
EUROGRAPHICS 2008 EducationPapers

eNVyMyCar: a multi-player car racing game for teaching
Computer Graphics

F. Ganovelli and M. Corsini

Visual Computing Laboratory, CNR - Italy†

Abstract

Thedevelopment of a computer game is widely used as a means to convey Computer Sciences concepts. There
are several reasons for that: it stimulates creativity, it provides an immediate sense of achievement when the code
works, it typically covers all the aspects of an introductory course, it is easy to find ideas just looking around.
In this paper we presentNVMC (eNVy My Car), a framework for collaborative/competitive development of a
computer game, and report the experience in using it in two Computer Graphics courses held in the year 2007
by the authors. We developed a multiplayer car racing game where the student is only asked to implement the
rendering of the scene, while all the other aspects, communication and synchronization are implemented in the
framework and transparent to the developer. The novelty of our framework is that all the clients on-line are able
to see the views provided by the other clients, which serves to motivate the students to improve their work by
comparing it with the other clients, as a means to pick up ideas from the others and finally to show off with their
classmates.

Categories and Subject Descriptors(according to ACM CCS): K.3.2 [Computer and Information Science Education]:
Computer Science Education

1. Introduction

Nowadays, introductory Computer Graphics courses are
present in the majority of Engineering and Computer Sci-
ence programs. Computer Graphics, intended in its broader
sense, includes a large number of sub-fields (geometric mod-
eling, rendering techniques, design, computer animation, 3D
photography, to cite a few) which are normally treated in
dedicated courses (for example the Stanford University of-
fers 13 different courses closely related to CG, ranging from
Mathematical Methods for Graphicsto Advanced Geometric
Algorithms).

For what concerns introductory courses, they typically
give an overview of the field and then focus on the raster-
ization based rendering pipeline. At the end for the course
the students should be able to develop a 3D application in-
volving geometrical manipulation and providing a more or

† name.surname@isti.cnr.it

less sophisticated rendering, possibly including non local il-
lumination effects such as shadows, ambient occlusion, re-
flection of the environment on the objects’ surface and so on.
CG concepts translate quite naturally to practical exercises
that can be carried out with a computer, especially when an
API such as OpenGL of DirectX takes care of the underly-
ing details. Therefore, after the lessons on geometric trans-
formation the student can be asked to implement a virtual
manipulator (like a trackball) without necessarily knowing
much about lighting and rasterization, and so on.

It is a common practice to organize all the exercises in
a single effort to implement some kind of application. Pre-
vious work how a computer game can be used to teach
also other fields of Computer Science: object-oriented pro-
gramming [CC07, CC05], pattern design [Ges07] and CG
itself [HS05] to cite a few.

We implemented a multiplayer game calledeNVyMyCar,
a car racing game, where the visualization of the entire scene
is a placeholder and must be developed by the student. The
framework is designed so that the student does not need

c© The Eurographics Association 2008.

http://www.eg.org
http://diglib.eg.org


F. Ganovelli & M. Corsini / eNVyMyCar

Figure 1: Scheme of the NVMC framework.

to take care of the networking issues or of the physics (al-
though this might be included in a more specialized course)
but only to understand the very simple C++ classes describ-
ing the scene and render it interactively. The description of
the scene is minimal and only concerns the parts that can
physically influence the race, i.e. the streets, the buildings,
the tree (others can be easily added) and not at all with the
appearance of things, which give to everyone total freedom
on how to represent their car, the terrain, the sky etc.
It is quite straightforward to see that a racing game is a
perfect scenario for progressively mapping CG concepts to
code: the geometric transformations (the front wheels that
rotate and steer), the use of impostors (the billboards for the
trees), the environment mapping (the dynamic reflection on
the car) etc. However, alleviating the student from non CG
problems was not the only reason for EnVyMyCar. We also
wanted them to share knowledge and discuss problems in
the same platform and possibly write code so modular that
is could be moved from one project to another (instead of the
thousands-lines longmainbody).

