
Eurographics Symposium on Point-Based Graphics (2006)
M. Botsch, B. Chen (Editors)

Single-Pass Point Rendering and Transparent Shading

Yanci Zhang and Renato Pajarola

Visualization and MultiMedia Lab, Department of Informatics, University of Zürich

Abstract
Hardware accelerated point-based rendering (PBR) algorithms have suffered in the past from multiple rendering
passes; possibly a performance limiting factor. Two passes over the point geometry have been necessary because
a first visibility-splatting pass has been necessary for conservative ε-z-buffer visibility culling in the following
point-interpolation rendering pass. This separation into visibility-splatting and point-blending, hence processing
the point geometry twice, is a fundamental drawback of current GPU-based PBR algorithms. In this paper we in-
troduce a new framework for GPU accelerated PBR algorithm whose basic idea is deferred blending. In contrast to
prior algorithms, we formulate the smooth point interpolation problem as an image compositing post-processing
task. This is achieved by separating the input point data in a pre-process into not self-overlapping minimal in-
dependent groups of points. As an extension of this concept, we can for the first time render transparent point
surfaces as well on the GPU. For simple transparency effects, our novel algorithm only needs a single geometry
rendering pass. For high-quality transparent image synthesis an extra rendering pass is sufficient. Furthermore,
per-fragment reflective and refractive multilayer effects are supported in our algorithm.

Categories and Subject Descriptors (according to ACM CCS): I.3 [Computer Graphics]: I.3.3 [Picture/Image Generation]:
Display algorithms I.3.5 [Computational Geometry and Object Modeling]: Surface representations I.3.7 [Three-Dimensional
Graphics and Realism]: Color, shading, shadowing, and texture

Keywords: point based rendering, hardware acceleration, GPU processing

1. Introduction

Point-based rendering (PBR) has attracted growing inter-
est in the last few years as points as geometric modeling
and rendering primitives have shown to be an interesting
alternative to triangle meshes [Gro01, PG04, SP04, KB04].
Points are the basic geometry defining elements of three-
dimensional objects and surfaces. Moreover, most geomet-
ric modeling tasks can be performed directly on point sets as
demonstrated in [ZPKG02, PKKG03, BK05].

While the significance and adoption of point-based ge-
ometric modeling and rendering steadily increases, full-
featured point processing and shading algorithms must be
developed. Real-time PBR algorithms to date can achieve
high-quality rendering results and incorporate standard
shading features. However, efficient GPU-based PBR algo-
rithms [KB04, SP04, SPL04] generally suffer from 2+1 ren-
dering passes; two passes over the geometry and one image
processing pass. In particular, to achieve smooth interpola-
tion and resolve correct visibility of overlapping point splats,

a separate visibility-splatting rendering pass is employed to
initialize the visibility-determining depth-buffer. In a sec-
ond point-blending rendering pass the smooth interpola-
tion between visible overlapping points, and smooth shad-
ing, is performed. This separation into visibility-splatting
and blending, which requires processing the point geometry
twice, is one remaining fundamental drawback of PBR.

Moreover, GPU-based interactive rendering of transpar-
ent point surfaces has been a daunting task. This is mainly
due to the difficulty of integrating the following two different
blending operations simultaneously on the GPU:

1. Transparency-blending is used to α-composite transpar-
ent surface layers in a back-to-front order to generate the
effect of transparency. For this the z-buffer must be turned
off to include all fragments from all transparent layers.

2. PBR-blending is used to smoothly interpolate between
overlapping point splats within the same surface layer.
To interpolate between overlapping splats in one layer,
the z-buffer must be turned on to cull fragments farther

c© The Eurographics Association 2006.

http://www.eg.org
http://diglib.eg.org

Y. Zhang & R. Pajarola / Single-Pass Point Rendering and Transparent Shading

a) b) c) d)

Figure 1: Rendering transparent point objects on the GPU. Transparent and opaque objects with: a) single-pass algorithm and
b) two-pass algorithm. Reflective and refractive environment mapping with: c) single and d) multi-layer effects.

than some ε in depth from the visible surface, and pass
all others.

In this paper we present a new framework for GPU-based
PBR. Our framework is based on the new concept of de-
ferred blending which delays the ε-z-buffer visibility test to
an image post-processing pass so that only one pass over the
geometry data is required. The main contributions are:

• The first GPU accelerated PBR algorithm that only re-
quires one geometry processing pass.

• Two algorithms that implement rendering and shading of
transparent point surfaces as shown in Fig. 1, a 1+1 (ge-
ometry + image compositing) pass rendering algorithm
for simple transparency and a 2+1-pass algorithm for
high-quality transparent shading.

2. Related Work

Splatting-based PBR as introduced in
[PZvBG00, ZPvBG01] is the most widely adopted
technique. It provides a good tradeoff between per-
formance and rendering quality and is amenable
for hardware acceleration. A wide range of GPU-
accelerated point splatting algorithms such as
[RPZ02, BK03, ZRB∗04, BSK04, PSG04, BHZK05]
have been proposed in the past and are surveyed in
[SPL04, KB04, SP04].

Hardware accelerated point rendering techniques
for high-quality shading include antialiasing fil-
ters [RPZ02, ZRB∗04, BHZK05], point-splat nor-
mal fields [KV01] and per-fragment smooth shad-
ing [KV01, BSK04, BHZK05]. Also the combination
of point and triangle primitives have been proposed
[CN01, CAZ01, CH02, DH02] to improve rendering quality
and performance.

A basic and common feature of virtually all GPU-
accelerated PBR methods is the use of a separate visibility-
splatting pre-rendering pass, see also [SP04, SPL04, KB04].
Smooth point interpolation and shading is then achieved in
a second rendering pass which resolves visibility using the

depth-buffer generated during visibility-splatting. The 2+1-
pass rendering approach is completed by a color normaliza-
tion – including optional per-fragment shading – image pro-
cessing pass. The two rendering passes over the point geom-
etry data are highly undesirable. The reduction of geometry
processing to a single rendering pass is the goal of this work.

