

N°d’ordre NNT : xxx

THESE de DOCTORAT DE L’UNIVERSITE DE LYON

opérée au sein de

(Nom Etablissement)

Ecole Doctorale N° accréditation

(Nom complet Ecole Doctorale)

Spécialité/ discipline de doctorat :

Soutenue publiquement/à huis clos le jj/mm/aaaa, par :

(Prénoms Nom)

THÈSE DE DOCTORAT DE L’UNIVERSITÉ DE LYON
opérée au sein de

INSA LYON

École Doctorale 512

Informatique et Mathématique de Lyon
(INFOMATHS)

Spécialité
Informatique

Présentée par

Théo Jaunet

Pour obtenir le grade de
DOCTEUR de L’UNIVERSITÉ DE LYON

Sujet de la thèse :

Deep Learning Interpretability with Visual Analytics:
Exploring Reasoning and Bias Exploitation

Interprétabilité de l’Apprentissage Profond via Analyse Visuelle :
Exploration de Raisonnements et de l’Exploitation de Biais

Théo Jaunet: Deep Learning Interpretability with Visual Analytics: Exploring Reasoning
and Bias Exploitation, © 2022

A B S T R A C T

In the last couple of years, Artificial Intelligence (AI) and Machine Learning
have evolved, from research domains addressed in laboratories far from the public
eye, to technology deployed on industrial scale widely impacting our daily lives.
This trend has started to raise legitimate concerns, as it is also used to address
critical problems like finance and autonomous driving, in which decisions can
have a life-threatening impact. Since a large part of the underlying complexity of
the decision process is learned from massive amounts of data, it remains unknown
to both the builders of those models and to the people impacted by them how
models take decisions. This led to the new field of eXplainable AI (XAI) and
the problem of analyzing the behavior of trained models to shed their reasoning
modes and the underlying biases they are subject to. This thesis we contributed
to this emerging field with the design of visual analytics systems tailored to the
study and improvement of interpretability of Deep Neural Networks. Our goal
was to empower experts with tools helping them to better interpret the decisions
of their models. We also contributed with explorable applications designed to
introduce Deep Learning methods to non-expert audiences. Our focus was on
the under-explored challenge of interpreting and improving models for different
applications such as robotics, where important decisions must be taken from
high-dimensional and low-level inputs such as images. All tools designed dur-
ing this thesis were published as open-source projects, and when possible, our
visualizations have been made available online as prototypes, as they are highly
interactive and thus can help to foster further research by the research community.

In the first part of this thesis, we addressed how a robot may answer natural
questions (Visual Question Answering (VQA)) with state-of-the-art transformer
models based on self-attention. Our focus was on the interpretation of their
attention maps which we analyzed with a visual analytics system we designed.
We showed how our system can be used by model builders to detect when their
model may exploit biases, i.e. undesired shortcuts in learning by exploiting spuri-
ous correlations in data, instead of resorting to the requested reasoning process.

In a second part, we addressed the interpretability of robot navigation, i.e. how
a robot may explore its environment (e.g. an office). In our case, such a step
was addressed by neural models which include a recurrent memory, which is
at the core of their decisions. We focused on how this memory (and its impact
on decisions) can be interpreted. We designed a new visual analytics system to
account for the challenge of analyzing this type of neural model.

iii

iv abstract

The third part of this thesis focused on the interpretability of robotics systems
trained in simulation and deployed to real physical environments, which has
now quickly become a standard mode of operations. We focused on the tasks of
robot ego-localization and the interpretations of its decisions. We provided an
interpretation of potential sources of gaps with the help of a new visual analytics
interface, with which we identified biases and gaps that affect models’ decisions.

Finally, we concluded this thesis with a reflection across these parts to highlight
the challenges of building an end-to-end model to robotic task of answering
natural language questions using navigation in a real-world environment. This
conclusion also introduce novel and still open research directions to provide better
interpretability of such models’ decisions and mitigate their bias.

R É S U M É

Au cours des dernières années, l’IA et l’apprentissage automatique ont évolué,
passant de domaines de recherche reclus dans des laboratoires éloignés du public à
des technologies déployées à l’échelle industrielle ayant un impact considérable sur
notre vie quotidienne. Étant donné que ces technologies sont également utilisées
pour résoudre des problèmes critiques tels que la finance et la conduite de voitures
autonomes, dans lesquels leurs décisions peuvent mettre des personnes en danger,
cette tendance a commencé à susciter des inquiétudes légitimes. Puisqu’une
grande partie de la complexité sous-jacente du processus de décision est apprise à
partir de quantités massives de données, la manière dont ces modèles prennent des
décisions reste inconnue tant pour leurs créateurs que pour les personnes impactés
par de telles décisions. Cela a conduit au nouveau domaine de l’eXplainable AI
(XAI) et au problème de l’analyse du comportement des modèles entraînés,
pour mettre en lumière leurs capacité raisonnement et les biais auxquels ils sont
soumis. Dans cette thèse, nous avons contribué à ce domaine émergent avec la
conception de systèmes d’analyse visuelle destinés à l’étude et à l’amélioration
de l’interprétabilité des réseaux de neurones profonds. Notre objectif était de
permettre aux experts de disposer d’outils les aidant à mieux interpréter les
décisions de leurs modèles et éventuellement des les améliorer. Nous avons
également proposé des applications explorables conçues pour présenter des
méthodes d’apprentissage profond à un public non-expert. Durant cette thèse,
nous nous sommes concentrés sur le défi sous-exploré de l’interprétation et de
l’amélioration des modèles pour différentes applications de la robotique, où des
décisions importantes doivent être prises à partir de données d’entrées de haut
niveau et de haute dimension telles que des images. Tous les outils conçus au
cours de cette thèse ont été publiés en tant que projets open-source, et lorsque
cela était possible, nos visualisations ont été mises à disposition en ligne en
tant que prototypes. Ces outils sont hautement interactifs et peuvent contribuer
à encourager la poursuite de l’interprétation de décisions de modèles par la
communauté de recherche.

Dans la première partie de cette thèse, nous avons abordé la manière dont un
robot peut répondre à des questions naturelles (VQA) avec des modèles état de l’art
transformer basés sur attention. Nous nous sommes concentrés sur l’interprétation
de leurs cartes d’attention que nous avons analysé avec un système d’analyse
visuelle que nous avons conçu. Nous avons montré comment notre système
peut être utilisé par les constructeurs de modèles pour détecter lorsque ceux-ci
sont suceptibles exploiter des biais. C’est-à-dire des raccourcis indésirables dans
l’apprentissage en exploitant des corrélations trompeuses dans les données, au
lieu de recourir au processus de raisonnement demandé.

v

vi résumé

Dans une deuxième partie, nous avons abordé l’interprétabilité de la navigation
des robots, c’est-à-dire la manière dont un robot peut explorer son environnement
(par exemple un bureau). Dans notre cas, une telle étape a été traitée par des
modèles neuronaux qui incluent une mémoire récurrente, qui est au cœur de
leurs décisions. Nous nous sommes concentrés sur la façon dont cette mémoire et
son impact sur les décisions peut être interprétés. Nous avons conçu un nouveau
système d’analyse visuelle pour tenir compte du défi que représente l’analyse de
ce type de modèle récurrent.

La troisième partie de cette thèse s’est centrée sur l’interprétabilité des sys-
tèmes robotiques entraînés en simulation et déployés dans des environnements
physiques réels, ce qui est rapidement devenu un mode d’opération standard.
Nous nous sommes concentrés sur la tâche d’ego-localisation du robot et les
interprétations de ses décisions. Nous avons fourni une interprétation des sources
potentielles de différence entre simulation et réalité à l’aide d’une nouvelle inter-
face d’analyse visuelle, avec laquelle nous avons également identifié des biais qui
affectent les décisions de ces modèles.

Enfin, nous avons conclu cette thèse par une réflexion sur l’ensemble de ces
parties pour mettre en évidence les défis de la construction d’un modèle de bout
en bout pour la tâche robotique de réponse aux questions en langage naturel via
une navigation dans un environnement réel. Cette conclusion présente également
les nouvelles directions de recherche encore ouvertes pour fournir une meilleure
interprétabilité des décisions de ces modèles et atténuer leur biais.

REMERCIEMENTS

Premièrement, j’ai une grande reconnaissance envers mes encadrants de thèse
Christian Wolf et Romain Vuillemot qui m’ont fait confiance il y a de ça 5 ans
pour un stage de fin d’études qui m’a permis d’arriver ou j’en suis aujourd’hui.
Merci pour votre enthousiasme, encouragements, et conseils qui ont rythmé notre
temps passé ensembles, ces restaurants célébrant l’acceptation d’un manuscrit, et
plus simplement nos échanges joviaux autour d’une bière. Vous avez sus avec aise
aller au-delà de vos domaines respectifs afin d’en enrichir leurs intersections. Je
n’aurais pas pu avoir de meilleurs encadrants de thèse.

Je tiens à remercier toutes les personnes avec qui j’ai l’occasion de collaborer
tout au long de ma thèse ; Corentin Kervadec, Moez baccouche, Grigory Antipov,
Guillaume Bono, Edward Beeching, et Sylvain Lesage. Travailler avec vous fut
un plaisir qui m’a permis d’apporter de nouvelles perspectives sur ma façon de
travailler.

Merci aux différents chercheurs qui ont accepté de sacrifier une partie de leurs
temps afin de participer aux évaluations de nos outils, et leurs enthousiasme ;
Edward Beeching, Tom Gillooly, Arthur Aubret, Assem Sadek, Pierre Marza,
Steeven Janny et Quentin Possamaï. Échanger avec vous durant ces interviews a
été très enrichissant !

Je tiens à remercier Céline Hudelot et David Auber d’avoir accepté de rapporter
ce manuscrit, ainsi que l’ensemble du jury ; Shixia Liu, Hendrik Strobelt et Liming
Chen, d’avoir accepté d’y participer.

J’aimerais remercier mes deux "familles" de recherche SICAL et Imagine, tout
d’abord les permanents pour leur bienveillance et leur soutien que j’ai eu la chance
de connaître. Ensuite, les anciens et nouveaux ”c-du-fond”, et ”doctorants-et-autres”,
pour ces bons moments à travailler ensembles, et plus simplement ces tranches de
vie autour de mots-croisés, échecs, batailles de nerfs, quelques verres, et de nos
repas animés de débats sempiternels visant la mise en place d’une topologie de
classification de nourriture 1.

Enfin, je me dois de remercier, au-delà du monde de la recherche, mes amis
et ma famille pour leur soutien et encouragements inconditionnels. Le temps
passé à vos côtés durant ces dernières années, ponctués de vos "c’est pour quand
la soutenance ?", m’auront permis de me ressourcer tout en gardant les pieds sur
terre.

1. Nous avons finalement adopté la loi du cube [211]

vii

C O N T E N T S

abstract iii
résumé v
remerciements vii
contents ix
list of figures xiii
list of tables xxiii
acronyms xxv
1 introduction 1

1.1 Robotics Task: "Where are my keys" 5

1.2 Visual Analytics for Model Interpretability 6

1.3 Thesis Overview . 7

2 related work 9

2.1 Definitions . 9

2.1.1 Visual Analytics . 10

2.1.2 Deep Neural Networks . 11

2.1.3 Interpretability . 13

2.1.4 Interpretability Vs. Explainability 15

2.1.5 Explanations . 16

2.2 Building Blocks of DNN Interpretability 17

2.2.1 Activations of Neurons . 18

2.2.2 Visualization with Gradients 22

2.2.3 Inner Representation of Data 25

2.2.4 Model-Agnostic Methods . 27

2.3 Leveraging Building Blocks in Visual Analytics 29

2.3.1 Interactive Activations . 30

2.3.2 Sequential Activations and Gradients 31

2.3.3 Interacting with Models for Non-experts 34

2.3.4 Interpretable Visual Analytics Throughout this Manuscript 35

3 visual question answering 37

3.1 Introduction . 39

3.2 Background . 42

3.2.1 Transformers and Attention 42

3.2.2 Vision-Language (Vision-Language (VL))-Transformers . . . 44

3.3 Related Work . 46

3.3.1 Interpretability of VQA . 46

3.3.2 Bias Reduction in VQA . 46

3.4 Motivating Case Study . 47

3.5 Design Goals . 51

ix

x contents

3.6 Design of VisQA . 52

3.6.1 Workflow . 53

3.6.2 Visualization of Instances . 54

3.6.3 Visualization of Selected Heads 55

3.6.4 Interacting with Models . 56

3.7 Implementation . 58

3.8 Evaluation with Domain Experts . 58

3.8.1 Evaluation Protocol . 58

3.8.2 Object Detection and Attention 60

3.8.3 Questions with Logical Operators 61

3.8.4 Vision to Vision Contextualization 62

3.9 Discussions, Limitations and Future Work 63

3.10 Conclusion . 67

4 navigation 69

4.1 Introduction . 71

4.2 Context and Background . 72

4.2.1 Navigation Problem Definitions 73

4.2.2 Navigation using the ViZDoom Simulation 73

4.2.3 Deep Reinforcement Learning and Memory 75

4.2.4 Visual Analytics and Deep Reinforcement Learning 75

4.3 Model and Design Goals . 76

4.3.1 Deep Reinforcement Learning (DRL) Model 77

4.3.2 Constructing the Memory of DRL 78

4.4 Design of DRLViz . 80

4.4.1 Design Motivation and Goals 80

4.4.2 Overview and Workflow of DRLViz 80

4.4.3 Memory Timeline View . 81

4.4.4 Derived Metrics View . 82

4.5 Implementation . 83

4.6 Evaluation by Experts . 85

4.6.1 Protocol and Navigation Problem 85

4.6.2 Feedback from Expert #1 . 86

4.6.3 Feedback from Expert #2 . 87

4.6.4 Feedback from Expert #3 . 87

4.7 Memory Reduction . 88

4.7.1 Evaluation of Reductions with DRLViz 88

4.7.2 MemRed, an Online Explorable 89

4.8 Discussion . 91

4.8.1 Summary of Experts Feedback 91

4.8.2 Limits . 92

4.9 Perspectives . 92

4.9.1 Guiding Exploration with Extended Timelines 92

contents xi

4.9.2 Generalization to other Scenarios and Simulations 93

4.10 Conclusion . 94

5 from simulation to reality 95

5.1 Introduction . 97

5.2 Context and problem definition . 99

5.3 Related work . 100

5.4 Design Motivation . 102

5.4.1 Tasks analysis . 102

5.4.2 Design goals . 103

5.5 Sim2RealViz: A visual analytics tool to explore the sim2real gap . 104

5.5.1 Design rationale . 105

5.5.2 Main-stream workflow . 105

5.5.3 Geo-Map and Encoding of Positions 106

5.5.4 Heatmaps . 107

5.5.5 Contextualization on the global geo-map 109

5.5.6 Exploration of input configurations 109

5.6 Case studies . 110

5.7 Limitations and Perspectives . 114

5.8 Conclusion . 116

6 conclusion and future directions 117

6.1 Summary of Contributions . 117

6.2 Perspectives for Future Works . 119

6.2.1 Invade and Conquer Model Builders’ Workflow 120

6.2.2 Mitigating Human Biases . 122

6.2.3 Finally Finding those Keys! 124

bibliography 127

L I S T O F F I G U R E S

Chapter 1: introduction 1

Figure 1.1 Examples of failures of Deep Learning (DL) models: ¬

Pulse [138], with an input image of the former US president
Barack Obama, the model tasked to reproduce it, outputs
the image of a Caucasian man. ­ the CLIP model [168],
can be induced to output wrong classification by simply
taping tags to objects, e.g. as illustrated here, the apple is
predicted as “library” [72]. ®, traffic signs detection models
can interpret stop signs as speed limit ones only with only
a bit of duct tape on it [64]. 4

Figure 1.2 To be able to answer mundane questions such as “where
are my keys”, robots are required to master three reasoning
skills: first ¬, the ability to understand natural language
questions to grasp what is asked, and analyze its vision
to answer. Then, robots need the ability to navigate in
an environment to look for those keys as fast as possible,
and then, the ability to self-localize to both avoid going to
already searched rooms, and, when found, to communicate
the position of the keys. 5

Chapter 2: related work 9

Figure 2.1 Illustration of the structure of a Deep Neuron Network.
With the input image Xi, the neurons of the model, ar-
ranged in inter-connected layers, yield the output Yi "dog".
This output is the outcome of a multitude of neuron com-
putations. As depicted on the right of this figure, each
neuron (e.g. here N2

1) relies on the result of neurons from
the previous layer. A more formal representation of this
computation is depicted in Equation 2.1. 10

Figure 2.2 Illustration of the convolution operation within the first
layer of a Convolutional Neural Network (CNN) model.
Given an image xi, the model applies a filter W0

n of learnable
weights over the complete input, which yields the values
that the neuron N0

n will convey to an activation function,
and the next layer. 13

xiii

xiv List of Figures

Figure 2.3 On the left ¬, two examples of an image containing a digit
which have been correctly evaluated as "two" by a Deep
Neural Networks (DNN). On the right ­, two other images
which according to the MNIST dataset also contain hand-
written "two". However, the same DNN fails and labels those
images as "six". Such mistakes may be more acceptable to
Humans, as those ambiguous images may even induce us
to estimate that they contain sixes. 14

