Advanced Rendering
Techniques

Matthias M Wloka

EC 25,04

Tutorial 5: Programming Graphics Hardware

Nalu

)
254 1utoriais: Programming Graphics Hardware

EE 2 HFIDIT A,
Acknowledgements Long Blonde Hair
< Hubert Nguyen < Long
2 Requires dynamic animation
< William Donnelly < Thus cannot bake lighting
< Requires lots of hair
2 NVIDIA Demo Team < Thus shading has to be fast
'
< Blonde
2 Three visible highlights, black only has one /
< Shadows much more visible
o
¢ 2 24 ruoias Programming Graphics Hardware mﬁ]’_ﬁ & 2 _’-‘-‘-‘4 Tutorial 5: Programming Graphics Hardware mﬁ]’}\.

Hair Rendering: Overview

Hair Geometry, Part 1

< Geometry and dynamics

© “Skull cap” specifies
<~ Where control hairs

) : grow
9 Shading 2 Which direction to grow
< Growth is nondinear
< Shadowing J
2 762 control hairs
P < Each is 7 vertices long
€ = .
¢ 2 24 ruorias Programming Graphics Hardware mﬁ]’_ﬁ et 2 _:-‘}4 Tutorial 5: Programming Graphics Hardware mﬁIA.
delivered by
— EUROGRAPHICS
= DIGITAL LIBRARY
www.eg.org diglib.eg.org

http://www.eg.org
http://diglib.eg.org

Hair Dynamics

Physics Simulation

< Treat control hairs as particle system

< For all (7 * 762) vertices in control hairs do
< Physics simulation
2 Collision detection and reaction
< Vertices of each control hair

< Linked
< Distance-constrained /_Q’
~o-o
BE 2= 8 1uornias: Programming Graphics Hardware ﬂi-']’].}‘Tj..

< Uses Verlet integration
< Previous frame’s position computes velocity
< Less sensitive to frame rate

< Apply forces, then apply constraints
< lteratively
< Particles converge
2 Thus take head -motion into account

T

BE 28 1yrias: Programming Graphics Hardware I A,

Now Have 762 7-Vertex Control Hairs

Interpolate Control Hairs

< Turn each control hair into 6 basic Bezier curves
< 1 control hair has 6 segments
2 1 basic Bezier requires 2 points and 2 tangents

< Concatenate and tessellate each set of 6 basic
Bezier curves
< Creates smooth control hair

WD A,

= m
e 2 J'4 Tutorial5: Programming Graphics Hardware

< Interpolate 3 smooth control hairs at a time
< Generates 4095 individual hairs

< Interpolation is post-tessellation
2 Performance reasons

< Tessellation is expensive

© Generates ~123k total vertices for hair alone

=
& 2 44 Tutorial5: Programming Graphics Hardware

HEIDIA,

Wire -Frame Demo

Hair Shading Based On

WD A,

et 2 24 Tutorial5: Programming Graphics Hardware

< “Light Scattering from Human Hair Fibers”

<~ By Steve Marschner, Henrik Wann Jensen, Mike
Cammarano, Steve Worley, and Pat Hanrahan

< SIGGRAPH 2003

et 2 44 Tutorial5: Programming Graphics Hardware

T

HEIDIA,

Paper Models 3 Distinct Highlights

R and TRT Highlights

< Uses path notation
2 Risreflection
< T is transmission

Figures from “Light
Scattering from Human
Hair Fibers” (see
previous slide)

[P
it €

e: 2 48 Tutorial5: Programming Graphics Hardware BEIDT A,

< R — white primary
highlight

< TRT —colored
secondary highlight

Picture from “Light
Scattering from
Human Hair Fibers”
(see previous slides)

T

BE 28 1yrias: Programming Graphics Hardware I A,

TT Highlight

Hair Model Is 4-Dimensional Function

< TT — strong forward scattering component
< Important for underwater hair

- r Fate | Fisms
e 2 J'4 Tutorial5: Programming Graphics Hardware BVIDT A,

< Factor into lower dimensional terms
2o MR (thetaH)*N_R (thetaD, phiD)
+M_TT (thetaH)* N_TT (hetaD, phiD)
+ M_TRT(thetaH) * N_TRT(thetaD, phiD)

< Use 2D textures to encode as look-up tables !

< cos(thetal), cos(thetaE)
? M_R, M_TT, M_TRT, cos(thetaD)

2 cos(thetaH), cos(phiD)
? N_R,N_TT,N_TRT

P - Fat | s
EE 27574 1utorias: Programming Graphics Hardware BVITT A,

Make Most Aspects Tweakable

Hair Shading Demo

< Highlights:
< Separation
o Strength
< Width
< Hair albedo
< Extinction coefficient

< Index of refraction

& 27,574 1utorias: Programming Graphics Hardware BVIDT A,

et 2 44 Tutorial5: Programming Graphics Hardware BVITIT A,

Shadowing

Why Opacity Shadow Maps

< “Opacity Shadow Maps”
< By Tae-Yong Kim and Ulrich Neumann

< SIGGRAPH 2001

T

BE 2= 8 1uornias: Programming Graphics Hardware HVIDT A,

< Opacity shadow maps ask:
2 What percentage of light is blocked from here?
2 Vs. Is the light blocked from here?
< Thus supports AA edges and volumetric rendering

< Regular shadow maps alias around edges

< Hair is 100% edges

T

EG 2534 1ywrials Programming Graphics Hardware HVIDTA,

Pictures From Tae-Yong Kim’s Website

For Each Point In Map Compute:

No Shadows 15slices 255 slices

€

- r = Fisms
e 2 F4 Tutorial5: Programming Graphics Hardware BVITT A,

7(2) = exp(— [{s(2) dz')

< T(z): amount of light penetrating to depth z

< For hair:

< Integral is sum over all strands between light and
point being shadowed

< Compute sum via additive blending

< “Extinction coefficient” K controls darkness of
shadows

<

- - " s
& 2 Y4 Tutorial 5: Programming Graphics Hardware HVITT A,

Creating the Opacity Maps

Opacity Map Creation Implementation

< Choose 16 slicing planes in hair
< Uniform distribution
< In hair bounding sphere

< For each hairpixel and for each plane
2 Is hairpixel closer to light than plane?

< Yes: add hair to contribution (plane)
< No: do nothing

€

e 2 4 Tutorial5: Programming Graphics Hardware MVITT A,

< Render all hairs to 16 render targets
< 16 passes

< Render all hairs to 4 MRTs

o 4 passes
<2 MRT shader is simple: 4 SLT and 4 MUL instructions

<

et 2 44 Tutorial 5: Programming Graphics Hardware BVITI A,

Using the Opacity Maps

Using Opacity Maps Implementation

< Hair-pixel position determines
< Which opacity maps to look in
< Where in opacity map to look in

< Hair-pixel positions generated by lines

< Linearly interpolated vertex values are equivalent

e: 2 48 Tutorial5: Programming Graphics Hardware

HVITIT A,

< Vertex-shader computes
< Texture coordinates for all 16 maps
< Blend-weights to use

< Pixel-shader combines 16 look-ups
< Via 5 dot4 instructions

< Add z-bias due counter limited z-resolution

< Just like regular shadow maps

E: 2 44 Tutorial5: Programming Graphics Hardware

BVIT1 A,

Shadowing Demo

Questions

Before

= m
e 2 J'4 Tutorial5: Programming Graphics Hardware

WD A,

< http://developer.nvidia.com
The Source for GPU Programming

< Matthias Wloka (mwloka@nvidia.com)

=
& 2 44 Tutorial5: Programming Graphics Hardware

HEIDIA,

