
Eurographics Symposium on Parallel Graphics and Visualization (2008)

J. Favre, K. - L. Ma, and D. Weiskopf (Editors)

Time-Critical Distributed Visualization with Fault Tolerance

Jinzhu Gao† Huadong Liu‡ Jian Huang§ Micah Beck¶ Qishi Wu‖ Terry Moore∗∗ James Kohl††

Abstract

It is often desirable or necessary to perform scientific visualization in geographically remote locations, away from

the centralized data storage systems that hold massive amounts of scientific results. The larger such scientific

datasets are, the less practical it is to move these datasets to remote locations for collaborators. In such scenar-

ios, efficient remote visualization solutions can be crucial. Yet the use of distributed or heterogeneous computing

resources raises several challenges for large-scale data visualization. Algorithms must be robust and incorporate

advanced load balancing and scheduling techniques. In this paper, we propose a time-critical remote visualization

system that can be deployed over distributed and heterogeneous computing resources. We introduce an “impor-

tance” metric to measure the need for processing each data partition based on its degree of contribution to the

final visual image. Factors contributing to this metric include specific application requirements, value distribu-

tions inside the data partition, and viewing parameters. We incorporate “visibility” in our measurement as well

so that empty or invisible blocks will not be processed. Guided by the data blocks’ importance values, our dynamic

scheduling scheme determines the rendering priority for each visible block. That is, more important blocks will be

rendered first. In time-critical scenarios, our scheduling algorithm also dynamically reduces the level-of-detail for

the less important regions so that visualization can be finished in a user-specified time limit with highest possible

image quality. This system enables interactive sharing of visualization results. To evaluate the performance of this

system, we present a case study using a 250 Gigabyte dataset on 170 distributed processors.

Categories and Subject Descriptors (according to ACM CCS): I.3.2 [Graphics Systems]: Distributed/network graph-

ics I.3.6 [Methodology and Techniques]: Graphics data structures and data types

1. Introduction

Next-generation scientific applications are increasingly sup-

ported by advances in supercomputing technologies, result-

ing in the generation of vast amounts of scientific data

– terabytes to petabytes in near future – which must be

stored, transferred, visualized and analyzed by potentially

geographically distributed teams of scientists. One example

of such large-scale data-based science is the Terascale Su-

pernova Initiative (TSI) project [TSI], which is a collabora-

† University of Minnesota, Morris, gaoj@morris.umn.edu
‡ University of Tennessee, hliu@cs.utk.edu
§ University of Tennessee, huangj@cs.utk.edu
¶ University of Tennessee, mbeck@cs.utk.edu
‖ University of Memphis, qishiwu@memphis.edu
∗∗ University of Tennessee, tmoore@cs.utk.edu
†† Oak Ridge National Laboratory, kohlja@ornl.gov

tive effort at Oak Ridge National Laboratory (ORNL) with

several universities across the United States.

The immense scale of datasets generated by projects like

TSI requires exploitation of some form of parallelism to

effectively and efficiently analyze and visualize the data.

Parallel clusters and supercomputers are commonly applied

to perform these data analysis and visualization tasks. Of-

ten these systems are homogeneous, with all processors as-

sumed to offer a consistent and similar level of performance.

Recently, the visualization community has begun explor-

ing solutions that pool globally distributed and heteroge-

neous computing resources to enable large-scale visualiza-

tion [DHB∗03, GHJ∗05]. The processors in these systems

are deployed on the Internet at large with a diverse set of

computing and throughput capabilities. Due to the dynamic

nature of these systems and their associated sub-networks,

these processors are not guaranteed to be highly available;

hosts may exhibit arbitrary levels of performance and con-

nections may fail unexpectedly.

c© The Eurographics Association 2008.

http://www.eg.org
http://diglib.eg.org


Gao et al. / Time-Critical Distributed Visualization with Fault Tolerance

A different approach must be applied to this harsh envi-

ronment that addresses performance as well as robustness.

In this paper, we propose a fault-tolerant time-critical visu-

alization system that tolerates heterogeneity of processors

and the perils of wide-area distribution across the Internet.

To share and visualize a large dataset among a team of ge-

ographically distributed collaborators, our system leaves the

primary data source intact and in situ, without duplicating it

onto each local machine. Instead, the dataset is partitioned

into data blocks and uploaded to sets of distributed and het-

erogeneous processing units. Besides leveraging data man-

agement techniques that minimize the amount of data to be

processed [GHJ∗05], we also define an importancemetric to

prioritize the processing of data blocks based on their contri-

butions to the final image. This metric is critical to ensuring

that visualization deadlines, e.g. for interactive exploration

as specified by end users, can be met with the highest possi-

ble rendering quality. To achieve fault-tolerance, including

dynamic adaptation to changing computing environments,

we design a quality-driven “back-off” scheme to schedule

the visualization of distributed data blocks and trade lower

rendering quality when necessary .

