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Abstract
Meshes have become a widespread and popular representation of models in computer graphics. Morphing tech-
niques aim at transforming a given source shape into a target shape. Morphing techniques have various appli-
cations ranging from special effects in television and movies to medical imaging and scientific visualization. Not
surprisingly, morphing techniques for meshes have received a lot of interest lately.
This state of the art report sums up recent developments in the area of mesh morphing. It presents a consistent
framework to classify and compare various techniques approaching the same underlying problems from different
angles.

1. Introduction

Morphing techniques transform one shape into another. With
the introduction in TV and movies, morphing is nowadays
known to an audience beyond the computer graphics com-
munity. At the same time, morphing has estbalished itself
as interesting research area. Recently, the focus is shifting
from handling representations of space (images, volumes)
to using explicit boundary representations, interpolating or
blending the shape of the objects. This work is concentrating
on the popular piecewise linear boundary representations,
namely meshes.

Blending shapes rather than the space they are embed-
ded in can lead to better results but is also more involved,
because a proper mapping between the shapes is needed.
Defining such a mapping is not trivial for two main reasons.
First, it requires a parametrization of the boundary represen-
tation, and second, the mapping might involve shapes with
different topology.

Besides the parameterization problem, which is funda-
mental in many areas dealing with meshes, morphing also
requires to find suitable paths for the elements of a mesh.
This part has an aesthetic component, however, several rea-
sonable conditions should be observed, i.e. the shape should
not self intersect or collaps as it varies from source to target
configuration.

Traditionally, morphing is applied to two shapes: a source

and a target shape. Morphing among more than two shapes
can be seen as generating elements in a space of shapes. This
has interesting applications for modeling, animation, and
analysis. Especially analysis using well-established methods
such as the principal component analysis has gained interest
lately.

This report mainly explains techniques for morphing be-
tween two meshes. This avoids some clutter in the formal-
ism. Once all methods are explained for two meshes, possi-
ble extensions to more than two meshes and their applica-
tions are discussed.

2. Terminology & Framework

Mesh morphing techniques involve computations on the ge-
ometry as well as the topology (connectivity) of meshes. For
simplicity this report concentrates on triangle meshes. In the
context of morphing it seems to be acceptable to triangu-
late polygonal meshes prior to the application of a morphing
technique. To classify and understand mesh morphing tech-
niques it is helpful to use the now widespread terminology
from Spanier49. A meshM is described by a pair(K,V ),
whereK is a simplicial complex representing the connectiv-
ity of vertices, edges, and faces andV = (v1, . . . ,vn) de-
scribes the geometric positions of the vertices inRd, where
typically d = 3.

The abstract complexK describes vertices, edges, and
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faces as{0, 1, 2}-simplices, that is, edges are pairs{i, j},
and faces are triples{i, j, k} of vertices. Thetopological re-
alization mapsK to a simplicial complex|K| in Rn: The
vertices are identified with the canonical basis ofRn and
each simplexs ∈ K is represented as the convex hull of the
points{ei} ∈ Rn, i ∈ s Thus, each 0-simplex is a point,
each 1-simplex is a line segment, and each 2-simplex is a
triangle inRn.

Thegeometric realizationφV (|K|) is a linear map of the
simplicial complex|K| to Rd, which is defined by associ-
ating the basis vectorsei ∈ Rn with the vertex positions
vi ∈ V . The mapφV is anembeddingif φV is bijective.
The importance of an embedding is that every pointp on the
mesh can be uniquely represented with a barycentric coordi-
nateb, i.e.p = φV (b). Such barycentric coordinates have
at most three non-zero components and specify the position
of a point relativ to a simplex. If the point is coincident with
a vertex it is a canonical basis vector, if the point lies on an
edge it has two non-zero components, otherwise it has three
and lies on a face.

The neighborhood ring of a vertex{i} is the set of adja-
cent verticesN (i) = {j|i, j ∈ K} and its star is the set of
incident simplicesS(i) =

⋃
i∈s,s∈K s.

In the classical setting of mesh morphing two meshes
M0 = (K0, V0) andM1 = (K1, V1) are given. The goal
is to generate a family of meshesM(t) = (K,V (t)), t ∈
[0, 1] so that the shape represented by the new topology
together with the geometriesV (0) and V (1) is identical
with the original shapes, i.e.φV (0)(|K|) = φV0(|K0|) and
φV (1)(|K|) = φV1(|K1|). Most of the time the pathsV (t)
are required to be smooth. The generation of this family of
shapes is typically done in three subsequent steps:

1. Finding a correspondence between the meshes. More
specifically, computing coordinatesW0,W1 that lie on
the other mesh, i.e.W0 ∈ φV1(|K1|) and W1 ∈
φV0(|K0|). Each coordinate inW0,W1 is represented
as a barycentric coordinate with respect to a simplex
in the other mesh. Note thatφW0 will not map |K0|
to φV1(|K1|) (and vice versa), as only the vertices are
mapped to the other mesh but not the edges and faces.
Particularly important is the alignment of automatically
detected or user specified features of the meshes.

2. Generating a new, consistent mesh topologyK together
with two geometric positionsV (0), V (1) for each vertex
so that the shapes of the original meshes are reproduced.
The traditional morphing approach to this problem is to
create a superset of the simplicial complexesK0 andK1.
However, remeshing techniques as used in multiresolu-
tion techniques are also attractive.

3. Creating pathsV (t), t ∈ ]0, 1[ for the vertices. While in
general this is an aesthetic problem, several constraints
seem reasonable to help in the design process. For ex-
ample, in most applications the shape is not expected to

collapse or self intersect and, generally, the paths are ex-
pected to be smooth.

In the following, recent work will be explained in terms
of the above mentioned problem areas. This state of the art
report focuses on mesh morphing, however, if believed to
be instructive also techniques dealing with polygons are dis-
cussed.

3. Correspondence of shapes

In this section we aim at finding corresponding vertex po-
sitions on two or more shapes. Given two meshesM0 and
M1, the result of this procedure is a set of barycentric co-
ordinatesB0 so that the geometryW0 = φV1(B0) of the
barycentric coordinates onM1 is an embeddingφW0 of
M0 on the surface ofM1, and vice versa. The idea is that
this mapping of vertices from one mesh to the other accom-
plishes the main part of a bijective mapping between the sur-
faces ofM0 andM1. After this step only the edges and
faces have to be adjusted accordingly.

The process is typically done by finding a common pa-
rameter domainD for the surfaces. By mapping each sur-
face bijectively to that parameter domain, the mapping be-
tween the shapes is established. The typical parameter do-
mains for meshes in the context of morphing are the sphere
S

2 (in case the meshes are topological spheres) or a col-
lection of topological disks represented as a piecewise lin-
ear parameter domainL. In case of the disks, the meshes
have to be decomposed into isomorphic structures of disks
(which requires them to be homeomorphic). A major con-
straint is to take into account user specified or autmatically
generated feature correspondences (i.e. vertex-vertex corre-
spondences). Dependending on the approach chosen, this is
done by reparameterization or by decomposing the meshes
according to the feature correspondence.

In case of mapping to a sphere, an embeedingφS with
S = {s0, s1, . . .}, si ∈ R3, |si| = 1 is computed. The em-
beddings on the sphere are aligned according to the feature
correspondence using a bijective mapf that maps spheres
into spheres.

{i} ∈ K0
W0−−−−−→ φV1(B0)

φS0

y xφ−1
S1

S
2 −−−−−→

f
S

2

The main problems in this approach are to compute the ver-
tex coordinatesS0, S1 on the sphere and the reparameteriza-
tion f .

The decomposition approach is more general and more
difficult. In addition to generate embeddings of the topolog-
cical disks one has to decompose the meshes in an isomor-
phic way, taking possible feature correspondences into ac-
count. Formally, an abstract simplicial complexL consist-
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ing of a subset of the vertices inK0,K1 is used as coarse
approximation of both meshes:

φV0(|L|) ≈ φV0(|K0|), φV1(|L|) ≈ φV1(|K1|)

Typically, L is topological minor ofK0 as well asK1, i.e.
it is a partition of the meshes. Vertices inK0,K1 are identi-
fied with a face inL and all vertices belonging to a particular
face are embedded in its planar shape. Thus, the common
paramter domain is the topological realization|L|, where
each vertex is represented with a barycentric coordinate with
respect to a particular face inL. This requires to embed
pieces of the mesh in the plane.