The next Section will give a detailed description of the En-
vyMyCar framework. In the third Section we explain how
several Computer Graphics techniques can be fit into the
project to demonstrate that this kind of approach can be a
very useful training for both basic and advanced Computer
Graphics topics. The results of the use of the framework as
an educational tool are reported in Section 4 and the conclu-
sions are outlined in Section 5.

2. EnvyMyCar: the framework

NVMC is a car racing multiplayer game realized with a sin-
gle server - multiple clients architecture shown in Figure1.
The scene is composed by a static part (the circuit, the trees,
the buildings etc.) which is permanently stored both by the
clients and by the server and a dynamic part, i.e. the players’
cars and their state. We refer to thestateof a car to indicate

its position and orientation, its speed and other information
that can be contained in few bytes.

The state of the race (i.e. the collection of the states
of the single cars) is updated by the server, which runs
the race simulation, and broadcasted to all the connected
clients. The clients control their cars by sending messages
to the server (such as. INCREASE_SPEED, STEER_LEFT,
BRAKE etc.) which are processed and accounted for in the
simulation. The communication is asynchronous, meaning
that messages are sent independently from each client and
from the server.

So far, this is a classic client-server scheme for a mul-
tiplayer game, with commands sent from the clients to the
server and state of the system broadcasted from the server to
all the clients. The novelty of NVMC is that there is another
kind of data that the client may send, which is a snapshot
of the view provided to the player. The snapshots follow the
same path as the commands, except that they do not influ-
ence the simulation of the race but are simply re-bounced
to all the other clients. A functionShowSnapshotsis imple-
mented in the client side which takes care of showing the
snapshots of all the other clients.

In other words, every time a client is launched, the de-
veloper may see also snapshots from the other connected
clients. This is what we ironically named “the envy factor”,
alluding to the fact that seeing rendering effects on another
clients that one was not able or did not think to implement
may cause a feeling of envy and a wish to improve her own
client. Of course it was not envy but the curiosity and the
wish to obtain a visually pleasant result what moved the stu-
dents to implement new features following each other ideas.
Note that this is very different from comparing the students’
work at the exam or at fixed milestones. On the contrary, it
is like forming a developers team where each student may
develop her own version.

There are other ways to organize projects in teams: stu-
dents may gather in groups of 2 or 3 and develop a project
but then often happens that the contribution to the students
of the same group to their project must be figured out at oral
examination, while little feedback is given during the de-
velopment of the project. Consequentially, students of the
same group are typically in charge of different aspects of the
project so they may specialize too much in one topic and lack
of insights on others (for example knowing everything about
normal mapping but never trying to instance a Vertex Buffer
Object and so on). With NVMC every single student is in
charge of the whole project. They can exchange ideas, tricks
and code snippets, (as long as each one is able to explain
clearly every line that appears in her code) but eventually
everyone will have faced all the difficulties of the develop-
ment.
The teacher may be connected to the server with her own
client and see how the projects are going. Note that the up-
load of a snapshot is done upon client request and not auto-

c© The Eurographics Association 2008.



F. Ganovelli & M. Corsini / eNVyMyCar

Figure 2: Software architecture of the NVMC framework.

matically. The developer may decide to code the uploading
of a snapshot at fixed intervals of time or, as everyone did,
to associate the event to a key. This mechanism may also be
used by the teacher to provide suggestions to the class, by
implementing her own client (supposedly better than all the
others) and uploading snapshots.

2.1. Implementation

Figure2 shows the structure of NVMC. The boxes with re-
turning arrow represent process threads, the boxes named in
bold are queues and the arrows are directed as the informa-
tion flow.

