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Abstract
Quaternions are used in many fields of science and computing, but teaching them remains challenging.
Students can have a great deal of trouble understanding essentially what quaternions are and how
they can represent rotation matrices. In particular, the similarity transform qvq-1 which actually
achieves rotation, can often be baffling even after they’ve seen a full derivation. This paper outlines
a constructive method for teaching quaternions, which allows students to build intuition about what
quaternions are, and why simple multiplication is not adequate to represent a rotation. Through a
set of examples, it demonstrates exactly how quaternions relate to rotation matrices, what goes wrong
when qv is naively used to rotate vectors, and how the similarity transform fixes the problem.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: General,
K.3.2 [Computers and Education]: Computer Science Education

1. Introduction

Since their initial introduction in 1866 by Hamilton
[Ham86], quaternions have found applications in many
scientific fields including quantum mechanics, electro-
dynamics, special relativity and computer graphics
[dLe96, Hor97, Ima76, Sho85]. Their compact repre-
sentation of concepts like rotation in three dimensions,
and the fact that we can conveniently build smooth
interpolation curves between quaternions, make them
an important technique for students in many areas of
science and computation.

In computer graphics they give us a powerful tool
for representing the orientation of an object. Many
graphics packages use quaternions for interpolating
orientations smoothly to create animations of rotat-
ing objects. In addition, such packages often pro-
vide extensive scripting tools to allow users to manip-
ulate them programmatically[Sof09, Max09, May09].
Quaternions are also a key tool used in many types
of interactive software to control camera movement
[Bob03].

Quaternions, therefore, figure prominently in quite
a few courses, and teaching them is a challenge that
every instructor for such a course has struggled with.
Though their arithmetic rules are quite simple and

some tools exist to help students visualize quaternions
[HFK94], quaternions themselves are often not truly
understood until students have worked with them for
quite a while. There are several reasons for this:

1. The multiplication rules, while simple, can seem
quite abstract and arbitrary to first time students.

2. The method for using quaternions to rotate vectors
in 3D is very different from matrix multiplication.

3. Exponential notation, while powerful, can be diffi-
cult for graphics students to grasp even if they have
had a course in Taylor series.

Part of the problem is that quaternions live in four
dimensions. This is just one dimension more than stu-
dents are used to dealing with, and it is compelling,
though difficult, to try to visualize them. Compare this
to the fact that students rarely attempt to visualize
4x4 matrices as they live in a 16 dimensional space!

This paper presents a method for introducing stu-
dents to quaternions that maintains a firm connec-
tion to prior knowledge. It assumes that the students
are adept in working with rotation matrices, and uses
them to motivate the discussion. Finally, the method
lays out a series of geometric examples that bring stu-
dents to discover why vector rotation requires a simi-
larity transform rather than a simple multiplication.
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2. Teaching quaternions

Though much work has gone into helping students vi-
sualize quaternions and quaternion curves in four di-
mensions [HFK94], their initial presentation in most
texts generally follows the following pattern:

1. Review the basics of complex numbers
2. Define three different roots of -1, called i, j, and k,

and define quaternions as a sum q = w+xi+yj+zk
3. Present the rules for multiplication, conjugation,

etc. Many texts also point out the relationship be-
tween the multiplication of i, j, and k, and cross
products.

4. Demonstrate that if q = cos (θ/2) + sin (θ/2)a then
qvq−1 gives rotation of v by θ about the axis a.

This last step is accomplished by calculating the ex-
pression for qvq−1 through and equating the final re-
sult to the arbitrary rotation matrix, for example, see
[Ang03, Par07, vVe04, War97, Wat92].

This is fine for the most adept students, especially if
they have had a course in abstract algebra, but many
students in graphics have a rough time with the fact
that the only time this is tied back to something they
know is right at the end. Further, the matrix that it
is tied to is the most complicated of rotation matri-
ces. Many students are left wondering why rotation
requires such a complicated operation when with ma-
trices it is simply Mv.