{i} ∈ K0
W0−−−−−→ φV1(B0)

φL0

y xφ−1
L1

|L| −−−−−→
f

|L|

Following, techniques to embed simply-connected
bounded and unbounded meshes in the plane and on the
sphere are explained. Then, approaches to diessect the
meshes into isomorphic patch-networks (or, equivalently,
inducing base-domains|L| on M0,M1) are discussed.
After these basic embedding steps reparameterization for
feature alignemnt is introduced. Finally, some comments on
rarely mentioned details in the correspondence problem are
given.

3.1. Parameterizing topological disks

Simply-connected parts of the boundary of three dimen-
sional shapes are homeomorphic to a disk and, therefore,
called topological disks. In order to find a paramterization
of such pieces we need a bijective map of a bounded, simply
connected mesh to the plane.

In our application we need to find a bijective map between
patches. Thus, it is necessary to constrain the boundary of
the patches to a particular shape. Here, we concentrate on
mapping an arbitrary bounded and simply connected mesh
to a unit disk so that boundary vertices of the mesh lie on the
unit circle.

In a first step the boundary vertices are fixed on the unit
circle. First, the three vertices from the base domainL are
fixed in an equiangular way. This is necessary to make sure
that adjacent faces in the base domain have a continous
parameterization across base domain edges. The remaining
boundary vertices are fixed so that the arc lengths between
neighboring vertices are proportional to the original edge
lengths. The remaining (interior) vertices are free and their
position is determined by a relation to neighboring vertices.

Most of the publicized approaches to solve this task boil
down to solving a system of linear equations (an exception
is the approach Gregory et al.20).

More specifically, let{vi} be the vertices to be mapped

to the disk so that the free interior vertices have indices0 ≤
i < n and the fixed boundary vertices have indicesn ≤
i < N . We aim at finding positionswi in the plane with
|wi| = 1, n ≤ i < N . The mapping is bijective if and only
if no edges cross. In the following we discuss three ways
to define a linear system, whose solution yields positions for
the vertices. In addition, the hierachical paramterization used
in MAPS34 is explained.

3.1.1. Barycentric mapping

Tutte53 has shown how to embed planar graphs in the plane
using barycentric mapping. In our restricted setting, the idea
is simply to place every interior vertex at the centroid of its
neighbors:

wi =
∑

j∈N (i)

1

di
wj (1)

SettingΛ = {λi,j} with

λi,j =

{
d−1
i {i, j} ∈ K

0 {i, j} 6∈ K
(2)

this can be written as the mentioned system of linear equa-
tions

(I − Λ)


w0

w1

. . .
wn−1

 =


∑N−1
i=n λ0,iwi∑N−1
i=n λ1,iwi

. . .∑N−1
i=n λn−1,iwi

 (3)

The matrix(I − Λ) has full rank and, thus, there is exactly
one solution. It is easy to see that this embedding has to be
valid if the fixed vertice are placed on a convex boundary:
Every vertex is placed at the centroid of its neighbors, i.e. it
is inside the convex hulls of all convex subgraphs. From this
it follows that all neighbor rings are convex and every vertex
is, indeed, placed inside the face cosisting of its neighbors.

Note, that the shape of the mesh has no effect on the place-
ment of vertices in the plane. All information for the embed-
ding comes fromK and it is clear that the embedding cannot
reflect geometric properties contained inV of the mesh. In
the following we try to incorporate information about the
original shape.

3.1.2. Shape preserving parameterization

In the barycentric mapping the weightsλ contain only topo-
logical information. Floater14 determines weights that reflect
the local shape of the mesh. More precisely, theλ are so cho-
sen that the angles and lengths of edges around a vertex are
taken into account.

To compute the weights for a particular vertexvi this ver-
tex is placed in the origin and incident edges are laid out in
the plane using the original edge lengths and angles propor-
tional to the original angles. This is assumed to be the ideal
parameterizationw′i of the mesh with respect tovi.
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The weights are computed in way that would result in
placingwi in the origin if the neighborsw′j were fixed and
the system of equations had to be solved. Thus, we have

wi =

(
0
0

)
=

∑
j∈N (i)

λi,jw
′
j (4)

and

1 =
∑

j∈N (i)

λi,j . (5)

If vi has only three neighbors this exactly determines the
positive weights, for more than three neighbors a positive
solution has to be chosen from the space of possibles solu-
tions. Note that positivity results in convex combinations,
which are necessary to assure a valid embedding. Floater
presents a method to compute reasonable weights, which
are guaranteed to be positive: Take the cyclically ordered set
of neighborsjk ∈ N (i), k ∈ Z|N (i)|. Determine sets of
weightsλi,j(k) with respect to three subsequent neighbors
jk, jk+1, jk+2. This yields non-negativeλi,j(k) for eachk.
These weights are averaged to yield the final weights:

λi,j =
1

|N (i)|
∑
k

λi,j(k) (6)

The positionswi are computed by solving (3).

3.1.3. Discrete harmonic mappings

Harmonic mappings are a concept found in several fields in
mathematics using differentials. Harmonic maps are often
described as the functionu among all functions mapping to
a given domainΩ that minimize the Direchlet energy

ED(u) =
1

2

∫
Ω

|∇u|2. (7)

Pinkall and Polthier38 show how to discretize this problem
for triangles, so that weights are derived per vertex and
neighbor leading to a system of linear equations of the form
of Eq. (3). A somewhat clearer derivation can be found in a
more recent work of Polthier39. There, it is shown that the
discrete Dirchlet energy is

ED(u) =
1

4

∑
i,j|{i,j}∈K

(cotαi,j + cotβi,j)|vi − vj |2,

αi,j = ∠(i, k0, j), βi,j = ∠(i, k1, j), {i, j, kc} ∈ K (8)

and that the minimizer solves

0 =
1

2

∑
j∈N (i)

(cotαi,j + cot betai,j)(vi − vj) (9)

at each vertexi. This leads to weights

λi,j =

{ cotαi,j+cot βi,j∑
j∈N(i)(cotαi,j+cot βi,j)

{i, j} ∈ K

0 {i, j} 6∈ K
(10)

which are used to obtain an embedding by solving Eq. (3).

Another formulation, which is probably better known in
the graphics community, is given by Eck et al.12.

3.1.4. Hierarchical conformal maps

The hierarchical parametrization approach in the context
of MAPS34 could be adapted to work on given bounded
meshes. The basic idea is to simplify the mesh using vertex
removal and parameterize each removed vertex. If a vertex
{i} is is removed, its star is embedded in the plane using a
conformal map, i.e. the egde lengths|vi − vj| and relative
angles atvi are preserved (i.e. as in Floater’s approach). The
resulting hole is triangulated in the plane and the triangle
containingvi is used to yield a barycentric coordinate for
{i}.

During the removal of vertices the barycentric coordinates
have to be updated when the triangle containing the vertex
is altered. Such changes can only occur during a vertex re-
moval and the embedding used for that vertex removal is
used to update the barycentric coordinates: All vertices pa-
rameterized with respect to a triangle in the embedding are
also embedded using their barycentric coordinate. The con-
formal planar setting is used to retriangulate and to compute
new barycentric coordinates for all embedded vertices.

3.1.5. Comparison and Conclusion

We have embedded parts of a mesh using the three ap-
proaches presented above. We have not implemented the
hierarchical conformal approach since it is not particular
suited if the base domain is known prior to simplification.
Specifically, the point location problem in each conformal
embedding adds a large constant factor to the computational
complexity. Note that the solution of matrix equation (3) is
computationally not more expensive than the hierarchical
MPAS approach if it is solved using multigrid methods or
exploiting its sparse structure.

The results of the comparison are shown in Figure 1. It
is apparent that the general structure of larger and smaller
triangles is very similar in all embddings. This suggests that
topology is the major factor in these type of embeddings.
Changing the weights used to compute the embedding only
changes the local behavior of the embedding. In tests we
have found the major problem of embeddings in the plane
to be the effect called area compression: Inner triangles have
much less area than outer triangles. In fact, this can make pa-
rameterizations unusable due to the high ratio of areas and
the limited precision of floating point numbers. It has been
observed that the base domain should have enough “skin” to
allow for a reasonable parametrization of the mesh.