Figure 2.4 Building blocks for Deep Learning interpretability are de-
signed to provide an understanding of a model’s decision
or behavior. Here illustrated using an Multi-Layer Percep-
tron (MLP), they can be divided in four categories. For a
given input, a model produces intermediate results (Acti-
vations), to reach an output which can be used either by
derivation to produce Gradients, or with output to pro-
duce Representation. Finally inputs and outputs can be
combined to yield Model-agnostic interpretations. 17

Figure 2.5 Comparison of activations from a simple CNN model (Lenet5 [116])
trained to identify the hand-written digit in its input image.
We observe that for the input image of a "2" ¬, the activa-
tions (the whiter the higher) of the first layer are sensitive
to the overall image, and shape of the digit ­, whereas
activations from the last layer are more abstract shapes
harder to analyze ®. In this figure, images were resized for
the sake of readability. Initially, both the image input and
first layer activations were 28× 28, while layer second layer
activations were 5× 5 pixels. 18

Figure 2.6 Left ¬, the Top-k image with the highest activations per
neuron. Each row is a neuron, and each column from
left to right corresponds the top-10 images. We can, for
example, observe that the neuron corresponding to the
first row might be sensitive to circular patterns such as
dog eyes and snouts. Credits for this sub-figure go to
Springenberg et al. [190]. Right ­, examples of overlap
between a manually annotated segmentation dataset, and
a model’s activation from 4 neurons. We can observe that
the neurons corresponding to the two rows on the left are
sensitive to houses. Hence indicating that some neurons
may function as "object detectors". Credits for this sub-
figure are due to Bau et al. [16]. 19

List of Figures xv

Figure 2.7 Visualization of activations of an image classification CNN
using DeConv [240]. This figure represents a manually
selected sub-set of neurons which are displayed in a 3× 3
grid of their most active images. We can observe that the
first layer ¬ contains patterns such lines and color gra-
dients, the second layer ­ seems to seek for textures or
patterns, while the layer 5 ® seems to responsive to more
complex image feature such as faces. In ¯, we combined
with the display of the top-k images one make sens of ab-
stract DeConv activations, e.g. the grass in the background.
Activations in this figure were sampled from [240]. 20

Figure 2.8 Left ¬ visualization of a manually selected activation of
a hidden state of a recurrent model. Such activation is
displayed over its input text ranging from blue (negatives
values) to red (positive values). It can be observed that this
activation seems correlated with the level of text indentation
(credits to [100]). Right ­, visualization of a complete
hidden state as a grid. It can be observed that only a
handful of activation are high at the same time, and thus
that they may be used as "functions" representing different
elements of the inputs. Sampled from [35]. 21

Figure 2.9 Examples of visualization with gradients-based building
blocks. From left to right, ¬ with an input image, ­ guided
back-propagation, class [190], ® optimization of input [136]
targeting the class ”dog“, and ¯ Grad-Cam [182] highlight
pixel assimilated to the class ”dog“. 23

Figure 2.10 Examples of visualization with the representation building
blocks. From left to right, ¬ t-sne representation of em-
bedings on the MNSIT dataset, each dot is an input, and
its color represents it class. ­ Grand-tour of the MNIST-
Fashion [122] with as many dimensions as the number of
classes displayed on the most right of the figure. 26

Figure 2.11 Example of insight gained using lime [172], when given the
image of a husky ¬, the analyzed model fails and predicts
"wolf". By looking at lime’s explanation, with the gray
areas corresponding to the "super-pixels" removed, we can
see that the analyzed model relies on the presence of snow
in the background rather than the dog to yield an output,
hence the mistake. This example and images were sampled
from [172]. 28

xvi List of Figures

Figure 2.12 Overview of CNNVis [128], a visual analytics system lever-
aging activation building blocks to display to what neurons
may be sensitive to. This system follows, the model’s ar-
chitecture to display with the help of clustering methods,
among others, the top-k images of neurons. This view was
sampled from an online prototype [43]. 30

Chapter 3: visual question answering 37

Figure 3.1 This is chapter is dedicated to providing to robots the ability
to answer natural-language questions about images. For
example here, when asked the mundane question "Where
are my keys?" ¬, the robot needs to understand what we
are looking for, and then search for it within a given image
to provide an answer e.g. here "On the desk!". 38

Figure 3.2 In Visual Question Answering tasks, we provide to a model
a question in a textual form along with an image. In our
case, we expect the model to analyze the image to answer
the given question with a single word. As an example here,
when asked "What is the color of the bananas?", the model
should output "Green". 39

Figure 3.3 An Illustration of the VL-Transformer architecture we rely
on. Question and image are first tokenized and then
encoded using vision (in green) and language (in blue)
only transformers [219], followed by (bi-directional) inter-
modality transformers [202]. The answer is predicted from
the “CLS” token. Yellow and orange rectangles represent,
respectively, inter- and intra-modality attention heads. i
and j are the layers and head indices used for naming
attention heads through the manuscript. 43

Figure 3.4 When asked “Is the knife in the top part of the photo” ¬ the
tiny-LXMERT model, with the image of a knife at the bot-
tom ­, incorrectly outputs “yes” ® with more than 95%
confidence. While an exploitation of bias can be considered,
we can observe that the answer “yes” represents only 33%
of answers of similar questions over the complete dataset.
Thus in-depth analysis of the attention of the model may
be required to grasp what led to such a mistake. 48

List of Figures xvii

Figure 3.5 Visualization of a selected vision-to-language head and
attention map for two different models. ¬ the noisy model
associates the “knife” word with a large number of different
objects, including fruit. ­ the oracle model learns a perfect
association between the word “knife” and the “knife” object;
® the oracle transfer model associates the word “knife” with
two different bounding boxes of type knife handle, whose
embeddings are sufficiently close for correct reasoning.
Head selections are not comparable between models, we
therefore checked for permutations. 50

Figure 3.6 Opening the black box of neural models for vision and
language reasoning: given an open-ended question and an
image À, VisQA enables to investigate whether a trained
model resorts to reasoning or to bias exploitation to provide
its answer. This can be achieved by exploring the behavior
of a set of attention heads Á, each producing an attention
map Ä, which manages how different items of the problem
relate to each other. Heads can be selected Â, for instance,
based on color-coded activity statistics. Their semantics
can be linked to language functions derived from dataset-
level statistics Ã, filtered and compared between different
models. This tool is available online at:
https://visqa.liris.cnrs.fr. 53

Figure 3.7 Hovering the mouse over a cell of the attention maps ¬

filters the corresponding object bounding box in the input
image ­. While clicking on this cell filters attention heads
in instance-view to display those within which the selected
cell is highly activated. 57

Figure 3.8 When asked “Is the person wearing shorts?”, the oracle transfer
model successfully answers “yes”. It can be observed in
its first Language-to-Vision attention maps, that the word
“shorts” (column) is strongly associated with the object
“shorts” (row). The same phenomenon is also observed for
the word “person’, strongly associated with objects labeled
as “woman” among others. 60

Figure 3.9 When asked “Are there both knives and pizzas in this image?”,
the oracle transfer model fails and answers “yes”. By filtering
heads associated with a selected word, we can observe that
language self-attention heads are more responsive to the
word “both” ¬, as opposed to the word “and” ­. 61

https://visqa.liris.cnrs.fr

xviii List of Figures

Figure 3.10 Without any"hair dryer" provided by the object detector,
the oracle transfer associates in its vision-to-language ¬ the
object “hand” with the words {“[CLS]”,“is”,“?”,“[SEP]”}.
While vision-to-vision focuses on a “knob” object ­. 62

Figure 3.11 Despite different performances, we can observe that both
tiny-LXMERT and large-LXMERT have the same behavior
as the frequency of question/answers increases. Hence, we
can estimate that they may be exploiting similar shortcuts
defined in GQA-OOD [107]. 64

Figure 3.12 Difference between the attentions of Head LV_1_0, when
asked “is the the train blue?”, and “is the the train red?”.
We can observe that in this head, the attention focuses on
different objects (row) depending on the color asked (column). 66

Chapter 4: navigation 70

Figure 4.1 This chapter is dedicated to step ­ of finding my keys, i.e.
the ability for robots to explore unknown environments.
To do so, such a robot relies on images sampled from an
onboard camera (most right) to decide what should be its
next direction. 70

Figure 4.2 Our navigation problem consists in solving a visual task
(e.g. fetch, interact, or recognize items) while avoiding ob-
stacles in an environment. Deep Reinforcement Learning
can be used to solve this problem by using an image as
input ¬ at time t. Features are then extracted from this
image ­, and combined with the previous memory vector
t− 1 ®. Using this memory vector, the agent decides to
move forward or turn left, for instance ¯. 74

Figure 4.3 Memory construction process: at a current time-step t, the
agent updates its memory by producing a new memory
vector. Each dimension of this vector (represented as a
column) is appended to the previous ones chronologically
(from left to right). As a result, each row of the appended
vectors represent the actions of a single memory element. . 78

Figure 4.4 DRLViz displays a trained agent memory, which is a large
temporal vector, as a horizontal heat-map À. Analysts can
browse this memory following its temporal construction;
filter according to movements of the agent and derived
metrics we calculated Á (e.g. when an item is in the field
of view Â); and select the memory to filter elements and
compare them Ã. 79

List of Figures xix

Figure 4.5 DRLViz allows to compare selected time intervals ¬. For
instance to compare when agents face dead-ends ­ and
when they face health-packs ®. One can observe that more
elements are active while the agent is facing Health Packs
than while facing a dead-end. Perhaps those elements are
encoding information concerning Health Packs. When fac-
ing a dead-end, both the orientation variation and decision
ambiguity are high which can be interpreted as the agent
hesitating on which action to choose. 84

Figure 4.6 Summary of the insights gained by the experts. Expert #1

noticed two intervals during which the agent only turned
right, by using both trajectory ¬ and stacked area chart
of actions ­ views. Once he replayed those sequences, he
stated that the agent came twice in the same dead-end ®.
Expert #3 observed a hidden state dimension which is blue
when the agent sees the red armor before the green armor,
and then remained orange until when he saw the green
armor ¯. Expert #2 probed a dimension that is active as the
agent first saw the Health Pack, and remained active until
it gathered it. Expert #1 also identified two hidden state
elements that change as the agent gathered the health pack
and then kept their values until the end of the episode ±.
Using saliency maps ², Expert #2 observed that the agent
ignored the soul-sphere until it gathered the first three
items ³. Finally, Expert #3 identified clusters in the t-SNE
projection which corresponds to the agent’s objectives e.g.
gathering the green armor ´. 85

Figure 4.7 Overview of MemRed, an online explorable in which users
are invited to try different strategies to reduce the memory
of a DRL agent and observe how it affects its behavior. This
explorable earned the distinction of "best paper" at the
VISxAI workshop 2019. 90

Figure 4.8 Extended version of DRLViz loaded on with death-match
data. From a slit square selection ¬ outputs a timeline
that summarizes the agent’s point of view ­. And the
additional metrics and operators ®. 93

Chapter 5: from simulation to reality 95

xx List of Figures

Figure 5.1 When answering questions such as ”Where are my keys?”,
robots need to be able to communicate their position. To do
so, we trained models to yield coordinates and orientation
angle from any given image ®. Such a task is also used as
a proxy to evaluate gaps between simulation and reality. . 96

Figure 5.2 In the studied robot ego-localization task, an RGB-D im-
age ¬, is given to a trained model ­, which uses it to
regress the location (x, y), and orientation angle (α) in the
environment from which this image was taken from ®. As
illustrated above, images taken from the same coordinates
in simulation and real-world ¬ may lead to different pre-
dictions due to differences, such as here, among others, the
additional presence of a bike in the scene. We are inter-
ested in reducing the gap between the SIM and REAL
predictions. 98

Figure 5.3 The capture of real-world images are carried by an embed-
ded RGB-D camera on a “Locobot” [150] ¬. On the right ­

such a robot is displayed with respect to proportions in its
environment. 100

Figure 5.4 Using Sim2RealViz, the Sim2Real gap of a Data Aug-
mentation model can be compared against other models
(e.g. Vanilla or Fine-tuned) and displayed on the real-world
environment map along with its performance metrics. In
particular, Sim2RealViz shows ¬ this model is particularly
effective in simulation but we identified errors in the envi-
ronment, such as the model failing to regress its position
because of a closed-door that was opened in training. Such
an error can then be selected by instance on the map ­

to identify key features extracted by the model either as
superimposed on the heat-map ® or as a first-person view ¯.104

Figure 5.5 To tackle over-plotting in geo-map while preserving the
insights users can grasp with this view, Sim2RealViz pro-
vides three way to encode SIM / REAL predictions along
with their ground-truth. From ¬ which displays a pin per
domain and link them to their ground truth, to ­ a glyph
in which portion size encodes the distance to their color
encoded domain, while their position encodes their direc-
tion. Or ®, only display ground-truth pins with their color
encoding the distance between simulation and real-world. 106

List of Figures xxi

Figure 5.6 Conversion from pixels on a first-person point of view
image to coordinates on a bird’s eye geo-map (left) us-
ing inverse projection given a calibrated camera. Such a
process, used in Sim2RealViz to display global heatmaps
(right) on the geo-map, relies on ground-truth, image, and
camera information. To optimize their computation, geo-
maps are discretized into squares larger than a pixel, as a
trade-off between the accuracy of projections, and the user
to the feedback. 109

Figure 5.7 By clicking on the adjust button (on the top-right of Fig-
ure 5.4), users can display sliders on the right of instance
view Figure 5.4 ¯) that can be used to fine-tuning real-
world images with filters and observe how it affect models’
prediction. 110

Figure 5.8 By using the full encoding, we can observe that most real-
world predictions are located in the half left of the environ-
ment ¬. Hence, instances sampled from the half-right of
the environment provide the worst predictions. However,
when we slightly increase the brightness of each real-world
image, we can observe that instances are more evenly dis-
tributed over the environment ­. 111

Figure 5.9 With global heatmaps of feature-distance, we can observe
(in red) areas of the environment that may be affected by a
sim2real gap. Those areas correspond to changes in objects
present in the simulation, for instance as illustrated here, a
fire-extinguisher. By removing such objects in simulation
and retraining a model on them, we can observe that they
disappeared from most highlighted areas. 113

Chapter 6: conclusion and future directions 117

L I S T O F TA B L E S

Chapter 1: introduction 1

Chapter 2: related work 9

Chapter 3: visual question answering 37

Table 3.1 Experts performances averaged by instances while evaluat-
ing VisQA. We can observe that Expert#3 reached the best
accuracy on every questions, while Expert#5 reached the
lowest results. Overall, the average performance for Q1 and
Q3 is 75% of accuracy, and 61% for Q2. 59

Chapter 4: navigation 70

Table 4.1 List of re-ordering criteria as they appear in DRLViz. t is
the current time-step, n the number of steps (525 at most),
and i the element. 82

Table 4.2 List of derived metrics (from top to bottom on Figure 4.4 ®) 83

Table 4.3 Performances of agents with different memory reduction
strategies (each averaged over 100 episodes). Best result of
each column is bold. 89

Chapter 5: from simulation to reality 95

Chapter 6: conclusion and future directions 117

xxiii

A C R O N Y M S

AI Artificial Intelligence

ML Machine Learning

DL Deep Learning

NN Neural Network

DNN Deep Neural Networks

DRL Deep Reinforcement Learning

RL Reinforcement Learning

MLP Multi-Layer Perceptron

CNN Convolutional Neural Network

RNN Recurrent Neural Network

POS Part-Of-Speech

NLP Natural Language Processing

VQA Visual Question Answering

HCI Human-Computer Interaction

LV Language-to-Vision

VL Vision-Language

A2C Advantage Actor-Critic

GRU Gated Recurrent Unit

A3C Asynchronous Advantage Actor-Critic

FC Fully Connected

FoV Field of View

DQN Deep Q-Networks

CV Computer Vision

GT Ground-truth

DARPA Defense Advanced Research Projects Agency

MSE Mean Squared Error

IoU Intersection over Union

EQA Embodied Question Answering

MDP Markov Decision Process

xxv

C
h

a
p

t
e

r

1
I N T R O D U C T I O N

Contents
1.1 Robotics Task: "Where are my keys" 5

1.2 Visual Analytics for Model Interpretability 6

1.3 Thesis Overview . 7

Artificial Intelligence (AI), is a vast domain with concrete applications now in
our daily lives. It has however a long history of both definitions and applications 1.
In its early days, AI’s popularity emerged in science-fiction from movies and
literature, often in the shape of autonomous and sometimes sentient robots, such
as in “Metropolis” (1926), the “Wizard of Oz” (1939), or “Tobor the great” (1954).
Such popularity anchored high expectations for AI, to the point that in 1968 A.
Clarke, and S. Kubrick estimated, in their movie entitled “2001: a space odyssey”,
that by 2001 machines would have at least matched Humans’ intelligence. Such
popularity, lead to the first wave of AI in academia, with government agencies
such as Defense Advanced Research Projects Agency (DARPA) funding research.
This was motivated by the advocacy of researchers who argued, among others,
that the ability to interpret and translate languages was within reach in the next
couple of years. While climbing the hill of the first advents of AI research, came
in 1974 the disillusion that many mountains remained to be escalated to meet
such high expectations. One of the major setbacks, at this time, was the lack of
computational power to match the theoretical groundwork. This led to a downfall
of funding, which is now referred to as ”winters”.