Some texts have tried to tie quaternions to matrix
multiplication earlier in the development. For exam-
ple, several texts note that a quaternion w+xi+yj+zk
can be represented by a matrix like

w −z y x
z w −x y
−y x w z
−x −y −z w


The main problem with jumping immediately to this
representation is that, though helpful in allowing stu-
dents to tie a quaternion to a specific matrix, this ma-
trix is not one of the fundamental transformations that
students are used to working with. In addition, there
are several such matrices, which all produce valid ma-
trix representations of quaternions, and there is no
consensus for a canonical form; each text presents a
different matrix representation [Mar05, vVe04]. These
correspond to different embeddings of the space of
quaternions in the space of 4x4 matrices. For more
discussion on this, see Appendix A.

Others have suggested that replacing quaternions
with rotors from the Geometric Algebra, can be a good
approach [DFM08], and it is true that rotors do solve
some of the problems that arise in the development
of quaternions and in how it is used to achieve ro-
tation. However, to use this method effectively, one

would need to couch the entire graphics curriculum in
terms of this algebra, something that many programs
are not willing to do, partially because of the fact that
it is not yet widely used in industry. One of the major
complaints, though, from the Geometric Algebra camp
is that quaternions are not “geometric” [DFM08]. This
paper addresses this by demonstrating, from the be-
ginning of the construction, the geometric meanings
and effects of these objects.

The technique presented in this paper makes the
connection between matrices and quaternions earlier
by defining the primitive elements, i, j and k in terms
of matrices, and allows students to see clearly how
rotations about coordinate axes are built. These ma-
trices are far simpler than their more general cousin
above, and students have a better opportunity to build
intuition. Further, we will see that it is possible to vi-
sualize geometrically how quaternions work in the for-
mula qvq−1. To help build student intuition from the
ground up, however, we begin the story with 2D ro-
tations and complex numbers. Other texts have done
this as well, though they didn’t carry the connection to
rotation matrices nearly as far as we will here [War97].

3. i is not imaginary

By the time graphics students get to courses that
cover quaternions, they will have encountered com-
plex numbers, if only in an algebra course covering
the quadratic formula. The problem is that very often
the seed for confusion about quaternions is already
laid in this foundation with the use of the other name
for complex numbers: “imaginary”. This name implies
that this object i doesn’t really exist, but that we’ll go
ahead and define it to be the square-root of -1 anyway.

Many authors have written about the inappropri-
ateness of this name, and I won’t go through a com-
plete rundown of why this is unfortunate. In laying
the groundwork for computer graphics, however, we
have a wonderful opportunity to clear up this confu-
sion since our students have a lot of experience with
matrices. Finding a meaning for i that students can
relate to is often a matter of embedding the field of
complex numbers into some other set that has mean-
ing for students. In our case we are relating 2D rota-
tions to the unit complex numbers, and so, the logical
choice is to use matrices to build this connection.

3.1. Giving meaning to i for graphics students

In the set of 2x2 matrices, we have a subset that act
just like the real numbers. These matrices are of the
form [

a 0
0 a

]
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Students will quickly recognize these as scale matrices,
but it is worth pointing out that both addition and
subtraction work exactly the same for these matrices
as for real numbers. Thus, these matrices are a nice
copy of the real numbers sitting inside this larger set.

If the students then square the following matrix,
they will make a nice discovery:[

0 −1
1 0

]
The quickest students may recognize this matrix as
a rotation by 90°, but in any case, they will discover
that its square is the scale matrix -1. Therefore, this
matrix, in this new number system is

√
−1. For them,

this matrix is the i that was so mysteriously called
imaginary. One can quickly work out the usual prop-
erties for complex numbers from here, but now they
have a physical meaning to attach to i: Rotation by
90°.

It is worth pointing out here that this version of i
assumes that we are dealing with matrices that act on
vectors on the left. I.e.

Mv

and thus the above matrix represents a right-handed
rotation. If the students are used to working with vM ,
then one can create the same development by taking
the transposes of our i matrix.