With respect to transparency, only a software algorithm
has been proposed to date [ZPvBG01]. It uses a software
frame buffer with multiple depth layers per fragment. Un-
fortunately, this solution cannot be mapped onto GPUs as
they neither support multiple depths per fragment nor the si-
multaneous read and write of the target buffer as necessary
by this solution.

In principle, depth-peeling [Eve02, Mam89] can be ap-
plied to PBR of transparent surfaces. Its idea is to render
the k-nearest layers in k geometry passes to different target
α-images and then α-blend these images together back-to-
front. However, as it requires several iterations over the ge-
ometry, each itself a multi-pass PBR algorithm, it is imprac-
tical for interactive PBR.

3. Visibility Splatting

3.1. Smooth Point Interpolation

A point set S covers a 3D surface by a set of overlapping
elliptical point splats s0...n−1. The projection of S in image
space must interpolate for each fragment f the contribution
of multiple overlapping splats si. For smooth interpolation,
the contribution of each splat si to the fragment f depends
on the distance |fi−pi| of the fragment’s intersection fi with
the splat plane of point pi in object-space.

The fragment color c(f) is eventually computed from all
overlapping splats si as the weighted sum of colors

c(f) = ∑i wi(fi) · ci

∑i wi(fi)
, (1)

where wi defines a smooth blending kernel which is cen-
tered on point pi and parameterized by its radius ri. For the

c© The Eurographics Association 2006.

38

Y. Zhang & R. Pajarola / Single-Pass Point Rendering and Transparent Shading

remainder we will limit us to circular disks, but elliptical
splats can be handled analogously.

Splats s j from occluded surface layers must not contribute
to the final color in Eq. 1. For this to work, an ε-z-buffer vis-
ibility test [RPZ02, BK03, BSK04, ZRB∗04, PSG04] dis-
cards any fragments from hidden splats s j farther back than
some ε from the nearest contribution of a visible splat si.

Since GPUs do not offer such a fuzzy visibility z-test,
hardware accelerated implementations of Eq. 1 resort to a
2+1-pass rendering algorithm. First, all point samples in S
are rendered, without shading but applying an ε offset, such
as to initialize a depth-buffer of the point surface S. Sec-
ond, with lighting and α-blending enabled but z-buffer writ-
ing disabled, the terms ∑i wi(fi) · ci and ∑i wi(fi) of Eq. 1
are accumulated into color crgb(f) and α cα(f) channels for
each fragment f respectively. The ε-offset of the first ren-
dering pass together with the disabled z-buffer writing in the
second achieves the desired ε-z-visibility. In a third image
normalization post-processing pass, the final fragment color
crgb(f)
cα(f) is generated as indicated by Eq. 1.

The first two passes are expensive iterations over the point
geometry data not only due to the transform & lighting cost,
but also in particular due to the complex vertex and fragment
shaders required to rasterize depth-corrected elliptical splats
in image-space [BSK04, ZRB∗04, BHZK05].

3.2. Deferred Blending

To avoid multiple passes over the point geometry data we
introduce a deferred blending concept that delays the ε-z-
buffer visibility test as well as smooth point interpolation
according to Eq. 1 into an image post-processing pass.

We note, as illustrated in Fig. 2, that if a given point set S
is sufficiently split into multiple groups Sk, with S =

S
kSk,

overlapping splats in image-space can be avoided. Let us
for a moment only consider splats of S which are part of
the nearest visible surface layer and that all other occluded
splats can be ignored. Assuming such non-overlapping point
groups Sk, the accumulation in Eq. 1 can be separated into
summations over the individual groups as follows:

c(f) =
∑si∈S wi(fi) · ci

∑si∈S wi(fi)
=

∑k ∑si∈Sk
wi(fi) · ci

∑k ∑si∈Sk
wi(fi)

(2)

Based on Eq. 2, for each group Sk we can form a partial
image Ik with fragment colors crgb(f)k = ∑si∈Sk

wi(fi) · ci
and fragment weights cα(f)k = ∑si∈Sk

wi(fi). The final com-
plete rendering result can then be formed by an image com-
positing step over all partial images Ik,

crgb(f) =
∑k crgb(f)k

∑k cα(f)k
. (3)

Moreover, as there is no overlap in image space between

splats within a group Sk, the fragment color and weight of Ik
can in fact simply be set to

crgb(f)k = wi(fi) · ci and cα(f)k = wi(fi), (4)

for the only splat si ∈ Sk that covers the fragment f . Hence
each fragment of Ik gets the contribution from exactly one –
the only visible – splat in Sk. Therefore, no more α-blending
and ε-z-buffer visibility culling is required to generate the
image Ik of an individual point group.

If the group Sk only contains splats si of the nearest vis-
ible layer not overlapping in image-space, then Eq. 4 can
easily be implemented as the splats si ∈ Sk only have to be
rasterized into image Ik. A single rendering pass over Sk can
write the per-fragment weighted color and weight itself into
the RGBα-channels. For all groups this requires exactly one
full traversal of the point data since S =

S
kSk. Post-process

image composition and normalization of all Ik according to
Eq. 3 yields the final smooth point interpolation.

In practice, however, a group Sk will not only contain
points from the nearest visible surface layer. On the other
hand, if all splats si, j ∈ Sk have no overlap in object-space,
that is |pi −p j| ≥ ri + r j, then simple z-buffer visibility de-
termination guarantees that all visible fragments from splats
si in the nearest surface layer of Sk are included in the image
Ik as shown in Fig. 3. Additionally, fragments from splats
s j ∈ Sk, but occluded by S\Sk, may also occur in Ik. How-
ever, the corresponding images Il 6=k will contain the neces-
sary data required to perform ε-z-buffer visibility culling as
is described below. For this, the images Ik additionally in-
clude per-fragment depth information cd(f)k.

si
viewpoint

occluded layer
near layer

pi

sj

pj

Figure 3: For each point group Sk, any fragments generated
by splats si from the nearest visible surface layer will win the
z-buffer visibility determination over any occluded splats s j
and will be kept in the image Ik.

The depth-images Ik of all point groups Sk can then be
combined, as suggested in Fig. 4, using the depth informa-
tion to perform the ε-z-buffer visibility culling as outlined
in the previous section. We can now outline the image com-
positing operation ⊕ over all K depth-images Ik to compute
Eq. 3 under the ε-z-visibility constraint (given in Fig. 5).

