
Workshop on Virtual Reality Interaction and Physical Simulation VRIPHYS (2010)
J. Bender, K. Erleben, and M. Teschner (Editors)

Accelerated Hierarchical Collision Detection for Simulation
using CUDA

Jimmy A. Jorgensen., Andreas R. Fugl and Henrik G. Petersen

Maersk Mc-Kinney Moller Institute at University of Southern Denmark, Denmark

Abstract
In this article we present a GPU accelerated, hybrid, narrow phase collision detection algorithm for simulation
purposes. The algorithm is based on hierarchical bounding volume tree structures of oriented bounding boxes
(OBB) that in the past has shown to be efficient for collision detection.
The hierarchical nature of the bounding volume structure complicates an efficient implementation on massively
parallel architectures such as modern graphics cards and we therefore propose a hybrid method where only box
and triangle overlap tests and transformations are offloaded to the graphics card.
When exploiting coarse-grained parallelism in grasping and stacking simulations, requiring all-contacts resolu-
tion, a performance gain of up to 7x compared to the collision detection package PQP is obtained.

1. Introduction

Collision detection between geometric models is known to
be a fundamental task in many areas such as entertain-
ment, robot motion planning and physics simulation. Ap-
plications include haptic rendering, 3D games, animations,
motion planning and more.

For most of these applications collision detection is often
the performance bottleneck. This has motivated extensive re-
search in efficient collision detection algorithms. Lately the
scientific community has shown an increased interest for ac-
celerating algorithms on specialized hardware with parallel
computing capabilities. Part of the explanation of this new
focus is the broad range of new computing platforms that
are cheap, available and that promise high theoretical per-
formance.

One such platform is the modern graphics processing unit
(GPU). Originally used in the demanding 3D gaming in-
dustry, the GPU has become popular for general purpose
computing, resulting in a community around the technology
(http://www.gpgpu.org).

In this paper we present a collision detection algorithm
for the GPU. It is primarily designed for but not limited to
applications of rigid body simulation. Because of the mas-
sively parallel architecture of the GPU a hybrid method has
been developed, where administrative tasks are executed on

the CPU while the GPU performs administratively simpler
and computationally heavier tasks.

The method is tested against the Proximity Query Pack-
age (PQP) [GLM96] which is an optimized and available
software library for collision detection. We test an applica-
tion scenario in both serial and parallel execution of collision
queries, where all contacts between objects needs to be re-
solved.

Our method show a performance gain of up to a factor of
7 in applications where collision queries are run in parallel.

2. Related work

Considerable work on developing efficient and specialized
algorithms for collision detection has been done in the last
two decades. Being generally flexible and efficient, algo-
rithms based on hierarchical bounding volume structures
has received special focus [GLM96, KHM∗98, CLMP95] to
mention a few.

Within this special class of collision detection algorithms,
the following areas has been subject to extensive optimisa-
tion: overlap tests of primitives [Hel97,DG02] and bounding
volumes [GLM96], temporal coherence when using separat-
ing axis theorem (SAT), temporal coherence on the bound-
ing volume test tree [TTSD06], spatial coherence, hybrids
on the hierarchical data structure, cache friendly data struc-

c© The Eurographics Association 2010.

DOI: 10.2312/PE/vriphys/vriphys10/097-104

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/PE/vriphys/vriphys10/097-104

J. A. Jorgensen, A. R. Fugl and H. G. Petersen / Accelerated Hierarchical Collision Detection for Simulation using CUDA

tures [YM06], Non-binary tree structures and lately usage of
parallel architectures.

In [NA05] they present a naive implementation of colli-
sion detection in an FPGA, based purely on triangle intersec-
tion tests which is later combined with a dedicated motion
planning chip [NA06]. Recently complete hierarchical col-
lision detection kernels has been implemented in dedicated
hardware. In [RHZA06a] and [RHZA06b] hierarchical col-
lision detection based on k-dops with fixed-point arithmetic
was implemented and later optimized for memory band-
width. Unfortunately only vague comparison to an unknown
algorithm on the PC platform was presented.