Of course, the most immediate fact we get is that a
unit complex number, cos θ + i sin θ, is then equal to[

cos θ 0
0 cos θ

]
+

[
0 − sin θ

sin θ 0

]
which when summed equals the standard matrix for
rotation that they know. This makes the connection
between rotations and unit complex numbers quite
evident, and lays the foundation for quaternions. It
is also important to point out at this point the fact
that the inverse of this matrix is its complex conju-
gate cos θ − i sin θ, since negating the coefficient on
i simply flips the off-diagonal elements giving us the
transpose of the matrix.

3.2. Applying unit complex numbers to
vectors

It is at this point that we run into a subtle point that
will carry over into quaternions. How are we going
to apply these complex numbers to vectors. If we are
only thinking about complex numbers, we interpret a
vector (or a point) in 2D space as a complex number
and then we multiply using complex arithmetic. This
will be a little unusual for the students because they

are thinking of matrices at this point, and thus about[
cos θ − sin θ
sin θ cos θ

] [
x
y

]
=

[
x cos θ − y sin θ
x sin θ + y cos θ

]
(1)

but if we think about the vector as a complex number
the product becomes[

cos θ − sin θ
sin θ cos θ

] [
x −y
y x

]
=[

x cos θ − y sin θ −y cos θ + x sin θ
y cos θ + x sin θ x cos θ − y sin θ

]
which is the same thing as (x cos θ − y sin θ) +
i (y cos θ + x sin θ). And so the product works out the
same either way.

The best students may not get confused by this, but
usually this discussion is best left to a later time, and
simply appeal to the fact that complex multiplication
gives the same answer as the rotation matrix. Students
will generally accept this here. It is important for in-
structors to be aware of this issue, however, because
one of the sticking points of the quaternion construc-
tion is interpreting vectors as a quaternion. This is
analogous to what we have done in this section.

4. Quaternions

When we pass to the discussion of quaternions, the
question becomes, can we build an analog of the com-
plex numbers that will allow us to represent rotations
in 3D? The development of quaternions can proceed in
the same manner as for complex numbers, by building
roots of a diagonal matrix of -1’s, but with several im-
portant differences that need to be treated delicately.
The most important thing is to keep connecting new
ideas to ones students already know. In the case of
graphics students students: matrices.

4.1. 4x4 matrices and roots of -1

When building roots of -1 for rotations in 3D there
are two possibilities, 3x3 matrices or 4x4 homoge-
neous matrices. Since the students have usually been
working with homogeneous matrices for a while, they
may accept without question using them at this point.
However, the brighter students may question whether
3x3 matrices wouldn’t be easier and more compact.

One can eliminate this possibility quite easily by
appealing to the determinant. The determinant of a
3x3 diagonal matrix with -1’s on the diagonal is -1,
and so a root for this matrix would have determinant√
−1. Since our matrices have real entries, their deter-

minants are real, and of course, there is no real number
whose square is -1. If we use 4x4 matrices, we don’t
have this problem since the determinant would be +1.
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In any case, we know that homogeneous matrices are
needed in general for transformations in 3D, and so it
is not a big stretch for students to accept them here.

We begin the story of quaternions in the same way
as complex numbers, by considering a copy of the real
numbers in the collection of 4x4 matrices:

[a] =


a 0 0 0
0 a 0 0
0 0 a 0
0 0 0 a


Students should note that these are not scale matrices
for 3D, though they are for 4D space. This is one place
in which the development differs from the 2D case. In
3D, they will scale vectors, whose homogeneous coor-
dinate w is 0, but with points, they will multiply all
four coordinates by a, including w. When we return
the point to its canonical form, w = 1, the a divides
out and we get exactly the same point we started out
with. This observation contains the beginning of why
qvq−1is necessary for rotation.

Such homogeneous matrices are a bit unusual, but
the students can quickly grasp what they do, and can
easily discover that they obey the same rules as the
real numbers under matrix arithmetic. The product
and sums of two diagonal matrices [a] and [b] are
[a+ b] and [ab] respectively.