To illustrate the utility of this scheme, and demonstrate

the expected performance in real-world scenarios, a case

study was performed. A TSI simulation dataset of 250 Giga-

Bytes (GB) was rendered using 170 Internet nodes deployed

throughout North America and Europe.

The remainder of this paper is organized as follows. Sec-

tion 2 describes the previous work on distributed data man-

agement, time-critical visualization and scheduling schemes

for parallel distributed computing. Section 3 overviews the

system design, and Section 4 discusses importance metric

and quality-driven back-off scheme. The case study of ex-

perimental results is presented in Section 5, with a summary

of contributions and future directions in Section 6.

2. Background

The main focus of time-critical visualization is to guaran-

tee a user-specified level of rendering rate while provid-

ing the highest affordable visual quality, no matter how

large a dataset is. Since dataset sizes are increasing at an

unprecedented space, the limits of the current technology

are being strongly tested. Most approaches resort to level-

of-detail (LoD) techniques for multi-resolution selections

[CMPS97, ECS00, LHJ03] in which time critical visualiza-

tion is implemented as a trade-off between image quality and

rendering overhead. The trade-off is determined dynamically

and each data partition is treated independently. In 1993,

Funkhouser and Sequin [FS93] first proposed to adaptively

render objects at multiple levels of detail in order to gen-

erate the image in highest possible quality within the target

frame time. Li and Shen in [LS01] described a general crite-

rion for deciding which LoD to use for each data partition.

Their criteria is based on the maximum opacity, the distance

to the eye, projection area of a partition, and the gaze dis-

tance. The threshold of variance is determined automatically

using fuzzy logic. Pascucci et al. [PLF∗03] proposed to re-

duce the latency by progressively streaming data according

to available network resources and desired visual fidelity.

Many researchers, such as Anupam et al. [ABSS94],

proposed to build a low-cost distributed scientific visual-

ization environment to support collaborative research. How-

ever, in the context of time-critical visualization, the large-

scale and parallel use of heterogeneous processing units pre-

sented here has rarely been investigated before. Due to the

time-varying nature of processor performance, time budget

allocation methods, as described in [LS02], may be prob-

lematic. In addition, most existing methods for selecting

LoD levels have focused on using data centric metrics, pri-

marily the variance or Mean Squared Error (MSE) of voxel

values, the area of projection on the image plane of each

data partition, and some others. View dependent heuristics,

such as visibility, or transfer function based heuristics, such

as transparency, have not been widely explored.

The fundamental data structures used in time-critical

methods are mostly derived from tree-based multi-resolution

hierarchy. Such data structures in fact are very general and

have a number of other applications in the field. For example,

Time-Space Partitioning (TSP) tree [SCM99] is now widely

used in the field. Its main skeleton is a complete octree in the

spatial domain, or a Space-Partitioning Tree (SPT). On each

SPT node, a binary tree is created to capture the recursive

bisection of the time span. After its introduction, the TSP

tree is further enhanced with wavelet compression (WTSP)

[WS04] and other information including visibility as well as

value histogram [GHJ∗05]. In the work presented here, we

use the enhanced TSP (ETSP) tree [GHJ∗05] as the core data

structure for its effectiveness, flexibility and convenience of

managing time-varying data.

Public-resource computing systems [And04] also aim to

aggregate a large number of geographically distributed, ad-

ministratively independent processors to solve large-scale

scientific problems. In these systems, volunteer processors

typically download a client program and request work units

from a central server. The work unit is usually computation

intensive. For example, size of the SETI@home [ACK∗02]

work unit is small enough to be downloaded in a few minutes

but could keep a typical processor busy for about a day. Visu-

alization applications do not typically run for that long, how-

ever. While many distributed infrastructures could be used to

leverage distributed heterogeneous processors, we chose to

test our method using the logistical network (LN) infrastruc-

ture [BMP02]. On LN infrastructure, we can maintain the

datasets directly on distributed heterogeneous servers, like

the work in [GHJ∗05], but also compute visualization oper-

ations in situ on such “network-resident" data on-the-fly. In

fact, a very recent work [LBH06] has already demonstrated

the feasibility of this approach using embarrassingly paral-

c© The Eurographics Association 2008.