The earliest collision detection algorithms on GPUs used
the specialised 3D rendering pipeline to utilise image-space
computations which were applicable to both rigid and de-
formable models [BWS98, BW03, HTG04]. With advances
and more openness of the GPU architecture it became easier
to write general purpose algorithms [OLG∗07]. First came
the introduction of specialised programs known as "shaders"
and later came full access to the parallel "many-core" archi-
tecture of the modern GPU. Though languages for program-
ming the GPUs are still vendor specific, with CUDA from
NVIDIA and CTM from ATI in the lead, steps are taken
toward vendor independent languages such as OpenCL and
BrookGPU.

Latest research in collision detection algorithms for mod-
ern GPU’s have focused on broad phase implementations,
particle simulation and deformable models [Ngu07] which
all fit relatively well to the many-core architecture.

However recently a hybrid approach similar to that de-
scribed in this paper was presented in [KHH∗09]. Their
method is based on a continuous collision strategy and they
obtain a speedup similar to that presented in this paper. This
however is with the use of 2 GPU and 4 CPU cores in com-
parison to our method that use 1 GPU and 1 CPU core.

Similar but more comprehensive work has later been done
in [LMM10] where both discrete, continuous and distance
queries where implemented on the GPU. Instead of the hy-
brid approach the complete algorithm was implemented on
the GPU which for discrete collision detection provided sim-
ilar results as those obtained in this work.

3. OBB based hierarchical collision detection

In this section we give a short outline of hierarchical colli-
sion detection based on OBBs.

3.1. Hierarchical collision detection

Hierarchical collision detection use model sub division to
accelerate collision queries between two geometric objects
by quickly discarding (culling) large subparts of each object
that is not in collision with the other.

A1B1

CTTAB

1

4

2

6

3

75

BbvhAbvh

A3B3

A6B6 A6B7 A7B6 A7B7

A3B2

A6B4 A6B5 A7B4 A7B5

A2B2

A4B4 A4B5 A5B4 A5B5

A2B3

A4B6 A4B7 A5B6 A5B7

1

4

2

6

3

75

Figure 1: The resulting bounding volume test tree from
traversing the bounding volume hierarchies Abvh and Bbvh
using a simultaneous descent strategy.

These data structures are so-called bounding volume hier-
archies (BVH). Each node in a BVH has a bounding volume
(BV) attached that bounds one or more primitives of the ge-
ometry, typically triangles. A child node bounds a subset of
the primitives that its parent node bounds.

When determining if two objects are colliding the BVH
trees are traversed from the root BV and intersection tests
are performed on BV’s from each tree. If a node A inter-
sects with another node B, then child nodes of A and B
will be checked for intersection. If the traversal reaches two
leaf nodes then intersection between the primitives of the
nodes are computed. This approach effectively decrease the
number of primitive intersection tests compared to a naive
O(N2) approach. Many optimizations of both tree traversal,
tree building and tree structure are available. More in depth
descriptions can be found in [Eri05].

3.2. The bounding volume test tree

The Bounding Volume Test Tree (BVTT) is the combina-
tion of two or more BVH’s given some descent strategy, into
a tree where a node represents an overlap test between two
nodes from different BVH’s. A descent strategy determines
how to proceed when two nodes from two BVH’s are over-
lapping. The most common descent strategy is the alternat-
ing strategy where the children from one of the overlapping
parent nodes is tested for overlap with the other parent node.
The simultaneous descent strategy descents in both parent
nodes and tests the children of one parent node with the chil-
dren of the other parent node.

Assuming the BVH’s are binary trees, a simultaneous de-
scent rule will result in a 4-ary BVTT as shown in figure 1
if an alternating descent rule is used, the BVTT will be a
binary tree.

3.3. Efficient intersection test

Intersection tests are the heart of any hierarchical collision
detector. In this study we have chosen OBBs as the bound-
ing volume type and triangles to describe the object geom-

c© The Eurographics Association 2010.

98

J. A. Jorgensen, A. R. Fugl and H. G. Petersen / Accelerated Hierarchical Collision Detection for Simulation using CUDA

etry. Computational complexity of OBB overlap tests are of
medium complexity compared to that of spheres and k-dops,
and earlier work [GLM96] has shown good results using this
type of bounding volume.