When trying to find a root of the diagonal matrix
[−1] , we find that there is more than one possibility,
unlike in 2D. In fact the following three matrices are
all roots of [−1]:

i =


0 0 0 1
0 0 −1 0
0 1 0 0
−1 0 0 0



j =


0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0



k =


0 −1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0

 (2)

Each of these matrices is analogous to the matrix i
from complex numbers, and can be built by choosing
pairs of columns (coordinates) to reverse, and one of
each pair to negate. These are not all of the different
roots of [−1] , however, and in fact the others corre-
spond to negating one of the columns in each pair in
different ways. The other roots correspond to differ-
ent ways to embed quaternions in the space of matri-
ces. The three in equation 2 have been chosen so that

they match the corresponding rotation matrices most
closely. Appendix A explores this more fully.

In any case, it is easy for the students to check that
a simple set of rules governs multiplication of these
special matrices, namely the usual quaternion product
rules:

ij = k, jk = i, ki = j

i2 = j2 = k2 = −1
(3)

and the fact that the product rules for i, j, and k follow
the same rules as the cross-product. So, we define a
quaternion as the sum q = w + xi + yj + zk, where
w, x, y and z are real numbers. At this point we can
note what some other texts do, that this quaternion
corresponds to the matrix

w −z y x
z w −x y
−y x w z
−x −y −z w

 (4)

Though in this case, students get a clear view of ex-
actly where this matrix comes from.

Amongst the various properties of quaternions that
are usually discussed at this point, it is worth tying
conjugation back to this matrix. Since q = w−xi−yj−
zk, a modicum of inspection will show the students
that the corresponding matrix is the transpose of q’s
matrix. Since the inverse of a rotation matrix is its
transpose, this will help reinforce the idea that for unit
quaternions, which will represent rotations, q−1 = q.

Note, that as described in Appendix A, the specific
form of matrix 4 will depend on our choices of i, j
and k. The specific choices of these matrices here were
made to strengthen the analogy between i, j and k and
rotation matrices. It is at this point, though, that we
begin to leave matrix notation and work exclusively
with quaternion notation. We will however tie it back
to matrices from time to time to reinforce intuition
when building rotations.

4.2. Quaternions and rotations

Before we get to general quaternion multiplication, it
is useful to investigate rotations with some simple ex-
amples. This not only gets the students used to the
rules for quaternion multiplication, but it also allows
the students to discover, on their own, the rules that
will govern quaternion rotations.

The first two examples investigate what happens
with the naive attempt to use the direct analog of
complex rotation in section 3.2 only this time in the
context of quaternions. Of course, the effort will fail,
but it is in how it fails that the students will build
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Figure 1: The first rotation

their intuition for the real formula: q = cos (θ/2) +
sin (θ/2)a and its application to a vector qvq−1.

The first thing to note, is that just like we converted
vectors in the 2D case to complex numbers, we will do
the same here. The only difference is that a quaternion
has four dimensions and a vector only 3. But appealing
to homogeneous coordinates, and looking at the form
of a quaternion q = w+ xi+ yj+ zk = w+v gives us
the answer. We will let a vector be represented by a
quaternion with w = 0. So, 〈2, 3, 1〉 = 0 + 2i+ 3j + k.
With this method of representing vectors as quater-
nions we are ready to give rotation a try.

4.2.1. Example 1, first attempt

For the first example, we begin with the simplest of
quaternion rotations, and we apply it to a very simple
vector. Consider a rotation of by an angle θ about
the z-axis. If we follow the pattern suggested to us by
complex numbers, we might take a guess at trying the
quaternion

q = cos θ + sin θ 〈0, 0, 1〉 = cos θ + k sin θ

The first vector we will attempt to rotate is a sim-
ple one as well v = 〈1, 0, 0〉, which when converted
to a quaternion by attaching w = 0, simply be-
comes i. Clearly, when rotated by an angle of θ
about the z-axis, this vector should be transformed
to 〈cos θ, sin θ, 0〉 .

