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Abstract
We present the RPI-MATLAB-Simulator (RPIsim) as an open source tool for research and education in multibody
dynamics. RPIsim is designed and organized to be extended. Its modular design allows users to edit or add
new components without worrying about extra implementation details. RPIsim has two main goals: 1. Provide
an intuitive and easily extendable platform for research and education in multibody dynamics; 2. Maintain an
evolving code base of useful algorithms and analysis tools for multibody dynamics problems. Although research
often focuses on a specific subset of problems, work too often begins with developing software in a broader scope
simply to realize a test bed for research to begin. It is our hope that RPIsim alleviates some of this burden by
decreasing development time, thusly increasing efficiency in research. Further, we aim to provide a practical
teaching tool. Because it is a fully working simulator, and since it offers the instant gratification of visualized
contact dynamics, RPIsim offers students the opportunity to experiment and explore dynamics in the powerful
environment of MATLAB. With multiple built-in simulation methods, and support for a simulation data convention,
RPIsim facilitates the fair comparison of methods, including those being developed with RPIsim.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [I.3.5]: Physically based
modeling—D.4.8 [Software]: Performance—Simulation D.2.8 [Software]: Metrics—Performance measures I.6.1
[Computing Methodologies]: Simulation and Modeling—Simulation Theory

1. INTRODUCTION

Since the late 1980s, many physics engines have been de-
veloped - some open source, some proprietary. Many im-
pressive videos available online make it appear as though
the problems are all solved, but this is far from the case.
In fact, poor performance in terms of simulation speed and
physical fidelity continue to prevent application of physi-
cal simulation in many domains, for example, model pre-
dictive control and state estimation in robotics. The desire
for greater simulation performance drives research on dif-
ferent ways to formulate the simulation equations and solve
them [BETC12, TET12], and on calibrating and tuning sim-
ulations to best match physical observations of the real sys-
tems we simulate [ZBT10, BNT09, PG96]. An important
topic which is nearly unexplored is the domain of applicabil-
ity or region of trust of a simulation. More specifically, deter-
mining over what set of physical model parameters, driving
inputs, and solver parameters, will a simulation be "valid” or
"correct enough” to enable a chosen application.

One of the primary goals of the RPI-MATLAB-Simulator
(RPIsim) is to provide an intuitive, easily extendable plat-
form to support research and education in multibody simula-
tion. A design goal that has made RPIsim unique is the goal
to compare, in an unbiased manner, many simulation meth-
ods. The motivation for this is the plethora of research papers
that explain and demonstrate their simulation method, but do
not (or cannot for lack of a convenient tool) compare it fairly
to existing simulation methods. RPIsim currently supports a
database of test problems stored in a format that allows the
construction of many different time-stepping subproblems (a
subproblem is the system of equations and inequalities that
must be formulated and solved at every time step to advance
the simulation in time). RPIsim also supports several differ-
ent solution algorithms compatible with these formulations,
and instrumentation at the solver iteration level for solver
analysis.

In addition to the necessary further research in multibody
dynamics, RPIsim provides a platform for education. The
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level of interaction with the simulator can vary dramati-
cally and begins with the very basic (section 5.1). Student
tasks might include generating simple scenes and plotting
position, velocity, and acceleration of sliding or falling bod-
ies, or assignments could involve implementation of a linear
complementarity problem solver. In both of these examples,
RPIsim allows the student work to be focused since all other
simulation functionality is in place.

RPIsim supports an accuracy enhancement supported by
no other simulator in the world, which we refer to as poly-
hedral exact geometry (PEG). In all other simulators, a non-
penetration constraint between pairs of bodies must be added
to the time-stepping subproblem when the bodies are nearer
to each other than some prescribed tolerance. When the near-
est features on approaching bodies are vertices that are each
locally convex from the object perspective, then the set of
all non-penetrating relative velocities is non-convex. Despite
this fact, existing simulators choose a locally convex approx-
imation of the set, which causes non-physical simulation ar-
tifacts. We discuss this issue in more detail in section 3 and
an illustrative example is given in section 5.1.