66



Gao et al. / Time-Critical Distributed Visualization with Fault Tolerance

lel visualization as the targeted application. In this work,

we use this same system infrastructure to explore parallel

time-critical visualization on distributed heterogeneous pro-

cessors, and investigate the potential of implementing par-

allel algorithms with much greater interdependence among

subdivided rendering tasks.

3. System Overview

The goal of this work is to achieve parallel efficiency and

fault tolerance in time-critical visualization over distributed

and heterogeneous computing resources. As illustrated in

Figure 1, we propose a visualization system that facilitates

convenient and effective collaborations among geographi-

cally distributed users.

Consider the scenario where a user discovers an interest-

ing result in a large scientific dataset and wishes to share

these results with a remote collaborator. The user saves the

parameters specifying the specific visualization process and

the dataset that was used, in an XML file (“visSpec”). This

XML file is then sent (for example, via email) to the re-

mote collaborator to enhance discussions and further joint

examinations. After receiving the XML file, the collabora-

tor may tweak any desired parameters and then request the

corresponding visualization to be executed, with the visual

results to be rendered within a pre-specified time limit. Sup-

pose in this case the collaborator desires only a high-level

overview of the result, and so sets a very short turn-around

time frame for the visualization process. The XML file is en-

gaged into the collaborative visualization system, pulling the

minimal necessary data across for processing, and the coarse

results are presented as desired within the given time limit.

Next, based on this information, the collaborator resubmits

the visualization job with a longer time frame, to obtain more

detailed and higher quality visual results, and then arranges

a teleconference to discuss the results with the original user,

while they both examine full-resolution images.

The proposed system to realize this vision consists of

two main portions: data preparation and the runtime time-

critical visualization algorithm, respectively. Data prepara-

tion, depicted as steps A and B in Figure 1, is a one-time

process that includes generating the dataset, partitioning it

into blocks and constructing a multi-resolution hierarchy.

This hierarchy is represented by an Enhanced Time-Space

Partitioning (ETSP) tree data structure [GHJ∗05]. The re-

sulting data blocks are then uploaded onto a large number

of distributed processing units, with redundancy for fault-

tolerance, such as provided by the Internet Backplane Pro-

tocol (IBP) [BMP02]. Each processing unit, referred to as a

depot, has both local storage and computing resources. To

reduce the overhead of data replication, redundant copies

are progressively stored at additional depots, using a multi-

source copying scheme after the first copy of the dataset has

been uploaded. Once the dataset is in place, users at differ-

ent sites can access and visualize the same dataset without

the need for replicating the entire dataset on their local ma-

chines.

The runtime time-critical visualization algorithm involves

evaluation of the importance metric, as well as handling

dynamic scheduling. The importance metric is defined by

view-dependent, data-dependent and application-dependent

factors, which together determine the rendering order and

level-of-detail (LoD) of a block. The dynamic scheduling

algorithm monitors the performance offered by specific dis-

tributed depots, and then budgets the computing resources

for the rendering task of each block based on its importance

measurement. Fault-tolerance is provided for two distinct

scenarios: (i) deteriorated performance of a depot prevents

it from completing a scheduled rendering task; and, (ii) a

depot is detected as a faulty processing unit.

When the time limit specified by a user is insufficient to

render all visible data blocks at the highest LoD, the algo-

rithm, referred to as a quality-driven back-off scheme, selects

lower resolutions for the less important regions. Upon com-

pletion of the visualization process, the imagery results of

the rendered data blocks are transmitted to the user for com-

positing. This entire process for time-critical visualization is

illustrated as steps C and D in Figure 1.

4. Our Method

In this section, we define a general importance met-

ric by considering view-dependent, value-dependent, and

application-dependent factors, and describe a dynamic

scheduling scheme with fault-tolerance.

4.1. Importance Metric

We use a LoD selection algorithm to meet the user’s re-

quest when the visualization cannot be completed within

the user-specified time limit. In this case, the image qual-

ity highly depends on the selection scheme. Previously, Li

and Shen introduced the concept of “importance" [LS02].

They assign different time budget for different regions based

on their importance. Although their scheme guarantees that

more important regions would be rendered in higher reso-

lution, the importance metric it employed does not consider

factors such as visibility. In their scheme, the opaqueness of

a region is represented by the highest opacity of all voxels

inside the region, which may lead to inaccurate importance

measurements.

In this paper, we define the importance of a block based

on its contribution to the final image. Different from the time

budget allocation scheme in [LS02], we evaluate the impor-

tance for each block and use this information in a run-time

dynamic scheduling scheme to prioritize the rendering or-

der of LoD blocks. The contribution of a block to the final

image depends on a number of factors, which can be clas-

sified into three categories: application-dependent, value-

dependent and view-dependent. In our system, the impor-

tance value I of a block is calculated by I = wapp ∗ Iapp+

c© The Eurographics Association 2008.