The small differences in local shape do not seem to
have much influence on the resulting correspondence of the
shapes. This is even more true when local features of the
shapes are aligned by reparamterization (see Section 3.4).
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a) b) c)

Figure 1: A mesh parameterized on the unit disk using different mapping techniques. The embedding in (a) is a barycentric
mapping (see Section 3.1.1), which does not reflect the geometry of the mesh. The embedding in (b) tries to capture the local
shape of the mesh (see Section 3.1.2) and (c) represents a discretized harmonic embedding (see Section 3.1.3).

3.2. Parameterizing topological spheres

Unbounded simply-connected 2-manifolds are called topo-
logical spheres because they are homeomorphic to spheres.
A natural parameter domain for such shapes is, therefore, a
unit sphere.

3.2.1. Star shapes

Kent et al.28, 29 were the first to present techniques to map
certain classes of genus 0 meshes to a sphere. A particu-
larly simple class of objects are convex shapes. A convex
shape has the property that a straight line connecting any
two boundary points of the shape lies completely inside the
model. Thus, all points are visible from any interior point of
the shape and a projection through an interior point onto an
enclosing sphere is necessarily bijective.

A generalization of this idea extends the class of shapes
to star shapes. Such shapes have at least one interior point so
that straight lines connecting this interior point with bound-
ary points lie completely inside the shape. Interior points
with this property are called star points. Obviously, project-
ing the boundary points of a shape through a star point onto
an enclosing sphere is a bijective mapping. Specifically, if
pointO is visible from all vertices of the mesh then translate
all points so thatO coincides with the origin. Then normal-
ize all vertex coordinates. These vertex coordinates are the
parameterization of the mesh vertices on a unit sphere. An
illustration is given in Figure 2.

The only problem is to determine whether a shape is star
shaped and if so to find a star point. For piecewise linear
shapes (meshes) this can be done by intersecting halfspaces
induced by the face elements of the mesh. The intersection
of all halfspaces is called kernel. If the kernel is non-empty
the mesh is star shaped and every point inside the (convex)
kernel is a suitable star point. The kernel of a mesh in 3D can
be computed inO(n logn) using standard techniques41.

Figure 2: A polygonal star shape and its projection to a cir-
cle. The kernel of a star shape is the intersection of all open
half spaces over the edges (faces in case of a polyhedron).
Every point in the kernel induces a bijective mapping to the
circle by projection.

3.2.2. Simplification

Shapiro and Tal47 seem to be the first to present a reliable
scheme that turns arbitrary genus 0 polyhedra into convex
shapes. They first simplify the shape using vertex removal
until the simplified shape is a tetrahedron. Only vertices with
valence 3,4, and 5 are removed. Since the mesh is triangular
such vertices always exist: It follows easily from the Euler-
Poincare formulas that the average degree in any triangular
(surface) mesh is less than 6. Thus, at least one vertex with
degree strictly less than 6 has to exist.

Once the shape is simplified to a tetrahedron, vertices
are reattach making sure that the shape stays convex. More
specifically, it is shown how to attach vertices with degree
3, 4 and 5 to a convex shape so that the shape stays convex.
More specifically, if a vertex{i} has to be added to a facef ,
its position has to be outside the convex hull of the current
mesh but inside the kernel of faces adjacent tof .
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0 iterations 10 iterations 100 itarations 1000 iterations 10000 iterations

Figure 3: Embeding a polyhedral object on a sphere using relaxation. Initially, the vertices are projected through an interior
point of the model onto a unit sphere. The relaxation is finished when all faces are oriented correctly. Incorrectly oriented faces
are surrounded by red edges.

3.2.3. Spring embedding

Alexa1 introduced a variation of the methods presented for
planar embeddings to embed polyhedra on the unit sphere.
The basic idea is the same as in barycentric mappings: Place
each vertex in the centroid of its neighbors. On the sphere,
however, two conditions of the planar case are violated.
First, convex combinations of the neighbors’ positions are
not part of the domain (the sphere) and, second, no periph-
eral cycle is given to support the embedding.

The approach is to use a relaxation algorithm to compute
the solution to the barycentric constraints. The starting con-
figuration is generated by computing an interior point of the
solid model represented by the mesh and then projecting all
vertices to a sphere, which is centered at the interior point.
The relaxation algorithm repeatedly places each vertex at the
centroid of its neighbors. Since the centroid is not on the
sphere the coordinate is normalized:

wl+1
i =

∑
j∈N (i) wl

j∥∥∥∑j∈N (i) wl
j

∥∥∥ (11)

The main problem of this approach is the missing of fixed
vertices. In the planar case the fixed vertices avoid that all
vertices collapse to one point, which is the trivial solution
to (11). On the sphere, a local minimum exists such that the
points are distributed over the sphere, however, the naive re-
laxation algorithm tends to find the global minimum, i.e. all
vertices coincide.

Alexa1 proposes to penalize long edges with a quadratic
weight on the edge length. Because the collapse of the ver-
tices into one point has to pull at least one triangle over the
equator, penalizing long edges effectively prevents the ver-
tices from collapsing. However, a simpler solution has been
reported by Gumhold21: The sphere is recentered after each
relaxation round, i.e.

wl+1
i =

1

n

(∑
j∈K

wl
j

)
−wl

i (12)

If we want to guarantee the topological correctness of the

Figure 4: Sphere embeddings of the models of a giraffe, a
hammerhead shark, and a swordfish.

embedding, an epsilon bound of any kind is inadequate as
the only termination criterion. Instead, the process is finished
only when a valid embedding is found. The embedding is
valid, if and only if all faces are oriented the same, i.e. the
side that was on the outside of the model is on the outside
of the sphere (obviously, the surface cannot fold back upon
itself without at least one triangle being upside down).

We can check this condition by testing the orientation of
three consecutive vertices along the boundary of each face.
Here, orientation refers to whether the three vertices make
a clockwise turn on the surface of the sphere. This can be
computed by evaluatingsgn ((v0 × v1) · v2). So, the re-
laxation is not terminated until the orientation of each face
is the same as in the original model. After the embedding is
valid a conventional epsilon bound is used as the final termi-
nation criterion.

A relaxation process for the polyhedral model of a horse
is depicted in Figure 3 and resulting embeddings for several
models are shown in Figure 4.
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3.3. Isomorphic dissection

The more general approach to establish correspondence be-
tween meshes is to dissect them into pieces. Each piece is a
topological disk and can be mapped to a to the plane using
one of the techniques discussed in Section 3.1. Of course,
the shapes have to be split in such a way that the graphs rep-
resenting the dissections have equivalent topologies.

This approach is not limited to a particular topology of
the shapes, since the dissection results in a set of topologi-
cal disks. However, the shapes need to be homeomorphic so
that their dissections could be topologically equivalent. With
extra conditions it is possible to deal also with topologically
different shapes.

3.3.1. Automatic dissection of shapes

Ideally, the dissection process would not require the user
to assist. However, the fully automatic dissection of two
meshes into ismorphic structures seems to be a hard prob-
lem. The approach of Kanai et al.26, 24 uses a single patch
and, thus, automatically decomposes into isomorphic struc-
tures. However, the appraoch is limitated to genus 0 meshes
and suffers from the already mentioned area compression
problems in the embedding.

Several techniques exist for the dissection of a single
mesh. In the context of multi resolution models several ap-
proaches require the mesh to be broken into patches. This
problem is know as mesh partioning and naturally related
to graph theory. Some algorithms try to balance the size of
patches (e.g., Eck et al.12, Karypis & Kumar27).

In many multi resolution methods, however, the base
domain (the structure of large patches) is found by sim-
plifying the mesh using vertex removal44, 43, 30, 32 or edge
collapse22, 17, 35.

These techniques might help in deriving a single base do-
main for two meshes. Lee et al.33 use two independently
established base domain to generate one base domain for
both meshes. They employ their MAPS scheme34 to build
independent parameterizations over different base domains.
These base domains are merged (see Section 4) so that the
resulting merged base domain contains both independent
base domains as subgraphs. Note, that in general the corre-
spondence problem had to be solved for the geometry of the
base domains. Lee et al., howeve, assume that the geome-
try of the base domains is so similar that this problem could
be solved with simple heuristics (e.g. projecting in normal
direction).

