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Abstract
Challenges in Visual Analytics frequently involve massive repositories, which do not only contain a large number
of information artefacts, but also a high number of relevant dimensions per artefact. Dimensionality reduction
algorithms are commonly used to transform high-dimensional data into low- dimensional representations which
are suitable for visualisation purposes. For example, Information Landscapes visualise high-dimensional data in
two dimensions using distance-preserving projection methods. The inaccuracies introduced by such methods are
usually expressed through a global stress measure which does not provide insight into localised phenomena. In
this paper, we propose the use of Stress Maps, a combination of heat maps and information landscapes, to support
algorithm development and optimization based on local stress measures. We report on an application of Stress
Maps to a scalable text projection algorithm and describe two categories of problems related to localised stress
phenomena which we have identified using the proposed method.

Categories and Subject Descriptors (according to ACM CCS): I.3.8 [Computer Graphics]: Applications—

1. Introduction

The visual representation of large document repositories rep-
resents a frequent challenge in the field of Visual Analytics.
The information landscape is a common visual metaphor ca-
pable of conveying complex relationships is the Information
Landscape [KBC∗07, DHJ∗98]. It uses the metaphor of a
geographic map to provide insight into topical clusters and
employs spatial proximity in the 2D layout to represents the
topical relatedness.

A plethora of projection algorithms have been devel-
oped [GKWZ08] for projecting the document set into a low-
dimensional (2D) visualisation space while preserving the
high-dimensional relationships as good as possible. It is ob-
vious that complex relationships present in a very high di-
mensional space cannot be perfectly represented in a low
dimensional visualisation space. Nevertheless, the ability of
projection algorithms to preserve original relationships is
crucial for visualisation users attempting to identify patterns
in the data set. The goodness of fit for projection algorithms
is usually evaluated by computing a global stress value
which basically expresses the cumulative difference between
the high-dimensional and low dimensional distances.

Each projection from a high-dimensional space to a low-

dimensional one introduces an inherent error which appears
in the visualisation as local phenomena. Also, in order to
scale to large data sets sophisticated projection algorithms
employ various optimisation techniques. These optimisa-
tions often apply neighbourhood-based strategies in order
to reduce the amount of data comparisons. At the same
time projection algorithms often need to produce 2D layouts
which fulfil certain usability requirements. These require-
ments and the various optimisations can introduce further lo-
calised errors and phenomena which are cannot be properly
detected by a global stress measure. For example, two pro-
jection algorithms might produce layouts with similar global
stress values, where one has a uniform stress distribution and
the other produces a local stress peaks. A neighbourhood-
based stress measure, proposed in [CB09], focuses on local
goodness of fit. While emphasizing localised quality of the
projection, the measure is computed globally over the whole
data set and will likely not detect isolated phenomena.

In this paper, we propose the use of Stress Maps, a com-
bination of heat maps and information landscapes, to sup-
port algorithm development and optimization based on local
stress measures. We present users with a heat map display
of local stress values which mimics the topology of the in-
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formation landscape. Users can easily identify high stress
areas in an overview and zoom in on such areas to identify
the individual information artefacts responsible for observed
phenomena. We illustrate this methodology by applying it
to a scalable text projection algorithm. We have been able to
identify two categories of problems related to localised stress
phenomena. We were able to verify both problem categories
from our knowledge on the behaviour and implementation
of the algorithm.

The paper is organised as follows: In Section 2 we briefly
discuss relevant state-of-the art in information landscapes,
dimensionality reduction techniques and stress measures.
We also discuss some important, recent related work. In Sec-
tion 3 we present our approach. We report on experimental
results in Section 4. We draw conclusions and present future
work in Section 5.

2. State-of-the-Art

In this section, we first discuss related work in informa-
tion landscapes because we conducted our experiments in
this application area of projection algorithms. Because our
approach is, in principle, applicable to arbitrary projection
algorithms, we provide a brief overview on dimensionality
reduction techniques. We also discuss available stress mea-
sures which can be explored using our approach. Finally, we
reference some important, recent related work.