In the complex case, we could rotate a vector by
simply multiplying, so we try it here and see what we
get.

q ∗ v = (cos θ + k sin θ) ∗ i
= i cos θ + ki sin θ

= i cos θ + j sin θ = 〈cos θ, sin θ, 0〉

Just as expected. So for the moment quaternions are
following exactly in the footsteps of the complex case,
see Figure 1 where the case of θ = π/2 is shown.

We continue exploring with this example, to see if
this naive approach continues to work, by rotating a
more general vector, such as v = 〈1, 0, 1〉, if the rota-
tion is working properly, we should get 〈cos θ, sin θ, 1〉.

Figure 2: The second rotation

In this case, when we convert v to a quaternion we get
i+ j, and so, the product for rotation gives us

q ∗ v = (cos θ + k sin θ) ∗ (i+ k)

= i cos θ + ki sin θ + k cos θ + k2 sin θ

= i cos θ + j sin θ + k cos θ − sin θ

Here we’ve run into a problem. First, the result
doesn’t correspond to a vector because the real part w
is not zero, it is − sin θ. Second, when we analyze the
terms in the result, we see that we did get part of the
rotation that we wanted, namely i cos θ + j sin θ. The
problem is that we got more than we wanted. The k
component of v was transformed into k cos θ − sin θ,
which is itself a rotation by −θ towards the −w-axis!
The effect of this in 3D is to shorten the z-coordinate.

The case of θ = π/2 is shown in Figure 2, where
we have broken out the two components of the vector
v and have shown the effect of the rotation on each.
The diagram projects 4D space into 3D by choosing
a direction in 3D for the w-axis. This doesn’t cause
confusion in this case, since v, its projections to the
coordinate axes, and the rotation qi all have w = 0.
The only vector that has a non-zero w-coordinate is
qk = −w.

As the figure clearly shows, the quaternion multipli-
cation gave us an unexpected “extra” rotation that we
don’t want. We can even get a hint as to where this
comes from if we look back at the matrix for i, and
build the matrix that corresponds to cos θ + i sin θ as
a quaternion

cos θ + k sin θ =


cos θ − sin θ 0 0
sin θ cos θ 0 0

0 0 cos θ sin θ
0 0 − sin θ cos θ


This matrix has two 2x2 sub-matrices. In the upper
left, we have precisely the terms for the rotation by
θ about z. In the lower right hand corner, we have a
rotation by −θ in the z,w-plane, exactly as we are get-
ting in the quaternion multiplication, which is caused
directly by the form of k as a 4x4 root of -1. The next
example will explore how to fix this.

© The Eurographics Association 2009.
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4.2.2. Example 2, fixing the extra rotation

The example in the last section shows students that
simple quaternion multiplication with a unit quater-
nion came close to giving us the desired rotation, but
also gave us an extra unwanted factor. The examples
in this section will allow them to explore and find a
way to fix this extra factor. The key is in discovering
what the order of the multiplication does to the result,
and also why the inverse is necessary. Of course we are
leading them to the true method of qvq−1, but these
examples will show what the q−1 on the right is doing
geometrically.

We begin by looking at what happens when we re-
verse the order of the multiplication. After all, quater-
nion multiplication is not commutative, just like ma-
trix multiplication. As it turns out, the result is quite
instructive. We will use the same example before that
was causing problems

vq = (i+ k) ∗ (cos θ + k sin θ)

= i cos θ + ik sin θ + k cos θ + k2 sin θ

= i cos θ − j sin θ + k cos θ − sin θ

Taking a close look at what this did, we see that it
reversed the desired rotation: i→ i cos θ − j sin θ, but
the extra rotation stayed the same!

With this, many students can probably guess what
we have to do. Inverting q will now reverse both of the
rotations.

vq−1 = (i+ k) ∗ (cos θ − k sin θ)

= i cos θ − ik sin θ + k cos θ − k2 sin θ

= i cos θ + j sin θ + k cos θ + sin θ

Now, the extra rotation is by positive θ, and the de-
sired rotation is in the same direction as before.