The efficiency of an algorithm for intersection tests is
largely dependant on the architecture on which it is running.
E.g. streaming architectures usually don’t handle branch
logic efficiently. In previous work [EF08] two algorithms for
triangle overlap testing was implemented and benchmarked
on the GPU.

• Devillers - This triangle intersection algorithm was pre-
sented in [DG02]. It utilise extensive branch instructions
to reduce total number of operations and therefore re-
quires effective and complex branch handling.

• Segment-piercing - Straight forward computation of tri-
angle intersection by testing if any segment of a triangle
intersects the other triangle. This results in 2x3 segment-
triangle intersection tests.

Devillers triangle overlap test is by far the fastest on a
modern PC because of the PC’s advanced branch handling.
But with the lack of good branch handling on the GPU the
computationally heavier but simpler Segment-piercing algo-
rithm performs up to 3 times faster.

Testing intersection between OBBs is less complex than
between triangles and the method based on the separating
axis theorem proposed by Gottschalk [GLM96] is consid-
ered very efficient on a standard PC. When running on the
GPU though, there is less benefit from the early exits that can
be taken when there is no intersection between two OBBs.
This is due to the SIMD nature of the GPU which suffers
from branching.

3.4. Issues

Collision detection algorithms based on hierarchical bound-
ing volume trees are inherently serial in nature. A node in
the BVTT must be checked before any of its children are
checked. Therefore it is not obvious how to apply such an
algorithm to a massively parallel architectures, e.g. GPUs.

4. Method

The GPU is a massively parallel architecture which can be
exploited through the CUDA API. Though CUDA has sup-
port for branching and inter-thread communication, a GPU
is optimized for processing of large data sets in a SIMD fash-
ion. Serial code can be hard to fit on the architecture and will
rarely reach the same instruction throughput as on a general
purpose CPU.

It was therefore decided to focus on accelerating the inter-
section tests of OBBs/triangles along with the matrix mul-
tiplications involved in coordinate transformations between
object frames. These operations are characterised by high

Collision Detector

Queries

CTT Traversal
Streams

GPUCPU

Overlap tests

Queue

Figure 2: Multiple threads are using an instance of the colli-
sion detector. Queries are traversed in parallel and batches
of OBB and triangle tests are gaathered in workpiles. The
workpiles are send to the GPU for processing through a
number of streams.

floating-point intensity, small amount of branches and re-
quiring no inter-thread communications.

The collision detection algorithm rely on the application
to exploit coarse grained parallelism for enabling cost effec-
tive utilisation of the GPU architecture. As such, multiple
queries to the collision detector are expected to be called in
parallel.

Figure 2 show an overview of the hybrid method, that
works partly on the CPU and partly on the GPU. A number
of threads each has a collision detector instance that defines
an interface for querying for collisions on a workcell(virtual
environment) with a specific configuration.

All queries are pushed onto a queue from where the BVTT
traversal is initiated by a separate thread. Box and trian-
gle overlap tests are assembled into workpiles, by travers-
ing multiple BVTTs which possibly span multiple queries.
The workpiles are sent to a GPU manager thread that gath-
ers workpiles from multiple queries and streams them to
the GPU for overlap testing. The overlap test results are
forwarded back to the traversal thread where new overlap
batches are assembled for processing.

In the following the three main stages of the algorithm are
described: tree traversal, gathering and overlap testing.

4.1. BVTT traversal

A collision query is composed of multiple collision objects
that each require a BVTT traversal state. The state maintains
a stack of overlap test batches that are not yet processed. The
pseudo code in Algorithm 1 illustrate the flow of the basic
collision query.

The workpile is populated by "initial work" which is the
set of root nodes of all BVTT’s that is being traversed. In
applications where there is strong temporal coherence be-
tween two consecutive collision queries, initial work can be
initialised with the front of the previous query. The front as
shown in figure 3 is the list of all nodes in the BVTT that is
non-overlapping.

c© The Eurographics Association 2010.

