
Volume Graphics (2005)
E. Gröller, I. Fujishiro (Editors)

Texturing and Hypertexturing of Volumetric Objects

C. M. Miller† and M. W. Jones‡

Department of Computer Science, University of Wales Swansea, UK

Abstract
Texture mapping is an extremely powerful and flexible tool for adding complex surface detail to an object. This
paper introduces a method of surface texturing and hypertexturing complex volumetric objects in real-time. We
employ distance field volume representations, texture based volume rendering and procedural texturing techniques
with Shader Model 2.0 flexible programmable graphics hardware. We aim to provide a flexible cross-platform,
non vendor specific implementation.

Categories and Subject Descriptors (according to ACM CCS): I.3.1 [Computer Graphics]: Hardware Architecture-
Graphics Architecture I.3.5 [Computer Graphics]: Computational Geometry and Object Modeling I.3.6 [Computer
Graphics]: Methodology and TechniquesGraphics data structures and data types I.3.7 [Computer Graphics]: Three
Dimensional Graphics and RealismColor, Shading, Shadowing and Texture I.3.8 [Computer Graphics]: Applica-
tions I.4.10 [Image Processing and Computer Vision]: Image RepresentationVolumetric

1. Introduction

Whilst most volume graphics applications concentrate on
providing visualizations of data, having tools to compute
more general imagery from volumes is also necessary
[CKY00]. Texture mapping is commonly used to enhance
the appearance of an object by adding complex image infor-
mation. Methods such as bump mapping [Bli78], environ-
ment mapping [BN76] and solid texturing [Pea85] have also
been developed to add detail to surfaces without a serious
impact on rendering speed. A volume object can also be tex-
tured to add visual information at the surface in the same
manner [SJ02].

Hypertexture [PH89], a texturing method that is used to
create realistic natural looking phenomena in procedural tex-
turing [EMP∗02] can be used to create many interesting
objects. Hypertexture has been extended to volume graph-
ics [SJ02] in order to give external object detail as well as
maintain internal object detail.

These volume texturing approaches (both surface textur-
ing and hypertexturing) are currently far from real-time. The

† e-mail: cschrism@swan.ac.uk
‡ e-mail: m.w.jones@swan.ac.uk

goal of this work is to demonstrate that it is possible to pro-
vide the hypertexture effect in real time on complex objects
that have been voxelised as a distance field. This paper in-
troduces a method which takes advantage of programmable
graphics hardware and distance fields in order to enable real-
time texturing and hypertexturing of volumetric objects.

These new real-time techniques can be employed in many
fields where external and internal object detail is required.
One such application would be the games industry, where
effects such as fire, glow and melting are extremely com-
mon. Having internal object data with such effects would
also provide better playability when deformations occur in
game play. They could also be of use for some scientific vi-
sualization techniques (e.g. NPR [RE01,TC00]). It’s also our
intention to expand the rendering techniques available within
the volume graphics domain.

Section 2 contains a review of previous work in hardware
assisted volume rendering, distance fields, procedural textur-
ing and volume texturing. Section 3 presents the rendering
algorithm utilizing the GPU. Section 4 explores alternative
methods to procedurally texture on the GPU using noise as
a primitive. Section 5 outlines solid volume texturing and
bump mapping. Section 6 explains hypertexturing volume
objects and finally section 7 outlines testing and results.

c© The Eurographics Association 2005.

http://www.eg.org
http://diglib.eg.org

C. M. Miller & M. W. Jones / Texturing and Hypertexturing of Volumetric Objects

2. Previous Work

Volume rendering by ray casting is a well established render-
ing technique in volume graphics [Lev88]. The original ray
casting technique has been adapted to work with 3D textur-
ing in order to accelerate the algorithm and take advantage of
the parallel nature of today’s GPU’s [CCF94, CN94, GK96].

Generally hardware methods approximate the volume
rendering algorithm, but benefit from the massively parallel
GPU fragment processing engine. The principle is to have
proxy geometries representing slices in a volume, then use
texture mapping hardware to encode the volume informa-
tion onto each proxy slice. These proxy slices are facing the
viewpoint, and when rasterized leave a number of slices of
fragments stacked on top of one another (see Figure 1).

After rasterization of the proxy geometry into fragments,
each fragment is processed as follows: Firstly the volume
texture is queried using the fragments 3D texture position,
this value is used in a dependent texture read for classi-
fication, usually into a 1D lookup table. This yields the
fragments colour and opacity information. After fragment
processing alpha blending is used for writing to the frame
buffer.