So, we can fix the unwanted rotation that occurs
in qv by multiplying on the right by q−1. The first
multiplication gives us the desired rotation plus an
unwanted rotation, the second rotates again by the
desired rotation and then undoes the unwanted one
in the z,w-plane. The only problem is that now we’ve
rotated by 2θ, but this is easy to correct if we change
our quaternion to

q = cos

(
θ

2

)
+ k sin

(
θ

2

)
4.2.3. An interactive demonstration

It is far easier for students to grasp the geometric
meaning of the last example if they are provided with
an interactive tool that allows them to experiment
with the different possibilities. Figure 3 shows just
such a tool, that allows students to vary the angle
of rotation for the quaternion in the above example.

Figure 3: Tool for exploring quaternion rotation

This interactive demo uses a projection from 4D to
3D much like the one in Figure 2. It provides an in-
teractive means of exploring the spherical linear inter-
polation from q0 = 1 to q1 =

√
2/2 +

√
2/2k, and allows

students to choose some of the different methods of
multiplying the vector 〈1, 0, 0〉 by q. The last one in
the list is, of course, the full rotation, which is the only
one in which the component of the vector along the
rotation axis doesn’t move.

By trying out the different possibilities, and using
the animation controls provided, the user can explore
the effect of both left and right multiplication by both
q and its inverse. This tool helps reinforce the geomet-
ric meaning of the rotation. The Windows executable
for this tool will be provided for use at the following
address: http://facweb.cdm.depaul.edu/quat.

4.3. Quaternion multiplication

Now that the students have built up some solid in-
tuition about quaternion multiplication and rotation,
we can proceed in the same manner as most texts
in presenting some of the other operations of quater-
nions. Of primary interest is multiplication. The rules
in equation 3 can be used to derive the general rule
for the quaternion product. It is most elegant in vec-
tor notation: by writing qn = wn + vn where vn =
xni+ ynj + znk for n = 0, 1, we can derive as usual,

q0q1 = (w0w1−v0•v1)+(w0v1 +w1v0+v0×v1) (5)

It can be interesting for students to discuss the fact
that the product of two matrices like equation 4 can
be decomposed into familiar operations with a highly
geometric interpretation.

More importantly, this expression for multiplication
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allows us to derive the final form of quaternion rota-
tion. To rotate a vector by an angle θ about an axis
a, we use the quaternion q = cos (θ/2) + sin (θ/2)a,
just like in the simpler case above. We then apply it
to the vector by the similarity transform qvq−1. The
first thing to note here is that q has the same effect
as we saw earlier with our simple example. It rotates
the part of v that is perpendicular to a correctly by
θ/2, but at the same time it rotates the component of
v that is parallel to a towards the −w axis. There-
fore, multiplying on the other side by q−1 finishes the
desired rotation and undoes the rotation of a.

Thus we can derive the equality

qvq−1 = v⊥ cos θ + (v⊥ × a) sin θ + v‖

where v‖ = (v • a)a, is the component of v parallel
to a, and v⊥ = v − (v • a)a, is the component per-
pendicular to a. This derivation can proceed in the
usual manner, using equation 5 with a good dose of
trigonometry and linear algebra, see [vVe04]. With the
developments above, the students will have far better
intuition to help them understand this derivation.

5. Conclusion

The technique presented here provides an introduc-
tory path to quaternions that reinforces their geomet-
ric nature, and allows students to visualize their func-
tionality geometrically at each step. By connecting
quaternions to matrices early in the development, it
is easier for graphics students to grasp the geometric
meaning of the operations. Also, breaking the deriva-
tion of the quaternion rotation formula into a series of
elementary examples, students can gain a better un-
derstanding of how this formula actually accomplishes
its job.

As to next steps, there are several possibilities. Cer-
tainly, there are opportunities for building better vi-
sualizations of the operations outlined here. The in-
teractive demo discussed in 4.2.3 is a first step, but
extending it to be a visualization of arbitrary quater-
nion rotation would be helpful. Quaternions remain
an important part of many fields, and the techniques
that use them are varied and often quite subtle. It
may be possible to find simple geometric insights into
more subtle quaternion processes that will help stu-
dents more readily accept them and use them effec-
tively.

