the efficiency for computing the surface
intersections is strongly depended on the coherence of the traced rays. While
in reality “ray-tracing” is inherently parallel, in a computer simulation millions
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of rays are often traced sequentially benefiting little from the coherence of rays.
Therefore, for long, raytracing has been doomed to be an off-line algorithm.
In recent years, thanks to the quickly developing parallel computing hardware,
raytracing is becoming more and more attractive for interactive and even real-
time rendering. However, so far, coherence is mainly explored at the level of
“direct rays” cast for example from a pine-hole camera or a point light source,
which are easily parallelizable on a multi-processor machine.

3.4 The Rendering Equation

The rendering equation introduced by Kajiya [Kaj86] is the basis for all global
illumination methods and will appear frequently in the thesis. It forms the basis
for computing the light transport in a scene model without participating media.
More specifically, it relates outgoing radiance Lo leaving a differential surface-
patch to the local incident radiance Li. Thereby, Lo is interpreted as the sum of
self-emitted radiance Le and the reflected radiance Lr

Lo(x,ωo) = Le(x,ωo) + Lr(x,ωo)

= Le(x,ωo) +
∫
Ω

fs(x,ωi,ωo)Li(x,ωi)(ωi ·~n)dωi, (2.15)

where Li is the incident radiance from a certain direction in the hemisphere, which
in general is not explicitly known as it is the outgoing radiance Lo reflected from
another surface.Unless only the direct illumination from the emitting light sources
is computed, we cannot reformulate this integral to a smaller integration domain
Ω, since, at least for closed environments, we have to consider all direction ωi.
For indirect illumination Eq. 2.15 cannot be directly evaluated and recursively
expands since the radiance value is on both sides of the equation. Therefore, it
is often more convenient to write Eq. 2.15 in the form

L = Le + Lr = Le + T L, (2.16)

where T is the integral operator in Eq. 2.15, which can be recursively expanded
to

L = Le + T Le + T 2Le + . . . =
∞

∑
i=0

T iLe. (2.17)

This expansion is called Neumann series and sums light contributions reflecting
0,1,2, . . . times.
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3.5 Monte Carlo Light Transport

Since analytical solutions are generally not feasible because of the hidden visibil-
ity term in Eq. 2.15, we need numerical solutions. A natural way is the numer-
ical quadrature formula (e.g. trapezoidal-rule, Simpson, Gaussian quadrature).
However, as one can easily see, the rendering equation is a recursive function
because the radiance value is on both sides of the equation and is therefore high-
dimensional. And those numerical quadrature techniques become quickly less
efficient for higher dimensions as the computational complexity is exponential
with regard to the dimension of the integration domain. Therefore, the common
solution to avoid such dimensional explosion of numerical quadrature formulae
is Monte Carlo sampling using an appropriate hemispherical probability density
function (pdf) p(~Ψ) to generate N random directions ~Ψi. This results in an
estimator:

Lo(x,ωo) = Le(x,ωo) +
1
N

N

∑
i=1

fs(x,~Ψi,ωo)Li(x,~Ψi)(~Ψi ·~n)
p(~Ψi)

. (2.18)

In order to compute this estimator, N directions are generated from the pdf p(~Ψ).
The BRDF fs and cosine term cosθi = ~Ψi ·~n also need to be evaluated. A ray is
traced in direction ~Ψi where we compute the outgoing radiance in direction −~Ψi

from the closest ray intersection point.

3.6 Variance Reduction

Blind Monte Carlo integration with uniform sampling is prone to noise, which
vanishes slowly. To improve the convergence of the estimate, we must reduce
variance. The basic strategy for variance reduction is to exploit some knowledge
about our function we wish to integrate.

3.6.1 Importance Sampling

In terms of variance reduction it is crucial to use pdfs that are as close as possible
to the incident hemispherical radiance function Li or even better the BRDF-
modulated incident radiance function fs ·Li. Such sampling from non-uniform pdfs
is called importance sampling . Conceptually, the idea of importance sampling is
to evaluate the integral denser in regions of the domain where the function we wish
to integrate is large. Ideally, the sampling density should be proportional to the
function itself, i.e., p∼ fsLi cosθi. Therefore, importance sampling of the indirect
illumination is a very difficult problem as we do not know the incident lighting we
wish to integrate. The common assumption is that incident radiance is relatively
uniform. This reduces the problem to a local computation: BRDF importance
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sampling – the adaptation to the local BRDF, which can be sampled optimally for
many analytical BRDF models. Much research has been devoted to the topic of
importance sampling and we will not go into detail about advanced Monte Carlo
techniques here but refer the interested reader to profound literature: [BGH05,
DBB03,KW00,Vea97,SWZ96,KW86].

It would be inefficient to compute the full reflected radiance via blind (i.e., uni-
form) Monte Carlo ray tracing, since the incident radiance field as well as the
BRDF contains high frequencies, which results in stochastic noise. Therefore,
equation Eq. 2.15 is commonly split into a sum of disjoint light contributions for
different BRDF components that are solved individually and summed at the end.
This is possible because light is additive and most BRDF models are separable
into diffuse and glossy parts.

One important contribution to the reflected radiance is the direct illumination
from visible light sources. Since only a few directions in the estimator Eq. 2.18
result in a nonzero contribution to the direct light, Lr is split into direct and
indirect light from which only the latter one is computed by the integral over
hemispherical directions. However, for the direct light we better transform the
integral in equation Eq. 2.15 to an integral over surface locations by replacing
the differential solid angle

dωi(xi) =
(ωi ·~ni)dAi

‖x−xi‖2 , (2.19)

where the index i denotes another surface with differential area dAi, normal ~ni,
and position xi. Remember the solid angle is the projection of the surface area
onto the unit hemisphere. This leads to the rendering equation computed as the
integral over all surface points

Lo(x,ωo) = Le(x,ωo) +
∫
S

fs(x,xi→ x,ωo)Lo(xi→ x)V (x,xi)G(x,xi)dAi, (2.20)

where V (x,xi) is the visibility function

V (x,xi) =
{

1, xi and x are mutually visible
0, otherwise,

(2.21)

G(x,xi) is called the geometry term comprising distance and orientation of two
differential surfaces

G(x,xi) =
−(ωi ·~ni) · (ωi ·~n)
‖x−xi‖2 , (2.22)

and S is the set of all surface points from which we want to compute the radiance
contribution to point x. In case of the direct light computation equation 2.20 is
more appropriate since the area of all light sources is usually relatively small and
covers only a small solid angle on the hemisphere above x.
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3.6.2 Random Number Generation

Besides designing a “good” pdf for importance sampling, the rate of convergence
of Eq. 2.18 depends also on the properties of the multi-dimensional uniform
random-number sequence. The goal is to reduce the discrepancy of the sampling
sequence. In other words, we want to avoid the clumping of random samples,
which is particularly problematic for higher dimensions. The two main techniques
that achieve this are: stratified sampling and Quasi-Monte Carlo sampling . Strat-
ified sampling divides the domain into M disjoint sub-domains called strata each
evaluating the integral separately with one or more uniformly distributed sam-
ples. Quasi-Monte Carlo techniques replace randomness entirely by deterministic
sequences called low-discrepancy sequences (LDS) in order to minimize the dis-
crepancy on the expense of introducing correlation between samples. Many LDS
based on Quasi-Monte Carlo techniques have been developed. Popular ones are
Halton, Hammersley, Niederreiter, and Sobol. The results converge as fast as for
stratified sampling without the dependence on the total number of samples. Fur-
thermore, we inherently get stratification over several dimensions. On the other
hand, Quasi-Monte Carlo sampling can lead to visible artifacts due to determin-
istic sampling patterns. Therefore, a combination of randomness and LDS, which
is called randomized Quasi-Monte Carlo (RQMC) is sometimes preferable. More
details about the Quasi-Monte Carlo method can be found in [Nie92,Kel96].



48 Section 4: Human Visual Perception

4 Human Visual Perception

Correctly simulating every lighting effect within some physically imposed error
bounds is computationally demanding. However, many effects are not even per-
ceivable because our human visual system (HVS) is also limited and adapted to
“important”visual signals as a result of millions of years of evolution. For example
the human eye is very limited with respect to color vision and much more sensi-
tive to the light intensity, or even more to contrast of a lighting signal. Hence,
what is important is the perceived error of a lighting simulation not the physical
error, which can be very different. Understanding the HVS and deriving a per-
ceptual error metric is quite complex and a research topic on its own. It depends
on many parameters such as adaption states of the eye, background luminance,
color, the signal’s velocity across image plane, and so on. Although the early
stages of the HVS – from retina to primary visual cortex – have been relatively
well understood, the cognitive aspects, the “post-processing of the transmitted
signals” in the brain, are still hardly comprehend.

We will only introduce the visual aspects of the human perception here in or-
der to understand the relation between radiometry, described previously, and
photometry, which we will need later in this thesis.

4.1 Color

The notion of color has rather a perceptual than physical meaning since it is
strongly related to the limited human visual perception. Colors like “red” and
“green” do not have a unique relation in the physical world. The physical light
consists of a continuous spectrum of wavelengths and is described by the spec-
tral power distribution φ(λ). On the other hand, the human color perception is
determined by three types of cones in the fovea of the eye: L, M, and S and their
sensitivity to a particular wavelength in this power spectrum. Hence, mathemat-
ically speaking the perceived color is just a projection of an infinite-dimensional
continuous power-spectrum to the spectral sensitivity functions C of the three
types of cones in our eye

R =
∫
λ

φ(λ)CL(λ)dλ, G =
∫
λ

φ(λ)CM(λ)dλ, B =
∫
λ

φ(λ)CS(λ)dλ. (2.23)

Therefore, different spectral power distributions can have the same apparent color
response to a human observer. The spectral response of the standard human
observer to various wavelengths has been acquired by the CIE in as early as
1931. Since the spectral response of the cones was not known at this time the
CIE initiated a color matching experiment in which human observers had to
match a particular wavelength with a linear mixture of three monochromatic
primary colors (435.6 nm, 546.1 nm, 700 nm) representing blue, green, and red,
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respectively. The resulting matching curves are shown in Fig. 2.4(left). The
negative part for the red primary is due to the fact that the human subjects were
allowed to add monochromatic primary light to the reference color to be matched
(as we can not have negative light) whenever the reference color could not be
reproduced with the given three primaries.

Fig. 2.4 – CIE RGB and XYZ color matching functions

(left) CIE color matching functions for the stimuli red (R), green (G), blue (B) of a
standard observer http: // www. cvrl. org , (right) CIE XYZ color matching functions.
Note that the Y primary (green) was chosen to represent luminance.

New CIE matching functions, x̄(λ), ȳ(λ), z̄(λ), were derived from these RGB func-
tions in such a way that all function values are positive in the visible color spec-
trum (i.e. the whole visible color gamut is covered) and ȳ(λ) corresponds to the
luminous efficiency function, see Fig. 2.1. The new set of primaries, referred to
as XYZ, is shown on the right of Fig. 2.4. Although very old, most applications
still use the CIE XYZ standards as reference.

A plot of all visible colors is three-dimensional. However, for convenience we can
separate the visible colors into chromaticity and luminance (brightness). Thus,
the XYZ tristimulus values are normalized to obtain 2D chromaticity coordinates
(x,y) = (X ,Y )/(X +Y + Z), (z = 1− x− y) and luminance Y . By using the x and
y chromaticity coordinates, this derived color space, known as the CIE xyY color
space, better resembles our visual system. But Euclidean distances between pairs
of points in this space do not match the expected perceived differences. Therefore,
better color spaces have been derived from the XYZ color space, which achieve
visual uniformity and also incorporate the luminance dependence of perceived
color differences (e.g. CIE 1976 L∗a∗b∗, CIE 1976 L∗u∗v∗). Furthermore, it is
important to note that color information in natural images is highly correlated.
Therefore, efficient color spaces (e.g. L∗a∗b∗) use opponent color-pairs, i.e. color
is encoded as differences: red-green and blue-yellow, which is also the way the
visual signal is encoded in the optical nerves leaving the eye-ball.

Note that although representing color with just three primaries is perceptually
justified as it measures how light interacts with our eye, it may be insufficient for a
global illumination rendering system where light interacts with surface materials

http://www.cvrl.org
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in a complex way before it is finally observed by the simplified human color vision.
Only the directly visible output of such a simulation can actually be processed
in a perceptual tristimulus color space without significant distortion [WEV02].
Nevertheless, due to limited computational resources most computer graphics
application like the one’s presented in this thesis rely on simple tristimulus values.

4.2 Luminance Sensitivity

Luminance is the quantity that our visual system is most sensitive to. Photo-
receptors in the human eye convert light energy to neural signals in a non-linear
way. The response depends on the current luminance adaptation state. There-
fore, the eye is more sensitive to relative luminance levels with respect to the
background than absolute luminance. This means that an absolute luminance
threshold becomes less visible for high luminance conditions. This phenomenon
is referred to as luminance masking . The photo-receptor’s response to luminance
is often modelled as an S-shaped curve in a log-linear plot (see Fig. 2.5) where
the middle part of the curve (10−500 cd/m2) is most interesting to us as current
CRT and LCD displays fall into this range of brightness.
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Fig. 2.5 – Luminance sensitivity function

Humans photoreceptor response curves (shown for 3 different adaptation levels) accord-
ing to the Michaelis-Menten equation.

This range (photopic vision) can be modeled by a logarithmic function and the
Weber-Fechner law, which states that the contrast detection threshold is roughly
1% of the luminance adaptation level (Weber fraction), can be applied1. How-
ever, in the low to medium luminance range (mesopic vision) of modern LCDs
a power function model is a better choice. Note that the non-linearity of most

1The Weber-Fechner law is a coarse simplification and does not match well realistic measure-
ments of the human vision for small luminance values, Y < 10cd/m2. However, most computer
graphics applications limited to a small range of luminance it can be regarded as a conservative
estimate and for Y > 100cd/m2 even matches almost perfectly the visual response.
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displays equals a power function which is nearly inverse to the human’s luminance
perception (see Section 4.2.1), which causes the display’s response to be roughly
perceptual uniform.

4.2.1 Relation to Gamma Correction

The visual output of a display device is not a linear function of the applied signal.
Instead, a device has a power-law response to voltage: the luminance produced
at the face of the display Y is approximately proportional to the applied voltage
Vin shifted by the black-level offset ε raised to a power known as gamma γ

Y ≈ (Vin + ε)γ. (2.24)

For CRT displays a common gamma value is 2.2 while for LCDs the gamma
value can deviate slightly. In order to linearize the luminance of the output, we
must consider this gamma function when storing our colors. Such non-linearity
must also be taken care of when using image textures for rendering where we
assume linear data because the (RGB) values of a texture are commonly stored
as a gamma converted version (e.g. sRGB color space). Interestingly, the reason
for this is widely miss-understood: It is not intended to “correct” the gamma
of a display device, which in fact is in favor of our human’s luminance response
(see Section 4.2), but to better utilize the number of bits during image com-
pression [Poy98] (e.g. JPEG, PNG). Ideally, the images need to be perceptually
uniform before compression2.

4.3 Spatial and Temporal Contrast Sensitivity

The sensitivity of the human visual system (HVS) to contrast is described by the
contrast sensitivity function (CSF) as shown in Fig. 2.6.

The sensitivity to contrast varies with spatial and temporal frequency, orientation,
wavelength, and luminance. Interestingly, this contrast sensitivity function shown
in Fig. 2.6 is in favor with Monte Carlo rendering algorithms, where the visual
error manifests in form of high-frequency noise. Such highest frequency image-
content is what the human eye is least sensitive to. This effect becomes even
stronger in the presence of other high-frequency “masking” signals, e.g. textures,
overlaying the generated noise, which is described in Section 4.3.1. Therefore,
in terms of rendering it is usually advisable to turn (low-frequency) errors into
high-frequency noise, which is also less objectionable.

2If a low dynamic range RGB image is linearized, approximately 11 bits are necessary
to achieve high-quality. With non-linear (gamma-corrected) coding only 8 bits are suffi-
cient [Poy98].
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Fig. 2.6 – Contrast sensitivity function

Contrast sensitivity function (green). Depending on the luminance level, the contrast
amplitudes above the green curve are invisible to a human observer.

4.3.1 Contrast Masking

Natural images consist of complex signals with many frequencies with different
phase and orientations. It is well understood that a signal is less perceptible in the
presence of other signals with similar frequency and orientation [FPSG97,Dal93].
For an example see Fig. 2.7. This phenomenon is called contrast masking or
visual masking since one signal masks the other. Contrast masking is one of
the strongest visual effects that can be exploited in rendering. The effect is
strongest if both, masking signal and masked signal, have same orientation, color
and frequency. The detection threshold of a signal increases non-linearly with
the contrast of the masker signal.

Considering above observations one can deduce that errors in computer generated
images become less perceptible the complexer the image content. Consequently,
the effect of contrast masking plays an important role and has been widely em-
ployed in various fields of rendering [WPG02, MTAS01, RPG99, BM98, FPSG97]
mainly for reducing per pixel computation costs where image content is domi-
nated by high-frequency textures and geometry. The effect of contrast sensitivity
and visual masking has also been exploited in this work, see Chapter 7, Section 4
and in Chapter 6, Section 6.5.



Chapter 2: Background 53

Fig. 2.7 – Example of visual masking effects in computer graphics [image courtesy of
M. Bolin and G. Meyer 1998]

Visual masking (contrast masking) in computer graphics [BM98]: The upper pair of
images is quantized to 8 bits whereas the lower pair is quantized to 4 bits. Banding is
clearly visible in the smooth surface for the 4 bit image on the left but not for the rough
surface in the right image, where the 4 bit quantization errors are masked by the high-
frequency base content.
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4.4 Tone Reproduction

A computer-based lighting simulation yields physical radiance values possibly
even spectral radiance values. Such radiance values can be of arbitrary value
greater than zero. While we, as humans, can see 14 orders of magnitude of lumi-
nance range (in cd/m2) and simultaneously up to five orders of magnitude, most
current display devices and image file formats have a very limited range (usually
2–3 orders of magnitude, i.e., 8–10 bits) of representing luminance values. The
luminance range of standard displays is referred to as low-dynamic range (LDR),
while higher ranges close to the human vision are classified as high-dynamic range
(HDR) (however with a rather fuzzy transition). Hence, the physically-based ren-
dering output needs to be prepared for LDR display and storage. This process
is called tonemapping and is generally lossy as real pixel values are clamped and
quantized to 8 bits. This way, too small values are clamped to zero (black), the
lowest displayable shade, and too large values are clamped to white, the brightest
displayable shade. Since our human visual system perceives color in a non-linear
way, it is a bad approach to linearly scale and clamp the HDR values. Therefore,
tonemapping tries to compress HDR images in such a way that the compression
to LDR is perceptually linearized. Much research has been devoted to the topic
of tonemapping HDR images [RWPD05], which we silently ignore at this point.
A simple, yet effective tonemapping operator, is to use a gamma curve (see Sec-
tion 4.2.1), which compresses higher values more aggressively while preserving
smaller values. Effectively all display and camera devices perform such a gamma
mapping implicit or explicitly. For almost all HDR images in this thesis we use
a simple gamma based tonemapping operator.
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Related Work

In this chapter we briefly summarize and discuss the most related work, which is
split into different sections covering approximate global illumination, irradiance
and radiance caching techniques, perceptual rendering, and real-time spatial up-
sampling. And at the end we highlight a few most recent publications that are
based on the work in this thesis.

1 Approximate Global Illumination

This section summarizes the most relevant work in the area of global illumination.
We will not discuss finite-element radiosity-based methods and precomputed ra-
diance transfer (PRT) since these are not in the scope of this dissertation.

1.1 Photon Density Estimation

An efficient way for computing the approximate illumination at any surface point
in the 3D scene model is photon density estimation [Jen01], where photons cor-
respond to a sample from the radiant energy distribution in equilibrium state.
Although well-studied in the field of radiometry, the concept of photon density
estimation has first been brought to computer graphics by Henrik Wann Jensen in
1996 [Jen96]. Jensen proposed a two-pass method where photons are first emitted
from the light sources and their hit-points with the scene’s surfaces are stored in
the photon map search data-structure giving the method its name: photon map-
ping. In the second pass the photon map can be queried to estimate the photon
density, and hence the irradiance, at any surface point in the scene model.

While the first pass of photon mapping is unbiased, the second pass is not since
a finite neighborhood is needed to collect a sufficient number of photons for
reducing the noise in the density estimation [Sil85,Sch03]. Conceptually, photon
density estimation can only be made consistent by increasing the photon count
to infinity and at the same time letting the density estimation radius go to zero.
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This way photon mapping can converge towards the correct solution, which has
been shown empirically in progressive photon mapping [HOJ08]. Unlike statistical
2D density estimation, photon density estimation also suffers from geometrically
incurred bias as the density estimation domain is generally three-dimensional and
bounded [HBHS05,Sch03]. Lastra et al. [LURM02] and Havran et al. [HBHS05]
replaced the nearest-neighbor search for photon hit-points on the scene surfaces
with a nearest-neighbor search for photon rays traveling in the proximity of these
surfaces and this way could avoid bias introduced at the boundary of surfaces.

Various statistical methods [Sil85,ST87,SBS94,WJ95] can directly be applied to
reduce the bias and noise in the estimate of the 2D point density correspond-
ing to the photon’s hit-point records. The two most prominent approaches are:
k-nearest neighbor (k-NN) density estimation and variable kernel density esti-
mation [Sil85], in the rendering community often referred to as gathering and
splatting, respectively. Whereas in statistics variable kernel-density estimation is
known to be superior to k-NN density estimation [Sil85], in rendering the lat-
ter is still often preferred for its property of being able to directly evaluate the
photon density at arbitrary points in any order in the scene, which is needed for
view-dependent random queries as in Monte Carlo ray tracing [Jen01].

Nevertheless, photon mapping with direct photon splatting onto the image plane
has already been investigated. Lavignotte et al. [LP03] focus on off-line rendering
and avoid the boundary bias by precise computation of the area covered by the
splat footprint over each mesh element. On the other hand, they do not solve this
problem for arbitrary topology. Since they only consider hit points of photons
on meshes, their approach fails when it comes to estimation of the illumination
on small surfaces. Furthermore, they allow only for diffuse scattering of light
towards the camera. In order not to “smear” over object boundaries, they keep
an item buffer with object IDs, which introduces further dependencies on a scene
model.

A strong advantage of photon splatting is that we do not need to store the photons
but directly splat their energy successively onto the image plane, which has been
exploited in progressive photon mapping [HOJ08], where the memory complexity
is constant with respect to the photon count allowing to use billions of photons.

Havran et al. [HHS05] first introduced “indirect” photon splatting for final gath-
ering similar to the photon mapping algorithm, which they called reverse photon
mapping. They showed that splatting is algorithmically superior than gathering
when the number of pixel samples (i.e., number of final gather rays times pix-
els) is larger than the number of photons. They proposed a three-pass algorithm
where in several iterations first, all final gather rays are traced and their hit-points
with scene surfaces are stored in a search data structure. In the second pass, the
photons are sampled as in traditional photon mapping [Jen01] possibly guided
through importance sampling using the initially stored final-gather rays. In the
final pass, all photons indirectly splat their energy to the pixels corresponding to
final gather rays.
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Another interesting photon splatting approach has been subject in the work by
Bekaert et al. [BPC∗03]. They aim at high-quality rendering of various kind
of surface material and illumination conditions using photon density estimation.
They show that, at least theoretically, photon density estimation can be made
unbiased. They achieve this by correcting the error in the neighborhood of a
photon hit point, which is mainly caused by wrong visibility assumptions within
the splatting footprint of the photon. However, their method needs to estimate
the solid angle subtended by the splatting footprint at the photon’s origin, which
is generally difficult and therefore only coarsely approximated in their method.

Splatting has also been used in the context of different global illumination algo-
rithms such as path tracing [DLW93] and bidirectional path tracing [SW00], but
there the main motivation was noise reduction. Suykens and Willems [SW00] pro-
pose an iterative procedure with adaptive filter-size control taking into account
the density of samples and their energy contributions. This technique inspired us
to control the splat size as a function of photon-path probability density includ-
ing BRDF sampling density and number of photon bounces, which is neglected in
gathering density estimation techniques only operating on a local neighborhood.

Splatting is also commonly used in recent GPU-based global illumination tech-
niques, which are often designed for games and are usually limited to a single
bounce of indirect lighting for purely Lambertian environments. For example
Dachsbacher and Stamminger [DS06] use an extended shadow map to deposit
secondary light sources directly on lit scene surfaces and then splat energy from
these sources to neighboring pixels without care of visibility in the indirect light.
Splatting is also used to transport lighting energy from reflections, refractions,
and caustics [SKALP05, SKP06, WD06]. In all those solutions the main goal is
maximizing the rendering speed at the expense of reduced image quality.

1.2 Instant Global Illumination

Instant radiosity also referred to as instant global illumination (IGI) is another
very popular two-pass method introduced by Keller [Kel97] in 1997, which is re-
lated to bidirectional path tracing [LW93] and photon mapping [Jen96]. Similar
to photon mapping, IGI caches and reuses lighting on scene surfaces to suppress
noise at the expense of bias. The main difference to photon density estimation is
the view-dependent gathering pass. The idea is simple though effective. Instead
of directly computing the irradiance from the local photon density, the indirect
diffuse illumination is computed by direct illumination treating each photons as
an oriented virtual point light source (VPL). Hence, IGI integrates the incident
radiance over the whole scene area while explicitly evaluating the geometric term
Eq. 2.22 and visibility in the rendering equation. Therefore, it accurately repro-
duces high-frequency lighting features like sharp shadow boundaries.

On the other hand, its brute-force nature allows only to use a small set of VPLs,



58 Section 1: Approximate Global Illumination

which is insufficient for rendering glossy light transport such as caustics and
indirect illumination on glossy surfaces. Therefore, a “good” distribution (low
discrepancy) of the VPLs is very important, which can be achieved with Quasi-
Monte Carlo sampling [Kel96]. IGI also suffers from singularities near corners
due to the squared distance term in the denominator of the geometric term,
which can be compensated for when mixing it with solid-angle based Monte Carlo
integration [KK04]. It is therefore only well-suited for distant illumination from
view-independent diffuse surfaces and near-field illumination needs to be clamped
to suppress noise.

The main advantage of IGI is that it can be efficiently implemented on graphics
hardware for less complex scenes using extended shadow maps [RGK∗08,DS05].

Few extensions to IGI have been developed to overcome the limitation to diffuse
light transport [HKWB09, WFA∗05]. Further, most approaches treat each VPL
the same during final gathering although VPLs can have very different energy
contributions depending on their distance and orientation. Lightcuts [WFA∗05]
is an algorithm which adaptively chooses a small subset from a large number of
VPLs depending on their relative location and orientation in the scene, which we
will further describe in Chapter 6.

1.3 Voxelization and Visibility Approximation

Computing the indirect visibility is the main bottleneck of global illumination
algorithms. Therefore, opting for efficient and perceptually plausible approxima-
tions is very desirable. However, this is a very broad topic and we will only regard
a few related methods here mainly based on solid voxelization.

Using a voxel representation of a polygonal scene is not new but has regained
attention due to powerful, programmable graphics hardware with integer arith-
metic. Solid voxelization is becoming increasingly attractive in real-time render-
ing. Recently, even giga-voxel grids can be processed at real-time or interactive
rates [CNL∗09]. In [HW02] the authors present a robust method to generate an
octree hierarchy of a solid voxelization of arbitrary polygonal scenes, which is still
created in a slow offline process. Then, in [DCB∗04,ED06] it was shown how to
efficiently exploit the rasterization pipeline of graphics hardware to generate a
voxelized grid of a polygonal scene in real-time. This allowed for complex effects
in real-time applications, such as the computation of translucency, constructive
solid geometry (CSG) operations, particle collision detection, etc. (see [ED08]
for example). The basic principle is that surfaces of the scene are rasterized
to binary grid slices in 3D in a few render passes [DCB∗04] or even in a single
pass on newer hardware [ED06, ED08]. In Chapter 5 an approach based on the
work by [DCB∗04,ED06] is used although targeted on efficient hierarchical data
structures with further processing on the CPU.

Perhaps one of the first who has approximated the visibility in global illumination
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computations using a voxel-based representation is R. Malgouyres, who used it
in a discrete radiosity solver [Mal02].

An alternative for voxelization of sparse scenes is depth peeling [Eve01], where the
scene surfaces are “peeled” to form successive visibility layers with respect to a
certain view point. In each rasterization pass the visible surfaces of the previous
pass are “ignored” (by offseting the depth buffer), revealing the surfaces behind,
which appear in the next slice. Depth peeling has the advantage that each slice has
full depth precision and can store more information (e.g., normals) but requires
arbitrarily many passes depending on scene and view point. It has mainly been
used for indirect visibility computations performed on the GPU [Hac05,SKP98].

A similar concept are layered depth images [SGwHS98], which extend the stan-
dard z-Buffer to store many depth values per pixel, which are constructed using
ray tracing or image warping in a preprocess. They allow for fast image based
rendering using efficient splatting methods.

Besides regular grid-like data structures, other 3D scene representations have been
successfully used in global illumination computations. Ritschel et al. [RGK∗08]
employed a point-representation of a polygonal scene for cheap visibility evalua-
tion for the indirect illumination computed with instant radiosity [Kel97]. They
only construct very coarse shadow maps, referred to as imperfect shadow maps,
but for thousands of indirect light sources (VPLs) in real-time.

Deep shadow maps [LV00] store for each sample ray a one-dimensional visibility
function accounting for the light intensity changes along the ray. This additional
information allows not only to render volumetric effects but also to have better
shadow filtering especially for fine geometry such as hair.

2 Exploiting Spatial/Temporal Coherence

2.1 Radiance Caching

Caching lighting information is the fundamental idea behind all efficient global
illumination algorithms. Indirect lighting, in particular diffuse indirect lighting,
is known to be very spatially coherent and computing it densely at every pixel
sample is very costly. Therefore, it pays off to sample the indirect lighting sparsely
and interpolate in-between values. Such scheme known as irradiance caching was
introduced to computer graphics by [WRC88]. Irradiance caching makes global
illumination practical and has been widely used ever since. In [WH92] the authors
improved the cache interpolation by using irradiance gradients. The original
irradiance cache sampling assumes purely diffuse environments when determining
an upper bound for the cache sampling density. Smyk and Myszkowski [SM02]
also exploits the irradiance gradients to increase the cache density where the
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actual gradient magnitude is larger. Tabellion et al. [TL04] propose several
small practical modifications of the original irradiance caching scheme [WRC88].
Křivánek et al. [KGPB05] generalized irradiance caching to radiance caching
on moderately glossy surfaces. Essentially, the major difference to irradiance
caching is that the full incident radiance field is captured and interpolated in the
spherical or hemispherical harmonics basis [GKPB04] rather than just the view-
independent irradiance. Since radiance caching is more sensitive to interpolation
errors, the authors also propose an adaptive caching scheme [KBPv06] where
in multiple iterations visible errors in the cache interpolation are removed by
increasing the cache density where possible discontinuities are detected.

The reconstruction quality of all those caching algorithms strongly depends on
the pixel traversal order. In [GKBP05] a hybrid GPU-CPU method was presented
for the widely used (ir)radiance caching algorithm that overcomes this limitation.
The approach reverses the caching procedure by splatting cache samples to the
image plane. First, each cache sample is computed on the GPU by rasterizing
directly illuminated scene geometry (similar to [LC04]). Then the cache sample
is splatted to the image by rasterizing a bounding quad in the image plane that
encloses all pixels in the footprint of the projected maximum sphere of influence
of the cache sample. And the process is repeated until all pixels are computed.
However, the method relies solely on screen space projection of cache samples and
cannot naturally support splatting of indirect cache samples due to secondary rays
resulting from specular light transport towards the camera.

All discussed (ir)radiance caching techniques use Monte Carlo integration and
in particular the photon mapping algorithm [Jen01] to compute the incident ra-
diance field or irradiance at cache samples in object space. Alternative caching
and interpolation in image space is more sensitive to discontinuities (e.g., ob-
ject silhouettes or high-frequencies in the BRDF and textures) since it cap-
tures only outgoing pixel-radiance modulated by the local surface BRDF. There-
fore, image-space radiance-caching techniques need to sample more densely to
avoid visible artifacts. Some prominent examples of image-space caching tech-
niques are: Render cache [WDP99], Frameless rendering [DWWL05, BFMZ94],
which also cache radiance in time domain, or Reconstruction cuts [WFA∗05],
an adaptive pixel-radiance caching scheme based on the popular Lightcuts algo-
rithm [WFA∗05,WABG06].

Another class of light caching techniques stores the lighting in a volume rather
than on surfaces. The irradiance volume [GSHG98] caches the irradiance dis-
tribution in a regular three-dimensional grid, where in-between values are in-
terpolated from the nearest grid cells. Later on, this technique was adapted to
real-time rendering [Oat05] on the GPU using cube map rasterization and effi-
cient low-frequency basis function (e.g., spherical harmonics [Mac48]) to capture
the radiance field dynamically in a sparse grid.

Another caching paradigm for exploiting spatial coherence in the lighting is the
concept of interleaved sampling [SIMP06, WKB∗02]. Because interleaved sam-
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pling is mainly designed for parallel computation on graphics hardware, it uses a
regular sampling pattern that decorrelates the spatial lighting or shading infor-
mation. In contrast to the radiance caching techniques described above, for in-
terleaved sampling the shading function is evaluated at every pixel, however very
coarsely.More specifically, all pixels with indices belonging to the same residue
class (i.e., having the same offset) use the same subset of random samples to
evaluate the lighting integral. This results in structured noise, which needs to be
low-pass filtered. Hence, the assumption behind interleaved sampling is that the
signal is of low-frequency.

2.2 Real-time Upsampling on the GPU

There are several ways to reduce the pixel workload of the shader pipeline on the
GPU. It is possible to reduce the amount of shaded pixels, using techniques
such as early-z/deferred shading, visibility tests [KCCo00], or shader culling
units [HAM07]. In the following we will focus on the coherence between pixel
values over space and time. In some sense, irradiance caching, discussed previ-
ously, is a specialized upsampling technique, however an adaptive one operating
in 3D world space. The discussed techniques below rely on mainly regular, sparse
sampling of pixels in a 2D image.

2.2.1 Temporal Caching

Temporal methods accelerate rendering by updating only a certain amount of
pixels per frame [BFMZ94], but are susceptible to artifacts arising from changes
in view or geometry. An improvement can be achieved by adaptively sampling
and reprojecting the frame content [DWWL05], but this is most efficient for ray-
tracing. In such a context, some solutions suggested 3D warping to accelerate
display and global illumination computations [AH95, MMB97, WDP99] (we re-
fer to [SaLY∗08a] for a more complete list of references). These sample-based
reprojections can lead to significant fluctuations of the sample density in the
derived frames. Better quality is obtained by applying per object 4D radiance
interpolants with guaranteed error bounds [BDT99]. The reduced sampling co-
herence, or the involvement of ray tracing (although steps in this direction exist)
make such solutions less GPU-adapted.

Reprojection caches [NSL∗07, SJW07, SaLY∗08a] are more GPU-friendly. Here,
supplementary buffers encode fragment movements. In contrast to image anal-
ysis, for geometry, it is relatively cheap to obtain displacement information by
evaluation in the vertex shader and storage in the framebuffer. Given a current
fragment, one can easily verify its presence in the previous frame and, if possi-
ble, reuse its value. This recovered information is not necessarily a final color,
but can be an intermediate shader result, the so-called payload. The underlying
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assumption is that, for a fixed surface point, such value should remain constant
over time. Such an assumption gave rise to the idea of integrating samples over
time for static scene antialiasing [NSL∗07], where static also excludes illumination
variations and changes introduce significant artifacts.

The work of Yang et al. [YNS∗09] extends this idea and proposes an adaptive
method for antialiasing with reprojection caching with a profound error analysis.
They adapt the exponential smoothing factor that determines the decay of previ-
ously computed samples over time to temporal changes in shading and to blur due
to the bilinearly filtered reprojection cache. Further, they temporally interleave
frames to virtually increase the spatial resolution. They target antialiasing and,
thus, use only 2×2 sub-pixel buffers which is sufficient for their purposes. Since
their method is mainly designed for antialiasing of procedural shaders, it can-
not deal with dynamic object silhouettes and also needs an additional hole-filling
per-pixel rendering step.

To detect almost constant shader components, one can use a learning stage with
particular objects [SaLY∗08b]. This requires a long preprocessing time and such
a setup cannot exploit coherence that might arise from the application itself, e.g.,
if the shader is light-position dependent, but the light is stationary during the
execution.

2.2.2 Spatial Upsampling

Upsampling is the process of increasing the sampling rate of a signal. Hence,
upsampling raster images means increasing the resolution of the image.

The underlying assumption is that many signals in synthetic images are spa-
tially slowly varying and can be reconstructed by sparse sampling followed by
interpolation. This is true for many low-frequency shaders, e.g., lighting compu-
tation, which has een exploited by Yang et al. [YSL08], which deal with dynamic
changes and reduce the shading workload by producing low resolution frames that
are upsampled to produce a complete frame. The authors apply a joint-bilateral
filter [ED04, PSA∗04] to perform image upsampling [KCLU07] where the filter
weights are steered by geometric similarity encoded in a high-resolution geometry
buffer. This means that samples which are close in world space and have similar
surface orientation are better interpolation candidates.

The downside of such a solution is that high-frequency detail might not be cap-
tured in the low resolution frame, and hence it is not always possible to de-
duce the information needed for the current frame. Super-Resolution techniques,
e.g., [CM98], deal with this problem and attempt to add new frequencies recovered
through de-interlacing, image content analysis, or edge preserving interpolation.
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2.2.3 Spatio-Temporal Processing

Spatio-temporal filtering exploits temporal coherence by involving samples, pos-
sibly motion-compensated, from previous frames. Such filtering is commonly
used in video restoration [Tek95, BM05], and has been successful in suppressing
aliasing artifacts in ray tracing [Shi93].

Spatio-temporal filtering is a powerful tool for removing noise in Monte Carlo im-
age synthesis, in particular when using an edge-preserving bilateral filter [KCLU07,
ED04,PSA∗04]. Such filter has been successfully applied to photon density esti-
mation [WMM∗04a] where the spatio-temporal filter support is adapted to space-
time changes. For example in a static scenario the spatial support is reduced while
the temporal support is extended favoring convergence.