3.3.2. User specification of isomorphic dissections

The underlying idea of all works in this section is that the
user specifies the topology of the base domain and the lo-
cation of the base domain vertices on the original meshes.
Tracing the edges of the base domain on the mesh is more or
less done automatically.

DeCarlo and Gallier11 do not assist the user specifying the
edges. While this way of defining the dissection gives a lot
of freedom to the user it is very time consuming.

Gregory et al.20 assist the user in defining the edges. The
base domain is developed while intersecting the surfaces.
The user defines a pair of vertices on a mesh and the system
finds a shortest path of mesh vertices connecting the defined
vertices. Subsequently, feature vertices can be connected to
existing feature vertices using shortest paths along the mesh.
By picking corresponding vertices in the input meshes the
system will construct the same graph in the input meshes. A
problem could arise from the fact that only mesh vertices are
used to find shortest path.

The works of Bao and Peng6 and Z̈ockler et al.55 are sim-
ilar in spirit. However, it seems that they allow to use more
points to define the boundary of a patch. Points are con-
nected with the shortest paths in the vertex-edge graph as
in in the work of Gregory et al.20

In the approach of Kanai et al.25 the user first defines a
set of corresponding feature vertices. Aware of the problems
resulting from using a shortest path consisting of mesh ver-
tices the authors compute the shortest path on the piecewise
linear surface connecting the feature vertices. This path may
or may not coincide with vertices and edges. Since comput-
ing exact shortest path on polyhedral surfaces is difficult and
time consuming they employ an approximate method that
refines the original mesh and uses Dijkstra’s algorithm23.

However, even using the exact shortest path can lead to
problems. Praun et al.40 illustrate the problem and propose
better solutions: If a shortest path would cross an already
established edge of the base domain, the shortest possible
connection avoiding the intersection is computed using a
wavefront algorithm. However, also the order of vertices be-
ing connected is important, because several edges might en-
close an unconnected vertex. This problem can be avoided
by traversing the vertices along a spanning tree.

In our view, the underlying problem is that on non-convex
and unbounded shapes more than one geodesic between to
points exists on the surface. We believe that a set of these
geodesics is sufficient to trace out the given topology of the
base domain. To implement this, first all geodesics between
connected vertices of the base domain would be computed.
Then, these edges would be inspected for possible intersec-
tion. The intersection-free subset yields the decomposition
of the original mesh.

3.4. Feature alignment

The necessity for aligning prominent features becomes ev-
ident even in very simple examples. Figure 5 shows two
morphs between models of a young pig and a grown-up pig.
In the upper sequence, no features were aligned and the re-
sulting morph is unacceptable. The lower sequence of Figure
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Figure 5: Morphs between the models of a young pig and a grown-up pig. In the upper row, no feature alignment is used, which
leads to unpleasant effects (e.g., eight legs in the intermediate models). In the lower row, the eyes, ears, hoofs, and the tail are
aligned (a total of 17 vertex-vertex correspondences), yielding a smooth transformation.

5 shows a morph produced with some features (ears, eyes,
hoofs, and the tail) aligned. The result is obviously more
pleasing. Surprisingly, the need of user guidance becomes
more obvious when the shapes are similar. This is because
we can envision a transformation, i.e. we expect common
features of the models (head, legs, etc.) to be preserved. But
this does not happen, of course, due to the different mesh
topology of the models (in this example, the different mesh
topologies are obvious from the different vertex counts of
the models).

3.4.1. User-selected vs. shape features

A difficult task is to identify common features in several
shapes. It seems impossible to automatically find such com-
mon features as they are mostly defined in a semantic and
not necessarily in a geometric way. The user can identify
these features and provide information about their location
and correspondence (for instance as vertex-vertex corre-
spondence of a few vertices). The algorithm should exploit
this information as much as possible.

All dissection type methods explained above offer this
way of user-control. Since the user explicitly chooses corre-
sponding patches (and, therefore, corresponding edges and
vertices) they can specify which parts of the meshes cor-
respond. However, the user is also involved in other tasks,
which can make the process complicated and lengthy.

The shapes’ geometry also contain information useful to
exploit. Several functions over the parameter domain of the
meshes seem to be worth looking at. It is important that these
functions are independent of the paramterization, i.e. are in-
trinsic to the shape and do not change if the description of the

shape is changed. Such functions are especially considered
in differential geometry, which could be seen as exploring
a shape on the shape, i.e. without a distant view. The most
prominent assets for describng shapes in differential geome-
try are

• normals, which are independent of translation and scaling
but sensitive to rotation and
• curvature (principal curvatures, mean or gaussian curva-

ture), which is independet of translation and rotation but
sensitive to scaling.

The parameterization of the shape’s boundary allows to rep-
resent these quantities as a function in two variables, i.e. the
normaln : R2 → S2 or the gaussian curvaturec : R2 → R.

It is clear that this information about the meshes does not
lead to point to point correspondeces such as user selected
features. Instead the quality of the match of two shapes is
quantified as a function of the distance of the shape descrip-
tors. For example, Surahzky and Elber51 use the integral over
the inner products of normals:

R =

∫
D

〈n1, n2〉 dD (13)

Here, the inner product between normals and the integra-
tion over the surface represent particular choices. One might
choose another metric for the difference of normals as well
as another method to take into account the set of differences
(e.g. the maximum of the angles between normals). In order
to match shapes based on such criteria the paramterization
is changed so that the functional is mimized. Note that no
point has an apriori optimum placement making this prob-
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lem much harder to solve than aligning specified point to
point correspondences.

3.4.2. Transforming to align features

As a first step in an alignment procedure the parameter
domains should be transformed using affine transform to
roughly align the fatures. Note that this is not possible for
paramterizations resulting from dissection as the orientation
of each patch is determined by neighboring patches.

Alexa1 aligns a set of point to point correspondences by
rotating the spherical embeddings of the mesh. The objec-
tive function to be minized is the squared distance of corre-
sponding points. The minimization problem can be solved
using the techniques explained in Section 5.2.

3.4.3. Warping parameterizations to align features

In general, one could generate any parameterization of the
meshes as a first step to establish correspondence. After this,
the parameterization domain can be used to align user se-
lected features or automatically generated features in terms
of a re-parameterization of one or more of the initial param-
eterizations.

Alexa1 and Z̈ockler et al55 explicitly allow the user to se-
lect a set of point to point correspondences. Warping tech-
niques similar to those used in image morphing (e.g., see the
overview works of Ruprecht42 or Wolberg54) are used to de-
form the parameterization so that corresponding points coin-
cide. Whether the parameter domain is a disk55 or a sphere1

does not make a difference for the general approach.

In contrast to image warping, it is absolutely necessary
that the warp does not introduce incorrectly oriented faces.
This would be less of a problem if vertices as well as edges
were warped. But since the algorithm later might require
edge-edge intersection tests, warping the edges is imprac-
tical. Instead, edges should be (still) defined as the short-
est path between vertices. That is, we warp the vertices
only. Thus, even injective warping functions might introduce
foldover.

Two solutions have been proposed: Alexa warps only as
much as is possible with the given triangulation. If the map-
ping starts to introduce foldvover in the triangulation the
warp is made more local by adjusting the radius of inclu-
ence. However, the features are not guaranteed to coincide
after this process.

Zöckler et al use the foldover free warping scheme of Fu-
jimura and Makarov16. They also warp in small steps. How-
ever, if foldover occurs they change the mesh topology to
assure that the embedding stays valid. In particular, they use
edge flips for this task. This changes the original triangula-
tion of the meshes.

3.5. Conclusions

The ideal algorithm for finding a parameterization of a mesh
has not been found. In general, coarse simplifications of the
original meshes are accepted as useful parameter domains.
In the context of morphing they are not ideal for two reasons:

• For seemingly different shapes a common base domain
might be hard to find and the decomposition of the origi-
nal meshforcesthe user to interact.
• The alignment of features (e.g. shape features) is re-

stricted to corresponding patches of the base domain.

In view of these limitations the simple solution to embed
topological spheres on a unit sphere has some appeal. How-
ever, embedding complex shapes on a sphere might result in
a distorted parameterization because the local ratio of sur-
face area between sphere and original shape differs.

It seems that finding a common base domain is the method
of choice. For applications, in which one base domain is
needed for more than one shape, techniques should be de-
veloped that include geometric features in the decomposition
process.