99

J. A. Jorgensen, A. R. Fugl and H. G. Petersen / Accelerated Hierarchical Collision Detection for Simulation using CUDA

Algorithm 1 The Collision Query
updateObjectTransforms(currentstate)

2: addInitialWork(traverseStates, workpile)
calculate transform T B

A
4: while !obbBatchStack.empty() do

GPUWorker.processWork(workpile);
6: wait();

assembleWork(traverseStates, result);
8: end while

Front

CTT

Colliding

Non-colliding

Not tested

Figure 3: The front is used to hot start the testing of nodes
in the BVTT when temporal coherence can be exploited. In
the best case scenario half the test nodes can be culled.

After the workpile has been populated with initial work
it is sent to the GPU where overlap tests are processed. The
result is a list of integer values that encode the overlap test
results.

Traversing the BVTTs is done using a simultaneous de-
scent strategy where all children of one bv node is tested
for overlap against all children of another bv node. This
generates more work than the traditional approach where a
parent bv node is tested against the children of another bv
node. Even though more work is generated the strategy fits
well into the GPU architecture because it generates smaller
batch descriptions and therefore reduce bandwidth require-
ments between CPU and GPU. The strategy also benefits
from faster descending into the BVTT.

To reduce the overhead of traversing the BVTT an implicit
pure balanced node tree is used. This means that no fetching
of memory is necessary to get the child indexes of a node,
or to test if a node is a leaf or not. The traversal is there-
fore quite fast and uses only little memory, but it requires a
perfectly balanced tree.

To generate a perfectly balanced tree a top-down construc-
tion using a median splitting strategy is used. This results in a
nearly balanced tree where only the last level in the tree is in-
complete. To populate the last level in the tree all leaf nodes
in the level above the last level are copied into their chil-
dren thereby creating a perfectly balanced tree. This how-
ever generates redundant nodes in the last level of the tree
and in worst case half of all the bounding volumes become
redundant.

4.2. Gathering/processing of WorkPiles

When the BVTT has performed a descent step of the front
and populated a workpile, it is sent to the GPU for process-
ing. The batches contained in the workpile are copied to the
global device memory before they can be processed. The
collision results are copied back to the host when the GPU
has finished processing the workpile.

In order to reduce the overhead of these memory transfers,
the asynchronous streaming API of CUDA is utilized. The
processing of WorkPiles is also a separate thread from the
BVTT traversal. The BVTT traversal may therefore continue
while the GPU is processing workpiles, as long as enough
independent work in the scene is provided.

Periodically the thread managing the GPU will poll the
running streams for completion, which indicates that the
GPU has finished copying the intersection test results back to
the host. The thread then notifies the BVTT traversal stage,
and continues.

4.3. Overlap testing

The overlap testing kernels are started after the host has fin-
ished copying the batches to the global device memory. The
different types are treated separately, that is triangles and
OBB batches are processed in separate kernel launches.

Inside the kernels the mapping of batches to CUDA ker-
nel threads is 1:1, i.e. a single thread performs the tests con-
tained in a single batch. For moderate to large batch sizes this
simple scheme performs well. During initial partitioning of
the problem, the system will try to maximise the number of
threads running within a thread block. Should there be more
batches than the maximum number of threads within a thread
block, more thread blocks will be launched. As expected the
performance of the GPU will only be high when there are
enough thread blocks to occupy the multi-processors. For
the GTX 260 used in the experiments this is around 24 to 30
blocks. (An even larger number of thread blocks is in theory
helpful for hiding latency, but this has not been observed.)

The steps within the OBB kernel can be seen in Algorithm
2. The triangle kernel is very similar to the OBB kernel, ex-
cept that it requires other transformations and algorithms for
overlap testing.

For overlap testing of batches, the GPU requires all prim-
itives (OBBs, triangles) and object-object transformations
to be present in the device memory. The primitives do not
change during a simulation and are thus only transfered once
in a simulation run. The transformations on the other hand
may change with each new query. The transformations are
kept in a portion of the GPU device memory which is cached
(constant memory).

The upper bound on coarse-grained parallelism relates to
the number of queries which can be called in parallel. As

c© The Eurographics Association 2010.