Improving the physical accuracy of simulation is an im-
portant objective. Consider the on-going DARPA Robotics
Challenge (www.theroboticschallenge.org). In
the challenge, a humanoid robot must get into a car, drive
to a disaster site, use a jackhammer to break down a wall,
climb a ladder, attach a hose to a standpipe, turn a valve, and
more. The first part of the Challenge was the Virtual Chal-
lenge (held in June 2013), in which all of the tasks were done
completely in simulation using the ROS/Gazebo simulator
built on top of Open Dynamics Engine (ODE). The winners
of the Virtual Challenge have received a physical Atlas robot
that they will enter in a physical competition in Miami on
December 21, 2013. The hope of the DARPA division that
sponsored the competition is that the experience gained in
the Virtual Challenge will transfer with minimal tweaking
to the real-time controllers of the physical robot. In partic-
ular, teams will want to use the simulation in planning and
controlling dynamic actions, like running across uneven ter-
rain. In these cases, the simulation has to predict the robot’s
behavior accurately, because high-level plans will be chosen
based on simulation outcomes.

It is too early to tell how smoothly the transition from vir-
tual to real will go, but one author’s team has already run into
significant issues - all related to the trade-off between speed
and accuracy in simulation. In our specific case, the prob-
lem is that the mass ratio between the smallest finger link
to the torso link is on the order of 104, the simulation time
step is fixed at 0.016 seconds, and the robot’s controllers run
at 1000 Hz. Further, an extremely important functionality of
the robot is the ability to control the forces it applies to the
objects it grasps, perhaps the roll cage of a simulated vehicle
(this pushes the mass ratio much higher) or a tool. In both of

these cases, closed kinematic loops with large internal forces
are formed, making the simulation more challenging.

Consider Figure 1, which shows side-by-side frames of
simulations produced in Blender using Bullet (left column)
whose physics engine is a derivative of ODE’s, and a slower
but more accurate engine, dVC3d (right) [Ngu11]. Time
advances down the page. The accompanying videos are
available from http://www.youtube.com/watch?
v=pj49NKW6n8U and http://www.youtube.com/
watch?v=qx6GjnLnf5Q. Problems similar to those re-
vealed in the Bullet video will arise in any simulator when
pushed hard enough.

In these two grasp simulations, the Barrett Hand moves
toward the chalice and closes the fingers. In the right col-
umn, all goes as expected, but in the left column problems
are already visible in the second frame - the chalice is not
touching the block. The next frame shows the fingers on the
back side of the chalice splaying due to joint constraint er-
rors, which the fourth frame shows most blatantly where the
distal joint of the finger in full view is stretched apart and
twisted. Eventually the chalice escapes the grip of the hand
entirely due to instabilities. Imagine using simulation to plan
to grasp the chalice. Suppose a robot was told to pick up
the chalice and its knowledge of the physical world was the
Bullet simulator as set up for this video comparison. In that
case, the robot would decide that it was impossible to grasp
the chalice, so it would fail.

Contributions.

• An easily extendable open source simulator in MATLAB
for research and education in multibody dynamics.

• Support for a simulation data convention that facilitates
recording of simulation data, for example as benchmark
problems for comparison of solver performance.

• A framework for simulation experiments, particularly
useful for comparing time-stepping formulations.

2. SIMULATION OVERVIEW

MATLAB [MAT10] was chosen as the platform in which
to build RPIsim because of its ease of use and wide avail-
ability (efforts have been made to achieve compatibility with
Octave [Eat02]). MATLAB offers a huge body of functions
and an environment that facilitates rapid development of
mathematical-based software for research. This section in-
troduces the structure of the simulator and the basic steps
for adding custom modules.

2.1. Interface

A simulation is created by defining a set of bodies, adding
these bodies to a Simulation structure, then starting the the
simulation. Previous versions of RPIsim utilized a custom
GUI for user-friendly interaction during simulation, however
the most recent version of RPIsim has sacrificed this small
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(a) Bullet physics (b) dVc3d

Figure 1: Comparison of stability in Bullet physics versus
dVc3d time-stepping method in Blender.

convenience in order to achieve compatibility with Octave
as well as improve timing performance during simulation. If
the simulation is run with the GUI enabled (default), then the
user is still able to navigate the scene using the mouse. When
run without the GUI (more efficient), the user need only set
the maximum number of time steps to define a stopping cri-
terion.

