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Acknowledgements Long Blonde Hair
< Hubert Nguyen < Long
2 Requires dynamic animation
< William Donnelly < Thus cannot bake lighting
< Requires lots of hair
2 NVIDIA Demo Team < Thus shading has to be fast
'
< Blonde
2 Three visible highlights, black only has one /
< Shadows much more visible
o
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Hair Rendering: Overview

Hair Geometry, Part 1

< Geometry and dynamics

© “Skull cap” specifies
<~ Where control hairs

) : grow
9 Shading 2 Which direction to grow
< Growth is nondinear
< Shadowing J
2 762 control hairs
P < Each is 7 vertices long
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Hair Dynamics

Physics Simulation

< Treat control hairs as particle system

< For all (7 * 762) vertices in control hairs do
< Physics simulation
2 Collision detection and reaction
< Vertices of each control hair

< Linked
< Distance-constrained /_Q’
~o-o
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< Uses Verlet integration
< Previous frame’s position computes velocity
< Less sensitive to frame rate

< Apply forces, then apply constraints
< lteratively
< Particles converge
2 Thus take head -motion into account

T
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Now Have 762 7-Vertex Control Hairs

Interpolate Control Hairs

< Turn each control hair into 6 basic Bezier curves
< 1 control hair has 6 segments
2 1 basic Bezier requires 2 points and 2 tangents

< Concatenate and tessellate each set of 6 basic
Bezier curves
< Creates smooth control hair
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< Interpolate 3 smooth control hairs at a time
< Generates 4095 individual hairs

< Interpolation is post-tessellation
2 Performance reasons

< Tessellation is expensive

© Generates ~123k total vertices for hair alone
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Wire -Frame Demo

Hair Shading Based On
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< “Light Scattering from Human Hair Fibers”

<~ By Steve Marschner, Henrik Wann Jensen, Mike
Cammarano, Steve Worley, and Pat Hanrahan

< SIGGRAPH 2003
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Paper Models 3 Distinct Highlights

R and TRT Highlights

< Uses path notation
2 Risreflection
< T is transmission

Figures from “Light
Scattering from Human
Hair Fibers” (see
previous slide)
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< R — white primary
highlight

< TRT —colored
secondary highlight

Picture from “Light
Scattering from
Human Hair Fibers”
(see previous slides)
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TT Highlight

Hair Model Is 4-Dimensional Function

< TT — strong forward scattering component
< Important for underwater hair
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< Factor into lower dimensional terms
2o MR (thetaH)*N_R (thetaD, phiD)
+M_TT (thetaH)* N_TT (hetaD, phiD)
+ M_TRT(thetaH) * N_TRT(thetaD, phiD)

< Use 2D textures to encode as look-up tables !

< cos(thetal ), cos(thetaE)
? M_R, M_TT, M_TRT, cos(thetaD)

2 cos(thetaH ), cos(phiD)
? N_R,N_TT,N_TRT
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Make Most Aspects Tweakable

Hair Shading Demo

< Highlights:
< Separation
o Strength
< Width
< Hair albedo
< Extinction coefficient

< Index of refraction
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Shadowing

Why Opacity Shadow Maps

< “Opacity Shadow Maps”
< By Tae-Yong Kim and Ulrich Neumann

< SIGGRAPH 2001

T
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< Opacity shadow maps ask:
2 What percentage of light is blocked from here?
2 Vs. Is the light blocked from here?
< Thus supports AA edges and volumetric rendering

< Regular shadow maps alias around edges

< Hair is 100% edges

T
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Pictures From Tae-Yong Kim’s Website

For Each Point In Map Compute:

No Shadows 15slices 255 slices

€
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7(2) = exp(— [{s(2) dz')

< T(z): amount of light penetrating to depth z

< For hair:

< Integral is sum over all strands between light and
point being shadowed

< Compute sum via additive blending

< “Extinction coefficient” K controls darkness of
shadows

<
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Creating the Opacity Maps

Opacity Map Creation Implementation

< Choose 16 slicing planes in hair
< Uniform distribution
< In hair bounding sphere

< For each hairpixel and for each plane
2 Is hairpixel closer to light than plane?

< Yes: add hair to contribution (plane)
< No: do nothing

€
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< Render all hairs to 16 render targets
< 16 passes

< Render all hairs to 4 MRTs

o 4 passes
<2 MRT shader is simple: 4 SLT and 4 MUL instructions

<
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Using the Opacity Maps

Using Opacity Maps Implementation

< Hair-pixel position determines
< Which opacity maps to look in
< Where in opacity map to look in

< Hair-pixel positions generated by lines

< Linearly interpolated vertex values are equivalent
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< Vertex-shader computes
< Texture coordinates for all 16 maps
< Blend-weights to use

< Pixel-shader combines 16 look-ups
< Via 5 dot4 instructions

< Add z-bias due counter limited z-resolution

< Just like regular shadow maps
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Shadowing Demo

Questions

Before
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< http://developer.nvidia.com
The Source for GPU Programming

< Matthias Wloka (mwloka@nvidia.com)
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