The conservative ε-z-buffer visibility test is implemented
in Fig. 5 by line 4 and the if statement on line 6. Due to
the weighted color as from Eq. 4, lines 7 and 8 implement
the summation, while line 11 performs the division of Eq. 3.

c© The Eurographics Association 2006.

39

Y. Zhang & R. Pajarola / Single-Pass Point Rendering and Transparent Shading

point set S S1 S2 S3 S4group group group group

Figure 2: Separation of the input point set S into non-overlapping sub-sets Sk.

viewpoint

occluded layervisible layer

Sigroup

Sjgroup

[
]

im
age

Figure 4: Contributions from multiple depth-images Ik can
be visibility culled and blended into the final result I =⊕kIk,
taking the z-depth and ε tolerance into account.

I =
LK−1

k=0 Ik:

1 foreach f ∈ I do
2 crgb(f) = 0;
3 cα(f) = 0;
4 d = mink(cd(f)k);
5 for k = 0 to K−1 do
6 if cd(f)k ≤ d + ε then
7 crgb(f) = crgb(f)+ crgb(f)k;
8 cα(f) = cα(f)+ cα(f)k;
9 endif
10 endfor
11 crgb(f) =

crgb(f)
cα(f) ;

12 endforeach

Figure 5: Post-process image compositing performing
smooth point interpolation as well as ε-z-visibility testing.

Therefore, unlike in prior methods, ε-z-buffering, smooth
point interpolation as well as color normalization are all for-
mulated as an image compositing post-process.

Additional features such as deferred shading
[ZPvBG01, BSK04, BHZK05] or Voronoi rasterization
[TCH05] can also be integrated into the basic approach
outlined here, see also Section 5.

3.3. Transparent Points

As mentioned in the introduction, the main difficulty of ren-
dering transparent point surfaces is the conflict of z-buffer
usage. The introduced concept of deferred blending can

be extended to solve this problem by separating the two
blending operations into separate rendering passes. As il-
lustrated in Fig. 6-a), transparency blending between sur-
face layers and smooth point interpolation within a surface
layer cannot be told apart while performing back-to-front α-
blending of fragments. Our solution approach is illustrated
in Fig. 6-b) where the competing splats overlapping within a
layer are separated into different groups A and B. Render-
ing group A into one target image IA, using per-fragment
material opaqueness α, yields the resulting fragment color
α2 · a2 + (1 − α2)(α1 · a1 + (1 − α1) · background). The
same proper back-to-front transparency α-blending is ac-
complished in image IB for group B. Finally, smooth point
interpolation is achieved by averaging the two results into
the final image I = 1/2 · (IA + IB).

a1
layer i

layer i+1

group A group B

b2

b1

a2

b2

b1

a2

a1

all points

a) b)

Figure 6: a) Traditional PBR cannot distinguish between
point interpolation and transparency α-compositing during
per-fragment blending. b) Dividing points into groups A and
B: a1, b1 are transparency α-blended with a2, b2 respec-
tively, and then PBR-interpolated in an image compositing
post-process.

Note that point blending kernels cannot be supported in
the above outlined approach as the interpolation weights in-
terfere with the transparent α-blending. Hence each frag-
ment contributes equally to the final point interpolation.
However, the visual artifacts introduced by this simplified
PBR-blending are largely suppressed due to the following
two observations: (1) Artifacts are reduced dramatically by
multiple transparent surface layers. (2) With current 8-bit
color and α resolutions any errors below a value of 1/256
have no effect. Moreover, the artifacts can be made virtu-
ally unnoticeable by separately considering the nearest of the
transparent layers. Thus we can render the nearest layer ex-

c© The Eurographics Association 2006.

40

Y. Zhang & R. Pajarola / Single-Pass Point Rendering and Transparent Shading

clusively and separately in high quality using smooth point
blending kernels.

Furthermore, we observe that the above concept works
well if points within a group have minimal overlap, as no
interpolation will be performed within a single group. Ad-
ditionally, each group must cover the object’s surface such
that no holes exist within a transparent layer. These aspects
are addressed by an extended grouping algorithm discussed
in the following sections.

4. Minimal Independent Grouping

The division of S into K groups Sk=0...K−1 as discussed
above can be formulated as a graph coloring problem which
is conducted in a pre-process prior to rendering.

4.1. Basic Grouping

For deferred blending to work, it is sufficient that the point
sets Sk must be independent groups in the sense that ∀si, j ∈
Sk it holds that |pi −p j| ≥ ri + r j. Hence we can formulate
a graph G(V,E) with nodes V = {pi} from all si ∈ S and
edges

E = {ei, j
∣∣|pi−p j|< ri + r j }. (5)

Other pairs of points need not define edges in E as they do
not conflict in group assignment.

The required partitioning of S is thus defined as the so-
lution to the minimal graph coloring of G [JT94], and the
number K of groups is G’s chromatic number X (G). Since
minimal graph coloring is an NP-hard problem we apply
an approximate solution as described below. Nevertheless,
since X (G) ≤ ∆(G), the maximal degree of G, we know an
upper bound on K for a given point sample set S .

We use the Largest First (LF) graph coloring algorithm
[Lei79] to solve our point grouping problem. Given an or-
dered of nodes O = [v0, . . . ,vn−1] (vi ∈ V) of the graph
G(V,E) according to non-increasing degrees, assign color
0 to the first node v0. If nodes v0, . . . ,vi (with i ≥ 0) have
already received colors then vi+1 will be assigned the small-
est color not yet assigned to any of its neighbors v j (with
ei, j ∈ E). Despite the fact that the LF algorithm is a simple
algorithm to approach the minimum graph coloring prob-
lem, it is very efficient and achieves almost the same results
as other more complex algorithms in the case of low edge-
density.