Temporal coherence has been used to greatest advantage in a number of global
illumination solutions discussed in the survey paper by Damez et al. [DDM03].
Many of the presented techniques are off-line or even require knowledge of subse-
quent keyframes which is unacceptable for interactive rendering purposes. Other
approaches exploit temporal coherence at a very low level, e.g., single photon
paths. Low-level coherence usually gives more flexibility and enables the ex-
change of information between many frames at once. However, it is difficult to be
efficiently exploited on current GPUs. Therefore, more GPU-compatible strate-
gies relate to interleaved sampling [WKB∗02,SIMP06] which has roughly similar
goals in its CPU and CPU/GPU incarnation. To our knowledge, spatio-temporal
upsampling has not been addressed in real-time rendering on the GPU.

3 Perceptual Rendering

Adapting the rendering quality to the human visual perception, is a different track
for saving costly shading computations. Its goal is to speed up the process by
taking into account the limits of the human visual system. It is based on the fact
that certain numerical errors in an image, are less perceivable by our visual system
than others (see Chapter 1 Section 4). Visual models have been developed in order
to compute the perceived error, which depends on many factors such as spatial
frequency, orientation, background intensity, color, time. A common approach to
determine whether an approximation is indistinguishable from a reference image
is to use a visual differences predictor (VDP) [Dal93].

Similar perceptually-based error metrics have been utilized to steer the costly
global illumination computation [BM98, RPG99]. In all these techniques the
goal was to continue the computation until rendering inaccuracies do not affect
anymore the visual quality of images. Advanced visual models have also been
used to efficiently compute animation sequences [MTAS01,YPG01].
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To predict the visual error thresholds on textured surfaces for rendering, a visual
model based on the discrete cosine transform (DCT) has been proposed by Walter
et al. [WPG02]. They successfully used it for off-line estimation of visual masking
by textures. In their approach, both the scene lighting and geometry are not
considered and thus do not contribute to the masking prediction, which may
result in too conservative (precise) rendering.

Bolin and Meyer [BM95] developed a ray tracer, which projects pixel samples
directly onto the DCT basis for an 8×8 pixel block. The technique was developed
for static images. As a result of such rendering a JPEG-like image representation
is directly obtained. Since samples are generated sparsely for each block, a costly
least squares procedure is required to approximate all DCT coefficients that best
interpolate the sampled data. When samples are progressively added additional
frequency terms in the DCT block representation are also added.

4 Successive and Active Future Work

Our methods described in this thesis has been adopted in different fields of ren-
dering in particular in the area of real-time and interactive global illumination.
In this section we will list a few known subsequent publications that are closely
related to our work.

McGuire and Luebke [ML09] have developed an image-space algorithm of our
photon ray splatting described in Chapter 4 called Image Space Photon Mapping
(ISPM) that rasterizes a light-space bounce map of emitted photons on the GPU.
Their algorithm runs in real-time for about 20000 photons and HD resolution
(upsampled) on current high-performance GPUs.

In [BGB08] a method was proposed that combines irradiance caching with photon
mapping for interactive walk-throughs in a similar way we did for our photon ray
splatting except that they refine the cache in a third “final-gather” pass.

Fabianowski and Dingliana [FD09] combined our photon bandwidth-selection pro-
posed in Section 5 with the photon’s path differentials [SW01]. Besides, they also
used a splatting approach for the density estimation to achieve interactive frame
rates.

Our ray density estimation metric has also been applied later for simplifying
and boosting the computation of volumetric photon mapping [JZJ08], which just
seems to be destined for this method. The main difference to our approach is that
Jarosz et al. reversely apply this metric for gathering photons in a “viewing-ray-
frustum” traversing the participating media whereas we gather only the surface
hit-points of the viewing-rays in a conical frustum associated with the photon-ray
(we assume vacuum without participating media).
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Photon Ray Splatting

1 Introduction

Many rendering applications used in industrial design and special effects in movie
productions require high quality global illumination solutions, which are costly
for complex scenes with general reflectance models. A common choice in such
applications is the photon mapping algorithm [Jen01], in which stochastic photon
tracing is performed and the resulting photon hit points on the scene surfaces are
registered in the photon map. The nearest-neighbor density-estimation method
developed in statistics [Sil85] is then employed to reconstruct the lighting function
based on the photon map. Since a finite neighborhood is needed to collect a
sufficient number of photons and to reconstruct the lighting function with an
acceptable noise level, all density estimation methods are prone to a systematic
error, so-called proximity bias [Sil85,Sch03] (due to a convolution of the original
lighting function with the density estimation kernel). Photon mapping also suffers
from other systematic errors: boundary bias (i.e., underestimation of illumination
near object boundaries), topological bias [Sch03,HBHS05] (i.e., wrong estimation
of the surface area on complex surfaces). See the examples in Fig. 4.1.

Recently, Lastra et al. [LURM02] and Havran et al. [HBHS05] have shown that
a viable alternative for the density estimation of photon hit points on the scene
surfaces is an analogous operation performed directly for photon paths traveling
in the proximity of these surfaces. To compute the irradiance value at a given
surface point, its neighborhood is searched for photon rays that intersect a disc
in the tangent plane, which is centered at this point (see Fig. 4.1c). The disc is
extended until a minimum specified number of photon rays is found or a maximum
disc radius is exceeded. This leads to elimination of boundary bias inherent to
photon maps as well as a reduction of topological bias for convex surfaces, since
density estimation is computed for a disc in the tangent plane and the real surface
area (A in Fig. 4.1c) does not need to be estimated. The disadvantage of these
methods is that they need complex and memory demanding data structures for
nearest neighbor searches of rays. Their algorithms rely heavily on the coherence
in the search queries and therefore only work for primary-ray hit points shot from
the camera, which we will refer to as eye samples. Another drawback of these
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Fig. 4.1 – Bias sources in photon density estimation

Bias sources in traditional photon density estimation: proximity bias (a), boundary bias
(b), topological bias (c). Light leaking (d), due to wrong visibility assumptions, is a spe-
cial case of proximity bias, which can be partially detected by back-face culling of inci-
dent photons (group II in (d)). Our algorithm eliminates boundary bias and topological
bias.

methods is that they cannot compute the correct tangent disc area for points on
concave surfaces, for example, in corners where a disc is partially intersected (see
for example Fig. 4.1d).

A direct visualization of the photon map using either density estimation for rays in
the tangent plane [HBHS05,LURM02] or hit points on the surfaces [Jen01] leads
to insufficient quality. Therefore, for complex indirect lighting expensive final
gathering must still be performed to achieve high-quality indirect illumination.

A remedy is to use better density estimation techniques with adaptive band-
width selection developed in statistics [Sil85]. So far, only very few approaches
have taken advantage of more sophisticated bandwidth selection in photon den-
sity estimation [Sch03, WHSG97, Mys97]. However, simply applying statistical
bandwidth selection is not only inefficient but also ignores all gathered informa-
tion during the photon generation phase. Most algorithms rely on the simple and
robust k-nearest-neighbor (K-NN) density estimation [Sil85, Jen01], which only
attempts to suppress the noise in the irradiance estimate to a uniform level with-
out caring about introduced bias. Besides, exact K-NN searches are inefficient in
particular for millions of search queries. Alternatively, we can reverse the process
of the density estimation and “splat” photon energy to the nearest-neighbor pixel
samples in a precomputed bandwidth per photon [HHK∗07a,HHS05,LP03]. The
disadvantage is that we loose the view dependence.

The goal of this work is to provide a framework for quickly computing rendered
previews of good quality, while also enabling the functionality of final gathering
and irradiance caching if even higher quality and more robust results are needed.
Our method shares all discussed benefits of ray density estimation, but neither
requires the complex k-NN ray gathering as for the ray maps technique [HBHS05]
nor relies on the spatial coherence of the density estimation queries. In contrast
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to [HBHS05] and [LURM02] our photon ray splatting approach decouples the
density estimation footprint entirely from the surface topology by applying a
new density estimation metric over photon rays, which is capable of handling
illumination on complex geometry (e.g., wrinkled and bump-mapped surfaces).
We replace the line density estimation in the tangent plane by energy splatting
along photon rays to the eye samples.

Additionally, we show how our method can be extended with state-of-the-art
techniques in global illumination such as radiance caching and non-diffuse lighting
on moderately glossy BRDFs.

2 Algorithm Overview

This section is intended to give an overview of the major processing steps in our
photon-ray splatting architecture (refer also to Fig. 4.2). More detailed descrip-
tions are provided in the following sections.

The basis of our method is a bidirectional path tracing algorithm combined with
density estimation that samples eye and light paths (photons) whereby the eye
paths are kept short to avoid the expensive final gathering through BRDF sam-
pling. No indirect eye paths are sampled except for deterministic reflections
(ideal specular surfaces). Instead, the main computation is carried out for the
light paths via density estimation (photon splatting). The rendering algorithm
consists of four passes:

Initialization: At the beginning of the algorithm the rendering and ray tracing
system is initialized. This comprises scene parsing, construction of a ray tracing
acceleration data structure, and optionally precomputing the coefficient tables of
BRDF data in the spherical harmonics (SH) basis if the splatting is performed in
the SH basis. For each BRDF the SH coefficients are precomputed for a constant
number of discrete outgoing directions uniformly distributed over the hemisphere
and stored in a coefficient lookup table [K0̌5b].

Eye pass: After initialization primary rays are shot from the eye (camera) and
eye sample records are stored at the hit points on the scene surfaces storing
position, normal, BRDF index, incoming direction, pixel index, and weight for
RGB components. In addition to the eye samples a discontinuity buffer [McC99,
WKB∗02] for each pixel is maintained, which can be regarded as an extension to
the classical z-buffer storing not only the nearest distance per pixel to the camera
viewpoint but also the compressed normal in spherical coordinates. We use this
buffer for discontinuity-preserving filtering in image space (Sections 11,12). Next,
a kd-tree is constructed over the eye samples storing several eye samples per leaf
(see Section 6).
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Fig. 4.2 – Processing flow in the photon-ray-splatting architecture

The processing flow in our photon splatting architecture (spherical harmonics ray splat-
ting).

Light pass: After the eye pass the light pass starts with photon sampling. The
photons are emitted from the light sources until the desired number of direct,
caustics, and diffuse indirect photons are recorded. Since the photon paths can
be quite incoherent, all paths are stored and a kd-tree is constructed over the
photon rays sorting the rays in spatial and directional domain (5D). Each photon
ray is assigned a splatting kernel width, which is computed based on the entire
photon path (Section 5).

Photon splatting: In the next phase all photons are splatted sequentially to
neighboring eye samples in the vicinity of the photon rays (Section 3) using a
density estimation kernel as described in Section 5. For an efficient nearest eye
sample search along a photon ray the kd-tree over eye samples is traversed for a
conical search domain (Section 8). In order to reconstruct glossy light transport
at eye sample hit points, photon energy contributions are accumulated in an
intermediate 4D data structure, which we call the radiance map, before being
rendered to a final pixel. The radiance map consists of a number of radiance
images with the same resolution as the final image, which represent spatial (pixel
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position) and directional (image index) information of incoming light.

As a comparison we have implemented two different methods for computing light
transport towards pixels. In our first approach radiance is directionally discretized
and accumulated in a directional histogram (histogram splatting) from which
the pixel radiance is computed by BRDF importance sampling. In our second
approach incoming radiance and BRDF are mapped onto the spherical harmonics
(SH) basis (SH splatting). Except for pixels that cover specularly reflected eye
samples, each pixel in the map corresponds to one camera-visible eye sample. In
addition to the photon’s energy contribution in the radiance map, a 2D image
storing splat information per pixel is updated during the splatting phase. This
image records the harmonic mean distance of incident photon rays and the sum
of density-estimation kernel weights for each pixel and is used for determining
the local filter size per pixel in each radiance image (Section 11) as well as the
radiance cache spacing (Section 12).

Final integration with BRDF evaluation: When the light pass is finished,
the radiance images can be prefiltered before the final image is composed through
BRDF evaluation. The main purpose of the radiance image filtering is to speed
up the algorithm and efficiently reduce noise in the radiance distribution due to
photon splatting at the expense of increasing bias. Our filtering method is based
on fast adaptive convolution in image space using a summed area table (SAT)
that preserves discontinuities in the 2D filter footprint. The final image is then
composed from the radiance images either in the spherical harmonics basis or
in the primary domain via BRDF sampling. The main algorithm flow for the
spherical harmonics splatting without radiance caching is illustrated in Fig. 4.2.

3 Photon Density Estimation in Ray Space

Standard photon-density estimation methods gather (or spread) photon energy in
the neighborhood of a point inside a sphere using a normalized symmetric density
estimation kernel [Sil85, Jen01]. This ignores photon-path density changes (e.g.
illumination gradients) in the neighborhood. Instead it is assumed to have an
unbounded perfectly planar surface around the density estimation point y, which
is only true in the limit for a differential surface area. To correct for this error, it
is necessary to measure changes in path probability-density (including visibility)
with respect to corresponding photon hit point xi. Such an approach has been
proposed by Bekaert et al. [BPC∗03]. However, their approach is computationally
expensive and introduces a different sort of bias due to the approximation to the
solid angle subtended by the density estimation footprint of a photon hit point. In
our method, we partially correct the density estimation and still keep performance
high. Let us first consider the probability density (pdf) pr for sampling the
next photon hit point xi+1 from a particular photon location xi. This pdf is
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proportional to

pr(xi→ xi+1) ∝ V (xi,xi+1)p⊥s (xi−1,xi,xi+1)
cosθxi+1

‖xi−xi+1‖2 , (4.1)

where p⊥s (xi−1,xi,xi+1) = ps(xi−1,xi,xi+1) · cosθ′xi
is the pdf for sampling the co-

sine weighted BRDF at point xi. Refer to first Chapter Section 4 for explanation
of the symbols used in the following sections.

Considering Eq. 4.1 we can draw some conclusions about the photon sampling
density (i.e., flux density or irradiance) changes at hit point xi+1. If we assume
the density estimation footprint at hit point xi+1 to be relatively small with re-
spect to the squared distance ‖xi−xi+1‖2 (such that visibility V (xi,xi+1) = 1 is
likely within the footprint) and the BRDF sampling density ps at xi to be of low-
frequency, then the change in photon sampling density in the neighborhood of
xi+1 mainly depends on the change in surface orientation (cosθi+1) in the vicinity
of point xi+1. In normal photon mapping this factor is simply ignored, assuming
the density estimation domain is planar and continuous near xi+1, which results
in visible bias in corners and on curved surfaces (see Fig. 4.1). We tackle this er-
ror by using a new density estimation metric that preserves the orientation when
computing the contribution to each neighboring sample. Instead of computing
density estimation for photon-ray intersections with surfaces as in photon map-
ping [Jen01] and ray maps [HBHS05], we compute the density estimation in ray
space.

Recall that radiance is a 5-dimensional quantity depending only on the position
and direction in space. It is defined over differential projected area dA⊥

θ
and

differential solid angle dω

L(y,ω) =
d2Φ(y,ω)

dA⊥
θ

dω
=

d2Φ(y,ω)
dAcosθdω

, (4.2)

which is independent of surface orientation. However, it is measured on surfaces
since radiant energy (photons) is absorbed and reflected on surfaces (our sensors).
Inversely, in order to compute the radiance from the measured photon density
on a surface with area dA, the photon density is projected in the direction ω.
This gives us the number of photons passing through a differential area dA⊥

θ

perpendicular to ω (see Fig. 4.3).

Equivalently, if we know the radiance L(y,ω) for the differential area dω, we can
compute its contribution to the irradiance of an arbitrarily oriented surface with
area dA by multiplying L(y,ω) with the cosine of the angle θ between surface
normal and ω (see Fig. 4.3).

To compute the irradiance E(y) at a point y on a surface the incoming radiance
is integrated over the upper hemisphere Ω+ at y

E(y) =
∫

Ω+

L(y,ω)cosθdω =
∫

Ω+

dΦ(y,ω)
dA

. (4.3)
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Fig. 4.3 – From photon-flux to radiance, a didactic view

Radiance is defined as the incoming photon flux density per unit time in a projected dif-
ferential area dA⊥

θ
and differential solid angle dω. Intuitively this can be understood as

all the photons with direction in a certain solid angle crossing dω per time unit.

Intuitively, this can be understood as accumulating the flux of all photons arriving
in a small surface area around a point y, which leads us to the well-known photon
mapping algorithm. In photon mapping we replace the differential quantities by
finite ones and compute an approximation Ẽ1(y) to the real irradiance via density
estimation

E(y) ≈ Ẽ1(y) =
K

∑
i
Kh(y,xi)

∆Φi(xi,ωi)
∆A(y)

, (4.4)

where Kh(x,y) is the density estimation kernel that satisfies
∫

SKh(x,y)dy = 1,∀x.
Hence, in photon mapping we skip the computation of radiance by directly com-
puting photon density on a surface. With this approach changes in surface ori-
entation in the neighborhood of y are neglected in the density estimation.

To avoid this problem, we propose to estimate the photon density in ray space
from the nearest photon rays and project the result onto the local surface to
obtain the irradiance contribution. This requires only a small change to Eq. 4.3
to compute the irradiance as

E(y) =
∫

Ω+

dΦ(y,ω)
dA⊥

θ

cosθ

≈
K

∑
i
Kh(y,xi,ωi)

∆Φi(xi,ωi)
∆A⊥

θi
(y)

cosθi, (4.5)

where K is the number of photons arriving in the hemisphere centered at y.
Combining Eq. 4.5 with a BRDF function to compute the reflected radiance
L(y,ωo) towards the camera leads to the more general description

L(y,ωo) ≈
K

∑
i

fs(y,ωi,ωo)Kh(y,xi,ωi)
∆Φi(xi,ωi)cosθi

∆A⊥
θi

(y)
,
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where fs(y,ωi,ωo) is the BRDF at surface point y for incoming radiance direction
ωi and outgoing radiance direction ωo. Kh(y,xi,ωi) is a normalized 2D Kernel
function whose domain is oriented perpendicular to the direction ωi. Hence, the
kernel evaluates the distance ri of point y to the ray (xi,ωi) rather than the
distance to the ray-intersection xi in the local tangent plane (see Fig. 4.4)
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Fig. 4.4 – Density estimation metrics: tangent plane distance versus distance to pho-
ton ray

Photon density estimation via ray gathering visualized in 1D for two incoming photon
rays: (a) when gathering in the tangent plane (ray disc intersection) only ray i con-
tributes; (b) with our new metric, all rays intersecting the sphere with radius h centered
around y contribute to the irradiance at y.

4 Photon Splatting Instead of Gathering

Instead of computing the photon density at an eye sample point y by gathering all
neighboring photon rays, we can also utilize a splatting approach to estimate the
photon density at all eye sample points. In splatting methods a photon computes
its contribution weighted by a normalized kernel to a number of eye samples at
once. This corresponds to kernel density estimation (KDE) in statistics [Sil85].

Variable KDE with adaptive kernel width is preferable over k-nearest neighbors
(K-NN) density estimation [Sil85]. This is intuitively clear if we consider a large
density gradient (e.g. shadow boundary): in the case of K-NN density estima-
tion the filter kernel will expand to a large neighborhood in the low density region
(shadow) “stealing” energy from the high density region, which results in blurred
slowly vanishing illumination. In case of variable KDE with a kernel width pro-
portional to the local photon density, photons in low density regions spread their
energy in a wider kernel increasing the error in the high density regions (which
is however relatively small). Conversely, the high density photons spread their
energy in a narrow kernel preventing strong light leaking into the shadow region,
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which results in “sharper” gradients particularly noticeable in density estimation
for direct illumination and caustics.

If we consider now a constant bandwidth for kernel K, then searching at each eye
sample point all the photons that intersect the bounding sphere (see Fig. 4.4b)
is equivalent to searching for each photon all eye sample points in the cylinder
centered along the photon’s ray (xi,ωi). However, instead of a cylinder we use a
conical frustum as search domain because it is better suited for our bandwidth
selection scheme proposed in Section 5. Each photon splats its energy weighted
by a 2D kernel, which is aligned with its ray direction, to the found eye samples
(see Fig. 4.5).

In practice the difficulty in this approach is to define where to end the splatting
traversal, in particular for rays arriving at a grazing angle. We propose a simple
heuristic: for eye samples located beyond the photon hit point the splatting
footprint is reduced to a hemisphere (Fig. 4.5). This heuristic simplifies the
search and prevents excessive light leakage as we do not evaluate the visibility for
eye samples within the splatting footprint. Nonetheless, it can increase the noise
since the splatting radius reduces gradually (potentially to zero) at the end of
the cone. Therefore, the bandwidth of the density estimation kernel should stay
above the minimum radius to avoid occasional noise artifacts. In practice, this
noise is hardly visible in the indirect illumination as it only affects rays arriving
at a grazing angle, which have low contribution.

Naturally, a photon can only contribute to eye samples that are oriented towards
the photon ray (i.e., have a negative dot product of normal and ray direction).

More details of the photon ray splatting algorithm are presented in Algorithm 2.
An example of the whole concept is visualized in Fig. 4.5.

5 Choice of Splat Kernel and Bandwidth Selection

According to statistical studies [Sil85], the shape of the kernel K is rather unim-
portant for the bias reduction in density estimation. Therefore, we have used
a computationally efficient 2D kernel function: the Epanechnikov kernel [Sch03,
Sil85]:

K(t) =
{ 2

π
· (1− t2) |t| < 1

0 otherwise.
(4.6)

As an alternative we have also tested the biweight or quartic kernel [Sil85], which
is continuous at the boundary but increases the low-frequency noise.

A more important issue in density estimation is the choice of the kernel width
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Fig. 4.5 – Concept of photon ray splatting instead ray gathering

Density estimation via photon ray splatting to stored eye samples (y1, y2, y3) in 1D.
Photon j splats its energy within a certain kernel support (shaded area) of a function
K(r) to y1 and y3, but not to back-facing y2. The resulting energy contribution is either
added to the spherical stratum whose discrete direction matches best the global incom-
ing photon direction (histogram) or the contribution is added directly in the spherical
harmonics basis to a number of radiance coefficients. In case of histogram splatting (see
Section 10.1) photon ray i is mapped to stratum S3 while photon j splats its energy to
stratum S5. Note that the splatting footprint (conical frustum) reduces to a hemisphere
(dashed line) for eye samples beyond the photon hit point culling a part of the frustum
(red cross-hatched region) as shown for ray j.

or bandwidth (see [Sil85]). The optimal width depends on the kernel function,
the total number of samples, and the local fluctuations in the density we want
to estimate (i.e., the second derivative of the irradiance function). The latter
is difficult to estimate and consequently often replaced by various heuristics.
However, in computer graphics, we are often more interested in computing results
with low variance rather than noisy images. Therefore most photon mapping
algorithms are based on k-nearest neighbors (K-NN) density estimation where
the bandwidth is directly related to the local density of the samples. K-NN
density estimation only attempts to reduce variance careless of introducing bias,
which may result in heavily “blurred” images in particular for caustics.

For photon splatting, it is difficult to have a bandwidth selection proportional
to the local sample density, which is not explicitly known during photon tracing.
What we know is the path density and the contribution of individual photon
paths. In case of perfect BRDF importance sampling (p⊥s ∝ fs · cosθ′) and light
source sampling proportional to its energy contribution (pe ∝ Le), the photons
are distributed according to the irradiance function and have all the same power.
Intuitively, this means we sample more densely in the domain of the path space
where the radiance contribution is high and sample more sparsely where it is low.
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In such a case, the photons are distributed according to the density

p(X) ∝ pe(x0,x1)g(x0,x1)
n−1

∏
i=1

p⊥s (xi−1,xi,xi+1)g(xi,xi+1), (4.7)

where X denotes the full light path, xi the i-th vertex of the path. The geometric
density g(xi,xi+1) = V (xi,xi+1)

cosθxi+1
‖xi−xi+1‖2 including visibility is inherently solved

by the ray tracing operator.

Based on Eq. 4.7, we relate the bandwidth h(xi) to the path density of a photon,
which has some desirable bias reduction properties. First, photons from a small
number of bounces obtain a smaller bandwidth better preserving shadow bound-
aries and high illumination gradients while photons of multiple bounces spread
their energy in a larger area, which reduces variance (i.e., low-frequency noise).
Second, caustic photon paths yield a high path density since BRDF sampling
density is high resulting in a relatively small bandwidth. Suykens et al. [SW00]
use a similar metric for filtering samples in a bidirectional path tracer. They
suggest using a bandwidth that is inversely proportional to the square root of the
estimated function value at the sample location. To accommodate for different
weights due to multiple importance sampling, the bandwidth is also scaled pro-
portional to the square root of the sample weight, which is determined by the
path sampling densities.

Since we do splatting in ray space with projected area measure, the path density
is independent of the surface orientation at xi+1 and the cosine term cosθxi+1

cancels out. Moreover, the path density p(xi|xi−1) can be arbitrarily small and
arbitrarily large due to the distance term ‖xi−xi+1‖2 and we need to clamp it
before being used in the bandwidth selection:

p̃(xi+1|xi) =


pe(x0,x1)
D(x0,x1) i = 0

p̃(xi|xi−1) · p⊥s (xi−1,xi,xi+1)
D(xi,xi+1) i > 0,

(4.8)

where D(x,y) = max(D̃2,‖x−y‖2) is the squared length of the photon ray clamped
at a scene dependent distance threshold D̃2. Bounding the geometric term is also
commonly applied, in a different context, to instant radiosity algorithms [Kel97].

Using the bounded path probability-density defined in Eq. 4.8, we compute the
bandwidth h(xi) per photon ray by the following heuristic

h(xi) =
C

6
√

M

w√
p̃(xi|xi−1)S

,∀i > 0, (4.9)

where h(x0) = 0, C is the user defined “smoothness” parameter, and S ∈]0..1] is
the user defined bandwidth sensitivity controlling the variance of h(xi) (if S is set
to 0, the bandwidth h(xi) is constant for all rays).

According to the optimal bandwidth for minimizing the mean integrated square
error, h(xi) should be inversely proportional to the sixth root of the total number



76 Section 5: Choice of Splat Kernel and Bandwidth Selection

of samples M [Sil85]. The square root comes from the fact that p̃ is related to the
area rather than the radius of the splat footprint. The normalization coefficient w
is automatically precomputed in an initial pilot shooting phase, which estimates
the mean r̄ of the term r = 1/

√
p̃(xi|xi−1)S. Coefficient w is then computed as

w = m0
µC

r̄
, (4.10)

where the scene size dependent parameter

µC = a · D̄(x,y) (4.11)

is computed from the average path segment lengths D̄(x,y) also estimated in the
pilot shooting phase. We set the constant a = 0.2, and m0 = 6

√
105 ≈ 6.8 functions

as a calibration factor for h(xi) such that the mean bandwidth h̄ = C · µC for
M = 105. For the sake of robustness, the resulting bandwidth h(xi) is clamped at
a minimum and maximum boundary value derived from a user defined maximum
bandwidth scaling R ∈]0..1] such that for all rays C

6√M
·µC ·R≤ h(xi)≤ C

6√M
·µC/R

holds.

Each photon ray (xi−1→ xi) stores the initial bandwidth h0 = min{h(xi),h(xi−1)}
and the differential bandwidth per ray length dh = max{0,h(xi)−h(xi−1)}

‖xi−xi−1‖ , which de-
termines the angle of the conical frustum. Note that the bandwidth selection with
all its parameters is defined in meters. For scenes defined in a different unit (e.g.
feet, inches), we convert the ray length to meters and the bandwidth back to the
scene unit. In Fig. 4.6, the precomputed bandwidth per photon splat is shown
for 2 to 4 photon bounces (a – c) in a false-color mapping, where red corresponds
to the smallest width and blue to the largest.

0.1m 1.0m0.1m0.1m

(a) (b) (c) (d)

Fig. 4.6 – Visualization of photon-ray bandwidth selection

Color-coded splatting size (bandwidth) per photon in our simple test scene, red corre-
sponds to minimum, blue to maximum bandwidth. (a) indirect photon-ray hits from one
discrete direction for second bounce, (b) third bounce, (c) fourth bounce, and (d) all pho-
ton hits from all directions. For visualization purposes all photons splat their color-coded
bandwidth in a small constant radius directly to the pixels. Note the small bandwidth as-
sociated to the indirect caustics photons passing through the glass sphere, which have a
higher path probability-density because of the two specular refractions in the sphere.
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6 Nearest Neighbor Search Using a KD-Tree

All kernel density estimation methods require a search for the nearest neighbors
at the sample points. Particularly in standard photon mapping [Jen01], a search
is performed for the k-nearest neighbor (K-NN) photon hit points in a sphere
centered at each primary or secondary-ray hit point along the eye path. This is
considered as the most time consuming operation in the illumination computation
in particular for final gather rays. Therefore efficient hierarchical data structures
were developed to query the nearest neighbors (NN) in sub-linear time. The
probably most popular data structure for spatial searching of point data is the
kd-tree. It enables searches for the K-NN in O(K + logM) time complexity.

In the context of photon-ray splatting we face a similar problem. Previous ap-
proaches to photon-ray density estimation in the tangent plane are based on
gathering the K-NN photon rays and need complex search data structures to
manage the increased dimensionality of the ray data (5D) [LURM02, HBHS05].
Since we utilize a splatting approach, we can still restrict our method to the
classical and well-researched problem of searching point data.

We use a kd-tree over 3D points (eye samples), which can be constructed very
efficiently. However, we need to modify the search for finding the nearest neighbor
points in a volume associated with a photon ray. Rather than searching in a sphere
as in normal photon mapping, we search the neighbor samples along the photon
ray in a conical frustum with parameters depending on the photon’s bandwidth
as explained in Section 5.

7 The Splat KD-Tree Layout

We have chosen a standard axis-aligned kd-tree [WGS04, HHS05] with splitting
planes positioned at the spatial median of a node’s associated bounding box or
at the sample point nearest to the spatial median if either half space is empty.
The kd-tree is constructed from top to bottom until the termination criteria are
met. The termination criteria are met if: the number of samples per node is
smaller than 16 or the diagonal of the node’s bounding box is smaller than a
scene-size-dependent boundary threshold.

The kd-tree consists of four node types: interior nodes, leaf nodes, empty nodes,
and backface-culling nodes. Each node uses 8 Bytes. The interior node encodes
1D splitting plane, offset to the right child node, node type and splitting axis.
The left child node is always found at the next position (index+1) in the array of
kd-tree nodes. In case of a leaf node, the 1D splitting plane encodes the number
of elements and offset represents the index into the array of eye samples. Empty
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nodes (stopping nodes) are stored whenever the sub-tree does not contain any eye
samples and must not be traversed any further. Additionally, we insert special
nodes similar to [HBHS05] that we call backface-culling nodes. Such nodes allow
for early culling of entire sub-trees containing infeasible backfacing eye samples
with coherent normals. The difference to [HBHS05] is that we store not only the
reference normal in the node but also the maximum angular deviation from the
reference normal (see Fig. 4.7). This yields higher efficiency of successfully culling
rays in particular on planar surfaces where the angular deviation of the normals
is zero.

D

Infeasible 
ray directions

Feasible 
ray directions

Covered surface 
normals

Reference 
normal

D

D D

Fig. 4.7 – Ray-culling with directional kd-tree nodes

Clustering eye samples with coherent surface normals (left) by a directional node that
stores the average normal and the angle Dθ of the normal bounding cone that contains
all surface normals (right). All photon rays with a direction in the red range can be dis-
carded conservatively since they are back-facing to all eye samples of the node.

We insert a backface-culling node into the tree if all eye samples in the current
sub-tree have “similar” normals. Since testing for similarity during kd-tree con-
struction takes considerable time, we only attempt to insert a backface-culling
node if the number of samples per node is less than a maximum allowed thresh-
old (20.5 logN), and no backface-culling node has already been inserted above that
sub-tree. If these criteria are met (then we have a high chance of finding coher-
ent normals), we compute the average normal (the reference normal NR) from all
eye sample normals in the sub-tree and the maximum angular deviation Dθ from
NR (see Fig. 4.7). If Dθ is smaller than a constant threshold (15deg), we insert
a backface-culling node storing NR (compressed) and the maximum feasible dot
product (Cmax = sin(Dθ)) of reference normal with incoming ray directions. The
backface-culling node has only one child and does not subdivide space. Although
using this node increases the kd-tree traversal depth by one and is also relatively
expensive to traverse, we achieve a speedup of factor 1.2 to 1.3.
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8 Photon Ray KD-Tree Traversal

The tree is traversed from top to bottom as in standard ray tracing algorithms
with node traversal in 1D ray space. The difference is that we need to consider
a volume associated with the ray. A kd-tree traversal algorithm for a similar
problem, however in a different context, has been proposed by Dahmen [Dah04].
He uses a kd-tree for accelerating the ray tracing of point data represented as
oriented discs.

We start computing the minimum and maximum ray distance t0 and t1 by clipping
the ray at the bounding box of the kd-tree extended by the ray’s splat radius.
Then we test t0 and t1 with the splitting plane of the current tree node. This plane
is virtually moved to its left and right by the maximum splat radius R1 of the
photon ray. A child node needs to be traversed if a ray intersection with its virtual
plane lies between t0 and t1. If the front-facing child node needs to be traversed,
t1 and R1 are updated, respectively if the back-facing child node is scheduled for
traversal, t0 and R0 are updated. This search algorithm is conservative but not
optimal and can lead to unnecessary feasibility tests inside a leaf. For our tested
scenes the average ratio of infeasible to feasible eye sample candidates found per
ray traversal is between 27% and 52%, which depends on the ray’s splat radius
(the smaller the splat radius the more efficient becomes the search). Nevertheless,
due to its simplicity the 1D-traversal algorithm performs better than accurate
traversal algorithms in 2D [Dah04]. The simplified pseudo code in Algorithm 1
describes the basic recursive version of the algorithm.

The complete traversal step of one interior node is shown in Fig. 4.8. Therein, the
ray needs to visit both front and back child-nodes. Fig. 4.9 shows two examples
where only the front respectively back half-space needs to be traversed.

Once the ray traverses a leaf node all eye samples associated with the node are
tested for feasibility, i.e., distance to ray is smaller than splat radius, the normal
of the eye sample is front facing, and its position is in front of the surface at the
ray’s origin. If feasible, the eye sample’s weight is computed by the 2D kernel
multiplied with the cosine between normal and ray direction according to Eq. 4.5.

In the proceeding splatting phase the photon ray splats its energy contribution
to all pixels corresponding to the eye samples gathered during kd-tree traversal.
The splatting is further described in Section 10.
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Algorithm 1 KD-Tree Traversal

TraverseTree(ray, in, t0, t1)
node := nodes[in]
if (node.type = EMPTY) then

return
else if (node.type = LEAF) then

test all samples in leaf and add to candidate list
return

else if (node.type = DIRCULL) then
if (ray.dir • node.normal > node.Cmax) then

return
else

TraverseTree(ray, in + 1, t0, t1)
end if

else if (node.type = INTERIOR) then
a := node.axis
if (ray.dir[a] < 0) then

invert order of traversal /* omitted here! */
end if
R1 := ray.h0 + ray.dh · t1 /* compute splat radius at t1 */
/* compute ray length ∆t between virtual plane and splitting plane */
∆t := R1 / ray.dir[a]
t := (node.plane1D − ray.org[a]) / ray.dir[a]
/* compute ray lengths tα and tβ to virtual planes α and β */
tα := t−∆t
tβ := t + ∆t
if t0 < tβ then

/* traverse front */ TraverseTree(ray, in + 1, t0, min(tβ, t1))
end if
if t1 > tα then

/* traverse back */ TraverseTree(ray, node.offset, max(tα, t0), t1)
end if

end if

9 Algorithmic Extensions

Like photon mapping [Jen01], ray splatting is a very general method. It can be
extended with many state-of-the-art techniques. Next we present some examples
that we have implemented and tested.
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Fig. 4.8 – Conical frustum traversal of a spatial kd-tree node

Traversal of a kd-tree node given the photon ray and its associated splat radius h. The
dashed vertical line represents the 1D splitting plane and the thin dotted lines the virtual
extensions of the node’s corresponding voxel. The red frame depicts the currently tra-
versed node. If t1 > tα, we descend to the back child node. If t0 < tβ, we traverse to the
front child node.

10 Extension to the Directional Domain

First density estimation methods recorded photon flux in bins of a histogram,
which has the advantage of low memory usage and fast rendering using graphics
hardware. However, it is not capable of handling non-diffuse BRDFs. Jensen
[Jen97] showed that it is advantageous to keep the incoming direction of each
individual photon in the photon map. With photon mapping it is possible to
evaluate arbitrary BRDFs and render illumination on all kinds of surfaces with
low-frequency BRDFs. Stürzlinger et al. [Stü98] additionally combines the spatial
density estimation kernel with a directional filter kernel to render moderately
glossy illumination with photon density estimation.

In the spatial domain we use variable kernel density estimation as in standard
photon splatting approaches [LP03, HHS05]. However, we consider not only the
spatial domain of incoming photon flux but also the directional domain. For
testing purposes we have implemented and practically evaluated two different
methods for representing directional information of incoming light.

First method is based on a histogram approach. This means we accumulate
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Fig. 4.9 – Conical frustum traversal of a spatial kd-tree node with conservative
culling of sub-tree nodes

(a) If t1 ≤ tα only the front child node needs to be traversed. (b) If t0 ≥ tβ only the back
child node needs to be traversed. Note that there is a small space near the corners where
the ray traversal is not optimal. The ray only needs to traverse either half space if it in-
tersects the “rounded box”, indicated by the cross-hatched region. Due to the box approx-
imation it may visit the front, back half-space respectively even if the conical frustum
cannot intersect it.

flux on a surface in discrete directional strata with constant solid angle, which
provides information about the average incoming radiance for a finite solid angle
at a point on the eye path (see for example Fig. 4.5).

The second approach uses a different basis for representing incoming radiance in
frequency space. We have chosen spherical harmonics (SH) [Mac48,RH04], since
they are well suited for low-frequency signals over the sphere. First we describe
the histogram approach and then the splatting in the SH basis.

10.1 Ray Histogram Splatting

To do density estimation in the spatial and directional domain even more photons
are needed in order to have enough information for evaluating the BRDF at any
point on a surface for a particular incoming direction. Since we only account for
moderately glossy BRDFs, high angular frequencies in the incoming radiance are
filtered by the BRDF [RH04]. Therefore a histogram of low resolution subdividing
the incident sphere into P strata is sufficient if it does not undersample the BRDF.

We discretize the sphere to an icosahedron, which consists of 20 equally sized
triangles. When subdividing it further to 80 triangles the efficiency of splatting
decreases quickly while the memory consumption increases four times (80 images
of screen resolution need to be stored).
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Each stratum records incoming photon flux from a global discrete direction ar-
riving in the neighborhood of the corresponding density estimation point (see
Fig. 4.5). For postprocessing purposes the radiance for one global stratum is
stored in one individual image for all eye samples such that each image corre-
sponds to one discrete direction.