2.1. Information Landscape

Information landscape visualisation employs a geographic
map metaphor for visual analysis of relationships in massive
data sets. Relatedness in the data through is conveyed by spa-
tial proximity in the visualisation, i.e. items which are simi-
lar and therefore close in the high-dimensional vector space
are placed close to each other in the low-dimensional visuali-
sation space. Hills (or islands) represent group s (clusters) of
related documents and emerge in areas where the document
count (density) is large. Hills are separated by sparsely pop-
ulated flat areas which are usually represented as plains (or
see). The height of a hill usually represents the local density
of data points, while the area covered by the hill is an indi-
cator of the cohesion of the corresponding data item cluster.
Each Visualised item is displayed as dot or a tiny icon. Re-
gions of the landscape are labelled with highest weight fea-
tures extracted from the underlying data. The colour and/or
shape of each icon can be used to encode additional informa-
tion belonging to the corresponding data item, such as meta-
data. Interactivity of the visual component, which is often
implemented using 3D rendering, typically includes naviga-
tion (zooming, panning, rotating, tilting, etc.), selection and
filtering, as well as manipulations of visual properties of the
data items.

Information landscapes have been routinely used for visu-
alisation of large document sets containing millions of doc-

uments [KBC∗07], where the dimensionality of the high-
dimensional term space easily surpasses 10000. In [DHJ∗98]
information landscape has been applied on gene expression
data. Application to hierarchically organised document col-
lections has been proposed in [AKS∗02], where spatial tes-
sellations are used to reflect hierarchically organised doc-
ument sets. Hierarchically organised collections (classes)
are represented through nested polygonal areas, containing
data items at the lowest level of the hierarchy. Dynamically
changing data sets have been addressed by information land-
scapes with dynamic topography, where changes in the data
set are represented by smoothly animated changes of the
landscape topography [SKM∗09, SK09].

2.2. Dimensionality Reduction

Dimensionality reduction techniques aim at mapping high-
dimensional data into lower-dimensional data. Depending
on the application the dimensionality of the lower dimen-
sional space may vary. E.g., for pattern recognition tasks,
one keeps a large amount of dimensions, discarding only
least relevant ones. For visualisation the target space is usu-
ally very low dimensional.

Force-Directed placement (FDP) [FR91] is a method in-
spired by physics where points are considered as parti-
cles attracting and repulsing each other by physical forces.
FDP can be seen as an MDS if the forces are calculated
from the high-dimensional distances. The drawback of the
global methods is that they solely optimise towards one
global values, thus not reflecting local properties of the high-
dimensional space in the projection.

More recently, localised, non-linear approaches have been
proposed, partly as derivatives of the linear methods. Kernel
PCA [SSM98] uses a kernel to apply local transformation of
the high-dimensional data. Localised MDS (LMDS) [CB09]
aims at preserving local distances of the data by applying
a localised stress function. IsoMap [Ten00] and Local Lin-
ear Embeddings (LLE) [RS00], are further examples of non-
linear dimensionality reduction methods.

Our work has been motivated by the need to optimise an
existing force-directed placement algorithm. This algorithm
combines clustering, force-directed placement and spatial
tessellations to generate information landscapes from very
large document collections [SKM∗09]. It has been applied
in several research and industry projects. Consequentially,
we evaluated the stress map approach by trying to identify
known stress-related phenomena in this algorithm. Evalua-
tion results are outlined in section 4.2.

2.3. Local and Global Stress Measures

In this section we compare local and global stress mea-
sures focusing on global and local versions of metric multi-
dimensional scaling. Stress is a measure of lack-of-fit be-
tween high-dimensional dissimilarities and the distance in
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the layout. For the global case we focus on stress as defined
in metric MDS and for the local case we focus on stress as
defined in local MDS (LMDS) [CB09].

The most elementary stress definition in metric MDS is
the raw stress defined by [Kru64] as the residual of sum-
squares of the high-dimensional distances di j and the geo-
metric distances gi j

SG = ∑
i, j

(di j−gi j)
2 (1)

Later extensions to this formula include various weighting
and normalizing parameters.

In contrary to the global optimization, LMDS [CB09] in-
cludes repulsive forces between points with large distances,
resulting in the stress function:

SL = ∑
i, j∈N

(di j−gi j)
2− t ∑

(i, j)6∈N
ggi j (2)

t =
|N|

N(N−1)
2−|N|

·medianN(di j) · τ (3)

with N being a symmetric set of nearby pairs (i, j): (i, j)∈N
if j is among the K nearest neighbours of i, or i is among
the K nearest neighbours of j, and t being a fixed constant
depending on a tuning parameter τ, also called repulsion pa-
rameter. The stress function SL can be optimised for a fixed
τ, i.e. a fixed t. The LDMS layout depends on the choice of
this parameter.

To assess the local quality of a given layout Chen et
al. [CB09] propose a LC-Meta criterion. The LC-Meta
criterion measures the preservation of local structures in
terms of overlap of set of nearest neighbours in the high-
dimensional space and and set of nearest neighbours in the
low-dimensional space. The parameter number of neigh-
bours has to be set beforehand, values of 6 or 8 seem to be
good choices [CB09]. The LC-Meta criterion is not smooth
and can not be subjected to optimization, but can be used
to select among various parameter configurations. The LC-
meta criterion can be calculated point-wise and globally. The
point-wise version can be used for evaluating stress on a lo-
cal level. The global version gives an idea of the average
local quality of the layout.