Since each point group Sk is rendered to an individual tar-
get image Ik, which are later composited together, we prefer
a small number K in practice. A smaller K means less mem-
ory overhead and fewer texture lookups during the image
compositing post-process. Furthermore, current generation
GPUs support only up to 16 texture samplers in the fragment
shader, which would cause the image compositing process to

take multiple passes for K > 16. Therefore, we apply the fol-
lowing modifications to the definition of edges E of graph G
as given in Eq. 5 to reduce the number K of groups:

1. If two overlapping splats si and s j are virtually co-planar,
resulting in almost the same shading result, we do not
include edge ei, j in E . This allows to put si and s j in the
same group Sk.

2. Ignore overlap condition in Eq. 5 if splat normals ni and
n j point into opposite directions, thus if ni ·n j < 0.

3. Relax the overlap condition in Eq. 5 to |pi−p j|< c ·(ri +
r j), where c ∈ [0,1] is a user-defined parameter.

The side-effect of the above modifications is that splats
si and s j in one group Sk may have a small overlap. How-
ever, for (1) as long as si and s j are basically co-planar and
have the same material color no rendering artifacts will result
from this modification. Modification (2) allows points from
different but close together surface layers to be in the same
group which also causes no rendering artifacts. While (3)
may introduce some rendering artifacts, these will be fairly
small as the splats si and s j will primarily overlap in the pe-
ripheral area of their disks which due to the smooth point
blending kernels wi, j have less effect on the overall image
generation. Furthermore, in the context of rendering opaque
point surfaces, the artifacts caused by overlapping splats
within the same group are further reduced by the Voronoi
splat rasterization as described in Section 5.

4.2. Extended Grouping

The above basic grouping algorithm may not directly result
in point groups suitable for transparent point rendering for
the following two reasons, which will be addressed next:

1. Too many fragments per pixel: Despite overlap minimiza-
tion, significant overlap may still exist within a single
group Sk. The overlapping splats will be transparency-
blended back-to-front into image Ik which may results in
excessive attenuation of other surface layers.

2. Too few fragments per pixel: The basic grouping algo-
rithm does not guarantee that splats in a single group Sk
cover the object’s surface. This may result in holes within
layers in some images Ik, and these missing fragments
will introduce incorrect transparency-blending results.

4.2.1. Fragment Culling

Optimally, in each transparent surface layer there is ex-
actly one fragment that contributes to α-blending per pixel.
We achieve this goal by reducing the precision of the per-
fragment depth value. Let us assume that the z-test is on and
set to pass fragments with smaller depth, and splats are ren-
dered back-to-front. Now consider three fragments for the
same pixel: f1 with depth d1 on a far surface layer, and f2
and f3 with depths d2 and d3 respectively in the same near
layer. Hence d1 > d2 ≈ d3.

c© The Eurographics Association 2006.

41

Y. Zhang & R. Pajarola / Single-Pass Point Rendering and Transparent Shading

As f1 is the first fragment in the pipeline it passes the z-
test. Second is f2 which also passes since d2 < d1, and colors
are α-blended αc2 + (1−α)c1. Last f3 enters the pipeline
and should be rejected to avoid causing extra attenuation as
it is in the same layer as f2. This can be achieved by lowering
depth precision to make d̃2 = d̃3, so that f3 can be culled by
z-test. Thus we can set the low precision fragment depth to:

d̃ f = floor
(

d f −dmin

dmax−dmin
·n

)
·n−1 (6)

where dmin and dmax are the nearest and farthest depths from
the object to the eye, the fragment depth d f is given from the
hardware rasterization and n is a constant that can be set to
a value larger or equal to dmax−dmin

ε
based on the ε-z-buffer

offset.

4.2.2. Surface Coverage

The solution to covering the object is to change splats in
each group Sk so as to cover more surface while keeping the
overlap as small as possible. We propose two methods to do
this: (1) adding splats and (2) enlarging splat radii.

(1) To better cover the object by group Sk, points from
other groups are duplicated and added to Sk as follows,
where Clipped(pi,r,k) is the area of pi overlapped by splats
in Sk:

1. Create a priority queue Q containing all splats S\Sk, with
priority pi being Clipped(pi,r,k).

2. Process splats in Q in descending order. For each pi, up-
date its priority pnew

i = Clipped(pi,r,k) as Sk may have
changed. (with pnew

i ≥ pi)

a. If pnew
i is too big, pi is removed from Q and the next

splat of Q is considered, otherwise proceed.
b. If pnew

i equals to the old pi, pi is added to Sk, other-
wise assign pi = pnew

i and keep it in Q.

(2) Though a better surface coverage can be achieved by
duplicating splats in multiple groups as above, the number
of processed points and amount of overlap is also increased.
Alternatively, we can cover more object surface by Sk by
enlarging its splat radius.

The surface area covered by Sk can be calculated by

CoveredArea = n ·πr2− ∑
∀pi∈Sk

Clipped(pi,r,k) (7)

where n = |Sk| and r the (uniform) radius of splats.

Suppose the object’s surface area is A, which can be cal-
culated similarly to Eq. 7 for all points in S . Enlarging the
splat radii to r̃ should achieve:

A ≡ n ·πr̃2− ∑
∀pi∈Sk

Clipped(pi, r̃,k) (8)

Notice that an enlarged radius r̃ > r also causes increased
clipping Clipped(pi, r̃,k) > Clipped(pi,r,k). Based on this

observation, a simple iterative solution of Eq. 9 for r̃s+1 is
applied until the difference between r̃s and r̃s+1 is small
enough (with r̃0 = r).

n ·πr̃2
s+1 = A+ ∑

∀pi∈Sk

Clipped(pi, r̃s,k) (9)

5. Rendering Algorithm

5.1. Rendering Opaque Point Surfaces

Based on the deferred blending concept and the grouping
solution, we can describe our basic rendering algorithm as
illustrated in Fig. 7. The 1+1-pass rendering algorithm in-
cludes one pass over the point splat geometry S =

S
kSk de-

fined by the grouping pre-process and a second image com-
positing pass over the corresponding partial depth-images Ik.

point set S

S1 Sigroup group group SK−1.

image I1 Ii IK−1image image

Image Compositing Pass

.

displayed image

Grouping Pre-Process

Geometry Pass

real-tim
e rendering loop

Algorithm-1:
Geometry Pass:
1 turn on z-test and z-update;
2 for k = 0 to K−1 do
3 clear z-depth and color of depth-image texture Ik;
4 render group Sk to depth-image texture Ik;
5 foreach si ∈ Sk do
6 transform, project and rasterize splat si;
7 foreach generated fragment f ∈ Ik do
8 output color crgb(f)k and kernel weight cα(f)k

according to Eq. 4;
9 output z-depth cd(f)k;
10 endforeach
11 endforeach
12 endfor

Image Compositing Pass:
As listed in Fig. 5

Figure 7: Overview of 1+1-pass point rendering algorithm.