The file structure of the simulator is depicted in Figure 2.
This structure is meant to be intuitive and help guide the
user when editing or adding new components. The "exam-
ples" directory contains several examples of how to create
scenes, specify options, and run a simulation. The simu-
lator itself is entirely contained in the "engine" directory.
The directories found there are fairly self-explanatory. The
"dynamics" directory contains the functions defining each
available time-stepping formulation, all of which construct a
time-stepping subproblem formulated as a complementarity
problem (CP). The "solvers" directory contains various func-
tions for solving the complementarity problem: linear com-
plementarity problem (LCP), mixed linear complementarity
problem (mLCP), and nonlinear complementarity problem
(NCP). See [BETC12] for a comprehensive review of these
topics.

body
geometries

collision
detection

dynamics solvers

engine examples

simulator

Figure 2: RPIsim file structure. Simulator code is organized
in order to reflect the stages of simulation and to give the
user intuition about the connectedness of these stages. The
existing code serves as a set of templates for extending the
simulator with custom modules.

2.2. Simulation Loop

The flow of simulation is depicted in Figure 3. As soon as a
simulation script is executed, the scene is rendered so that it
may be inspected. When run, the simulator proceeds through
the various stages of the simulation loop.

The userFunction stage is an optional stage that allows the
user to put in place a custom function such as a controller or
functionality for plotting. A controller could be an explicit
time-based position or velocity controller, or a proportional-
integral-derivative (PID) controller for joint control of a
robotic arm. Although all simulation variables are available
and editable at this stage, it is recommended that bodies be
controlled only by setting external forces and allowing the
dynamics to solve for the next step. This is similar to the
idea behind energy functions in simulation [WFB87].
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sim_run()render scene

userFunction

collision
detection

formulate
dynamics

solve
dynamics

state update

joint
stabilization

Figure 3: Simulation loop. At each stage, a user can replace
or plug in custom modules.

The "formulate dynamics" stage constructs a time-
stepping subproblem to be solved. The available formula-
tions are described in section 3. This subproblem takes into
account any forces generated in the previous stage as well as
all non-penetration, friction, and joint constraints.

2.3. Modularity of Simulation Components

The modularity of RPIsim is simple because all simulation
data is stored in a single Simulation structure, and function
handles are used to call the various simulation stages. This
means that any custom component need only worry about
where to access relevant information for their component to
process it, and which fields need to be updated before return-
ing. For example, custom collision detection need only look
at the list of bodies, understand the Body structure, and add
contacts to the simulator before returning.

Details about adding custom modules are given in the fol-
lowing sections. In general, a simulation module is a func-
tion with a single parameter which is the Simulation struc-
ture. Within the simulator, adding a module simply involves
setting the function handle to be executed at a given stage.

Adding Custom Collision Detection

Here we will reference mesh bodies as an example, but cus-
tom body geometries can be added by extending the Body
structure. Body contains the basic kinematic attributes of a
simulation body including position, velocity, and external
forces.

If we wish to write a custom collision detection function,
newCD(sim), we start by creating a new function with that
name which takes a Simulation structure as its only argument
and returns the updated structure. We may then write newCD
in terms of all the bodies within the simulation. In addition
to the standard body information, mesh bodies contain all of
the information about world vertex coordinates, as well as
edges and faces in terms of indexed vertices.

Adding contacts to the current contact set of a Sim-
ulation struct sim is done by updating sim.contacts, an
array of Contact structures. Each contact is a 5-tuple
(Bid1,Bid2,πππ1, n̂,ψn), where Bid1 and Bid2 are the body IDs
of the bodies in contact, πππ1 is the point of contact in world
space on the first body, n̂ is the unit normal direction of the
contact from the first body, and ψn is the gap distance. By
"gap distance," we refer to the signed distance between the
two bodies at the contact. When in penetration, this value is
negative, at the exact moment of contact this value is zero,
and when near but not in penetration, this value is positive. It
is important to be able to identify potential contacts within a
given small distance ε if we wish to generate constraints that
will prevent penetration.

Since extending RPIsim is designed to be straight-
forward, incorporating the new collision detection routine is
as simple as setting the appropriate function handle in the
simulator with sim.H_collision_detection = @newCD be-
fore running the simulator.