100

J. A. Jorgensen, A. R. Fugl and H. G. Petersen / Accelerated Hierarchical Collision Detection for Simulation using CUDA

Algorithm 2 OBB Overlap Kernel
fetch batch from device memory

2: calculate OBB indices from batch
calculate transform T B

A
4: for all obbA ∈ OBBs to be tested from object A do

calculate T B
obbA

6: for all obbB ∈ OBBs to be tested from object B do
calculate T obbB

obbA

8: res← overlapTest(obbA,obbB,T
obbB

obbA
)

end for
10: end for

write res to device memory

each of these parallel queries require a set of unique trans-
formations, there needs to be at least room for N×M trans-
formations, where N is the number of parallel queries and M
is the number of objects in the scene. For the current imple-
mentation the limit is due to the location in constant memory.

As expected for the massively parallel GPU, there needs
to be several thousand batches for it to reach peak perfor-
mance. This is due to the large number of threads, the launch
overhead of the kernels and the scheduling system within the
GPU. Achieving enough batches is done by either having a
large scene with many objects or running multiple queries of
the scene in different configurations in parallel.

5. Performance model

The cost of a proximity query when using bounding volume
hierarchies is usually calculated with the following expres-
sion:

T = NbvCbv +NpCp (1)

where T is the total cost, Nbv is the number of bounding
volume pair tests, and Cbv is the total cost of a bounding vol-
ume pair test including the cost of transforming one bound-
ing volume into the bounding volume coordinate frame. Np
is the number of primitives tested for collision and Cp is the
cost of testing a pair of primitives for overlap.

As with the traditional cost function we expect the cost of
our algorithm to depend on the number of OBB and trian-
gle pair tests that is performed. Though since our algorithm
basically runs in multiple threads the function needs to be
modified. We have to consider two cost functions namely
that covering traversing the BVTT and that which covers
processing of workpiles.

The cost of traversing the BVTT is usually not explicitly
modelled in the traditional cost function. Though it should
be obvious that the cost of traversing the BVTT is closely
related to the number of OBB and triangle pair tests that are

performed. So we use an expression similar to that of the
traditional cost function:

Tcpu = NbvCt,bv +NpCt,p (2)

where Ct,bv is the cost of traversing one OBB test pair and
Ct,p is the cost of traversing one triangle pair.

When processing workpiles the GPU processes OBB and
triangle pair tests in seperate workpiles. The cost function of
the intersection tests and memory transfers in itself is similar
to the traditional cost function, though the initialisation of
kernels and memory copies gives rise to an offset Cp,o f f and
Cbv,o f f in the cost function. Since workpiles are processed
as either OBB pair or triangle pair workpiles two identical
cost functions can be derived.

Tbv,GPU =
Nbv,wp

∑
i=0

Cbv,o f f +CbvNbv,i (3)

≈ Nbv,wp(Cbv,o f f +CbvNbv,avg) (4)

where Nbv,wp is the number of OBB workpiles and Nbv,avg is
the average number of OBB batches in a workpile. The cost
function of the triangle processing is similar

Tp,GPU ≈ Np,wp(Cp,o f f +CpNp,avg) (5)

6. Test Results

In this section we present benchmark results of our method.
The collision detection library PQP running on a single
thread was used as reference. To enable a fair comparison
when using multiple parallel queries in the tests we forced
our algorithm to execute on a single cpu core.

All tests were run from a PC with an Intel Core 2
Quad 2.83GHz processor and 2GB DDR2 memory, run-
ning GNU/Linux (Ubuntu 8.10). A NVIDIA GeForce GTX
260 graphics card was used as the platform for the GPU
benchmark, used in the same PC previously mentioned. The
algorithms were implemented in CUDA 2.2 with single-
precision floating point.

Three different classes of tests were performed:

• BVTT traversal performance - Though normally not taken
into consideration when discussing performance of BVH
methods we have experienced that the time taken to tra-
verse the BVTT is not insignificant. These tests will help
determine an upper bound on the expected speedup when
considering the CPU as the bottleneck.

• Processing performance - the performance of the GPU
for overlap tests are used to estimate an upper bound on
the expected speedup assuming the GPU to be the per-
formance bottleneck. The tests include both box-box and
triangle-triangle overlap tests.

c© The Eurographics Association 2010.

101

J. A. Jorgensen, A. R. Fugl and H. G. Petersen / Accelerated Hierarchical Collision Detection for Simulation using CUDA

• Collision detection in simulation - the actual performance
of the complete algorithm when used for rigid body sim-
ulation of a fairly complex scene.