Appendix A

One of the confusing points of quaternions is that they
have several different possible representations in the

matrix ring. This is not something that needs to be
discussed in an initial introduction to quaternions, but
it is something that may arise, especially when inquis-
itive students begin exploring multiple texts on the
subject. This appendix gives a brief outline of the dif-
ferent representations, and why we’ve chosen the one
in equation 2.

For example, in [vVe04] and [Arv91] they use, as we
have done here,

q =


w −z y x
z w −x y
−y x w z
−x −y −z w

 (6)

However, in [Mar05] and [Wei08] they use what seems
to be a bit more popular representation

q =


w −x −y −z
x w −z y
y z w −x
z −y x w


T

The transpose is because they are using post-matrix
multiplication for vectors and points, i.e. vM. Notice
that one of the main differences here is the swapping
of the x’s and z’s. It is important to note however,
that even with the coordinates in the same place some
representations will use a different pattern of negative
signs.

The specific form of the quaternion matrix is deter-
mined by the choice of matrices for equation 2, and as
we mentioned in section 4.1 a matrix representation
begins with a choice of three compatible roots of the
4x4 matrix [-1]. There are three factors that determine
the form of the matrices for i, j and k. We build the
root by starting with the identity matrix:

1. In the identity matrix, we need to choose two of the
three coordinates x, y and z to swap, the remain-
ing coordinate will be swapped with w. This will
suffice, since to be a root of [-1], Rowm •Coln must
equal -1 if n = m or 0 otherwise. To keep these roots
simple, we do this by letting (m, i) and (i,m) be ±1
or vice versa. We eliminate w from our considera-
tion since it doesn’t correspond to a coordinate in
the 3D space of vectors. This choice determines an
axis for a 3D rotation and an “axis” for the “extra-
neous” rotation discussed above. There are three
ways to choose this pair, these correspond to the
three elements i, j and k.

2. In each of the two pairs of coordinates that were
swapped in 1) we choose one to negate. This
chooses a direction for each rotation. There are four
ways to choose these two negations.

3. Once we do this, we need to identify each of the
three roots with one of the primitive quaternion
elements i, j and k.
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It is the third of these that causes the swap of x and z
above, and which also causes the most confusion when
looking at different embeddings. Because in these two
matrices we have two very different choices for i:

i1 =


0 0 0 1
0 0 −1 0
0 1 0 0
−1 0 0 0

 , i2 =


0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0


These correspond to different choices in both steps 2
and 3.

The curious thing about this is that the first one
corresponds to rotation about the x-axis, while the
second one corresponds to rotation around the z-axis.
Then how could both of them serve as i in a repre-
sentation of quaternions? The answer lies in looking
more closely at how quaternions are multiplied with
vectors. We all know that we interpret the vector as
a quaternion with w = 0, but when talking about
multiplication and the matrix form of the quaternion,
many texts, for example [Arv91], multiply the quater-
nion matrix and the vector

qw −qz qy qx
qz qw −qx qy
−qy qx qw qz
−qx −qy −qz qw



x
y
z
0


This, however, is incorrect, because the vector has
been converted into a quaternion. So, it should be

qw −qz qy qx
qz qw −qx qy
−qy qx qw qz
−qx −qy −qz qw




w −z y x
z w −x y
−y x w z
−x −y −z w


And so, when we swap coordinates in the representa-
tion for the quaternion, they also get swapped in the
quaternion form of the vector! The first of these will
only produce the desired result if the representation in
equation 6 is used, where they match the correspond-
ing transform matrices.

Note also that this is also the only way that qvq−1

makes sense in matrix form. For if v is a vector, then it
is a 4x1 matrix, and we cannot multiply a 4x1 matrix
on the right by a 4x4 matrix q−1. This is not some-
thing we necessarily want to point out to students at
the beginning as it is a subtle point, and the intuitive
idea in most texts has value for building intuition, but
only if the matrices for i, j and k match the desired
rotations. This is precisely why we chose the matrices
we did in equation 2.
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