This winter has been “re-heated” thanks to endeavors, and discoveries that lead,
among others, to the birth of expert systems in the ’80s. This was also encouraged
by the ever-increasing performance of computers—in terms of memory, storage,
and computation—which improved their affordability. Expert systems consist of
a set of rules established by an expert of a domain, e.g. a doctor, that the AI could
rely on when yielding a diagnostic, for example. Despite their requirement for
an exhaustive set of rules, those systems surged in industry and were applied
to many domains such as health care [137]. However, in the ’90s those systems
began to be disregarded because the more complex they became, the harder they

1. Throughout the manuscript we refer to AI as the set of methods that provides to computers
the ability to tackle high-end reasoning tasks humans can achieve successfully.

1

2 introduction

were to maintain and took time and effort to set up, without, once again, meeting
the same high expectations inherent to AI. For instance, the myth of "sentient"
computer programs able to sustain a conversation with a human.

Surprisingly, during this new winter, AI reached new milestones. One of the
most memorable at this time was in 1997 by beating for the first time in history the
then world chess champion Gary Kasparov. This event reignited the spark of the
so-called era of "heat" of AI, which kept increasing to its highest ever nowadays.
Once again the non-stopping technological advances took a major role in this, by
leading computers to be powerful enough to train artificial Neural Network (NN).
Those NNs are composed of inter-connected artificial neurons, which design began
in the ’40s with the first mathematical model of a biological neuron [134]. At the
core of the success of NNs is their ability to learn to identify patterns from data
they are fed to. Since the capacity of computers grows, we are able to build bigger
models, with neurons inter-connected in multiple layers known as Deep Neural
Networks (DNN). This helped models to formulate more elaborated rules, and
address more challenging tasks. Hence, as a repercussion, the size of models kept
increasing. In 1998, LeNet-5 [116] one of the first DNN that gained popularity, had
around 60 thousand of trainable parameters. Fourteen years later, AlexNet [112]
had over 60 million trainable parameters.

Nowadays, with models reaching hundreds of billions of trainable parame-
ters [28], researchers across many domains reached new horizons and break-
throughs in problems previously seen as unfathomable. Among others, there is
notable examples in biology by unfolding proteins [93], in healthcare by identify-
ing cancerous cells [46, 110], beating humans at long-term strategies board [186]
and video games [145, 221], autonomously driving cars from cameras [80], and
generating creative art designs such as music [62], and images [15, 69]. With such
endeavors, the high expectations of sentient robots from the past century have
never seemed so close! These successes soared thanks to the DNN’s ability to learn
to associate inputs and outputs through a mapping driven by rules they discover
buried in the data they consume. Prior to that, developers had to manually write
those rules themselves in their code. For instance, with rules, one may establish
that an animal with two pointy ears and whiskers should be classified as a cat.
Nonetheless, such a classification may not exclude the possibility that this animal
may be a tiger, or that a cat may be missing an ear. Thus, due to mistakes that
may occur, and the unrealistic amount of time it would require to account for
every possibility, developers could not address problems with an exhaustive set of
rules as a machine would. However, the side effect of letting any algorithm learn
its own system, is that the underlying process that leads to an outcome remains
unknown to both developers and end-users.

Performances that may exceed Humans raise nonetheless trust issues as they
do not ensure the fairness of decisions that might be reached thanks to rules
grasped from a biased design or data. This concern is emphasized in critical

introduction 3

situations where even small errors of judgment can lead to dire consequences. For
instance, when a driverless car may decide to turn on the road with no apparent
reason for the humans inside [209]. Understanding models’ decisions, even in
non-life-threatening situations, is primordial as nowadays they have a broad
impact on our everyday lives. For instance, whenever we query information using
keywords on search engines, when we receive recommendations of related topics
or videos, when paths and directions are presented according to traffic predictions
in navigation mobile applications, and sometimes even when candidates are
selected for job interviews. Hence the rise of ethical and fairness questions of
who decides how a model should behave, and on what ground a model should
reach a decision. Such interests are also accentuated by legislation at country or
continental level. The GDPR [160] is a notable example to protect Europeans with
is a set of regulations applicable since May 2018, stating that: "any AI system that is
integrated into people’s lives must be capable of contest, account, and redress to citizens
and representatives of the public interest" [179].

Numerous examples of failure cases of AI that impacted Humans’ lives have
been revealed and investigated. As an example, and illustrated in Figure 1.1 ¬,
when using Pulse [138], an up-sampling model with the image the most left, the
model is trained to yield images with better quality. However, We can observe in
the reconstructed image (¬ bottom) that the model fails to convey the individual’s
features replaced them with Caucasian ones. In addition, models designed to
treat language by predicting the next words of sentences, have been shown to
leverage discriminating samples towards individuals and ethnicities from their
training dataset [28]. As a result, when following words of certain religions
or minorities, the model predicted only negative words and racial slurs. Sadly,
such models have also been shown to convey gender bias [166, 21]. For instance,
by translating occupations where men are over-represented as male e.g.”he is a
doctor”, while other occupations are translated as female e.g.”she is a nurse”. In
order to learn to predict words, those models have been fed with a very large
amount of data directly sampled from the internet, hence it may not have been
properly curated. This led models to leak personal information such as home
addresses [33] simply by prompting the name of a person and letting a model auto-
complete the rest of the sentence. As those models are the underlying program
that runs widely in platforms we use daily, a very large audience is facing those
biases. Many problems have been raised, but only a few solutions emerged to
tackle them. For instance, Google Photos’ model for image classification identified
some humans as “gorillas”, and in three years span, the only solution found was
to remove image categories related to primates such as “gorilla”, “chimpanzee”,
and “monkey” from their image labeling models. This solution cannot be reliable
as it requires taking into account every bias from datasets and mistakes made by
models as many of them are hidden, it would require an unfathomable amount
of time to only obtain an incomplete model. In addition, models tend to behave

4 introduction

Inputs

Outputs

1 2 3

Figure 1.1 – Examples of failures of DL models: ¬ Pulse [138], with an input
image of the former US president Barack Obama, the model tasked to reproduce
it, outputs the image of a Caucasian man. ­ the CLIP model [168], can be induced
to output wrong classification by simply taping tags to objects, e.g. as illustrated
here, the apple is predicted as “library” [72]. ®, traffic signs detection models can
interpret stop signs as speed limit ones only with only a bit of duct tape on it [64].

unexpectedly [117] for example discovering and exploiting unknown glitches in
video games [60]. This is because Deep Learning (DL) models tend to be "lazy",
in the sense that they often learn to rely on shortcuts in their process to yield
outputs. As an example, a model designed to predict what object is represented
in an image can be easily be fooled by taping a tag with the name of another
object on it. As illustrated in Figure 1.1 ­, CLIP [168] one of the most popular DL
models of 2021 matching image and text, can be fooled and classify the image of
an apple with a tag labeled as “library” as a library [72].

Another issue with models deployed in production is their ability to be tricked
by malicious users. Small disturbances on images that may even be imperceptible
to humans [74] can alter a model’s decision to its opposite. As depicted in
Figure 1.1 ®, stop traffic signs can be attacked by small patches of tape to fool
models’ and make them recognize a speed limit sign [64]. Such an attack can
easily be overlooked by humans as the patches of tape may not alter their ability
to identify stop signs. Those problems may only be the tip of the iceberg, and
yet they hinder any deployment of the achievements of DL algorithms to real-life
applications that may have an influence on one’s life, and be life-threatening in
critical applications (e.g. driverless cars).

Among the many ways to prevent biases in DL algorithms, the field of inter-
pretabilty aims at empowering developers with a set of tools that helps them to
identify and understand the hidden rules that those models may exploit to yield
a decision. Interpretabilty also aims at benefiting end-users with increased fairness,

1.1 robotics task: "where are my keys" 5

and ethics of their algorithms which are currently difficult to formulate in a
way that those algorithms could leverage while learning [56]. In addition, being
able to inquire why a model reaches a certain output will foster a broader social
acceptance [36] which can lead to a more genuine trust of their decisions [172, 58].
But what does it means to interpret a model? How can one dig in the billions of
hidden connections within models to extract hidden rules that lead to decisions?
How can one leverage insights gained to further improve models and prevent
the exploitation of bias? This manuscript is dedicated to the design of visual
analytics systems conceived to address these challenges. Our aim is to develop
interpretability methods for robotic tasks, to help robot reach their history of high
expectations while mitigating their biases.

Where are my keys?

On the Desk!

1

1

2

3

Figure 1.2 – To be able to answer mundane questions such as “where are my
keys”, robots are required to master three reasoning skills: first ¬, the ability to
understand natural language questions to grasp what is asked, and analyze its
vision to answer. Then, robots need the ability to navigate in an environment to
look for those keys as fast as possible, and then, the ability to self-localize to both
avoid going to already searched rooms, and, when found, to communicate the
position of the keys.

1.1 Robotics Task: "Where are my keys"

Robotics is among the most promising application of artificial intelligence, and
probably the most represented one in movies and literature. It has applications,
from robots doing our chores such as groceries and house-works, to social robots
assisting humans with handicaps, and even autonomous cars. But despite the

6 introduction

advances in academia and the soaring of DL, we haven’t encountered them
yet in a fully automated and reliable way in our daily life. This is due to the
fact that deploying robots into our world requires addressing a combination
of challenges yet to be successfully tackled enough to ensure their safety. As
illustrated in Figure 1.2, to be able to answer an everyday question such as “Where
are my keys?” a robot needs to tackle multiple sub-problems. First, natural language
knowledge to grasp what needs to be found from the question, and a Visual
recognition ability to identify the keys among hundreds of other items. This is
known as Visual Question Answering (VQA). Second, the robot needs navigation
to efficiently search the keys without being a danger to itself and others (e.g.
bumping into humans, or falling off stairs). Finally, ego-pose localization enables
the robot to communicate the position of the keys, and avoid searching the same
area twice. The slightest error in those sub-problems can lead to a radical drop
in performance and thus reliability on them. If the robot takes too much time
to move, or often confuse items to identify, it would be pointless to rely on
it. In addition, a robot also needs to cope with the ever-changing difficulties
generated by real-world conditions such as opened/closed doors, moving objects
(e.g. humans), or luminosity throughout the day that may prevent it to accomplish
its task.

1.2 Visual Analytics for Model Interpretability

Visualizations, and especially Visual Analytics, are well suited to ease access
to relevant information leading to a model’s decision while conveying intuitive
interpretability—i.e. the “I know it when I see it” statement [153, 56]. This is due
to the fact that there is not a stereotypical explanation for a model’s decision [189],
and thus in many cases, experts need to rely on multiple blocks to build their
hypotheses on how a model reached a decision in order to interpret it. Visual
Analytics enables humans to explore large data spaces, such as models parameters
or outputs. This is particularly useful during early exploration stages where
problems are unknown and thus the research space is vast. Visual Analytics is
potentially efficient for model builders to decide on what data it will train on, what
functions the model will need to optimize, and thus ultimately what constitutes a
good behavior for the model. Therefore, model builders are in the front line of the
efforts for bias reduction and model improvements. However, to understand their
models and their decisions, experts need to go through millions (and sometimes
billions) of parameters per decision which is not feasible in a reasonable amount
of time. The exploration of any hypotheses they draw on a model’s behavior
can then be carried through Human-computer interactions to associate parts of
the model as rules leading to a decision. Finally, any insight gained needs to be

1.3 thesis overview 7

extended to a complete dataset by gathering statistical evidence, in order to grasp
more global tendencies in models’ behaviors beyond single decisions.

One aspect of visual analytics systems is that they are usually designed for
specific tasks and users. For instance, experts require in-depth analysis of models’
decisions which can lead them to compare different hypotheses through models’
parameters. This can be too overwhelming for end-users who are more drawn
towards one main explanation, often obtained through guided visualizations
design to confirm a model’s decision rather than explore its source in its inner
workings. While it is capital that end-users understand and are able to contest
decisions of models, those models require nonetheless experts’ insights to be
improved and then deployed to real-life situations. Therefore as a first mission to
reach interpretability, this thesis focuses on designing interactive visual analytics
systems for experts analyzing their models on specific tasks and datasets. Chap-
ter 6 discuss how those systems may be generalized to other models and tasks.
While most of the contributions in this thesis are dedicated to experts, we also
provide complementary works dedicated to the introduction to Deep Learning
methods to non-expert audiences through interactive web pages—referred to as
explainables or explorables [5, 63].

1.3 Thesis Overview

The rest of the manuscript is organized as follows: first, Chapter 2 provides
a background of the visual analytics and interpretability works related to this
thesis. Then, as depicted in Figure 1.2, the following chapters are ordered around
the robotic challenges of designing models able to answer open-ended human-
readable questions such as: “where are my keys?”. Chapter 3 covers step ¬, i.e. the
ability for models to answer natural language questions on given images, using
computer vision. This chapter includes the design of VisQA, a visual analytics
system in which users can browse the inner structure of transformer models to
identify shortcut-biases, and leverage such insights to improve the reasoning of
their models. Then, Chapter 4 addresses step ­, the challenge of using Deep
Reinforcement learning approaches to tackle automatic navigation, along with
examples on how visualization systems we designed help experts interpret a
model’s decisions. The ego-pose localization step (step ®) is covered in Chapter 5,
in which we also explore how those models may face performance gaps when
deployed to real-world’s ever-changing conditions. Finally, Chapter 6 presents the
current challenges and perspectives for future works of this thesis.

8 introduction

This manuscript relies on the following published material:

Chapter 3

• Théo Jaunet, Corentin Kervadec, Romain Vuillemot, Grigory Antipov, Moez
Baccouche, and Christian Wolf. “VisQA: X-raying Vision and Language Rea-
soning in Transformers”. In: IEEE Transactions on Visualization and Computer
Graphics (TVCG), 2021.

• Corentin Kervadec, Théo Jaunet, Grigory Antipov, Moez Baccouche, Romain
Vuillemot, and Christian Wolf. “How Transferable are Reasoning Patterns
in VQA?”. In: IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2021.

Chapter 4

• Théo Jaunet, Romain Vuillemot, and Christian Wolf. “DRLViz: Understand-
ing Decisions and Memory in Deep Reinforcement Learning”. Computer
Graphics Forum (Proceedings of EuroVis 2020), 2020.

• Théo Jaunet, Romain Vuillemot, and Christian Wolf. “What if we Reduce
the Memory of an Artificial Doom Player?”. IEEE Workshop on Visualization
for AI Explainability at IEEE VIS (VISxAI), 2019. This work was awarded
"best-paper".

Chapter 5

• Théo Jaunet, Romain Vuillemot, and Christian Wolf. “Théo Guesser”. IEEE
Workshop on Visualization for AI Explainability at IEEE VIS (VISxAI), 2020.

• Théo Jaunet, Guillaume Bono, Romain Vuillemot, and Christian Wolf. “Sim2RealViz:
Visualizing the Sim2Real Gap in Robot Ego-Pose Estimation”. NeurIPS XAI
Workshop on eXplainable AI approaches for debugging and diagnosis, 2021. This
work will be extended in a follow-up journal.

C
h

a
p

t
e

r

2
R E L AT E D W O R K

Contents
2.1 Definitions . 9

2.1.1 Visual Analytics . 10

2.1.2 Deep Neural Networks . 11

2.1.3 Interpretability . 13

2.1.4 Interpretability Vs. Explainability 15

2.1.5 Explanations . 16

2.2 Building Blocks of DNN Interpretability 17
2.2.1 Activations of Neurons 18

2.2.2 Visualization with Gradients 22

2.2.3 Inner Representation of Data 25

2.2.4 Model-Agnostic Methods 27

2.3 Leveraging Building Blocks in Visual Analytics 29
2.3.1 Interactive Activations . 30

2.3.2 Sequential Activations and Gradients 31

2.3.3 Interacting with Models for Non-experts 34

2.3.4 Interpretable Visual Analytics Throughout this Manuscript 35

This thesis is related to designing interactive visual analytics systems to assist
experts in gaining knowledge on their trained deep neural networks by interpret-
ing their decisions. This can help them get a better understanding of their neural
networks, and ultimately leverage this knowledge to improve them. This chapter
first provides in Section 2.1 a broad overview and definition of interpretability,
along with other main concepts. Then, Section 2.2 depicts the building blocks
of visually interpretable trained systems, and finally, Section 2.3 introduces how
these blocks are combined to form elaborated visual analytics tools. Additional
related work will be provided in the next chapters, to cover specific Deep Neural
Networks (DNN)s and application domains.