A directional filter kernel can be applied [Stü98] such that each photon splats its
energy to several neighboring strata with precomputed filter weights for PD dis-
crete photon directions, with PD� P. However, this results in poor performance
due to incoherent memory access. Therefore, we use a nearest neighbor approach
where each photon contributes to only one stratum, the nearest neighbor stra-
tum. The entire splatting algorithm for the general case with directional filtering
is shown in Algorithm 2.

How do we benefit from the additional directional information? First, BRDF
evaluation is simpler than for photon maps. We do not need to evaluate the
BRDF (which can be expensive) for every photon with low contribution, but for
the average accumulated radiance from a stratum of a discrete direction. Second,
the filter kernel size for density estimation cannot only be adapted in spatial but
also in the directional domain. Third, each radiance image can be adaptively
filtered efficiently in 2D image space.

10.2 Ray Splatting in the Spherical Harmonics Basis

Using uniformly distributed strata over the hemisphere is efficient for computing
the splatting, but on the other hand, it is not adaptive and can lead to aliasing
artifacts if a BRDF contains too high frequencies. Therefore, we have also im-
plemented a different approach using spherical harmonics (SH) basis functions to
represent illumination as well as BRDFs by a small number of coefficients.

The mapping onto the SH basis is entirely discretized. All BRDF data is initially
precomputed for a number of discrete outgoing directions (θ′o,φ′o) mapped to
SH coefficients, which are stored in a table [K0̌5b]. The BRDF SH coefficients
f m
l (θ′o,φ′o) for every outgoing direction are precomputed by evaluating the integral

f m
l (θ

′
o,φ′o) =

∫
Ω+

fs(θ
′
o,φ′o,ω) ·Y m

l (ω)dω. (4.12)

Note that this can be simplified for isotropic BRDFs in particular for the Phong
reflection model. Since we do the splatting directly in the SH basis, we also
keep a table of precomputed real SH basis functions Y m

l (ωi) for PD incoming ray
directions ωi. Since a photon contributes to many SH coefficients (and not only
to the nearest-neighbor stratum in a histogram), we now keep one image storing
the SH coefficients for the cosine-weighted incident radiance in each pixel. The
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Algorithm 2 Photon ray splatting – ray density estimation metric
SplatPhotonRay(ray,candidates)

id := MapDirectionToStratum(ray.dir)
W := coeffTab[id ]
for all eye samples (es) in candidates do

cosθ := ray.dir • es.normal
if (cosθ ≥ 0) then

skip back facing sample
end if
Des := es.pos− ray.org
zn := Des • ray.normal
z := Des • ray.dir /* compute projected distance along the ray */
h := ray.h0 + ray.dh · z /* compute splat radius h (Section 5) */
r2

es := ‖Des× ray.dir‖2 /* compute squared distance to ray */
if (z < 0) or (zn < 0) or (z > h + ray.length) or (r2

es > h2) then
/* outside the splat footprint → */ skip sample

end if
if (z > ray.length) then

h2 := h2− (z− ray.length)2

if (r2
es > h2) then

skip sample
end if

end if

w := 2
πh2 · (1− r2

es
h2 ) /* evaluate Epanechnikov kernel */

I := ray. f lux∗w · cosθ /* compute irradiance contribution */
/* optionally compute irradiance gradient contribution, omitted here! */
L := 0
/* compute contribution to all directions using precomputed weights */
for c = 0 to P do

L[c] := I ∗W [c]
end for
/* Add photon’s contribution to radiance map */
UpdateRadianceMap(es.pixel,L)
/* Update harmonic mean distance and weights for filtering and radiance

caching */
UpdateSplatImage(es.pixel,w,1/z)

end for

radiance SH coefficients λm
l for a certain pixel are computed as

λ
m
l =

∫
Ω+

L(ω) · cosθ ·Y m
l (ω)dω

=
∫

Ω+

dΦ
dA⊥

θ
dω
· cosθ ·Y m

l (ω)dω

≈
K

∑
i

∆Φi

∆A⊥
θi

· cosθi ·Y m
l (ωi), (4.13)

where K is the number of neighboring photon splats contributing to the corre-
sponding pixel. Note that we can also encode the cosine term cosθ in the BRDF
SH coefficients instead. However, then we would need at least 9 BRDF SH coef-
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ficients (3 bands) to represent diffuse cosine weighted BRDFs [RH04] with small
error. For our strategy, only the DC coefficient is needed for diffuse surfaces.

The photon ray splatting is then processed as follows. With each eye sample hit
point we additionally store outgoing directions towards camera and normal in
discrete spherical coordinates. Search and splatting is carried out as explained in
Section 6. The difference is that the photon ray directly splats to the radiance
SH coefficients of an eye sample. To do so the global incoming ray direction ω̃i =
(θ̃i, φ̃i) is rotated to local coordinates of the eye sample identified by its discretized
normal (θN ,φN). The real SH basis functions Y m

l (θi,φi) for the local incoming ray
direction (θi,φi) = Rot[θN ,φN ](θ̃i, φ̃i) are looked up in the precomputed SH table
for each eye sample included under the density estimation kernel. Each photon’s
radiance contribution is then scaled by the vector of SH basis functions and added
to the radiance coefficients of the corresponding pixel in the SH radiance image

λ
m
l := λ

m
l +Khi(y,xi,ωi)

∆Φi(xi,θi,φi)cosθi

∆A⊥
θi

·Y m
l [θi,φi]. (4.14)

The final pixel radiance is easily computed via a dot product of BRDF SH coeffi-
cients and radiance SH coefficients due to the orthogonality property of spherical
harmonics.

L(θ
′
o,φ′o) =

∫
Ω+

fs(θ
′
o,φ′o,ω) · cosθ ·L(ω)dω

≈
n

∑
l=0

m=l

∑
m=−l

f m
l (θ

′
o,φ′o) ·λm

l , (4.15)

where (θ′o,φ′o) is the local discrete outgoing direction.

11 Radiance Filtering in 2D Image Space

The ray splatting complexity depends linear on the search neighborhood and
therefore on the size of the splat footprint. Instead of increasing the splat foot-
print, effectively the radius of the cone, we can also use a second pass filter in
2D image space to filter noise in the radiance images. To preserve discontinu-
ities during filtering of the radiance images we need to filter over geometrically
continuous image region. In contrast to image processing approaches we have
the geometric information behind all pixels available for free, which allows us to
use a discontinuity buffer storing distance (length of primary ray shot from the
camera) and normal per pixel [WKB∗02, McC99]. A naive algorithm is compu-
tationally expensive since it performs a convolution for a large number of pixels
for all radiance images. In [HHK∗07b] we presented a way to filter the radiance
images in constant time per pixel making efficient use of discontinuity-preserving
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summed-area-tables. However, lookups in summed area tables correspond only
to a rectangular filter, whose results are of inferior quality compared with a rota-
tional invariant filter. Therefore, in Section 12 we will exploit the radiance cache
splatting to filter noisy photon splats more effectively.

12 Extension to Radiance Caching

In the following we show how our algorithm is extended to radiance caching in the
spherical harmonics basis and exploits all benefits from the traditional caching
scheme [WRC88,K0̌5b,GKBP05].

It is well known that (ir)radiance caching significantly speeds up computation of
diffuse (glossy) indirect illumination computed with final gathering because the
image plane is adaptively sampled [WRC88, K0̌5b]. The cache sampling density
adapts to a relative error estimate. The cache density in the original irradiance
cache algorithm [WRC88] adapts to the harmonic mean distance to the surround-
ing objects. The user provides a maximum error ε that determines the overall
sampling density. However, choosing ε and the number of rays for final gathering
is crucial and can lead to visible artifacts if set too relaxed. On the other hand,
setting too conservative values may lead to long computation times with little
progression in image quality.

Motivated by the radiance caching technique of Křivánek [K0̌5b], we also perform
the caching in the spherical harmonics basis. However, the difference lies in
the illumination computation. While Křivánek [K0̌5b] computes a high-quality
solution of the incoming radiance by Monte Carlo final gathering of the incident
hemisphere, we estimate the incoming radiance directly from neighboring photon-
ray splats.

Our caching algorithm, initially intended to speed up the computation, inherently
filters noisy photon splats as a by-product. In contrast to traditional (ir)radiance
caching, reducing the cache error ε below a certain minimum error will not give
any quality improvements since bias is already introduced in the cached samples,
which are computed via photon-ray density estimation. On the other hand, since
the irradiance is already low-pass-filtered and therefore well-suited for interpo-
lation, we can reduce the complexity of the ray-splatting algorithm by sparse
sampling the image plane and interpolating in-between pixels.

We utilize a multi-pass radiance caching algorithm that exploits the kd-tree build
on top of the eye samples (see Section 7). Only a sparse number of eye samples
from the lower levels of the kd-tree is cached and computed via photon ray splat-
ting. The radiance caching and extrapolation is carried out in image space via
cache splatting similar to [GKBP05]. However, the disc-shaped splat footprint
of each cache record is computed in world space and projected to image space as
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visualized in Fig. 4.14b.

12.1 Approximative Harmonic Mean Distance to Visible Surfaces

The initial world-space radius r of each cache splat is computed from the harmonic
mean distance R(yc) [WRC88], which we measure only from incoming photon rays
(xi,ωi) during ray splatting.

r(yc) = ε ·R(yc), (4.16)

R(yc) = max

{
R−(yc),min

{
R+(yc),

1

∑
K
i=1

1
zi

}}
, (4.17)

where ε is the user-defined cache error [WRC88], R−,R+ are respectively the min-
imum, maximum allowed harmonic mean distance, corresponding to 2 times, 50
times the projected width of the pixel that maps to the cache location yc [K0̌5b,
KGPB05, TL04]. To update the harmonic mean distance at all cache records

l1 l 2

z1

z2

y1 y2

x i

i

Fig. 4.10 – Approximating the harmonic mean distance to all surfaces visible to a
cache record

Approximating the harmonic mean distance (HMD) at two cache records (green dots)
from the incoming photon rays (here shown for one ray in 2D only). Instead of com-
puting the exact distances l1 and l2 to the neighboring cache records in the ray splatting
footprint, the projected distances z1 and z2 are used to update the HMD, which are com-
puted as a by-product of the density estimation.

in the splat footprint of a single photon ray, we need to compute the Euclidean
distance l of the cache records yc to the ray origin xi. Because this is computa-
tionally intensive in particular for larger ray splat footprints, we approximate this
distance by the projected distance zi = (yc−xi) •ωi along the ray direction ωi

(see Fig. 4.10). This approximation is sufficient for our purposes and is computed
as a by-product in the density estimation.

Since one photon ray contributes to many neighboring cache records (see Fig. 4.10),
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short distances to nearby objects are less likely to be missed than for final gath-
ering with hemisphere sampling where one ray contributes to one record only.
This way, additional neighbor clamping [KBPv06] becomes obsolete. Neverthe-
less, due to the sparse number of photon rays in the vicinity of a cache record it
is still possible to miss short distances to small objects. Therefore, we need to be
more conservative in the cache error setting.

12.2 Radiance Cache Weighting

During cache splatting in image space a weight wc is computed for each eye sample
y that maps to the projected bounding rectangle of the cache footprint in image
space. For filtering purposes we do not use Ward’s original weighting function
derived from the split-sphere model [WRC88] since it is unbounded and has a
singularity at the cache location (see Fig. 4.12), which creates spiky artifacts
as shown on the top left in Fig. 4.11. Instead we have chosen a smooth filter

Fig. 4.11 – Radiance caching on top of photon ray splatting with a weighting function
able to filter cache errors

Irradiance cache results using Ward’s weighting function (left) and our weighting func-
tion (right) used for cache interpolation. Note the artifacts in the left image due to un-
filtered pixels corresponding to the cache locations. For both images approximately 2700
cache records are computed and at least 6 cache records contribute to a pixel.

function, which goes to zero at the maximum cache distance ε ·Rc:

wc(y) =
(

max
{

1− ||yc−y||2
ε ·R(yc)

· 1
(~n•~nc)4 ,0

})2

. (4.18)

The term 1
(~n•~nc)4 penalizes cache records with deviating surface normal ~nc, where

the exponent 4 was chosen for efficiency reasons. A comparison of Ward’s weight-
ing function with our weighting function is shown in Fig. 4.12 in 1D. If the weight
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wc(y) is greater than zero, the eye sample receives the weighted energy of the
cache record, which is added to the cache splat image together with the weight.

Ward '88

−⋅Rc ⋅Rc

w x 

x

Rc
∥y−yc∥

max {1−∥y−yc∥
2

⋅Rc
2 ,0}

2

1


0.5 1.51.00-0.5-1.0-1.5-2.0 2.0

Fig. 4.12 – 1D plot of different cache weighting function

Comparing Ward’s traditional cache-weighting function [WRC88] (red solid curve) de-
rived from the split sphere model with our continuous weighting function (blue dashed
curve). Ward’s weighting function has a singularity at the cache location and therefore
does not allow filtering of the cache records, i.e., only one cache contributes at the cache
location. Note that the weighting functions do not need to be normalized since the inter-
polated pixels are divided by the sum of weights afterwards.

After each cache splatting pass the cache splat image [GKBP05], which stores the
sum of cache weights w and counts the number of contributing cache records per
pixel, is processed in scanline order and every pixel is tested against a minimum
required number of contributing caches Nc per pixel. For most scenes 4 to 10
contributing caches per pixel are sufficient. If a pixel has not yet accumulated
enough weight (i.e., cache counter < Nc), its corresponding sub-tree of the kd-tree
containing the pixel’s eye sample is refined. One possible sampling pattern we
have used for refinement is to pick every i-th eye sample from a sub-tree that needs
to be refined and in the following pass every i/2 eye sample. The caching starts
with one sample from each sub-tree that contains at most

⌊
20.3·log2 N

⌋
samples.

This results in a sparse cache distribution with relatively low discrepancy in
image space.

The previous steps are repeated for all newly generated cache records in each
pass until no more cache records are created (i.e., all pixels have got sufficient
weight and cache counts after scanlining the cache image). As an example of the
iterative cache refinement in the sibenik scene see Fig. 4.13.

In the final pass, after all cache records have extrapolated their radiance SH
coefficients to neighbor pixels, the SH coefficients λm

l in all pixel samples y are
divided by the accumulated weight per pixel, which has been stored in the cache
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(I) (II) (III) (IV)

Fig. 4.13 – Visualization of iterative cache refinement with photon ray splatting

Iterative refinement of the radiance caching algorithm in the sibenik scene. In the
initial pass (I) the cache records (red points) are uniformly distributed over the image
plane. In the following passes (II – IV) the cache records are refined and splatted to
neighboring pixels inside the projected splat footprint. The cache weights are accumu-
lated in the cache image (top row). The cache weights depend on the estimated cache er-
ror computed from the harmonic mean distance and normal variation [WRC88]. Hence
the cache record density adapts to the cache error and more records are added to darker
regions of the cache image shown in the top row. The bottom row shows the results after
each pass (for demonstration purposes in form of pixel radiance which has been modu-
lated with the BRDF SH coefficients).

splat image:

λ
m
l (y) =

∑c∈Cy λm
l (yc) ·wc(y)

∑c∈Cy wc(y)
, (4.19)

where the C(y) = {c|wc(y) > 0} is the set of contributing cache records to pixel
sample y. Note that we do not apply a rotation of the cached spherical harmonics
(SH) coefficients [K0̌5b] to align them with the local coordinate frame at y since
the computational overhead of the SH rotation is too intensive compared with the
computation of a new cache record in our framework. Therefore, our weighting
function in Eq. 4.18 enforces a higher cache density on curved surfaces.
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(a) (b) (c)

Fig. 4.14 – Visualization of initial cache-splat footprints and interpolated result for
radiance caching with photon ray splatting

Results of photon ray splatting (direct and indirect light) with radiance caching in spher-
ical harmonics basis in the Apartment scene, (a) shows the noisy direct visualization
resulting from a small splat size given as initial input to the radiance caching algorithm,
(b) the radiance cache splats after first pass (for visualization purposes a smaller cache
error was chosen), and (c) the final image after radiance cache extrapolation in 3 itera-
tions. The time for computing photon ray splatting and cache splatting in 3 passes took
15 seconds for 500,000 photons and 500× 500 pixels.

12.3 Illumination Gradient Estimation

When using (ir)radiance caching the cache-record density adapts to the geomet-
ric gradient magnitude estimated from the split-sphere model [WRC88], which
is well established and commonly applied to most irradiance caching algorithms.
However, this model is only valid for indirect illumination since it adapts to a
geometric upper bound of the indirect gradient. Moreover, it often underesti-
mates strong indirect illumination sources and overestimates near corners. As a
remedy Ward et al. [WH92] proposed to compute the “real” irradiance gradient at
each cache location in the local tangent frame as a by-product of final gathering
(i.e., importance sampling the BRDF), which is then used for higher order cache
interpolation. Furthermore, the irradiance gradient can also be used to control
cache density [K0̌5b]. If the magnitude of the irradiance gradient is larger than
the estimated geometric gradient magnitude, the cache density is increased by
reducing the cache’s influence radius accordingly.

Our goals are similar. However, because we cannot estimate the gradient magni-
tude accurately enough, we do not want the noisy gradient to influence the cache
interpolation since such interpolation [WH92] is very sensitive to the gradient.
Instead we stick to our simple cache interpolation combined with additional fil-
tering (see previous section). Nonetheless, the gradient helps to control the cache
density and therefore the filter width in order not to over-smooth illumination
boundaries (e.g. shadow boundaries).1 Since we do not perform view-dependent

1Increasing the cache density according to the gradient magnitude and at the same time
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final gathering, we need a new approach for the gradient computation. Estimat-
ing the gradient ∇E(y) by central differences is cumbersome and too sensitive
to noise. Fortunately, the gradient can be directly derived by differentiating the
density estimation equation in Eq. 4.5:

∂

∂u
E(y) ≈

K

∑
i=1

∆Φi(xi,ωi)
∆A⊥

θi

·
[

∂

∂u
{Kh(y,xi,ωi)} · cosθi +Kh(y,xi,ωi) ·

∂

∂u
{cosθi}

]
=

K

∑
i=1

∆Φi(xi,ωi)
∆A⊥

θi

· ∂

∂u
{Kh(y,xi,ωi)} · cosθi, (4.20)

since ∂

∂u {cosθi}= 0 in our metric, which assumes that the ray direction is constant
within the density estimation footprint. The first derivative of the Epanechnikov
kernel along direction u is a linear function in ray distance ||~r||:

∂

∂u
Kh(y,xi,ωi) =

∂

∂u

{
2 ·
(

1− ||~r(y,xi,ωi)||2
h2

i

)}
=

{
− 2

h2
i
(2ru) ||~r||2 < h2

i

0 otherwise,
(4.21)

where ~r(y,xi,ωi) = {ωi× (y−xi)}×ωi is the distance vector to the photon ray
and ru =~r•~u is the projection into the local coordinate-frame axis ~u at y. ωi is
the ray direction in Euclidean coordinates. Note that the term ∆Φi(xi,ωi)

∆A⊥
θi

as well

as the bandwidth hi are assumed to be independent of the density estimation
point y and therefore do not change when displacing y along ~u2. For a better
understanding see the schematic draft in Fig. 4.15. And analogously for the ~v
direction:

∂

∂v
E(y) ≈

K

∑
i=1

∆Φi(xi,ωi)
∆A⊥

θi

· [ ∂

∂v
{Kh(y,xi,ωi)} · cosθi], (4.22)

with ∂

∂vKh(y,xi,ωi) = − 2
h2

i
(2rv), where rv =~r•~v.

Having computed the irradiance gradient ∇E(y) =
(

∂

∂u E(y), ∂

∂v E(y)
)T

, we are
able to steer the cache density by controlling the cache splat radius. Wherever
the geometric gradient ||E(y)/R(y)|| estimated from the harmonic mean distance
R(y) (see previous section) is less than ||∇E(y)||, we decrease R(y) by setting it
to:

R(y) :=
E(y)

||∇E(y)|| , (4.23)

also using the gradients for higher order cache interpolation seems slightly redundant since the
gradient based interpolation already compensates for linear changes in lighting. A better choice
would be to compute the second derivative for steering the cache density and to use the gradient
for interpolation.

2Actually hi is only independent of y if the bandwidth is constant along the ray, i.e., cylindrical
splatting footprint.
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Fig. 4.15 – Quantities for computing a translational gradient in photon ray splatting

Quantities for computing a translational gradient in photon ray splatting (here in 1D
along ~u).

which consequently results in an increased cache density around y (see Fig. 4.16).
The images in Fig. 4.16 show the results for the estimated irradiance with and
without using the irradiance gradient for controlling the cache density. The over-
head for computing the irradiance gradient during the ray splatting is negligi-
ble ( 2− 4% increased computation time) but significantly improves the results
in particular for direct lighting. A minor drawback of the proposed gradient
computation in Eq. 4.20 is that the computed gradient might vanish for high-
frequency illumination patterns where the gradients have similar direction but
opposite orientation. A remedy is to estimate the gradient in a smaller neigh-
borhood and then use 2×2 structure tensors [RS91] to filter the noisy gradients
without cancellation effects [Wei98].

13 High Quality Rendering with Final Gathering

In photon density estimation the visibility within the density estimation foot-
print is neglected and high frequency indirect lighting due to occlusion cannot
be reproduced and may lead to energy leaking for complex scenes. To address
this problem, the global photon map is only queried for secondary eye rays, ref-
ered to as final gather rays (FGRs), generated using Monte Carlo sampling of
the BRDF (final gathering) [Jen01]. Final gathering balances the local error
in the photon map estimate across all pixels and produces high quality indirect
illumination (except for caustics, which are computed by a direct visualization
of the caustics photon map). Nevertheless, final gathering with photon map-
ping has its shortcoming for concave surfaces where many FGRs hit the local
neighborhood resulting in overestimated illumination, see Fig. 4.17(a). In such
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Fig. 4.16 – Visual results of photon ray splatting with irradiance caching with and
without translational gradients

Irradiance caching results for sampling with geometric gradients (1. column) and sam-
pling with our irradiance gradients computed during ray splatting (2. column). First
row (from left to right): irradiance cache locations adapting to the geometric gradi-
ent [WRC88], irradiance cache locations adapting to our irradiance gradient, our gra-
dient magnitude (3 f-stops brighter). Cache sampling according to the geometric gra-
dient results in 13,116 caches records, while sampling according to our irradiance gra-
dient yields 14,272 cache records and preserves the shadow boundaries by reducing the
filter bandwidth near the strong gradients according to Eq. 4.23. The rendering times are
about 6 seconds for splatting 750,000 photon rays and 14,000 cache records. The bottom
right image shows the color-coded difference between the bottom left and bottom middle
image.
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cases secondary final gathering is initiated, drastically increasing the computation
cost of the corresponding pixel, which is especially problematic for (ir)radiance
caching [WRC88] where the cache samples are concentrated near concave features
such as corners. Combining our method with final gathering, we can mostly avoid
secondary final gathering and also speed up the nearest neighbor search compared
to photon mapping. This requires only a small change in the algorithm described
in Section 2. Instead of primary ray hit points, we need to store all FGR hit
points. To handle the increased memory demands, the image plane is rendered
in tiles utilizing multiple splatting passes with the same photon ray distribution
as proposed in [HHS05]. Further, we do not use the radiance map (Section 10),
which would be too memory consuming, but directly splat photon energy to the
corresponding pixels weighted by the FGR contribution and the BRDF at the
FGR hit point.

(a) (b) (c)

Fig. 4.17 – Visual results of photon ray splatting with final gathering and photon
mapping compared to unbiased reference

Comparing indirect lighting results in the conference scene for (a) photon mapping with
600 final gather rays per pixel, (b) ray splatting with 600 final gather rays per pixel, and
(c) path tracing with 2000 paths per pixel. The full images are shown in Fig. 4.21(d).

14 Progressive Photon Ray Splatting

Our photon ray splatting naturally allows for progressive refinement in the spirit
of progressive photon mapping (PPM) [HOJ08]. The main difference between
PPM and our approach is the computation of the kernel bandwidth. Whereas
PPM is based on the k-nearest neighbors scheme, we compute the bandwidth
h for each photon individually as explained in Section 5. Similar to the PPM
formulation proposed in [HJJ10], in each iteration i we allow the variance of the
radiance estimation error εi to increases by a factor

Var [εi+1]
Var [εi]

=
i + 1
i + α

, (4.24)
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for some constant α ∈]0 . . .1[. Further, in [HJJ10] it has been shown that the
variance decreases with the square of the kernel radius h, which can be computed
from the sequence of variance estimates using the following relationship

h2
i+1

h2
i

=
Var [εi]

Var [εi+1]
. (4.25)

Then, given an initial bandwidth h1 and combining the two equations above, we
can reformulate an explicit equation for computing the kernel size in the i-th
iteration leading to an asymptotic estimate

h2
i (x) = h2

1(x) ·
(

i−1

∏
k=1

k + α

k

)
1
i
, (4.26)

where h1 is computed for photon at x, and α determines the convergence rate of
variance versus bias [HJJ10]. Note that our computation is memoryless and can
be parallelized since we do not store h1, but recompute it for each photon ray in
each iteration during the photon tracing phase. An example of our progressive ray
splatting compared to PPM is shown in Fig. 4.18. The variance/bias convergence-
rate factor was set to α = 0.5 and 500,000 photons where used in each iteration.
Our initial bandwidth parameters (C = 0.8,S = 0.4) were set to yield a mean
bandwidth (h̄1) similar to the mean radius comprising 500 nearest neighbors.
While our method produces already acceptable results initially, PPM converges
slowly near boundaries and on glossy surfaces3.

15 Results

We have evaluated our method for the scenes shown in Fig. 4.20 and Fig. 4.21.
The scene Apartment is copyrighted by Laurence Boissieux c© INRIA 2005.
All results were computed on a single PC (AMD Opteron 2.4 GHz) with a Linux
operating system installed. Our algorithm has been implemented in C++ with
STL on top of an existing rendering system. For compilation we used g++ 3.4
with -O2 optimization.

We compared our method with standard K-NN density estimation using a di-
rect visualization of the photon map [Jen01]. The rendering times are given in
Table 4.1. The times Tinit and Tray are the same for all methods. The times for
photon tracing Tlight and photon kd-tree construction Tbuild are slightly faster in
photon mapping because for ray splatting Tlight includes bandwidth selection and
Tbuild comprises kd-tree construction over eye samples as well as kd-tree construc-
tion over photon rays. As there is no postprocessing in a direct visualization of

3Stochastic progressive photon mapping [HJ09] has been proposed to improve convergence
on glossy surfaces and to simulate various other view-dependent effects (e.g., depth of field).
However, it requires re-shooting (final gathering) of eye paths for each iterations.
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1. iteration: 500.000 photons, 31 sec (500 k-NN) 1. iteration: 500.000 photons, 42 sec

~1000 iterations: 0.5 billion photons, ~1.1 hours ~1000 iterations: 0.5 billions photons, ~1.3 hours

Progressive Photon Mapping Progressive Ray Splatting

Fig. 4.18 – Progressive ray splatting versus progressive photon mapping

Progressively splatting photon rays to eye samples leads to high-quality and consis-
tent results (right), which converge faster than for traditional progressive photon map-
ping [HJJ10] (left). Note that even after 500,000,000 traced photons progressive photon
mapping still suffers from boundary bias.

the photon map, the times Tcache and Tbrd f are zero. For a fair comparison we
have used the same data structures and algorithms for sampling and searching
for photon mapping as for ray splatting. To achieve the same level of noise in
the result we had to set the number of k-nearest neighbors (K-NN) from at least
400 up to 1,200 photons. In certain cases of glossy light-transport reconstruction
from the photon maps [Jen97], our ray splatting method outperformed the pho-
ton map since searching for a large number of K-NN and evaluating the BRDF
for all K-NN photons becomes the bottleneck in photon mapping. This holds
also for ray splatting if no radiance map is used (direct ray splatting). Moreover,
the search for the exact K-NN photons can be quite time consuming for a large
number of K, which is in particular problematic if the photon map queries are
incoherent (e.g. for final gathering).

The ray splatting approach also scales well with image resolution and with number
of photons. The time and memory dependencies on image resolution and photon
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number are shown in Fig. 4.19. The graphs show the measured rendering times
(columns a and b) and memory usage (column c) of four different methods for
the cornell box (column a) and the Apartment scene (column b): direct
ray splatting (RS direct) to the image, direct visualization of the photon map
with k-NN density estimation (PM k-NN), photon ray splatting to directional
histogram (RS histogram), the ray splatting in spherical harmonics basis with
radiance caching (RS+SH caching), and its cache computation time only (RS
only). For fair comparison of our method with photon mapping, we also measured
the time for direct ray splatting (red curve) to the image without the additional
optimizations, i.e., no radiance map, no radiance caching, no filtering.

From the graphs one can observe that the behavior of ray splatting is similar
to density estimation from the photon map in case of diffuse scenes. For glossy
scenes the BRDF evaluation for all photon rays to eye sample candidates domi-
nates the rendering time and the direct photon ray splatting becomes less efficient
because of its larger density estimation footprint compared to photon mapping.
However, the histogram splatting (blue curve) and the spherical harmonics splat-
ting with radiance caching (black solid curve) significantly speedup the algorithm
in particular for the non-diffuse Apartment scene (column b) on the expense of
increased memory utilization.

Due to the directional and spatial coherence in the photon ray splatting and the
automatic bandwidth selection, the rendering time is sub-linear in the number of
photons even though the photon rays are splatted sequentially. Ray splatting is
faster than photon mapping if the number of photons is much smaller than the
number of eye samples (pixel samples) as is usually the case for final gathering (see
Table 4.1). It becomes less efficient if the number of photons increases because in
ray splatting we search for each photon ray in a tree over eye samples whereas for
photon mapping we search for all eye samples in a tree over photons (see [HHS05]
for more details).

Combining ray splatting with radiance caching (black curve), the pure splatting
time dependency (black stippled curve) on image resolution is close to constant
since the cache records are distributed in world space and are thus independent
of the image. Moreover, the kd-tree traversal in the upper levels of the tree
is eliminated for all subsequent cache passes because we keep references to the
photon rays that traversed the initial kd-tree nodes in the first pass, which on
the other hand boosts the memory requirements (column c).

The overall rendering times of our method range from about 30 seconds to 1
minute for a single image with a resolution of 500 × 500 pixels and 500,000
photons. In this setting the memory requirements for splatting and radiance
map are about 100 to 160 MBytes independent of the scene complexity. Note
that the memory requirements can be reduced significantly if photon rays are not
explicitly stored during photon tracing but are progressively splatted to screen
pixels.
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Fig. 4.19 – Rendering times and memory consumption with respect to different pa-
rameters for photon ray splatting compared to traditional photon density estimation

Scalability of photon ray splatting (red curve) compared to photon map K-NN density
estimation (green curve) for the Cornell box scene (column a) and the Apartment
scene c© INRIA 2005 (column b). First row shows the rendering time in dependence
on the number of stored photons for x = 5,000 to x = 1,280,000 photons with constant
image resolution (500× 500). The second row shows the rendering time depending on
the image resolution ranging from x = 100× 100 to x = 1,000× 1,000 pixels with con-
stant number of stored photons (500,000). The used memory for the Apartment scene
excluding geometry and ray tracing data structures is shown in column (c). The red
curve represents the direct photon ray splatting (RS direct) to the image, i.e., evalu-
ating BRDF for all eye samples in the ray’s footprint, the blue curve (RS histogram)
represents the directional histogram method, and the black solid curve represents the ray
splatting in spherical harmonics basis with adaptive radiance caching. The stippled black
curve shows only the fraction of time spent in computing the radiance cache records.
Note that the scaling of the x-Axis is non-linear.
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The ray density estimation and search in a conical frustum (Section 6) is approx-
imately 1.5 to 2 times slower than for photon density estimation in a spherical
footprint with the same precomputed radius (i. e. without K-NN search). This
holds also for a larger number of eye samples, for example when final gathering
is used storing several hundred eye samples per pixel.

The bandwidth smoothing parameter C determines the noise level in the density
estimation, while the sensitivity S controls the variance (S = 0 results in a con-
stant bandwidth). Since we normalize the bandwidth term using an initial pilot
estimate (Section 5), C is relatively independent of scene size and complexity.
Therefore, C varies around 1.0. Parameter S depends on the lighting conditions.
For direct lighting and caustics we set S around 0.5, while for indirect lighting
values between 0.2 and 0.3 yield satisfying results. In case of final gathering (Sec-
tion 13), C and S should be set to smaller values than the ones used for a direct
visualization in order to keep performance high and reduce the overall bias.

In order to compute glossy light transport, we have implemented and tested three
different approaches: the “naive” direct ray splatting with BRDF evaluation for
every photon ray, the histogram splatting, and the splatting in the SH basis. For
the histogram method we used 20 strata and for the SH method 16 coefficients
per pixel, which yields similar results. The splatting to the histogram is more
efficient. However, the final BRDF evaluation is more expensive since we apply
BRDF sampling for all non-diffuse eye samples. For the SH method the final
step reduces to a simple dot product of SH coefficients. The SH splatting method
itself is computationally expensive but works well in combination with radiance
caching.

The additional radiance caching scheme further reduces the rendering time by
one order of magnitude but requires to find a good combination of smoothness
parameter C for splatting (Section 5) and cache error ε (Section 12). These two
parameters are correlated. Noise is filtered when either choosing a large C and
small ε or a small C and larger ε. However, the latter is more efficient and can,
surprisingly, even enhance the visual quality of the results (see Fig. 4.20d). As a
rule-of-thumb, when applying radiance caching, setting the value of C to its half
leads to satisfying and fast results. For filtering purposes, the minimum number
of extrapolated cache records contributing to a pixel was set to 4.

The proposed extensions: directional histogram and the SH radiance caching, can
also be applied to standard photon mapping.

In Fig. 4.20 we compare our method quality-wise with photon mapping using k-
nearest neighbor (K-NN) density estimation. The left image shows the reference
solution obtained by final gathering with 1200 final gather rays per pixel, where
the radiance along final gather rays is computed from the photon map. The sec-
ond column (b) shows the solution from a direct photon map visualization with
approximately 500 nearest neighbor photons per pixel. The third column (c) was
rendered with our proposed photon ray splatting method in the spherical har-
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monics basis with the smoothness parameter C (see Section 5) chosen to have on
average a similar density-estimation kernel width (splat radius) as in the photon
map solution. The fourth column (d) shows the filtered radiance cache solution
that is based on a noisy photon ray splatting input (see for example Fig. 4.14).
For all solutions we have used the same photon sampling algorithm with 500,000
stored photon samples in total whereby only those photon rays were stored that
intersected the enlarged viewing frustum.

(a) 3950 s (b) 29 s (c) 35 s (d) 20 s

Fig. 4.20 – Error visualization of photon ray splatting and photon density estimation

Comparing our splatting method with photon maps K-NN density estimation relative to
a reference solution for indirect light in the diffuse sibenik scene. The first row shows
the results of: (a) photon maps with 1200 final gather rays per pixel and 50 nearest
neighbor photons per ray, (b) the direct visualization of photon maps with 500 near-
est neighbors (c) our photon ray splatting in spherical harmonics basis (d) photon ray
splatting with additional radiance caching and filtering. All methods use 500,000 photon
samples. The second row shows the relative error color-coded from blue (< 5% error)
to green (15% error) to red (≥ 30% error) with respect to the reference image. Note
the reduced bias near the boundaries and on curved surfaces for the ray splatting ap-
proach. Note also that the filtering due to radiance caching (image d) further reduces
low-frequency noise and leads to better visual quality.
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(a) (b) (c)

(d) (e) (f)

Fig. 4.21 – Visual results for photon ray splatting versus photon mapping

Comparing our method (top images) with k-NN photon density estimation in 6 scenes
with different illumination conditions (the rendering times are given in Table 4.1).
The number of k-NN photons was chosen to have on average a gather radius similar
to the splat radius used for ray splatting. (a) classic Cornell Box (b) the glossy Cor-
nerroom with difficult lighting conditions that generate indirect caustics on a slightly
glossy floor, (c) the Apartment scene c© INRIA 2005, which exhibits indirect diffuse
and glossy light transport, (d) bumpy Cornell Box with full global illumination, (e)
diffuse Sibenik scene, and (f) the indirect diffuse Conference scene rendered with
final gathering using 600 rays per pixel.
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16 Discussion and Future Work

Despite the numerous extension we proposed in this chapter, our general photon
ray splatting algorithm leaves space for further optimization and extensions of
various kind. It has already been extended and improved in different follow-up
publications references in Chapter 3. Next, we will propose a few ideas that our
method could be extended and used for. First, our radiance map implementation
is not adaptive to the “glossiness” of a surface. Using a different basis with
adaptive number of coefficients per pixel can increase the quality of glossy light
reflections while decreasing computation time.

16.1 Correcting Visibility in the Splatting Footprint

The major drawback of our algorithm as for photon mapping is the neglected
visibility in the density estimation footprint. However, since our nearest neighbor
search is along photon paths, we can gain more information about occlusion than
only considering the local neighborhood of the photon-ray hit point. This could
either be used as an instrument to control the bandwidth or even better to mask
the kernel. In the following chapter, we will propose simple yet efficient ways to
approximate the visibility during the kd-tree traversal.

16.2 Temporally Coherent Photon Ray Splatting

Second, we would like to extend our method into the temporal domain by reusing
radiance information from previous frame(s). Inspired by [SKDM05] we believe
that temporal coherence in the radiance cache distribution can give a speedup of
one order of magnitude compared to single frame rendering and reduces flickering
between consecutive frames. Together with adaptive (bilateral) filtering in the
temporal domain [WMM∗04b], we could also reduce the low-frequency noise from
photon sampling and increase the visual quality of the images.

16.3 High-quality Irradiance Precomputation

Our method can also be used in a preprocessing step for computing a good ap-
proximation to the real illumination in a finite element manner. The illumination
on diffuse surfaces can be precomputed with photon ray splatting at the photon-
ray hit points for second pass Monte-Carlo final gathering [Chr99].
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16.4 Volumetric Photon Ray Splatting

Another interesting possible extensions of photon ray splatting is the computation
of volumetric lighting effects in participating media. Instead of storing photon-
volume-interactions as point samples in the media, we could keep the whole ray
segments of the photon paths and instead store eye sample points and their as-
sociated weights corresponding to the line integration steps in the volume along
the viewing rays. Of course, as for the proposed combination with final gathering
described in Section 13 such approach would quickly eat up the physical memory
resources when storing all generated eye samples for all pixels at once. There-
fore, depending on the volume step size this would need multiple ray-splatting
passes for rendering the entire image. It would be interesting to see whether such
combination could cover all volumetric light paths with sufficient quality without
the need for a separate integration pass for the single scattering in participating
media [Jen01].