Slice Geometry Side view from eye point

Figure 1: Parallel projection of slice geometry and side view
of geometry.

Before 3D texturing became a feature of GPU’s, 2D tex-
tures were used [RSEB∗00]. 3D texturing provides tri-linear
interpolation in hardware and provides better images. 2D
textures also require more than one copy of the proxy geom-
etry for rendering different viewpoints.

There are two approaches to classification. For post-
classification, the scalar voxel value is interpolated and then
used within a lookup table to obtain colour and opacity. Pre-
classification finds the colour and opacity at discrete voxel
positions and interpolates colour and opacity from those.
Post-classification is regarded as the correct approach and
can be achieved in hardware by using tri-linear interpola-
tion within the texturing unit. Pre-integrated classification
[EKE01] yields the best results but has the highest impact
on rendering time. Post-classification produces comparable
results to pre-integrated classification when using low fre-
quency data and transfer functions. For most simple cases
post-classification reproduces good enough results at a re-
duced rendering time. Pre-classification produces the lowest

quality results and usually produces blocky unsmoothed fi-
nal images. We use post-classification in this work.

By knowing the gradient normals for the volume, its
also possible to have lighting effects [RSEB∗00, EKE01,
RGW∗03]. Per-pixel lighting can be implemented along with
volume rendering in hardware. Over sampling and shadows
are also possible [RGW∗03], although the reported frame
rates are not real-time. The volumes used in their exam-
ples are quite large and also classification is done with com-
plex transfer functions. These methods most probably run at
real-time on simpler volumes and lower order transfer func-
tions. Over-sampling requires more texture fetches which
will slow rendering down. Shadowing requires more light-
ing computation, and will also slow each fragment down.

2.1. Distance Fields

Distance fields are a volume representation method based
on the distance to a chosen surface. Creating a distance
field volume involves taking the original surface of inter-
est and restructuring the volume as follows: A distance of
0 is used to denote the surface; positive values are built
around the surface approximating the distance to the near-
est surface point of the chosen surface and negative values
are used to denote internal object distances to the surface.
There are various different approaches to generating dis-
tance fields [SB02,GPRJ00, Jon96,SJ01]. The distance field
is generated for a chosen iso-surface for the object as a pre-
processing step.

2.2. Solid Texturing

Solid texturing is an extension to basic 2D texturing that
works on a 3D basis [Pea85]. Instead of wrapping or pro-
jecting the texture, the objects surface is effectively carved
out of the 3D texture map. This method fits best with the
volume graphics paradigm since we are usually concerned
with a 3D domain. Carving is particularly useful for mod-
eling materials such as wood and marble, as a 3D block of
marble or wood is shaped using the objects definition as if
the object was shaped from an original block of material (see
Figure 2).

Figure 2: Solid texture block and solid textured object.

c© The Eurographics Association 2005.

C. M. Miller & M. W. Jones / Texturing and Hypertexturing of Volumetric Objects

Satherley and Jones [SJ02] mention solid texturing for
volume objects in software. In hardware this is a simple tex-
ture lookup instruction from the surface of interest into a
3D texture or procedurally generated texture algorithms can
be evaluated for the surface point of interest [CH02]. Many
procedural texturing techniques are especially suited to solid
texturing.

2.3. Hypertexture

Perlin and Hoffet [PH89] extended the 3D texture map-
ping paradigm to produce hypertexture, allowing modeling
of natural phenomena such as fur, fire and smoke.

Hypertexture is a method of manipulating surface densi-
ties whilst rendering, instead of evaluating colouring at the
local surface. The actual surface definition is changed dur-
ing rendering. Because of this rendering outside the conven-
tional surface definition, a ray marcher must be used.

Hypertexture is modelled with an object density function
(see Eq. 1), giving rise to the notion of a soft object, or object
which has a surface with depth associated. This gives three
possible states to define an object:

• Inside - The point is inside object
• Outside - The point is outside the object and soft region
• Boundary - The point is in the soft region or soft surface.

D(p) =

⎧
⎪⎨

⎪⎩

1 if |p|2 ≤ r2
i ,

0 if |p|2 ≥ r2
o,

r2
o−|p|2
r2

o−r2
i

otherwise.
(1)

where ri = inner radius and ro = outer radius.