67



Gao et al. / Time-Critical Distributed Visualization with Fault Tolerance

Streaming 

visualization results

Uploading partitions

Moving partitions between depots at runtime

Making replicas between depots

A

B C

DTS 1

TS 1

TS n

Datasets are generated 

from a mainframe

Datasets are partitioned 

into an enhanced TSP tree
Select an interesting subset 

from the enhanced TSP tree

View the 

visualization 

Figure 1: The system overview. The depots are grouped by geographical locations with different colors.

wval ∗ Ival +wview ∗ Iview, where Iapp, Ival , and Iview denote

the importance contribution made by application-dependent,

value-dependent, and view-dependent factors, respectively,

and w’s are the weight coefficients for the corresponding im-

portance components. Note that all weight coefficients men-

tioned in this paper are provided so that users have more

control on the importance calculation. Generally we could

set all those coefficients to 1.0, which implies that all factors

are equally important.

4.1.1. Application-Dependent

The importance of a block may depend on the underlying

applications. For example, in time-critical applications, we

choose the highest possible resolution for a region as allowed

by the specified time limit. To satisfy this requirement, we

calculate Iapp as Heightroot −Heightnode, where Heightnode
is the height of the corresponding ETSP tree node for the

block and Heightroot is the height of the ETSP tree.

4.1.2. Value-Dependent

The importance of a block may also depend on the value

distribution inside a block as well as the transfer function a

user chooses. Generally, a more opaque block is assigned a

higher importance value and a block with high variation is

more important than a homogenous block.

In our system, we calculate the opaqueness Vopa and the

value variance Vvar of a block from its value histogram and

the given transfer function. For a low resolution block, its

spatial error Vserr also affects its importance. A higher er-

ror often indicates a lower importance. We define Ival as

wopa ∗Vopa+wvar ∗Vvar+wserr ∗ (1−Vserr), where w’s are

the weight coefficients for the corresponding components.

4.1.3. View-Dependent

The eye position also determines the importance of a block,

which is proportional to its distance to the eye. Note that

an invisible block does not have an importance value and

should be excluded from the visualization process. We pa-

rameterize the view-dependent factor with the sequential in-

dex IDtraversal during the front-to-back traversal and the total

number of blocks Nblocks, as Iview = 1− IDtraversal/Nblocks.
By including the traversal order of blocks in the importance

calculation, we are able to assign a higher importance value

to a closer block.

c© The Eurographics Association 2008.

68



Gao et al. / Time-Critical Distributed Visualization with Fault Tolerance

We wish to identify and cull away empty and invisible

blocks to avoid evaluating the importance for those blocks.

Proposed in [GHSK03], the visibility culling scheme based

on Plenoptic Opacity Functions (POF) is still used in our

system because of its effectiveness and scalability. Thus,

during preprocessing stage, we need to pre-compute and en-

code the opacity information for each block in a plenoptic

opacity function.

4.1.4. Data Structure

For fast runtime importance measurements, we pre-compute

and store the parameters discussed above in an enhanced

TSP (ETSP) tree as in [GHJ∗05]. ETSP tree extends TSP

trees by incorporating more metrics, such as transfer func-

tion dependent opacity and visibility, to support dynamic

discovery of voxel blocks that are un-occluded and non-

transparent, at adaptive levels of detail. When a user issues a

visualization request, the system first performs visibility test

to cull away empty and invisible blocks, and then traverses

the tree in a front-to-back order to update the importance

value for each tree node. Upon the completion of the traver-

sal, the system produces a list of rendering tasks for visible

LoD blocks sorted by the importance values. This list will be

sent to the scheduler, which determines the rendering order

of blocks.

4.2. Dynamic Fault-Tolerant Load Balancing

Our run-time algorithm runs in the common master-worker

model. The distributed and heterogeneous depots are the

worker processors that perform rendering tasks. The client’s

local machine serves as amaster processor that schedules the

entire parallel run and composites the final image for display.

In this section, we present a dynamic scheduling algo-

rithm, referred to as scheduler, for the master processor to

achieve fault-tolerance and load balancing. The scheduler

dynamically collects performance measurements for each

depot on the fly. The main principle of the scheduler is to

assign more tasks to faster depots and avoid being stalled by

slow or faulty depots. The scheduler is responsible for as-

signing data blocks to a set of strategically selected depots

and scheduling rendering tasks.