Another possible application for photon ray splatting is to use it for precomput-
ing or updating the cached radiance in an irradiance volume [Oat05, GSHG98].
It is straightforward to extend our radiance caching proposed in Section 12 to
irradiance volumes.

16.5 Scalable Photon Ray Splatting in a Distributed Setup

There are different possibilities for mapping the algorithm to a distributed setup
with multiple processors. Considering hundreds of thousands to millions of pho-
tons, the photon splatting is still the most time consuming phase of our algorithm.
Therefore, the perhaps simplest approach to split the work-load to multiple pro-
cessors is to instantiate the entire kd-tree and all eye samples on several clients
whereas the photons are distributed among them (for example by using different
quasi-random seeds for the photon sampling on each client). Because light is addi-
tive the resulting radiance images (radiance SH coefficients) can be accumulated
in a final pass on the server.

However, the generation of the eye samples followed by the construction of the
splat kd-tree and the final summation of many radiance images may take a consid-
erable time. Thus, a more scalable approach would split the entire computation,
i.e., the image sampling and composition and the photon splatting, into multiple
tiles computed on different clients. In order to avoid discontinuities along the tile
boundaries, one can apply interleaved sampling [WKB∗02] for the photons as well
as the eye samples. In order to do so we can interleave the image sampling to
generate several smaller resolution images on each client where each such image is
computed with a different set of photons similar to [WKB∗02]. This way we split
the number of eye samples as well as the number of photons among the clients.
The price we pay is structured noise from the interleaved sampling pattern, which
needs to be filtered in a final pass using a discontinuity buffer [WKB∗02] as the
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one proposed in Section 11.

We conclude that our algorithm has potential in fast rendering of low-frequency
illumination, which could be either used for fast previewing or as a better input
for high-quality Monte Carlo final gathering [Chr99].



106 Section 16: Discussion and Future Work

Scene Method Tinit Tray Tlight Tbuild Tsolve Tcache Tbrd f ∑T

Cornell Box Photon Map (800 K-NN) 0.01 0.33 1.80 0.28 49.58 − − 52.00
(100% diffuse) Histogram (C = 1.0,S = 0.4) 0.01 0.33 1.91 0.33 51.10 − 0.15 53.80
NPrim = 18 SH Basis (C = 1.0,S = 0.4) 0.06 0.33 1.90 0.33 77.50 − 0.04 79.20

SH Cache (C = 0.6,S = 0.2) 0.11 0.34 1.90 0.34 4.90 2.6 0.06 10.25
Scene settings 500× 500× 1; M = 500,000; (0.3,0.7,0.0); R = 0.2

Cornell Box Photon Map (400 K-NN) 0.13 1.74 1.50 0.20 64.80 − − 68.37
(wave) Histogram (C = 1.0,S = 0.4) 0.14 1.75 1.60 0.25 55.30 − 3.20 62.24
(98% diffuse) SH Basis (C = 1.0,S = 0.4) 0.16 1.75 1.62 0.26 87.50 − 0.06 91.35
NPrim = 19,635 SH Cache (C = 0.6,S = 0.3) 0.20 1.76 1.62 0.26 8.10 3.8 0.10 15.86
Scene settings 500× 500× 4; M = 200,000; (0.3,0.6,0.1); R = 0.2

Corner Room Photon Map (600 K-NN) 0.01 0.71 3.74 0.66 59.50 − − 64.60
(0% diffuse) Histogram (C = 1.2,S = 0.5) 0.01 0.70 3.97 0.71 35.70 − 21.06 62.00
NPrim = 59 SH Basis (C = 1.2,S = 0.5) 0.07 0.69 3.96 0.70 125.00 − 0.09 130.50

SH Cache (C = 0.7,S = 0.4) 0.10 0.70 3.94 0.70 6.20 3.0 0.09 14.70
Scene settings 500× 500× 1; M = 1000,000; (0.0,0.95,0.05); R = 0.2

Sibenik Photon map (500 K-NN) 0.32 0.53 3.84 0.31 26.20 − − 31.20
(99% diffuse) Histogram (C = 0.9,S = 0.3) 0.32 0.54 5.30 0.35 25.70 − 0.57 32.80
NPrim = 78,362 SH Basis (C = 0.9,S = 0.3) 0.40 0.55 5.29 0.34 31.40 − 0.05 38.00

SH Cache (C = 0.5,S = 0.2) 0.43 0.55 5.30 0.35 7.40 6.6 0.05 20.70
Scene settings 500× 500× 1; M = 500,000; (0.0,1.0,0.0); R = 0.2

Apartment Photon map (600 K-NN) 0.37 0.65 3.80 0.29 61.60 − − 66.70
(47% diffuse) Histogram (C = 0.9,S = 0.4) 0.37 0.63 4.18 0.36 45.10 − 14.10 64.70
NPrim = 73,668 SH Basis (C = 0.9,S = 0.4) 0.41 0.64 4.19 0.35 104.00 − 0.11 109.70

SH Cache (C = 0.5,S = 0.3) 0.44 0.63 4.19 0.34 9.50 5.9 0.11 21.10
Scene settings 500× 500× 1; M = 500,000; (0.0,0.9,0.1); R = 0.2

Conference Photon map (70 K-NN) 0.77 2.45 2.47 0.36 35.8 − − 41.85
(86% diffuse) Ray Splat (C = 0.6,S = 0.2) 0.78 2.47 2.59 0.86 25.6 − − 32.00
NPrim = 265,880 PM-FG (600 FGRs) 0.78 991 2.49 0.16 4114 − − 5108

RS-FG (600 FGRs, 25 tiles) 0.83 997 2.58 111 2714 − − 3825
Scene settings 700× 700× 4; M = 160,000; (0.3,0.6,0.1); R = 0.4

Table 4.1 – Statistics of ray splatting compared with photon mapping

Computation times for all rendering phases of our algorithm for 6 scenes using either
a direct visualization of the photon map, the histogram, the spherical harmonics (SH)
approach, the direct ray splatting (Ray Splat), photon mapping with final gathering (PM-
FG), or direct ray splatting with final gathering (RS-FG) for computing the radiance
at eye samples. The computed images are shown in Fig. 4.21. NPrim is the number of
primitives in the scenes. Tinit is the time for preprocessing (e.g. kd-tree construction
for ray tracing, discontinuity segmentation), Tray is the time spend for casting primary
rays and storing eye path samples, Tlight is the time for tracing M photons, Tbuild is the
kd-tree construction time for eye samples and time for presorting photon rays (5D-tree
construction), Tsolve is the time for photon ray splatting (including search), Tcache is the
time for radiance cache splatting, Tbrd f is the time for computing the outgoing pixel ra-
diance at each eye sample, i.e. BRDF evaluation and eye sample weighting. And ∑T
is the total time spend to compute a single frame. In case of the photon map approach
Tbuild corresponds to the construction of the kd-tree over photons and Tsolve is the K-NN
density estimation time including BRDF evaluation on non-lambertian surfaces. The
scene settings are: image resolution × number of super-samples per pixel; total num-
ber of stored photons (M); the fraction of direct, indirect diffuse, caustics photons; the
bandwidth clamping parameter R.
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Lighting Details Preserving Photon Density
Estimation

This chapter extends the photon ray splatting introduced in previous chapter by
approximative visibility-test in the density estimation.

The chapter is organized as follows. In Section 2 we generalize our ray density
estimation framework, Section 3 briefly describes the algorithm steps. Section 4
summarizes the scene voxelization algorithm on the GPU. It also describes how
the resulting voxel grid can be used for our density estimation technique. Sec-
tion 5 introduces the new hierarchical data structure for efficient photon splat-
ting. Section 6 reveals the limitations of the method and provides some remedies.
Section 7 presents results of our method compared with alternative techniques.
Finally we conclude with a discussion and present some ideas for future work in
Section 8.

1 Visibility and Density Estimation

The proposed photon ray splatting in Chapter 4 solves two major drawbacks
of traditional photon density estimation, the boundary bias and the topologi-
cal bias problem [HBHS05, Sch03]. However, as described so far the photon ray
splatting cannot improve the proximity bias because it does not account for vis-
ibility changes within the splatting footprint, which results in light leaking and
washed out shadows. Visibility changes yield occlusions (shadows) which impose
the highest frequencies in the illumination especially for direct light. Without
explicit visibility testing, photon ray splatting and all other photon density esti-
mation approaches only work satisfactory for smooth indirect illumination. One
way to solve this problem is to preserve the visibility in the density estimation
footprint. Unfortunately, efficient visibility computation is one of the most diffi-
cult problems in computer graphics since making simplifying assumptions about
the visibility is generally not possible. A conservative approach like for example
beam tracing or shadow maps would be too expensive, in particular that stochas-
tic indirect light paths can be highly incoherent, and ruins the efficiency of photon
density estimation, which computes the convolved visibility implicitly via density
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estimation. The brute-force solution would test each eye sample in the splatting
footprint explicitly for occlusion with the photon ray’s origin via ray-tracing.
Such approach has been proposed in [BPC∗03], where they stochastically decide
whether to shoot a shadow ray or not.

On the other hand, visibility of indirect illumination is less critical than for di-
rect illumination [RGK∗08, GKD07] as the visibility term under the integral of
the rendering equation is averaged over the entire hemisphere of directions of
mostly low-frequency illumination further convolved with a low-frequency BRDF.
Therefore approximative visibility computations are often sufficient for indirect
illumination [RGK∗08,GKD07].

1.1 Approximating Visibility

Most global illumination algorithms work on a boundary representation such as
polygonal meshes, which only represent the surface of objects. This exact com-
putation is often too conservative for indirect illumination in particular when
convolving the visibility via density estimation. Therefore, in the following sec-
tions we will focus on methods for efficiently approximating visibility suitable for
our photon ray splatting framework.

1.1.1 Screen-Space Visibility Approximation

A simple visibility approximation exploits the additional spatial information of
the eye samples gathered during the ray traversal of the kd-tree, which can be
considered as a point sample representation of the scene’s surfaces. The gath-
ered eye samples are “rasterized” into a 2D occlusion buffer, which functions as
a stencil or mask for the density estimation kernel (see Fig. 5.1 b). Such ap-
proach only accounts for direct occlusions, i.e., occluders must be visible to the
camera. However, indirect occlusions, although blurred, are implicitly handled
by the density estimation. In order to prevent holes when masking the kernel, a
“masking” density could be applied similarly as in point sample rendering tech-
niques [ZPvBG01]. The masking density should depend on the eye sample density
and perhaps other factors such as the distance and orientation relative to the cam-
era for example. Therefore this approach still requires further investigation and
remains as future work.
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Fig. 5.1 – The concept of occlusion masking for photon ray splatting

(a) Standard photon ray splatting neglects occlusions in the splatting footprint (thick
black curves) whereas photon ray splatting with explicit visibility masking of the kernel
function Kh using the gathered eye samples (green dots) inside the splatting footprint
correctly discards occluded eye samples (b) and reproduces high-frequency shadows (see
Fig. 5.2 second row).

1.1.2 Approximating Visibility by a 3D Scene Voxelization

Screen space visibility is only correct if occluders are visible and may miss im-
portant shadows cast by hidden occluders. In the following we look at a more
conservative alternative to approximate the visibility in synthetic 3D scenes. We
create a voxel representation of a polygonal scene, for which we make efficient use
of modern rasterization hardware (GPU). We still need the surface representation
for computing exact ray intersections and for the scattering of photons. However,
the voxelized scene representation is well-suited for occlusion and visibility testing
for volumetric ray traversal algorithms as our global illumination framework. It
avoids many expensive ray intersection tests inside a ray volume. The occlusion
detection has similarities with shadow mapping, which was designed for modern
rasterization hardware. However shadow mapping is a global technique consid-
ering the whole scene, which is not efficient for indirect lighting with hundreds
of thousands of virtual light sources. As a side-effect the voxel representation
enables also antialiasing of shadow boundaries since sharp surface boundaries are
pre-filtered per voxel during the scene voxelization.
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Fig. 5.2 – Visibility-preserving photon ray splatting

Including visibility information into the ray splatting significantly improves quality in
particular for direct illumination and increases robustness against the sensitive band-
width selection. First row shows the rendered images without explicit visibility compu-
tation. The results in the second row include visibility information. The first column
shows only the direct light computed from 50,000 photons, second column the indirect
light (1f-stop brighter) computed from 200,000 photons, third column the global illumina-
tion result (250,000 photons), and the last column (image g) is the reference computed
with the Lightcuts algorithm [WFA∗05] using an average of 339 shadow rays per pixel
(250,000 virtual point light sources).

2 Visibility-Preserving Photon Density Estimation in Ray-space

As we have stressed before, the high frequencies in the illumination are the main
source of bias in photon density estimation, which mostly result from surface nor-
mal variation and wrong visibility assumptions in the neighborhood. The former
is solved by operating in ray space (see Section 3) and decoupling the photon
density estimation from the surfaces. The latter is more complex because it re-
quires to evaluate the visibility function inside the density estimation footprint
between the origin of the photon (xi−1) and all eye samples in the density estima-
tion footprint, which ruins the efficiency of photon density estimation methods.
Nevertheless, we will provide an efficient approximation for the visibility estima-
tion. Let us rearrange Eq. 4.4 to exclude the visibility function V (x,y) and the
surface orientation cosθ from the density estimation to be computed explicitly:

E(y) ≈
K′

∑
i
Kh(y,xi,ωi)V (y,xi−1)cosθi

∆Φi(xi,ωi)
∆A⊥

θi
(y)

, (5.1)
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where Kh(y,xi,ωi) is the density estimation kernel whose domain is oriented
perpendicular to the direction ωi as illustrated in Fig. 4.4. The point xi−1 is
the origin of the photon ray and θi is the angle between the photon ray and the
surface normal at point y. ∆A⊥

θi
(y) = ∆A(y)/cosθi is the area of the unprojected

density estimation footprint. See Fig. 5.3 for a geometric interpretation in 2D.
Note that we partially compute the geometric term1

G(x,y) = V (x,y)
cosθx cosθy

||x−y||2 . (5.2)

Since we use a splatting approach, one photon ray splats its energy to all visible
eye sample points y inside its kernel footprint as shown in Fig. 5.3.

rgb

K he1

e3 e4

h

x i

x i−1

e2

Fig. 5.3 – Visibility Splatting

Photon splatting in ray space for one photon ray with care of occlusions and surface
orientation (shown in 2D). To preserve the photon energy ∆Φrgb, the axis-aligned kernel
footprint (shaded parallelogram) is tested for occlusion along its traversal. The figure
shows the masked kernel Kh (blue) and the occluded areas (thick black curves) and visible
areas (thick grey curves). The photon flux is only splatted to eye samples e1 because e2
is back-facing, e3 is occluded, and e4 is outside the kernel footprint.

1Our density estimation metric has a similarity with instant radiosity [Kel97] in the sense
that a photon’s energy contribution to an eye sample is explicitly weighted by the cosine and
visibility term for the incoming photon direction. However, in contrast to instant radiosity, our
method does not suffer from singularities near corners since the squared distance term in the
denominator of the geometric term is implicitly handled by the density estimation.
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3 Algorithm Outline

Our density estimation algorithm uses the splatting technique described previ-
ously with the difference that we additionally account for occlusion of individual
eye samples in the density estimation. First, all primary rays are shot from the
eye. Then hit-point records with the scene surfaces referred to as eye samples
are stored. Second, the scene is voxelized into a grid using the GPU and a voxel
hierarchy, basically an axis-aligned kd-tree, is constructed over the generated
grid. During the tree construction the eye samples are inserted into the hierarchy
at the appropriate level. Next, the photons are traced through the scene using
Quasi-Monte Carlo sampling until a desired number of direct, caustics, and global
indirect photons has been stored. During the photon sampling phase a splat ra-
dius is computed from the entire photon path for each individual photon and for
each type of light transport as described in Chapter 4. The splat radius and the
photon flux is then stored together with the ray parameters. In the following
phase all photon rays are sequentially splatted to the image plane using the novel
density estimation technique that preserves the orientation and visibility of each
eye sample. For each photon ray a search is initiated for the nearest-neighbor
eye samples in a cylindrical volume associated with the ray, which we call the
splatting footprint. For accelerating the nearest neighbor search and at the same
time testing for occlusion inside the splatting footprint, the generated voxel hier-
archy is traversed in front to back order in the spirit of raytracing with kd-trees.
However, raytracing algorithms work in 1D ray space, while our algorithm is of
volumetric nature.

4 Synthetic Scene Voxelization

The basis of our global illumination algorithm is the discretization of the scene
model. Much research has been devoted to the problem of generating surfaces
from measured volumetric data that was initially sampled in 3D. This was neces-
sary because of memory limits and slow rendering hardware. However, for a few
applications it is beneficial to keep the sampled data rather than generating con-
tinuous surfaces from it. In [DCB∗04,ED06] it was pointed out that a discretiza-
tion of a continuous scene model in form of a 3D grid with voxels as primitives has
several advantages. First, one can exploit the volumetric pre-filtering per voxel for
anti-aliasing purposes. Second, the voxelization is independent of the scene com-
plexity. However, aliasing may occur if the scene is sampled too coarsely without
pre-filtering. Third, it is more general and any kind of primitives, e.g. implicit
surfaces, polygons, participating media and naturally measured volume data (e.g.
CT scans) can be sampled and placed in a volumetric grid. Thanks to modern
hardware, storing a high-resolution grid does not impose serious problems and
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the precomputation of the grid is nowadays possible in real-time [DCB∗04,ED06]
due to mainstream high-performance graphic cards.

Summarizing, the voxelization process runs as follows: First the scene model is, if
not yet present, tessellated to triangles2. Next, all triangle vertices are passed to
the GPU memory as vertex buffer objects. OpenGL states are set, in particular
the logic operation must be set to ’OR’ mode. For all three dimensions, the axis-
aligned bounding box of the scene is divided into intervals composed of multiple
grid slices. The number of grid slices depends on the hardware capabilities, which
currently supports 128 bits per pixel using 4 render targets with 4 channels à 8
bits per pixel (for logical operations). Since we rasterize front and back-facing
triangles separately, we can handle 64 slices at once. For each interval all triangles
are rasterized by an orthographic camera with its frustum defined by the current
grid interval boundaries. All triangles falling into the currently processed interval
are voxelized in the fragment shader according to their interpolated z-distance
such that each bit in a color channel determines whether a voxel of a slice is
empty or not (see [ED06] for details). In addition, we apply 4×4 super-sampling
per voxel for anti-aliasing purposes and also for the reconstruction of a discretized
average normal per voxel. This assumes the surface crossing the voxel is piecewise
linear inside the voxel. The composition of the 3D occlusion grid and the following
hierarchy construction are computed on the CPU.

4.1 Photon Ray Splatting in the Voxelized Scene Grid

Before explaining the traversal of the voxel hierarchy, we describe our initial
algorithm for traversing the uniform grid that is directly taken from the output
of the voxelization process. For the ray traversal we used a 3D DDA algorithm as
often used in standard raytracing algorithms, however for “thick” cylindrical rays.
Therefore, not only the currently traversed voxel has to be tested for occlusion but
also the neighboring voxels within the cylindrical slice (see Fig. 5.5 for an example
in 2D), which follow the same 3D DDA traversal sequence. This corresponds to
a parallel projection. Those traversed slices are always aligned with the grid axes
and are defined by an axis-aligned cut through the cylinder which is perpendicular
to the largest dimension (N) of the ray direction. The width and the height (axes
U and V) of the elliptically shaped slice depend on the photon’s splat radius
associated with the ray, which is precomputed before each ray traversal. The
traversal history of the axis-aligned slice is stored in a depth buffer, which we call
the occlusion mask . In each 3D DDA traversal step the new center voxel of the
mask is computed (this is the voxel the ray traverses) and all neighboring voxels
overlapping with the mask are tested for occlusion. All non-empty voxels update
the occlusion in the corresponding cell of the occlusion mask until a cell is fully

2Optionally, we test the polygonal scene for wrongly oriented triangles by performing a
random walk by means of raytracing through the whole scene. Triangles that are detected as
back-facing are flipped and triangles, which were flipped more than once are marked as two-sided.
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occluded. To avoid self-shadowing, only voxels in front of the tangent plane at the
ray’s origin update the occlusion in the mask. For all visible voxels, which store
eye samples, the photon energy is splatted to individual pixels associated with
their eye samples. The photon energy contribution to an eye sample is weighted
by the following factors (see Section 2):

• the density-estimation kernel-weight, which depends on the eye sample’s
distance to the ray,

• the cosine of the angle between photon ray and eye sample normal,

• the occlusion weight of the corresponding cell in the occlusion mask, which
is linearly interpolated between the four nearest neighbor cells according to
the eye sample’s position in the voxel.

Note that all positions and distance values are represented in grid coordinates for
ease of computation.

Finally, the radiance contribution of the photon ray to the pixels in the image
is computed as in photon density estimation [Jen01] with the difference that
the contribution of one photon is computed for many pixels at once (splatting)
instead of computing the contribution of many photons to one pixel, which is
refered to as gathering . The local surface BRDF associated with the eye sample
is evaluated and the outcome is multiplied with the previously computed weights
per eye sample and added to the corresponding pixel.

5 Constructing the Voxel Hierarchy

So far we have generated a regular grid for storing the approximate occlusion for
the six axis-aligned directions in each voxel. As known from raytracing, a grid
has the disadvantage that it cannot adapt to local scene complexity and does not
scale well with its resolution. In our case it is even worse since we need a high-
resolution grid to obtain images of good quality, which results in mostly empty
voxels. Therefore, we build a hierarchy, more precisely a kd-tree, on top of the
precomputed grid that merges all empty voxels during its recursive construction.

The kd-tree is build in a recursive top-down fashion and the axis-aligned splitting
plane of a node is always aligned with the boundary of a voxel. We use a simple
splitting heuristic to determine the discrete position of the splitting plane. The
plane is either positioned at the spatial-median voxel for the largest dimension of
the node’s bounding box or at the closest non-empty voxel if either half-space is
empty. Searching for empty space is expensive if we naively test each voxel in the
current bounding box associated with a node. We therefore build a 3D summed
area table (SAT) of the occlusion grid. The SAT is highly memory consuming
because we need 32 bit precision instead of 8 bits per voxel due to large potential



Chapter 5: Visibility Ray Splatting 115

sums. However, it is only kept temporarily during the tree construction. The
construction of the 3D SAT is done in linear time with respect to the grid size
and is negligible compared to the rest of the computation. The computation
for the best splitting plane according to our heuristic can then be computed
in constant time independent of the grid resolution. The discretization of the
tree construction increases not only the performance but also allows for higher
compression of the size of the kd-tree nodes. Each node consists of only 8 bytes
and there are four basic node types:

• Empty Nodes

• Splitting Nodes

• Occlusion Nodes

• Visible Nodes

Empty nodes represent empty space that can be skipped. Splitting nodes sub-
divide their associated bounding box into half-spaces. An occlusion node is cre-
ated when either a voxel is reached (the smallest entity) or the occlusion in the
sub-tree is uniform and further subdivision cannot yield new information. Oc-
clusion nodes contain information about local occlusion (1 byte) and the average
quantized normal compressed to 3 bytes, which is used to determine if occlu-
sion is feasible. A visible node stores the index and the number of eye samples
associated with the node and has always one child node. The outcome of the
tree construction is an adaptive voxelization of the scene, which adapts to the
scene complexity as opposed to the grid structure and has a small memory foot-
print even for high resolutions. Highest compression can be achieved for planar
axis-aligned surfaces.

5.1 Efficient Traversal of the Voxel Hierarchy

Once the hierarchy is constructed and the photons are generated, each photon
ray traverses the voxel hierarchy for searching eye samples and splatting energy
to all eye samples found in the splatting footprint. Similar to raytracing with
kd-trees, we recursively traverse the tree from the root to the leaves in near to far
order. This requires maintaining a stack for caching the necessary information
to traverse the far nodes after having processed the near nodes. In standard
raytracing the recursive tree traversal works in 1D ray space and needs only three
parameters: the minimum and maximum distance along the ray corresponding
to the entry point and the exit point of the axis-aligned bounding box associated
with a kd-tree node and the node’s index. Since we deal with a volumetric ray, we
need to keep track of the minimum and maximum bounds tightly encompassing
the ray volume in three dimensions, see Fig. 5.4. The ray volume is represented
by a cylinder, whose radius is defined by the photon’s splat radius. At first
glance a traversal in three dimensions seems to be too expensive compared with
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a simple 1D ray traversal. However, we can set two simplifying assumptions:
first, the kd-tree and most parameters are discretized to the grid resolution and
second, the kd-tree and its traversal are always axis-aligned, which simplifies
many computations and allows us to precompute several parameters, which we
describe next.

R

x

y

-Ry

voxels

+Ry

Fig. 5.4 – Voxelization Tree Traversal

One traversal step in 2D for an interior node in the kd-tree. The enlarged green rectan-
gle marks the initial bounding box of the ray cylinder, the blue-shaded and the red-shaded
area are the bounding box for the near child and far child, respectively. This recursive
traversal stops when we reach an empty node or an occlusion leaf node, i.e., voxel.

Since our tree is axis-aligned, we restrict the recursive sub-division of the ray
volume to axis-aligned bounding boxes starting with the whole bounding box of
the ray volume. For the sub-divisions of the ray volume, we only need to consider
cross-sections with the cylinder and the axis-aligned splitting planes of the kd-tree
in order to compute the two new bounding boxes for the front and back side of a
splitting node. The height and width of each cross-section in each dimension are
precomputed by projecting the cylinder onto the three axis-aligned planes. For
example the cross-section parameters in the yz-plane for the y-axis (cutSize[X ][Y ])
and z-axis (cutSize[X ][Z]) are computed as

cutSize[X ][Y ] = (R/Lvox) ·
√

1.0− (~D[Z])2/
∣∣∣~D[Z]

∣∣∣
cutSize[X ][Z] = (R/Lvox) ·

√
1.0− (~D[Y ])2/

∣∣∣~D[Z]
∣∣∣ ,

where R is the photon’s splat radius, Lvox is the voxel length, and ~D is the ray
direction. The parameters of the other dimensions are computed analogously.
Hence, the occlusion mask has elliptical shape and is axis-aligned with the cross-
section that is perpendicular to the major traversal axis N corresponding to the
largest component of ~D.
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Having precomputed these values, we can quickly compute the new ray bounds
for left and right side of a splitting node (see Fig. 5.4) for all three splitting axes.

6 Limitations of Discretized Occlusion

Fig. 5.5 – Self-Occlusion

Updating the occlusion (2D) in the axis-aligned occlusion mask can lead to erroneous
self-occlusion on surface voxels (red point-squares) since many voxels, representing the
surface, map to the same cell in the occlusion mask.

The voxel hierarchy is build in an axis-aligned manner. Therefore, it is most
efficient for scenes which comprise many axis-aligned surfaces, such as walls of a
building for example. Since the occlusion is entirely discretized and represented
as voxels in the hierarchy, aliasing as it occurs in ray tracing is implicitly filtered.
The occlusion per voxel is pre-integrated due to the rasterization preprocessing
step. On the other hand, we face a different problem because of discretizing the
visibility, which contains the highest frequencies in a visual signal. Restricting
to opaque surfaces, occlusion of a ray happens exactly at one point along the
ray. Hence the signal in ray space is 1 in front of this point and 0 behind. Since
we do not regard infinitesimal thin rays but rather deal with discrete volumetric
rays, many discrete occlusions can map to the same cell of the occlusion mask
in ray space, which leads to self-occlusion on an actual flat surface. In Fig. 5.5
the high-lighted voxels (point-squares) show the state of one particular cell in the
history of the occlusion mask. Depending on the incident angle between ray and
voxelized surface (grey squares), many surface voxels map to the same cell in the
occlusion mask.

This problem is also evident in all rasterization approaches as in the popular
shadow mapping technique. One näıve solution is to constrain a discrete occlu-
sion event to become valid only at a certain distance from the occluder, basically
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adding a small threshold to its distance when comparing it with the current sur-
face distance. A constant threshold however only works for distant occlusion and
may produce visible light leakage in case of near occlusions (see Fig. 5.7). A bet-
ter solution is to compute the minimum occluder distance adaptively depending
on the incident angle of the ray to the voxelized surface (distance from first to
last red square in Fig. 5.5). Yet a simpler way is to update the occlusion only
for back facing voxels, which fails for voxels containing front and back facing
surfaces. In either way we need to know the surface normal in the voxel at the
occlusion event.

6.1 Estimating the Surface Normal

Explicitly saving the normal for each rasterized fragment during the occlusion
grid computation on the GPU is inefficient since we would loose the advantage
of computing many slices of the grid at once. However, the approximate sur-
face normal in a voxel is implicitly computed during the initial 3D rasterization
process. Assuming that a voxel does not contain front and back facing surfaces
simultaneously, the average quantized normal ~n can be approximated from the
six discrete front and back facing occlusion ratios ~Oc stored in a voxel

~n[i] ≈
{

~Oc[i + 3], ~Oc[i] = 0∧ ~Oc[i + 3] >= 0
−~Oc[i], ~Oc[i] > 0∧ ~Oc[i + 3] = 0,

(5.3)

for all i ∈ [0,1,2]. ~Oc[i],~Oc[i+3] is the ratio of occluded pixels to total number of
pixels for the rasterized front-facing surface(s), back-facing surface(s) respectively
inside the voxel projected to 2D onto the axis-aligned plane perpendicular to axis
i, see Fig. 5.6.
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Fig. 5.6 – Approximating the Surface Normal

Estimating the average surface normal in a voxel from the 3 axis-aligned projections
Ax,Ay,Az of a surface (blue) with clipped area A inside the voxel.

For the back facing test the normalization of ~n can be avoided since we are only
interested in the sign of the dot product between ray direction and ~n.
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In the case of ambiguous voxels, which contain front and back facing triangles
(i.e., ~Oc is non-zero in at least 4 components), we do not reconstruct the normal.
Instead we fall back to the simple solution of adding a small constant offset to the
occluder distance before rendering the occlusion. However, the distance for the
offset is measured in the dimension of the highest occlusion in the voxel, which
corresponds to the largest component of a potential voxel normal. The largest
dimension is precomputed during the voxel hierarchy construction and stored in
the corresponding node. This heuristic yields slightly better results than adding
only a constant offset to the ray distance.

Fig. 5.7 – Occlusion bias

When adding a constant threshold to the occlusion distance, light leakage may occur if
the threshold is too large (left). Contrarily, if the threshold is too small, erroneous self-
occlusions appear (right).

7 Results

We have evaluated our method in comparison with instant radiosity combined
with light cuts [WFA∗05] using three scenes of different complexity and different
lighting condition. The scene setting and the photon distribution is the same
for both methods (except for the caustics). The resulting images are shown
in Fig. 5.9. The rendering times and parameters are given in Table 5.1. All
results were computed with an Athlon 64 X2 2.2 GHz Processor using only one
core. The scene settings are: image resolution times the number of super-samples
per pixel (i.e., 1 million primary rays for all images); total number of stored
photons (M); and the percentage of stored direct, global indirect, and caustics
photons. Prim is the number of geometric primitives in the scene. For our ray-
splatting method the entries in the table show: (2. column) the grid resolution,
(3. column) the memory for the occlusion tree plus the eye samples plus the
photon rays, (4. column) the time in seconds to build the raytracing kd-tree and
the occlusion hierarchy, (5. column) the time for the eye pass (shooting primary
rays and storing eye samples), (6. column) the time for the light pass (photon
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Scene Method Memory Build Eye Light Total

Cornell Box Ray-splatting (5+26+6) 3.2 1.4 54 59
(81% diffuse) 192×192×192
Prim = 33 Light-cuts s̄=431 (14+5) 0.8 626 1.2 628

Path-tracing (2500) − − 2720 − 2720
Scene settings 500× 500× 4; M = 100,000; (20%,50%,30%)
Office Ray-splatting (13+23+3) 5.2 1.5 58 65
(91% diffuse) 384×240×384
Prim = 34000 Light-cuts s̄=261 (8+3) 0.9 390 0.5 391
Scene settings 500× 500× 4; M = 55,000; (40%,60%,0%)
Conference Ray-splatting (17+23+9) 10.6 3.4 98 112
(86% diffuse) 560×368×160
Prim = 265880 Light-cuts s̄=321 (21+7) 5.6 680 3.4 689
Scene settings 500× 500× 4; M = 150,000; (35%,65%,0%)

Table 5.1 – Numerical results for occlusion-ray-splatting

Computation times (in seconds) and memory consumption (in megabytes) for the ren-
dering phases of our ray splatting method, instant radiosity with lightcuts, and path trac-
ing. The computed images are shown in Fig. 5.9.

sampling and ray splatting), and (7. column) the total time needed to compute
a single image.

For the light-cuts method the table entries represent: (2. column) the average
number s̄ of evaluated shadow rays per pixel sample with 2% error metric, (3.
column) the memory used for the tree over light clusters [WFA∗05] plus the
photons (VPLs), (4. column) the time for constructing the raytracing kd-tree
and clustering the VPLs, (5. column) the rendering time (computing the light
cuts), (6. column) the time for the VPL sampling (which is the same in our
method), and (7. column) the total time.

The cornell box scene contains a glass sphere and a glossy icosahedron and is
rendered with global illumination. Since light-cuts is not able to generate caustics,
we rendered this scene with unbiased path tracing [Kaj86] using 2500 samples
per pixel. The office scene contains fine detailed geometry and requires a high
resolution voxelization in order to capture all subtle shadow effects during ray
splatting. In Fig. 5.9a-c the illumination in the office scene is decomposed into the
direct, indirect, and global illumination. The reference is shown in Fig. 5.9d and
was computed with light cuts using on average 261 shadow rays per pixel sample.
The darkening in the corners of the light cut image is due to the automatic
clamping of too high contributions of indirect VPLs. The conference scene
is difficult to render with our method since it contains many wrongly facing or
two-sided polygons as well as thin objects (e.g. the chairs around the table).

In Fig. 5.8 we show that our method is also capable of producing high quality
direct lighting with soft shadows, while still using only a small number of photons
and a grid resolution of 1603 voxels.
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Ray Splatting Occlusion Ray Splatting Reference

(a) 20.5 sec (b) 7.1 sec (c) 14.7 sec

(d) 9.2 sec (e) 19.4 sec

Fig. 5.8 – Comparison for direct lighting with occlusion-ray-splatting

The teapot scene rendered with direct illumination. Images (a), (b), and (d) were ren-
dered with photon ray splatting with (a) using 80,000 photons but ignoring visibility and
(b), (d) using 10,000 photon splats with our voxelized occlusion. The image (c) and (e)
are the ground-truth generated by Monte Carlo sampling of the area light with 100 and
200 shadow rays per pixel sample, respectively.

8 Discussion and Future Work

Our method can be understood as a trade-off between instant radiosity [Kel97]
and a direct visualization of the photon map [Jen01]. High-frequency surface
normal variations are preserved through our novel splatting technique in ray space
described in the previous Chapter. And high frequency shadows are handled via
discrete occlusion testing in the voxelized scene. This way, we can even reproduce
direct illumination with density estimation and achieve a fairly good reproduction
of global illumination images generated from only a small number of photons
(e.g. 50,000). Besides that, the density estimation becomes less sensitive to the
bandwidth selection in contrast to traditional photon density estimation.

Nevertheless, our method also bears some limitations. Because the costs for pro-
cessing and splatting a single photon are relatively high compared to traditional
photon mapping [Jen01] and our photon ray splatting described in the previous
chapter, the computation of fine illumination details (such as caustics), which re-
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 5.9 – Visual results for occlusion-ray-splatting

Results for rendering times given in Table 5.1, first row: (a) office scene with direct, (b)
indirect (1 f-stop brighter), (c) global illumination rendered with our method, and (d)
with light cuts [WFA∗05] as reference. Second row: modified cornell box with caustics
and glossy illumination rendered with our method (e), and path tracing (f), and the con-
ference scene with global illumination rendered with our method (g), and with light cuts
(h).

quire a high photon density, becomes computationally expensive. Another weak
point is the scene voxelization, which is not adaptive to the camera view. This
can reveal staircase artifacts for close-up views of shadows similarly as in shadow
mapping. Further, artifacts can occur for badly modeled scenes that contain
holes, or self-intersecting objects. Furthermore, the occlusion computation is
view-independent in the sense that many occlusion computations are wasted in
invisible regions of the scene. Using a conservative bidirectional traversal in the
occlusion tree, we could prune unnecessary traversal steps at the lower levels of
the tree if they are not contributing to the image or if they are fully occluded.

The voxel data-structure naturally fits to a multi-resolution representation (e.g.
3D Haar-Wavelets) of the scene as opposed to a polygonal mesh representation
with level of detail. Photon rays with small contribution, for example indirect
rays, could have a higher error tolerance when traversing the voxel hierarchy.

And last, we would like to map the entire splatting algorithm in a simplified form
including the voxel hierarchy construction to the GPU. It would be particularly
interesting to see whether we can get by with our approximative scene represen-
tation for the entire global lighting computation including photon path-tracing.
Because of the (low-pass) density estimation small errors in surface orientation
and location should be more forgivable than for primary eye-raytracing.
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Anisotropic Radiance Cache Splatting

1 Introduction and Overview

While in previous chapters we have dealt with approximative algorithm for solving
the global illumination, in this chapter we will focus on computing high quality
solutions to the global illumination problem in synthetic scenes. Although our
proposed method is still based on biased algorithms, as unbiased algorithms con-
verge very slowly, exhibit high-frequency noise and are rarely used in industry,
we obtain results which are hardly distinguishable from unbiased results but are
orders of magnitude more efficient. The common basis of biased approaches is
to exploit the coherence in the lighting by caching the flux distribution in the
scene by means of photon hits and reusing it for all pixels. Two well-known
method of this variant are instant radiosity [Kel97] and photon mapping [Jen01].
However, even when precomputing a fixed set of light samples, computing the
illumination on a pixel basis is still too costly in particular for indirect light-
ing. Therefore, a common approach to speed up the computation of indirect
lighting further is to use irradiance caching [WRC88, TL04, KGPB05]. Irradi-
ance caching is a well-established algorithm widely used in production rendering
and lighting simulation software. The basic idea is to exploit the “smoothness”
of the indirect light by sparse sampling and interpolating the irradiance in im-
age or object space and thus reducing the intensive computation for the indirect
light to only a few thousand point samples as opposed to millions. However,
pure irradiance caching works only for diffuse surfaces. An extension to radi-
ance caching on moderately glossy surfaces using (hemi-)spherical harmonics has
been published in [KGPB05] and [KBPv06], which also proposes an adaptive,
perceptually-inspired sampling scheme and an improved gradient-based interpo-
lation of the cache samples. Nevertheless, those caching algorithms are difficult
to control and producing artifact-free images often requires initial test-runs and
user experience for setting the appropriate parameters. Little work has been de-
voted to the topic of how to adapt the computation of the cache records to the
local lighting and scene complexity and also on how to reduce the space of user
parameters.