Hypertexture effects can now be achieved by the repeated
application of density modulation functions (DMF’s) to the
soft region of D(p), as shown in Eq. 2.

H
(
D(p), p

)
= DMFn

(

. . .
(

DMF0
(
D(p)

))
)

(2)

DMF’s can be defined using noise and turbulence

noise(p) = Random scalar (3)

turbulence(p) = ∑
i

abs
(

noise(2i p)
2i

)

(4)

Bias and Gain are also introduced:

biasb
(
D(p)

)
= D(p)

ln(b)
ln 1

2 (5)

gaing
(
D(p)

)
=

⎧
⎨

⎩

bias1−g
(

2D(p)
)

2 if D(p) < 1
2 ,

1− bias1−g
(

2−2D(p)
)

2 otherwise.
(6)

Perlin later improved on his noise implementation [Per02]
to iron out problems with the gradient calculations.

Hart [Har01] implemented Perlin noise on earlier GPU’s
using NVIDIA’s register combinators. Whilst this method is
transferable to more modern fragment shaders, the method is
not particularly fast, and in large domains will slow the ren-
dering speed down significantly. This is due to the massive
multi-pass needs of the algorithm. Since volume rendering
on GPU’s requires massive fragment processing overheads,
the addition of computing noise in a multi-pass manner is too
expensive. The method presented here avoids the multi-pass
approach in order to maintain a low overhead to the fragment
shading unit.

3. Volume Distance Field Rendering

The aim of this work is to demonstrate real-time hypertex-
turing of complex objects. Previously Satherley and Jones
[SJ02] demonstrated a software approach that generated a
300 × 300 image in 50 seconds. This work demonstrates a
hardware approach that employs the OpenGL [SA] graph-
ics API. There are numerous high-level shading languages
available to program the vertex and fragment processors of
today’s GPU’s. GLSL [KBR] was chosen for the program-
ming of shaders because it integrates well into OpenGL and
allows access to the fixed function pipeline variables with
relative ease. It also allows multiple program objects to be
linked together providing a mechanism to easily switch out
specific functions, which cuts down run-time linking and
eases swapping in different effects whilst maintaining real-
time.

Various Architecture Review Board (ARB) extensions
[Ope] to OpenGL are used to access a GLSL imple-
mentation. These are ARB_SHADER_LANGUAGE_100,
ARB_FRAGMENT_SHADER and ARB_VERTEX_SHADER.
We also use the EXT_TEXTURE_3D extension for 3D tex-
turing capability. Vendor specific instructions are not used to
ensure cross platform compatibility.

3.1. Distance Field Volume Texture

A distance field can be used to define the soft region
around an object for hypertexture. Currently, there are ex-
tensions to OpenGL to allow arbitrary texture dimensions,
as standard OpenGL textures must conform to power of
2 sizes. Arbitrary 32 bit floating point values can also
be used to encode texels, as standard OpenGL textures
are limited to 8 or 16 bit precision over the [0,1] range.
These are exposed though the NV_FLOAT_BUFFER and

c© The Eurographics Association 2005.

C. M. Miller & M. W. Jones / Texturing and Hypertexturing of Volumetric Objects

(a) Normals (b) Tex Co-ords

Figure 3: CT Head gradient normals and texture co-
ordinates

NV_TEXTURE_RECTANGLE extensions. However, cur-
rently this extension only supports the GL_NEAREST tex-
ture mode, which bypasses the much needed tri-linear inter-
polation. Therefore in order to use tri-linear interpolation the
distance field volume should have a maximum precision of
16 bits and be normalized to the [0,1] range. Also the volume
dimensions must be compliant to power of 2 sizes.

Figure 4: CT Head with example softregion

As we wish to do lighting calculations, the gradient nor-
mals also have to be present in the texture. Since the den-
sities of a normal Distance Field volume can be put into
one channel of a texture, there are 3 more channels in which
to put the gradient normal. A good configuration for this is
< r,g,b >= gradient normal, < α >= density. See Figure
3(a) for gradient normals encoded as colours.

3.2. Lighting

To perform lighting, a per pixel lighting scheme is needed
since no surface detail exists at all in the vertex specific

geometry (the view aligned slices). So all lighting is done
in the fragment shader. We employ a cut down point lighting
model to reduce the instruction count [NVI]. This lighting is
done in eye space.