As discussed in Section 4, if we want to improve render-
ing efficiency by reducing the number K of groups, we may
suffer minor artifacts caused by small overlaps of splats si
and s j belonging to the same group Sk. In fact, the render-
ing algorithm in Fig. 7 guarantees that only one point splat
will contribute its color and weight to the fragment f in the
overlap region between splats si and s j. This is because the

c© The Eurographics Association 2006.

42

Y. Zhang & R. Pajarola / Single-Pass Point Rendering and Transparent Shading

z-visibility test is activated and hence only one fragment, the
nearest with smallest depth, from either si or s j will survive.

To avoid disturbing artifacts due to flaps of overlapping
splats resulting from the above simple z-visibility culling,
Voronoi point rasterization can be used [TCH05]. In areas
of overlap between splats si and s j, this technique assigns
the color c j and weight w j(f j) values of the splat s j with
w j(f j)≤wi(fi) to the fragment f . Thus in the overlap region,
not the fragments with larger depth but with lower kernel
weights will be culled.

However, in contrast to [TCH05] we do not introduce an
extra rendering pass to implement Voronoi rasterization but
realize this by outputting an Voronoi enhanced depth value in
addition to the regular z-depth on line 9 of the Geometry Pass
in Fig. 7. Given the current fragment’s depth d f = cd(f)k as
z-distance of fi to the eye point and the distance di = |fi−pi|
of the fragment-splat intersection fi from the splat center, we
define this modifed z-depth value as

z = zlowres + zvoronoi = d̃ f +
di

ri
·n−1, (10)

where d̃ f is defined in Eq. 6, ri is the splats disk radius and
n is an integer constant. The constant n is defined in Eq. 6.

The first term zlowres is a low-precision depth which limits
the depth values of all fragments to the range [0, 1

n , 2
n , . . . ,1].

It is used to distinguish and separate fragments coming
from different surface layers. The second part zvoronoi is
a fragment-point distance ratio scaled to [0, 1

n]. Overlap-
ping splats in the same surface layer should have the same
zlowres depth value and only distinguish in zvoronoi. Hence
in the nearest visible surface layer, fragments from si with
the smallest zvoronoi value win the hardware z-visibility test
against any fragments from other overlapping splats s j. On
the other hand, fragments of splats from different occluded
surface layers will have a larger zlowres, with the minimum
difference of 1

n being larger than the maximum zvoronoi, and
thus be culled.

In fact, the enhanced depth value of Eq. 10 is used for
hardware z-buffering while the standard depth d f is addi-
tionally stored for the fragment in the current target buffer
Ik. This, d f , is used in the compositing step for ε-z-visibility
determination and blending.

5.2. Rendering Transparent Point Surfaces

5.2.1. Basic Transparency

For efficient back-to-front ordering of the point data we use
a BSP-tree organization and traversal ([Sam89]). Based on
this and the outlined extended grouping of splats, we can
now define the following 1+1-pass PBR algorithm for trans-
parent point objects:

Algorithm-2:

1. Geometry Pass (Transparency-blending): Turn on z-test
and α-blending. Render all splats pi of each group Sk us-
ing modified radii r̃i into separate target images Ik. Per-
form back-to-front α-blending (using the material opac-
ity for α and 1−α). Adjust the fragment depth according
to Eq. 6.

2. Compositing Pass (PBR-blending): Combine (average)
all K images Ik into final frame buffer.

Algorithm-2 implements the basic transparent point ren-
dering concept. As such it suffers from the fact that each
image Ik contributes equally to the final interpolation be-
tween point splats since no smooth interpolation blending
kernels are supported. As demonstrated by our experiments,
however, the artifacts introduced by this omission are hardly
noticeable as shown in Figs. 1-a) or 13-a).

5.2.2. High-Quality Transparency

The point interpolation artifacts in Algorithm-2 can further
be reduced by rendering the closest transparent surface layer
separately and in higher quality (Figs. 1-b). This, however,
will require a separate geometry pass for this first visible
layer.

Therefore, we achieve high-quality transparency by ren-
dering the nearest transparent layer in a separate pass to per-
form smooth point interpolation, and all other layers using
the geometry pass of Algorithm-2. The two sets of images
are then combined into a high-quality blended final result.
Observe that α-blending of far layers is conducted in the
geometry pass while α-blending with the nearest layer is
achieved in the image compositing pass. In fact, this com-
positing pass performs three blending operations simultane-
ously: (i) smooth PBR interpolation of the nearest layer (in-
cluding per-fragment color normalization), (ii) simple PBR
interpolation of the other layers, and (iii) transparent α-
blending of the nearest with the other layers.

Algorithm-3:

1. Geometry Pass for Nearest Layer: Use the geometry pass
of Algorithm-1 to render the point groups Sk to K target
images Ik, including the depth information of the nearest
fragments d f and interpolation-kernel weight h f .

2. Geometry Pass for Other Layers: Use the geometry pass
of Algorithm-2 to render the point groups Sk to K tar-
get images Ok, but culling all fragments from the nearest
layer using the depth-mask Z from the first pass.

3. Compositing Pass: Combine images Fk together where
fragments fk with depth d fk − mink(d fk) > ε are oc-
cluded and discarded. All others, f̂k, are composited to-
gether for a smoothly interpolated image CF of the near-

est visible layer with colors
∑ h f̂k

·c f̂k
∑ h f̂k

. Then average the

images Ok into CO for the other layers. Finally high-
quality transparency is achieved given the opacity α by
I = α ·CF +(1−α) ·CO.

c© The Eurographics Association 2006.