In this chapter, we propose a method that advances in this direction. Our radi-
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ance and irradiance caching algorithm is not only one to two orders of magnitude
more efficient than traditional irradiance caching but also more robust as it re-
duces the burden of choosing the “right” rendering parameters by the user. The
performance gain is two-fold. First, we obtain a speedup by reversing the caching
procedure and second, we use the lightcuts algorithm [WFA∗05, WABG06] ex-
tended by our (ir)radiance gradients [WH92] for more efficient computation of the
cache records. The traditional gathering scheme for irradiance caching [WRC88],
where a search for feasible cache records is initiated at each pixel sample, imposes
restrictions on the traversal order of the pixels. It has been proposed at a time
when main memory was scarce and is not appropriate nowadays. It also does
not scale well with the trend of increasing image resolution. We perform cache
splatting in 3D object space, where each newly computed cache record directly
extrapolates its (ir)radiance contribution to all neighboring eye samples in its
ellipsoidal splatting footprint.

Using the lightcuts technique we are able to compute indirect and direct light in
one pass without the need for user parameter settings like number of final gather
rays (FGR) per pixel, k-nearest neighbor photons etc., as in the traditional photon
mapping with (ir)radiance caching procedure. Lightcuts automatically adapts to
the scene and lighting complexity and furthermore, when using our perceptually-
derived visibility thresholds, to the perceptual cues in the image, which often
counterbalances scene complexity (rendering errors in a complex scene with many
geometric details and textures are less perceptible by the human eye than in
simple scenes.) The latter case is particularly important as it allows us to relax
the rendering errors and reduce computation time in cluttered image regions.

In order to compute direct and indirect light faithfully using our caching tech-
nique, we maintain a “two-layer” irradiance cache, which caches and interpolates
direct and indirect light contributions in parallel. However, both cache layers
interact with each other on-the-fly in terms of luminance masking to steer the
cache interpolation and error thresholds in the lightcuts computation, which is
impossible if we compute direct and indirect lighting separately.

Finally, we improve the (ir)radiance interpolation by using anisotropic cache
splatting, which reduces the overall number of cache records per frame while
maintaining the same image quality.



Chapter 6: Anisotropic Radiance Caching 125

2 Lightcuts

Lightcuts is a deterministic and hierarchical algorithm based on instant radios-
ity [Kel97]. It is one to two orders of magnitude more efficient than photon
mapping because it neither requires a costly search for the nearest photon(s) nor
does it involve stochastic ray shooting for Monte Carlo final gathering. Further-
more, lightcuts’ adaptive nature inherently performs “importance sampling”1 for
the product term of BRDF and lighting and not only for the BRDF term as in
photon mapping [Jen01]. Instead of uniform sampling the radiance in the upper
hemisphere with a constant number of final gather rays, a small set of clusters
over virtual point lights (VPLs) is chosen adaptively for each eye sample point x
such that the error introduced by the clustering is invisible for each pixel.

Let’s first derive how we compute the pixel radiance contribution L from a subset
of diffuse surfaces SC in the scene for a point x using instant radiosity

L(x,ω) =
∫
SC

fs(x,y,ω) ·G(x,y) ·V (x,y) ·Le(y→ x) · dAy, (6.1)

where the outgoing radiance Le at point y is assumed to be independent of direc-
tion, i.e., fs(y−1→ y→ x) = fs(y), and can be precomputed as

Le(y→ x) := Le(y) = fs(y) ·E(y) =
ρd(y)

π
· dΦ(y)

dAy
. (6.2)

Inserting Eq. 6.2 in Eq. 6.1 this leads to the instant radiosity algorithm when
replacing the integral by a finite sum over radiant flux ∆Φ from all NC surfaces
elements in SC

L(x,ω) ≈
NC

∑
i

fs(x,yi,ω) ·G(x,yi) ·V (x,yi) ·
(

ρd(yi)
π

∆Φ(yi)
)

, (6.3)

where the last term is the precomputed intensity Ii := I(yi) stored with each VPL.

The computation in Eq. 6.3 converges with increasing NC but is not adaptive
and the costs per VPL are very high. Therefore, we transform Eq. 6.3 into a
hierarchical computation. We compute clusters of VPLs, where a cluster sums
the intensity ∑

NC
i Ii of all NC VPLs in its support but uses the form factor GC ·VC

and BRDF fC of one representative VPL with index C:

LC(x,ω) =
NC

∑
i

fs(x,yi,ω) ·G(x,yi) ·V (x,yi) · Ii

LC(x,ω) ≈ fs(x,yC,ω) ·G(x,yC) ·V (x,yC) ·
NC

∑
i

Ii. (6.4)

1The notion of importance sampling is not adequate here as we will cope with a completely
deterministic approach
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Certainly computing an optimal clustering for each individual eye sample is way
too expensive (in fact it is a NP hard problem). Therefore, in order to make the
clustering adaptive and efficient, VPL-clusters are precomputed hierarchically in
a binary tree (the light tree), where individual VPLs are stored in the leaf nodes
and interior nodes cluster the intensities of all VPLs in their sub-trees. The light
tree is kept static and reused for the lighting computation at each eye sample.
To obtain a pixel-adaptive set of clusters, we then solely compute a cut through
the light tree, giving the algorithm its name lightcut . A valid lightcut is a set of
nodes such that for every path from a leaf node (VPL) to the root node of the
tree there exists one and only one node in the lightcut.

Lightcuts are computed as in [WFA∗05] except that we also compute gradients
(Section 3.3) and correct for the clamping of VPLs (Section 5) for each cache
record. Since the original paper [WFA∗05] does not specify explicitly how to
compute and refine the lightcut, we present the basic algorithm for computing
the outgoing pixel radiance with lightcuts in Algorithm 3. The basic algorithm
initializes the lightcut with one cluster, the root node, and iteratively refines
it by traversing down the tree while always replacing one cluster node in the
current lightcut with its two children if the error introduced by this cluster is
too large. Computing the exact error introduced for one cluster in Eq. 6.4 would
require evaluating the entire sub-tree (primarily computing the visibility) and is
suboptimal. Therefore, the basic idea is to compute inexpensive upper bounds for
the error of a cluster with regard to a particular eye sample, which boils down to
computing separate upper bounds of the individual terms we are approximating
in Eq. 6.4. We omit an introduction to the essential computation of the upper
bounds for the geometric term GUB and the BRDF fUB in lightcuts and refer
the reader to [WFA∗05] for details. The most expensive term in Eq. 6.4 is the
visibility term for which it is hard to make conservative assumptions other than
the trivial one VUB := 1.

Once having computed upper bounds for BRDF and geometric term of a clus-
ter we can compute an upper bound for the absolute error ∆ε introduced when
computing the radiance using this cluster. Note that for computing an upper
bound for the absolute error we also have to consider the lower bound of the
error. Fortunately, the lower bounds of the approximated terms in Eq. 6.4 are
trivially zero since VLB := 0.

1. Lower bound: all N− 1 non-evaluated VPLs in the sub-tree of the cluster
have zero contribution, i.e. fLB ·GLB ·VLB = fLB ·GLB · 0

∆LB =

(
0 ·
(

N

∑
i

Ii− IC

)
+ fC ·GC ·VC · IC

)
− fC ·GC ·VC ·

N

∑
i

Ii

= − ( fC ·GC ·VC) ·
(

N

∑
i

Ii− IC

)
. (6.5)

2. Upper bound: all N− 1 non-evaluated VPLs in the sub-tree of the cluster
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have maximum possible contribution fUB ·GUB ·VUB = fUB ·GUB · 1 within
the computed bounds

∆UB =

(
fUB ·GUB ·

(
N

∑
i

Ii− IC

)
+ fC ·GC ·VC · IC

)
− fC ·GC ·VC ·

N

∑
i

Ii

= ( fUB ·GUB− fC ·GC ·VC) ·
(

N

∑
i

Ii− IC

)
. (6.6)

Hence, an upper bound for the absolute error of a cluster is taken as the maximum
over the norms of Eq. 6.5 and Eq. 6.6

∆ε := max(‖∆LB‖ ,‖∆UB‖). (6.7)

Algorithm 3 Lightcut Computation
Input:

εL lightcut refinement threshold (e.g. 1%)
MAX CUT SIZE the user defined maximum allowed lightcut size
lightcut priority queue (heap) sorting clusters with error
lightTree the binary tree of VPL clusters

Output:
Lout outgoing pixel radiance

Lout := GetRadianceNotToBeComputedWithLightcuts() /* e.g., Le, caustics */
cutItem.node := lightTree.GetRootNode()
/* for simplicity form factor also includes the BRDF term here */
cutItem.formFactor := ComputeClusterPotential(cutItem.node.GetVPL())
cutItem.error := MAX ERROR
Lout := Lout + cutItem.formFactor ∗ cutItem.node.intensitySum
NL := 1
/* also avoid too small lightcuts due to overestimated Lout */
while (cutItem.error > εL ∗ Luminance(Lout) OR NL < MIN CUT SIZE) do

if NL ≥ MAX CUT SIZE then
break /* stop lightcut refinement if its size exceeds imposed limits */

end if
cluster := cutItem.node
L0 := cutItem.formFactor ∗ cluster.intensitySum
cutItem.node := cluster.RepresentativeChild()
upperBoundFormFactor := ComputeUpperBounds(cutItem.node)
/* Same VPL for the representative child node → same form factor */
cutItem.error := ComputeError(upperBoundFormFactor, cutItem.formFactor, cutItem.node)
Lr := cutItem.formFactor ∗ cutItem.node.intensitySum
lightcut.push(cutItem)
cutItem.node := cluster.AdoptedChild()
upperBoundFormFactor := ComputeUpperBounds(cutItem.node)
/* Need to compute new form factor with visibility for adopted child node */
cutItem.formFactor := ComputeClusterPotential(cutItem.node.GetVPL())
cutItem.error := ComputeError(upperBoundFormFactor, cutItem.formFactor, cutItem.node)
La := cutItem.formFactor ∗ cutItem.node.intensitySum
lightcut.push(cutItem)
Lout := Lout −L0 + Lr + La /* Refine the result */
/* Get lightcut-entry with highest upper error bound and remove from queue */
cutItem := lightcut.topAndPop();
NL := NL + 1

end while
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The final algorithm shown in Algorithm 3 can be summarized as follows. Initially,
the light distribution in a scene is hierarchically stored in a binary tree, where
each node stores the summed intensity, the angle of the surface-normal bounding-
cone and the bounding-box over all VPLs in the sub-tree. During rendering the
light-tree is adaptively traversed in a top-down fashion and at each visited cluster
node a conservative upper error bound is computed and the node is stored in a
priority queue (the lightcut), which sorts the cluster according to its error. In each
iteration we take the cluster with the maximum error from the queue and refine
it by computing the radiance contributions and the error bounds of its children.
The process repeats until all nodes in the priority queue have an error below a
threshold εL relative to the pixel luminance or the size of lightcut NL exceeds a
maximum threshold. For our cache computation we set εL = 1% and NL = 1000.
As example for the pixel-adaptive rendering with lightcuts see Fig. 6.1.

50 500

(a) GI result (b) error thresholds (εL) (c) lightcut size (NL)

Fig. 6.1 – Pixel-adaptive rendering with lightcuts

Rendering result for the lightcuts algorithm (a) with 2% pixel error thresholds shown
in (b) scaled by factor 16. The color-encoded number of evaluated point lights per pixel
(avg. 281 lights) is visualized in (c).

Computing the upper error bounds for all traversed nodes is costly. We therefore
refine a cluster immediately (add it to the top of the priority queue) if its energy
contribution to the pixel luminance is above a threshold (we use 10%). This helps
to skip needless computations of the upper error bounds for clusters in the upper
part of the light-tree, which are later refined anyway.

Since the lightcuts algorithm scales well with the number of virtual point lights
(VPLs), we can afford a huge number of VPLs (e.g. N > 106). Therefore, in
contrast to instant radiosity [Kel97], the clamping of the energy contribution of
close VPLs is much less objectionable in lightcuts. Such clamping also wrongly
estimates gradients near corners, which is undesirable as we adapt our cache
record density and the cache splatting footprint to the gradient. Nevertheless,
we clamp the maximum contribution of a VPL in the computed lightcut at 1%
of the pixel’s luminance value to suppress the otherwise visible noise in corners.
The same applies also to the gradients of the VPL. This clamping introduces bias
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(missing energy) but an efficient remedy is proposed in Section 5.

3 Irradiance and Radiance Caching

The original lightcuts algorithm estimates the rendering equation for each pixel
sample or adaptively for at least every fourth pixel where in-between pixel sam-
ples are interpolated in image space (reconstruction cuts [WFA∗05]). However,
such a caching strategy of directly visible pixel radiance is only well-suited for
rendering single frames and is not efficient for walk-through animations because
the view-dependent BRDF term is often the source of high-frequency temporal
changes. Moreover, the image-space block-interpolation for the reconstruction
cuts [WFA∗05] does not consider temporal flickering artifacts and has problem
with reproducing the shape of glossy highlights.

Our method extends the originally proposed lightcuts algorithm [WFA∗05] with
(ir)radiance caching in object space [WRC88, KGPB05] for view-independent
(ir)radiance caching. As in [KGPB05] the incident radiance and BRDF/ma-
terial term ( fs) are separately projected onto the spherical (SH) or hemispherical
harmonics [GKPB04] (HSH) basis Hm

l (θ,φ) for the ease of interpolation on glossy
surfaces. One could argue that projecting the lightcut result to a low-frequency
spherical basis and throwing away all the detailed information gathered in the
lightcut is not only lossy but somewhat redundant since both, the lightcut and
the SH radiance coefficients, capture the incident radiance field. However, the
radiance field captured by the lightcut is highly spatial coherent and storing the
whole lightcut per cache record is not only wasteful in terms of memory but
would also require an expensive re-projection to all eye samples within the cache
footprint. Such reprojection is well approximated with our proposed gradients.
For most surfaces of global illumination scenes, even when consisting of view-
dependent surfaces, a (filtered) low-frequency representation of the directional
radiance field is sufficient. Besides indirect illumination on high-frequency glossy
surfaces is anyway badly reproduced when using the lightcuts algorithm and a
Monte Carlo sampling strategy of the BRDF is more advisable and efficient in
such cases.

In the following we will only refer to spherical harmonics (SH) as the basis for
our computations. However, hemispherical harmonics (HSH) have very simi-
lar properties as spherical harmonics and can be treated almost interchangeable
(see [GKPB04]) 2. Although irradiance caching on diffuse surfaces can be treated
the same way as radiance caching, we separate irradiance caching from radiance

2For hemispherical harmonics the rotation of coefficients around the Y-axis requires small
changes. We also have to (pre)compute the “cut-off matrices” for a set of discrete rotation angles
that delete the radiance contribution of the digon falling below the surface tangent plane after
rotation [GKPB04]
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caching in the way that irradiance cache records store only view-independent ir-
radiance values whereas radiance cache records capture the full incident radiance
field. The reason for this separation is performance and memory efficiency. Ir-
radiance cache records need to store only scalar values whereas radiance cache
records store for each color channel a number of SH coefficients for the radiance
and radiance gradient as well. For example, not including the cosine term in
the computation of the irradiance on diffuse surfaces requires to store at least 9
SH coefficients [RH04] for the incident radiance for each diffuse irradiance cache
record, which is additional overhead if we assume most scenes are dominated
by diffuse surfaces. Furthermore, because the alignment of the local coordinate
frames is less important for view-independent diffuse surfaces, storing the cosine-
projected irradiance instead of the radiance coefficients we can avoid expensive
SH rotations. On the other hand, if we ignore the rotation of the radiance field
on diffuse surfaces, we introduce a considerable error for curved surfaces where
the change in irradiance is mainly due to the change in surface normals. Hence,
following [WH92] we compute a rotational irradiance gradient (see Section 3.3.2)
for all irradiance cache records, which can be computed more efficiently than a
SH rotation. For all radiance cache records we exclude the cosine term in the
cache computation, which instead is included in the BRDF SH coefficients, and
perform a fast approximate SH rotation [K0̌5b] in replacement of a rotational
gradient.

3.1 Irradiance Caching

Irradiance is cached and interpolated in object space on all view-independent dif-
fuse surfaces. We follow Ward and Heckbert [WH92] and store the irradiance
along with irradiance gradients at a sparse set of eye samples referred to as cache
records and interpolate in-between samples. The 5-dimensional irradiance gradi-
ent (3D translation + 2D surface rotation) is split into a translational gradient
∇t in the 2D tangent plane and a rotational gradient ∇r. The irradiance E(x) is
computed with lightcuts as

E(x) =
NL

∑
i=1

G(x,yi) ·V (x,yi) · Ii, (6.8)

where NL is the size of the lightcut, G(x,y) is the geometric term, V (x,y) the
binary visibility function, and Ii the intensity of the cluster i in the lightcut. The
computation of the gradients is described in Section 3.3. The irradiance E(p)
for an eye sample is computed as a weighted sum of the extrapolated irradiance
from the K nearest cache records with spatially overlapping footprints at p

E(p) ≈
K

∑
k=1

wk(p) · {E(xk) + (p−xk) ·∇tEk + (~n×~nk) ·∇rEk} , (6.9)

with ∑
K
k=1 wk(p) = 1.
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The cache interpolation requires to find all contributing cache records, whose
performance depends on the search efficiency. We can distinguish two search
strategies:

1. traditional single pass: search all over-lapping cache records for each eye
sample (cache gathering)

2. two pass: search all eye samples in the footprint of each cache record (cache
splatting)

We favor a variant of the second strategy as it is algorithmically more efficient in
particular for higher resolution images. Our cache splatting is described in Sec-
tion 4.

3.2 Radiance Caching

As opposed to irradiance caching a radiance cache record captures the (filtered)
incident radiance field for each color channel in a few SH coefficients. The radiance
SH coefficients λm

l are also computed with lightcuts:

λ
m
l (x) =

NL

∑
i=1

G⊥(x,yi) ·V (x,yi) · Ii ·Y m
l (θi,φi), (6.10)

where m is the degree and l is the band of the SH coefficient and G⊥ is the
unprojected geometric term

G⊥(x,y) =
cosθy

||x−y||2 , (6.11)

since we only want to capture the incident radiance field, which can be rotated
later on.

The cosine-weighted BRDF is also projected onto the SH basis:

f m
l (x,ωo) =

2π

N ·M
M−1

∑
j=0

N−1

∑
k=0

fs(x,ω j,k,ωo) · cosθ j,k ·Y m
l (θ j,k,φ j,k), (6.12)

where f m
l (x,ωo) are the BRDF SH coefficients precomputed for a number of dis-

cretized local viewing directions ωo for each BRDF in the scene model [KGPB05].
Note that we separate the view-dependent BRDF from the Material. Therefore,
the BRDF SH coefficient only capture the cosine-weighted gloss lobe of the BRDF
and not the diffuse and specular albedo of the BRDF as this can be modulated
by high-frequency spatially varying textures. Further, in our implementation the
BRDF is assumed to be independent of the color channel, which allows us to
store only one scalar value per BRDF SH coefficient.

Since the SH basis is orthonormal, the outgoing radiance at any point on a surface
is computed as the dot product of the radiance SH coefficient vector Λ(x) and



132 Section 3: Irradiance and Radiance Caching

the BRDF SH coefficient vector F(x,ωo).

L(x,ωo) =
n−1

∑
l=0

l

∑
m=−l

λ
m
l (x) · f m

l (x,ωo), (6.13)

= Λ(x) •F(x,ωo), (6.14)

where n is the number of bands (we use up to 8) depending on the “glossiness” of
the surface [KGPB05].

With (ir)radiance caching, one cache sample contributes to many neighboring eye
samples. Thus the pixel radiance L at a point p becomes the weighted average of
the radiance SH coefficients λm

l from the K neighboring cache samples modulated
by the BRDF SH coefficients at the point p

L(p,ωo) ≈
K

∑
k=1

(
wk(p) · Λ̃k(p)

)
•F(p,ωo), (6.15)

with ∑
K
k=1 wk(p) = 1. The extrapolated radiance SH coefficients of a cache record

at x to a point p are computed similar to irradiance caching except that we
exclude the rotational gradient and rotate the radiance field instead

Λ̃(p) =R
(

Λ(x) + du
∂Λ(x)

∂u
+ dv

∂Λ(x)
∂v

)
, (6.16)

where R is the SH rotation matrix that aligns the local coordinate frame at x
with the coordinate frame at p. The translational derivative vectors ∂Λ(x)

∂u and
∂Λ(x)

∂v represent the computed SH gradient in the local tangent plane of the cache
record and du = pu− xu, dv = pv− xv is the difference vector p−x projected into
the local coordinate frame (~u,~v,~n) at x.

3.3 Irradiance and Radiance Gradients

(Ir)radiance extrapolation with gradients corresponds to a first order Taylor ap-
proximation of the actual (ir)radiance at the extrapolation point. Radiance
caching without gradients can result in highly visible artifacts as shown in Fig. 6.2.
However, lighting is not linear and error is still introduced this way in particular
at discontinuities due to visibility changes. Including higher order terms would
require to compute and store more information (e.g. the Hessian) for each cache
record. Moreover, the error is usually reduced if more than one cache record con-
tribute to the interpolation in Eq. 6.9, which is achieved with our cache splatting
in Section 4. Therefore, (ir)radiance caching with gradients can be regarded as
a good trade-off between efficiency and error. In contrast to final gathering with
integration over solid angle, lightcuts solves the integral by sampling the scene’s
surface-area. Therefore, a stratified gradient computation scheme as proposed
by [WH92, KGPB05] is difficult to achieve. We therefore focus on computing
the radiance gradients analytically.
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Fig. 6.2 – Irradiance Extrapolation with/without Gradients

Close-up of cache extrapolation without gradients (left), and with our gradients (right).

We choose to use simple irradiance caching with translational and rotational gra-
dients on Lambertian diffuse surfaces [WH92] and translational gradients plus
a SH rotation on glossy surfaces similar to [K0̌5a]. The gradients in the local
coordinate frame defined by ~u, ~v, and ~n are computed during the lightcut com-
putation. As in [KGPB05] we ignore the displacement along ~n since the cache
records lie only on surfaces and the displacement along the surface normal ~n is
usually very small.

3.3.1 Translational Gradient

The translational irradiance gradient is computed by differentiating Eq. 6.8 with
respect to u and v corresponding to the displacement in the tangent plane along
unit-vectors ~u and ~v respectively

∂E
∂u

(x) =
NL

∑
i=1

Ii ·
∂

∂u
{G(x,yi) ·V (x,yi)}, (6.17)

and in the same way for the derivative with respect to v along direction ~v.

Similarly, the translational SH radiance gradient is computed by differentiating
Eq. 6.10

∂λm
l

∂u
(x) =

NL

∑
i=1

Ii ·
[

∂

∂u
{G⊥(x,yi) ·V (x,yi)} ·Y m

l (θi,φi) + G⊥(x,yi) ·V (x,yi) ·
∂Y m

l
∂u

(θi,φi)
]

.

(6.18)
The derivatives of the SH (and HSH) basis functions ∂Y m

l
∂u (θi,φi) are given in [K0̌5b].

Note that we ignore the visibility gradient in Eq. 6.17 and Eq. 6.18 and assume
visibility is constant within the cache footprint at x.

For simplicity we only regard a single VPL with index i and a single SH coefficient
(we omit the indices of the SH coefficients) in the following equations. Note
that for identification we occasionally use variable names in the subscript of
parameters, which should not be confused with partial derivatives, i.e., θx 6= ∂θ

∂x .
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The gradient of the geometric term G expressed in the local coordinate frame
(~u,~v,~n) at x can be rearranged as follows [KGPB05] taking into account that
the change of G with the displacement of x is opposite to its change with the
displacement of y (see Fig. 6.3):

∂G
∂u

(x,y) = − ∂G
∂qu

(x,y)

= − ∂

∂qu

{
cosθx cosθy

||~q||2

}
, (6.19)

where we replace

cosθx = qn/||~q||, (6.20)
cosθy = −(~ny •~q)/||~q||, (6.21)

with the surface normal ~ny at y and ~q = y−x expressed in the local coordinate
frame of x, i.e. (qu,qv,qn)T = (~u,~v,~n)T •~q.

q

y

x

n ny

u

qn



nu

qu

y

x

Fig. 6.3 – Quantities for computing the geometric gradient

Quantities for computing the geometric gradient at x for a VPL at point y.

Hence, plugging Eq. 6.20 and Eq. 6.21 into Eq. 6.19 the derivative of G with
respect to u is computed as

∂G
∂u

(x,y) = − ∂

∂qu

{
−(~ny •~q) · qn

||~q||4

}
= qn ·

(
nu · ||~q||2− 4qu · (~ny •~q)

||~q||6

)
= qn ·

(
nu · ||~q||+ 4qu · cosθy

||~q||5

)
, (6.22)

where nu =~ny •~u. And in the same way for the derivative along tangent vector
~v:

∂G
∂v

(x,y) = qn ·
(

nv · ||~q||+ 4qv · cosθy

||~q||5

)
.
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The gradient for the unprojected geometric term G⊥ in Eq. 6.18 is derived in a
similar fashion:

∂G⊥

∂u
(x,y) =

∂

∂u

{
cosθy

||~q||2

}
=
(

nu · ||~q||+ 3qu · cosθy

||~q||4

)
, (6.23)

and the same way for ∂G⊥
∂v .

3.3.2 Rotational Irradiance Gradient

The rotational gradient for the irradiance at a point x is computed by differ-
entiating Eq. 6.8. Similar to [WH92] we compute the net gradient by summing
the partial derivative with respect to the incident angle θ for each cluster in
the lightcut. For convenience the rotational gradient is computed in the local
tangent plane. Each single cluster is projected to the tangent-plane unit vector
ν(φ) = (sinφ,−cosφ)T , which is pointing in perpendicular direction3 (φ− π

2 ).

∇rE(x) =

(
∂E(x)

∂(θx sinφx)
∂E(x)

∂(−θx cosφx)

)
=

NL

∑
i=1

ν(φi) · Ii ·V (x,yi) ·
∂

∂θx
{G(x,yi)} (6.24)

where the visibility V (x,yi) and the intensity Ii are invariant under rotation of
the surface normal at x. To show that Eq. 6.24 is a correct definition of the
rotational gradient, we need to re-parametrize the geometric term G with the
local incident direction (θx,φx) in 2D Euclidean coordinates (u,v)

G(θx,φx, l,θy) =
cosθx cosθy

l2 := g ((θx · sinφx), (θx ·−cosφx)) = g(u,v),

where l = ||x−y|| and θy are constant with respect to rotation of the surface
normal at x and can thus be ignored in g. Using the chain-rule, the partial
derivatives of G with respect to θx and φx are

∂G
∂θx

=
∂g
∂u
· sinφx +

∂g
∂v
·−cosφx

∂G
∂φx

=
∂g
∂u
· (θx · cosφx) +

∂g
∂v
· (θx · sinθx) = 0.

(6.25)

Solving the relations in Eq. 6.25 for the partial derivatives ∂g
∂u and ∂g

∂v in the tangent
plane we get

∂g
∂u

= sinφx ·
∂G
∂θx

∂g
∂v

= −cosφx ·
∂G
∂θx

.

3This practice is only for ease of derivation since the extrapolation direction as the result of
the cross-product in Eq. 6.9 is orthogonal to the plane spanned by the two normal vectors
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Thus, ∇g = ν(φx) · ∂G
∂θx

.

The derivative of the geometric term with respect to the incident angle θx is

∂G
∂θx

=
− sinθx · cosθy

||x−y||2 , (6.26)

since only the term cosθx changes with θx. When extrapolating the irradiance at x
to a point p the rotational gradient is taken into account as a linear approximation
in Eq. 6.9. The extrapolation direction ~n⊥ = ~n×~nk resulting from the cross
product of the shading normal ~n at p and the surface normal of the cache record
~nk has length ||~n⊥||= sinθ, where θ is the angle between the two normals. Using
the sin(θ) is only an approximation since our gradient is defined with respect to
θ. However, for small angles as in radiance caching sin(θ) ≈ θ. Correctly scaling
~n⊥ by arcsin(||~n⊥||)/||~n⊥|| produces results that are visually indistinguishable
to our approximation in Eq. 6.9.

In Fig. 6.4 the difference between irradiance caching without and with rotational
gradients is shown. Note that in this special case even adaptive radiance caching
(see Section 4.1) cannot circumvent the “artifacts” arising near discontinuities in
the geometric normal since the computed “geometric” irradiance at the cache
records does not match the irradiance for the corresponding shading normal
(see Section 6.4).

Fig. 6.4 – Rotational irradiance gradient

Indirect lighting computed with radiance caching (no adaptive caching) for a close-up
view on curved objects with shading normals, left: the cache distribution and footprints,
middle: ignoring the rotational irradiance gradients in the cache extrapolation reveals
the discontinuous structure of the polygonal surfaces, right: cache extrapolation with
rotational irradiance gradients.
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3.3.3 Gradient Computation in the Lightcut

Whenever we evaluate the contribution of a visible light cluster, we also compute
and store its gradient contribution in the cut according to Eq. 6.22, however,
without multiplying the cluster intensity Ii since this is refined during the cut
computation. Once a cut is fully converged we loop over all cut entries and
sum the gradients multiplied by the final (possibly clampled) cluster intensity
of each entry. The computation of the translational gradient requires clamping
of the distance ||~q|| to prevent too small values for ||~q||5 in the denominator
of Eq. 6.22, which can lead to large numerical errors in the gradient computation
particularly near corners.

The gradient computation only slightly influences the performance of the whole
lightcut computation but significantly improves the cache interpolation quality
(see Fig. 6.2). This is particularly important for the adaptive caching (Section 4.2)
because interpolation without gradients creates many discontinuities resulting in
an excessive cache density on flat, unoccluded surfaces.

4 Efficient Radiance Cache Splatting

In [GKBP05] an image space variant designed for the GPU of the widely used
irradiance caching was presented. Besides being more suitable for a GPU imple-
mentation, it also bears several advantages, which we will discuss here. However,
since the method operates in image space, it does not support splatting of indirect
cache records arising from specular light transport along the eye path.

Therefore, we propose to splat cache records in object space independent of the
camera. We do this via searching in a kd-tree for all feasible eye samples in
the bounding sphere of the cache record. As the number of those searches in
the eye sample kd-tree is relatively small compared to the number of eye sam-
ples, the search is algorithmically superior [HHS05] to the traditional irradiance
caching [WRC88] where the number of searches (e.g. in an octree) is equiva-
lent to the number of pixels in the image. The number pixels is usually about
two orders of magnitude greater than the number of cache records. Thus, cache
splatting [GKBP05] is less dependent on image resolution than cache gather-
ing. Consequently, the search is not the bottleneck in the whole cache splatting
algorithm and we splat each cache record one after another. This way the or-
der of the cache-record generation and the splatting is cache-oblivious since the
eye samples casted from the camera are spatially sorted in a kd-tree such that
during splatting successive cache records access the memory in a highly coherent
manner.
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4.1 Anisotropic Cache Splatting

In [KBPv06] a method for adaptive irradiance caching was presented. It pro-
poses to use individual error thresholds a per cache rather than a global error ε

as in [WRC88] . This has the advantage that cache records can adaptively re-
duce their footprint where discontinuities in the cache interpolation are detected.
Through multiple iterations eye samples are tested for visible discontinuities in the
illumination extrapolated from neighboring cache records. Discontinuity causing
cache-records are excluded from the interpolation and the cache record’s error
threshold a and hence its footprint is reduced accordingly until the solution con-
verges (i.e. no more visible discontinuities). We follow this approach and omit
the details here as they are well explained in [KBPv06] .

Fig. 6.5 – Anisotropic versus isotropic cache footprints

Left: color-encoded anisotropic cache-record footprints in the icido scene (red corre-
sponds to maximum and blue to minimum anisotropy) (20881 records), middle: visual-
ization of standard isotropic irradiance caching (23155 records), right: resulting indirect
illumination (γ = 2.5, 8 f-Stops brighter), which is visually indistinguishable for both
methods, although the numerical error is slightly smaller for the anisotropic reconstruc-
tion.

We extend this method using anisotropic cache splatting. The adaptive caching
of Křivánek et al. [KBPv06] increases the cache record density in regions with
lighting changes, which the irradiance gradient can’t compensate for. However,
such strong lighting features are often of one-dimensional nature, which means
that the changes in the direction orthogonal to the lighting gradient (the coher-
ence direction) are often much smaller. This suggests to filter stronger in the
coherence direction of a 2D signal and reduce interpolation along the gradient to
avoid excessive “blurring” of lighting features. Such approach reduces the cache
record density along edge features in the illumination (see Fig. 6.5). Anisotropic
splatting and interpolation is not new but has been used frequently for example
in image processing [Wei98,McC99] and point based rendering [ZPvBG01]. The
proposed cache splatting imposes only small changes to the adaptive caching.
Additionally, for each cache record we need the anisotropy and the direction of
the gradient to perform anisotropic cache splatting.
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The weights wk(p) are then computed similarly to traditional irradiance caching
[TL04,WRC88]:

wk(p) =
(

||D∗ (p−xk)||
max(R−,min(R+,Rk))

+
√

1−~np •~nk

)−1

, (6.27)

where ~np and ~nk are the surface normals at point p and cache position xk, respec-
tively. Setting Rk to the harmonic mean distance of all visible surfaces [WRC88]
computed with lightcuts does not yield a correct upper bound estimate for the
indirect light gradient [WRC88] as we do not sample the hemisphere of direc-
tions uniformly (we essentially perform surface area integration). Therefore, we
follow [TL04] and set Rk to the minimum distance instead. We use the distance
to the nearest occluder computed from all traced shadow rays to the VPLs in the
lightcut, which is clamped at a lower R− and upper bound R+. The bounds R−
and R+ are computed from the projected pixel area at xk [TL04] , which depends
on the distance of xk to the camera.

Since lightcuts is a deterministic approach, which samples all “contributing” light-
emitting surfaces, we do not suffer from under-sampling of small nearby emitters
(provided that small surfaces were sampled with VPLs) or ray leaking [KBPv06]
as in Monte Carlo final gathering. Nevertheless, additional nearest neighbor
clamping [KBPv06] should be applied since Rk is chosen as the distance to the
nearest occluder rather than the distance to the nearest point light. And a small
occluder, in particular when seen at a grazing angle, might not always be inter-
sected by a shadow ray. Choosing the distance to the nearest occluder hardly
changes Rk for the indirect light caches but is particularly important for direct
light caches (see Section 4.3) where only very few, mostly distant surfaces emit
light. Further, we would like to sample denser in shadowed regions in particular
near contact shadows (see Fig. 6.6) in order to avoid under-sampling of high fre-
quencies in the visibility function. Although such approach does not avoid light
bleeding into the shadowed region, it can be detected later by the discontinuity
checking of overlapping cache records (see Section 4.2).

The 3× 3 matrix D = G ∗AT transforms (p− xk) into the gradient-spanned
coordinate system given by the orthogonal matrix A = {v||,v⊥,nk}, where v|| =
∇tE(xk)/||∇tE(xk)|| is the normalized gradient (in the local tangent plane) and
v⊥ is the coherence direction orthogonal to v||, and then scales it by the diagonal
matrix

G =

 g(||∇tE(xk)||2)−1 0 0
0 g(||∇tE(xk)||2) 0
0 0 1/cn

 . (6.28)

The matrix G suppresses the spherical splatting footprint along the illumination-
gradient direction v|| (see Fig. 6.7) and along the surface normal direction since
those directions are likely to incur larger errors due to discontinuities. cn < 1 is a
constant scaling factor, which basically flattens the ellipsoidal splatting footprint
in surface normal direction. We set it to 0.2. Note that we do not change the area
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Minimum occluder distance Minimum VPL distance

Fig. 6.6 – Visualization of cache locations for different metrics

Distribution and initial result of (top) direct light and (bottom) indirect light caching
in the apartment scene. The center images show the initial cache locations when us-
ing the minimum occluder distance (middle left) and minimum VPL distance (middle
right) for Rk in Eq. 6.27. The corresponding result is shown on the left and right im-
ages respectively. Note the missing contact shadows when using the VPL distance for
computing the direct light.

of a cache footprint in the tangent plane but just change its shape and orientation
(see Fig. 6.7).

The monotonically decreasing function g(x2) maps the squared gradient magni-
tude to a value between 0 and 1 determining the anisotropy. We have chosen
g as the Perona-Malik diffusivity function [PM90, Wei98] since it is efficiently
computed as

g(x2) =
1

1 + x2/µ2 , (6.29)

with user defined contrast parameter µ: the smaller µ the higher is the sensitivity
to the gradient magnitude yielding in more anisotropy along coherent lighting
features. In order to prevent too elongated, slim footprints, we clamp g(x2) at a
minimum of 0.3. One has to be aware that this diffusivity function was developed
for image processing and considers absolute values of image-pixel gradients. In
our case the illumination gradients depend on the scene measurement unit (e.g.
inches) and lighting. Therefore, µ should be normalized to correspond to the
actually perceived gradients after scaling the computed image to the desired image
brightness (tonemapping).
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4.2 Multi-Pass Adaptive Caching

In the final pass after all cache records have been created and splatted their con-
tribution to all eye samples, we check at each eye sample e for discontinuities in
the illumination as in [KBPv06] and reduce the footprint of the discontinuity-
causing cache record such that the eye sample at which the discontinuity was
detected is just excluded. Instead of resizing the footprint by reducing just the
error a of a cache record ( Fig. 6.7a), we reduce the footprint only in one di-
mension, either along the gradient v|| or along the coherence direction v⊥ while
still keeping the symmetry and orientation of the footprint. We choose the di-
mension that maximizes the resulting footprint area when just excluding the eye
sample e and recompute the resulting anisotropy and the new cache error a of
the record (Fig. 6.7b). Note that this approach also compensates for wrongly ori-
ented cache records due to the missing visibility gradients. One major difference

p

xka∗Rk

p

xka '∗Rk

p

xka∗Rk

p

xka '∗Rk

(a) (b)

v||v||

v||v||

v┴

v┴

v┴

Fig. 6.7 – Anisotropic versus isotropic cache adaptation

(a) excluding the discontinuous eye sample at p from the cache footprint by reducing the
cache error a while keeping the same anisotropy, (b) by shrinking the footprint only in
the dimension with maximum elliptical distance to x and recomputing cache error a and
the new anisotropy.

to the discernability metric used to detect discontinuities in [KBPv06] is that our
cache records are computed deterministically via lightcuts as opposed to Monte
Carlo final gathering. Therefore, high-frequency noise is not present in the com-
puted cache records and we do not need to estimate the standard deviation in
the illumination to compensate for noise [KBPv06].