In the following tests the triangle-triangle intersection al-
gorithm on the GPU is not capable of handling co-planarity.
The co-planarity can be discarded if we assume that mod-
els are solid models and if two equal models never have the
exact same configuration.

6.1. Test data

Triangle and box overlap tests are performance wise sensi-
tive to whether the test returns true or false. In the box-box
overlap test based on separating axis a non-colliding box-
pair can be up to 15 times faster than a colliding one. So to
enable a realistic performance evaluation the collision test
data is constructed from a full simulation scenario.

Figure 4: Scene used for generating realistic contact data.
Each of the 106 objects has more than 4000 triangles.

In figure 4 a large number of fairly complex objects are
dropped into a pallet. The setup is used to generate realisti-
cally looking pallets of objects for training a vision system
in a bin picking application. The simulation span over 700
time steps where each timestep require collision detection.
In the first few frames of the simulation all objects are dis-
joint and the collision detector is therefore only burdened
with a small number of overlap tests. As the simulation pro-
gresses the number of colliding objects increase drastically
and so does the load on the collision detector.

6.2. BVTT traversal performance

Traversing the BVTT is expected to be low cost compared
to doing actual overlap tests. Though since we run acceler-
ated overlap queries in parallel the cost of BVTT traversal
is important to the actual speedup. E.g. if BVTT traversal
takes 10% of the time then, as a consequence of Amdahl’s
Law, we will never get a speedup of more than a factor 10.
The purpose of this test is therefore to investigate the cost of
traversing the BVTT.

The total traverse time depends on the number of vis-
ited nodes in traversing the BVTT. In our implementation
the traversing is split in an assemble and an update step.
Figure 5 show the combined assemble and update perfor-
mance in respect to the number of batches in a workpile.
Performance results for both OBB workpiles and triangle
workpiles are plottet and lines are fitted to the data such
that we estimate Ct,bv = 6.76 · 10−5ms/batch and Ct,p =

2.93 ·10−5ms/batch.

y = 6,87E -05x

y = 2,93E - 05x

0

0,2

0,4

0,6

0,8

1

0,5

1,4

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

Ti
m

e
 t

o
 t

ra
ve

rs
e

 W
P

 in
 m

s

Nr of batches per WP

OBB batches

Triangle batches

Figure 5: Cost of traversing the BVTT with respect to the nr
of batches in a workpile that is generated from the travers-
ing.

6.3. Processing performance

The processing timing includes copying workpile to the
GPU, testing the OBB or triangle batches on the GPU
and copying results back from GPU. Figure 6 show two
data series: one for workpiles of OBB batches and one
for workpiles of triangle batches. Using the fitted tendency
lines we estimate Cbv,o f f = 2.36 · 10−5ms/batch and Cbv =

9.61 · 10−2 as well as Cp,o f f = 1.52 · 10−5ms/batch and
Cp = 6.21 ·10−2.

The relative large offset for both OBB and triangle
workpiles indicate that large workpiles is needed to increase
performance. Consider using workpiles with an average size
of 5000 batches. In such a case only half the processing time
is used for actual processing of overlap queries.

6.4. Collision detection in simulation

Simulation is sequential in nature, to process the current
frame the results of the previous frame is needed. So for
small simple scenes we do not expect the GPU accelerated
algorithm (PCD) to perform much better than the CPU based
algorithm.

In this test the scene is fairly complicated though the num-
ber of colliding objects change over time. Figure 7 show the

c© The Eurographics Association 2010.

102

J. A. Jorgensen, A. R. Fugl and H. G. Petersen / Accelerated Hierarchical Collision Detection for Simulation using CUDA

y = 2E -05x + 0,0621

y = 2,36E-05x + 9,61E-02

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

0,45

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

Ti
m

e
 t

o
 p

ro
ce

ss
 W

P
 in

 m
s

Nr of batches per WP

Triangle batches

OBB batches

Figure 6: Cost of processing OBB and triangle batches with
respect to the nr of batches in a workpile.