43

Y. Zhang & R. Pajarola / Single-Pass Point Rendering and Transparent Shading

Note that our transparency algorithms support varying
material opacities, possibly different for each individual
point splat, as the α values can be specified for each point
sample and are processed on the fragment level.

5.2.3. Reflections and Refractions

Besides basic transparency, refraction effects and specular
reflections of the environment dramatically improve the ren-
dering realism. Both effects are derived from the incident
viewing vector and surface normal, and include a reflec-
tive and refractive environment map lookup which can all
be added to the first geometry pass of Algorithm-3.

Note, however, that this way refraction and reflection can
only be incorporated for the nearest visible layer. But vi-
sual realism can further be increased by adding multi-layer
transparency effects such as multiple ray refraction and light
absorption through semi-transparent material.

We can approximate visual multi-layer effects exploit-
ing the GPU feature of associating different α-blending
modes to the color and opacity (α-)channels respectively.
Setting the mode of the α-channel for both SRC_ALPHA
and DST_ALPHA to 1.0 in the second geometry pass of
Algorithm-3 causes accumulation of opacity over all layers
αtotal = ∑layers αi, that is in each image Ok separately for each
group Sk. Assuming a constant material opacity α we derive
the number of layers from l = αtotal

α
.

We extend our PBR algorithm using the layer number l
to approximate the distance that light travels through semi-
transparent material. Our approximation defines the light ab-
sorption ratio as

AbsorptionRatio = (1−α)l (11)

For multi-layer refraction effects, we simulate a trans-
mitted total refraction angle θT by Eq. 12 which assumes
equal refraction ratios at all layer interfaces. This is clearly
a heuristic, but it provides good multiple layer transparency
cues. Given the refraction ratio η and incidence angle θI we
get:

sinθT = η
l · sinθI (12)

Although Eqs. 11 and 12 are not physically correct, they
produce appealing visual multi-layer transparency effects
(see also Section 6).

Additional lighting phenomena, also shown in Figs. 1-c)
and d), that can be simulated based on refractive and re-
flective environment mapping including Fresnel Effect and
Chromatic Dispersion.

5.2.4. Per-Fragment Shading

To achieve smooth illumination and shading effects, light-
ing, refraction and reflection are computed per fragment us-
ing a deferred shading approach [ZPvBG01, BHZK05]. De-
ferred shading not only interpolates per-point colors, but in

fact any attributes that are needed for shading. Thus per-
point surface normal, and position if necessary, are interpo-
lated for each fragment and rendered into separate attribute
buffers as done for color. In the compositing pass, each set
of attribute buffers (for the K groups) is handled the same
way as color in Algorithm-3. Then Phong lighting, environ-
ment map reflection, (multi-layer) refraction and attenuation
are calculated using the composited per-fragment attributes.
If the number of textures exceeds the multi-texturing limit
of a graphics card, the work can be split into multiple com-
positing passes.

While single-layer transparency effects could be achieved
without deferred shading, the multi-layer effects introduced
above depend on the number of layers l which is only avail-
able after all geometry has been processed. Hence attenua-
tion and refraction are done after geometry processing in the
compositing pass. Additionally, deferred shading can sup-
port further effects such as bumb-mapping.

6. Experimental Results

We have implemented our point rendering algorithm in Di-
rectX on a PC with a 2.8GHz CPU and NVidia GeForce
7800GTX GPU.

6.1. Rendering Opaque Point Surfaces

The first experiments are with respect to the graph coloring
based point grouping algorithm described in Section 4. As
point-based surface models inherently depend on a signifi-
cant overlap ratio between neighboring splats to generate a
smoothly blended surface rendering, it comes at no surprise
that a basic graph coloring solution with edges defined as in
Eq. 5 may result in a fairly high number of colors K. In Ta-
ble 1 we show the graph coloring results for different overlap
relaxation parameters c used in the proposed extension (3).
With decreasing c also the chromatic number X (G) drops
rapidly.

In Fig. 8 we show different rendering results for different
overlap relaxation parameters c. We can see that, in compar-
ison to a standard PBR blending result, there are hardly any
visible artifacts introduced even if the parameter c is set as
low as 0.4, which has shown to be an acceptable value with
respect to the group number K =X (G) from graph coloring
and rendering image quality.

Our Voronoi rasterization implementation using the z-
visibility test defined by the modified z-depth value in Eq. 10
is demonstrated in Fig. 9. It shows the effective removal of
flaps between overlapping splats and the resulting faceted
surface similar to [TCH05]. This surface model is basically
the depth-map, combined from all Ik, for the ε-z-buffer visi-
bility test in conventional PBR.

Rendering performance is demonstrated in Table 2. We

c© The Eurographics Association 2006.

44

Y. Zhang & R. Pajarola / Single-Pass Point Rendering and Transparent Shading

Model Points |S| K = X (G) / maxDegree / avgDegree
c = 1.0 c = 0.8 c = 0.6 c = 0.4

David Head 2,000K 18 / 37 / 17.2 14 / 31 / 11.6 11 / 24 / 9.4 7 / 8 / 3.9
Dragon 1,100K 14 / 34 / 8.8 12 / 29 / 6.3 8 / 15 / 3.0 5 / 7 / 0.8
Female 303K 19 / 49 / 18.9 15 / 32 / 13.2 10 / 18 / 6.9 8 / 9 / 2.3
BallJoint 137k 17 / 31 / 18.6 12 / 23 / 13.6 9 / 14 / 7.1 5 / 7 / 2.3

Table 1: Graph coloring point grouping results for different overlap relaxation parameters c.

can see that for large point models, our algorithm can im-
prove the rendering efficiency up to 50%, depending on the
parameter c, and hence on the achieved grouping value K.
For very small models where geometry processing is neg-
ligible, our 1+1-pass algorithm may in fact be slower than
a standard 2+1-pass point rendering implementation. This
can be expected for small enough models where the geome-
try rendering pass is less costly than an image compositing
step. The Image Compositing Pass in Figs. 7 and 5 requires
K texture lookups, and it accesses color, blending weight and
fragment depth values from two color channels to avoid ex-
pensive pack and unpack operations. For c = 0.8 in Table 2
Voronoi rasterization is disabled as the grouping of points
is so effective that no significant point overlaps are notice-
able. Voronoi rasterization is only enabled for c = 0.4 which
results in low grouping numbers K. Note also that for the
models with around 1M points or less, the point geometry
data can easily be cached in GPU memory which results in
significantly better frame rates than for larger models which
are kept in CPU main memory (i.e. the David head model).