3.3. Matrices Setup

When repositioning the viewpoint, the view aligned slice
geometries have to remain in a static position. So to rotate or
scale the volume we must apply transforms to the texture co-
ordinates alone (object space) – see Figure 3(b). To achieve
this, the standard OpenGL transformation is bypassed, and
a virtual trackball algorithm [HSH04] is used to provide a
view matrix as a uniform variable to the vertex shader. An
inverse transpose of this matrix is also needed to transform
object space co-ordinates into eye-space, and object space
normals into eye-space for lighting.

3.4. Per Vertex Operations

The per-vertex operations are transformations that need to be
applied to the incoming variables to the vertex shader. The
variables consist of the position in object space, the texture
co-ordinates in object space, and the material colour. Since
the view aligned slices need to be static, we don’t change the
ModelViewProjection matrix after setting up the windowing,
and transform the object space vertex positions into world
space using the ModelViewProjection matrix.

The texture coordinates need to be transformed with any
rotation that might have been applied to our texture trans-
form matrix. Similarly the object space vertex position must
be transformed into eye space for lighting using the inverse
transpose of the texture matrix. These texture coordinates
and eye space coordinates are then rasterized by the fixed
function rasterizer and handed to the fragment shader as
varying inputs.

3.5. Per Fragment Operations

The fragment shader receives a number of variables and con-
stants.

Constants:

• Material colour
• Ambient colour
• Light colour
• Specular power
• Light position
• Object iso-value
• Volume texture
• Inverse transpose of the texturing matrix

Variables:

• Object space texture co-ordinates
• Eye space position

c© The Eurographics Association 2005.

C. M. Miller & M. W. Jones / Texturing and Hypertexturing of Volumetric Objects

Texture:

• Volume distance value for object position
• Volume gradient normal for object position

Firstly iso-surfacing must be done by deciding fragments
that satisfy the iso-value. Other fragments are rejected. In
order to ensure under-sampling does not create holes in the
iso-surface, values greater than the iso-surface are also con-
sidered to close gaps.

The gradient normals must then be re-mapped to the
[−1,1] range from [0,1] range. This normal must then be
transformed to eye space with the inverse transpose of the
texture matrix. The lighting computation must then be ap-
plied for the final colour.

3.6. Final Pre Frame Buffer Operations

Before a pixel is written to the frame buffer, the blending op-
eration is computed. The first fragments are written straight
into the frame buffer (where the frame buffer is currently
empty). Subsequent pixels are then blended using the se-
lected OpenGL blending operation. We employ the Over op-
erator, the ONE_MINUS_SRC_ALPHA blending operation.
Alpha blending is computed for each subsequent fragment
using this operator, until the alpha value is full.

4. GPU Based Noise

There are two approaches to getting noise on the GPU, pro-
cedurally computed on the GPU (in the fragment shader) and
texture encoded noise. Since noise needs to be evaluated at
each pixel this is a per fragment operation. Currently there is
no hardware support for noise. Ideally noise should be ran-
dom through an infinite domain so when constructing com-
plex noise, artifacts are not introduced and patterns appear
random.

4.1. Texture Based Noise

Firstly, the size of texture to use is important, since maximal
space must be left for other texturing or lookup table needs.
A sensible size is around 643 for a 3D block of noise. The
noise volume does not have to be the same dimensions as
the volume data set. We are concerned with 3D noise only,
since we want to solid texture and hypertexture 3D volume
datasets (see Figure 5(a)). Larger texture sizes will give in-
creased resolution.

One problem with texture based noise lookup tables is that
when operating outside the texture co-ordinate range, the
noise visibly repeats, instead of remaining random. When
texture co-ordinates fall outside the range available, there are
problems with borders since the GL_REPEAT texture mode
must be used to access outside the texture-coordinate range.
One way of getting around this is to use the
GL_MIRRORED_REPEAT_ARB (see Figure 6(b)) texture

mode, where image quality is better but it still introduces
artifacts at some borders.

(a) Noise (b) Gradient Normals

Figure 5: Standard noise and gradient normals

Pre-computing the noise over a discrete grid in software
produces a texture encoded with the final noise configu-
ration. Only 1 texture fetch is needed to utilize this pre-
computed noise block (see Figure 6(a)). Therefore texture
co-ordinates will not fall outside of range, removing border-
ing issues. Greater image quality will be generated by using
the precision available in software, rendering speed is also
good because there is only 1 texture fetch involved.