2.1 Definitions

The following sections present the definitions of the key terms visual analytics,
interpretability, and explainability, often used interchangeably or assimilated as

9

10 related work

interpretability, with the lens of different communities and backgrounds within
the scope of Machine Learning. Along with those terms, follows a broader
approach of such a discipline as perceived by other domains (e.g. biology) known
as explanation, and how it may benefit the Machine Learning (ML) community.

2.1.1 Visual Analytics

Visual analytics studies decision-making processes and analytical reasoning,
and how they can be assisted by the design of interactive visualization systems [45].
Initially, visual analytics emerged from information visualization and diverged to
focus on the complete analysis of decision processes by combining visualization,
human factors, and data analysis. Visual analytics heavily relies on humans for
tasks that cannot be automated, e.g. to decide what piece of information may
be relevant [101], and formulate hypotheses on its influence on a decision. The
popularity of visual analytics systems, lead in 2007 to the creation of IEEE Visual
Analytics Science and Technology (VAST), a Symposium of the IEEE 2006, which
was held jointly with the IEEE Vis conference, one of the main conferences of
visualization. Since 2021, VAST, along with infoVis and sciVis merged to IEEE VIS.
As stated by Hohman et al. [87], thanks to early endeavors of visualization and
ML communities, the popularity of visual analytics soared when it was leveraged
for the interpretation of deep neural networks. While Visual Analytics systems
can provide insightful information on how inspected models behave this domain
is still in its early stage, with challenges to overcome [101, 87].

max(0,)

+

N1
2

1N1

0N1

Dog

Input X i

Output Yi

Layer

Layer
Layer

0

1

2

0N0

N0
1

N0
2

N0
3

N0
4

1N2

N1
0 N1

2. +W1
0 W1

2N1
1.W1

1
.

Neuron Computation

Activation Computation

Figure 2.1 – Illustration of the structure of a Deep Neuron Network. With the
input image Xi, the neurons of the model, arranged in inter-connected layers,
yield the output Yi "dog". This output is the outcome of a multitude of neuron
computations. As depicted on the right of this figure, each neuron (e.g. here
N2

1) relies on the result of neurons from the previous layer. A more formal
representation of this computation is depicted in Equation 2.1.

2.1 definitions 11

2.1.2 Deep Neural Networks

DNNs are often considered as black-boxes with the unique purpose to convert
inputs X into outputs Y. Formally this can be represented as the following
function Yi = f (Θ, Xi) in which Θ corresponds to a set of parameters, and i is
an element of the sets X and Y. In practice, a DNN is composed of a multitude
of simple linear functions—referred to as neurons—generally connected with
non-linear activations. As illustrated in Figure 2.1, those neurons represented
as circles, are arranged in interconnected layers. Each connection between two
neurons of successive layers is weighted by a parameter W l

i where l indicates the
layer of the incoming neuron, and i is the index of this neuron within its layer.
Formally, in i’s simplest form as a fully connected layer, a neuron (e.g. Nl+1

0) and
its incoming weighted connections can be represented as it follows:

Nl+1
0 =

i

∑
i=0

W l
i Nl

i + bl
i (2.1)

Where N corresponds to the ensemble of neurons in the model, W the weights,
and b a bias added to provide to models the ability to formulate more complex
functions (i.e. avoid passing by (0, 0) by adding a term). However, despite a
multitude of interconnected neurons, a model can only formulate complex linear
functions. Thus, to provide non-linearity, in DNNs, for each neuron, after the
computation of Equation 2.1, the yielded value is then used in a non-linear
function (e.g. sigmoid, tanh, or ReLU [2]). The ReLu function, widely used in the
Deep Learning community, can be represented as follows: ReLU(λ) = max(0, λ).
Those functions, referred to as activation functions, are key for models to be able to
approximate elaborated functions, such as, for instance, image classification. And
thus, the result of this operation is called activation, i.e. an intermediate result of
the model computation towards an output which can be used to try to grasp the
decision process of the model. Since the neurons of a model are interconnected by
layers, all activations of a selected layer represent how the model considers the
given input Xi. Such a representation is called an embedding, and, as illustrated
in Section 2.2.3, embeddings can be used to capture how the model may construct
an inner presentation of a given dataset.

Now that we have interconnected neurons capable of formulating non-linear
functions, the next step is to be able to tune this Neural Network for a specific
task, i.e. what we call training. Aside from adjusting a model’s structure, i.e.
adding more or fewer layers, or neurons, and swapping activation functions, the
only element that can be changed in a model is Θ: its weights (W). In biology,
Θ can be seen as the neuro-transmitters we have in our brain, dampening or
increasing a signal from another connected neuron. Hence, in computer science,
those weights (or parameters) are values that need to be adjusted in order to fit

12 related work

the desired task. To do so, models are first initialized with random weights, and
then start working—i.e. convert inputs X into outputs Y. Obviously, with random
parameters, the model is doomed to yield errors which can be evaluated with a
loss function, for example, the Mean Squared Error (MSE) L = ||y− ŷ||2, the most
widely used in Deep Learning. Such a loss indicates how wrong the model is for
a set of outputs y compared with the ground-truth optimal results ŷ. With such
information, the next step is to determine how one should adjust the model’s
weights to reduce L. This is done using gradients computed from the partial
derivative of the loss with respect to the parameters as follows:

∇Θi =

[
∂L
∂Θi

]
(2.2)

Here, i indicates the batch, i.e. a computational step after which the model
yielded enough outputs to have a loss computed, and its weights updated. The
resulting gradient ∇Θ describes towards which direction the values of weights
should evolve to reach a better result. However, if such changes were followed
blindly, after many iterations the weights of the model could oscillate around
its optimal configuration without ever reaching it. Thus, to limit how much the
weights of a model may change, and help it find its optimal solution, the gradient
is multiplied by the hyper-parameter σ (i.e. a parameter manually set by a human),
a single value, called the learning rate. Typical values for a learning rate range
over orders of magnitude from 1× 10−2 to 1× 10−6. The smaller the value, the
longer the model will need to be trained, but the more precise it will be. Hence,
usually, there is a trade-off to be found between performances and training time 1.

In the previous paragraphs, DNNs were introduced with the lens of Multi-Layer
Perceptron (MLP)s, the most straightforward structure of models. However, there
exist multiple types usually preferred for different types of inputs. Usually, for
image processing, CNNs are preferred over MLPs as they are able to preserve local
spatial coherence, and hence have fewer weights than an MLP would have for
the same input. Because convolutions are shift equi-variant operations and share
weights spatially, their usage lead to a significant reduction of the number of
parameters needed. In this case, as illustrated in Figure 2.2, we refer to the weight
of a model as filters which are convolved with the inputs for the first layers or
with the previous activation. Similar to MLP the result of a neuron, despite being
a matrix, is processed by the same activation functions. In many cases within
the Deep Learning (DL) community, and in this thesis, CNN models often include
some Fully Connected (FC) layers—i.e. MLP usually considered as the core of those
models’ decisions. This thesis also uses both Recurrent Neural Network (RNN)s
and transformer models, whose design and structures particularities will be

1. Initially large values also provide a regularization effect that may help to avoid some local
minima.

2.1 definitions 13

Input X i

Filter W0
n

Neuron N0
n

Figure 2.2 – Illustration of the convolution operation within the first layer of
a Convolutional Neural Network (CNN) model. Given an image xi, the model
applies a filter W0

n of learnable weights over the complete input, which yields the
values that the neuron N0

n will convey to an activation function, and the next layer.

further introduced within concerned chapters, namely Chapter 4 for RNNs, and
Chapter 3 for transformers.

2.1.3 Interpretability

Historically, the concern of understanding models emerged in the ’80s by
studying expert systems [137], Bayesian networks [113], and more lately in the
’90s, by studying neural networks [7]. However, the domain only gained popularity
during the past decade along with the soaring performances and complexity of
Deep Networks. Despite such a history, and a large amount of literature of
different approaches and definitions to what may be seen as understanding a
model, a broadly accepted definition is yet to be discovered. While a vast majority
of those definitions centers around humans (e.g. “the ability to explain or to
present in understandable terms to a human” by Doshi-Velez and Kim [56]), they
are torn on what it should focus on. They either focus on:

• The decision (i.e. output) of a trained model, analyzed after-the-fact (referred
to as post-hoc.

• The inner workings and designs of models, describing, for instance, how
many layers should be used—sometimes referred to as transparency.

• The mapping of data, which addresses how models can tie together a
dataset of inputs to outputs—also called representation [126].

14 related work

“six”“two”

1 2

Figure 2.3 – On the left ¬, two examples of an image containing a digit which
have been correctly evaluated as "two" by a DNN. On the right ­, two other
images which according to the MNIST dataset also contain hand-written "two".
However, the same DNN fails and labels those images as "six". Such mistakes may
be more acceptable to Humans, as those ambiguous images may even induce us
to estimate that they contain sixes.

This difference may affect the design and purpose of approaches to interpretabil-
ity. For instance, to focus on a single decision of a trained model, one needs to
design a system capable of analyzing this decision along with its input, otherwise
it may be irrelevant. To illustrate this, let’s consider the analysis of a decision
of a Deep Network trained to detect hand-written digits in a given image. With
the images shown in Figure 2.3 ¬, the model predicts that they correspond to
"two"s. By looking at the image, one may indeed understand that those digits
correspond to twos, and hence that the model is well trained. In contrast, with
images of ambiguous digits, where even for humans it is hard to recognize the
corresponding digit, (Figure 2.3 ­), the model yielding "six" instead of "two" is
rather understandable. Hence such a mistake may be acceptable to users who may
gain more trust in it, as the model made a mistake that a human also would [172].

In contrast, to focus on the inner workings, one may either target the structure
of models [232], or the learned parameters [217, 223]. Both of those targets do not
rely on the analysis of inputs or outputs. Hence, when analyzing the same model
that outputs the hand-written digit in images, with the lens of inner workings, one
only relies on the model itself. As an example, this can be done by collecting the
parameters of the model, and browsing through them to try to grasp the shapes
and colors patterns it may be sensitive to (e.g. white curves which may be seen
in twos). This, however, is inherently much more difficult for Deep Networks
(due to the number of parameters, and abstract data they manipulate) than, for
example, for rule-based expert systems.

Finally, interpretability, within the scope of mapping of data, arises from
the assessment that models are or should be considered as black-boxes where

2.1 definitions 15

only their inputs and outputs may be understandable to humans. And hence
that interpretability endeavors should not focus on shedding light on the inner
workings of a model, which cannot be understood, but rather on how it processes
data. As an example with the same hand-written digits recognition model as
earlier, such a model would be fed with a plethora of images and the conducted
analysis may consist in observing what the model may consider as similar images,
or images with which the model is undecided.

2.1.4 Interpretability Vs. Explainability

Despite being used interchangeably by the community, and carrying a similar
objective (i.e. to grasp an understanding of Artificial Intelligence (AI)s’ behaviors),
the terms interpretability and explainability may convey different meanings. For
instance, according to Rudin [175], interpretability comes through the design of
machine learning models (i.e. is intrinsic) either by using Deep Networks trained
to communicate their decision process (e.g. in natural language), or with simpler
models such as rule-based ones in which a path resulting in a classification can
be followed by Humans. In contrast, to him, explainability comes once a model
is trained, either with the usage of a simpler model, e.g. rule-based, trained to
"mimic" the behavior of a more complex Deep Network. To him, explainability
can also be reached by using methods after-the-fact (i.e. post-hoc) to analyze a
decision of a neural network. Roscher et al. [174], indicate that interpretability
refers to elements that inform humans about a models’ decision process, and
that the explainability of models, is the human-centric approach of using those
interpretable features to grasp the causes that lead to a decision.

In this manuscript, we suggest the burden of analysis as a distinctive feature
between those two concepts. In interpretability, the burden of exploration and
analysis of a model’s behavior is tackled by the user, while in explainability,
information that may help understand a model’s behavior is presented to the user.
While the distinction between those terms is thin, we argue that this reinforces the
distinction between targeted audiences, and thus the design of solutions. As an
example, experimented users may be more inclined to analyze models themselves,
while end-users may seek more accessible information. Such a distinction between
those terms will be carried through the manuscript, which focuses on a human-
centered approach to assist domain experts, often builders of models, to interpret
the decisions of their models by exploring their inner workings visually, and
through human-computer interaction.

16 related work

2.1.5 Explanations

The quest for interpretability is a path also explored outside of Machine Learn-
ing and Computer Science, in domains such as law, biology, social or cognitive
sciences. However, according to Mittelstadt et al. [143], in ML, the most recent
discipline, interpretability endeavors do not rest on the shoulders of giants to
leverage already existing methods and definitions from those domains, hence the
emergence of a gap between them. For Miller [140], closing such a gap would
benefit the ML community, along with focusing on everyday explanations. To him,
everyday explanations target local “why-questions”, e.g. “why did the model pro-
vide this output?”, as opposed to scientific explanations which may address more
global approaches e.g. “What did the model learn?”. The benefit of everyday
explanation is that it may encourage users to build trust as they may be able to
more easily identify causes for a decision. This is due to the fact that everyday
explanations are expected to convey key causes leading to a decision, as a human
would, rather than providing the complete chain. Such explanations are also
encouraged by the fact that human cognitive functions tend to be overwhelmed
when there are too many elements to focus on, and hence, humans tend to be
more reserved towards complete explanations with many parameters to account
for.

While there is no consensus on definitions in machine learning interpretability,
the term “explanation”, is often described as addressing a model’s outcome
individually by using both the input and the models’ perception of outputs
(e.g. class discriminative features) [84, 147]. This more broadly falls in post-hoc
interpretability area, with the exception that explanations focus on one instance
at a time. Following these works, throughout the manuscript, we will refer to
an explanation as an answer to “why” questions. For instance, “ Why did the
autonomous car decide to hit the breaks?”. An answer could be because a traffic
light turned red, forcing by law any car to stop there. Another explanation
could be that a vehicle ahead was stopping, thus breaking was mandatory to
prevent any collision. We refer to post-hoc interpretability as the collection of
methods that may shed the light on this ambiguity, for example, by addressing
questions designed to verify potential causes for a decision such as “has the car
seen the traffic lights?”, thus potentially leading to the explanation to “Why did
the autonomous car decide to hit the breaks?”. An explanation may rely on
multiple interpretations which might co-exist in order to grasp the behavior of a
model. In addition, explanations can be erroneous, biased, or victim of human
over-interpretation, hence the need for multiple explanations and tools to analyze
them.

2.2 building blocks of dnn interpretability 17

Dog

Activation

Gradients

Model
Agnostic

Representation

Figure 2.4 – Building blocks for Deep Learning interpretability are designed to
provide an understanding of a model’s decision or behavior. Here illustrated
using an MLP, they can be divided in four categories. For a given input, a
model produces intermediate results (Activations), to reach an output which can
be used either by derivation to produce Gradients, or with output to produce
Representation. Finally inputs and outputs can be combined to yield Model-
agnostic interpretations.

2.2 Building Blocks of DNN Interpretability

Interpreting Deep Neural Networks (DNN) is often tackled with respect to their
application domain (e.g. image, or text), and their type such as, for example, MLP,
CNN, or RNN. The following presents some of the building blocks of visualization
for Deep Learning interpretability, i.e. individual approaches designed to provide
an understanding of a model’s decision or behavior. As illustrated in Figure 2.4,
those building blocks are here presented in four categories, namely: Activations
which focus on the intermediate results extracted from the inner operations a
model does to reach an output, Gradients produced when deriving an output
with respect to either the input, or activations, Representation which addresses
tendencies and global behavior of models through their embeddings, and finally
Model-agnostic methods leveraging inputs and outputs of models to yield in-
sights on their behaviors. Those building blocks of visualization which mostly
emerged from ML communities, and are presented in ML, are detailed in the
following sections.

18 related work

Figure 2.5 – Comparison of activations from a simple CNN model (Lenet5 [116])
trained to identify the hand-written digit in its input image. We observe that for
the input image of a "2" ¬, the activations (the whiter the higher) of the first layer
are sensitive to the overall image, and shape of the digit ­, whereas activations
from the last layer are more abstract shapes harder to analyze ®. In this figure,
images were resized for the sake of readability. Initially, both the image input and
first layer activations were 28× 28, while layer second layer activations were 5× 5
pixels.