Adding Custom Dynamics Formulations

By default, a function preDynamics() is called before the
"formulate dynamics" stage of Figure 3 which constructs
common submatrices for all bodies found to be in contact,
descriptions of which are given in section 3. These matrices
are all stored in a struct called dynamics within the Simula-
tion structure. A custom dynamics formulation may wish to
use these values or choose to ignore them.

The format of the formulation is dependent on which
solver will be used (and vice versa), but most solvers will
be solving the LCP for a solution vector z ∈ Rn where

z ≥ 0
Az+b ≥ 0

zT (Az+b) = 0
(1)

where zT denotes the transpose of z. For such a problem,
the dynamics formulation need only supply a suitable matrix
A and vector b. This is done by storing the values in the
dynamics struct i.e. dynamics.A and dynamics.b.

Given a custom dynamics function newDynamics(sim),
we incorporate the custom function by setting
sim.H_dynamics = @newDynamics.

Adding Custom Solvers

A custom solver will likely be operating on the problem
stored in the previously described dynamics struct. The im-
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portant aspect of a custom solver is that it must return a set
of new velocities ννν

`+1 for each body that was active in the
formulation. These new velocities are used in the next step of
updating the state of all simulation bodies before restarting
the simulation loop.

Incorporating a new solver simply involves setting
sim.H_solver = @newSolver. All contact information at ev-
ery simulation step is available in sim.contacts, and there are
several solvers already in place that exemplify this access.

Alternative Dynamics

If one wishes to use an alternative dynamical method that
does not fit the paradigm described above and depicted in
Figure 3, it is possible to bypass the stage "formulate dynam-
ics" and incorporate the alternative method entirely in a cus-
tom solver. This could be done for example with a penalty
method where forces are determined solely on penetration
depth without the need to call a solver.

2.4. Joints

Joints are currently implemented in RPIsim as bilateral con-
straints between two bodies. A joint is defined by the two
bodies it joins, the type of joint, and an initial position and
joint direction.

When using the maximal coordinate formulation (see
[Bar96]), joints are known to "drift" due to extra degrees of
freedom. Joint stabilization based on the work in [BS06] is
included in RPIsim in order to maintain joint constraints.
Figure 4 shows the position and velocity errors for simula-
tion of a hanging pendulum with time step of 0.01 seconds
for simulations with and without joint correction. When sta-
bilization was used, joint position and velocity errors were
both bounded by an epsilon of 10−5. The PATH solver
[DF94] was used to solve the dynamics.

With minimal coordinates, bilateral constraints are elim-
inated using joint coordinates that directly parametrize the
possible motion [APC95]. Thus minimal coordinate mod-
els have no bilateral constraints since they are implicitly in-
corporated in the Newton-Euler equation. Subsequently, no
joint correction is needed for minimal coordinate formula-
tions. We are currently in the middle of adding the mini-
mal coordinate formulation to RPISim. Maximal coordinate
formulations, already implemented, are consistent with both
unilateral and bilateral constraints.

3. TIME STEPPING FORMULATIONS

RPIsim currently utilizes time stepping formulations, how-
ever we will briefly mention the event-driven integration
method which uses a standard ODE integrator in the smooth
phase of the system and a LCP, mLCP, NCP or augmented
Lagrangian method to determine the next time when mode
switching occurs. Various index sets, such as detaching,

(a) Joint errors without stabilization.

(b) Joint errors with stabilization (ε = 10−5).

Figure 4: Joint errors for a hanging pendulum. Without sta-
bilization, the pendulum "drifts." Note that the period of os-
cillation remains unchanged.

sticking, sliding are used to describe the kinematic state of
contact points. The sets are not constant since the contact
configuration of the dynamical system changes with time
due to stick-slip transitions, impact, and contact loss. At an
event, index sets are adjusted which then set up an LCP,
and the new contact configuration is determined by this LCP
[LN04].

To contrast, the event-driven method integrates the system
until an event occurs, calculates the next mode, adjusts the
set indices and proceeds integration. Time-stepping meth-
ods are based on a time-discretization of generalized posi-
tion and velocities and for each time step, multiple events
might take place simultaneously. This is especially useful
when one is interested in a system with many contact points
or with a large number of events that might occur in short
amounts of time [LN04]. It is in part due to these benefits
that RPISim currently supports time-stepping methods right
now.