Computing noise on the GPU using textures is possible
via multiple texture fetches into a standard texture lookup
table of noise. One channel of a texture can encode a noise
block. Higher order noise primitives can then be built up
such as turbulence. This method suffers from bordering
problems when addressing outside the texture co-ordinate
range, and also suffers from not being truly random over
an infinite domain. Since the precision on the GPU is lower
than in software, the image quality is reduced. It is further
reduced by the bordering artifacts just mentioned. Render-
ing speed is slower because typically more texture fetches
are involved, the GPU is also responsible for any additional
computation between texture fetches.

(a) Turbulence (b) Repeating Noise

Figure 6: 8 octave turbulence and repeating noise pattern

One way of combating the overhead of several texture
fetches is to encode different noise blocks in each separate

c© The Eurographics Association 2005.

C. M. Miller & M. W. Jones / Texturing and Hypertexturing of Volumetric Objects

channel of the noise texture. This eliminates 3 additional tex-
ture fetches by utilizing the spare channels. The image qual-
ity is similar to multiple lookups, but bordering artifacts are
reduced. Rendering speed is also increased by reducing the
texture fetches.

In some situations, the gradient normals are needed for
the noise block (e.g. bump mapping, lighting). By encoding
the actual noise density in the alpha channel, the remaining
3 RGB channels can hold the gradient normal (see Figure
5(b)). This requires pre-processing and can be used where
only 1 channel is occupied by noise.

It is best to pre-compute the noise block to the required
resolution and level of octaves required, this produces best
quality and speed.

4.2. Procedural Based Noise

There are two distinct approaches to implementing procedu-
rally based noise on a GPU. The first is encoding the permu-
tation and gradient tables used in the noise computations in
a 1D texture lookup table. The second is to use the uniform
parameter memory to store these tables as arrays.

By rewriting the noise function in a high level shader lan-
guage and using texture fetches for permutation and gradi-
ent tables, the problem of borders and mirroring using the
texture lookup approach can be bypassed, since the origi-
nal function can be computed. However there are a number
of lookups into each table needed, and for standard noise
in 3D around 10 texture fetches are needed per fragment.
This is too slow for general geometry, but is acceptable for
small geometry. Computing 8 octaves of turbulence would
thus require 80 texture fetches per fragment, and is clearly
too many.

The GLSL spec [KBR] outlines using arrays from uni-
form variable locations, however current graphics hardware
for fragment shaders does not have the ability to do dy-
namic array addressing with variables, each location must
be known at compile time and not run time. However, vertex
shaders do have this ability on today’s hardware. However
since all volume computations require per fragment process-
ing, this method currently cannot be implemented.

5. Surface Texturing Techniques

There are two distinct surface texturing techniques that can
be applied to volumes. Solid texturing and bump mapping.

5.1. Solid Texturing

Solid texturing is simple on a GPU. Given the volume ren-
dering of distance fields (see section 3), this is extended by
still having the iso-value decision. Instead of using the mate-
rial colour, an additional texture lookup is done into a block
of texture (turbulence, noise etc) with the same fragments

texture co-ordinate. This can then be lit using the lighting
function or left unlit (see Figure 7(b)).

5.2. Bump Mapping

Instead of using a normal map and computing DOT3 bump
mapping, we must combine two different normal maps. This
is because we have the surface gradient normal from the vol-
ume (recomputed to the [−1,1] range), and we have the gra-
dient normal from the noise texture (which we must also
re-map back to the [−1,1] range). These normals must be
transformed into eye-space using the inverse transpose of the
texture transformation matrix.

In order to perturb the normal, we scale the volume nor-
mal with a constant, and add the bump map normal to it (nor-
malized), we then re-normalize the result and use it in the
lighting computation. This method is fast, uses few instruc-
tions and provides good results. The scaling of the constant
affects the severity of the final result (see Eq. 7). Figure 7(c)
is an example image of bump mapping.

bumpmap(V̂ , B̂,k) = normalize(kV̂ + B̂) (7)

where V̂ is the volume gradient normal, B̂ is the bump
map gradient normal and k is the scaling constant.