This localised stress measure does not differentiate be-
tween different forms of projection errors. In our experi-
ments, we were interested in errors introduced by differ-
ences in both high-dimensional and low-dimensional dis-
tances. Therefore, we introduce an alternative local stress
measure, as outlined in section 3.1.

2.4. Related Work

In early 2010, Schreck et al. [SvLB10] described a method-
ology for the visual assessment of projection precision
which, in large parts, antedates our stress map approach

(This paper was submitted in early 2010. We were not aware
of the work of Schreck et al. and would like to thank the
reviewers for pointing it out.). The visualisation and inte-
gration strategy is in fact very similar. However, the stress
evaluation function we propose features a novel weighting
term which differentiates between types of projection errors
(compare section 3.1).

3. Our Approach

We create a stress map from a given layout based on a reg-
ular grid which covers the layout area. Each grid cell is first
assigned the (normalised) stress value computed from the
chosen stress function for the cell’s position. The grid is then
interpreted as a height map and cell values are used as inter-
polation support points to generate landscape geometry. A
heat map is created from the grid by mapping cell values to
a colour palette. The resulting stress map is composed by ap-
plying the heat map as a texture to the landscape geometry.

The stress map reflects the stress function values in both
colour and height. However, the location of individual items
is the same in the stress map and in the information land-
scape. Furthermore, the metaphor of the information land-
scape is fully retained in the stress map. It is therefore possi-
ble to switch between information landscape and stress map
without loss of visual context. We expect this property of
stress maps to ease interpretation of stress-related phenom-
ena.

In our experiments, we employed a non-linear colour
palette which represents low to high stress values as a
smooth transition from blue to red and very high stress val-
ues as yellow (compare scale at lower right of figures 1(c)
and 1(d)). The resulting pop-out effect enables the pre-
attentive detection of regions having very high stress. Indi-
vidual items were represented as coloured dots. The blue
to red range of the described colour palette was mapped
to the full range of stress values in assigning item colours.
Therefore, items remained visible especially in high-stress
regions. The colour coding of items facilitates assessment of
stress on a single item level.

3.1. Adapted Local Stress Measure

The stress map visualisation is independent of the applied
stress-measures. In general, two types of errors (stress) may
occur when mapping high-dimensional data to a lower di-
mension. The first type of error is if two items with a large
high-dimensional distance are placed nearby in the layout.
We refer to this kind of error as El→s (l stands for large and
s for small, the first index represents the high-dimensional
distance). The second type of error is Es→l occurring when
items that are nearby in the high-dimensional space are
mapped to locations with large distances in the layout. No
error occurs in the other cases. Table 1 shows an overview
over the error types.
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high-d distance
large small

low-d distance
large no error Es→l
small El→s no error

Table 1: Types of errors in projection algorithms

To be able to identify both types of errors we propose the
following stress function s to visualise local phenomena in
an projection based layout.

si j = wl
i j ·wh

i j · (di j−gi j)
2 (4)

wl
i j = (1−gi j)

a (5)

wh
i j = (1−di j)

b (6)

where wh reflects the influence of the high-dimensional dis-
tance (the size of the neighbourhood in high-d) and wl

reflects the influence of the low-dimensional distance (to
which extend nearby positioned items contribute to the
stress). The exponents a and b define the size of the neigh-
bourhood. The formula assumes normalized distances, i.e.
di j ∈ [0,1] and gi j ∈ [0,1].

The total stress of an item i is then defined by

si = ∑
j

si j (7)

Note that si j depends on wi j which allow to reduce the items
taken into consideration to a local neighbourhood (either
high- or low-dimensional).

4. Experiments

In the following experiments we are interested in errors of
type El→d , i.e. item pairs with large distance in the high-
dimensional space mapped nearby in the low-dimensional
space. Therefore we set a we set a = 20 and b = 0 in equa-
tions 5 and 6. For our experiments we used the Reuters-
21578 text collection.