We tolerate discontinuities as long as they are invisible to a standard human



142 Section 5: VPL Clamping Bias Compensation

observer, i.e. the lighting discontinuities are below the visibility thresholds 4

4.3 Two-level Radiance Caching

Irradiance caching has been designed for indirect lighting and the direct light
is commonly computed using a different method. However, the advantage of
lightcuts is that we can seamlessly compute the direct and indirect lighting. When
computing the direct and indirect light one after another in different rendering
passes, we cannot obtain the full lighting information for a pixel. Since lightcuts
adapts to the pixel luminance (Weber law), such an approach would result in
larger cut sizes and therefore higher computation costs for the first pass rendering.
This is particularly problematic when first computing the direct light in fully
occluded regions where only indirect light is contributing since lightcuts will refine
the cut to its maximum size. Contrarily, if we were computing the indirect light
first the lightcuts algorithm would excessively refine the cache records in regions
which are actually dominated by direct illumination and could thus tolerate a
much higher error. Therefore, we compute direct and indirect light in parallel
with our (ir)radiance caching such that the indirect light can mask the direct light
during the lightcut refinement and vice versa. We maintain two cache layers and
two light trees, one for direct light and one for indirect light. The main rendering
loop for the cache splatting described in Section 4 needs only small modifications
to test and compute both cache layers simultaneously and to weight the direct
and indirect light contributions of cache records individually. A rendering pass is
finished if the accumulated weights of both cache layers in each pixel are above
the required user-thresholds, which can be set individually for direct and indirect
light (see Fig. 6.8).

5 VPL Clamping Bias Compensation – Dealing with Weak Sin-
gularities

The lightcuts algorithm based on instant radiosity estimates the rendering equa-
tion by integrating the radiant intensity over the surface area using point samples
(VPLs). This naturally leads to the problem of weak singularities, which results
in low-frequency noise in corners seen as “blotchy” artifacts. Although lightcuts
is highly scalable – we can use hundreds of thousands to millions of VPLs – it
still requires clamping of very close VPLs resulting in darkening in corners as
shown in the left image of Fig. 6.9. Those clamping “artifacts” are even more
striking on glossy surfaces where individual VPLs that fall into the gloss lobe of

4A contribution of a cache record to an eye sample is said to be continuous if the interpolated
pixel radiance including this cache record is indistinguishable from the pixel radiance without
the cache record. This requires that we have at least two cache contributions per eye sample.
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Fig. 6.8 – Two-layered radiance caching

left: distribution of the cache records in the sibenik scene, red dots represent direct light
and green dots indirect light caches, right: rendered results.

the BRDF contribute relatively high to the pixel radiance and thus need to be
clamped even more than for diffuse surfaces. We can compensate for the clamping
of the VPL contributions by using a second estimator that integrates uniformly
over the solid angle. However, instead of fixing the clamping threshold for the
geometric term manually as in [KK04], we automatically compute a perceptual
upper bound based upon the relative mean contribution of a VPL to its cache
records’s irradiance. This has two advantages. First, the clamping threshold
adapts automatically to the total number of VPLs in the scene and second, it is
also pixel- or cache-adaptive according to Weber law: the luminance contribution
Yc of a VPL is clamped at Tc = 1%5 of the luminance Y{E(x)} of the irradiance
at the cache location

Yc = min{0.01 ·Y{E(x)},G(x,y) ·Y{I(y)}} . (6.30)

Assuming that all clamped VPLs have a similar intensity I(y), which is reasonable
if we assume VPLs where sampled using photon path-tracing with ideal BRDF

5Setting the clamping threshold to 1% is usually over-conservative in particular in darker
regions and for many scenes a threshold of 2% leads to better visual quality with regard to
the trade-off between low-frequency noise and clamping bias. However, whenever clamping bias
compensation is enabled, we prefer to be more conservative initially.
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importance-sampling and Russian Roulette absorption, we can compute the upper
bound b(x) for the geometric term G(x,y) at each point x as

b(x) =
0.01
ȲI
·Y{E(x)}, (6.31)

where ȲI is the maximum luminance of the intensities of the clamped VPLs in the
lightcut. Note that the proposed computation of the adaptive clamping threshold
is only feasible for diffuse surfaces. For glossy surfaces the irradiance contribution
of individual VPLs is weighted differently for varying viewing angles according to
a non-uniform BRDF, which is not known during the cache record computation.
Nevertheless, we compute a constant clamping threshold b(x) per cache record
the same way as for diffuse BRDFs. The irradiance of a cache record is then
computed as follows:

E(x) = Ecut(x) + Eclamp(x)

=
∫
S

min{b(x),V (x,y)G(x,y)}Le(y→ x)dAy

+
∫
S

max{0,V (x,y)G(x,y)− b(x)}Le(y→ x)dAy (6.32)

The irradiance contribution Eclamp from the second integral in Eq. 6.32 com-
pensates for the clamped VPL contributions in the first integral Ecut , which we
estimated with lightcuts. Eclamp is reformulated to an integral over solid angle:

Eclamp(x) =
∫
Ω

max{0,G(x,y)− b(x)}
G(x,y)

L(x,ω)cosθx dω, (6.33)

where L(x,ω) is the incident radiance from direction ω. Eclamp can now be solved
via Monte Carlo final gathering with uniform sampling of the hemisphere of
directions Ω

Eclamp ≈
1
N

N

∑
i=1

max{0,G(x,h(x,ωi))− b(x)}
p(ωi)G(x,h(x,ωi))

Le(h(x,ωi),−ωi)cosθi, (6.34)

where h : R5→R3 is the raytracing operator and ωi is sampled uniformly accord-
ing to the probability density function p(ω) = 1/(2π).

Compensating for the clamped energy using a solid angle based sampling ap-
proach diminishes the speedup we gained with our method. This is mainly due
to the fact that radiance caching places most cache records near edges where the
clamping actually happens. Therefore, the expensive clamping correction is often
computed for the majority of the cache records. Unfortunately, importance sam-
pling the integrand in Eq. 6.33 is difficult as we may not be able to estimate the
geometric term correctly in the close neighborhood. There can be small surface
emitters that were undersampled for which we actually want to compensate for
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53 sec 113 sec 4× difference

Fig. 6.9 – VPL-clamping-bias compensation

Left: clamped indirect lighting in the Apartment scene using 550,000 VPLs, middle:
the same scene with the proposed clamping compensation with 1000 final gather rays
per cache record and 100 nearest neighbor “VPLs”, right: visualization of the clamped
irradiance estimate (2 f-stop brighter) only, which was added to the left image to ob-
tain the middle image. Note that this contribution automatically decreases with the total
number of VPLs distributed in the scene and when direct lighting is added (since the lu-
minance Y{E(x)} in Eq. 6.31 is increased). Approximately 20000 cache records with a
mean lightcut size of 752 clusters were computed in 10 iterations for both methods.

with our second estimator. However, the solid angle based estimator in Eq. 6.34
heavily relies on raytracing of nearby surfaces. In order to speedup the raytracing
step, we can bound the ray intersection distance t given our geometric clamping
threshold b(x)

tmax(θi) =

√
cosθi

b(x)
. (6.35)

The bound tmax will result in very short inital rays to be traced in particular for
grazing angles. This in turn culls unnecessary ray traversal steps of nodes in
the acceleration data structure that are farther away and makes the raytracing
part of our uniform hemisphere sampling highly cache coherent since only a few
localized nodes need to be accessed by all final gather samples. And perhaps
more important in most cases we avoid incoherent access and intersection tests
of geometric primitives that would otherwise be needed to find the nearest ray
intersection.

In order to further speed up the computation of Eclamp we need to find an efficient
approximation for Le(h(x,ωi),−ωi) in Eq. 6.34 as it is the actual bottleneck. We
make a few simplifying assumptions:

1. First, one can observe that the clamped irradiance Eclamp(x) is non-zero
in only small local regions and quickly decreases towards zero, where the
clamping region reduces with the number of VPLs.

2. Second, the change in irradiance in a local neighborhood (represented by
a few VPLs) is very small with respect to the solid angle (i.e., a relatively
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small area projects to a large solid angle at x).

3. Third, we only assume diffuse secondary light transport (VPLs) from y :=
h(x,ωi) to x, i.e., L(y→ x) = Le(y) = ρd(y)

π

dΦ(y)
dA and the change in incident

radiance L(x← y) is dominated by the BRDF ρd(y)
π

(due to diffuse textures)
at the secondary hit point y.

Combining those observations we propose to compute the irradiance E(y) = dΦ(y)
dA

only once at a valid and contributing point y′ = h(x,ωi) while integrating cor-
rectly the surface material properties and geometric quantities in Eq. 6.34

Eclamp(x) =
∫
Ω

ρd(y)
π

dΦ(y)
dA

max{0,G(x,y)− b(x)}
G(x,y)

cosθx dω

≈ dΦ(y′)
dA

∫
Ω

ρd(y)
π

max{0,G(x,y)− b(x)}
G(x,y)

cosθx dω, (6.36)

where G(x,y′)−b(x) > 0. This way we only pay for at most one additional irra-
diance computation per cache record. The irradiance is computed using photon
(i.e flux) density estimation from the k-nearest neighbor VPLs, which are effi-
ciently found by exploiting the light hierarchy used to compute the lightcut. We
could also use lightcuts to compute E(y′). However, besides being more expen-
sive to compute, it suffers from discontinuities in the irradiance (we only use one
sample), which we regularize when using density estimation. The error intro-
duced by this approximation compared to the accurate irradiance computation
via density estimation at every secondary ray hit point is hardly visible as shown
in Fig. 6.10 and moreover decreases automatically with the total number of VPLs
in the scene.

Fig. 6.10 – Approximate VPL-clamping-bias compensation

The difference between the accurate clamping bias compensation (left) and our proposed
cached irradince at a single clamped secondary hitpoint (middle) is perceptually invisible
as the integration domain (where G(x,y) > b(x)) is usually smaller than the density
estimation area. The difference image (right) is scaled by 2 f-stops.

An important point is that we should perform the clamping compensation for
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each cache record regardless whether it was clamped during the lightcut compu-
tation or not. The reason for this is that the “blotchy” artifacts arise because
of sampling noise in corners where the VPL density is insufficient. Hence, some
regions suffer from over-estimation and some from under-estimation (i.e. “miss-
ing” VPLs). In those under-estimated regions there is no clamping detected but
we still have to compensate for it. A good indicator is the harmonic mean or
minimum distance Rk, which is computed for each cache record, see Eq. 6.27.
However, at the time the cache record has been computed with lightcuts, Rk is
still prone to undersampling of small surfaces (nearest neighbor clamping is per-
formed in the following pass). Therefore, we perform the clamping compensation
for each cache record and pay the penalty of longer cache computation time,
which is, depending on scene complexity and ray shooting efficiency, 10% to 15%
of pure cache computation time (without interpolation) in our implementation.
Note that this penalty is only due to redundant secondary ray shooting of ca.
1000 “short” rays at un-clamped cache locations.

Fig. 6.11 – Conservative VPL-clamping-bias compensation

Left: erroneous clamping compensation of the indirect lighting at selected cache locations
that were clamped during the lightcut computation, right: correct clamping compensation
computed at all cache records.

6 Implementation Details

6.1 Light-tree Construction

A light-tree is initially constructed over the sampled VPLs in a greedy bottom-up
fashion as in [WFA∗05]. We also tested a simple recursive top-down clustering,
which can be very efficiently computed (< 1 sec for 500,000 VPLs). However, it
results in poorer performance during rendering due to larger lightcut sizes arising
from less precise error bounds. The naive greedy bottom-up construction has
O(N3) time complexity and may take a few hours for clustering half a million
VPLs. To achieve a tree construction time-complexity of O(N logN) is non-
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trivial and requires several optimizations, which are analyzed and well-explained
in [WBKP08]. Since the constructed light-tree is in fact a bounding volume
hierarchy over point lights (VPLs), we also exploit it for efficient search queries
to find the k-nearest neighbor VPLs (see Section 5). The clustering is conservative
in a greedy sense and is computed in 5 to 30 seconds for 500,000 VPLs depending
on the scene.

6.2 VPL Occlusion Caching

Our cache computation and thus also the lightcut computation is very coherent
since we iterate over the spatially sorted eye samples rather than over pixels in the
image. This is particularly important as we access a large amount of data (light-
tree and VPLs, eye samples and cache records, the frame buffer and cache-splat
buffer), which might not always fit into the CPU caches. Furthermore, we can
also exploit this coherence during ray-shadow testing of clusters using a shadow
cache. Assuming that the distance between successively created cache records is
small with respect to the occluding primitive’s size and that neighboring cache
records evaluate similar light clusters during the lightcut computation, we can
cache the last occluder for each evaluated VPL. Since we would like to keep
the cache small and as there are usually too many VPLs, we map the index of a
cluster’s representative VPL to a hash index in a small hash-table, where we cache
the last occluder of the VPL. We set the size of the hash-table to a power of two
(e.g. 4096) in order to use a fast modulo hash-function via bit masking. Using
prime numbers for the table size of a “devision rest” hash-function is usually a
better choice in terms of hash collision [CLRS01]. In our tests however, it does not
perform better than simple power-of-two-modulo hashing (see red “cross-haired”
line in Fig. 6.12 left). Each successive shadow test for a VPL first checks the
last occluder stored in the hash-table. This results in early culling of expensive
shadow ray-traversals in the raytracing acceleration data structure for more than
25% of indirect shadow tests and more than 40% for direct light shadow tests for
all tested scenes with negligible computational overhead. Statistics for the cache
hit ratio computed from 40 frames of a walk-through in the apartment scene
are shown in Fig. 6.12. Note that the cache hit ratio depends strongly on cache
density and the “pixel-traversal” order. For direct light the hit ratio is higher
than for indirect light caching since the cache density is higher and the light tree
and lightcut sizes are smaller compared to the indirect light cache. The graphs
in Fig. 6.12 show that the hit ratio also increases with the distance of a cluster
and the elevation angle towards the cluster. This is reasonable as distant clusters
represent high levels in the light-tree and are spatially coherent in the lightcuts
of nearby cache records (more likely to be included in the lightcut) whereas the
distribution of nearby clusters or leaves in the lightcut varies more frequently
due to the lightcuts refinement procedure (see Section 2). The same holds for
the elevation angle of the direction towards the cluster. At grazing angles the
refinement of clusters is stopped at a higher level in the light-tree (due to the
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cosine term) than for clusters seen at small elevation angles. In other words, the
average hit ratio of shadow rays increases with increasing cluster coherence in the
lightcut, which is roughly inversely proportional to the form factor of the cluster
(the geometric term in the rendering equation), which the lightcut adapts to.
These observations can be used to further improve the efficiency of the proposed
occluder caching. For example we could reject all cache queries for short rays,
which are more likely to be unoccluded.
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Fig. 6.12 – Statistics for VPL occlusion caching

Graphs showing visibility cache statistics with respect to incident angle (left) and length
(right) of a shadow ray generated from 40 different frames in the apartment scene for
different occlusion cache sizes. The graphs show the statistics for only indirect lighting
(top) (550000 VPLs and 822 VPLs mean lightcut size) and only direct lighting (bottom)
(5000 VPLs and 261 VPLs mean lightcut size) computed with our radiance caching.
The colored curves show the successful hit ratio of cache occlusion hits to all shadow
ray tests, which also includes the case where a shadow ray is not occluded as a false hit.
The actual cache hit ratio of cache occlusion hits to all occluded shadow ray test is much
higher as shown by the thick black curve (> 50%, > 70% for indirect light, direct light
respectively).



150 Section 6: Implementation Details

6.3 Setting the Irradiance Cache Error

As in traditional irradiance caching [WRC88] the user sets the initial maximum
cache-interpolation error-threshold ak := ε, which is then adaptively refined if
discontinuities in the illumination are detected (see Section 4.1). An eye sample
at point p receives a contribution from an extrapolated cache record k if the error
1/wk(p) is smaller than ak.

1
wk(p)

< ak⇒ extrapolate. (6.37)

The weight wk(p) is computed as in Eq. 6.27. This however results in many eye
samples receiving only a contribution from one cache record, which is undesirable
for the adaptive cache refinement as we need at least 2 overlapping records in
order to detect discontinuities (see Section 4.2). In our implementation the user is
allowed to set the mean number of cache record contributions Nc per eye sample
and the maximum cache-interpolation error ε separately. Then, a new cache
record is computed at p only if:

1
∑k wk(p)

>
ε′

Nc
⇒ compute new record, (6.38)

where wk(p) > 1/ak with ak := ε′ = ε ·Nc. This modification still results in single
cache contributions close to the cache record’s location where the cache weight wk
is high. For most scenes setting Nc := 2 produces better results and moreover helps
to robustly detect lighting discontinuities of overlapping cache records, which is
needed for the adaptive cache splatting.

6.4 Shading Normals

Shading normals are a common way to hide discontinuities in the surface ori-
entation at polygon boundaries (interpolated vertex normals) and to fake high-
frequency geometric structure on otherwise flat surfaces (bump or normal map).
However, when using shading normals two problems arise in the context of global
illumination. First, a normal-perturbed surface can “generate” false energy, i.e.
it may reflect more energy than it receives [Vea97] if the surface area is virtually
decreased. Second, as the perturbed normals are no longer consistent with the ac-
tual surface, precise geometrical computations like for example visibility tests are
biased. This may appear in form of erroneous self-intersections and light-leaking.
This is particularly cumbersome for irradiance caching approaches, where the
cache density adapts to the harmonic mean or minimum distance to the near-
est occluder(s), which may result in very small distances due to self-intersections
when using the shading normal. Further, the BRDF for normal-perturbed sur-
faces is non-symmetric anymore, which means that in a bidirectional algorithm
light paths and eye path (importance transport) require different treatment. Trac-
ing light particles (VPLs) for example can increase the reflected energy arbitrarily
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on normal perturbed surfaces [Vea97] making early path termination problem-
atic and moreover increases the variance in the VPL’s energy. In order to prevent
those inconsistencies we always use the correct geometric surface normal for all
precise visibility computations involving ray shooting as for example the previ-
ously proposed clamping bias compensation with hemisphere sampling and the
particle (VPL) tracing. As we would like to capture the full hemispherical ra-
diance field all cache records are computed using the correct geometric surface
normal. Even though it is not always the best choice, we also use the geometric
surface normal for the computation of the cache weights in Eq. 6.276. Otherwise,
the cache density increases artificially on normal perturbed surfaces and worse,
holes may appear on artificially curved surfaces where the shading normal devi-
ates strongly from the geometric normal (see Fig. 6.13). The shading normal is
only used when the cache is complete and the final image radiance is computed,
i.e. when the records extrapolate their (ir)radiance coefficients to the eye sam-
ples, at which the local coordinate frame is aligned with the shading normal such
that the BRDF SH coefficients correspond to the desired shading normal.

Fig. 6.13 – Shading normals and radiance caching

Cache weighting with shading normals (left) can generate holes in the cache splat buffer
when geometric normals and shading normal differ significantly. Using the physically
correct geometric normal in the cache record computation as well as for the cache
weighting with subsequent SH radiance rotation (middle) avoids this problem and above
all, generates less records on normal perturbed surfaces. Right image shows the result
when ignoring shading normals.

6Alternatively, we could use the shading normal for the computation of the cache weights
in Eq. 6.27 for both, the cache record and the eye sample, which often produces better results
but increases the cache density in case of high-frequency bump-mapped surfaces.
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6.5 Walk-through Animations

Radiance caching is well-suited for walk-through animations since the previously
computed cache records can be reused in successive frames and only few cache
records need to be added from frame to frame. However, a few changes need
to be considered to prepare the algorithm for walk-throughs. First of all, to
avoid exhaustion of memory all cache records need to maintain an age indicating
the last frame the record contributed to. All records that did not contribute
to the last n frames are deleted at the end of each frame to make space for
new caches. Second, we can further exploit temporal coherence between frames
to compute perceptual visibility thresholds for each pixel. These can then be
reprojected and used in the next frame to detect discontinuities and steer the
adaptive cache splatting (see Section 4.2). For all feasible pixel reprojections
we use the computed visibility thresholds instead of the discontinuity thresholds
based on the Weber law [KBPv06].

The computation of the perceptual visibility thresholds is borrowed from the
well-established JPEG/MPEG compression standards [RW96]. Such a threshold
computation based on the discrete cosine transform (DCT) of (8×8) image blocks
can be very efficiently computed (ca. 60 ms for a 500× 500 pixels on a single
PC), which we describe in detail in Chapter 7. The user is able to set a scaling
parameter qscale (originally used in MPEG to adapt the quantization level to the
bandwidth of a channel) to define the quality of the overall cache interpolation.
Higher qscale values raise the visibility thresholds and increase the sensitivity to
luminance and contrast masking [HKMS08,RW96]. Setting qscale <= 4 computes
thresholds below the just-noticeable-difference thresholds and does not generate
noticeable artifacts in our tests. In contrast to the approach discussed later
in Chapter 7 we do not use the thresholds for the lightcut computation but only
for the discontinuity detection in the cache interpolation. An example for a frame
is shown in Fig. 6.14.

Fig. 6.14 – Warping frames in walk-through animations

(left) one frame from a camera walkthrough in the apartment scene computed with
lightcut caching for direct and indirect light, (middle) computed thresholds for qscale = 5,
(right) reprojected thresholds from previous frame (red color means no correspondance).
For visualization the thresholds are scaled by 32.
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7 Results

We compared our method with the lightcuts algorithm [WFA∗05], which com-
putes the radiance for each pixel and with photon mapping combined with ra-
diance caching [KBPv06]. To be fair all methods were integrated in the same
renderer using the same basic data structures and algorithms. The photon map-
ping implementation uses the same adaptive cache splatting procedure as for
our lightcuts caching, only the computation of the caches differs. The gradients
are computed numerically in a stratified manner [K0̌5b]. For precomputing the
BRDF hemispherical harmonics (HSH) coefficients and rotating the radiance HSH
coefficients we included the open source code provided by J. Křivánek [Web]. All
results were obtained on an AMD Athlon 64 (2.2 GHz) with 3 GByte of RAM.
In order to compare with the lightcuts algorithm we provide the numerical re-
sults in Table 6.1 without pixel super-sampling while we show antialiased images
in Fig. 6.15 using 4 super-samples per pixel. Since the eye-pass (raycasting the
framebuffer and storing eye samples) is the same for all methods it is not explic-
itly shown in Table 6.1. Although there are still small differences to the reference
computed with lightcuts [WFA∗05], the overall quality is high while the rendering
time is in the order of 20 to 100 seconds for computing a single image in high
quality. Interestingly, one can observe in Table 6.1 how the direct light masks
the indirect light during the cache computation. A good example is the diffuse
sibenik scene where the computation of direct plus indirect light is even more
efficient than solely computing the indirect lighting with our caching. The dis-
continuity detection and cache adaptation described in Section 4.2 takes about
0.2 to 0.5 seconds for 5 cache iterations and 5122 pixels for the tested scenes.

The knot scene is lit by high-frequency direct and indirect light casting sharp
shadows on glossy and diffuse surfaces. The kitchen and apartment scene
c©INRIA 2005 is challenging because it contains many light sources and small

objects and most surfaces are slightly glossy. Also the indirect light is very strong
and localized (e.g. above the chandelier) and photon mapping requires about
4000 final gather rays per cache record to avoid the otherwise distractable noise.
Compared to a path-traced reference, the result computed with photon mapping
is however slightly better than our result mainly due to the VPL clamping in
corners. We also computed two walk-through animations, one only with indirect
the other with global illumination, in the apartment scene consisting of 281
frames. Using the discernibility metric described in Section 6.5 with qscale = 4
instead of the Weber law with 2% luminance thresholds [KBPv06] reduces the
total number of indirect light records by 19% in this walk-through animation.
The icido scene is an example of difficult indirect lighting. Even with 5000 final
gather rays per cache record the photon mapping results are too noisy and prone
to artifacts. For this scene anisotropic caching pays off most and less cache records
are created around the light sources and in corners than for isotropic caching (see
Fig. 6.5).
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Fig. 6.15 – Result images with visual comparison for radiance cache splatting

Rendered images and peak-signal-to-noise-ratio (PSNR) for our method (lightcuts cache)
compared with lightcuts on a per-pixel basis and photonmapping with radiance caching.
The indirectly lit kitchen-view results are compared against an unbiased path-traced im-
age as reference (not shown).

8 Discussion and Future Work

Although our method seems superior in terms of robustness and efficiency of the
global illumination computation, it also has a few disadvantages when comparing
it with traditional photon mapping. While photon mapping is able to deal with
low-frequency caustics, yet on a high price, our method cannot handle any caustics
because photons stored on moderately glossy surfaces are treated like diffuse
VPLs. Extending the lightcuts algorithm to cluster VPLs on moderately glossy
surfaces and computing the upper error bounds by taking also into account the
BRDF at the clusters locations during the lightcut computation is left as future
work.

Second, the clamping of close VPLs results in bias in particular on glossy surfaces
near corners where only a few VPLs (in the BRDF lobe) have a very high contri-
bution to the pixel radiance. The clamping correction described in Section 5 can
always be applied but is computationally more expensive. However, also photon
mapping suffers from bias in corners due to noise and overestimation of photon
density since almost the same set of photons is queried by many final gather
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rays (see Fig. 6.16 left). Consequently, to produce high quality images, photon
mapping also requires secondary final gathering [JSCK02].

Fig. 6.16 – Visual comparison with unbiased path-tracing

Zoom into kitchen scene result of Fig. 6.15, left: photon mapping, (middle) lightcut
caching, (right) pathtracing.

Third, along sharp shadow boundaries cache records do not always reduce to a
pixel-sized footprint. Hence, shadow edges may appear slightly jaggy or washed
out. For high-quality direct lighting a smart algorithm should detect and separate
single point light and directional light sources and compute their contribution for
each pixel.

8.1 Visibility Gradients

One drawback of the proposed irradiance-gradient computation in Section 3.3
is the absence of visibility gradients (we simply assume the visibility gradients
are zero within a cache record’s footprint) since we only know the point to
point visibility). This results in errors in particular for the direct light gradi-
ents (see Fig. 6.17). While a stratified gradient computation as in [K0̌5b] should

Fig. 6.17 – Visibility gradients and radiance caching

Color-encoded gradient direction and corresponding anisotropic cache footprints where
color shows anisotropy, (left) stratified gradients can handle visibility, (right) our gradi-
ents fail in the presence of strong occlusions.

be feasible, it is not as trivial for irregular surface area sampling of VPLs as for
uniform solid-angle based sampling. Nevertheless, we can rearrange the computed
lightcut into a representation that is suitable for computing stratified gradients as
in [K0̌5b]. One possibility could be to project all VPL clusters of the computed
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lightcut onto the hemisphere of incident directions positioned at a cache record
and constructing a voronoi diagram where each uniform stratum of the subdi-
vided hemisphere is assigned to the nearest projected cluster point, storing the
cluster’s distance and the cluster’s (ir)radiance contribution, which is divided by
the number of strata the cluster covers. For the remaining steps of the stratified
gradient computation we can proceed the same way as in [K0̌5b]. Interestingly,
this way, directions with high contribution (i.e. small number of strata covered
by the cluster projection) are more accurately sampled whereas other “less im-
portant” directions are more coarsely sampled in the gradient computation.

8.2 Lightcut Visibility Evaluation

Lightcuts is a local algorithm designed for ray-tracing applications on the CPU
and is therefore not well suited for current GPUs. Its main bottleneck so far is
the evaluation of the visibility function between the light clusters and each eye
sample. However, one can observe that the cluster refinement and traversal in
the upper parts of the light tree globally affects the whole image in contrast to
the lower levels of the tree where the lighting is computed sparsely on a local
basis. For example all pixels need to perform a shadow test for the root node and
the next 3 depth layers (i.e. 24− 1 clusters) in the indirect light tree as shown
in Fig. 6.18. Further, the number of eye samples evaluated for a specific cluster
is monotonically decreasing with the depth in the light tree (see Fig. 6.18).

These observations suggest to combine global visibility computation for clusters in
the upper light tree using for example shadow maps and local visibility updates
for clusters/leaves in the lower light tree. To generate shadow maps we can
make efficient use of the GPU whereas for local visibility evaluations we stick to
raytracing (on the CPU). The question that remains is how to merge the two
methods.

Let us introduce a cost function that chooses the “best” visibility algorithm for
each cluster considering the whole image. By exploiting temporal coherence be-
tween successive frames we can use the recorded statistics from the previous frame
of how many pixels evaluated a particular cluster in the light tree. Based on the
number of pixels that evaluated the visibility for a cluster in the previous frame,
a binary cost function decides whether to use raytracing in the sub-tree or to
continue generating a shadow map for all pixels of the current frame. This pro-
cess continues until we have found a cut through the light tree where all clusters
below should be further computed locally via raytracing.

The decision function β that decides when it becomes more efficient to use ray-
tracing in a sub-tree should take into account the complexity of the scene (i.e.
number of geometric primitives) Nprim and the expected number of pixels Npix to
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Fig. 6.18 – Statistics for visibility evaluations in lightcuts

Mean and standard deviation of visibility evaluations for cluster nodes in percent (over
all computed cache records) with respect to depth in the light tree for 2 different view
points in the Apartment scene (first row), e.g. 0.5 at depth 8 means that on average
only half of the cluster nodes with depth 8 in the light tree needed to evaluate the vis-
ibility where, depending on the camera view, different nodes with the same depth were
evaluated more or less frequently as indicated by the standard deviation. The graph on
the left is the result for a view showing almost the entire scene. The right graph corre-
sponds to a close-up view showing only a small fraction of the scene. The indirect light
tree contains 550000 VPLs and the direct light tree 10000 VPLs. The mean lightcut size
is 752 clusters and 263 clusters for indirect light records and direct light records respec-
tively (using a 1% error threshold).
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evaluate for a cluster Cl.

β(Cl) =

{
true, CRT (Nprim,Npix(Cl))

CSM(Nprim) < 1
false, otherwise.

(6.39)

where we define the shadow mapping cost as CSM(Nprim) = a ·Nprim (neglecting the
dependence on shadow map resolution and shadow testing) and the ray tracing
cost as CRT (Nprim,Npix(Cl)) = b · log(Nprim) ·Npix(Cl), with the ratio δ := a/b to be
either set and tuned by the user or determined automatically by initial measure-
ments. Since Npix(Cl) is monotonically decreasing, the function β is monotonically
increasing and we can stop evaluations of β in sub-trees where β(LC) = true.

Another advantage of using shadow maps in the upper light tree is that we can
compute gradients of the visibility function for all most significant light contri-
butions in the computed lightcut.

8.3 Efficiency of Radiance Caching

Radiance caching works well on moderately glossy surfaces with a relatively small
curvature. However, on highly curved and glossy surfaces radiance caching can
become sub-optimal since cache records are densely spaced and need higher or-
der spherical harmonics coefficients to faithfully reproduce the reflected lighting,
which in turn increases memory and computational overhead. Also, for aligning
the local coordinate frames of overlapping cache footprints on curved surfaces, a
spherical harmonics rotation needs to be performed for each contributing cache
record at each eye sample. The proposed approximative SH rotation [K0̌5b] is
limited to small rotation angles and further increases the error on surfaces with
high curvature. On the other hand, due to the lightcuts algorithm, the compu-
tation of the global illumination is relatively cheap compared with traditional
approaches [KGPB05,WH92] and we can afford a higher cache density on curved
surfaces. However, because our radiance caching is view-independent, on glossy
surfaces we loose the advantage of lightcuts to automatically adapt to material
properties of a surface. In other words, it means that the glossier the surface
the more expensive is the computation and the memory consumption of a cache
record in contrast to the per-pixel lightcuts algorithm. Hence, the question is
when is radiance caching still beneficial and when is it better to perform pixel-
exact computations without caching (or with radiance interpolation in screen
space, see reconstruction cuts [WFA∗05]).
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8.4 Rotational Gradient versus SH Coefficient Rotation

The approximative (hemi-)spherical harmonics (SH) rotation proposed in [K0̌5a]
significantly improves the performance of the final radiance cache interpolation
without noticeable errors. However, even if it is more efficient than traditional
SH rotation approaches (quadratic instead of cubic complexity), it still involves
complex computations for each cache record to eye sample splat, which can be
considerable for high-resolution images with dense pixel super-sampling, in par-
ticular that we would like to keep the caching algorithm’s complexity relatively
independent of the image resolution. On the other hand, the approximative SH
rotation [K0̌5a] can also be thought off as a higher order interpolation with ro-
tational gradients. Rotational gradients are computed “almost for free” in our
algorithm, but are less precise for larger local coordinate rotations. However,
even with rotational SH radiance gradients we would need to align the local co-
ordinate frames, which would at least require a SH rotation around the surface
normal.

For simple BRDF models, such as the Phong model, the shape of the BRDF
lobe is invariant under view rotations. Therefore, we can rotate the BRDF SH
coefficients instead of the radiance SH coefficients and avoid storing the BRDF SH
coefficients for each discrete viewing direction. Or, because spherical harmonics
are rotational invariant, another more efficient way would be to simply rotate the
view vector at the eye sample into the local coordinate frame at each contributing
cache record and looking up the corresponding BRDF SH coefficients. The final
pixel radiance is computed by summing all individual contributions for each cache
record to eye sample pair. Hence, an expensive rotation of the cached radiance SH
coefficients to the local coordinate frame at the eye sample becomes redundant.
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Method Nc a‖/a⊥ a (converged) FGRs Tlight T∫ Tcache ∑T

K
n
o
t

PM 12479(0%) –/0.9 –/0.35 3000(48) 3.4 328 1.0 331

LCache 10177(0%) –/1.0 –/0.33 –/678 3.1+8.3 26 0.7 28

LCacheIso 34309(69%) 1.0/1.0 0.09/0.32 77/679 3.2+8.4 33 1.5 36

LCache 33231(70%) 0.86/1.0 0.08/0.31 76/658 3.2+8.4 30 1.2 32

LC – – – 193 3.2+8.4 – – 235

Nprim = 2936, NV = 405,000, Nglossy = 43%, ε = 0.1/0.4, µ = 2.0

S
ib

en
ik

PM 34467(0%) –/1.0 –/0.25 3000(30) 17.5 4697 2.0 4701

LCache 35944(0%) –/0.93 –/0.25 –/886 17.5+49 107 2.2 111

LCache 109518(71%) 0.74/0.65 0.09/0.24 123/600 7.5+50 94 3.3 98

LC – – – 279 7.4+50 – – 522

Nprim = 80394, NV = 560,000, Nglossy = 0%, ε = 0.1/0.25, µ = 1.3

K
it

ch
en

PM 15452(0%) –/1.2 –/0.37 3000(29) 7.8 2686 5.0 2695

LCache 15113(0%) –/1.1 –/0.36 –/679 15.1+93 33 0.8 35

LCache 39510(67%) 1.12/1.02 0.09/0.35 179/595 7.5+96 42 0.9 45

LC – – – 279 7.4+96 – – 608

Nprim = 72365, NV = 600,000, Nglossy = 28%, ε = 0.1/0.4, µ = 1.3

Ic
id

o

PM 14613(0%) –/1.3 –/0.26 5000(35) 8.9 2001 7.6 2010

LCache 18063(0%) –/1.3 –/0.29 –/493 8.6+34 19 4.2 24

LCacheIso 38991(69%) 1.0/1.0 0.08/0.30 149/385 4.1+34 21 8.9 31

LCache 36520(69%) 0.65/1.1 0.08/0.30 150/381 4.1+34 23 4.7 29

LC – – – 260 4.1+34 – – 291

Nprim = 199835, NV = 515,000, Nglossy = 10%, ε = 0.1/0.4, µ = 1.3

A
p

a
rt
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t

PM 20996(0%) –/1.08 –/0.38 4000(25) 7.8 1189 1.1 1193

LCache 18063(0%) –/1.09 –/0.37 –/851 15+92 61 0.8 63

LCache 45661(67%) 0.92/1.02 0.1/0.37 263/798 7.5+96 79 1.5 82

LC – – – 260 7.4+96 – – 467

LCwalk 3325(65%) 1.1/1.5 0.08/0.27 148/738 (7.3+95) 12 4.7 18

LCwalk 1237(0%) –/1.6 –/0.26 –/826 (15+92) 10 3.0 14

Nprim = 72365, NV = 600,000, Nglossy = 62%, ε = 0.1/0.4, µ = 1.3

Table 6.1 – Statistics for radiance cache splatting

Statistics and computation times (in seconds) for the rendering with our algorithm and
isotropic cache splatting (LCacheIso), anisotropic cache splatting (LCache) , lightcuts
(LC) with 2% error threshold, and photonmapping with radiance caching (PM) for 5
scenes shown in Fig. 6.15 and Fig. 6.8. For the walk-through (LCwalk, 281 frames)
computed with LCache the statistics for the average frame are shown. Image resolu-
tion is 512× 512 pixels. Nc is the number of computed cache records, the fraction of di-
rect light records is shown in percent.

a‖
a⊥

is the mean anisotropy of the converged cache
records for direct/indirect light, column FGR shows the average lightcut size for direc-
t/indirect light or in the case of photon mapping the number of final gather rays and
average found nearest neighbor photons, a is the average converged cache error for di-
rect/indirect light in percent, Tlight is the time for the light pass including photon shoot-
ing plus light-tree construction, T∫ is the cache computation time, Tcache is the time for
cache splatting, T∑ is the total rendering time without the initial Tlight . Nprim is the num-
ber of scene primitives, NV is the number of VPLs/photons, Nglossy is the fraction of
glossy cache records, which is approximately the same for all methods, ε is the global
cache error for direct/indirect light (initial a), and µ is the initial anisotropy scaling pa-
rameter.
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Render2mpeg: A Perception-Based Frame-
work Towards Integrating Rendering and
Video Compression

1 Introduction

In this chapter we propose a framework combining realistic rendering and MPEG
video compression. Our rendering is based on the instant global illumination
algorithm [Kel97,WKB∗02] combined with the lightcuts data structure [WFA∗05,
WABG06], which we have introduced in the previous chapter (see Chapter 6).
We extend these techniques to take advantage of temporal coherence between
subsequent frames. The rendering quality is guided by a DCT-based quality
metric, which maintains the rendering errors below the visibility level imposed by
the quantization errors. At the same time the quantization errors are adapted to
local image content to make the compression errors uniformly perceivable across
the image space. Our prototype system shows many advantages of combining
rendering and compression into a unified framework such as faster rendering and
reduction of temporal artifacts.