6. Hypertexturing on the GPU

Hypertexturing complex objects is done by evaluating a sur-
face density function. Section 3 outlines the steps in hard-
ware rendering distance fields, the iso-surfacing method can
be modified to implement a surface density function on the
fragment shader. We use two iso-values, defining the start of
the soft region, and the start of the iso-surface or object (see
Figure 3.1). The object is treated in the same manner as the
previous explanation of distance field iso-surface rendering.

Differing DMF’s applied to the soft region will generate
different effects. The construction of several DMF functions
(see Eq. 2) can be constructed arbitrarily in the fragment
shader.

Usually a DMF will use noise or turbulence as a primi-
tive, and noise must be available to the fragment shader as
outlined in section 4. Either procedural or textured noise can
be used. The variables available to a DMF at each fragment
consist of:

• 3D object position (texture co-ordinates)
• Current volume density (distance to iso-surfaces nearest

point)
• Volume Gradient point for current position
• Noise gradient position for current position (if using tex-

ture based noise lookups)
• Lighting position
• Eye position

c© The Eurographics Association 2005.

C. M. Miller & M. W. Jones / Texturing and Hypertexturing of Volumetric Objects

• Material colours
• Arbitrary uniform variables (floats, vectors, matrices) that

are constant across fragments (passed into the fragment
shader as a uniform parameter) [KBR]

• Standard functions on GPU such as floor, ceil, clamp, sin,
cos

• Arbitrary transfer functions encoded as textures

DMF’s can be chosen based upon parameters such as spa-
tial co-ordinates, e.g. varying a fire hypertexture effect with
height. Different DMF’s can be applied through the soft re-
gion, although in our examples, the same DMF function was
applied throughout the soft region. Lighting can be carried
out on the soft region by calling the lighting function res-
ident in the fragment shader from the iso-surface distance
field rendering. By using GLSL, a generalized shader can be
constructed, and by using the runtime linking and compiling,
DMF’s can be swapped in and out on the fly. This involves
some generalizing of transfer function uniform variables and
material properties, but can provide a flexible environment to
have interactive shader design tools for volume hypertextur-
ing.

7. Results and Conclusion

The test setup consisted of a Pentium 4 2.8GHz PC. Three
graphics cards were tested, the NVIDIA GeForce FX 5900
Ultra, the ATI RADEON 9700 Pro and the NVIDIA GeForce
6800GT. We conducted several tests, basic lit iso-surfacing
as described in section 3 (see Figure 7(a)). Solid Texturing
(see Figure 7(b)) and bump mapping (see Figure 7(c)) as in
section 5. Hypertexture as in section 6 of Fur (see Figure
7(d)), Melting (see Figure 7(e)) and Fire (see Figure 7(f)).
Table 1 shows the frame rates achieved with the ATI card
for a various window sizes. In general the NVIDIA Geforce
FX produced around half the frame rate of the ATI card, al-
though in some situations where texture fetches were heavy,
the NVIDIA GeForce FX was slightly in front. We tested
each situation with anti-aliasing and antiostropic filtering
turned both off, both at 4x and both at 8x. The difference be-
tween the 4x and 8x speeds were marginal. The difference in
speed between the NVIDIA and ATI cards tested is probably
due to the way in which fragments are discarded. The newer
NVIDIA GeForce 6800GT unsurprisingly outperformed the
older cards due to correct fragment discarding and additional
fragment processing power.

We also tested a number of GPU noise techniques as dis-
cussed in section 4. We concentrated on turbulence as the
detailed texturing method. See Figures 8(c), 8(a), 8(b) and
8(d) respectively for images of the 8 noise lookups, 4 noise
lookups, 1 lookup for 4 channels and 1 lookup for pre-
computed noise. Table 3 shows the results. We do not report
the different turbulence methods for the new NVIDIA card
here since we are interested in comparing each technique.
We found the 643 pre-computed noise volume provided the
best speed and resolution balance.

(a) Lit Rendering (b) Solid

(c) Bump Mapping (d) Fur

(e) Melting (f) Fire (bumpy)

Figure 7: Examples of texturing and hypertexturing an ob-
ject

The latest graphics cards (i.e NVIDIA GeForce 6 series)
allow iteration in the fragment shader at run-time, which
means the original Levoy ray marching approach may be
implemented. This sort of implementation will allow space
leaping (using the distance field) and will involve less geom-
etry. These new graphics cards also discard fragments cor-
rectly and therefore although the processing for each frag-
ment will be much greater than the simple view aligned slice
approach, there will be many less fragments to deal with.