4.1. Algorithm

For information landscape computation of a text doc-
ument data set we employ an algorithm combining
clustering, force-directed placement and spatial tessella-
tions [SKM∗09]. We first recursively apply a k-means clus-
tering algorithm to create a hierarchy of topical clusters. A
cluster split-and merge strategy attempts to determine the
optimal amount of children at each hierarchy level and pre-
vents the degeneration of the cluster hierarchy. The recur-
sive, hierarchical projection algorithm starts with top level
clusters and projects their centroids into a rectangular area
using a force-directed placement (FDP) method. A polygo-
nal area is assigned to each cluster by applying Voronoi area
subdivision on the projected centroids. Sub-clusters are re-
cursively projected in the same manner and inscribed within

the areas of their parent clusters producing a hierarchy of
nested polygonal areas. At the bottom of the hierarchy the
documents (leafs) are projected within their parent-cluster’s
area using the same FDP method. Clusters (as well as sub-
clusters on all hierarchy levels) are labelled with the high-
est frequency terms of the centroid vector providing orienta-
tion at any required level of detail. The described projection
method is fast and scales with the time and space complex-
ity of O(n*log(n)), n being the number of clustered docu-
ments: 10000 vectorised text abstracts can be processed in
about 10 seconds on a 2.8 GHz Core i7 860 processor using
64bit Java VM (1.6.0_18), while over 300000 abstracts can
be clustered and projected in slightly over five minutes using
less than 6GB memory.

4.2. Results and Discussion

Figure 1 shows an example Information Landscape with 529
documents from the Reuters-21578 text data collection (the
subset was generated by searching for “China”). Image 1(a)
displays the standard landscape. In the following image 1(b)
we assigned the stress values of each item to its colour (blue
meaning low, red meaning high stress). The landscape tex-
ture remained unchanged so that hills appear where concen-
tration of documents is large. In figure 1(c) we go a step fur-
ther and also encode the stress value in the landscape. In the
resulting heat-map hills correspond to regions of high-stress.
Regions with low-stress remain flat and blue.

An exhaustive analysis of the correlation between visual
phenomena and the computed stress properties is beyond the
scope of this paper, and will be referenced in the future work
section. However, we manually inspected results for a sam-
ple data set and a projection algorithm with known proper-
ties using the stress map approach. We were able to verify
the occurrence of two expected phenomena.

Clusters containing a large number of documents tend to
have high stress. An inspection of cluster cohesion (i.e. the
inverse averaged inner cluster distance) suggests that rele-
vant clusters feature comparably low cohesion in the high-
dimensional space but comparably high cohesion in the vi-
sualisation space. We can attribute this effect to the nature
of the area subdivision algorithm, which does not consider
high-dimensional cohesion when assigning the amount of
area to a cluster.

The force-directed projection algorithm threats items in
neighbouring clusters independently. This leads to artefacts
at the cluster boundaries in the visualisation. For example,
the lowest peak in 1(c) is located at the boundary between
the clusters “treaty, india, points” and “imperial, yen, corp”.
The two items have a large high-dimensional distance but
are located very close to each other in the visualisation (as
shown in figure 1(d)).
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(a) standard landscape (b) standard landscape with stress-coloured items

(c) stress map, landscape encodes items stress (d) visual explanation of a local stress phenomenon

Figure 1: Steps of stress visualisation: 1(a) standard landscape visualisation without stress indicators, 1(b) single items in the
landscape are coloured corresponding to their stress value (blue - low, red - high), 1(c) stress map: the landscape using the
stress value for single items to define heights (yellow - highest stress, red - high stress, blue - low stress), 1(d) example stress
peak: two items at the boundary of two clusters, which were laid out independently, showing high stress
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5. Conclusion and Future Work

We have proposed stress maps as a visualisation methodol-
ogy for detecting local stress phenomena in projection based
layouts. A stress map is composed as a combination of a
heat map and a height map expressing stress values. It can
be seamlessly integrated with an information landscape cre-
ated by the projection algorithm to be evaluated.

We have defined two types of errors (El→s and Es→l)
that occur when mapping from high-dimension space to low-
dimensional space. Depending on the application one error
type might be of greater interest than the other. We therefore
defined a stress function for the visualisation that allows de-
tection of both types of errors by adjusting two parameters
(which could even be exposed to users through interface el-
ements). This feature also sets our approach apart from im-
portant, recent related work. A comparative evaluation of ap-
proaches is an obvious direction of future work.

We have investigated the results obtained by the proposed
methodology using a projection algorithm and test data set
with known properties. We found strong visual indicators
for two expected stress-related phenomena. An exhaustive
analysis of the correlation between visual phenomena and
the computed stress properties is a natural next step.

The current version of the stress map approach displays
area stress level and item stress level. However, it does not
display the extend to which other items contribute to the
stress of an specific item. This information is implicitly com-
puted during the evaluation of the stress functions and could
be visualised, for example by showing the directions of the
large stress components as a vector field.
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