A server-based platform with the client access through the Internet becomes a
very attractive approach to access and interact with 3D graphics. To reduce
the dependence on restricted computational capabilities on the client side and
to simplify handling the diversity of client devices, the server can render images
and stream them to the client side using a standard video compression technique.
This way the client does not require any support for rendering and a standard
web browser may be sufficient for video playback and backward interaction with
a 3D model on the server. This is in particular important for applications that
require huge 3D data, which cannot be handled by thin clients such as smart
phones, PDAs, or even laptops. In such a scenario the 3D data is stored in one
reliable place (possibly with guaranteed full-time access) and does not have to be
transmitted to the client, which improves interaction and simplifies control over
confidential data. This also ensures that in applications involving collaborative
work all users always deal with the same, fully updated 3D models.

Such client-server graphics platforms are available on the market, e.g., Reality-
Server developed by the mental images, Inc. company. The range of possible
applications for such systems can be such diverse as: remote access to 3D data
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(e.g., for maintenance and repair purposes), industrial and architectural design,
3D navigation and tourism, interactive online (mobile) entertainment, and oth-
ers. Such a client-server architecture can also be attractive in medical applications
requiring 3D visualization and data access at any time and location.

To make such solutions practical and reduce the required bandwidth for video
streaming, the MPEG and Motion JPEG encoding standards are used. However,
in existing solutions the compression step is completely independent from the
preceding rendering step. In this work, we demonstrate that by closer coupling
of these two steps the computation redundancy can be reduced and the rendering
quality can be well matched to the video quality, so the benefits of such coupling
can be mutual.

The most obvious benefits come from the use of motion compensation vectors
which, at the rendering stage, are inexpensive to derive for every pixel with very
high accuracy [MB95]. On the compression side, this eliminates costly search
for motion compensation vectors for pixel blocks [WKC94], which is one of the
major bottlenecks in video encoding. Also, erroneous motion vectors due to ap-
proximate search algorithms are eliminated and variable block-size motion com-
pensation [Bov05, Chapter 6.5] does not introduce any significant computational
overhead. On the rendering side, pixel-level motion compensation enables pixel
shading re-computation for consistent scene sample points tracked for subsequent
frames, which reduces temporal aliasing in particular for textured regions. Mo-
tion compensation can be used for proper simulation of camera shutter speed
and resulting motion blur [HDMS03] as well as filtering in temporal domain. All
these techniques suppress temporal rendering artifacts, which otherwise cannot
be distinguished from image features by the encoder and are reproduced in video
at expense of extra bandwidth [BG00].

In this work our focus is on the rendering accuracy control. It is current practice
that frames are rendered with many details that are later discarded due to lossy
video compression. This means that the rendering quality can often be reduced
without affecting the final video quality, which may lead to faster rendering,
which is important in interactive applications. In MPEG compression the video
quality is controlled through varying the quantization of discrete cosine transform
(DCT) coefficients (used for a pixel block representation), which effectively leads
to the information loss. A good match between the compressed and rendered
image quality can be achieved by imposing a stopping condition on rendering,
such that further computation cannot contribute to visible pixel changes as they
would be eliminated by the quantization anyway. This can be facilitated by using
the DCT pixel block representation both at the rendering and compression stages
[BM95]. Also, such a DCT representation enables an inexpensive incorporation of
a perceptual image quality metric to rendering, which can additionally adapt the
quantization error to the image content by modeling important characteristics
of the human visual system (HVS) such as contrast sensitivity, luminance and
contrast masking [FPSG97,BM98,WPG02].
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However, our goal is quite different from previous work on perceptual rendering,
because we accept visible quality degradation under the condition that similar
degradation is introduced by the following lossy video compression. Thus, we
intend to adaptively control the rendering quality to make it synchronized with
the available bandwidth (effectively the quantization error), which is important
in Internet applications where the quality of services (QoS) is not guaranteed.

In contrast to previous work on perception-based rendering, we do not struggle
with proper estimation of scene lighting as required to account for local luminance
adaptation and visual masking. This is a typical “chicken-and-egg” problem,
where the lighting knowledge is required to take the full advantage of the visual
model, which is actually supposed to steer the lighting computation. In our
approach, by taking into account the frame-to-frame coherence in lighting, we
obtain a good prediction of the lighting distribution in the subsequent frame,
whose computation is steered by our visual model.

We briefly summarize our system in Section 2 and then outline the extensions of
the lightcuts and instant radiosity techniques to fit them into our Render2MPEG
framework in Section 3. In Section 4 we introduce a perceptual model, which we
use to steer the global illumination computation. In Section 5 we present results
obtained using our techniques. Finally, we suggest directions of future research.

2 Algorithm Overview

In the following we briefly describe the whole system, which is sketched in Fig. 7.1.
Our renderer is based on the lightcuts algorithm [WFA∗05, WABG06], which
we introduced in Chapter 6 because it is about one to two orders of mag-
nitude more efficient than equivalent final gathering approach based on pho-
ton mapping [Chr99, Jen01, KGPB05]. Nonetheless, per pixel computation is
still too costly for efficient rendering in particular for higher resolution images.
Therefore, we exploit the spatial coherence of the indirect illumination. In con-
trast to the interpolation of pixel radiance as proposed in the reconstruction
cuts [WFA∗05], we favor irradiance interpolation of the incident lighting in ob-
ject space [WRC88,KGPB05]. This decouples the interpolation from the surface
material and prevents interpolation errors for high-frequency textures and surface
boundaries. Since irradiance caching works only robustly for smooth lighting, we
separate the high-frequency lighting components. A common way is to compute
direct and indirect light separately since direct lights mostly influence the whole
image whereas the weaker indirect lights often have only local impact on the
rendered image. Therefore, we compute for all pixels direct lighting as well as
dynamic indirect lighting using standard instant radiosity techniques [Kel97] with
shadow mapping. We generate parabolic shadow maps on the GPU and use them
for per pixel accurate lighting computations.
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Summarizing, our system works as follows: First, a uniform grid is updated for all
dynamic objects, which is used as raytracing acceleration data structure. Next,
photons are traced through the scene splatting their energy to a fixed set of vir-
tual point lights (VPLs), which we refer to as anchor lights. In the case of the first
frame we construct a light tree over the anchor lights as described in Section 3.1.
Otherwise all internal nodes in the tree are updated as described in Section 3.1.1.
Then we shoot all primary (eye) rays for the current frame using packet raytrac-
ing [WKB∗02] for 16×16 rays corresponding to one MPEG macro-block and find
correspondences in the previous frame by backward reprojection. This way we
can fill our error-threshold map with the previously computed visibility thresholds
as explained in Section 4.3, which are then used to control the accuracy of the
global illumination computation for the current frame. After computing direct
and dynamic indirect lighting for each pixel using shadow maps, we compute the
indirect lighting based on irradiance caching. Note that our error-threshold map
is intended to steer the lightcuts computation on a per pixel basis. However, when
using irradiance caching a cache sample influences a large neighborhood of pixels,
which are likely to have a different rendering error-threshold. As a remedy, we
filter the error threshold for a cache by averaging the tolerable rendering errors
over the cache’s footprint in image space. For weighting the error thresholds we
use a Gaussian filter kernel. Finally, we compute the new error threshold map as
described in Section 4.2, which is then used for the next frame.

 Update dynamic object data

Photon tracing + update VPL energy

Construct light-treefirst frame?

Update energy in light-tree 
clusters

Restructure light-tree

Shoot camera rays

Reproject pixel-samples and  fill 
error-threshold map

Compute direct + dynamic indirect 
illumination

Compute indirect illumination via 
irradiance caching with lightcuts

Compute error thresholds
(Figure 3.3)

yes

no

Fig. 7.1 – Pipeline of render2mpeg

Flow in the rendering pipeline for computing one frame.
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3 Temporally Coherent Lighting Computation

Although temporally coherent global illumination is not the main focus of this
work, for efficient video coding and motion compensation on MPEG side, we
favor spatially and temporally coherent illumination in contrast to unbiased solu-
tions [RPG99,BM98,BM95], which trade bias for high-frequency noise. Note that
noise is well preserved in the DCT-based MPEG compression and leads to undesir-
able bandwidth expansion [BG00]. We chose a hierarchical version of instant ra-
diosity [Kel97] based on lightcuts [WFA∗05] because lightcuts is a pixel-adaptive,
scalable global-illumination algorithm and perhaps more importantly, it allows us
to control the computation by a perceptual rendering error. However, the original
lightcuts algorithm has been developed for rendering still images [WFA∗05]. In
the temporal domain only short time intervals have been considered to model the
effect of motion blur [WABG06]. In Chapter 6 we already introduces a version of
lightcuts for walk-through animations in static scenes. However, in order to sup-
port longer animation sequences with fully dynamic scenes, we extend lightcuts
into the temporal domain. This imposes several constraints to the algorithm in
order to suppress temporal noise:

• A constant number of virtual point light sources (VPLs) in the scene are
considered for the whole animation sequence.

• VPLs are sampled uniformly across the scene surfaces and their positions
are fixed (similar to the anchor [SKDM05] and gather [HPB06] samples).
We call those VPLs anchor lights.

• Only VPL intensities are updated from frame to frame using coherent pho-
ton splatting.

• The light hierarchy, which is built on top of the VPLs as in [WFA∗05], is
not rebuilt but only updated from frame to frame.

During computation of the pixel radiance only a small fraction of anchor lights is
evaluated per pixel, which are chosen adaptively by computing a cut in the light
hierarchy. While this lightcut is computed as in [WFA∗05], the pixel error thresh-
olds that determine the cut size adapt to the HVS and the quantization error im-
posed by MPEG. For details about the computation of the lightcut see Section 2
in Chapter 6.
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3.1 Construction of a Light Hierarchy

As already discussed in Chapter 6, for the original lightcuts algorithm [WFA∗05],
the light hierarchy is constructed only once using a costly greedy bottom-up
construction to cluster any two virtual point lights (VPLs) at a time that min-
imize a cost function (e.g., volume of associated bounding box and bounding
cone weighted by their summed energy). See [WFA∗05] for more details. An
alternative approach using a recursive top-down construction of the point-light
hierarchy is much more efficient and easier to implement but, according to our
experiments, decreases the rendering performance by ca. 3% – 15% due to larger
lightcuts arising from less precise error bounds. For the dynamic case, we need
to be able to reconstruct and update the hierarchy efficiently. This is feasible
since we assume lighting and scene geometry is temporally coherent such that
only little changes in the hierarchy have to be made per frame. Besides, it is
desirable to keep the lighting temporally coherent since this reduces flickering,
which increases also the efficiency of the MPEG compression. As in [WFA∗05]
a cluster node in the light hierarchy has two children and shares the geometric
properties with one child node, the representative child. The representative child
is always chosen stochastically with the probability proportional to the relative
light source intensity. This is important because it ensures that the induced
rendering errors of individual clusters are uncorrelated and do not accumulate
(see Fig. 7.7b). Because VPLs on dynamic objects violate our assumptions about
temporally coherent lighting, they are not inserted into the light hierarchy but
are handled separately as in standard instant radiosity [WKB∗02,Kel97].

3.1.1 Updating the Light Hierarchy

At first, the intensity of all anchor lights at the leaf level of the hierarchy is
updated by photon density estimation. In order to maintain temporal coherence,
the raytraced photon paths are regenerated for successive frames using the same
Halton number sequence when performing the random walk, i.e., in the case of
only static objects no lighting changes will appear. Even in the dynamic case
the energy of most anchor lights changes smoothly in time and abrupt lighting
changes are rather of local nature. Therefore updates in the light tree structure
and intensity affect mostly the lower levels in the tree and propagate slowly up the
hierarchy, which further suppresses temporal noise in the radiance computation.
Although changes in the light hierarchy are minor between successive frames,
they may accumulate in the long run and eventually require a reconstruction of
the entire hierarchy. Since higher levels in the light tree keep the sum of the
intensities of their sub-trees, intensity changes in the anchor lights at the leaf
level are simply propagated up to the cluster nodes of the hierarchy.

In the original lightcuts approach, the tree is built such that the VPL with highest
energy is most likely to be at the top of the hierarchy, which cannot be ensured
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if we keep the tree static. In case of occlusion, e.g., a dynamic object moves in
front of a cluster’s representative anchor light, the corresponding node should
descent the hierarchy according to the tree construction metric [WFA∗05]. To
model this behavior, we swap the two children of a node in the light tree if
the intensity ratio of representative child to non-representative child is smaller
than a threshold (CI = 0.7), thus changing the representative/non-representative
relationship of parent and child nodes. Only pointers to the representative child
and anchor light need to be updated in a bottom-up manner. Therefore the
overall tree structure is kept static and updating the tree becomes very efficient
since the tree continuously reorganizes itself over time.

4 Rendering Accuracy Control

Aligning the rendering errors with the compression errors as imposed by the
bandwidth of a given video streaming channel is an important goal of our Ren-
der2MPEG framework. A simple strategy is to keep the rendering errors below
the quantization error imposed by the only lossy operation in video encoding: the
quantization of DCT coefficients. For the 1D case this is illustrated in Fig. 7.2.
Such a quantization error is determined for each DCT basis function used to
represent pixel values in 8× 8 pixel blocks. For a given video-stream bandwidth
controlled by the value of the qscale parameter, the quantization error amounts
to the product of qscale · qi j, where qi j are predefined coefficients in the 8× 8
quantization matrix Q. In our current implementation we always use the default
quantization matrix Q for intra-frame coded blocks as specified in the MPEG-2
standard (ISO/IEC 13818) [MPE] and we let the user set qscale.

While the matrix Q takes into account the contrast sensitivity function (CSF)
attributed to the HVS (see Fig. 2.6), it does not adapt the quantization error
to the frame’s local content. It is well known that the quantization errors are
less visible in cluttered image regions due to visual masking, which decreases
the sensitivity for image details [BM95, FPSG97]. Also, the visual sensitivity
in terms of detection of absolute luminance thresholds reduces in bright image
regions due to luminance masking [Dal93]. We model these effects locally for each
block, and we incorporate elevated sensitivity thresholds due to masking into the
quantization error qscale · qi j. This enables even more aggressive rendering. Note
that while qscale is a convenient parameter to control the compression bandwidth,
it correlates poorly with the optimum visual quality that can be achieved at a
given bit rate [Wat93].

This section is organized as follows. In Section 4.1 we present the derivation of
quantization error with incorporated masking effects. In Section 4.2 we describe
our approach to transform the resulting quantization error from the frequency
domain into the spatial domain as required by our renderer. Obviously, the most
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Fig. 7.2 – Quantization-dependent tolerable rendering error

An example showing the maximum possible rendering error ∆ f for a 1D signal f that
leads to exactly the same result f̃ after compression with quantization table Q.

reliable estimate of quantization errors can be achieved when the image content
is fully known. For this reason we apply the visual model to the previously com-
puted frames in order to predict the quantization error to be used in the current
frame rendering. We discuss various strategies of transferring the quantization
error from frame to frame in Section 4.3.

4.1 Luminance and Contrast Masking Model

The visual model used by us to predict luminance and spatial masking is inspired
by research in image and video compression [Wat93, ZDL00]. The luminance
masking model as proposed in [Wat93] requires luminance values, which are de-
pendent on the particular display characteristics such as the luminance range
and gamma correction. Since the masking model needs to consider observed lu-
minance of pixels on a particular display device, we have to consider the γ of such
display (e.g. γ = 2.0) before applying the luminance masking model to our DCT
coefficients. Since the luminance masking model proposed in [Wat93] is a simple
power function, the display gamma is easily accounted for by multiplying γ with
the luminance masking exponent (0.649) [Wat93].

tk
i j = qi j ·

(
ck

00
c̄00

)γ·0.649

, (7.1)
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where ck
00 denotes the DC coefficient of block k and c̄00 the average DC coefficient

of all blocks. Intuitively, this luminance masking model increases the threshold
of tolerable quantization errors qi j for brighter image regions and decreases in
darker regions as predicted by the Weber’s law.

Then, we estimate the tolerable elevation of quantization error mk
i j due to contrast

masking [Wat93] as:

mk
i j = tk

i j ·max

1,

∣∣∣∣∣ck
i j

tk
i j

∣∣∣∣∣
0.7
 , (7.2)

where ck
i j denotes the i j-th DCT coefficient of block k. Following [Wat93] we

ignore contrast masking for the DC coefficient ck
00, i.e., we assume that mk

00 = tk
00.

Intuitively, this contrast masking model increases the threshold of a tolerable
quantization error for regions with high contrast patterns of a spatial frequency
represented by the given coefficient ck

i j.

The localized quantization error mk
i j can be used to control rendering accuracy

for each block in order to make the distribution of the perceptual error uniform
across all blocks of the image. Note that at the compression stage we could also
use the localized quantization error mk

i j to modify the matrix Q for each block as
proposed in [RW96], but at present optimizing video bandwidth is less important
than speeding up rendering.

4.2 Maximum Tolerable Error in Rendering

From the rendering perspective the localized quantization error mk
i j derived in

Eq. 7.2 expresses the maximum tolerable rendering error as imposed by the quan-
tization matrix and the local masking effects. This error must be then re-scaled
by qscale to mirror the user-imposed compression bandwidth. Since each block k
is quantized by dividing all its coefficients ck

i j by mk
i j · qscale and rounding to the

nearest integer, the maximum possible quantization error is 1
2 ·mk

i j ·qscale. By ex-
ploiting the linearity property of the DCT transform and preserving the polarity
of DCT coefficients using the sign(ck

i j) function, we can conservatively construct
the worst case distorted frame with DCT coefficients ĉk

i j by adding the maximum
possible quantization error to the original frame:

ĉk
i j =

{ 1
2sign(ck

i j) · qscale ·min
i j

(qi j) if ck
i j < 1

2 qi j · qscale

ck
i j + 1

2sign(ck
i j) · qscale ·mk

i j otherwise,
(7.3)

which after compression should be visually equivalent to the original frame (ck
i j)

when both are compressed with the same qscale value.

When computing ĉk
i j for the coefficients ck

i j that do not vanish as the result of
lossy compression (case 2 in Eq. 7.3), the quantization error including the mask-
ing effects are considered. However, the signal represented by the remaining
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ck
i j coefficients (case 1 in Eq. 7.3) is removed from the compressed image (i.e.

c̃k
i j = 0) and therefore contrast masking for the corresponding frequencies as pre-

dicted by Eq. 7.2 is not valid. In this case, even considering only the quantization
error resulting purely from the MPEG compression (i.e. ĉk

i j := 1
2 qi j · qscale) may

lead to overestimated errors and reduced rendering quality for higher qscale values.
Since the largest quantization errors qi j are assigned to high frequency coefficients
(which usually vanish as the result of lossy compression), they tend to dominate
in the tolerable rendering error estimate. Because this error estimate is finally
used as upper bound for the rendering error in the spatial domain (see Fig. 7.3),
its spatial frequency selectivity inherent for the DCT domain is lost. Conse-
quently, such high quantization errors may also contribute to excessive tolerance
for errors in the lower frequency signals (higher eye sensitivity), which leads to
visible image distortions. Note that low-frequency quantization errors may also
generate high-frequency rendering errors, which is less critical since quantization
errors increase for higher frequencies. One solution is to leave those coefficients
that are invisible after quantization unaltered [WPG02]. However, such approach
does not scale well with higher qscale values where most frequencies are removed
from the signal. Therefore, we set those coefficients to the minimum quantiza-
tion for AC coefficients (min(qi j) = 16), which is adaptively tuned to the current
video bandwidth by the qscale multiplier. Although this approach may still be
too conservative, it produces good results in terms of rendering efficiency and
robustness.

After performing the inverse DCT on ĉk
i j and inverse tone-mapping to get the

distorted luminance Ŷxy for every pixel (x,y), we compute the maximum tolerable
pixel errors exy:

exy = max(0.02 ·Yxy, |Ŷxy−Yxy|). (7.4)

as the absolute difference between the luminance Yxy of the original undistorted
pixel and Ŷxy. In order to avoid too small error thresholds, we clamp the re-
sult at a “perceptually conservative” lower bound of 2% of the pixel’s luminance
Yxy [WFA∗05].

The error exy can change from frame to frame as a function of image content, but
also can be affected by variable network bandwidth. In the following section we
discuss temporal aspects of handling exy.
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Fig. 7.3 – 1D Plot of rendering error, absolute error thresholds, and image signal
along a scanline

Right image: pixel luminance (black), our imposed error thresholds (red), and actual
rendering errors (green) along a scanline in the left image (green line).

4.3 Temporal Handling of Tolerable Rendering Error

In this section we discuss the problem of re-using the maximum tolerable error
exy from the previous frames to steer the current frame computation. Another
important issue is temporal coherence of the error between subsequent frames,
which is necessary to reduce video flickering. Such temporal coherence is improved
by blending the tolerable error between previous (t − 1) and current frame t,
such that the blending weights fall-off exponentially for older frames. The final
rendering error-thresholds that are then stored in the threshold map are computed
as:

∆Yxy(t) =
{

exy if (x,y) 6 7→ (x′,y′)
(1−w)exy + w∆Yx′y′(t−1) otherwise,

(7.5)

where the mapping (x,y) 7→ (x′,y′) to the corresponding error threshold in the
previous frame is obtained through back-projecting the current frame’s pixel sam-
ple (effectively the camera and object motion compensation is performed). See
Fig. 6.14 for example. When occluded/disoccluded/non-existing region in frame
(t−1) is identified by the backprojection (case (x,y) 6 7→ (x′,y′)) then we simply use
the error exy estimated for frame t. The blending weight w is a trade-off between
temporal coherence and error propagation. When using a larger blending weight
our error thresholds can become less accurate for successive frames while lighting
errors are kept coherent and vice versa. We set w = 0.5 which, according to our
tests, does not seem to bias the error in our threshold map for future frames.

The resulting error thresholds ∆Yxy(t + 1) are then used for the future frame
(t + 1) to decide upon the stopping condition in the lightcut computation: if
the maximum upper error bound of all clusters in the pixel’s current lightcut
is below our error threshold or the lightcut size exceeds a maximum of 1,000
clusters, we stop refining the lightcut. The lightcut is computed as in [WFA∗05]
using a priority queue. A lightcut sample for one pixel with 3% error threshold
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is shown in Fig. 7.7b. Error thresholds and actual lightcut rendering-errors for
a scanline are visualized in Fig. 7.3. Note that rendering errors (green curve)
alternate around zero but are coherent for neighboring pixels with similar error
threshold.

The entire flow of the threshold computation is shown in Fig. 7.4.
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Fig. 7.4 – Flow chart for computing error thresholds in render2mpeg

The computation flow for deriving error thresholds ∆Yxy(t) for all pixels (x,y) in the
frame computed at time t. ∆Yxy(t + 1) is used to steer rendering of the subsequent frame
at time (t + 1).

We applied the processing flow as shown in Fig. 7.4 to two basic strategies of
the error handling with respect to the previous frames:

1. Quantization-dependent masking without motion compensation.

2. Quantization-independent masking with motion compensation.

The first case means applying the masking model in Eq. 7.1 and Eq. 7.2 to
the quantized DCT coefficients c̃k

i j, thus also considering quantization errors in
the masking prediction, which results in more relaxed rendering errors. This is
because quantization errors in the final image such as blocking artifacts are also
included in the contrast masking. This approach is only valid for scenes with
slow camera and object motions where block boundaries from the previous frame
are aligned with blocks in the current frame.

The second approach is more conservative when computing the error thresholds
at the expense of having smaller rendering errors in particular for higher MPEG
compression settings, where masking due to quantization dominates. In this
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case the DCT coefficients ck
i j are directly used to predict masking as it is shown

in Eq. 7.1 and Eq. 7.2. Motion compensation helps in aligning masking with image
details and even significant motion of camera and rigid objects can be successfully
handled. The same motion compensation procedure as between frames (t − 1)
and (t) is now applied to frames (t) and (t + 1). For pixels that do not find
a feasible sample in the four nearest neighbor pixels of the previous frame, a
maximum relative rendering error of 2% is assumed. A pixel sample is assumed
to be feasible if its pixel depth and surface normal are similar. An example of
motion compensated thresholds is shown in Fig. 6.14.

5 Results

We have tested our framework on 4 scenes with different lighting, frequency
content, and complexity. For visualization and validation purposes the results
of the conference scene, shown in Fig. 7.5, are computed at a per pixel basis
in order to compare with the original lightcuts algorithm [WFA∗05] that uses a
maximum luminance error per pixel of 2%, which we have used as the reference
in our evaluations. Since the original lightcut algorithm has been designed for
high-quality rendering with a large number of point light sources (VPLs), we
compare our error metric also using a larger number (150,000) of VPLs in the
conference scene. The other scenes, cornell box, sponza atrium, sibenik
cathedral, were generated in a dynamic scenario and the videos are provided
at [Web08]. The relevant statistics for the animated scenes shown in Fig. 7.6 are
given in Table 7.1.

To speedup rendering, the irradiance caching algorithm [WRC88, KGPB05] has
been used. Note that for efficiency reasons the MPEG-2 encoder [MPE] uses
simple integer arithmetic in the quantization. Therefore, the provided qscale values
in the results, which are given as input to the encoder, should be divided by 16
to corresponds to the actual quantization errors used in Section 4.2.

Our numerical results were computed on a single PC equipped with an Athlon 64
2.4 GHz with 4 GByte of memory and a GeForce 6800 based graphics card. The
statistics in Table 7.1 show (from left to right): scene settings including number
of direct and indirect anchor lights (VPLs) and the number of photon splats to
update the indirect VPL intensities, the qscale quantization multiplier given by the
MPEG encoder, the average relative error-threshold per frame (i.e. divided by
pixel luminance), the average number of swapped cluster nodes in the light tree
per frame, the average lightcut size with respect to the total number of anchor
lights (VPLs), the average computation times in seconds per frame for photon
tracing and energy splatting to anchor lights (Tlight), for computing the shadow
maps for direct and dynamic indirect light on the GPU (Tgpu), for primary (eye)
ray casting (Teye), for the lighting computation including lightcut evaluation and
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Scene+Setting qscale
∆Yxy
Yxy

LC-

tree

changes

LC

size

Tlight Tgpu Teye TLC Time

per

frame

Speedup

only

LC

Cornellbox 2 7.9% 1.1% 8.0% 2.5 0.8 0.1 3.0 6.6 ×1.5

2000 VPLs 48 14.4% 1.1% 2.7% 2.5 0.8 0.1 1.6 5.2 ×3.1

3·105 photons - 2.0% 1.1% 10.9% 2.5 0.8 0.1 4.0 7.5 ×1.0

Sponza 2 5.7% 2.4% 5.1% 14.2 1.1 0.5 19.0 35.0 ×1.9

8900 VPLs 48 12.9% 2.4% 0.9% 14.2 1.1 0.5 9.1 25.1 ×5.2

106 photons - 2.0% 2.4% 6.8% 14.2 1.1 0.5 34.5 50.4 ×1.0

Sibenik 2 7.0% 0.0% 5.5% (40.0) 0.0 0.7 6.5 7.4 ×1.7

9100 VPLs 48 15.4% 0.0% 1.6% (40.0) 0.0 0.7 4.4 5.3 ×3.3

106 photons - 2.0% 0.0% 7.4% (40.0) 0.0 0.7 12.4 13.2 ×1.0

Table 7.1 – Statistics and timings for render2mpeg

Statistics and computation times (in seconds) for the rendering phases of our algorithm
for the 3 animated test scenes shown in Fig. 7.6. Image resolution is 512× 512. The
shown speedup is only for the lightcut (LC) computation without irradiance caching.

irradiance caching (Tcut), the average total rendering time in seconds per frame,
and the speedup of the indirect lighting computation relative to the reference
solution, which uses a constant error threshold of 2% of the pixels luminance
value (see Fig. 7.5c for an example). Our error-threshold computation including a
discrete cosine transforms of all blocks and motion compensation takes 0.2 sec per
frame for all three animations. The memory utilization is less than 50 MBytes for
the tested scenes. Since the sibenik scene is shown in a walk-through animation,
lighting changes and updates of the light tree are not necessary. The only cost
is the initial lighting computation and the light tree construction. The main
bottleneck so far is the random photon walk (Tlight), which uses the same data
structure (uniform grid) for Monte Carlo ray tracing that is actually optimized
for packet-ray tracing of primary eye rays (Teye).

In Fig. 7.7a we show per pixel statistics of rendering/compression error and rela-
tive lightcut (LC) size for the textured conference scene shown in Fig. 7.5 for
various compression settings. The lightcut size (black dashed curve) is given rel-
ative to the reference using 281 clusters on average. It directly mirrors the saving
in computation time for this particular scene, which range from approximately
30% to 60% with increasing qscale. Fig. 7.7b shows the upper bounds and real
lightcut errors for one pixel with a cut size of 253 and 3% error threshold. Note
that the computed upper error bounds (blue) are always greater than the real
cluster errors (red) but not necessarily greater than the sum over the individ-
ual cluster errors (green), whose distribution is presented in Fig. 7.8a. Fig. 7.8a
shows that for the vast majority of pixels the rendering errors introduced by the
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(a) Reference (b) Lightcut Size (c) (2%) Thresholds
50 500

(d) Render2MPEG (e) Lightcut Size (f) Adaptive Thresholds

Fig. 7.5 – Visual statistics and results of original lightcuts versus render2mpeg

Comparing original lightcuts sampling using 2% error metric (first row) with our
MPEG-driven perceptual error metric (second row) where the rendering is adapted to
compression level with qscale = 16. (MPEG-encoded frames are shown in Fig. 7.9.) The
color-encoded number of considered lights per pixel is given in the second column with an
average of 281 lights for the reference and 152 using our method, respectively. The error
threshold maps (scaled by 32 and displayed with γ = 2.6) are shown in the third column.
The average relative error threshold is 26% in our case.

lightcut computation are smaller than their error thresholds (green points). Nev-
ertheless, there are occasionally a few outliers (red points). Fortunately, outliers
are mainly pixels that have a relatively small error-threshold as shown in the his-
togram in Fig. 7.8b, which is often too conservative anyway (see Eq. 7.4). These
observations hold also for the other scenes we have tested.

In Fig. 7.9 we demonstrate how our rendering adapts to varying bit rates by
means of the parameter qscale provided by MPEG. In the first row the absolute
error thresholds to be used for the next frame are shown. Below are given the
numerical values for the average relative error-threshold ∆Yxy

Yxy
in percent (i.e. abso-

lute luminance threshold divided by pixel luminance). The second row shows our
compressed rendering results using the thresholds above and their peak signal-
to-noise ratio (PSNR), which are visually equivalent to the compressed reference
images. We observed that even though the compressed images of reference and
our solution differ slightly (blue curve in Fig. 7.7a), their RMS error (RMSE) with
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Fig. 7.6 – Animated 3D scenes for testing render2mpeg

Animated test scenes (left to right): textured cornell box, indirectly lit sibenik,
sponza atrium. Videos are provided at [Web08].

respect to the uncompressed reference is very similar (see red and green curves
in Fig. 7.7a) because the quantized pixel values fluctuate around the estimated
reference value.

(a) (b)

Fig. 7.7 – Plots of numerical error and lighcut-size for varying MPEG quantization

(a) Root mean square errors (RMSE) and relative lightcut size for varying qscale in the
conference scene shown in Fig. 7.9. (b) Lightcut cluster-errors of a pixel in the im-
age of the conference scene with an error threshold of 3%. The graph visualizes the
sorted lightcut (size 253) with descending upper error bounds. The cumulative sum
(green curve) of the individual cluster errors (red curve) shows the actual rendering er-
ror, which is close to 0 for this particular pixel (see point 253 of the green curve). Since
the individual cluster errors can be considered as independent and identically-distributed
random variables with finite variance, the actual rendering errors are approximately
normal distributed (see Fig. 7.8a).

The third row shows the residual (the rendering error) of the reference frame
and our rendered frame before compression for visualization purposes scaled by
a factor of 32. The PSNR and the average lightcut size per pixel are given below
the images. One can observe that the rendering error does not scale in the same
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way as the compression error does. This is because the enforced error thresholds
are upper bounds for the rendering error introduced by the lightcuts algorithm,
which is usually much smaller for most pixels (see Fig. 7.8a).

(a) (b)

Fig. 7.8 – Histograms of the error distribution of lightcuts

(a) Histogram of the actual lightcut pixel-errors in the image of the conference scene
(qscale = 32). The x-axis represents the ratio of actual rendering error and our maxi-
mum tolerated error-thresholds for that pixel. The green points represent the valid pixels
for which the rendering error is below our imposed error thresholds. Red points in the
graph indicate outliers which have a higher actual error than tolerated. A plot of the
lightcut-error for a single pixel is shown in Fig. 7.7b. (b) The average error threshold
(y-axis) for the corresponding rendering error ratio (same domain as in chart (a)). In-
tuitively, this means the higher the pixel’s error-threshold (y-axis), the more likely is that
the rendering error will stay below its imposed error threshold (green points).

6 Discussion and Future Work

The system implementation serves as a proof of concept and there are a few limita-
tions of our approach. The choice of MPEG-2 [MPE] instead of the more suitable
for streaming MPEG-4 was driven by such factors as simplicity and availability of
the source code. The choice of lightcuts imposes a few restrictions on the lighting
computation such as clamping of close VPLs and missing caustics illumination.
Besides, the separation of dynamic and static objects and the irradiance caching
limits the generality of the lightcuts algorithm. The developed error thresholds
for rendering are too conservative with respect to the MPEG compression error.
We expect therefore that further investigations about the correlation between the
rendering error of lightcuts and the quantization error in MPEG might enable
even more aggressive rendering.

Even though our rendering is too slow for interactive streaming applications,
we demonstrated that such properties as temporal coherence, low noise level,
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and local (pixel or irradiance cache level) accuracy control are desirable in Ren-
der2MPEG applications. By mapping our lightcuts algorithm to a multi-processor
architecture as in [WKB∗02] interactive performance should be feasible due to
similarities between the instant global illumination and lightcuts techniques.

By closely coupling rendering errors with qscale controlling the bandwidth of com-
pressed streams, we can easily support two different encoding modes: CBR (con-
stant bit rate, which leads to variable quality) and VBR (variable bit rate, which
enables constant quality). Our error metric naturally adapts the rendering qual-
ity to the required quantization level no matter what encoding mode is used,
although delayed by one frame.

Since our metric operates on tone mapped pixels, implicitly it takes into account
tone mapping characteristics, which ideally should be adjusted to each display
device and surrounding lighting conditions at the client side.

In the current implementation we decided to estimate the rendering error thresh-
olds (refer to Section 4.2) for each frame. As future work we leave experimentation
with computing the error map just for I-frames and propagating it along motion
compensation vectors for P and B frames. It can be expected that more relaxed
error estimates could be considered for P- and B-frames, but this also requires
further studies.
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Fig. 7.9 – Visual results and error of render2mpeg for different MPEG quantization
levels

Absolute rendering error thresholds (first row) for corresponding qscale value (columns)
driving our global illumination rendering and compression. The compressed images for
varying qscale with their peak signal-to-noise ratio (PSNR) are shown in the second row.
While our compressed images stay visually equivalent to the compressed reference im-
ages, the rendering errors with respect to the reference solution increase steadily for
higher qscale. The absolute rendering error (difference between our rendered images and
reference images) are shown in the third row (magnified by factor 32). The values in
brackets correspond to the average resulting lightcut size.
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Beyond Rendering – Spatio-Temporal Up-
sampling on the GPU

1 Introduction

Shader units are a substantial element of modern graphics cards and lead to
significant visual improvements in real-time applications. Despite the tendency
towards more general processing units, pixel shading receives a constantly in-
creasing workload. Much visual detail today, such as shadows, ambient occlusion,
procedural materials, or depth-of-field, can be attributed to pixel processing and
a faster execution often leads to a direct performance increase.

With the current trend towards enhancing the image resolution in modern High
Definition (HD) and forthcoming Super High Definition (SHD) imaging pipelines,
one can observe that neighboring pixels in spatial and temporal domains be-
come more and more similar. Exploiting such spatio-temporal coherence between
frames to reduce rendering costs, suppress aliasing, and popping artifacts becomes
more and more attractive.

Our method is driven by the observation that high quality is most important
for static elements, thus we can accept some loss if strong differences occur.
This has been shown to be a good assumption, recently exploited for shadow
computations [SJW07]. To achieve our goal, we rely on a temporally varying
sampling pattern producing a low-resolution image and keep several such samples
over time. Our idea is to integrate all these samples in a unified manner.

The heart of our method is a filtering strategy that combines samples in space
and time, where the time and spatial kernel can be adapted according to the
samples’ coherence. For static configurations, the time window can be chosen
to be large to produce a high-quality frame. When drastic changes occur, our
method automatically favors consistent spatial samples. The result loses some of
the visual accuracy, but maintains temporal consistency.

A significant property of our algorithm is locality, meaning that a good filtering
strategy is chosen according to the actual image content. Here, we differ from
other recent strategies, such as [YSL08]. Although our method’s overhead is
small, we achieve higher quality. Our approach runs entirely on the GPU, leaving
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the CPU idle for other purposes which is important, e.g., for games.

2 Upsampling

In this section, we will explain our upsampling strategy. As it is inspired by pre-
vious work, we will first review spatial upsampling (Section 2.1) then temporally-
amortized spatial upsampling (Section 2.2), also referred to as reprojection caching .
Step by step, we will describe our modifications before presenting our spatio-
temporal solution (Section 2.3).

2.1 Spatial Upsampling

Yang et al. [YSL08] assume that expensive shader computations are spatially
slowly varying and can be reconstructed by sparse sampling followed by inter-
polation. This is true for many low-frequency shaders, e.g., indirect lighting,
ambient occlusion. However, normally shading correlates with geometry in 3D
world space, which is only partially captured in 2D image space. This means
that pixel samples which are close in world space and have similar surface orien-
tation are better interpolation candidates. Consequently, the authors want to pre-
serve geometric discontinuities in the interpolation and achieve this with a spatial
joint-bilateral filter [ED04,PSA∗04] to perform the image upsampling [KCLU07].
Thereby, the filter weights are steered by geometric similarity computed from
a high-resolution geometry buffer, which encodes 3D position and surface orien-
tation. As opposed to “blind” image processing, we not need to estimate the
geometry but get it for free as a by-product of the rendering pipeline. Further-
more, we are not only restricted to upsampling of the final result, the pixel colors,
but can compute and then upsample any intermediate shading result per pixel,
which we call the payload .