Cli::Main_Cycle_Th is the main thread of the
client and it is responsible for rendering the scene,
writing commands to be sent to the server in the
Cli::Commands queue or saving a copy of the current
view in the Cli::Snapshot memory area. The thread
Cli::Msg_snd_Th reads the commands from the queue
Cli::Commands and transmits them to the server. If
the commands is SEND_SNAPSHOT then the snapshot
is read and sent to the server. On the server side, the
threadSrv::Msg_rcv_Th receives all the communica-
tion from the clients and stores commands in the local
Commands queue, where each entry is a couple(player,
command)and snapshots in theSrv::Snapshots area
where the most recent snapshot received from each client
is stored. The Srv::Main_Cycle_Th is responsible
for running the simulation of the race, which consists of
updating the position of each car, and saving the state
of the race inSrv::State. Furthermore, it updates the

Srv::Snapshots area with the snapshot received in
Srv::Snapshots_upd . Srv::Msg_snd_Th contin-
uously broadcasts the state of the raceSrv::State to all
the clients and the updating of the snapshot when necessary.
Back in the client side, the threadCli::Msg_rcv_th re-
ceives the messages from the server and copy them to the
Cli::Snapshots and Cli::State area, where they
will be read fromCli::Main_Cycle_Th.

The NVMC framework also provides a standalone mode
in which the server threads are launched within the same
process (the client). This can be vary handy when the stu-
dent works at home and does not want to launch a separate
process.

2.2. Interfaces towards the developer

The goal of the students was to implement their own ren-
dering engine for the game without necessarily to know all
the underlying architecture, so we defined a simple soft-
ware interface. Basically the developer only needs to know
the definition of few classes:Circuit, Car, Building etc.,
to be able to draw them, and to use two functions:Com-
mand(command_name)to issue a command to the server,
UpdateScene()which update all the dynamic data structures.

All the code is written in ANSI C++ using PTypes [Mel],
a GPL library supporting multithreading and friendly wrap
towards IP communication. Whe found in SDL [sdl],
a practical choice to handle user commands through
mouse/keyboard and windowing, althought SDL does not

c© The Eurographics Association 2008.



F. Ganovelli & M. Corsini / eNVyMyCar

Figure 3: A simple example of circuit encoded in a bitmap
image.

have to do with the NVMC framework and others libraries
could be equally used (for exampleQT of glut).

2.3. Creating a circuit

Along with the framework for playing the game, we also
provided the students with a simple program to create new
circuits. Instead of using general tools for modelling, such
as Blender or Google SketchUp (just to pick two examples)
and then perform the conversion to our data structure, we
decided to use RGB images to code a scene and therefore
to write a simple converter from a RGB image to NVC for-
mat. Although obvious limitations arise using this encoding,
it was more than enough for our needs and a simple image
editor (i.e. Microsoft PaintBrush) was sufficient to create a
new circuit. Figure3 shows an example of an image coding
ascenario.

3. How Exercises fit into the project: from a black
screen to a working client.

The time to describe the NVMC framework needs few hours,
since it is a matter of showing few simple classes imple-
menting the scene concepts. Depending on the students’
background some additional lessons need to be provided.
For example, it could happen that most student have object-
oriented programming background but few or no knowledge
of C++. In fact, in most OOP courses Java is used to illus-
trate principles instead of C++. Hence, sometimes two-three
lessons to integrate specific lacks are necessary. After this
preliminary lessons the students start to develop their clients
at the laboratory and at home. The development is done in
parallel during the course. In this way the theoretic concepts
can be put in practice during its learning. The students are as-
sisted in any development problems that can encounter dur-
ing the hours of practice in the laboratory.

One of the strong points of the EnvyMyCar is that during
the development of the client the students deal with a lot
of different Computer Graphics aspects in a natural way. In

other words to develop a client a student has to solve a series
of CG exercises before to reach an acceptable result.

3.1. Basic CG exercises

NVMC, and more in general a car racing game, provided a
natural mapping from the first steps in practical CG to the
very basic functionalities of the game.

Geometrical transformations: One of the first problems
that a student encounter is handling basic geometric trans-
formations correctly. Such transformations are necessary
to visualize the car during its movement, to place the ele-
ments of the scene, and to manage camera movements.
Obviously, all the students have to deal with this step.
Moreover, the student can use car models composed by
several parts and moving such parts in order to produce
a more realistic animation of the cars, meaning that the
wheels can roll around their center and steer.

Lighting: About lighting, at the beginning, the common
practice is to setup the basic Phong illumination model
that OpenGL provides.