Hardware assisted hypertexturing of complex volume ob-
jects extends the available real-time tools for general vol-
ume graphics. Applications in volume animation and com-
plex volumetric scenes have been proven to be available on
consumer level graphics hardware. The speed of graphics

c© The Eurographics Association 2005.

C. M. Miller & M. W. Jones / Texturing and Hypertexturing of Volumetric Objects

Table 1: Frame rates for rendering tests. ATI card

Window Size 300 × 300 1024 × 768
Sampling 0x 8x 0x 8x

Lit Rendering 29.82 21.25 5.64 5.01
Solid Texturing 23.21 17.00 4.30 4.26
Bump Mapping 25.26 21.25 4.91 4.72

Fur 17.10 14.17 3.43 3.27
Melting 15.78 10.63 4.02 3.70

Fire 23.24 17.00 4.18 4.05

Table 2: Frame rates for rendering tests. 6800 card

Window Size 300 × 300 1024 × 768
Sampling 0x 8x 0x 8x

Lit Rendering 72.49 46.11 20.57 11.63
Solid Texturing 69.33 45.09 20.02 11.34
Bump Mapping 64.21 41.27 17.52 9.69

Fur 39.52 24.32 9.88 5.43
Melting 57.36 38.26 16.92 9.71

Fire 46.30 27.04 10.42 5.64

hardware is growing at a very fast rate, and the size and com-
plexity of volumes to be rendered will increase drastically in
the near future. Already, faster graphics cards are available
with more fragment processing power that will cope with
larger volumes. With the combination of more per fragment
power and a noise implementation on the graphics card it-
self, more effects on larger volumes will be possible. Hyper-
texturing could become a very important volume graphics
tool in future general graphics applications.

The frame rates achieved here demonstrate how complex
texturing and volume rendering can be achieved in real-time
with the latest graphics hardware. A full screen 1024 × 768
rendering will run at 10 FPS. This method has been shown
to achieve real-time hypertexturing of complex objects for a
300 × 300 image with all cards.

Table 3: Frame Rates for different turbulence methods. ATI
card

Window Size 300 × 300 1024 × 768
Sampling 0x 8x 0x 8x

8 noise lookups 2.45 1.89 0.49 0.43
4 noise lookups 7.14 5.26 2.40 2.30

4 channel 23.02 17.02 3.82 3.70
Encoded texture 23.24 17.00 4.18 4.05

(a) 4 octaves, 4 lookups (b) 4 octaves, 1 lookup

(c) 8 octaves, 8 lookup (d) 8 octaves, 1 lookup

Figure 8: Examples of different turbulence implementations

References

[Bli78] BLINN J. F.: Simulation of wrinkled surfaces. In
Proceedings of the 5th annual conference on Computer
graphics and interactive techniques (1978), ACM Press,
pp. 286–292.

[BN76] BLINN J. F., NEWELL M. E.: Texture and reflec-
tion in computer generated images. Commun. ACM 19,
10 (1976), 542–547.

[CCF94] CABRAL B., CAM N., FORAN J.: Accelerated
volume rendering and tomographic reconstruction using
texture mapping hardware. In Proceedings of the 1994
symposium on Volume visualization (1994), ACM Press,
pp. 91–98.

[CH02] CARR N. A., HART J. C.: Meshed atlases for
real-time procedural solid texturing. ACM Trans. Graph.
21, 2 (2002), 106–131.

[CKY00] CHEN M., KAUFMAN A. E., YAGEL R.: Vol-
ume Graphics. Springer, 2000.

[CN94] CULLIP T. J., NEUMANN U.: Accelerating Vol-
ume Reconstruction With 3D Texture Hardware. Tech.
rep., University of North Carolina at Chapel Hill, 1994.

[EKE01] ENGEL K., KRAUS M., ERTL T.: High-
quality pre-integrated volume rendering using hardware-
accelerated pixel shading. In Proceedings of the ACM
SIGGRAPH/EUROGRAPHICS workshop on Graphics
hardware (2001), ACM Press, pp. 9–16.

c© The Eurographics Association 2005.

C. M. Miller & M. W. Jones / Texturing and Hypertexturing of Volumetric Objects

[EMP∗02] EBERT D. S., MUSGRAVE F. K., PEACHEY

D., PERLIN K., WORLEY S.: Texturing and Modelling: A
Procedural Approach, 3rd edition ed. Morgan Kaufmann,
2002.