Model Points |S| FPS
2+1-pass c=0.8 c=0.4

D-Head 2,000K 0.96 1.2 1.4
Dragon 1,100K 15.04 19.70 22.62
Female 303K 32.65 32.11 37.76
Balljoint 137K 65.68 52.96 70.37

Table 2: Frame rate performance of the novel 1+1-pass
point rendering algorithm compared to a standard 2+1-pass
PBR implementation.

Additional 1+1-pass rendering results are presented in
Fig. 10, demonstrating smooth images at improved frame
rates for large models.

6.2. Rendering Transparent Point Surfaces

With respect to the graph coloring algorithm, the choice of
K can make a difference. From experiments using different
values for K, we have found that it is sufficient to set K = 4
to achieve a good separation of points into groups. Fig. 11
shows a good sampling of the surface for K = 4 compared
to a larger value. Using a small K and to achieve good sur-
face coverage for our transparent point rendering algorithms,
it is feasible to use the group extension (1) proposed in Sec-
tion 4.2.2. At the expense of points duplicated in multiple

groups a good surface coverage can be achieved. For the
dragon model, the sum of points in all groups increased the
base data set by 45%. While this is not a negligible ratio,
the results presented show that good display quality at good
rendering performance can be achieved.

If a larger K is required, the radius enlargement method
(2) described in Section 4.2.2 is a better choice to achieve
good surface coverage and to avoid a large point duplication
ratio. At the expense of increased texture lookups and im-
age compositing cost, method (2) can in fact avoid any point
duplication at all.

a) b)

Figure 11: Grouping results. a) Splats have smaller overlaps
but less surface coverage for K = 8. b) Splats have bigger
overlaps but better surface cover for K = 4.

The basic frame rate for different transparent point render-
ing algorithms are: our 1+1-pass transparent point rendering
Algorithm-2 achieves 9 FPS, on the other hand our high-
quality 2+1-pass Algorithm-3 reaches 5 FPS. This compares
very well to depth-peeling, which attains only less than 2
FPS for an upper limit of 8 layers. For comparison, a stan-
dard opaque point splatting algorithm reaches 14 FPS.

In Fig. 12, our transparent PBR algorithms are compared
to depth-peeling which generates the correct back-to-front
α-blending result. In contrast to depth-peeling, which con-
ducts smooth point interpolation on each surface layer by a
standard opaque rendering method, our algorithms perform
the point interpolation for all layers in Algorithm-2, and ex-
cept for the nearest visible layer in Algorithm-3. We can
observe that any so introduced visual artifacts are masked
by the transparency attenuation and are hardly visible using
Algorithm-2, and virtually no visual difference can be ob-
served using Algorithm-3.

Several small bouncing opaque balls are added to the

c© The Eurographics Association 2006.

45

Y. Zhang & R. Pajarola / Single-Pass Point Rendering and Transparent Shading

standard c = 1.0 c = 0.8 c = 0.6 c = 0.4

Figure 8: Comparison of smooth point blending results for different overlap relaxation parameters c with respect to a standard
PBR blending.

a) b) c) d)

Figure 9: Voronoi rasterization. In a) and b) we show the rasterization and shading examples without Voronoi rasterization
enabled, hence fragments with smaller z-depth simply override any other. In c) and d), fragments with smaller Voronoi-depth
as defined in Eq. 10 win the z-buffer visibility test.

a) b) c)

Figure 10: Rendering results for various point models. a) David head model rendered at 1.4 FPS, b) Balljoint model rendered
at 70 FPS and c) Female model displayed at 37 FPS, using c = 0.4 and Voronoi rasterization.

c© The Eurographics Association 2006.

46

Y. Zhang & R. Pajarola / Single-Pass Point Rendering and Transparent Shading

a) b) c)

Figure 12: Transparent image rendering quality for a) depth-peeling, b) Algorithm-3 and c) Algorithm-2.

scene in Figs. 1-a), b) and Fig. 13 to verify that our algo-
rithms generate the correct α-blending results when com-
bining opaque and transparent objects. We demonstrate
in Fig. 13 that our 1+1-pass transparent PBR algorithm
achieves high visual rendering quality for viewing config-
urations which do not exhibit extreme close-up views.

a) b)

Figure 13: Opaque and transparent objects, a) 1+1-pass
Algorithm-2 and b) 2+1-pass Algorithm-3.

Figs. 1-c), d) and Fig. 14 show rendering results of com-
bining high-quality transparency and environment mapping.
Note that both the Fresnel effect and chromatic disper-
sion are simulated in these images. In the close-up views
of Fig. 14 we can also see the subtle differences between
single- and multi-layer transparency effects such as the ap-
proximated multiple refractions and increased attenuation.
All of these effects provide important visual clues about the
existence of multiple transparent surface layers.

7. Conclusion

This paper presents a new framework for GPU accelerated
PBR algorithm based on the concept of deferred blending.

a) b)

Figure 14: a) Single-layer, b) multi-layer transparent refrac-
tion and specular reflection environment mapping effects.

The basic idea is the division of the point splats into non
overlapping subsets such that smooth point interpolation can
be deferred to a final image compositing pass. This concept
allows us to perform only a single rendering pass over the
point geometry data. Our new framework provides two solu-
tions for the rendering of opaque and transparent point sur-
faces respectively. With respect to the rendering of opaque
surfaces, we only need one pass over geometry data. The
rendered images show that our algorithm can provide very
good rendering quality. The experimental data also shows
that our algorithm is more efficient than a standard 2+1 pass
algorithm, in particular for the larger point data sets. With

c© The Eurographics Association 2006.