RPIsim has several built-in time-stepping formulations.
The following subsections detail three of these formulations,
all of which are derived from similar ideas in discrete dy-
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namics. The literature on these topics is vast, however we
will preface these descriptions with a brief description of
their general background.

We begin with the Newton-Euler equation

Mν̇νν = Gλλλ+λλλext (2)

where M is the mass-inertia matrix diagonally composed of

Mi =

[
miI3 0

0 Ji

]
for each body i with mass mi and inertia

tensor Ji, ν̇νν is the first derivative of the generalized velocities
νννi =

[
vT

i ωωω
T
i
]T

, λλλ is the forces resulting from constraints
imposed upon the bodies, G is the corresponding constraint
Jacobian, and λλλext is the external forces applied to the bod-
ies. M and G are expressed in the world frame and therefore
functions of the body configurations q. That is, they are more
accurately written as M(q) and G(q), but we shall abbrevi-
ate to simplify notation. We discretize equation (2) from time
step ` to `+1 as

Mννν
`+1 = Mννν

`+Gp`+1 +p`+1
ext (3)

where p and pext are impulses i.e. p = hλλλ for time step size
h.

We may separate the term Gp into distinct constraints
Gp = Gnpn +G f p f , where Gn is the non-penetration con-
straint Jacobian, pn is the vector of impulses applied at con-
tact points in the normal directions of those contacts, G f is
the friction constraint Jacobian, and p f is the vector of im-
pulses applied perpendicular to contact normals at contact
points due to friction (we are neglecting bilateral constraints,
for now). Consider Figure 5 where a contact is defined by a

ψn

n̂
r1

r2

Body 1

Body 2

Figure 5: Two bodies and contact vectors.

point on each body, a normal direction, and a gap distance
ψn. The non-penetration constraint Jacobian Gn is composed
of submatrices Gni j over the ith contact and jth body where

Gni j =

[
n̂i

ri j× n̂i

]
. (4)

If the jth body is the second body in the contact, then the nor-
mal n̂i is negated. The friction constraint Jacobian is com-
posed of submatrices G fi j for nd friction directions in the

linearized friction cone where

G fi j =

[
d̂i1 ... d̂ind

(ri j× d̂i1) ... (ri j× d̂ind )

]
(5)

where d̂ik is the kth vector representing the friction cone de-
picted in Figure 6.

λλλn

d̂1

d̂2d̂3

d̂4

d̂5
d̂6

d̂7

Figure 6: The friction cone and its polygonal approximation
for nd = 7 friction directions.

It should be noted that the time-stepping methods cur-
rently included with RPIsim are "preventative" methods
in which inter-penetration between rigid bodies is ideally
avoided, as opposed to "corrective" methods which wait for
penetration to occur and then correct it. This type of preven-
tative rigid body interaction is inelastic, i.e. does not include
any "bounce" on contact [Ste00]. However, there are numer-
ous ways to incorporate elastic collisions into a simulation
with RPIsim. Perhaps the most straight-forward approach is
to add a custom collision detection routine which only re-
ports contacts from penetrations. Forces may then be gener-
ated based on energy functions or penalty methods.

3.1. Polygonally Exact Geometry

The most general dynamics formulation currently included
in RPIsim is the polygonally exact geometry (PEG) time-
stepping method. PEG is introduced in [NT10] and is de-
rived and thoroughly covered in [Ngu11]. To give a brief
explanation of the motivation, consider the case where the
vertex v of one body is near an edge of another body, with
potential contacts with faces f1 and f2 with distances of ψ1
and ψ2, respectfully. The 2D projection of this simple case is
depicted in Figure 7. If the collision detection routine were to
include both of these contacts, then time-stepping methods
that attempt to enforce all non-penetration constraints inde-
pendently, e.g. [ST96,AP97], would result in an erroneously
applied impulse due to the negative gap distance of ψ1. PEG
groups certain sets of contacts into subcontacts such that one
subcontact per set is enforced. This would allow the vertex
v to accurately pass near the edge (or corner in 2D) in Fig-
ure 7. In this particular example, we would refer to a single
contact with two subcontacts.