[GK96] GELDER A. V., KIM K.: Direct volume render-
ing with shading via three-dimensional textures. In Pro-
ceedings of the 1996 symposium on Volume visualization
(1996), IEEE Press, pp. 23–ff.

[GPRJ00] GIBSON S. F. F., PERRY R. N., ROCKWOOD

A. P., JONES T. R.: Adaptively sampled distance fields:
A general representation of shape for computer graphics.
In Proceedings of SIGGRAPH 2000 (2000), pp. 249–254.

[Har01] HART J. C.: Perlin noise pixel shaders. In
Proceedings of the ACM SIGGRAPH/EUROGRAPHICS
workshop on Graphics hardware (2001), ACM Press,
pp. 87–94.

[HSH04] HENRIKSEN K., SPORRING J., HORNBÆK K.:
Virtual trackballs revisited. IEEE Transactions on Visual-
ization and Computer Graphics 10, 2 (2004), 206–216.

[Jon96] JONES M. W.: The production of volume data
from triangular meshes using voxelisation. Computer
Graphics Forum 15, 5 (1996), 311–318.

[KBR] KESSENICH J., BALDWIN D., ROST R.:
The opengl shading language. http://oss.
sgi.com/projects/ogl-sample/registry/ARB/
GLSLangSpec.Full.1.10.59.pdf.

[Lev88] LEVOY M.: Display of surfaces from volume
data. IEEE Computer Graphics and Applications 8, 3
(1988), 29–37.

[NVI] NVIDIA: Implementing the fixed-function
pipeline using cg. http://developer.nvidia.com/
object/cg_fixed_function.html.

[Ope] OPENGL: The opengl architecture review
board. http://oss.sgi.com/projects/ogl-sample/
registry/.

[Pea85] PEACHEY D. R.: Solid texturing of complex
surfaces. In Proceedings of the 12th annual conference
on Computer graphics and interactive techniques (1985),
ACM Press, pp. 279–286.

[Per02] PERLIN K.: Improving noise. In Proceedings of
the 29th annual conference on Computer graphics and in-
teractive techniques (2002), ACM Press, pp. 681–682.

[PH89] PERLIN K., HOFFERT E. M.: Hypertexture. In
Proceedings of the 16th annual conference on Computer
graphics and interactive techniques (1989), ACM Press,
pp. 253–262.

[RE01] RHEINGANS P., EBERT D.: Volume illustration:
Nonphotorealistic rendering of volume models. IEEE
Transactions on Visualization and Computer Graphics 7,
3 (2001), 253–264.

[RGW∗03] ROETTGER S., GUTHE S., WEISKOPF D.,

ERTL T., STRASSER W.: Smart hardware-accelerated
volume rendering. In Proceedings of the symposium on
Data visualisation 2003 (2003), Eurographics Associa-
tion, pp. 231–238.

[RSEB∗00] REZK-SALAMA C., ENGEL K., BAUER M.,
GREINER G., ERTL T.: Interactive volume on stan-
dard pc graphics hardware using multi-textures and multi-
stage rasterization. In Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS workshop on Graphics hard-
ware (2000), ACM Press, pp. 109–118.

[SA] SEGAL M., AKELEY K.: The opengl graphics sys-
tem: A specification (version 1.5).

[SB02] SVENSSON S., BORGEFORS G.: Digital distance
transforms in 3D images using information from neigh-
bourhoods up to 5× 5× 5. Computer Vision and Image
Understanding 88 (2002), 24–53.

[SJ01] SATHERLEY R., JONES M. W.: Vector-city vector
distance transform. Computer Vision and Image Under-
standing 82, 3 (2001), 238–254.

[SJ02] SATHERLEY R., JONES M. W.: Hypertexturing
complex volume objects. The Visual Computer 18, 4 (June
2002), 226–235.

[TC00] TREAVETT S. M. F., CHEN M.: Pen-and-ink ren-
dering in volume visualisation. In VIS ’00: Proceedings
of the conference on Visualization ’00 (2000), IEEE Com-
puter Society Press, pp. 203–210.

c© The Eurographics Association 2005.

http://oss.sgi.com/projects/ogl-sample/registry/ARB/GLSLangSpec.Full.1.10.59.pdf
http://developer.nvidia.com/object/cg_fixed_function.html
http://oss.sgi.com/projects/ogl-sample/registry/