2.2.1 Activations of Neurons

As introduced in Section 2.1.2, and illustrated in Figure 2.1, during their execu-
tion Deep Neural Networks (DNNs) provide intermediate results referred to as
activations. Those activations can be visualized for local explanations of what
regions of the input a model may be sensitive to. Hence the reason why to analyze
them. In computer vision with CNNs and images as input, activations are often
visualized as images describing how a neuron might be sensitive to the shapes
or colors of the input image. Usually, the most targeted neuron activations to
visualize are those within the first layers. This is due to fact that these activations
are directly tied to the image input, and thus the activations can be interpreted
in pixel space, i.e. be compared with the input image. Since layers in CNNs are
sequential, i.e. the layer n− 1 provides inputs for the layer n, the deeper in the
model activations are sampled from, the more abstract and smaller they become,
making chances to interpret them grow thinner. As illustrated in Figure 2.5 ­,
with a CNN model designed to classify digits within an image, the activations (the
whiter the more intense) from the first layer can be assimilated close to the input
image ¬, whereas activations for the last CNN layer are harder to analyze as they
are. Those activations, however, remain a vast majority within DNNs, hence the
raising desire to understand what information they may convey throughout the
model.

2.2 building blocks of dnn interpretability 19

Figure 2.6 – Left ¬, the Top-k image with the highest activations per neuron. Each
row is a neuron, and each column from left to right corresponds the top-10 images.
We can, for example, observe that the neuron corresponding to the first row might
be sensitive to circular patterns such as dog eyes and snouts. Credits for this
sub-figure go to Springenberg et al. [190]. Right ­, examples of overlap between
a manually annotated segmentation dataset, and a model’s activation from 4
neurons. We can observe that the neurons corresponding to the two rows on the
left are sensitive to houses. Hence indicating that some neurons may function as
"object detectors". Credits for this sub-figure are due to Bau et al. [16].

The visualization of features from deeper layers can be addressed with other
approaches, however, many of them revolve around the challenge of contextual-
izing them with respect to their input, e.g. display them over input image. For
example, as depicted in Figure 2.6, to grasp to what shape or color a neuron may
be sensitive to, one can do a forward pass on each dataset sample and can collect
the activations of this neuron. Then, the next step is to sort those activations by
their intensity, e.g. in the case of CNNs with a matrix as activation noted a, with n
rows and m columns the following sum:

n

∑
i=0

m

∑
j=0

aij (2.3)

The goal is to only preserve the top-k activations and their corresponding input
image. Then, by visualizing those images one may grasp patterns and trends in
the top-k images such as objects (e.g. cars) or shapes (e.g. circles) which may convey
what the neuron may be sensitive to. Thanks to this, as illustrated in Figure 2.6,
one may observe that some neurons may be sensitive to circular patterns, while
others to text, or lines. Using this approach, Zhou et al. [244] have studied some
neurons of their analyzed CNN model were used as "object detector", i.e., where
only highly activated when a certain object (e.g. a lamp) was within the input
image. This can also be tackled in the opposite way, i.e. by selecting an activation
map from a neuron, and evaluating its upsampled Intersection over Union (IoU),

20 related work

with an annotated segmentation dataset of objects [16]. That way, if the activation
map completely overlaps the regions of the image in the dataset corresponding to
an object, one may conclude that the corresponding neuron might be sensitive to it.
As depicted in Figure 2.6 we can observe a strong correlation between activations
of neurons, and the presence of "house" or "dog" within the inputs.

Layer 3

Layer 1

Layer 5

Layer 51

2

3

4

Figure 2.7 – Visualization of activations of an image classification CNN using
DeConv [240]. This figure represents a manually selected sub-set of neurons
which are displayed in a 3× 3 grid of their most active images. We can observe
that the first layer ¬ contains patterns such lines and color gradients, the second
layer ­ seems to seek for textures or patterns, while the layer 5 ® seems to
responsive to more complex image feature such as faces. In ¯, we combined with
the display of the top-k images one make sens of abstract DeConv activations, e.g.
the grass in the background. Activations in this figure were sampled from [240].

While those methods yielded promising results, they remain subject to humans’
interpretations to either grasp patterns within the top-k images which may not be
always straightforward or limit the range of activations to only visualize those
that match previously annotated objects. An alternative, introduced by Zeiler et
al. [240], is to convert those activations from deep layers back to the input space,
i.e. with the size of the image, and its highlighted regions corresponding to what
a selected activation might be sensitive to. To do so, such an approach, named
Deconv [240], implements another inverted model, in parallel to a traditional
CNN model, with the purpose to convert any activation back to the input. This
inverted model samples activations from a selected layer, and nullifies (i.e. set
their values to 0) all of them except the one analyzed. As illustrated in Figure 2.7,

2.2 building blocks of dnn interpretability 21

Activations at step 224

Figure 2.8 – Left ¬ visualization of a manually selected activation of a hidden
state of a recurrent model. Such activation is displayed over its input text ranging
from blue (negatives values) to red (positive values). It can be observed that this
activation seems correlated with the level of text indentation (credits to [100]).
Right ­, visualization of a complete hidden state as a grid. It can be observed
that only a handful of activation are high at the same time, and thus that they
may be used as "functions" representing different elements of the inputs. Sampled
from [35].

this results in an image, the same size as the input with shapes highlighting what
triggered the selected activation. It can be observed, as mentioned earlier, that
the activations of the first layer of the model tend to be responsive to lines and
color hue ¬. However, as the activation are sample deeper within the model, they
become complex, with shapes such as dog faces, or certain textures in layer#5

(Figure 2.7 ®). As illustrated by Zeiler et al. [240], those visualizations reach their
full potential when combined with the top-k images maximizing an activation
method. This can help humans to make sense of otherwise hard to grasp patterns
resulting from Deconv, by helping humans grasp the common factor within top-k
images those activations may correspond to. For example, in Figure 2.7 ¯ using
the combination of those methods, it has been concluded that this neuron from
layer#5 might be sensitive the presence of grass in the background.

With Natural Language Processing (NLP) tasks addressing textual input (e.g.
translation), one of the main challenges for models is being able to retain informa-
tion seen from previous words of a sentence which may still have an influence
on the current input. To do so, we rely on RNNs, another kind of model which
maintains a recurrent inner state (called hidden state) that updates after an input.
Formally, this can be represented as it follows: ht = Φ(ht−1, ΘΦ, an) where ht is
the current inner state, ht−1 the one from the previous input, and an represents
all activations from the layer n, to which the recurrent layer is connected. Hence
the hidden state is a time-varying vector which is often represented as a heatmap
that can be displayed over inputs (e.g. highlighting words and characters in sen-
tences) [100]. As illustrated in Figure 2.8 ¬, thanks to such a visualization, it has

22 related work

been discovered that the hidden states of those models are able to model hierarchy
in texts such as indentation, may be able to count characters in sentences without
being asked to, enabling them to convey information from inputs outside of is
expected from their design. Heatmap visualization of hidden states can also be
applied to trajectories in which some activations activations are sensitive, among
other, to trajectories’ direction [35] (Figure 2.8 ­). Thanks to this it has been
discovered that their model was, for example, sensitive to trajectories going up
or down. More recently, NLP tasks are addressed with attention models [219],
whose attention, i.e. activations, can be visualized as bipartite graphs [155], and
heatmaps [176, 12] to grasp how a model may associate concepts and words
together while providing an output. Chapter 4 and Chapter 3 are respectively to
the visualization and analysis of activation in RNNs, and transformers. Further-
more, as depicted in the following section, methods to visualize activations can
be further improved when used jointly with back-propagated gradients.

2.2.2 Visualization with Gradients

As introduced in Section 2.1.2, gradients are at the center of neural algorithms’
learning, they are used to update model weights with respect to their output, thus
it is only natural to visualize them. However, a multitude of gradients can be
computed from DNN models, and the gradient computed with Equation 2.2, may
not be the most suitable in the scope of interpretability. This is due to the fact
that it only indicates how the model’s weights may need change to better bring
closer its outputs y and ground-truth labels ŷ, and for large models there may be
billions of them! Thus a human may have a hard time understanding the meaning
of those changes. More suitable information, would be to understand what pixels
of an input image xi are the most influential for a model to yield its output yi.
This can be done with the following gradient:

∇xi =

[
∂yi

∂xi

]
(2.4)

In other words, how a change of pixels values of the input, may affect the output.
A key feature of this gradient is its ability to transform this information into a
medium that a human can make sense of, i.e. the input image. This is referred to
as saliency maps [187], in which the gradient ∇xi can be converted into an image
and displayed over the input to display relevant parts of the image for a selected
output. The downside of such an approach is that in many cases a majority of the
image is highlighted, making it difficult to assess what particular points drew the
model’s attention. To tackle this issue, guided-backpropagation [190] (illustrated in
Figure 2.9 ­) proposes to clip to zero parts of the gradient’s contributions to other
classes, i.e. those that may be negative near the output, but positive throughout

2.2 building blocks of dnn interpretability 23

21 43

Figure 2.9 – Examples of visualization with gradients-based building blocks. From
left to right, ¬ with an input image, ­ guided back-propagation, class [190], ®

optimization of input [136] targeting the class ”dog“, and ¯ Grad-Cam [182]
highlight pixel assimilated to the class ”dog“.

the model. This results in the highlight of only key pixels to classify images, such
as, for example, the snout of a dog. By doing so, in contrast to activation-based
methods, one can assess the pixels of an image that may be associated with a class
not even targetted by the model. Integrated gradients [199], propose to tackle the
saturation of gradients by using as input the integral interpolation of an image
and a baseline (usually a black image). This approach yields visualizations in
which features of images such, for instance, a dog’s snout are more reflected.
This is due to the fact that in many cases, models can successfully classify an
image indistinguishable by humans (e.g. with pixels having less than 10% of their
original value) [195], hence the saturation of gradients.

The gradient ∇xi extracted from Equation 2.4, can also be used to update the
input image with respect to the model’s output. The intuition behind this is that,
by modifying the pixels responsible for the model’s output, one may ultimately
grasp what patterns the model may seek in an image to yield such an output.
By doing this iteratively to alter an image (usually filled random noise) one can
maximize an output to provide 100% confidence on a class [149]. As depicted in
Figure 2.9 ®, this results in the creation of abstract artifacts of key class’s features
all over the input image such as, for instance, snouts for dogs [156]. This indicates
that for the model to output the class “dog” for an image, the model needs, among
others, to distinguish a snout. When used in combination with neuron activations,
input optimization can provide insights on the role of each unit of a model, i.e.
what each neuron is looking for in an image. To do so, instead of optimizing
the input image to maximize the output, one can maximize the activation of a
selected unit [20] as it follows:

∇xi =

[
∂al

n
∂xi

]
(2.5)

24 related work

Where al
n is the nth activation of the layer l. Such an approach has been improved

through regularization using an image prior [136], and generative models [151] to
provide more human-readable images. Such an approach can also be applied to
NLP, in which words of sentences can be optimized in order to grasp how a unit
may associate words together [17].

To date, the most popular method to visualize gradients of CNN models with
images as input is grad-CAM [182], which relies on the activations of the last
convolutional layer to produce a heatmap over the image input highlighting the
regions related to a particular class. Such a heatmap indicates the attention of
the model, i.e. the regions of the input the model looks at in order to provide
the output. Thus, humans can assess if the model focuses on the correct objects
within images corresponding to the outputted class. This approach weights
the activations of the last convolutional layer (al) using global average pooling
of gradients issued from the derivation of the output yi with respect to each
activation of the last layer l indexed by n as it follows:

α
y
ln =

1
Z

w

∑
j=0

h

∑
k=0

[
∂yi

∂aln
jk

]
(2.6)

Where w, h are the width and height of the activation map. Here, α
y
ln is the

weights of the neuron n of layer l extracted from the output y. Such a weight is
then combined with activations, and passed to a ReLU function to only preserve
positive values, i.e. those contributing to the output as it follows:

my = ReLU

(
∑
n

α
y
lnal

n

)
(2.7)

The resulting my corresponds to a heatmap, the size of activations of the last
CNN layer, describing which regions of the input image are responsible for the
model’s output. As illustrated in Figure 2.9 ¯, we can observe with the heatmap—
the redder, the more intense—that according to the model the dog’s face is a key
feature for the model to output the class "dog". However, in order to be relevant,
grad-cam needs for the activations to have a sufficient size, otherwise the resulting
heatmap, which needs to be upsampled to match the input’s size, may cover too
much of the input, hindering any analysis. The size of activations is dictated by
the model’s architecture, and thus needs to be considered before using grad-cam
heatmaps. Nonetheless, thanks to such an approach experts were able to grasp
bias such as, for instance, how a model exploits humans’ faces to predict their job,
instead of their surroundings and tools they manipulate [182].

2.2 building blocks of dnn interpretability 25

2.2.3 Inner Representation of Data

As introduced in Section 2.1.2, like a funnel, as the dataflow reaches deeper
layers of the model, the amount of parameters grows thinner. Because of this, the
model needs to build an inner representation of inputs in its own abstract space.
Thus, the complete set of activations with one layer, noted Al, describes how the
model perceives the given image, i.e. what information it deemed important to
convey. This is referred to as an embedding and its core to the analysis of models
with the lens of representation. In such an analysis, one may seek to understand
how the models behave globally, i.e. how the model may perceive the data that it
is fed to, and how the model may associate data-points together. To do so, such
methods often focus on activations in the last layer. This is due to the fact that
it is argued that such a layer is the most suited to be analyzed since it should
convey high-level semantics [182] which are then the premise of decisions made
by fully-connected layers. Hence, the first step of any study of a model’s inner
representation of data is to pass a complete dataset through it and collect, for each
data-point its corresponding embedding.

However, due to the nature and size of models, those embeddings are high-
dimensional elements which makes comparison or interpretation by humans as
they are, nearly impossible. Thus, to do so, the dimensionality of the embeddings
is frequently reduced by techniques such as pca, umap [135], or t-sne [218].
The following describes the execution of t-sne, the most popular method. First,
it computes the probability for each pair of points to be neighbors, using the
euclidean distance between them. This is formally represented as it follows:

pj|i =
exp(−||xi − xj||2/2σ2

i)

∑k 6=i exp(−||xi − xk||2/2σ2
i)

(2.8)

Where pj|i is the probability that the embedding xi picks xj as neighbor, when
embeddings follow the probability density under a Gaussian centered at xi of
variance σ2

i . Then this needs to be converted into a low dimensional space (the
visualization space, usually 2D or 3D) using the following approach:

qj|i =
exp(−||yi − yj||2)

∑k 6=i exp(−||yi − yk||2)
(2.9)

in which yi and yj represents the data points xi and xj in this low dimensional
space, and qj|i the probability that they are neighbors. Hence, the objective of t-sne

is to minimize the difference between pj|i, and qj|i to 0 which is a synonym of a
perfect mapping between those two spaces with respect to the distance between
xi and xj. Such minimization is computed using the sum of Kullback-Leibler
divergences on embeddings as follows:

26 related work

C = ∑
i

KL(Pi||Qi) = ∑
i

∑
j

pj|ilog
pj|i
qj|i

(2.10)

This yields C, the cost function of all probabilities P|Q, which is then used
to update data-points in low-dimensional space following a gradient-descent
approach ∂C

∂yi
. Intuitively, this can be seen as data-points attracting and repelling

each other in order to minimize their overall distance when their pj|i, and qj|i are
too different. t-sne is a stochastic and non-parametric approach, which means
that it must be re-executed in order to add new data-points to the representation,
and doing so may yield different results.

1 2

Figure 2.10 – Examples of visualization with the representation building blocks.
From left to right, ¬ t-sne representation of embedings on the MNSIT dataset,
each dot is an input, and its color represents it class. ­ Grand-tour of the MNIST-
Fashion [122] with as many dimensions as the number of classes displayed on the
most right of the figure.

As illustrated in Figure 2.10 ¬, with such a dimensionality reduction method,
DNN embeddings can be projected into two [23] dimensions. In such a visualiza-
tion, each dot is an embedding, at its color encoding, for instance, its ground-truth
class. In any case, the goal is to regroup similar embeddings in clusters, and
eventually compare a selected instance to the rest of the dataset—referred to as
explanation by example by Lipton [126]. The more a model is able to successfully
divide a dataset into clusters of the same class, the more it has a good representa-
tion, hence indicating successful learning of classification. In contrast, in those
clusters, we can also observe sources of confusion for the model by identifying
inputs that are between two clusters, or within a wrong cluster. This can be com-
plemented by sampling embeddings from inputs and outputs of an intermediate
layer, instead of the last layer. By doing so, we can compare the scatter plot before

2.2 building blocks of dnn interpretability 27

and after going through the layer, and thus observe the influence as the model
produces outputs. Such an influence can also be observed using grand-tour [11], a
projection of embeddings in n-dimensions. For instance, as seen in Figure 2.10 ­

n equals to the number of classes, the model as to identify in its training. However,
visualizing n-dimensions on a 2D screen is a challenge by itself. Grand-tour tackle
this by relying on animation to rotate such space and emphasize a few dimensions
at the time, and on interactions to enable users to manually arrange dimensions
as they want, to pick which dimensions to visualize more easily at the expense of
others. Using this, it has been observed how the separation of different concepts
such as classes corresponding to shoes, and those corresponding to clothes may
emerge from early layers [122]. The impact of training on models’ inner repre-
sentation can also be monitored using this approach by animating representation
scatter plots after each training step to, hopefully, highlight the convergence of
the model. By monitoring the coordinates of centroids from each cluster, after
each training epoch, one can use such an approach to grasp an overview of a
model’s training [170]. While the study of inner representations through the help
of dimensionality reduction techniques may yield interpretable results, due to the
stochasticity of algorithms such as t-sne and fine-tuning of hyper-parameters that
may be required to optimize the final layout, we argue such visualization should
serve as an entry-point to draw hypotheses from rather than a way to interpret a
model’s decisions.