We still search for a realiable method that works on ar-
bitrary input, takes any number of user-constraints into ac-
count, optimizes a reasonable resemblance of the shapes,
and is sufficiently fast.

4. Representation mesh

Given two embeddings W0,W1 of meshes
(V0,K0), (V1,K1) on a common domainD we aim
at generating one mesh topologyK with vertex positions
V (0), V (1) so that the original shapes are reproduced, i.e.

φV (0)(|K|) = φV0(|K0|), φV (1)(|K|) = φV1(|K1|).
(14)

Note that the vertex positionsV (0), V (1) are already avail-
able using the barycentric coordinates of each vertex w.r.t.
the base domain. These barycentric coordinates allow to map
each vertex from one mesh to the other. However, the exact
mapping of vertices onto the piecewise linear surface might
lead to bad results. The next subsection discusses better al-
ternatives for the absolute position of vertices.

The main point of this section is to establish the common
topologyK. The typical approach found in the morphing
literature is to generate a supergraph of the connectivities
K0,K1, i.e. one that contains the simplices of both plus ad-
ditional vertices if edges cross. This graph is found bymap
overlay. Here, we distinguish two cases:

1. Bounded meshes embedded in a disk.
2. Unbounded meshes, assuming the geometries of several

meshes are sufficiently close.

These cases stem from the parameterization methods pre-
sented in the previous chapter.
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Looking at multiresolution techniques for meshes an al-
ternative way of generating a common topology is remesh-
ing. In particular, the parameterization is exploited to map
planar coordinates of refinement operators to coordinates on
the surface of the shapes. Provided the base domain accu-
rately represents sharp features of the meshes this appraoch
has the advantage that it is much easier to scale. The size
can be easily adapted to the desired precision. For the same
reason this appraoch is easier to extend to more than two
meshes.

4.1. Mapping parameter values to the surface

After the meshes have been paramterized it is easy to find
the posisition of a particular vertex on the surface of a mesh.
Assume we want to find the position of vertexv1i of the first
mesh on the second mesh. We determine the vertices{w2j}
comprising the face in the parameterization in which the pa-
rameter domain positionw1i lies. Then,w1i is represented
in barycentric coordinates with respect to{w2j}:

w1i =
∑

bkw2j(k) (15)

The position ofv1i in the other mesh is found as

w1i

′ =
∑

bkv2j(k) (16)

This is the exact position on the piecewise linear shape and
the way used in most of the morphing literature.

However, this does not take into account the idea that
piecewise linear shapes are (in most cases) just approxima-
tions of smooth shapes. Particular practical problems occur
when normals have to be rebuild from these new geomet-
ric positions: Vertices inside a face get the face’s normal.
If standard rendering methods are used (vertex normals and
Gouraud shading) this results in detoriated shading.

It would be advantagous to find positions which result in
a smooth surface. More specifically, we would like to use
the barycentric coordinates to find positionsovera triangular
face and not necessarily on the face. This calls for methods
defining a smooth surface from a coarse mesh. An obvious
choice for such a method would be subdivision (e.g., Loop
subdivision36 or Kobbelts

√
3-scheme31).

4.2. Map overlay data structure

We need a data structure to store the meshes, which allows to
add and remove edges, gives quick access to topological in-
formation (e.g., the ordering of edges around a vertex), and is
not to heavy in terms of storage. We choose the doubly con-
nected edge list37 (sometimes called twin-edge data struc-
ture). The basic data type of this data structure is the edge.
Edges are stored as two directed half edges. More specifi-
cally, the following information is stored:

Face The face record contains a poiner to an arbitrary half
edge on its boundary.

e

Twin(e)

Next(e)

IncidentFace(e)

Origin(e)
Next(Twin(e))

Figure 6: The doubly connected edge list.

Edge Each edge record contains pointers to

• its originating vertex,
• the face it bounds,
• the half edge connecting the same vertices but in the

opposite direction (itstwin),
• the next half edge along the boundary of the bounded

face.

Vertex The vertex record contains a pointer to an arbitrary
half edge originating from this vertex as well as location
in space and other attributes (e.g., normal, color, texture
coordinate).

Figure6 illustrates the data structure. Note that it is particular
easy to iterate along the boundaries of faces (next pointers)
or through all edges incident upon a vertex in their ciruclar
order (twin→ next). A good description of the doubly con-
nected edge list can be found in Berg et al10.

4.3. Open meshes embedded in a disk

Several algorithms were proposed for the problem of over-
laying planar graphs - see a textbook10. In general, the planar
map overlay has the complexityO(n logn+ k), wheren is
the number of edges andk is the number of intersections. If
the two subdivisions are connected (as in our case) the planar
overlay can be computed inO(n+ k)13.

The general paradigm for planar overlay isplane sweep.
Sweep algorithms process the input with a virtual line mov-
ing along its normal direction. Whenever a vertex intersects
the sweep line the corresponding edge is added (the vertex
is the starting point of this edge) or removed (the vertex is
the endpoint) from the list of active edges. The list of active
edges is tested for intersection with added edges. To further
reduce the number of necessary intersection tests the active
edges are stored in their order along the sweep line. This is
done by inserting edges in the correct position. In addition,
the order has to be updated at intersection points. Using the
ordering, only neighboring edges have to be tested for inter-
section. This processing leads to an algorithm with complex-
ity O(n logn+k). By exploiting that two connected graphs
are intersected the complexity can be reduced toO(n+ k).

In the case that meshes are embedded on the disk special

c© The Eurographics Association 2001.



Marc Alexa / Mesh Morphing

care has to be taken for the boundaries of the meshes. While
we assume that the embedding is surjective (i.e. fills the
disk), the boundary in fact is a polygon leaving small empty
regions between the disk and the polygon. However, it is
clear that the boundaries of the meshes to overlay should be
mapped onto each other. So in order to avoid that the bound-
ary polgons intersect with inner edges of the other mesh the
boundaries have to be merged first. This is done by simply
connecting the vertices of all meshes on the disk along the
linear order given by the disks boundary. After this bound-
ary polygon has been established the planar mesh overlay
procedure can be computed.

4.4. Closed meshes in arbitrary position

There seem to be only a few publications about the over-
lay of meshes in general position. Note that plane sweep
solutions are not applicable for meshes in general position.
Few publications deal with overlaying two subdivision of the
sphere. Kent et al.29 give an algorithm for the sphere over-
lay problem, which needsO(n + k log k) time. Alexa1 has
presented a solution to this particular problem, whichreports
the intersection of two spherical subdivisions in the optimum
time ofO(n+k). Also, both algorithms exploit the topolog-
ical properties of both subdivisions, which are used to guar-
antee the correct order of intersections. Here, we generalize
these algorithms to work on two arbitrary shaped meshes,
which are assumed to be suffiently close to each other. We
also alleviate the problem that the published version1 had a
worst case complexity ofO(n+k logn) for theconstruction
of the merged mesh using the already reported intersections.

The algorithm consists of two main parts: First, finding
all intersections, and second, constructing a representation
for the merged model.

4.4.1. Finding the intersections

In the algorithm two geometric functions are needed: One to
decide if and where two edges intersect on the sphere, and
a second to decide whether a point lies inside a face. Both
geometric properties can be checked in a projection to the
tangent plane of the surfaces. Since the meshes are supposed
to be close in space their tangent planes should not differ to
much. A suitable way of finding a common tangent plane is
to take the cross product of two edges (i.e. the two edges to
intersect, or two edges of the face to check).

The basic idea is to traverse the graphs breadth first,
keeping information about the face that contains the current
working edge and exploiting face-to-face neighbor informa-
tion. Choose an arbitrary vertex{i} ∈ K0 and search the
2-simplexf = {f1, f2, f3} ∈ K1 that contains it in under
the bijective mapping. Start with an edgee ∈ S(i). Storee
together withf on a stack. In general, the stack will always
contain a directed edge together with the face in the other
mesh containig the origin of this edge. The basic idea of the

Figure 7: Edge-edge intersections are determined by follow-
ing an edge (blue in this illustration) over the faces of the
other triangulation (red). After finding an intersection the
face-to-face coherence exploited and only the edges of the
next face are tested.

traversal is to walk over the faces following an edge (see Fig-
ure 7). Each edgee = {e1, e2} is intersected first with the
three edges{f1, f2}, {f2, f3}, {f3, f1} boundingf , which
containsφW0(e1). When an intersection is found the work-
ing edgee is emanating to the next face, i.e. the one that
shares the intersected edge. This face is set to bef and is in-
spected in turn. Each edge is tested against three edges plus
two additional intersection tests for each intersection being
found. Thus, the algorithm has constant costs per edge and
per intersection and the complexity isO(n+ k).