4.2.1. Adaptive Scheduling of Rendering Tasks

The scheduler maintains two generic data structures: (i) a

dynamically ranked pool of depots, and (ii) a two-level pri-

ority queue of tasks. We rank the depots in the order of their

performances estimated by the rendering time for a task.

This performance measurement is updated adaptively

by computing a smoothed average of depot performances,

τ
i
n+1 = αtn+(1−α)τin, where τ

i
n is the average of the pre-

vious performance measurements of depot i, and tn is the

latest measurement. We could adjust the value of α to assign

different weights to the historical measurements.

A two-level priority queue manages unfinished tasks. The

higher priority queue (HPQ) contains tasks that are ready

to be assigned and the lower priority queue (LPQ) contains

tasks that have been assigned to one or more depots but not

finished. In the HPQ, each task has two keys, with the pri-

mary key being its importance value and the secondary key

being the optimal task processing time, which is the mini-

mum processing time of all depots that render the same data

block. In the LPQ, each task is keyed by the estimated time

left for completion. We sort tasks in both the HPQ and the

LPQ using their keys in a decreasing order.

Based on the adaptively ranked depot pool and task queue,

we design a task assignment scheme to avoid competitions

between depots with different levels of performances. Ini-

tially the LPQ is empty while the HPQ contains all rendering

tasks. When a distributed visualization session starts, render-

ing tasks in the HPQ are sequentially assigned to available

depots and demoted to the LPQ. A depot can perform a task

only if it has the required data stored locally. Each time a de-

pot finishes its assigned task, it will be immediately assigned

the first task in the HPQ it can perform. In this way, faster

depots will be assigned more tasks as slower depots do not

compete for tasks with them. If the depot is not capable of

performing any task in the HPQ , the first task in the LPQ

it can perform is considered. This is the slowest unfinished

task that the depot can help with. In this way, multiple de-

pots work in parallel on the same unfinished task to ensure

the best delivery.

Figure 2 shows an example of the task assignment. In this

example, task Ti, Tj and Tk have importance value 7, 6 and

6 respectively. Performance of each depot (time to process

a task) is listed after the depot ID. An arrow in the figure

represents that the depot has the data block required by a

task. In this example, IfD1 becomes available, task Tj will be

assigned to it because Tk can be performed by a even faster

depot D3; When D2 becomes available, the scheduler has to

check the LPQ for tasks because D2 cannot work on any of

the tasks in the HPQ; When D3 becomes available, it will be

assigned Ti which has a higher importance value than Tk.

 
D1:2.5 D2:2.0 D3:1.5 Depots 

HPQ Tj:6:2.5 Tk:6:1.5 … Ti:7:1.5 

… … 

… 

Figure 2: An example of task assignment.

4.2.2. Dynamic Scheduling of Data Movement

At any particular time, some data blocks might only reside

on a set of depots that are slow or heavily loaded. In that

case, faster depots cannot help because they do not have a

copy of the required block to work on. A natural thought is

to move data blocks from slower depots to faster depots at

runtime. In order to make sure that time spent on data move-

ment does not exceed the benefit we gain from migrating the

c© The Eurographics Association 2008.

69



Gao et al. / Time-Critical Distributed Visualization with Fault Tolerance

task, bandwidth information between depots needs to be ac-

quired. Instead of injecting extra testing traffic into the net-

work, we use a multi-source partial download scheme with

deadline for data movement between depots.

The scheduling of data movement works in parallel with

the scheduling of rendering tasks. Ideally, the shortest over-

all execution time occurs when all depots finish roughly at

the same time. For each depot, once the number of tasks it

can do in the HPQ is less than its proportion of all unas-

signed tasks according to its performance, the scheduler tries

to assign a task to this fast depot before it becomes idle. The

scheduler starts from the first task in the HPQ, which has the

highest importance but potentially least likelihood to be done

by a faster depot. In this way, a more important task with the

higher priority will always be assigned to a faster processor.

To avoid moving tasks out of the same set of slow depots, the

task is transferred only if all depots that can perform this task

have sufficient work to remain busy. The data movement, or

task migration, is done by applying the multi-source partial

download with deadline as described in [LBH06].

4.2.3. Dealing with Faults

Once a visualization session is launched, it is concurrently

spawned on hundreds of distributed depots that are usually

built from commodity PCs. Since those depots cannot be as-

sumed to be fully reliable, we implement a fault-tolerance

mechanism in our scheduler. Although it may catch transient

faults (e.g. memory bit errors) or cheating processors (e.g.

to minimize resource expenditure), its primary goal is to dis-

cover and remedy persistent errors (e.g. software configura-

tion errors and hardware failures) in addition to perceivable

runtime errors.