2.2.4 Model-Agnostic Methods

As illustrated in Figure 2.4, another approach to reach interpretability of Deep
Neural Networks is to consider them as black-boxes from which only inputs
and outputs may be understood by humans. The advantage of such a building
block is that it is model-agnostic, hence it can be applied regardless of a model’s
architecture, and in some cases even of the data they manipulate. A common
method is to distill a trained model’s knowledge into a smaller, and thus easier
to interpret, model [203]. This relies on the argument that simpler models such
as decision trees can reach sufficient performances to be deployed in real-world
situations such as in healthcare [192] while providing to health professionals the
ability to inspect their decision process. To do so, we can train a DNN, as we
normally would, e.g. a large model with a lot of training data. Such a model
may then reach high performances on its task, and learn to model patterns in
its training data, key in distillation. Finally, the next step is to use a smaller
model, e.g. a small DNN, or a rule-based model, and train it to mimic the bigger
model’s outputs on the same inputs. For instance, this can be done by altering
the training loss L as introduced in Section 2.1.2, to ||y− y||2, where y′ is the
output of the smaller model, and y the output of the larger one. As a result, the
smaller model not only learns to be accurate, as it would have using ground-

28 related work

“Wolf” Explanation

1 2

Figure 2.11 – Example of insight gained using lime [172], when given the image
of a husky ¬, the analyzed model fails and predicts "wolf". By looking at lime’s
explanation, with the gray areas corresponding to the "super-pixels" removed, we
can see that the analyzed model relies on the presence of snow in the background
rather than the dog to yield an output, hence the mistake. This example and
images were sampled from [172].

truth labels but also how to behave, i.e. how to handle unexpected data, as the
bigger would. In particular, the smaller model learns how the bigger model
distributes errors over non-ground-truth classes, which contains a large amount
of knowledge on its decision process [85]. That way, the decision process of a
complex DNN can be summarized as rules to follow to grasp why, for example,
a patient may have been classified as potentially carrying a disease (e.g. under
30 years old, and fever). Since we rely on smaller models, such a process may
yield performance drops, their accuracy, hence distillation thrives when applied to
situations where decisions’ accuracy is of the utmost importance (e.g. healthcare).
Thus, in many cases, any explanation provided by a model is required to be
analyzed by a domain expert (e.g. a doctor) who evaluates, and sometimes fixes
models’ decisions.

However, despite promising results, and distillation being an active research
domain for interpretability, there is an equilibrium to be found between a distilled
model’s accuracy, and its complexity that may make it inherently difficult to
interpret. To illustrate, while each rule in a rule-based model might interpretable,
the process that leads the creation of those rules, and paths to decisions remain
unclear. This is emphasized as the number of rules increases, and hence when
it becomes too laborious to follow the rules applied to a particular dataset [126].
Nonetheless, when applied locally i.e. for a single data-point, distillation can
provide useful insights on how a model behaves.

Another way to analyze DNNs with a Model-Agnostic lens (i.e. using only
inputs and outputs), is to apply disruptions over an input, and observe how they

2.3 leveraging building blocks in visual analytics 29

may affect the output. This is the case for lime [172] one of the most popular
model-agnostic approaches for interpretability in the industry. In lime, an input
is altered multiple times. For instance, when applied to an image, it consists in
dividing it into clusters of pixels using a segmentation algorithm, e.g. growing
regions. Then, lime computes the complete combination of this image in which
those clusters may be replaced by their average value, gray or dark. Each variation
is forwarded to the analyzed model, in order to collect its impact on the output
(e.g. less confidence on the prediction of a class). This is then used to train a simple
linear model to predict the analyzed model’s output with respect to its altered
input. By doing so, the linear model learns which super-pixels are key in order for
the model to yield its output. Thus, it can be used to grasp the minimal number
of super-pixels required for the model to reach an output similar to what it did
with its unaltered input. As illustrated in Figure 2.11, using lime, Ribeiro et al.
understood how a neural network exploits the snow in the background of images
to distinguish between huskies and wolves. Similarly, occlusion patches can be
applied to images in order to visualize which regions of the image may increase or
decrease the model’s confidence for an output [240]. While being less precise than
lime, the advantage of such an approach is that it does not require a regression by
a linear model, and hence can be faster as there are fewer combinations of inputs
occlusion to evaluate.

2.3 Leveraging Building Blocks in Visual Analytics

While the aforementioned building blocks of model interpretability are crucial
for the analysis of single elements (e.g. a neuron, or a class), it can be quite
time-consuming to go through a large number of individual blocks to produce
explanations [115]. However, in order for experts to obtain a broad understanding
of the decision process of models, and how it may convey biases, they need to
analyze different decisions which themselves can have multiple explanations [189].
Thus, raising the need for interactive interfaces to quickly probe building blocks.
To this end, the community relies on Visual Analytics systems which often com-
bine those blocks in multi-coordinated views to study decisions through the lens
of different blocks at once [87]. Those systems which mainly revolve around acti-
vations, often include a representation block, such as a dimensionality reduction
of embeddings. When targeting an expert audience, the purpose of those tools is
often to draw a hypothesis of a model’s behavior which then may be confirmed or
denied through an in-depth analysis and statistical evidence external to the tool.

30 related work

Relu 11 Relu 21 Relu 31 Relu 41 Relu 5 FC 6

Figure 2.12 – Overview of CNNVis [128], a visual analytics system leveraging
activation building blocks to display to what neurons may be sensitive to. This
system follows, the model’s architecture to display with the help of clustering
methods, among others, the top-k images of neurons. This view was sampled
from an online prototype [43].

2.3.1 Interactive Activations

By itself, the visualization of a single activation only provides cues on what
triggers the inspected neuron. However, a model often relies on a large combina-
tion of neurons to produce an output, hence the need to understand how neurons
interact with each other. To this end, early works provided an overview, in which
users could browse the layers of the model, each depicted as a matrix with cells
corresponding to the activation of a neuron for a given input (a picture sampled
from a webcam in [237]). Similarly, in CNNVis [128] an activation overview
display activations in a directed node-link diagram. Such a diagram follows
the design of a parallel plot, in which, from left (inputs), to the right (outputs),
each layer is a vertical axis, composed of activations of neurons within it, and
interconnected to the previous layer and the next one. As illustrated in Figure 2.12,
neurons are represented by the top-k images yielding the highest activation for
the complete dataset. Such an overview helped experts grasp insights on how,
for example, the model’s gradients vanished during training. The interactions as
designed in those systems, i.e. the ability to browse layers, and select neurons for
further information such as alternative visualization, is a key feature for experts
to actively debug their model. This is due to the fact that causes for a model to fail
can be multiple, and occur at different levels, e.g. gradients throughout the model,
or a neuron confusing similar features of classes. CNNVis targets datasets with a

2.3 leveraging building blocks in visual analytics 31

limited amount of classes to output, thus raising scaling issues when deployed to
larger datasets with thousand of classes such as ImageNet [52].

However, displaying each neuron of a model can be overwhelming, especially
with the ever-increasing size of state-of-the-art models. Thus, more recent endeav-
ors reduce the number of activations for experts to assess, and scale up those
systems to larger models and datasets. In Activis [97], a layer can be selected
by clicking on it in a model’s structure view, similar to tensorflow’s [232], and
then, each neuron is displayed as a column in a table with instances as rows. That
way, each cell encodes through a single hue-colored rectangle the intensity of an
activation. Thanks to this, Activis provides traditional table interactions such as
filtering and re-ordering to quickly probe interesting activations. In Activation
Atlas [34], feature attributions, i.e. activation + gradients, of each neuron are
displayed in a dimensionality reduction layout (representation block) to bring
together similar activations of the same layer. This helped users grasp insights
on how the model may tend to focus on the water in the background to separate
“fireboat” and ”streetcar“ classes from ImageNet. One limitation of such a system,
apart from its computational cost, is that each neuron is analyzed individually,
while it has been argued that DNNs may learn a hierarchical representation of
the data, and hence that they rely on a combination of neuron across layers to
identify the class of an image [240]. To get a hierarchical sense of data flowing
through convolutional layers and units, openAI’s Microscope [158], arranged
model activations in a node-link diagram following the model’s structure. Such a
tool can also provide details on-demand switching from layers from which only
a summary of each layer is visible, to a unit view with every unit from a layer
displayed, to finally a detailed view of a selected unit, with among others, the
top-k images. Despite those endeavors, this system suffers from scalability issues
as the size of models to analyze increases, going through all layers and units can
be an overwhelming task. In order to tackle such an issue, summit [86] proposes
to build a semantic graph that highlights the influential connections between
neurons for a given image, along with an interactive representation block aside
to provide an overview on how the model associates classes. This tool helped
experts grasp, for instance, how a model distinguishes between the similar brown
and black bears classes using neurons sensitive to the respected colors of furs and
faces of bears.

2.3.2 Sequential Activations and Gradients

In domains the manipulated data is sequential. For instance, in NLP, with
sentiment analysis in which words of a sentence need to be evaluated jointly. This
raises new challenges as models may need to handle time-dependent concepts to
yield accurate outputs, e.g. the position of words in a sentence to generate text.
Such a sequential constraint on the data they manipulate impacts their design to

32 related work

the point where those models incorporate time-varying activations which can, for
example, convey information from previous inputs. Such a behavior hinders a
straightforward comprehension of their decisions. Hence a clear understanding
of which previous inputs weigh in when a model predicts a decision being at the
stem of interpreting them.

In a vast majority of visual analytics systems addressing the challenge of in-
terpreting models handling time-varying data, the focus is on those activations
and how their intensity patterns may be correlated with inputs. For example, in
LSTMVis [193], which design focuses on the study of the activations of recurrent
models applied to the character and word prediction, activations are represented
as lines with inputs as the horizontal axis, and intensity as a vertical axis. In
this system, users formulate hypotheses as queries filtering activations matching
a selected interval of inputs. Such queries can be guided by complementary
information such as a Part-Of-Speech (POS) tagging of words, top-k predictions
and, coordinated complementary heatmaps of data such as word count. Unlike
most instance-based visual analytic systems, LSTMVis offers a comparison with
similar examples (i.e. sentences) from a dataset, key to grasping patterns in se-
quential activations. In RNNVis [141], those activations are groups of clusters with
similar intensity and represented as heatmaps linked to POS-colored word cloud
visualization of inputs over the complete dataset. A key feature of this system is
its glyph encoding (i.e. a combination of graphical objects to represent multiple
attributes of a data-point) which summarizes the evolution of activations with
respect to words in a sentence. This enables users to quickly compare the increase
or decrease of aggregated activations intensity through bar-charts as inputs go
through the model. In opposition, RNNBow [37] focuses on the evolution of
gradients of a character prediction RNN model during training represented as
bar-charts (one bar per training batch). Thanks to this, users can overview how
the model may learn, and upon selection of a batch, understand how the model
may be sensitive to previous outputs. RNNBow has been shown to be particularly
useful to detect vanishing gradients i.e. the limit of how far in the past a model
may be able to seek information.

More recently, models with attention [12] increasingly gained popularity due to
their improvement of state-of-the-art performance, and their attention mechanism
is considered more interpretable than recurrent models. Such attention is a
form of activation which associates inputs together. Commonly, attention is
represented in instance-based visualization as graphs with bipartite connections
from which each side is an input sequence (e.g. a sentence), and thickness of
connections between elements of this sequence (e.g. words) encodes the intensity
of the association. In seq2seq-vis [194], such a view is complemented with a
display of the top-k prediction for each input, which can at anytime replace an
input with an interaction, and compared to the initial sequence of inputs. This
system also provides complementary information such as a representation view

2.3 leveraging building blocks in visual analytics 33

of neighbor inputs, along with a list of similar sequences containing a selected
input.

Nowadays, attention models such as transformers [219, 54] exploit attention
in modules used in each layer, as opposed to recurrent models with a single
activation layer addressing the sequential aspect of its data. Thus, along with
those models arose the challenge to visualize each of those attention maps—which
can spread over hundreds of modules. To do so, BertViz [220] relies on interaction
to enable users to quickly switch between modules, and within one module, to
display on hover the connections of one input (words) to the others, while filtering
those from other inputs. In order to guide users’ interaction, such a system also
provides an overview that displays each attention graph in a matrix in which rows
are layers, and columns attention modules within a layer. Thanks to this, users
can grasp patterns that may require further inspection. In EXBERT [88], such an
overview is represented as a heatmap, in which each module is a column, and
each input is a row. Similar to seq2seq-vis, this system provides, upon selection
of an input, a complementary representation view of neighbors with respect to
corpus meta-data such as POS. Language interpretability tool [206] sought to
provide a modular, and easy-to-use system for domain experts. In such a tool,
the attention graph must be selected through a drop-down list of each module
available. Indeed, this tool provides a vast collection of interpretability building
blocks such as, among others, a model-agnostic one with LIME, a representation
with a projection of embeddings, and metrics such as confusion matrices. Those
blocks may help users understand which attention module might be relevant,
and thus limit the amount of exploration required by users. Finally, Attention
Flows [53] provides an overview of attention modules as heatmaps regrouped per
input in a radial layout. Such a tool addresses the influence of BERT pre-training
on model predictions by comparing two transformers, and two input sequences
at once.

While those visual analytics systems designed to address attention in models
yielded great results, it is worth noting that according to [91], they might be taken
carefully following the well-known precept ”correlation is not causation”. This is
due to the fact that according to them, in order for attention to be explanations,
other approaches such as gradient-based saliency should yield overlapping results.
Additionally, if we were to force a particular attention map on the model (e.g.
to focus on an input), the model’s output should evolve accordingly. Since
then, those claims have been argued and challenged by Wiegreffe et al [231].
According to them, their experiment to evaluate the overlap of attention and
gradient-based saliency is insufficient to prove that they are indeed unaligned. In
addition, concerning the second point, this might be due to a disagreement on
the definition of explanation, in a sense that, following Wiegreffe et al, attention
modules are not the complete explanation to a model’s decision but rather an
explanation among others (as detailed in Section 2.1.5). Nonetheless, according to

34 related work

[29, 88] in order to prevent the pitfall of miss-leading interpretations, attention
should be analyzed with the lens of complementary views such as for instance,
embeddings and corpus-wide meta information.

For further information on the design of attention models, and visual-analytics
systems addressing the interpretability of models with attention such as transform-
ers [219] applied to Visual Question Answering (VQA), please refer to Chapter 3.

2.3.3 Interacting with Models for Non-experts

A common use of building blocks is to provide a visual introduction to a
Deep Neural Network or method to non-expert users. In order to be successful,
such an approach heavily relies on trial-error using exploratory interactions. For
example, drawing an input to probe a model’s behavior on ambiguous hand-
written digits [208, 167], hence the need for tools to be resilient to potential
mistakes. TensorFlow playground [188], and GAN Lab [110], took the decision
to use toy datasets, with low dimensionality, and small models. Along with
encouraging users to get an understanding of the intuitions behind the inner
workings of deep learning, this also enables such a tool to train those models
within the interface, while monitoring the evolution of its inner representation of
data. Such a representation is at the core of those two systems in which users are
invited to explore hyper-parameters such as the number of layers, or units within
a layer to fit an expected output distribution. In Adversarial-Playground [152],
the available hyper-parameters are adversarial methods that can be used to alter a
model’s inputs and observe the new predictions. Similar to model-agnostic blocks,
such a system focuses on the inputs and outputs of a model rather than its inner
workings. In CNN Explainer [230], the light is shed on the inner operations of
CNNs, such as those leading to the creation of activations. Similarl to TensorFlow
playground, those activations are combined in a node-link diagram directed
from the left for the input, to the right for the output. On users selection, any
intermediate result can be decomposed down to the mathematical operations
connecting a selected result to the corresponding one from the previous layer,
such as, for instance, the pixel per pixel max function of the ReLU activation
method.

Outside of traditional academic media, visual interpretability for education,
flourished online as interactive blogs, referred to as explorables. A key feature of
explorables, in opposition to other visual analytics tools, is how information is
presented to users through scrollable storytelling. This is done to progressively
provide to users the intuitions needed to understand the core method presented.
In most explorables, available interaction often offers alternative scenarios, on
a few selected datapoints, rather than a broad exploration of a dataset. Pearce
et al [163, 164] provided a collection of explorables addressing, among others,
how biases may emerge from models asked to classify data. Such a collection

2.3 leveraging building blocks in visual analytics 35

has the particularity to enable users, through interactions, to propose their own
approach to classification, with the conclusion that a perfect solution, even outside
of computers may be nearly impossible to reach. To do so, those explorables
rely on model-agnostics blocks of metrics and input-output of simplistic classifier
models. In order to introduce users to potential biases and productiveness of
model decisions, users can be invited, through interaction, to explore relevant
features of image faces [191]. During such an experiment, users should grasp that
contrary to popular belief, those models may not follow human logic, and rely
upon unexpected face attributes to output a gender, e.g. one’s left eyebrow.