47

Y. Zhang & R. Pajarola / Single-Pass Point Rendering and Transparent Shading

respect to the rendering of transparent surfaces, the major
challenge of handling the conflicting point interpolation and
transparent α-blending simultaneously is solved by separat-
ing them to different rendering passes. We have not only pro-
vided the first GPU accelerated approaches to render trans-
parent point surfaces, but in fact presented a basic trans-
parency α-blending of multiple transparent point layers in
a single geometry processing pass over the point data. Our
Algorithm-3 achieves very high-quality transparency blend-
ing and incorporates effective simulations of multi-layer re-
fraction and reflection effects.

Acknowledgements

We would like to thank the Stanford 3D Scanning Reposi-
tory and Digital Michelangelo projects as well as Cyberware
for providing the 3D geometry test data sets. This work was
partially supported by the Swiss National Science Founda-
tion grant 200021-111746/1.

References

[BHZK05] BOTSCH M., HORNUNG A., ZWICKER M.,
KOBBELT L.: High-quality surface splatting on today’s GPUs.
In Proceedings Symposium on Point-Based Graphics (2005),
Eurographics Association, pp. –.

[BK03] BOTSCH M., KOBBELT L.: High-quality point-based
rendering on modern GPUs. In Proceedings Pacific Graphics
2003 (2003), IEEE, Computer Society Press, pp. 335–343.

[BK05] BOTSCH M., KOBBELT L.: Real-time shape editing us-
ing radial basis functions. Computer Graphics Forum 24, 3
(2005), 611–621. Eurographics 2005 Proceedings.

[BSK04] BOTSCH M., SPERNAT M., KOBBELT L.: Phong
splatting. In Proceedings Symposium on Point-Based Graphics
(2004), Eurographics, pp. 25–32.

[CAZ01] COHEN J. D., ALIAGA D. G., ZHANG W.: Hybrid sim-
plification: Combining multi-resolution polygon and point ren-
dering. In Proceedings IEEE Visualization (2001), pp. 37–44.

[CH02] COCONU L., HEGE H.-C.: Hardware-oriented point-
based rendering of complex scenes. In Proceedings Eurographics
Workshop on Rendering (2002), pp. 43–52.

[CN01] CHEN B., NGUYEN M. X.: POP: A hybrid point and
polygon rendering system for large data. In Proceedings IEEE
Visualization (2001), pp. 45–52.

[DH02] DEY T. K., HUDSON J.: PMR: Point to mesh render-
ing, a feature-based approach. In Proceedings IEEE Visualization
(2002), Computer Society Press, pp. 155–162.

[Eve02] EVERITT C.: Interactive order-independent trans-
parency. Technical Report, 2002.

[Gro01] GROSS M. H.: Are points the better graphics primitives?
Computer Graphics Forum 20(3), 2001. Plenary Talk Eurograph-
ics 2001.

[JT94] JENSEN T. R., TOFT B.: Graph Coloring Problems.
Wiley-Interscience, 1994.

[KB04] KOBBELT L., BOTSCH M.: A survey of point-based
techniques in computer graphics. Computers & Graphics 28, 6
(2004), 801–814.

[KV01] KALAIAH A., VARSHNEY A.: Differential point render-
ing. In Proceedings Eurographics Workshop on Rendering Tech-
niques (2001), Springer-Verlag, pp. 139–150.

[Lei79] LEIGHTON F. T.: A graph coloring algorithm for large
scheduling problems. Journal of Research of the National Bureau
of Standards 84 (1979), 489–506.

[Mam89] MAMMEN A.: Transparency and antialiasing algo-
rithms implemented with the virtual pixel maps technique. IEEE
Computer Graphics & Applications 9, 4 (July 1989), 43–55.

[PG04] PFISTER H., GROSS M.: Point-based computer graphics.
IEEE Computer Graphics and Applications 24, 4 (July-August
2004), 22–23.

[PKKG03] PAULY M., KEISER R., KOBBELT L., GROSS M.:
Shape modeling with point-sampled geometry. ACM Transac-
tions on Graphics 22, 3 (2003), 641–650.

[PSG04] PAJAROLA R., SAINZ M., GUIDOTTI P.: Confetti:
Object-space point blending and splatting. IEEE Transactions on
Visualization and Computer Graphics 10, 5 (September-October
2004), 598–608.

[PZvBG00] PFISTER H., ZWICKER M., VAN BAAR J., GROSS

M.: Surfels: Surface elements as rendering primitives. In Pro-
ceedings ACM SIGGRAPH (2000), ACM SIGGRAPH, pp. 335–
342.

[RPZ02] REN L., PFISTER H., ZWICKER M.: Object space EWA
surface splatting: A hardware accelerated approach to high qual-
ity point rendering. In Proceedings EUROGRAPHICS (2002),
pp. 461–470. also in Computer Graphics Forum 21(3).

[Sam89] SAMET H.: The Design and Analysis of Spatial Data
Structures. Addison Wesley, Reading, Massachusetts, 1989.

[SP04] SAINZ M., PAJAROLA R.: Point-based rendering tech-
niques. Computers & Graphics 28, 6 (2004), 869–879.

[SPL04] SAINZ M., PAJAROLA R., LARIO R.: Points reloaded:
Point-based rendering revisited. In Proceedings Symposium
on Point-Based Graphics (2004), Eurographics Association,
pp. 121–128.

[TCH05] TALTON J. O., CARR N. A., HART J. C.: Voronoi
rasterization of sparse point sets. In Proceedings Symposium on
Point-Based Graphics (2005), Eurographics Association, pp. 33–
37.

[ZPKG02] ZWICKER M., PAULY M., KNOLL O., GROSS M.:
Pointshop 3D: An interactive system for point-based surface
editing. In Proceedings ACM SIGGRAPH (2002), ACM Press,
pp. 322–329.

[ZPvBG01] ZWICKER M., PFISTER H., VAN BAAR J., GROSS

M.: Surface splatting. In Proceedings ACM SIGGRAPH (2001),
ACM SIGGRAPH, pp. 371–378.

[ZRB∗04] ZWICKER M., RÄSÄNEN J., BOTSCH M., DACHS-
BACHER C., PAULY M.: Perspective accurate splatting. In Pro-
ceedings of Graphics Interface (2004), pp. 247–254.

c© The Eurographics Association 2006.

48