To deal with faults indicated by computation timeout or

network connection failure, we promote the failed task in

the LPQ back to the HPQ so that other depots can take it

over. To deal with faults that produce incorrect computation

result but with a valid return code, we employ a majority

voting scheme. A checking task is assigned to all participat-

ing processors at the beginning of each visualization session.

The checking task does the same visualization operation on

a data block that is available on every processor. When the

results come back, they are compared and the majority is

considered as the correct result. Processors that return incor-

rect results are disabled in the rest of the computation. Per-

forming the checking task at the beginning helps to discover

a faulty depot earlier. However, it might miss the chance to

catch a depot that fails in the middle, which can be resolved

with more frequent checkings during the session.

4.2.4. Quality-Driven Back-off

For time-critical visualizations, system response time is

more important than image quality. In some situations, im-

age quality must be sacrificed in order to obtain guaranteed

delivery of visualization results by a deadline. In a hetero-

geneous distributed environment, it is hard to predict time-

varying computing performance. And resource reservation

is not an option to guarantee the delivery of quality images

within the time limit. To meet the user-specified time limit,

our system dynamically measures the system throughput and

evaluates whether it is necessary to perform back-off, that is,

replacing several tasks that would operate on high resolution

data with one task that operates on lower resolution data.

Since the tasks have similar workload, we characterize

system throughput as the number of tasks finished per sec-

ond. The number is updated adaptively in the same way that

we measure the performance of a depot in Section 4.2.1. Us-

ing the system throughput, the user-specified time limit is

compared periodically with the estimated time to finish all

the required tasks. If the deadline cannot be met under the

current system throughput, the back-off module in the sched-

uler is invoked. We mark less importance tasks and replace

them with a smaller number of lower resolution tasks.

 
unassigned block 

the back-off branch 
assigned or finished block 

resolution 

low 

high … … 

* 

* * 

… * * 

Figure 3: Backoff branch selection. Tasks marked with a ‘*’

will not be rendered.

In order to ensure that tasks with high importance are ren-

dered with the highest possible resolution, back-off tasks are

selected from the tail of the HPQ. To ensure back-off effi-

ciency, as shown in Figure 3, we only select branches of the

multi-resolution tree in which all leaf tasks have not been as-

signed for rendering. This marking process is dynamic, i.e.

if the system throughput improves, we can de-mark tasks;

and if the system throughput decreases, we can mark more

tasks.

Since the data blocks are replicated on several depots, if

we have to choose from several back-off branches that have

the same importance, we select the branch that can be done

faster. For example, suppose {Tx, ...,Ty} can be reduced to a

lower resolution task Tm and {Tx′ , ...,Ty′} can be reduced to

a lower resolution task Tn. If Tm can finish earlier, we choose

Tm to replace {Tx, ...,Ty}.

5. Experimental Results

5.1. Test Environment

To demonstrate the effectiveness of our system, we tested

it on 160 depots from the PlanetLab project [Pla] and an-

other 10 from the National Logistical Networking Testbed

(NLNT). Visualization operations are loaded and executed

in a sandbox to ensure security and stability of the depot.

Although these depots are server-class machines, they are

shared among a large community. PlanetLab nodes are even

c© The Eurographics Association 2008.

70



Gao et al. / Time-Critical Distributed Visualization with Fault Tolerance

virtualized as “slices" to enable large-scale sharing. Loads

on these nodes differ dramatically and vary over time.

We used a 128 time-step subset (250GB in total) of a

simulation dataset produced by the Terascale Supernova Ini-

tiative (TSI) project in our experiments. The dataset is of

864× 864× 864 spatial resolution. We generated and par-

titioned the multiresolution data, and produced 3160 data

blocks (64 × 64 × 64 each), totaling 2.9GB per timestep.

The 2.9× 128 = 371 GB data is uploaded onto 170 depots

with 3-way replication, thus over 1TB of data was stored.

The time to upload the first copy of data is comparable to

the time to move data between two locations. The remaining

k−1 copies are replicated in parallel using multisource mul-

ticasts. The preprocessing including data partition, construc-

tion of the tree structure, and data uploading and replication

usually completes between 10 to 20 hours.

5.2. Testbed Deployment

The foundation of the infrastructure used to support our dis-

tributed visualization system is Logistical Networking (LN),

and in particular the Internet Backplane Protocol (IBP),

which provides a mechanism for sharing storage and com-

pute resources within a collaborating community. The de-

sign of IBP parallels the design of the Internet Protocol (IP),

adhering to the End-to-End Principles in order to obtain scal-

ability of deployment.