2.3.4 Interpretable Visual Analytics Throughout this Manuscript

As it can be observed in a vast majority of visual analytics systems introduced
in the previous sections, activations of models are a core element to analyze.
This might be due to fact that each of them may be visualized individually
and eventually interpreted, hence one of the main hindrances to interpreting a
complete decision process of a DNN, is their number. Nonetheless, those systems
share common features such as the presence of an interactive representation view—
usually on the left side of the system and are often instance-based, i.e. focusing
on a single input at the time, while providing interactions to manually switch
inputs. Each of those systems is intertwined with the model they are dedicated
to, and its task. Hence, in many cases, they cannot be extended to another
model, task, or dataset without requiring a large refactoring, and reshaping them.
However, a vast majority of those systems are either applied to CNN models for
image classification, or RNNs and attention models applied to text processing (e.g.
translation, or completion). This raises gaps of interpretability between those
popular models and their tasks, and the ones less addressed such as robotics.
Those systems are, however, particularly useful for DL experts to design models,
ultimately increasing the general audience’s trust in their models [58].

The next chapters of this thesis are dedicated to the design of visual ana-
lytics systems relying on DNN activations as their core element. However, in
contrast to the previously introduced systems, in this manuscript, we tackle the
under-explored challenge of analyzing, and improving models for robotics. As
introduced in Section 1.1, our focus is on three steps of robotics, namely: VQA,
navigation, and sim2real ego-pose localization. Each of them is addressed with a
different kind of model, along with different challenges. We tackle VQA (Chap-
ter 3) tasks with transformer models, which by their size, and by the fact that
they manipulate both texts, and images, and some of their activations working
as attention, require particular attention in their design to prevent users to feel
overwhelmed by the quantity of data to analyze. Navigation (Chapter 4), is
addressed by Deep Reinforcement Learning (DRL) algorithms which, in our case
combines both CNNs layers, and RNNs ones which raise the challenge of how to

36 related work

combine visualization of those two kinds of layers. As such a model uses images
as input, the visualization of recurrent activation with respect to inputs needs
includes multiple images at once without occluding other visualizations on one’s
screen. In addition, by nature, DRL algorithms are trained by themselves, i.e.
without ground-truth, thus when analyzed, they require for humans to evaluate
themselves whether, for example, if a trajectory follows a coherent path. Finally,
Sim2Real ego-pose (Chapter 5) is addressed using a regression CNN model, in
such application, the challenge lies in how one may assess the gaps between
simulation and real-world as perceived by the model. Hence, one may need
a visual analytics system designed to visualize and compare activations from
related sim/real inputs to grasp what may be difficult to transfer for the model,
and then contextualize that information within its environment. We expect those
contributions to pave the way to broaden the design horizons of visual analytics
systems for DNN interpretability outside of the popular image classification and
text-processing domains. We also expect that they contribute to raising concerns
about the biases of models’ decisions (e.g. the learning of shortcuts), along with
helping DNN builders to further study and evaluate the reasoning capabilities of
their models.

C
h

a
p

t
e

r 3
V I S U A L Q U E S T I O N A N S W E R I N G

Contents
3.1 Introduction . 39
3.2 Background . 42

3.2.1 Transformers and Attention 42

3.2.2 Vision-Language (Vision-Language (VL))-Transformers . 44

3.3 Related Work . 46
3.3.1 Interpretability of VQA . 46

3.3.2 Bias Reduction in VQA . 46

3.4 Motivating Case Study . 47
3.5 Design Goals . 51
3.6 Design of VisQA . 52

3.6.1 Workflow . 53

3.6.2 Visualization of Instances 54

3.6.3 Visualization of Selected Heads 55

3.6.4 Interacting with Models 56

3.7 Implementation . 58
3.8 Evaluation with Domain Experts 58

3.8.1 Evaluation Protocol . 58

3.8.2 Object Detection and Attention 60

3.8.3 Questions with Logical Operators 61

3.8.4 Vision to Vision Contextualization 62

3.9 Discussions, Limitations and Future Work 63
3.10 Conclusion . 67

As stated in Chapter 1, and in illustrated in Fig. Figure 3.1, this chapter ad-
dresses the first step ¬ of our robotic goal, i.e. the ability to understand questions
asked in natural language and answer them by analyzing images. Such a domain
is known as Visual Question Answering (VQA). This is a testbed for learning
high-level reasoning with primary use in Human-Computer Interaction (HCI),
for instance, by providing audio description for the visually impaired. However,
recent research has shown that state-of-the-art models tend to produce answers
exploiting biases and shortcuts in the training data, and sometimes overlook

37

38 visual question answering

Figure 3.1 – This is chapter is dedicated to providing to robots the ability to
answer natural-language questions about images. For example here, when asked
the mundane question "Where are my keys?" ¬, the robot needs to understand
what we are looking for, and then search for it within a given image to provide an
answer e.g. here "On the desk!".

input images, instead of performing the required reasoning steps. This chapter
addresses this by introducing VisQA, a visual analytics tool that explores the
question of reasoning vs. bias exploitation. It exposes the key element of state-
of-the-art neural models — attention maps in transformers [202]. Our working
hypothesis is that reasoning steps leading to model predictions are observable
from attention distributions, which are particularly useful for visualization.

The work presented here is a result of a collaboration of three fields, machine
learning, vision and language reasoning, and data analytics, which lead to two
contributions: one in a Computer Vision (CV) venue, CVPR 2021, and another in
Visualization, IEEE VIS 2021 as follows:

• Théo Jaunet, Corentin Kervadec, Romain Vuillemot, Grigory Antipov, Moez
Baccouche, and Christian Wolf. “VisQA: X-raying Vision and Language Rea-
soning in Transformers”. In: IEEE Transactions on Visualization and Computer
Graphics (TVCG), 2021.

• Corentin Kervadec, Théo Jaunet, Grigory Antipov, Moez Baccouche, Romain
Vuillemot, and Christian Wolf. “How Transferable are Reasoning Patterns
in VQA?”. In: IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2021.

3.1 introduction 39

The design process of VisQA was motivated by well-known bias examples from
the fields of deep learning and Vision-Language (VL) reasoning and evaluated
in two ways. We believe that this work led to a better understanding of bias
exploitation of neural models for VQA, which eventually resulted in an impact
on its design and training through the proposition of a method for the transfer
of reasoning patterns from an oracle model. Secondly, the design of VisQA, and
a goal-oriented evaluation of VisQA targeting the analysis of a model decision
process from multiple experts, provides evidence that it makes the inner workings
of models accessible to users, and that those models may be improved.

VisQA is available online as an interactive prototype https://visqa.liris.cnrs.
fr, and code source and data are available as an open-source project: https:
//github.com/Theo-Jaunet/VisQA .

A special thanks goes to Corentin Kervadec, Grigory Antipov, and Moez
Baccouche without whom the works presented in this chapter would have not
been possible.

Figure 3.2 – In Visual Question Answering tasks, we provide to a model a question
in a textual form along with an image. In our case, we expect the model to analyze
the image to answer the given question with a single word. As an example here,
when asked "What is the color of the bananas?", the model should output "Green".

3.1 Introduction

Visual Question Answering (VQA) systems [8] attempt to answer questions
provided as input in a textual form together with a corresponding image. As
an example, asking the question “What is the color of the bananas?” to a model,
with the input image shown in Figure 3.2 should yield the answer “Green”.

https://visqa.liris.cnrs.fr
https://visqa.liris.cnrs.fr
https://github.com/Theo-Jaunet/VisQA
https://github.com/Theo-Jaunet/VisQA

40 visual question answering

Direct applications of such systems are support for the visually impaired, semi-
autonomous robot navigation through language instructions, and, more generally,
Artificial Intelligence (AI) tools covering a broad spectrum of tasks guided through
language input. In particular, VQA serves as a testbed for learning high-level
reasoning from data, as the performance of targeted models and methods relies on
advances in CV, Natural Language Processing (NLP), and Machine Learning (ML).
The task deals with large varieties, and solving an instance can involve visual
recognition, logic, arithmetic, spatial reasoning, intuitive physics, causality, and
multi-hop reasoning. It also requires combining two modalities of different nature:
images and language.

Recent VQA models are based on a powerful type of deep neural network called
transformers [219]. Originally developed for NLP tasks, these models have been
extensively applied to VQA [129, 202, 238] and recently even on pixel-level in
pure image-based problems [57, 59, 70, 228, 242]. Transformers are conceptually
simple models, which, however, can learn very complex relationships between the
items of un-ordered sets, each of which is represented as a (learned) embedding
in a vector space. Making sense of a learned neural model and verifying its inner
workings is a difficult problem, which we address in this work.

In this chapter, we focus on a typical and important problem arising with trained
neural models, and in particular models for vision and language reasoning: as
they are trained with supervision to provide correct answers, they often tend to
find shortcuts in learning and learn to exploit spurious biases in training data
instead of the desired reasoning a human would apply in a similar situation [3,
76, 107, 133]. To provide an example, if a model is asked “What is the color of
the bananas”? with he input image shown in Figure 3.2, it might learn to answer

“yellow” despite the real color being “green”. This is due to fact that “yellow” is the
correct answer for a large majority of input images including bananas. Hence,
learning to output “yellow” when bananas are involved is easier than solving the
correct reasoning problem for only a small minority of cases. An exact definition
of the term “correct reasoning” is difficult, we refer to [24, 107] and define it
as algebraically manipulating words and visual objects to answer a new question. In
particular, we interpret reasoning as the opposite of exploiting spurious biases in
training data.

Existing work on bias reduction and the evaluation of bias origins tends to
focus on statistical techniques, whose power lies in quantitative evaluation and
visualizations on dataset-level, showing full or marginal distributions of inputs,
features, and outputs, and resort to dimensionality reduction. While these tech-
niques are very useful, their power is limited when we search for insights into
detailed inner workings of neural models, for which an investigation per sample
is more helpful. Only for a single instance, it is possible to observe the origins for
lack of reasoning, which can include, aside from errors in the trained reasoning

3.1 introduction 41

module itself, also problems in the input pipeline (the object detection module)
and wrong annotations of ground truth data.

We introduce VisQA, an instance-based visual analytics tool designed to help
domain experts, referred to as model builders [87]. Using VisQA, we investigate
how information flows in a neural model and how the model relates different
items of interest to each other in vision and language reasoning. Attention
maps are at the heart of transformer-based deep networks, and as such are the
primary object studied by VisQA. It allows an expert to browse through image
and question pairs sorted by an automatic estimate of the amount of reasoning
that went into answering each sample. Once a pair is selected, users can explore
the different attention maps represented as heatmaps. The exploration is guided
by their position in the model, but also by color codes that convey the intensity of
each head, i.e. whether they focus attention narrowly on specific items, or broadly
over the full input set. Complementary dataset-wide statistics are provided for
each selected attention head, either globally, or with respect to specific reasoning
modes of language functions, e.g. “What is”, “Where is“, “What color” etc. While
the tool is post-hoc, it is also interactive and allows certain modifications to the
internal structure of the model. At any time, attention maps can be pruned to
observe their impact on the output answer.

VisQA is the result of a collaboration between experts in visual analytics, and
experts in Visual Question Answering systems and Machine Learning. As will
be detailed in Section 3.4, this collaboration, and data gathered using VisQA, led
to improvements of the reasoning capabilities of transformer-based models by
introducing new methodological contributions in machine learning and computer
vision, which we also recently reported in a different associated publication [106].
The usability of VisQA has been evaluated by different experts in deep learning,
who were not involved in the project nor its design. We report experiments with
qualitative interviews and results in Section 3.8.

In this work, we contribute to a better understanding of bias in VQA models as
follows:

• VisQA an interactive visual analytics tool which helps experts to explore
the inner workings of transformers models for VQA by displaying models’
attention heads in an instance-based fashion.

• A set of visualizations to address bias in VQA systems designed to explore
models’ performances in real-time with altered attention, and/or by asking
free-text questions.

• Insights on the emergence bias in transformers for VQA gained by experts
through an in-depth analysis using VisQA, along with an evaluation of its
usability to estimate models’ predictions and eventually bias exploitation.

42 visual question answering

3.2 Background

We first introduce some background on understanding neural networks in
vision and language reasoning, the context of this work, and we provide a short
and concise introduction into transformers, the type of neural networks which
currently dominates academic and industrial research in language reasoning, and
in vision-based language problems.

3.2.1 Transformers and Attention

Following the introduction and success of transformers applied to natural lan-
guage processing tasks [219, 54], transformer-based models were also proposed
for VQA [68, 238]. Their key strength is the ability to contextualize input repre-
sentations, i.e. to take input items like words and objects, each one represented
in a vectorial form called “embedding”, and to enrich them, adding information
on relationships. This is achieved by a series of transformations of the input
vectors, which effectively encodes the reasoning process, and the underlying key
mechanism is attention (self-attention). We start with a brief overview of how a
typical language transformer works by applying it to encode the question "What
is the name of the clothing item that is white?".

Step 1: Preparation: Sentence Tokenization — We split the question into ele-
mentary language items (called “tokens”) with the WordPiece tokenizer [234].
Two special tokens are added at the beginning and at the end of the sentence
(respectively ‘cls’ and ‘sep’). While the latter encodes the end of the sentence, the
former is of the uttermost importance; it is transformed by the model as are the
other tokens, with the difference that the ‘cls’ token is transformed to encode the
task-specific information, and the answer. In the given example, at the end of the
transformation, it is expected to contain the information required to predict the
name of the white clothing. Each token (including special tokens) is then projected
into a high-dimensional vector space through a learned dictionary, resulting in
a sequence of N token embeddings: L = [lCLS, l1, . . . , li, . . . , lN−2, lSEP], li ∈ Rn,
n being the (chosen) embedding dimension.

Step 2: Attention Maps — Transformers progressively contextualize each of the
N input embeddings by a sequence of self-attention operations (layers), with the
objective of making each token embedding “aware” of the neighboring embed-
dings. In our example, it might be helpful to combine the information from the
embeddings of tokens ‘item’, ‘clothing’ and ‘white’ into one “enriched” embedding
describing the referred object, as the three words are semantically related. More
generally, the so-called “self-attention operations” (layers) are the key elements

3.2 background 43

Question

Image

Tokenizer

Object
Detector

Language Only

Vision Only

. . .

Vision → Language

Language → Vision

: lv_i_j : vv_i_j

: vl_i_j : ll_i_j: lang_i_j

: vis_i_j

Classifier Answer
.

. . .

Figure 3.3 – An Illustration of the VL-Transformer architecture we rely on. Ques-
tion and image are first tokenized and then encoded using vision (in green) and
language (in blue) only transformers [219], followed by (bi-directional) inter-
modality transformers [202]. The answer is predicted from the “CLS” token.
Yellow and orange rectangles represent, respectively, inter- and intra-modality
attention heads. i and j are the layers and head indices used for naming attention
heads through the manuscript.

of this type of model. They are implemented via the calculation of attention maps
A = {αij}, which reflect the N2 pairwise interactions between the tokens, each αij
being the similarity between token embeddings i and j. The similarity function,
here, the scaled dot-product, is calculated between a trainable projection of the
embedding i, called query, and a trainable projection of the embedding j, called
key. The per-token attention energy is normalized into a probability distribution
using a row-wise softmax. In our example, the row vector A7 = {α7j}j∈{0,...,N−1}
encodes the N interactions between ‘clothing’ and the other words.

Step 3: Token Updates — Each token embedding is updated as a linear combina-
tion of a trained function of the input embeddings, called values, weighted by the
attention map A. Hence, the model transforms each token by learning a strategy
for looking at specific other words.

Multi-headed Attention — Like most classical neural networks, transformers are
organized into a sequence of layers. Each of these layers bundles together multiple
attention heads working in parallel, which allows the model to learn different
cooperating strategies. Different heads might learn different syntactic or semantic
language functions, as shown in [222] for language models, and as we will show
in the experimental section for vision and language reasoning. The outputs of the
attention heads are combined with standard neural network blocks.

44 visual question answering

3.2.2 Vision-Language (VL)-Transformers

Transformers have been extended to reasoning on multiple modalities, in
particular vision and language, through different types of layers: Language-only
and vision-only layers, referred to as intra-modal layers, and language-vision
layers, referred to as the inter-modal ones. Figure 3.3 depicts the transformer
architecture designed for VQA which we call “VL-Transformer”. Each layer is
named as X_i_j, where X denotes the layer type (e.g. vision-only intra-modal layer,
vision-language inter-modal layer, etc.) and i and j index, respectively, layer and
head.