For simplicity, we will use 1D pixel indices i or j in the following derivations.
Given the high-resolution geometry buffer and the low-resolution shading result
l, the upsampled payload h(i) can be computed as

h(i) =
1

∑ws
∑

j∈N{i}
ws(i, j) · l( ĵ), (8.1)

where N{i} is a neighborhood around i, ĵ is the index of the nearest pixel in the
low-resolution image and ws(i, j) is a spatial geometry-aware pixel weight defined
as:

ws(i, j) = n(max(0,1− (~ni •~n j))2,σ2
n) ·

d(|zi− z j|2,σ2
z ) · k(i, j) (8.2)
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The weight consists of a geometric weighting function involving orientation n,
linear depth d, and an image space filter k. For simple spatial upsampling, k
can be chosen arbitrarily, e.g., a linear hat function [YSL08]. The σ terms are
user-defined variables. Whereas we kept σn = 0.2, σz depends on the scene. For
our results we used 3% of the difference between the near and far frustum plane.

For higher efficiency, we choose N to cover only the four nearest pixels in the low-
resolution image l. One can choose n and d freely as long as it favors similarity,
but falls off quickly. The method in [YSL08] uses Gaussian filters, which can be
relatively expensive. We use a simpler yet similar function for both n and d:

g(x,σ,γ) = (max(ε,1− (x/σ)))γ . (8.3)

σ represents the filter width, and γ controls the fall-off. We choose γ = 3, which
corresponds to the tri-weight kernel g(x2,σ2,3). A plot of the function for various
σ is shown in Fig. 8.1(left). It has finite support and is clamped at a small epsilon
which avoids zero weights.
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Fig. 8.1 – Joint-bilateral-upsampling filter functions

Left: geometric weighting function n, d (triweight kernel), right: image space filter func-
tion k.

2.2 Temporally-Amortized Spatial Upsampling

To increase the final image quality, one can also look back in time. Instead of
interpolating within the current frame, missing pixels are resurrected from past
frames. This is most beneficial if frames correspond to differing pixel subsets.
Otherwise, for the static case, no new information is gained over time and accurate
convergence becomes impossible.

A random pattern was proposed in [NSL∗07], but it costs some efficiency be-
cause it implies a supplementary rendering pass to fill in the missing information,
slightly accelerated via early-z termination. For our method, we want to avoid
the computation of extra samples in order to ensure a relatively constant cost
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per frame, just like [YSL08]. To make updates efficient on the GPU, we use a
spatially regular pattern as shown in Fig. 8.2. To render a sample set, we apply
translations in post perspective space which can be encoded in the projection
matrix and come at no supplementary rendering cost. The regularity will also be
helpful for the spatio-temporal filtering (Section 2.3). We will concentrate on a
4×4 window for the rest of this section, but discuss other sizes in Section 3. The
process is illustrated in Fig. 8.2.

Fused High-Resolution Frame (4n x 4n pixels)16 frames (n x n pixels) 

t=   1       2       3       4       5       6       7       8       9      10    11    12     13    14     15    16

Fig. 8.2 – Interleaved spatio-temporal sampling pattern

Left: A regularly sampled low-resolution shaded image is produced for each frame. The
high-resolution output is then fused from the previous frames.

If pixels were simply reused from previous frames, visible distortions are likely to
appear. Any camera movement or scene changes result in ghosting trails following
the objects. One can compensate for this effect by computing pixel displacements
between frames, referred to as motion flow. Motion flow is inexpensive because
all the necessary 3D information is available [SaLY∗08a]. To improve quality, and
because it is cheap, we compute the 2D motion flow in a high-resolution texture,
always considering only two successive frames. For brevity we will refer to the
q-frames motion-compensated pixel i at time t as i(t− q) (i.e., i(t) = i).

In standard temporally-amortized upsampling one can keep the payload of the
updated pixel set in the final output and let the other pixels search in the previous
frame:

h(i, t) = (1−wt(t, i)) h((i(t− 1), t− 1) + wt(t, i) l(î, t), (8.4)

where h(i, t) is the high resolution image payload for the current pixel index i
at time t, which is composed of the currently computed low-resolution image
payload l(î, t), î is the nearest low-res. pixel index of i, and the previous image
payload h(i(t−1), t−1) at the motion compensated position i(t−1). Special care
has to be taken if i(t− 1) is pointing to a pixel outside the screen or if the 3D
point corresponding to the pixel i(t− 1) is disoccluded (i.e. has not been visible
in the previous frame). Those pixels cannot be fetched from the previous frame
h(·, t−1) and, for temporally-amortized upsampling, are usually recomputed. To
identify disocclusions we compare our warped depth values with the depth values
from previous frame [NSL∗07]. Comparing only depth values we may miss certain
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disoccluded pixels located at contact points (see Fig. 8.3). To clear the ambiguity
we also compare material IDs, which we store anyway in the geometry pass of our
deferred renderer. For temporally-amortized upsampling, pixels are taken from

Fig. 8.3 – Conservative detection of disoccluded pixels

Dealing with disocclusions in temporal reprojection: reprojection based on z-Buffer com-
parison may fail at contact points (left). Additional criteria (here material IDs) help to
reduce ambiguities (right).

the previous payload if they have not been computed in the current frame. The
binary weight wt determines for a given pixel whether to fetch the payload from
the current or the previous frame(s), by setting wt(t, i) = 1 if the pixel i has been
computed in the current frame at time t, and zero respectively.

2.3 Spatio-Temporal Upsampling

The previously described upsampling schemes are not always well suited. Con-
structing the image only spatially is very efficient, but prone to undersampling and
blurring of sharp image features. On the other hand, temporal caching [SaLY∗08a,
NSL∗07] is sensitive to temporal changes, but it converges if the scene is nearly
static. Consequently, we would like to combine the two approaches in a spatio-
temporal upsampling framework:

h(i, t) =
1

∑wswtw f

T

∑
q=0

∑
j∈N{i(t−q)}

ws(i(t− q), j) wt(t− q, j) w f (q) l( ĵ, t− q), (8.5)

where w f (q) is a temporal fadeout kernel to favor payloads that have been
computed recently (w f ∈ [0..1]). A good choice is an exponential falloff, e.g.,
w f (q) := 0.9q, but we improve upon this in Section 2.5. The other terms were
explained in Equations 8.1 and 8.4. As indicated before, T is usually 16 (i.e. 4×4
upsampling), which is the amount of low-res textures needed to cover all samples
of the high-resolution frame. Intuitively, we follow the sample i back over time.
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Fig. 8.4 – Visualization of spatial upsampling pipeline

Left: dynamic shading result, middle: sum of upsampling weights ws (brightness repre-
sents confidence, yellow regions have insufficient spatial weight, blue regions are disoc-
cluded and have no temporal weight, and red pixel are both), right: upsampled image

For each time step t, wt ensures that only those payloads are considered that have
been computed at time t. The contribution is then influenced by the weight ws

that measures the geometric difference and w f , that penalizes age.

The pixel filter k, computed in ws, has to be chosen carefully. Precisely, we define
k(i, j) := g(||x(i)− x( j)||,r,γ), where x(i) is the pixel position on the screen, and
r the low-res pixel diagonal length. For γ = 0 filter k is constant and the results
approach spatial upsampling. For γ = ∞, k is a dirac-like filter (k(i, j) := 1 if (i =
j), 0 otherwise) and, hence, is equivalent to temporally-amortized upsampling.
Consequently, we want to use the function k to blend between the two extrema
depending on the temporal coherence, see Fig. 8.1(right). A better convergence
over time, is achieved with a larger γ, while a lower value improves the temporal
response. We will present a temporal gradient-guided steering of γ in Section 2.5
and one can assume for the moment that γ = 3.

Fig. 8.4(middle) visualizes the spatial upsampling weights ws of 4×4 pixel regions.
Pixels marked as blue are disoccluded. Consequently, these cannot be taken from
previous frames. Yellow pixels indicate a small geometric weight for the current
frame and are, thus, likely to be undersampled. Here, previous frames should be
used. Pixels in red have neither spatial nor temporal confidence, making them
candidates for recomputation. In general, such pixels are sparse and our filtering
mechanism ensures that a plausible value is attributed, making it possible to
avoid recomputation.
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2.4 Exponential History Buffer

Our filtering in Eq. 8.5 leads to better results than spatial or temporal filtering
alone, but it’s beyond question that it is computationally expensive because we
need to perform many dependent texture lookups repeatedly to produce one pixel.
To improve performance, we observe that the lookups are coherent over time. It
is thus possible to cache these lookup chains through previous frames. This leads
to the idea of an exponential history buffer. It stores the previous upsampling
result hr, and the previous spatio-temporal upsampling weight hw. Ignoring the
temporal component in Eq. 8.5, we obtain a standard bilateral upsampling:

h̃(i, t) =
1

∑wswt
∑

j∈N{i}
ws(i, j)wt(t, j)l( ĵ, t) (8.6)

with weight w̃(i) = ∑wswt . Given h̃, and our history buffers hr and hw, we compute
the actual output h via weight-dependent blending:

h(i, t) =
h̃(i) w̃(i) + w f (1) hw(i(t− 1)) hr(i(t− 1))

w̃(i) + w f (1) hw(i(t− 1))
. (8.7)

The history buffer is updated for the next frame by storing hr(i) := h(i, t) and
hw(i) := w̃(i) + w f (1) hw(i(t−1)). If one has chosen w f as an exponential falloff,
Equations 8.5 and 8.7 are equivalent. Note that w f (0) = 1. This reduces the
performance penalty with respect to [YSL08] to a single texture lookup and a
few algebraic operations. Furthermore, other simplifications are possible: we no
longer need 16 low resolution textures (one high-resolution history buffer and one
low resolution frame are enough), time dependence vanishes in general, and in
particular, for the function w f .

2.5 Temporal Weighting Function

In the previous section, we have seen an efficient way to involve a longer temporal
history. Nevertheless, in some cases this might not be wanted. Fast changes,
induced by, e.g., shadows, would profit from the use of spatial upsampling instead
of temporal. On the other hand, to improve the quality of the shaded output, it
is necessary to integrate samples from previous frames. To this extent, we will
dynamically adapt the temporal weight w f and the image space filter k locally.

Precisely, we want to address the following points:

1. Temporal flickering due to low resolution sampling of high-frequency spatial
signals;

2. Temporal ghosting artifacts due to fast temporal changes;

3. Higher-quality convergence for static elements.



188 Section 2: Upsampling

To choose w f and falloff of k appropriately, we examine the variance of the tempo-
ral signal. We do this by relying on a temporal gradient. A weak gradient implies
that more confidence can be granted to the evaluation over time. Consequently,
w f should be large and k should reduce image blur by giving more weight to ac-
tually computed pixels in the history buffer. Contrarily, large gradients indicate
that changes occurred and that the history is no longer reliable. Accordingly,
w f should fall off faster and k should favor spatial upsampling by introducing
more image blur. We achieve this by scaling the exponential fall-off γ of our filter
function k defined in Section 2.3 with our confidence value w f , where a maximum
of γ ·w f = 4 is a good choice and was used in all our experiments.

2.5.1 Estimating Temporal Gradients

We will assume that the payload h is one dimensional. Otherwise, one could either
compute a norm of the payload, or consider separate gradients. We rely on finite
differences to define a temporal gradient because deriving analytical gradients is
not always feasible and besides would interfere with the shading pipeline. Further,
we are not actually computing a temporal gradient as we do not divide by the
time difference between frames (i.e., assume ∆t = 1). This is because we want
the history adaption to be sensitive to the frame rate such that the temporal
weight w f increases with the frame rate even if the “real” temporal gradient is
constant. Moreover, to address the case where the value domain is unknown, we
realized that it usually makes sense to compute relative gradients. In particular,
for colors, such a definition tends to capture contrast (when reducing color to
luminance).

∂

∂t
h(i, t) =

h(i, t)− h(i(t− 1), t− 1)
max(|h(i, t)|, |h(i(t− 1), t− 1)|)

A more general definition according to time is not needed because the previous
section reduced the time dependence to a single frame. We then define:

w f := a ·
(

1−| ∂
∂t

h|
)2

, (8.8)

where a steers the sensitivity between spatial and temporally-amortized upsam-
pling. Usually a is kept to 1 in our experiments. The square in Eq. 8.8 suppresses
w f more aggressively for large temporal gradients than for small fluctuations.
One may notice that w f depends on h(i, t), which is the result we currently want
to compute. Therefore, we approximate h based on h̃, the spatially upsampled
result we computed to make use of the history buffer.

Because our spatial upsampling h(i, t) may suffer from temporal flickering and fi-
nite differences are potentially always noisy, we decided to use a low-pass filtering
in time and space. Simple spatial filtering, e.g., using mipmapping, would not
be an option since it cannot detect spatial aliasing artifacts (which might result
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in low-frequency). However, due to our imposed “jittering”, spatial aliasing cor-
responds to a periodic high-frequency temporal signal, which is greatly reduced
when summing a few consecutive frames. Therefore, we address this issue by mak-
ing use of the current and the three previous finite differences. These are stored
in a vector ~∇ :=

(
∂

∂t h(i(t), t), . . . , ∂

∂t h(i(t− 3), t− 3)
)

. To filter the gradient tem-

porally, we compute an absolute weighted sum ||~∇|| := |~∇• (0.4,0.3,0.2,0.1)T |.
The sum, as well as the current and the two previous differences can be stored in
a single 4-channel RGBA texture.

While the finite differences will only be relevant for the next frame, ||~∇|| is used
to control the temporal-spatial upsampling. Though filtered over time, this value
can still fluctuate spatially. To additionally filter it in space, we want to use a
kernel that is slightly larger than the distance between recomputed samples. Thus
slightly larger than 4×4. In practice, we found that tri-linearly filtered mipmaps
deliver a good quality/ performance trade-off, when values are chosen from level
2.5. However, such filtering can also reveal small artifacts due to discontinuities in
the mipmap. This leads to an improved estimate, in particular, in the presence of
aliasing as can be seen in (Fig. 8.6). This temporally and spatially filtered value
||~∇||, is then used in Eq. 8.8.

Care has to be taken in the special case where pixel regions are disoccluded and
cannot be reprojected to the previous frame. Here, computing a temporal gra-
dient is impossible. Simply ignoring the gradients for such pixels may lead to
visible discontinuities at the transition boundaries between successfully repro-
jected pixels and disoccluded pixels. In order to suppress these discontinuities,
we set the relative temporal gradient to its maximum for all disoccluded pixels.
In consequence, the temporal gradient spreads into the neighboring pixels after
the spatial low-pass filtering. This leads to a gradually diminishing gradient and,
hence, a smooth transition between spatial and temporally-amortized upsampling
(see Fig. 8.5).

It has to be pointed out, that whenever the gradient has been falsely assumed
to vary, our method does not break and instead falls back to spatial filtering.
The adaptation of w f only improves the quality of the results. Even though, our
algorithm is not ensured to converge to the actual high-resolution solution, the
increase of the temporal window improves quality significantly as illustrated in
Fig. 8.6 (left) and the accompanying video.

Alternatively, temporal gradients could be obtained via joint-bilateral spatial up-
sampling of the known temporal gradients based on the newly computed values.
In practice, this resulted in more expensive and qualitatively less convincing re-
sults. Our solution filters space and time, for very little cost and better handles
disocclusions. We investigated special cases, like zero motion vectors, but found
that quality remained similar, making the supplementary memory load for storing
these motion vectors unjustified.
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Fig. 8.5 – Dealing with disoccluded pixels in temporal gradient estimation

Disoccluded pixels in this cropped screen-shot of a running horse can cause discontinu-
ities along motion boundaries (left), which are smoothed when setting the maximum rel-
ative gradient for all disoccluded pixels (right) since it is spread to neighbor pixels during
the spatial low-pass filtering.

3 Implementation Details and Overview

So far, we considered upsampling windows of size 4× 4. This is a strong ap-
proximation and up to 16 frames are needed to produce an accurate result in a
static scene, although high-quality convergence is often faster. For fluctuating
payloads it can make sense to decrease the window size. The algorithm easily
extends to various upsampling sizes, such as 2× 2 or 6× 6. Plots showing the
mean frame-rate and error dependency on the upsampling-window size are shown
in Fig. 8.7.

The “optimal” upsampling-window size depends on many factors like frame-rate,
screen resolution, scene complexity, shading frequency, error perception etc., such
that choosing the best window size automatically becomes a non-trivial task. Be-
sides the optimal choice might be also very subjective. We also found that for
larger screen resolutions than 1280× 1024 and frame-rates beyond 60 Hz, 2× 2
windows of varying values are better addressed with simple temporally-amortized
upsampling (not even spatial bilateral upsampling is needed) and windows larger
than 6× 6 take too much time to converge to a high quality result. Neverthe-
less, for even higher resolutions, this might change. Further, complex shaders
often consist of several independent shading terms, some of which can be of very
low frequency and high computational complexity. In fact, most high-frequency
components (such as textures, direct light shadows) are not expensive and could
be efficiently computed for every pixel. Hence, following [SaLY∗08b], splitting
the shader into individual components enables even higher gains. To illustrate
the effectiveness of our approach, we refrained from such decompositions in our
results.
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Fig. 8.6 – Visualization of temporal gradients estimation for different configurations

Temporal gradients are important to detect changes in illumination. The figure shows
gradients in a static (frozen) scene (top row) and the same frame in a fully dynamic
scene (bottom row) (red = negative, green = positive gradients). Simple finite differences
(center) are prone to aliasing and noise. Our filtering (right) regularizes the gradient es-
timation (e.g., for the static scene the gradient is almost zero (top right)). It eliminates
flickering and achieves high quality. Some high-frequency gradients (bottom right) might
be lost, but this is almost invisible in a dynamic context. Our upsampled result is shown
on the left. (For demonstration purposes, we show signed gradients. Spatial smoothing
relies on absolute values ||~∇||.)

Our spatio-temporal upsampling is integrated into a deferred shading approach.
In the initial pass all necessary geometry and material information as well as
the 2D motion vectors are written to the high-resolution G-buffer. In the next
pass all expensive shading computations are performed at low resolution. The
frustum is jittered in a coherent sampling pattern (see Fig. 8.2) corresponding
to a different subset of pixels. Next, we upsample the current shading result
to high resolution taking into account the high-resolution G-buffer and motion
flow and solely the previous upsampling result (thanks to Section 2.4) and the
(mipmapped) temporal gradients ~∇. Because the temporal gradient after filtering
is assumed to be spatially coherent, we do not need to compute the upsampled
gradients at a high resolution, but instead compute them at an intermediate
resolution (e.g., every 2× 2 pixels).
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Fig. 8.7 – Frame rate versus frame error plot

The left plot shows the frame rate dependency on the upsampling window size in pixels,
whereas the right plot shows the normalized root-mean square error for various upsam-
pling window sizes ranging from 2× 2 to 8× 8 pixels. The shown measurements are the
average over all frames of the animation sequence that is shown in Fig. 8.3, where the
upsampled image resolution was set to 1280× 1024.

3.1 Antialiasing

Our spatio-temporal upsampling is extendable to antialiasing in the spirit of
[YNS∗09]. A common way to achieve antialiasing with deferred shading is to
compute the results in a m×m higher resolution and then merge m×m pixels
to obtain the average pixel color, which corresponds only to regular pixel super-
sampling. Nevertheless, such scheme nicely fits to our proposed upsampling. We
only need to compute the geometry and material buffer and the intermediate up-
sampling buffers at a higher resolution than the display buffer and down-sample
the upsampled result to the display resolution as shown in Fig. 8.8. To some
extent this follows the hardware-based antialiasing which computes shading val-
ues at a lower resolution. Nevertheless, the current state-of-the-art hardware
antialiasing cannot involve previous frames, nor is it compatible with deferred
shading, which results in a significant overhead and its quality depends on the
shader’s spatial frequency. Although the shading pass is computed at the same
resolution, the upsampling performance drops down for larger upsampling win-
dows (see Fig. 8.7) and besides, the initial geometry pass also needs to output
all geometry and material data at sub-pixel precision, which penalizes memory
bandwidth. Clearly, we would like to reduce the upsampling computation at
sub-pixel level since upsampled sub-pixels are not displayed directly but instead
are downsampled before being displayed anyway. Hence, we can approximate the
upsampled color of individual sub-pixels as long as their statistical mean value is
correct. However, although this seems to be an interesting track, it has not yet
been investigated and is considered as future work.
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4x4 Upsampling – 49 Fps 8x8 Upsampling – 35 Fps

No Antialiasing 2x2 Antialiasing

Fig. 8.8 – Spatio-temporal upsampling and antialiasing

(left) our 4× 4 spatio-temporal upsampling, (right) antialiasing via regular sub-sampling
can be achieved with our method by first upsampling to a higher resolution (e.g., 8× 8
upsampling) and then downsampling to smaller resolution.

4 Results

For comparison, we implemented a simple temporally-amortized upsampling as
described in Section 2.2 with second-pass hole filling [SaLY∗08a] and spatial up-
sampling [YSL08]. We used OpenGL with GLSL on a GeForce GT 280 and
performed tests on various challenging scenes at a resolution of 1280×1024. The
timings are giving in Table 8.1 and the visual results with statistical error mea-
sures (PSNR) are shown in Figure 8.9. The initial geometry pass of our deferred
renderer deviates only slightly throughout the different methods and is not ex-
plicitly shown in Table 8.1. The overhead for computing the motion vectors was
always less than 1 ms in our experiments.

The first scene is a jeep with little geometry, but a moving light source, chal-
lenging texture, percentage-closer filtering (PCF) [RSC87] with a 6× 6 kernel,
Fig. 8.9(top). The second scene, contains animated horses, Fig. 8.9(third row),
with a static camera and applies screen-space ambient occlusion (SSAO) [BS08]
with 8× 8 randomized horizon samples. In a different scenario, Fig. 8.9(fourth
row), we added instant global illumination by evaluating a large number (2000)
of virtual point lights (VPLs) without visibility generated with reflective shadow
maps [DS05]. In this setup the camera is moving and the indirect lighting is
changing quickly. Our approach even suppresses the flickering due to tempo-
ral noise of the VPL sampling. Please refer also to the video material provided
at [Web10]. Finally, the last scene shows a running elephant with a large an-
imated body which is rendered offline at fixed frame rate (30 fps) with SSAO
(32× 24 samples), a spot-light with PCF, and screen-space directional occlusion
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temporal spatial spatio-temp. reference

Tshade Tup fps Tup fps Tup fps fps

Jeep (PCF) 1.6 1.0 244 1.1 239 2.1 191 171

stdev. 0.02 2.4 1.6 1.5

Horses (AO) 11.3 5.3 47.5 1.1 62.5 2.2 55.9 7.6

stdev. 0.09 0.69 0.36 0.26

Horses (AO+GI) 35.7 45.2 11.4 1.6 24.5 3.0 21.8 2.2

stdev. 0.27 3.2 0.56 0.78

Elephant (AO+DO) 80.3 76.1 5.9 1.8 12.3 2.9 11.9 0.7

stdev. 39.7 4.5 5.1 4.9

Table 8.1 – Timings of different GPU upsampling methods

Final average fps and standard deviation (stdev.) for rendering a frame with spatial,
temporally-amortized with disocclusion-hole filling, spatio-temporal upsampling and ref-
erence for image resolution of 1280×1024 and a 4×4 upsampling window. The time for
rendering the low-res shading input, Tshade, and the time spent on upsampling only, Tup,
is given in milliseconds.

(SSDO) [RGS09] with direct light sampling (128 samples) from an environment
map. This scene is challenging as the viewpoint changes very quickly and reveals
large surfaces making it difficult to reproject old samples. Furthermore, the shad-
ing is of high-frequency and cannot be accurately reproduced by neither method.
To favor spatial upsampling, we set a = 0.7 for this scene. Temporally-amortized
upsampling completely fails in this scenario whereas our method, similar to spa-
tial upsampling, still produces decent results.

In Tables 8.2 and 8.3 we compare the errors and corresponding frame rates of
the different upsampling methods for an entire animation in a mostly static and
almost converged scene and in a fully dynamic scene with high-frequency shading,
respectively. The frame error is computed for each frame separately using a simple
error metric (normalized root mean square error) with respect to the reference
frames. Although not always outperforming spatial upsampling, our method still
produces visually more pleasing results, which cannot be captured by an image
quality metric disregarding the animation context. The reason for this is that
the frames produced by our methods are also low-pass filtered in time resulting
in a slight delay in the dynamic shading of pixels.

Results generally benefit from temporally-amortized and spatial upsampling. The
horse scene shows that in static regions the SSAO converges nicely whereas in dy-
namic regions, near the running horses, more values are taken from the current
spatial upsampling, trading-off response for quality. The jeep’s texture (even
when not separating it from the payload) faithfully converges and the shadow
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shows only minor artifacts that are hidden by its motion. Temporally-amortized
upsampling shows many ghosting artifacts and spatial upsampling does not con-
verge to a high-quality solution as shown in Table 8.2(left). This is visible near
geometric details, e.g., in the background of the cathedral where geometric dis-
continuities become smaller and aliasing artifacts emerge. Moreover, flickering
appears when the camera moves because of high-frequency details that were un-
dersampled by the low-resolution payload. Temporally-amortized upsampling
cannot assure a constant frame-rate because the supplementary rendering to fill
disocclusion holes can have very differing cost (see Table 8.3(right)) even requiring
to compute every pixel in the worst case. Our approach is similar in performance
to spatial upsampling, as illustrated in Table 8.1 and Table 8.3 while maintaining
a good image quality overall. This makes our solution a good choice for dynamic
and static scenes.
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Table 8.2 – Errors and frame-rate for an animation sequence with mostly static shad-
ing

(top) a few frames extracted from the animation sequence rendered using screen-space
ambient occlusion (SSAO) for a relatively static (converged) scene, (left) frame errors
(normalized root mean square error) for spatial, our spatio-temporal, and temporally-
amortized (temporal) upsampling. (right) corresponding frame rate in frames per second
(FPS) for the three upsampling schemes and the reference.
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Fig. 8.9 – Comparison of spatial, temporally-amortized, and spatio-temporal upsam-
pling.

The first two rows show screenshots and difference images (4 times scaled) of simple
shading (static geometry and dynamic light). This is a difficult case for our method, but
it performs better than amortized temporal upsampling. Although the PSNR is smaller
than for spatial upsampling, we obtain a smoother difference image with less aliasing.
Geometric discontinuities are better handled leading to a more visually pleasing result.
The third row shows results of a more expensive shader (SSAO) (dynamic scene and
static camera). The background exhibits the high quality achieved by temporal conver-
gence. The PSNR reflects the positive influence of our method. The fourth row shows
screenshots from a fully dynamic scene including camera motion. Our method also fil-
ters high-frequency flickering artifacts due to random VPL sampling. The bottom row
shows another dynamic scene with high-frequency shading (screen space ambient (SSAO)
and directional occlusion (SSDO) with environment map lighting and PCF shadows).
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Table 8.3 – Errors and frame-rate for an animation sequence with dynamic shading

(top) a few frames extracted from the animation sequence rendered with dynamic direct
lighting and screen-space ambient occlusion (SSAO), (left) frame errors (normalized root
mean square error) for spatial, our spatio-temporal, and temporally-amortized (temporal)
upsampling. (right) corresponding frame rate in frames per second (FPS) for the three
upsampling schemes and the reference.

5 Discussion and Future Work

Although our algorithm produces generally better and more robust results than
previous real-time upsampling techniques [YSL08] for the GPU there are situa-
tions where it may also fail. First limitation is that our reprojection caching is
solely based on fast computable “geometric” flow which might differ from opti-
cal flow . As a worst case scenario imagine a fast moving object with a camera
attached to it moving at the same speed. A shadow cast by the object on a
static floor is completely decorrelated with the world-space pixel positions and
temporal reprojection can not help. In such case mainly geometry-aware spatial
upsampling is influencing the final pixel color as temporal gradients become large.

Further, our algorithm relies on the assumption that temporal changes in the
shading are smooth and spatially coherent and can therefore be low-pass filtered.
And all quickly varying signals are only due to aliasing or noise in the shading1.
Otherwise, we could not reliably estimate our temporal weighting coefficient w f ,
trading spatial with temporally-amortized upsampling, as our gradients would

1Ideally, to avoid aliasing we would like to low-pass filter the input signal to the shading
instead of the shading result itself. However, this way we would have to interfere with the
shader algorithm, which we want to treat as a black-box decoupled from the upsampling
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flicker. Hence, fine details in the shading that are also quickly changing in time
are hard to detect. Fortunately, fast temporal changes are also hard to track by
the human visual system and may appear blurry.

A second minor shortcoming is the influence of apparent motion blur in the
temporally-amortized upsampling, which arises from the discretization in the
bilinearly-filtered reprojection accumulated over the history of reprojected frames
as illustrated in Fig. 8.10. Even though our motion vectors are computed at high

Reference Reprojecting 50 frames

Fig. 8.10 – Reprojection blur

When only reprojecting frames, more and more blur is introduced due to the bilinearly
filtered history (right image).

resolution, blur still appears when for example moving the camera because small
deviations from the pixel center in the reprojection accumulate over several frames
(see Fig. 8.11). A simple remedy also proposed in [YNS∗09] is to increase the
resolution of our exponential history buffer to sub-pixel accuracy, which we do
for antialiasing purposes (see Section 3.1). A more sophisticated approach would
replace the hardware-accelerated bilinear interpolation with higher-order (e.g.,
cubic) interpolation. On the other hand, our spatio-temporal upsampling reduces
the temporal influence of old pixels and shortens the lookup-chain leveraging the
spatial coherence (even when shading is static pixels always have a small influence
on the spatial neighborhood).

Our work relies on temporal gradients solely to adapt the temporal filter weights.
Ideally, we would have wanted to extrapolate information based on these gradi-
ents, but this did not proof to be robust enough due to accumulated errors in
those gradients.

Our algorithm produces better results with increasing frame-rates because incor-
rect pixels are quickly refreshed by newly computed ones. A downside are the
temporal patterns, that at least in screen shots, are clearly recognizable as the
deterministic temporal sampling pattern. However, more sophisticated adaptive
methods would easily annihilate our gained speedup. A dynamic change in sam-
pling patterns could help to hide the problems behind noise, but we believe that
more complex adaptations of the spatial-temporal weighting might be a better
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Fig. 8.11 – Precision loss in temporal reprojection

(top) nearest neighbor reprojection results in discontinuities when the correct continuous
motion flow (green arrows) and the approximate nearest-neighbor pixel-flow (red arrows)
point to different pixels. (Bottom) bilinear texture filtering trades discontinuities with
blur since an ever-growing neighborhood influences the final result.

choice that we keep as future work.

At last, an interesting track for future work, is how to apply our upsampling
method for real-time streaming of rendered images, which has recently become
more and more attractive since all data needed for rendering is always up-to-
date and kept confidential on the server-side, while the client solely receives a
video stream of rendered frames and therefore needs no powerful hardware. Our
proposed upsampling framework nicely fits to this concept of streaming video
data. A simple, yet effective approach to imagine, would be to stream the MPEG-
encoded motion flow, which is highly coherent and compressible, as well as the
encoded low-res shading image with additional geometric edge information to the
client side. The client then reconstructs the high-res image using the upsampling
method proposed in this chapter.
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Conclusion

This thesis concludes with this chapter. Here, we summarize the major contribu-
tions and applications of this work and discuss ongoing and possible future work
in addition to what has already been pointed out in the dedicated chapters.

Photon Ray Splatting

We proposed an algorithm that improves photon density estimation by exploiting
further information acquired during photon generation and sampling phase like
for example the photon ray direction and length, and its path probability density.
Our method solves some of the problems inherent to photon density estimation
and brings the quality closer to the expensive final gathering approaches. First,
we eliminate boundary bias by means of a volumetric search along entire photon
paths. This is especially noticeable on small unconnected surfaces where all hit-
point density-estimation techniques fail. Since we do this via splatting instead of
gathering, we avoid the use of complex and memory demanding data structures as
in [HBHS05]. Second, our method does not suffer from discontinuities in surface
orientation. Since we estimate the density over photon rays, we decouple the
density estimation from the surface area and obtain the convolved radiance in ray
space. Therefore, we can compute the illumination from any direction on surfaces
of complex geometry where the actual surface area is difficult to estimate. Third,
we developed a simple and efficient bandwidth selection scheme for the photon
splatting based on the photon-path probability density, which could also be used
to speedup standard photon mapping [Jen01] since the costly k-NN search can
be avoided. Fourth, we have shown how to adapt the classical irradiance caching
algorithm [WRC88] for fast direct visualization of the photon density. We have
replaced the expensive final gathering for estimating a cache record’s irradiance
and harmonic mean distance to the surrounding surfaces, which is needed to
determine the cache spacing, by our photon density estimation. In addition,
we also proposed a cache weighting-function, which enables to filter noisy cache
records. We derived a simple and efficient irradiance gradient computed during
ray splatting, which can further enhance the visual quality of the image computed
with our radiance caching algorithm.

Although our method often yields satisfying results, it has some limitations. Like
in all density estimation methods there are occasionally problems with light leak-
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age due to the neglected visibility in the splat footprint. However, we proposed
a remedy for approximating the visibility using discretized volumetric occlusion
tests in Chapter 5. And second, only low-frequency lighting can be reconstructed
with our method, but final gathering can still be performed similar to photon
mapping [HHS05].

We conclude that our algorithm has potential in fast rendering of low-frequency
illumination, which could be either used for fast previewing or as a better input
for high-quality Monte Carlo final gathering [Chr99].

Radiance Cache Splatting

In Chapter 6 we presented a high-quality global illumination algorithm with its
strength in robustness and automatic adaptation to scene and lighting complexity
with relatively little user intervention – setting the standard parameters works
well for most scenes – in contrast to traditional photon mapping with (ir)radiance
caching. The method extends the original lightcuts algorithm [WFA∗05] to
be used for (ir)radiance caching and improves the adaptive cache interpola-
tion [KBPv06] by anisotropic cache splatting driven by perceptual visibility thresh-
olds, which could also replace the traditional (ir)radiance caching for photon map-
ping. We further proposed several optimizations and implementation details to
make the algorithm efficient and practical for various scene and light settings.
We achieve computation times for a single image in the order of seconds rather
than minutes on a standard PC.

Render2MPEG

In Chapter 7 we investigated the problem of simultaneous control of accuracy
for rendered and compressed video frames. We demonstrated that by taking
into account MPEG’s quantization mechanisms and basic HVS characteristics in
deriving the perceptual error thresholds, we could significantly improve the ren-
dering performance by relaxing rendering errors, while obtaining video streams
with frames surprisingly similar to the compressed high-quality reference frames.
By exploiting temporal coherence in rendered frames we could acquire informa-
tion required by our HVS model and successfully predict the tolerable error map
for frames to be rendered, which is a notorious problem for many of existing
perception-based rendering solutions. Our results clearly show that stronger in-
tegration of rendering and compression software is desirable to avoid redundant
computation by existing frame-by-frame standalone renderers. In this context,
algorithms for temporally coherent global illumination computation become im-
portant and our extension of the lightcuts algorithm aims in this direction.
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Spatio-Temporal Upsampling on the GPU

Although spatio-temporal processing has been explored in different contexts, it
has received less attention in terms of GPU rendering. In fact, GPUs inherently
exploit spatial coherence in the SIMD structure of the massively parallel process-
ing pipeline. However, modern GPUs benefit very little from temporal coherence.
In Chapter 8, we proposed a relatively simple framework for spatio-temporal ren-
dering as a trade-off between efficiency and quality. Compared to joint-bilateral
spatial upsampling our algorithm produces higher quality and introduces only
a small performance overhead and keeps memory demands small. For dynamic
scenes, our algorithm is more robust than temporal reprojection caching. It
combines benefits from both methods. We demonstrated on relatively complex
shaders that our upsampling technique can reduce the GPU’s shading costs. Our
solution is well suited for increasing screen resolutions and beneficial for various
algorithms, e.g., global illumination, soft shadows, or procedural textures.

1 Ongoing Work

Aside from the specific directions for future research proposed in the previous
chapters, our key idea that draws upon all presented developments in this thesis
is the extension of the render2mpeg and spatio-temporal upsampling framework
to real-time streaming of rendered frames. Remote rendering with streaming has
recently become more and more attractive since all data needed for rendering
frames is kept up-to-date and confidential on the server-side, while the client
solely receives a video stream. In Chapter 7 we already proposed a method to
adapt expensive global illumination computation to the quantization level of lossy
MPEG compression steered by the transmission bandwidth of the MPEG-stream.
However, in this context we did not profit in terms of MPEG encoding nor in
bandwidth reduction. Therefore, we started to investigate how the upsampling
framework introduced in Chapter 8 can be used to not only save computation
time on the server-side but also how to better utilize the limited bandwidth while
at the same time speeding up MPEG encoding. Currently, we achieve this by
feeding additional knowledge from rendering like motion flow, geometry into a
custom-designed video compressor essentially freeing the MPEG encoder from
redundant motion compensation. In contrast, we favor more expensive decoding
on the client. This way, we better exploit the computational power of the clients
and shift the computational load from the server to the client side.
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Index

aliasing, 40
anti-aliasing, 40

backface-culling node, 77
bandwidth, 74
biweight kernel, see quartic kernel
boundary bias, 65
BRDF, 36
BSSRDF, 36
BTDF, 36
BTF, 36

chromaticity, 49
contrast masking, 52, 169
contrast sensitivity function, 51

discernability metric, 141
discontinuity buffer, 67, 85

Epanechnikov kernel, 73
eye sample, 65, 67, 112

final gathering, 93

gathering, 72, 114
geometric flow, see motion flow

histogram splatting, 69

importance sampling, 45
instant global illumination, see instant

radiosity
instant radiosity, 57, 125, 128
interleaved sampling, 104
irradiance, 32

K-NN density estimation, 72
kernel density estimation, 72
kernel function, 73

kernel width, see bandwidth

Lambertian, 38
lightcuts, 126, 165
low-discrepancy sequences, 47
luminance, 49
luminance masking, 50, 168
luminous efficiency function, 33

mesh, 42
Monte Carlo sampling, 45
motion compensation, 172
motion flow, 199

Neumann series, 44

occlusion mask, 113
optical flow, 197

payload, 182
Perona-Malik diffusivity function, 140
photon, 31
photon map, 81
picture elements, see pixel
pixel, 40
probability density, 69
probability density function, 45
progressive photon mapping, 95
proximity bias, 65

qscale, 167
quads, 42
quartic kernel, 73
Quasi-Monte Carlo sampling, 47

radiance, 32
radiance map, 68
radiant energy, 32
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radiant flux, 32
radiant intensity, 32
radiosity, 32
rasterization, 43
rendering equation, 44
reprojection caching, 182

solid angle, 34
splatting, 72–73, 76, 114
stratified sampling, 47
super-sampling, 40

topological bias, 65
tri-weight, 183
triangle, 42

variable kernel density estimation, 72
variance reduction, 45
vertex, 42
visual masking, see contrast masking
voxel, 41
voxelization, 113
VPL clamping bias compensation, 142–
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