The PEG formulation currently implemented in RPIsim
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v
ψ1

ψ2

f1

f2

Figure 7: Vertex-face case. Consider the negative distance
ψ1 and how it is "corrected" if included.

uses a heuristic to choose a primary subcontact when there
is more than one. If every contact has only a single subcon-
tact, then the formulation reduces to the Stewart-Trinkle for-
mulation [ST96]. Here, we will formulate PEG as a mixed
LCP. It is considered "mixed" because of the inclusion of
the Newton-Euler equation in a manner that requires equal-
ity with zero, and is does not take the form of a pure LCP as
in equation (7). For nb bodies, nc contacts, ns subcontacts,
and nd friction directions, the mLCP formulation of PEG is
written as∣∣∣∣∣∣∣∣∣∣∣

0
ρρρ
`+1
n

a`+1

ρρρ
`+1
f

σσσ
`+1

∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣

M −Gn 0 −G f 0
GT

n 0 E1 0 0
GT

a 0 E2 0 0
GT

f 0 0 0 E
0 U 0 −ET 0

∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣

ννν
`+1

p`+1
n

c`+1
a

p`+1
f

s`+1

∣∣∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣∣∣∣

−Mννν
`−p`

ext
ψψψ

`
n

h +
∂ψψψ

`
n

∂t
ψψψa
h

∂ψψψ f
∂t
0

∣∣∣∣∣∣∣∣∣∣∣∣
(6)

where M is the mass-inertia matrix, Gn and G f are the
penetration and frictional constraint Jacobians, respectfully,
which contain only primary subcontacts, U is the diagonal
matrix of coefficients of friction per contact, ννν is the vec-
tor of generalized velocities of bodies with contacts, ψψψn is
the vector of gap distances for all primary subcontacts, Ga
is an auxiliary matrix composed of submatrices over the ith

contact and jth body where GT
ai j is defined as

GT
ai j =


GT

n1 −GT
n2

...
GT

n1 −GT
nsi

 ,
ψψψa is the corresponding auxiliary vector composed of
stacked subvectors

ψψψai
=


ψ1−ψ2
ψ1−ψ3

...
ψ1−ψnsi

 ,

E = blockdiag(e1, . . . ,enc) where ei = ones(nd ,1),

E1 = blockdiag(e11 , . . . ,e1nc
) where e1i = ones(nsi −1,1),

and

E2 = blockdiag(E21 , . . . ,E2nc
) where E2i = tril(ones(nsi−1)).

The variables ρρρn, a, ρρρ fff , and σσσ are slack variables. The
third row of equation (6) (along with E1) effectively allows
a non-penetration constraint to be enforced on a single half-
space out of a set.

3.2. Stewart-Trinkle

The time-stepping formulation described in [ST96] is ob-
tained by removing the third row and E1 from equation (6).
As a result, Stewart-Trinkle suffers from the problem pre-
viously described regarding Figure 7. The Stewart-Trinkle
formulation may be written in the form of an LCP as

0≤

∣∣∣∣∣∣
GT

n M−1Gn GT
n M−1G f 0

GT
f M−1Gn GT

f M−1G f E
U −ET 0

∣∣∣∣∣∣
∣∣∣∣∣∣∣
p`+1

n
p`+1

f
s`+1

∣∣∣∣∣∣∣+∣∣∣∣∣∣∣
GT

n (ννν
`+M−1p`

ext)+
ψψψ

`
n

h +
∂ψψψ

`
n

∂t

GT
f (ννν

`+M−1p`
ext)+

∂ψψψ fff
∂t

0

∣∣∣∣∣∣∣⊥
∣∣∣∣∣∣∣
p`+1

n
p`+1

f
s`+1

∣∣∣∣∣∣∣≥ 0

(7)

where after a solution is found for p`+1
n and p`+1

f , new ve-
locities are calculated by

ννν
`+1 = ννν

`+M−1Gnp`+1
n +M−1G f p`+1

f +M−1p`
ext (8)

3.3. Anitescu-Potra

The time stepping method described in [AP97] is quite simi-
lar to the Stewart-Trinkle method, and the formulation is ob-
tained from equation (6) in the same way as Stewart-Trinkle
with the addition of setting the values in the right most vec-
tor to 0 for all rows except the first. In addition to suffer-
ing from the same false-contact problem as Stewart-Trinkle,
Anitescu-Potra is sensitively dependent on the tuning of nu-
merical tolerances regarding inclusion of contacts.