4.4.2. Generating the data structures

An appropriate data structure for storing the intersections is
needed. Information about an intersection should be accessi-
ble from both intersection edges at constant costs. We use a
hashtable with edge indices as key values. When edge-edge
intersections are found and stored in the intersection lists a
pointer to the entry in the hashtable is stored. This means,
both edges point to the same data structure containing infor-
mation about the intersection (the intersecting edges in the
beginning). The hashtable is only needed to access the en-
try when the intersections are generated. After reporting all
intersections it is discarded.

The following two step algorithm contructs the merged
mesh: First, edges inK0 are cutted. We iterate through the
intersection list of an edge and cut the edge at each intersec-
tion point. Thus, a new edge (two half edges) are generated
for each intersection. The new edge represents the part of the
edge that has to be processed. At each intersection the data
structure containing the respective information is updated to
now contains the two parts of the edge incidient upon the
intersection point. At this point only the twin pointers of the
half edges are updated. The next pointers are left empty.

Second, edges inK1 are processed. As in the first step
edges are cut into two pieces at each intersection point. How-
ever, this time also the next pointers are updated. This is done
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by using the information stored in the intersection data struc-
ture, which now contains both edges of the already cut edge
in K1.

After all intersections are processed in this way we have
a valid vertex and edge lists of the embedding. It remains
to compute the records for the faces. Note that faces created
from intersecting triangles are convex polygons with 3 to 6
sides, which should be triangulated. This is another subtelty,
which is more involved as it may seem: While the polygon
resulting from the intersection is convex it is not clear what
shape it has in other geometric configurations, e.g. those of
the source meshes. In principle one should find a triangula-
tion that is admissible in all source geometries. This might
be difficult and could lead to the need for additional vertices.
The problem is known ascompatible triangulationand dis-
cussed in detail in another context in Section 5.4.1.

4.5. Remeshing

A mesh is typically just an approximation of a shape. We
have already seen that the mesh overlay process together
with using coordinates lying exactly on the mesh might in-
troduce artifacts into the source meshes (see Section 4.1).
Thus, even if the original mesh topologies are available as
subsets ofK the reproduction of the original shapes though
exact is not ideal. It seems that the perfect reconstruction of
the source shapes is impossible and we could as well use any
mesh topology to approximate both given shapes.

Remeshing techniques have been used to construct semi-
regular meshes from irregular input34. The irregular mesh is
reduced to an irregular base domain. The base domain is re-
fined inserting only regular vertices. The idea is to use refine-
ment operators as known from subdivision surfaces, how-
ever, without using the geometric rules attached to the re-
finement. Instead, geometric positions are found by exploit-
ing the bijection between original surface geometry and the
parameterization. For example, using the 1-4 split the pa-
rameter domain positions of inserted vertices are given as
edge bisectors. This parameter leads to the coordinate on the
surface of the mesh.

In the context of morphing each parameter value would
lead to two coordinates. After several refinement steps a
semi-regular mesh topologyK is constructed together with
coordinatesV (0), V (1) as desired. Because the refined
topology is defined by the rules of the refinement used, only
the base domain connectivity has to be stored explicitly.

To achieve a desired approximation accuracy, the number
of refinement steps should be adapted to the geometric com-
plexity of the meshes. Note that refinement could be done
adaptively depending on the viewing conditions without nec-
essarily computing and storing all coordinates of the refine-
ment levels.

4.6. Comments

The remeshing approach is appealing because it allows to
scale the size of the representation mesh. Its only limitation
is the accurate representation of sharp features in the original
shapes. In conventional multiresolution models this problem
is alleviated by fitting the base domain to these features. In
the context of morphing the base domain has to represent
the features of several meshes, which do not necessarily co-
incide. This, again, incurs extra burden on the user, because
a more complex base domain has to be induced on the input
meshes. In addition, a more complex base domain limits the
possibilities of automatic feature alignment methods. How-
ever, the flexible and lean representation mesh seem worth
it.

5. Vertex paths

After the computation of one mesh topologyK and two
mesh geometries represented by vertex coordinatesV (0)
andV (1) it remains to compute vertex coordinates for the
blended shapes. For a typical morphing animation, a set of
vertex coordinatesV (t), t ∈ ]0, 1[ has to be generated.

A simple choice is linear interpolation29, 20, 55. A rigid8, 9

or affine1 transform prior to linear vertex interpolation yields
better results. More complex behavior during the transform
calls for more elaborate mathods. Such methods decompose
the shape in to linear pieces and treat these pieces separately.

5.1. Linear interpolation of vertices

The easiest way to produce blends of corresponding shapes
is to interpolate the coordinates of vertices. Given a transi-
tion parametert the coordinates of an interpolated shape are
computed by

V (t) = (1− t)V (0) + tV (1) (17)

This type of interpolation produces good results if the shapes
have the same orientation and are somewhat similar.

Different orientation could lead to displeasing results.
Imagine two squares that are rotated by 180 degrees against
each other. If simple vertex interpolation is applied in this
configuration, the interpolated shapes will shrink until the
shape is collapsed to one point and then grow again. This is
not the desired result in most applications. It is advisable to
interpolate the orientation separately from the verex coordi-
nates.

5.2. Interpolation of Orientation

Several ways exist to compute a relative orientation of two
shapes. Note that it is difficult to interpolate the orienation
of more than two shapes in 3D so the following discussion
will be restricted to two shapes.

As a first step, the shapes are usually translated so that
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their centers of mass coincide with the origin. Then, a
rotation8, 9 or an affine transform1 is computed seprating the
rigid/affine part from the elastic part of the morph. A way
of defining the rigid/affine part is to minimize the squared
distances of corresponding vertices using the corresponding
transform. The minimization problem of finding an affine
transform can be solved using the SVD of the coordinate
vector. Let the vertex vectors be arranged as an× 3 matrix

V =


v1x v1y 1z

v2x v2y 2z

v3x v3y 3z

. . .

 .

Then the squared distance of coordinates under an affine
transformA is

(V (0)A− V (1))2 (18)

and has to be minimized. This leads to linear system of eqau-
tions. Alternatively, the least squares solution toV (0)A ≈
V (1) can be computed using the SVD. LetV (0) = UDW ,
whereU andW are orthogonal andD = {di} diagonal. Set

D′ = {d′i}, d′i =

{
d−1
i di > ε

0 else
(19)

and computeA = V TD′WTV (1). This is the desired least
squares solution18.

Intermediate shapesV (t) = {v1(t),v2(t), . . .} are de-
scribed asV (t) = A(t)V (0). The question is how to define
A(t) reasonably? The simplest solution would be:A(t) =
(1 − t)I + tA. However, some properties ofA(t) seem to
be desirable, calling for a more elaborate approach:

• The transformation should be symmetric.
• The rotational angle(s) and scale should change mono-

tonic.
• The transoform should not reflect.
• The resulting paths should be simple.

The basic idea is to factorA into rotations (orthogonal
matrices) and scale-shear parts with positive scaling compo-
nents. Alexa et al.3 have examined several decompositions.
Through experimentation, they have found a decomposition
into a single rotation and a symmetric matrix, to yield the
visually-best transformations. This result is supported by
Shoemake48 for mathematical, as well as psychological, rea-
sons. The decomposition can be deduced from the SVD as
follows:

A = RαDRβ = Rα(RβR
T
β )DRβ =

(RαRβ)(RTβDRβ) = RγS (20)

with det(Rγ) = 1 andsii > 0. Based on the decompo-
sition, A(t) is computed by linearly interpolating the free
parameters in the factorizations in (20) , i.e.

Aγ(t) = Rtγ((1− t)I + tS). (21)

a)

b)

c)

d)

Figure 8: Transformations of a single triangle. (a) Linear
vertex interpolation. (b-d) An affine map from the source
to the target triangle is computed and factored into rota-
tional and scale-shear parts. Intermediate triangles are con-
structed by linearly interpolating the angle(s) of rotation, the
scaling factors, and the shear parameter. (b) is generated
using the SVD; (c) shows the results of reducing the over-
all angle of (b) by subtracting2π from one of the angles;
(d) corresponds to Equation 21 and represents the method
of our choice. The last column in all rows shows plots of the
vertex paths.