Figure 7: Nr of OBB and triangle tests in each time step for
both PQP and PCD.

number of OBB and triangle overlap tests that are performed
in each time step. In general PCD performs about twice the
amount of OBB tests and triangle tests than that of PQP. In
the beginning of the simulation where no objects are collid-
ing PCD even performs up to 10 times the amount of work
than PQP. This increased amount of work is a result of the si-
multaneous descent method and the less efficient BVH struc-
ture that is used in PCD.

Though more work is performed the overall performance
of PCD is clearly better than that of PQP. Figure 8 show
the query time in each time step of the simulation. In the
first 100 steps very few overlap tests are performed and PCD
is slightly slower than PQP. The number of overlap test in-
creases drastically after the 100th step and the performance
of PCD increase to about 6 times that of PQP.

In table 1 the total time for running the simulation se-
quence with the different methods is listed. The PCD-P is
PCD where individual time frames are executed in parallel.
Parallel execution only makes sense in applications that run
multiple simulations.

0

0.05

0.10

0.15

0.20

0 100 200 300 400 500 600 700
0

100

200

300

400

.

Step

Time PCD
Time PQP

Object-object collisions

Q
u

e
ry

 T
im

e
 (

s)

O
b

je
ct

-o
b

je
ct

 c
o
lli

si
o
n
s

Figure 8: Time to perform complete collision queries in each
time step of the simulation.

PQP PCD-S PCD-P
Time 75.692s 12.9801s 10.9
Gain 1 5.83 6.94

Table 1: Performance comparison.

7. Discussion

It is obvious that the average workpile size has a large impact
on the efficiency of the processing step due to the relatively
large offsets Cbv,o f f and Cp,o f f . By investigating both tra-
verse and processing performance we can calculate the aver-
age workpile size where the cost of traversing or processing
is equal. We calculate the intersection of the tendency lines
and get:

Nbv,avg =
Cbv,o f f

Ct,bv−Cbv
≈ 2130 (6)

Np,avg =
Cp,o f f

Ct,p−Cp
≈ 4404 (7)

Which basically means that for Nbv,avgwp > 2130 or
Np,avgwp > 4404 the BVTT traversal will become the per-
formance bottleneck of the algorithm. For such a small
workpile size the processing step is highly inefficient, see
figure 6. This suggests that optimizations to reduce the cost
of the BVTT traversal will result in an overall performance
gain.

The simultaneous descent method was chosen because it
reduced both the load on traversing and communication to
the GPU. This admittedly also doubled the amount of over-
lap tests but the increased number of overlap tests had no
effect on the overall performance since the BVTT traversing
was identified as the bottleneck.

8. Conclusion and future work

We presented a hybrid hierarchical based collision detection
method where BVTT traversal was implemented on the CPU

c© The Eurographics Association 2010.

103

J. A. Jorgensen, A. R. Fugl and H. G. Petersen / Accelerated Hierarchical Collision Detection for Simulation using CUDA

and overlap testing of OBB and triangles was implemented
on the GPU.

To reduce the cost of traversal we modified the original
algorithm with: a pure implicit tree structure, a simultanous
descent strategy and created bounding volume hierarchies
with up to 2 triangles in each leaf. Though these modifi-
cations led to a doubling in overlap tests an overall perfor-
mance gain of a factor 7 was still observed.

To increase the performance even further the BVTT
traversal should be optimised. Using k-dop or other more
complex bounding volumes instead of OBB would create
smaller bounding volume tree and as a result the traversal
should be faster.

Another approach would be to move more responsibil-
ity to the GPU. Instead of only testing one BVTT node per
thread each thread could traverse a smaller sub tree of the
BVTT. This however would possibly add complex synchro-
nisation and branching code to the GPU kernels which has a
negative impact on the performance.