4. SOLVERS

Several solvers, most of them open source, are included with
RPIsim and listed in Table 1. The PATH solver [DF94] is a
good general purpose solver, it allows one to use the mLCP
formulation which is convenient compared with the LCP for-
mulation. However, PATH does not scale well and is not
robust in all cases. The splitting methods are attractive for
interactive simulations but are known to be inaccurate. If a
level of inaccuracy is acceptable, then these types of solvers
are robust but require stabilization terms to counter large
drifting errors in the solutions. The interior-point and New-
ton methods offer performance advantages over PATH as
they are tailored for mLCP and LCP forms in rigid body dy-
namics. Further, they avoid the full matrix assembly and in-
version of the Newton matrix by using iterative sub-solvers.
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Hence such methods can be competitive with regard to per-
formance as well as comparable to the accuracy and robust-
ness of PATH.

Table 1: Solvers available with RPIsim.

Name Applicable
Model

Category

Lemke LCP pivotal method
PATH mLCP mixed pivotal and itera-

tive method
PGS LCP, mLCP iterative method with

projection
Projected
Jacobi

LCP, mLCP iterative method with
projection

Fixed-
point

LCP, NCP iterative method

Interior-
point

LCP iterative method

Fischer-
Newton

LCP, NCP non-smooth Newton
method with line search

Minmap-
Newton

LCP, NCP non-smooth Newton
method with line search

5. SIMULATION EXAMPLES

5.1. A "Hello World" Example

An example script for setting up a scene is shown in Fig-
ure 8, along with the scene that it generates. This simple
script represents a benchmark 3D peg-in-hole problem. Four
unit cubes are created, set as static bodies, and arranged such
that the resultant space between them also has unit cube di-
mensions. A fifth cube is created, positioned, and scaled to
99.999%. This smaller dynamic cube should be able to pass
through the gap "easily" with its 5µm clearance, however
methods that anticipate collisions to prevent penetration (e.g.
Stewart-Trinkle) will erroneously prevent the peg from en-
tering unless special measures are taken to detect and remove
contacts with the top faces of the static cubes. Conversely,
methods that allow penetration may erroneously permit the
peg to pass even if it were too large. Because RPIsim in-
cludes the 3D implementation of the PEG formulation, this
simulation will give accurate results in all cases.

5.2. Analysis of Solvers

Developing, analyzing, and comparing numerical methods
for solving the multibody complementarity problem, is made
effortless by the inherent modularity of RPIsim. The scene
shown in Figure 9a is borrowed from a research project,
where it is used to benchmark solver performance in terms of
accuracy, scalability and convergence rate. Using the natu-
ral merit function [AJMP11] on the solution vector from the
solver, we can examine the convergence rate of the solver

c1 = mesh_cube ( ) ;
c1 . u = [ −1 ; 0 ; 0 ] ;
c1 . dynamic = f a l s e ;

c2 = mesh_cube ( ) ;
c2 . u = [ 1 ; 0 ; 0 ] ;
c2 . dynamic = f a l s e ;

c3 = mesh_cube ( ) ;
c3 . u = [ 0 ; 1 ; 0 ] ;
c3 . dynamic = f a l s e ;

c4 = mesh_cube ( ) ;
c4 . u = [ 0 ; −1 ; 0 ] ;
c4 . dynamic = f a l s e ;

dropBox = mesh_cube ( ) ;
dropBox . u = [ 0 ; 0 ; 1 . 5 ] ;
dropBox =

s c a l e _ m e s h ( dropBox , 0 . 9 9 9 9 9 ) ;
b o d i e s = [ c1 , c2 , c3 , c4 , dropBox ] ;
sim = S i m u l a t o r ( ) ;
sim = sim_addBody ( sim , b o d i e s ) ;
sim = s im_run ( sim ) ;

(a) Script defining a sample scene.