Figure 8 illustrates the resulting transformations for a tri-
angle. For comparison, 8(a) shows linear interpolation of
vertex coordinates. The transformation resulting from a sin-
gular value decomposition and linear interpolationAα,β(t)
is depicted in 8(b). Note that the result is symmetric and lin-
ear in the rotation angle but still unsatisfactory, since a rota-
tion of more thanπ is unnecessary. However, if we subtract
2π from one of the angles (depicted in 8(c)) the result is even
more displeasing. We have found that decomposingA into
one rotation and a symmetric matrix and usingAγ(t) yields
the best results (Figure 8(d)). It avoids unnecessary rotation
or shear compared to the SVD and is usually more symmet-
ric than a QR decomposition-based approach.

5.3. Interpolation of intrinsic boundary representation

Linear interpolation of vertices can lead to undesirable ef-
fects such as shortening of parts of the boundary during the
transition. To avoid such problems, Sederberg et al.45 pro-
pose to interpolate an intrinsic representation of the bound-
ary. For polygons, such an intrinsic representation represen-
tation are edge length an interior angles. Unfortunately, there
is no simple analogon in 3D. An attempt was made to extend
the ideas of to polyhedra50 but the methods are computation-
ally expensive and unreliable.

5.4. Interpolation of the interior of shapes

Shapira and Rappaport46 suggest that a proper morph cannot
be expressed merely as a boundary interpolation, but as a
smooth blend of the interior of the objects. To achieve such
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an interior interpolation, they represent the interior of the
2D shapes by compatible skeletons and apply the blend to
the parametric description of the skeletons. An extension of
this approach to meshes - though theoretically possible - has
not been presented so far.

a)

b)

Figure 9: Contour blends of an elephant and a giraffe. In-
terpolation of the boundary (a) vs. a decomposition based
approach (b).

Another way to represent the interior of the shapes is
to decompose the shape into linear pieces or, more specif-
ically, into simplices. The works of Floater, Gotsman, and
Surahzhky15, 19 and Alexa et al.3 use this type of decomposi-
tion mainly for polygons, however, the extension to meshes
has been demonstrated. The main difficulty in extending
these approaches lies in the reliable computation of isomor-
phic dissections of meshes into simplicial complexes.

We will first discuss ways of generating such isomorphic
complexes and then explain the possibilities they open for
computing vertex paths.

5.4.1. Isomorphic Simplicial Complexes of Shapes

Simplicial complexes allow the local deformation of the
shapes to be analyzed and controled. Here, we explain how
to construct isomorphic dissections given two shapes with
identical boundary topology.

The problem was first discussed by Aronov et al.5 for
polygons. They offer two general approaches: The first ap-
praoch is to triangulate the polygons independently and then
use a piecewise linear bijective map to compute a planar
overlay of the triangulations. This is somewhat similar to the
planar embeddings explained in Section 3.1 together with
the overlay procedures in Section 4.3. The second appraoch
of Aronov et al. is a universal triangulation that fits everyn-
sided polygon. This approach is extended by Gotsman and
Surahzky to generate triangulations with few interior ver-
tices. However, it is unclear how to extend the general tri-
angulation to meshes because of the more complex bound-
ary topology. For this reason, we concentrate on the first ap-
proach.

It seems that the mesh-version of compatible triangula-
tions has not been discussed in the literature. However, the
procedure is conceptually the same. The meshes are tetra-
hedralized independently using common techniques7. Then,
a piecewise linear bijective map is computed between the

shapes, typically using a common parameter domain. This
parameter domain is used to compute an overlay of the sim-
plical complexes.

In case the common parameter domain for the meshes is a
sphere, the interior of the sphere could be used as the param-
eter domain for the tetrahedra. If a piecewise linear parame-
ter domain is used it seems more difficult to find a mapping
of the interiors. If the parameter domain is given and then in-
duced onto the meshes one could as well prescribe a simpli-
cial base domain and induce this simplical complex onto the
(independent) simplicial complexes of the original meshes.
The resulting structures are merged using a plane sweep al-
gorithm similar to the line sweep algorithms discussed in
Section 4.3.

The resulting simplicial complex might contain many, ill-
shaped simplices, which cause the following determination
of the vertex paths to detoriate. For that reason, both, Gots-
man and Surhazky as well as Alexa et al. try to improve the
simplicial complex while preserving the isomorphy. Gots-
man and Surahzky try to minimize the number of resulting
simplices. Alexa et al. employ an approach motivated by
meshing techniques, however, adapted to the situation that
one topology has to work for two shapes.

Figure 10: The homeomorphic dissections of the shapes in
the elephant-giraffe example

It seems advantagous to start with Delaunay triangula-
tions because they avoid the generation of skinny simplices,
which would be inherited in the merged complex, and be-
cause the same topology is produced for similar regions,
which reduces the number of extra simplices generated by
the overlay. The following smoothing strategy tries to max-
imize the minimum angle (as the Delaunay triangulation
does) by independently moving interior vertices and concur-
rently flipping edges. This procedure is calledcompatible
mesh smoothing. If the result needs to be improved further,
the vertex count is increased by means of splitting edges.
The split operation is well-defined in terms of topology, if it
is applied to both triangulations simultaneously, the isomor-
phy remains. The idea is to split long edges to avoid long
skinny triangles. Figure 10 shows a result achieved with this
approach.
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5.4.2. Morphing barycentric coordinates

The approach of Gotsman et al. requires not only the interior
of the shapes to be decomposed but also the exterior. The
exterior is bounded by a common fixed convex shape. This
fixed convex shape allows to represent the interior vertices
with barycentric coordinates.

The idea of the appraoch is to linearly interpolate these
barycentric coordinates. As was shown in Section 3.1.1 a
convex boundary together with barycentric coordinates for
the interior vertices results in a valid embedding of the com-
plex (this is obiously not restricted to the two-dimensional
case). A convex combination of the barycentric coordinate
results in another barycentric coordinate so that the result-
ing vertex coordinates along the paths describe only valid
(i.e. non-intersecting) shapes. This is a unique feature of this
approach.

5.5. Composing local ideal transforms

The general idea of Alexa et al. is to find a transformation
which is locally as similar as possible to the optimal transfor-
mation between each pair of corresponding simplices. The
optimal simplex transform is found by factoring the affine
transform defined by the pair of corresponding simplices as
explained in Section 5.2. This defines ideal trajectories for
each simplex.

Now consider the simplicial complex rather than a single
triangle. We define an error functional for a candidate vertex
configurationV (t) = (v1,v2, . . .)

EV (t) =
∑
s∈K

‖As(t)−Bs(t)‖2 , (22)

whereAs(t) is the desired ideal transform computed for
simplexs, Bs(t) is the affine transform induced fromV (0)
to V (t), and‖ · ‖ is the Frobenius norm.

We define an intermediate shapeV (t) as the vertex con-
figuration which minimizes this error between the desired
coordinates for each individual simplex and the space of ad-
missible coordinates.

Note that the coefficients ofBs(t) are linear inV (t) and
that theAs(t) are known for a fixed timet Thus,EV (t) is a
positive quadratic form in the elements ofV (t). The func-
tionalEV (t) can be expressed in matrix form as

EV (t) = vT
(

c GT

G H

)
v, (23)

wherec ∈ R represents the constant,G ∈ R2n×1 the linear,
andH ∈ R2n×2n the mixed and pure quadratic coefficients
of the quadratic formEV (t). The minimization problem is
solved by setting the gradient∇EV (t) over the free vari-
ables to zero Note thatH is independent oft. In practice,
we compute the LU decomposition ofH and findV (t) by
back substitution. Furthermore, the computations are sepa-
rable and are performed independently for the dimensions

of space. Note that onlyG depends on the dimension, while
H is the same for all components. Thus,H is effectively of
sizen − 1 × n − 1, which means the dominating factor of
the computation is independent of the dimension.

The above definition has the following notable properties:

• For a givent, the solution is unique.
• The solution requires only one matrix inversion for a spe-

cific source and target shape. Every intermediate shape is
found by multiplying the inverted matrix by a vector.
• The vertex path is infinitely smooth, starts exactly in the

source shape, and ends exactly in the target shape. These
are properties typically difficult to achieve in physically-
based simulations.