Like IP, the service IBP defines is both generic and lim-

ited, which has important implications for the architecture of

LN. In terms of technology substrate, building on a highly

generic protocol means that LN can incorporate heteroge-

neous underlying storage and computational technologies. In

the case of storage, IBP provides a model that is somewhat

more abstract than block-serving protocols such as iSCSI,

and has more in common with the ANSI T10/Object Stor-

age Device standard. However, IBP is more adapted to being

used in a scalable, wide area community than those standard

protocols. In terms of computation, IBP provides a model of

remote execution which is generic in that it allows the appli-

cation of arbitrary operations.

5.3. Performance Evaluation

To evaluate the parallel utilization of our system, we per-

formed a test on 170 depots distributed in North America

from PlanetLab and the NLNT. For testing purpose, we sim-

ply set all the weight coefficients to 1.0 when computing the

importance value for each block. It took about 51 seconds on

average to process four time steps of the TSI dataset and gen-

erate an 800× 800 image for each time step using software

raycasting. Knowing that it is not a rigorous comparison, but

only to provide context, the same volume rendering took 62

minutes on a dedicated node with 2.2GHz P4 CPU, 512KB

cache and 2GB RAM. The performance achieved with these

170 shared, distributed heterogeneous depots roughly equals

that of a dedicated 80-node cluster with nodes similar to the

test system described above, assuming 90% parallel utiliza-

tion on the cluster.

0

500

1000

1500

2000

2500

3000

Original Culling

N
u

m
b

e
r 

o
f 
B

lo
c
k
s

level-0 level-1 level-2

64 44

Figure 4: The number of original blocks and visible blocks

after culling at resolution level 0, 1 and 2 of a TSI dataset.

Our visibility culling scheme is very effective in culling

away empty or invisible blocks. The algorithm consistently

culls away 50%-60% blocks at each of 128 time steps, thus

allows our time-critical visualization algorithm to be focused

on only visible blocks. As an example, in Figure 4, we plot

the number of original blocks and visible blocks after culling

at resolution level 0, 1 and 2 of the TSI dataset at the 31st

time step.

1

10

100

1000

10000

Original Culling 12 10 8 6 4

Deadline (Seconds)

N
u

m
b

e
r 

o
f 

B
lo

c
k
s
 (

L
o

g
a

ri
th

m
ic

 S
c
a

le
)

level-0 level-1 level-2

0 0 00

Figure 5: Logarithmic plot of the number of blocks rendered

at different resolution level with different running deadline.

User-specified rendering time requirement decides the

number of blocks at each resolution level to be rendered.

Taking the rendering of visible blocks of the TSI dataset at

the 31st time step as an example, we plot the actual num-

ber of blocks rendered at each solution level with different

deadline in Figure 5. To present the results in the logarith-

mic scale, we re-plot Figure 4 in the leftmost two columns

of Figure 5. As shown in the figure, a longer deadline allows

more blocks with high resolution (e.g. level 0) to be ren-

dered. Conversely, a shorter deadline forces the scheduler to

select lower resolution blocks (e.g. level 2).

We performed a simple experiment to evaluate our time-

critical and fault tolerance scheme. Initially 8 depots were

used to render the data at the 31st time step and the deadline

c© The Eurographics Association 2008.

71



Gao et al. / Time-Critical Distributed Visualization with Fault Tolerance

was set to be 31 seconds. all 1181 level-0 blocks can be ren-

dered if all 8 depots were available. After we disabled one

depot, we were still able to finish the rendering. However, to

meet the deadline, only 1025 level-0 blocks can be rendered

and the remaining 156 level-0 blocks have to be replaced

by 32 level-1 blocks. If we disabled one more depot, only

876 level-0 blocks can be rendered and the remaining 305

level-0 blocks were replaced by 52 level-1 blocks. Currently

we are using a fault tolerance scheme that solely depends

on replication. If all replicas of a particular block fail, that

block cannot be visualized. In the future, we plan to incor-

porate erasure codes to reconstruct data blocks. It will server

as another level of fault tolerance that takes advantage of the

computation capability the NFU provides.

6. Conclusion and Future Work

In this work, we explored the possibility to use hundreds

of geographically distributed, free, unreserved, heteroge-

neous processors for time-critical visualization. Our method

achieves not only parallel efficiency but also reliable fault-

tolerance. In total, 250 GB of a real-world simulation dataset

has been visualized using our system and the best affordable

visualization results were delivered to users in the given time

limit. Our results have demonstrated a great potential to use

distributed heterogeneous processors as a fundamental com-

puting platform. In the future, we plan to further develop

methods to support wide-area collaborations by large groups

of users on a common testbed.