Texturing: Concerning texturing, in practice, all the stu-
dents apply textures to the car, the buildings, the terrain
and the road to ensure a minimal visual richness. Typi-
cally the student (wisely) decides to use one tileable tex-
ture for the terrain and another one for the street. The
faćades of the buildings needs to be textured with special
care to keep the appearance consisted with the scale of the
scene (100 meters large windows are not accepted).

3.2. Advanced CG exercises

Implementing the basic functionalities of the client is the en-
try point is the minimum effort required to reach a sufficient
score in the evaluation.

At this point the students are encouraged to improve their
clients by adding new functionalities or improving the ex-
istent ones. To this aim, a list of choices is given to them,
each one with a brief explanation and some reference to fur-
ther documentation. Of course the students do not have to
choose from the list but may follow their own ideas. Some
students opt for simple techniques moving its effort in cre-
ativity while others try to implement techniques more com-
plex from an implementation viewpoint despite the final look
of the client. Just to give an idea we report some examples
implemented by our students specifying the techniques used,
and for what functionality as used:

Billboarding: Billboarding is one of the image-based ren-
dering technique shown to the student during the course.
One of the typical example is the rendering of trees as
oriented texture to replace geometry. Most students re-
implement such example to have trees in theirs scenery or
to implement lens flares. Some students use billboarding

c© The Eurographics Association 2008.



F. Ganovelli & M. Corsini / eNVyMyCar

in other way such as to add streetlamp or to render the in-
terior of the vehicle with screen-aligned billboarding (see
Figure4 top-left)

Projective texture mapping One of the things that some
students would like to see is the headlamp of the car that
illuminates the road. To achieve this goal they have to deal
with projective texture mapping and blending.(see Fig-
ure4 top-right)

Skybox A lot of students are not satisfied of the look of
its scenery until they do not see a sky over the car and a
landscape around the main road. Most students envisaged
cube mapping to render a skybox and its reflection on the
car.

Dynamic cube mapping Reflection of the whole environ-
ment on the car is accomplished by Dynamic Cube Map-
ping (see4).

Lighting Models: Student that wants to make practice with
vertex or pixel shaders are suggested to implement a light-
ing model (e.g. Cook-Torrance, Oren-Nayar, Minnaert).
One of the exercise during shaders lesson consist of show
how to implement a per-pixel version of the standard
Phong model.

Shadow mapping: Shadows add realism to the rendering
and provide a professional look to the final rendered
scenery. Our course not cope with other shadowing tech-
niques than shadow mapping such as volume shadows or
soft shadows.

Accumulation buffer: Students use accumulation buffer to
implement some interesting effects such as motion blur
or depth of field. The use of accumulation buffer to im-
plement such effects is suggested during the course as a
simple alternative to the implementation with shaders.

Particle Systems: Particle systems can be used in several
ways in a car race simulation. The particles could simu-
late dust when the car accelerate or fire when the cars im-
pact with something (since the collision detection is not
implemented in the framework this effect is usually en-
abled/disabled by the users). Other effects the student can
add to their client with a particle system is atmospheric
effect such as rain or snow. It must be noted that the par-
ticle systems what not among the suggested choices, sim-
ply because they are not part of the course. Nonetheless,
its dynamic nature attracted at least one student in both of
the two courses where NVMC was used.

4. Results

The EnvyMyCar framework has been used in two Courses
for now. The first one is the Computer Graphics Course of
the University of Siena (10 alumni). The other one is the
Advanced Computer Graphics Course of the University of
Ferrara (14 alumni). For this second class this project is fac-
ultative, the student could also choose to do another project
chosen from a list or not implement a project at all, in this
last case a penalty on the final evaluation is applied. Never-
theless, 12 students choose to develop an EnvyMyCar client.

In order to understand the effective utility of the EnvyMy-
Car framework as a tool to learn Computer Graphics after
the examination the students have been interviewed (infor-
mally) in order to collect their opinions. Most of them en-
joy the project and find it an useful learning tool. It has been
noted that, although the few things of the framework to know
are quite trivial and the students where provided with a first
"hello world" fully working client still a written tutorial and
a FAQ could have been useful, for example to those who
missed some lessons.