(b) 3D peg-in-hole simulation. Benchmark scenes such as this
are important test cases for validating and assessing the physical
accuracy of simulation methods. For example, virtual prototyp-
ing of robotics experiments requires proven accuracy if we hope
to obtain useful results.

Figure 8: Sample script and the scene it generates.

in question. For the test scene in Figure 9a, the natural
merit function was computed at 50 samples over a total of
400 time-steps. Figure 9b shows the linear convergence rate
achieved for the Fischer-Burmeister solver.

Other research is concerned not only with development
and behavior of a single solver, but comparison of a set of
solvers. In order to compare the performance of complemen-
tarity solvers, a data convention has been developed that uti-
lizes the Hierarchical Data Format (HDF5) [LLWT13]. This
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(a) Test scene of 125 spheres stacked in cube formation, used to
test accuracy, scalability and convergence rate of the numerical
solver.
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(b) Fifty samples of convergence rate for Fischer-Burmeister
solver. The natural merit function was used as an error metric
for the solver.

Figure 9: Sample scene used to benchmark solvers.

convention is used to store simulation data including timing
information, body information, and constraint violations at
the level of single time steps. Such datasets are used to store
benchmark problems and are useful for solver comparisons.
Using RPIsim, a benchmark may be loaded and the time-
stepping subproblem can be constructed using the variety of
formulations available. These subproblems are then handed
to the various compatible solvers and performance and er-
rors may be easily compared. This is one of our active areas
of research utilizing RPIsim, and involves assessment of fair
metrics of accuracy and performance for sets of solvers that
may differ dramatically.

5.3. Comparison of Time Stepping Formulations

Because RPIsim contains multiple time-stepping formula-
tions, a framework is in place to compare the relative ac-
curacy of these formulations against benchmark scenes.

Such studies [FWT13b,FWT13a] have been done comparing
Anitescu-Potra (AP) [AP97], Stewart-Trinkle (ST) [ST96],
and PEG [Ngu11], and found that because both AP and ST
have dependencies on parameter tuning of numerical toler-
ances involved in contact identification, PEG was more ro-
bust in many corner cases.

5.4. Grasp Experiments

Grasping is a significant area of research in robotics. Sim-
ulating grasping experiments requires accurate, robust, and
stable dynamics. Unfortunately, it is difficult to find a
simulator with these attributes. Grasping experiments are
presently being researched with RPIsim. Figure 10 depicts
a simulation experiment using the Schunk Powerball in
RPIsim.

Figure 10: Simulation of Schunk Powerball arm executing a
grasp trajectory. The trajectory is a set of joint angles inter-
polated between start and goal configurations over a given
time.

6. SIMULATION UTILITIES

There are some utilities that improve usability of the simu-
lator.

For users who have Bullet Physics [Cou] installed on their
system, RPIsim offers an interface for passing polyhedral
mesh data to Bullet collision detection through a MATLAB
compiled MEX function. To utilize this feature, the user
needs to compile the provided MEX function, and then set
useBULLET=true in their Simulation structure.

By enabling recording of a simulation with
setRecord(true), a directory will be created upon exe-
cution where body properties and positions will be stored
at every time step of simulation. This information can be
animated and explored using the replay utility by calling
SimReplay(dir) where dir is the name of the new directory.
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When a simulation includes joints, joint errors are
recorded by default at every time step. This error is eas-
ily viewed after the simulation is completed by using
plotJointError(sim) where sim is the Simulation structure.

7. CONCLUSIONS & FUTURE WORK

We introduced the RPI-MATLAB-Simulator, a modular and
extendable simulator written in MATLAB, for use in dy-
namics research and education. Some of the available fea-
tures and utilities were described, including the available
time-stepping formulations and solvers. Simulation exam-
ples were given, including active research using RPIsim.

There is still much to be done with RPIsim in terms of effi-
ciency. In an environment using interpreted language, appli-
cations in MATLAB will never be as fast as their compiled
counterparts. Optimization of data structures and algorithms
in RPIsim is still underway. For example, the included colli-
sion detection routines are naive and will be updated to use
hierarchical data structures and spatial and temporal coher-
ence for retaining contact information.

RPI-MATLAB-Simulator is available at http://
code.google.com/p/rpi-matlab-simulator/
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