References
[BW03] BACIU G., WONG W. S. K.: Image-based techniques in

a hybrid collision detector. IEEE Transactions on Visualization
and Computer Graphics 9, 2 (2003), 254–271. 2

[BWS98] BACIU G., WONG W., SUN H.: Recode: An image-
based collision detection algorithm. Computer Graphics and Ap-
plications, Pacific Conference on 0 (1998), 125. 2

[CLMP95] COHEN J. D., LIN M. C., MANOCHA D., PONAMGI
M. K.: I-collide: An interactive and exact collision detection sys-
tem for large-scale environments. In In Proc. of ACM Interactive
3D Graphics Conference (1995), pp. 189–196. 1

[DG02] DEVILLERS O., GUIGUE P.: Faster Triangle-Triangle
Intersection Tests. Research Report 4488, INRIA, 2002. 1, 3

[EF08] ELLEHOEJ T. F. K., FUGL A. R.: Acceleration of Col-
lision Detection on Parallel Computer Architectures. Master’s
thesis, University of Southern Denmark, 2008. 3

[Eri05] ERICSON C.: Real-Time Collision Detection (The Mor-
gan Kaufmann Series in Interactive 3-D Technology). Morgan
Kaufmann, January 2005. 2

[GLM96] GOTTSCHALK S., LIN M. C., MANOCHA D.: Obb-
tree: a hierarchical structure for rapid interference detection. In
SIGGRAPH ’96: Proceedings of the 23rd annual conference on
Computer graphics and interactive techniques (New York, NY,
USA, 1996), ACM, pp. 171–180. 1, 3

[Hel97] HELD M.: Erit – a collection of efficient and reliable
intersection tests. Journal of Graphics Tools 2 (1997), 25–44. 1

[HTG04] HEIDELBERGER B., TESCHNER M., GROSS M.: De-
tection of collisions and self-collisions using image-space tech-
niques. In Journal of WSCG (2004), pp. 145–152. 2

[KHH∗09] KIM D.-S., HEO J.-P., HUH J., KIM J., EUI YOON
S.: HPCCD: Hybrid parallel continuous collision detection using
cpus and gpus. Computer Graphics Forum (Pacific Graphics) 28,
7 (2009). 2

[KHM∗98] KLOSOWSKI J. T., HELD M., MITCHELL J. S. B.,
SOWIZRAL H., ZIKAN K.: Efficient collision detection using
bounding volume hierarchies of k-dops. IEEE Transactions on
Visualization and Computer Graphics 4 (1998), 21–36. 1

[LMM10] LAUTERBACH C., MO Q., MANOCHA D.: gproxim-
ity: Hierarchical gpu-based operations for collision and distance
queries. In Computer Graphics Forum (Proc. of Eurographics)
(2010). 2

[NA05] NUZHET ATAY JOHN W. LOCKWOOD B. B.: A colli-
sion detection chip on reconfigurable hardware. In 13th Pacific
Conference on Computer Graphics and Applications (Oct. 12-14
2005). short paper. 2

[NA06] NUZHET ATAY B. B.: A motion planning processor
on reconfigurable hardware. In International Conference on
Robotics and Automation (May 2006), pp. 124–132. 2

[Ngu07] NGUYEN H.: Gpu gems 3. Addison-Wesley Profes-
sional, 2007. 2

[OLG∗07] OWENS J. D., LUEBKE D., GOVINDARAJU N.,
HARRIS M., KRÜGER J., LEFOHN A. E., PURCELL T. J.: A
survey of general-purpose computation on graphics hardware.
Computer Graphics Forum 26, 1 (2007), 80–113. 2

[RHZA06a] RAABE A., HOCHGÜRTEL S., ZACHMANN G., AN-
LAUF J. K.: Hardware-accelerated collision detection using
bounded-error fixed-point arithmetic. In Proceedings of WSCG
2006 (Plzen, Czech Republic, 30 January–3 February 2006),
Skala V., (Ed.), Union Agency, pp. 17–24. 2

[RHZA06b] RAABE A., HOCHGÜRTEL S., ZACHMANN G.,
ANLAUF J. K.: Space-efficient FPGA-accelerated collision de-
tection for virtual prototyping. In Design Automation and Test in
Europe (DATE) (Munich, Germany, 6–10 March 2006). 2

[TTSD06] TROPP O., TAL A., SHIMSHONI I., DOBKIN D. P.:
Temporal coherence in bounding volume hierarchies for collision
detection. International Journal of Shape Modeling 12 (2006),
159–178. 1

[YM06] YOON S.-E., MANOCHA D.: Cache-effcient layouts of
bounding volume hierarchies. Computer graphics forum (Euro-
graphics) 25 (2006), 506–516. 2

c© The Eurographics Association 2010.

104