Apart the satisfactory interview another factor that under-
line the effectiveness of the framework is the good results
obtained by several students. Here, we show some screen-
shots of the developed clients, but it is interesting to ana-
lyze that about the 70% of the students have implemented
more than the basic features necessary to reach a sufficient
score (good camera handling/standard lighting/texture map-
ping/skybox). For example some of them use shaders to im-
plement complex lighting models. Others insert particle sys-
tems to produce dust, fire, or other similar effects. Others
improve the look of theirs car with dynamic reflections. Few
of them generate procedurally some of the scene elements.
Most deal with billboarding to render trees and projective
texturing to draw headlights. Concerning the artwork aspect
only very few students have contributed with own graphics.

5. Conclusion

In this paper the framework eNVyMyCar to support teach-
ing of Computer Graphics at basic and advanced level has
been presented. The use of the EnvyMyCar framework pro-
vides two basic advantages: strong motivation given by the
“computer games effect” and personalized learning.

At the time of this writing, eNVyMyCar is being used for
the third time in a CG course. Although probably the num-
ber of students is still low make an objective claim on the
effectiveness of eNVyMyCar, their feedback in the courses
where was used was very encouraging.

We found the only difficulty in the students’ background
that usually is not optimal. In fact, even if the pre-requisite
is the OOP programming, Java programmers could report
some initial difficulty with the use of STL libraries and other
minor aspects of the framework.

NVMC is still a work in progress and it is lacking some
important features, such as collision detection among cars.
However, the most important improvement will be to write
of a extended tutorial and manual and possibly incorporate
the exercises as part of the tutorial, as a first step towards a
concise textbook.

The eNVymyCar project is hosted by Source Forge and
can be found at the URL: http://envymycar.sourceforge.net.

c© The Eurographics Association 2008.



F. Ganovelli & M. Corsini / eNVyMyCar

Figure 4: Some clients developed by the students. (Top-Left) Dynamic reflections on the car. (Top-Right) Projective texture
for headlights and tunnel lamps fakes with textures. (Bottom-Left) Motion blur and lens flare. (Bottom-Right) Billboarding for
showing trees.

c© The Eurographics Association 2008.



F. Ganovelli & M. Corsini / eNVyMyCar

Figure 5: More clients: (Left) Screen aligned billboarding for the view from the interior of the car (Right) The mountains are
procedurally generated as a heightfield and rendered with a displacement map assigning a height-dependent texture (grass,
mountain, snow).

Figure 6: Two player connected during the race. Note that each client provides its own view of the scenario, including the
appearance of the cars.

c© The Eurographics Association 2008.



F. Ganovelli & M. Corsini / eNVyMyCar

6. Acknowledgment

We wish to thank all the students of our courses for their
feedback and their enthusiasm. Like many other researchers
in Italy, we teach University courses as freelancers, so we
also thank our affiliating institution, the National Research
Council, for allowing us to take some time off our regular
activities.

References

[CC05] CLAYPOOL K., CLAYPOOL M.: Teaching soft-
ware engineering through game design. InITiCSE ’05:
Procs. of the 10th annual SIGCSE conf. on Innovation and
technology in comp. sc.education(New York, NY, USA,
2005), ACM Press, pp. 123–127.

[CC07] CHEN W. K., CHENG Y. C.: Teaching object-
oriented programming laboratory with computer game
programming. IEEE Transactions on Education 50, 3
(August 2007), 197–203.

[Ges07] GESTWICKI P. V.: Computer games as motiva-
tion for design patterns. InSIGCSE ’07: Proceedings of
the 38th SIGCSE technical symposium on Computer sci-
ence education(2007), ACM Press, pp. 233–237.

[HS05] HOETZLEIN R. C., SCHWARTZ D. I.: Gamex: a
platform for incremental instruction in computer graphics
and game design. InSIGGRAPH ’05: ACM SIGGRAPH
2005 Educators program(2005), ACM Press, p. 36.

[Mel] M ELIKYAN H.: C++ portable types library. More
info on:http://www.melikyan.com/ptypes/.

[sdl] Simple direct media library. More info on:
http://www.libsdl.org/.

c© The Eurographics Association 2008.