References

[ABSS94] ANUPAM V., BAJAJ C., SCHIKORE D.,

SCHIKORE M.: Distributed and collaborative visualiza-

tion. Computer 27, 7 (1994), 37–43.

[ACK∗02] ANDERSON D. P., COBB J., KORPELA E.,

LEBOFSKY M., WERTHIMER D.: Seti@home: an exper-

iment in public-resource computing. Commun. ACM 45,

11 (2002), 56–61.

[And04] ANDERSON D. P.: Boinc: A system for public-

resource computing and storage. In GRID ’04: Pro-

ceedings of the Fifth IEEE/ACM International Workshop

on Grid Computing (GRID’04) (Washington, DC, USA,

2004), IEEE Computer Society, pp. 4–10.

[BMP02] BECK M., MOORE T., PLANK J.: An end-to-

end approach to globally scalable network storage. In

ACM SIGCOMM (2002).

[CMPS97] CIGNONI P., MONTANI C., PUPPO E.,

SCOPIGNO R.: Multiresolution representation and visual-

ization of volume data. IEEE Transaction on Visualization

and Computer Graphics 3, 4 (1997), 352–369.

[DHB∗03] DING J., HUANG J., BECK M., LIU S.,

MOORE T., SOLTESZ S.: Remote visualization by brows-

ing image based databases with logistical networking. In

Proceedings of Supercomputing (2003).

[ECS00] ELLSWORTH D., CHIANG L., SHEN H.-W.:

Accelerating Time-Varying Hardware Volume Rendering

using TSP Trees and Color-based Error Metrics. In Pro-

ceedings of 2000 Symposium on Volume Visualization

(2000), pp. 119–128.

[FS93] FUNKHOUSER T., SEQUIN C.: Adaptive Display

Algorithms for Interactive Frame Rate During Visualiza-

tion of Virtual Environment. In Proceedings of SIG-

GRAPH 93 (1993), pp. 247–254.

[GHJ∗05] GAO J., HUANG J., JOHNSON C. R., ATCH-

LEY S., KOHL J. A.: Distributed Data Management for

Large Volume Visualization. In Proceedings of IEEE Vi-

sualization ’05 (2005), pp. 183–189.

[GHSK03] GAO J., HUANG J., SHEN H.-W., KOHL

J. A.: Visibility Culling Using Plenoptic Opacity Func-

tions for Large Data Visualization. In Proceedings of

IEEE Visualization ’03 (2003), pp. 341–348.

[LBH06] LIU H., BECK M., HUANG J.: Dynamic co-

scheduling of distributed computation and replication. In

CCGrid ’06: Proceedings of the 6th International Sym-

posium on Cluster Computing and the Grid (Singapore,

2006).

[LHJ03] LAMAR E. C., HAMANN B., JOY K. I.: Ef-

ficient Error Calculation for Multiresolution Texture-

Based Volume Visualization. Springer-Verlag, Heidelberg,

Germany, 2003, pp. 51–62.

[LS01] LI X., SHEN H.-W.: Adaptive Volume Render-

ing using Fuzzy Logic Control. In Proceedings of Joint

Eurographics-IEEE TCVG Symposium on Visualization

(2001).

[LS02] LI X., SHEN H.-W.: Time-Critical Multiresolu-

tion Volume Rendering using 3D Texture Mapping Hard-

ware. In IEEE/ACM 2002 Symposium on Volume Visual-

ization and Graphics (2002), pp. 29–36.

[Pla] PlanetLab. http://www.planet-lab.org/.

[PLF∗03] PASCUCCI V., LANEY D. E., FRANK R. J.,

SCORZELLI G., LINSEN L., HAMANN B., GYGI F.:

Real-time Monitoring of Large Scientific Simulations. In

Proceedings of the 2003 ACM Symposium on Applied

Computing (2003), pp. 194–198.

[SCM99] SHEN H.-W., CHIANG L.-J., MA K.-L.: A fast

volume rendering algorithm for time-varying fields using

a time-space partitioning (tsp) tree. In IEEE Visualiza-

tion’99 (1999), pp. 371–377.

[TSI] Terascale supernova initiative.

http://www.phy.ornl.gov/tsi.

[WS04] WANG C., SHEN H.-W.: A framework for ren-

dering large time-varying data using wavelet-based time-

space partitioning (wtsp) tree. In Technical Report No.

OSU-CISRC-1/04-TR05, Department of Computer Sci-

ence and Engineering, The Ohio State University (2004).

c© The Eurographics Association 2008.

72