Figure 11 shows transformations of some simple shapes pro-
duced with the described method.

5.6. Non-uniform interpolation

So far we have always morphed the whole mesh, i.e the tran-
sition has been desribed by a scalar transition parametert.
Now, we want to locally morph certain features or regions of
interest, i.e. the transition parameters are different for differ-
ent vertices. We will call the set of transition paramters for
vertices thetransition state. A major problem when morph-
ing only locally arises from the fact that corresponding fea-
tures might not have the same position in space and, thus, in-
terpolation of absolute coordinates could lead to undesirable
effects. This problem is illustrated in Figure 12. The shapes
in a) and b) are source and target geometry of one mesh. The
idea is to locally change the geometry of the baby’s face so
that the nose takes the shape of the boy’s. Locally interpo-
lating vertex coordinates leads to the shape depicted in c),
which is clearly not usable. Note that the faces are overall
aligned in space and that the misalignment of the noses re-
sults from different relative positions in the faces.

We could ease the problem of misalignment by assigning
an affine transform to a local morph. This can be done in case
the mesh is represented over a base domain. The coordinates
could be represented relative to the base domain. However,
the fixed base domain limits the flexibility and might intro-
duce continuity problems at the base domain edges. More
generally, a shape should be defined by the transition state
of its vertices. In that way, the transition states is representa-
tive for the shape of a morphable object. This could be a very
compact way of representing deforming or animated objects.

The main idea to overcome the limitations is to repre-
sent vertex coordinates with respect to their neighbors in the
mesh (and not with respect to some larger structure). Given
a vertex and its one-neighborhood ring (see Figure 13 a),
the position should be described relative to the positions of
vertices in the neighborhood. Further, the representation of
a vertex should be linear in the absolute coordinates. Non-
linear functions tend to be numerically difficult to handle
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Figure 11: Transformations of different shapes representing solid objects. Note that parts of the shapes transform rigidly
whenever possible.

and many morphable meshes have sliver triangles, which,
together, leads to unpredictable results.

The relative representation aims at making the shape of
the mesh invariant to translation or, ideally, invariant un-
der affine transforms. If a vertex were represented in the
affine space of its neighbors invariance under affine trans-
forms would trivially follow.

5.6.1. Laplacian Representation

Alexa2 uses a rather simple scheme, which is not invariant
under rotation, scaling, and shearing. Assume we want to
represent the position of vertex{i}. Compute the center of
mass of the neighbors

v̄i =
1

|N (i)|
∑

j∈N (i)

vj (24)

and let the new representation be the difference of this center
of mass to the original position:

ṽi = vi − v̄ (25)

For an illustration see Figure 13. If we write all vertices as a

vector the forward transformation (from absolute to relative
coordinates) can be represented in matrix form. LetA be the
adjacency matrix of the mesh andD be a diagonal matrix
with dii = 1/|N (i)|. The transform is represented byL =
I − DA. Note thatL is a Laplacian of the mesh52. This is
an important observation as it generalizes the approach to
shape representations other than meshes, e.g. parametric or
implicit functions.

The backward transformation (from relative to absolute
coordinates) is, by construction, not unique. It should be
uniquely determined up to a translation. This means,L ∈
R
m×m should have rankm− 1, which is indeed so2.

The main idea of this approach is to morph by linearly
interpolating Laplacian coordinates rather than absolute co-
ordinates. Since Laplacian coordinates are linear in absolute
coordinates morphing the whole shape (i.e. all vertices have
the same transition state) will be the same in absolute and
Laplacian coordinates. Yet, if the desired transitions are dif-
ferent for subsets of vertices interpolating Laplacian coordi-
nates yields more reasonable results.
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a) b)

c) d)

Figure 12: Given a mesh with two geometries a) and b) so
that corresponding features (eyes, ears, nose, mouth, etc.)
are represented by the same vertices in both geometries. If
one feature (in this example the nose) is morphed towards
the target geometry in absolute coordinates, different posi-
tions in space lead to undiserable effects shown in c). The
shape in d) shows a more pleasing result achieved by inter-
polating a differential encoding of the vertices.

a) b)

Figure 13: A vertex (black) and its neighborhood ring
(white) in a). In Laplacian coordinates a vertex is repre-
sented by the difference to the centroid of its neighbors (b).

Alexa2 gives details on how to generate and represent
transition states and how to solve the resulting linear system.

6. More than two meshes

The conceptual extension of the framework to more shapes
is straightforward. Given meshesMi = (Vi,Ki) a common
topologyK together with vertex setsV (ei) is established.
The vertex sets form a base of a space, which is reflected
by using canonical base vectorsei as indices. A morphed
shape(V (s),K) is represented by a vectors = (s0, s1, . . .)
reflecting the shares of the meshesM0,M1, . . ..

Not all techniques presented in this framework are equally
suited to be extended to more meshes. The correspondence
problem discussed in Section 3 seems to be relatively easy

to extend. All meshes are embedded in the given parame-
ter domain, which leads to barycentric representation of the
original vertices. If each set of original verticesVi needs to
be mapped to all other meshesMj , i 6= j the complexity
would grow quadratically with the number of meshes. How-
ever, this is not necessary if a remeshing strategy is used to
generate a consistent mesh topology (see Section 4.5). This
procedure generates the same set of vertices over all shapes,
thus, the complexity is linear in the number of meshes times
the number of vertices used in the remesh, which is the best
we can expect. Concluding, the best way to generate the set
{(V (ei),K} is to embed all meshes in a common parame-
ter domain (spherical or piecewise linear) and then remesh
to the desired accuracy.

The vertex path problem now extends to compute combi-
nations of several vertex vectors. Linear vertex combination
is easily extended:

V (s) =
∑
i

siV (ei) (26)

Surprisingly, any technique involving rotations such as the
ones explained in Sections 5.2 and 5.4 seem to be difficult
to extend. Instead of interpolating the orientation one could
compute the principal components (moments) of the shapes
and align them with the canonical axes of the coordinate
system. To extend the local morph approach explained in
Section 5.5 the linear combination has to be applied to the
Laplacian coordinates.

Applications of such spaces of meshes range from mod-
eling and analysis of shapes to animation. Praun et al. have
termed the synthesis-analysis part digital geometry process-
ing (DGP)40. Modeling could be achieved be combining sev-
eral shape (features) to yield the desired result. Using tech-
niques such as the principal component analysis, spectral
properties fo the mesh family can be explored.

The space of meshes(V (ei),K) allows to represent an-
imations as a curves(t). A classical key frame anima-
tion with k key frames could be simply models as ak-
dimensional space, where the curve linearly interpolates
subsequent key frames. Alexa and Müller4 use the PCA to-
gether with rigid motion detection to find a more compact
space (see an illustration in Figure 14). In this space the main
part of the animation is stored in the rigid motion of the first
base vector. The additional base vectors are sorted accord-
ing to their energy in the spectrum of the animation. This
allows to progressively store and stream mesh animations,
where the progressiveness is with respect to movements and
not model fidelity. The understanding of certain features of
the animtion as bases of a linear space gives this represen-
tation semantics. It is possible to identify e.g. the smile in a
facial animation with a particular basis and, thus, to modify
only the smile without the need to work on all key frames.

c© The Eurographics Association 2001.



Marc Alexa / Mesh Morphing

=

original key frames principal component
bases

importance
factors

animation
representation

Figure 14: The SVD applied to a space of meshes. Here the original space represents a key frame animation, the result allows
to represent the same animation with less geometries containing most of the original animation’s energy.

7. Conclusions

Mesh morphing has reached a state where basic problems
are solved, yet, a practically working system is not avail-
able. The correspondence and representation problems can
be seen as the application of several techniques now com-
mon in multiresolution representations and modeling. The
vertex path problem is specific to morphing applications and
leaves room for improvement.

What is still missing is a robust implementation of current
techniques. As with other geometric techniques, many of the
approaches suffer from numerical problems. Many “detail”
problems such as normal and texture coordinate interpola-
tion can cause trouble in practice.

With the extension of mesh morphing to linear spaces of
meshes several interesting avenues for future research arise.
However, one might ask the question whether meshes (with
fixed connectivity) are the right representation for deforming
shapes, anyway.
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