Intra-modality — Both modalities are first processed in two independent streams
(cf. Figure 3.3): heads lang_i_j encode question words, and vis_i_j heads encode
visual objects detected in the image by an off-the-shelf object detector, a main-
stream approach in VQA [6, 202]. Visual embeddings are the concatenation of
2048-dimensional object appearance embeddings and 4-dimensional bounding
box coordinates.

Inter-modality — Subsequent layers combine information between both modali-
ties, c.f. Figure 3.3, in a bidirectional way: from question words to visual objects
in lv_i_j, and vice-versa in vl_i_j (lv means ‘language to vision’ while the opposite
vl means ‘vision to language’). This requires a minor, but essential, modification
of the attention mechanism. Intuitively, and a bit simplified, in vision-to-language
heads, the language (word) embeddings are transformed by taking each word
and checking its similarity to the full set of visual input objects, and vice-versa for
language-to-vision heads. More precisely, query vectors are taken from the modal-
ity to be contextualized, and the key and value vectors from the other one. Thereby,
in the case of the vision to language heads, vl_i_j, attention maps AV−>L are
computed as the outer product between the query projections Lq of the language
embeddings and the key projections Vk of the visual ones:

(3.1)

3.2 background 45

The softmax is applied row-wisely, such that each attention map’s row sum to 1.
Then, the language embeddings L are updated with the value projections Vval of
visual tokens:

(3.2)

Where + = represents a residual connection and FFN is a trainable feed-forward
layer. For the sake of clarity, we omit the multi-head mechanism in Equation 3.1
and Equation 3.2. Nevertheless, it is important to notice that the inter-modality
transformers are multi-headed, similarly to the intra-modal ones. As shown in
Figure 3.3 of the manuscript, each lv or vl attention head is immediately followed
by an intra-modal attention head called, respectively, vv or ll.

Predicting the answer — The answer is produced by decoding the final repre-
sentation of the “CLS” token using a 2-layered neural network. It predicts a
probability vector over the most frequent answers found in the training set, the
answer with the highest score is then chosen.

Training details — For the experiments in Section 3.8, we set the embedding size
to d=128 and the number of heads per-layers to h=4. Following [202], our model
is composed of 9 language only and 5 vision only intra-modality transformers
layers, and 5 language → vision and vision → language layers. In addition
to the VQA objective, we train the model parameters also on MS-COCO [125]
and Visual-Genome [111] images following the semi-supervised BERT [54]-like
strategy introduced in [202]. In particular, we trained the model to perform simple
tasks such as recognizing masked words and visual objects, or predicting if a
given sentence matches the question. After pre-training on these auxiliary tasks,
the model is fine-tuned on the GQA [90] dataset with the VQA objective. Our
VL-Transformer is a variant of the LXMERT model [202], in line with the many
works adapting BERT [54]-like pre-training to vision and language tasks [196, 41,
123, 67, 129].

Discussion — In this work, we focus on the interpretation of the attention maps,
as they contain crucial cues on the internal reasoning in transformers. These
maps highlight to what extent a given token has been contextualized by which
neighbors, high attention αij indicating strong interaction between tokens i and
j. We argue, that attention maps provide strong insights on how our the model
handles interactions between the question the image.

46 visual question answering

3.3 Related Work

Our work is related to building visual analytics tools for interpretability of Deep
Learning. In contrast to Chapter 2, this section focuses on how visualizations can
be applied to the attention maps from transformer models specialized for VQA.
Our design targets in particular the study of attention maps from transformers
models to grasp insights on their potential exploitation of bias. This section
reviews previous work on the visual analysis of deep learning models, and a
review of previous work from machine learning communities to tackle bias in
VQA systems.

3.3.1 Interpretability of VQA

The work the most related to VisQA is Attention Flows [53] which addresses
the influence of BERT pre-training on model predictions by comparing two
transformers models. Like VisQA, such a tool displays an overview of each
attention head with a color encoding their activity. While Attention Flows is
designed to address the comparison of attention maps of models trained for NLP
tasks, in this work, we tackle the challenges provided by the bi-modality of vision
and language reasoning, and expand the interpretability of VQA systems which
can rely on visual cues or dataset biases. Current practices of VQA visualization
include attention heatmaps of selected VL heads based on their activation [121] to
highlight word/key-object associations, global overview heatmaps of attention
heatmaps towards a specific token [32], and guided backpropagation [77] to
highlight the most relevant words in questions. Following those works, VisQA
provides a visualization of every head’s attention heatmaps and word/object
associations, along with an overview of their activations.

Here, our focus is on post-hoc interpretability [126], i.e. the analysis of a trained
model’s decision policy after-the-fact. Our approach relies on instance-based
analysis, which displays inner model parameters with respect to the current input.
Such analysis is often combined with direct manipulation mechanisms designed
to let users experiment with desired input conditions, like drawing the input [35].
Our working hypothesis is that a transformer-based model’s mode of operation, i.e.
whether it is reasoning or exploiting dataset biases, is observable from its trained
parameters, and in particular from attention maps, an intermediate representation
dependent on parameters.

3.3.2 Bias Reduction in VQA

Bias reduction has been addressed on the data side through cleaning and
balancing. In particular, GQA [90] focuses on semantics with the help of human-

3.4 motivating case study 47

annotated scene graphs and automatically generated questions. On the contrary,
VQAv2 [76] dataset is crowdsourced, which leads to more natural questions,
but includes cognitive and/or social biases [61] as well as annotation mistakes.
In addition, evaluation benchmarks have been specifically designed to identify
the presence of bias dependencies. VQA-CP [4] proposes to evaluate models
bias dependency by introducing distribution shifts between training and testing
sets. However, this approach has limitations to evaluate the decisions and biases
exploitation of models as it emphasizes the diversity in answers rather than
the reasoning itself. As a result, random predictions can also contribute to
improving a model’s score on this benchmark [205, 185]. On the other side, GQA-
OOD [107] undertakes a similar strategy while keeping the training set distribution
untouched. Instead, the authors propose to evaluate the VQA performances on
question-answer pairs regarding their frequency in the dataset. This makes it
possible to evaluate both in- and out-of-distribution performances and, at the same
time, estimate the reasoning ability of the system. Indeed, if a model’s prediction
is correct while the question-answer pair is rare, there are chances that the model
has not used statistical biases. These datasets and evaluation benchmarks have led
to the conception of diverse bias-reduction methods. While an exhaustive survey
of these methods is out of our scope, one can mention families of approaches such
as training regularization [185], or counterfactual learning [1, 73].

In this work, we define bias as the way how a model learns regularities or
shortcuts from its training dataset, which may push it to provide answers which
it frequently encountered as correct during training, without even considering
information from the input image. Technically, we evaluate bias as introduced
in [107]. Hence, every question from the dataset is grouped using their topic (e.g.
“furniture”) and function (i.e. task extracted from the semantic of the question).
Both the semantic and topic metadata are provided by the GQA dataset. Then
for each kind of question, the frequency of their answers is computed. We
estimate that the model exploits bias when it incorrectly predicts an answer
which is among the 20% most frequent answers for the given question, while its
ground-truth answer is among the 20% least frequent. While our proposed tool
allows us to partially open the black-box of transformer-based neural vision and
language models in a very general sense, making it possible to inspect how they
handle relationships between data items, we nevertheless specifically focus on the
important problem of bias reduction.

3.4 Motivating Case Study

This work was primarily motivated by growing concerns in the field over bias
exploitation of models trained in large-scale settings, in particular when trained on
very broad problems like vision and language reasoning [3, 76, 133]. Contributions

48 visual question answering

1

2
3

2

3

1

2

1

Figure 3.4 – When asked “Is the knife in the top part of the photo” ¬ the tiny-LXMERT
model, with the image of a knife at the bottom ­, incorrectly outputs “yes” ®

with more than 95% confidence. While an exploitation of bias can be considered,
we can observe that the answer “yes” represents only 33% of answers of similar
questions over the complete dataset. Thus in-depth analysis of the attention of the
model may be required to grasp what led to such a mistake.

of our group in this area include new benchmarks [107] and additional supervision
and regularization for neural models [108]. Here we extend these previous
efforts by providing a tool for instance-level visualizations and performing visual
analytics on a single sample. This choice was ultimately taken when comparisons
of different trained models through statistics failed to provide concrete answers
on the sources of confusion and errors. Statistical models enabled us to drill down
examinations to a certain minimal level of aggregation, for instance, linguistic
function groups, but this kind of analysis was not fine-grained enough.

We illustrate the advantages and the power of instance-level visualizations
with our contribution, VisQA on the following case study. It is based on the
exploration of a tiny version of the state-of-the-art neural model LXMERT [202]
as described in Section 3.2.2. We provide it with the following input instance, i.e.
the image given in Figure 3.4 ­, and associated question “Is the knife in the top
part of this photo?” ¬. The correct ground truth answer is of course “No”, but the
baseline tiny-LXMERT model incorrectly answers “Yes” ®. We see the frequency
of the different possible answers provided in the interface, and observe that the
wrong answer “Yes” is not the most frequent one for this kind of question as “No”
is the correct answer 67% of the time, which does not provide evidence for bias
exploitation. The objective is to use VisQA to dive deeper into the inner workings
of the model.

A first step is to analyze whether the model is provided with all necessary
information. While the input image itself does contain all clear pictures of the

3.4 motivating case study 49

answer, the neural transformer model reasons over a list of objects detected by a
first object detection and recognition module (Faster R-CNN [171]) which may
output errors. In the rest of this manuscript, we will refer to this tiny-LXMERT as
the noisy model.

Is the knife detected by the vision module? VisQA provides access to the
bounding boxes of the objects detected by the input pipeline. Each bounding box
can be displayed superimposed over the input image along with the corresponding
object label predicted by the object recognition module. We can observe that the
key object “knife” lacks a suitable bounding box or class label, it has not been
detected. Since this object is required to answer the question for this image, the
model cannot predict a coherent answer. However, the question remains why the
wrong answer is “yes”, corresponding to the presence of a knife.

Can attention maps provide cues for reasoning modes? VisQA focuses on at-
tention maps, which are a key feature of transformer-based neural models, as
they fully determine relationships between input items. Users can select different
heads and explore the corresponding attention maps. For the example case, we
are interested in checking the correspondence between the question word “knife”
and the set of bounding boxes. This should provide us with evidence of whether
the model was capable of associating the concept with the visual object in the
scene, which is, of course, not sufficient for a correct answer, but a necessary step.
This verification is non-trivial, however, since the model is free to perform this
operation in any of the inter-modality layers and heads. VisQA allows to select the
different heads, and we could observe that none of the heads provides a correct
association. As an example, we can see the behavior of a head in Figure 3.5 ¬,
which associates the word “knife” to various objects, mostly fruits. No other head
is found indicating a more promising relationship.

Is computer vision the bottleneck? From the example above, as well as similar
observations in other instances, we conjecture that the computer vision input
pipeline (notably, the imperfect object detector) is one of the main bottlenecks in
preventing correct reasoning. To validate this hypothesis, we explored training
an Oracle model with perfect sight, which thus takes as input the ground truth
objects provided by human annotation instead of the noisy object detections by a
trained neural model. This improves the performance of the model considerably,
reaching ∼80% accuracy on the difficult questions with rare ground-truth answers,
compared to ∼20% for the standard model reasoning on noisy input. This partic-
ularly high difference in performance for questions with rare answers suggests
a higher performance in correct reasoning of the oracle model. By loading this
model into VisQA, we observe in Figure 3.5 ­, that there exists an attention map
which associates the word “knife” to a visual object “knife”, which, we recall, is an

50 visual question answering

Noisy model

in

Handle

Oracle transfer+pretrain

Q: ”Is the knife in the top part of the photo?”

Oracle

knife

is
the
knife

in
the
top
part

of
the

photo
?

[SEP]

[CLS]
is

the
knife

in
the
top

part
of
the

photo

?
[SEP]

is[C
LS

]

th
e kn
ife

th
e to
p

pa
rt

of th
e

ph
ot

o
? [S

EP
]

is[C
LS

]
th

e kn
ife

in th
e to
p

pa
rt

of th
e

ph
ot

o
? [S

EP
]

is[C
LS

]
th

e kn
ife

in th
e to
p

pa
rt

of th
e

ph
ot

o
? [S

EP
]

knife

2
2

3

1 3

Figure 3.5 – Visualization of a selected vision-to-language head and attention map
for two different models. ¬ the noisy model associates the “knife” word with a
large number of different objects, including fruit. ­ the oracle model learns a
perfect association between the word “knife” and the “knife” object; ® the oracle
transfer model associates the word “knife” with two different bounding boxes of
type knife handle, whose embeddings are sufficiently close for correct reasoning.
Head selections are not comparable between models, we therefore checked for
permutations.

object indicated through human annotation. This correct association is reassuring,
but by itself does not yet guarantee correct reasoning — further exploration is
possible, but we will now concentrate on this problem of finding correspondences
between words and visual objects and explore this question further.

Transferring reasoning modes — Given these observations, we conjecture that
a transformer model with perfect sight can learn modes of reasoning which are
less biased than models trained on real but noisy input data. This is an insight
we gathered from using VisQA as a tool for visual analytics. Oracle models, on
the downside, are not deployable to real-life problems, as they work on human
annotations only, per definition. We explore a solution to transfer reasoning modes

3.5 design goals 51

from oracle models to noisy input data, which can be done using knowledge
transfer by parameter initialization [236]. In more detail, we pre-train the Oracle
model on ground-truth data, and once it reaches convergence, we use its weights
as initialization for the model using noisy inputs.

We load this model, which we call Oracle Transfer, into VisQA, with the objective
of exploring whether reasoning modes have been transferred into a deployable
model capable of providing answers given real input. Figure 3.5 shows the vision-
to-language attention maps from the same layer as the ones explored above 1.
We can observe that the model’s attention is drawn towards “handle” visual
objects, which are parts of the only knife in the picture. While the object classes
“knife” and “handle” are logically different, we can conjecture that their vectorial
feature embeddings are different but sufficiently similar to allow reasoning. More
importantly, we can deduce that the model adapted to the absence of the knife
object by relying on what is available, i.e. knife handles. This leads the model
to correctly answer “No”, as did the Oracle model on ground truth data, and in
contrast to the baseline noisy model without transfer — see also the illustration in
Figure 3.6. We further describe this Oracle knowledge transfer, and improvements
it provides to transformer-based VQA in a different associated publication [106].
This model will be used in evaluations performed by deep learning experts in
Section 3.8. All models, noisy, oracle, and oracle transfer, can be tested and
explored online in our prototype.

3.5 Design Goals

Prior to the design of VisQA, when working on an associated publication [106],
we conducted discussions with experts (co-authors of the papers associated with
this chapter), about their workflow to analyze bias in VQA systems. From those
discussions, and literature review introduced in Section 3.3, we distill their needs
in the following four main themes of design goals for instance-based analysis.

G1 Examine the performances of each instance for a given model. To investi-
gate bias in VQA systems as introduced in Section 3.3.2, it is first important to
examine the model predictions, along with its confidence score with respect to
its inputs. In order to be useful, those predictions need to be combined with
the ground-truth, to estimate if the model is wrong, and how frequent is the
ground-truth answer and predictions. Inputs need to be inspected as well as they
may convey ambiguities that may be at the beginning of an explanation for a
mistake. Finally, due to a large amount of data available for inspection, experts

1. Each layer contains several attention heads, and these heads are not ordered. Reasoning
associated with a given head in one model can correspond to the reasoning mode of a different
head in another model. We cope with these possible permutations in our experiments by searching
over all possible heads of a layer

52 visual question answering

may prioritize inputs the more likely to be biased, i.e. those with infrequent
ground-truth answers and frequent predictions.

G2 Browse the attention of the model for an instance. Analyzing the attention
maps of LXMERT models is crucial for understanding what factors influenced its
decision, and eventually whether or not the model attends to both language and
vision. While visualizing individually each attention map is feasible, we aim at
improving such an exploration, by contextualizing each attention head with their
neighborhood (i.e. other attention heads directly connected to it), and position
within the model. This is relevant as attention heads get closer to the output,
they both encapsulate previous attention, and may be more influential on models’
decisions. In addition, experts may need to prioritize heads conveying salient
attention, thus those heads need to be summarized and/or emphasized. Finally,
for in-depth analysis, experts need to visualize the complete attention map and
link each of their elements to human-understandable information, i.e. words of
the question and bounding boxes within the input image.

G3 Link attention to language tasks. Once a relevant attention head is observed
by an expert, the user should be able to contextualize it with the rest of the dataset.
In particular, experts are interested in evaluating whether or not this head is
responsive to certain tasks provided by the semantics of questions (e.g. find a
color), or rather if the head is responsive to certain topics (e.g. clothing). Such
information can be provided in the VQA training dataset, considered as categories.

G4 Explore alternative scenarios. Once cues on how the model uses its atten-
tion to output a decision are gathered, the next step, is to test this knowledge by
querying the model on altered input or parameters. Ultimately the experts desire
to answer questions such as: “would the model have a similar attention if the
question were on another object of the image?”, or “is this head or group of heads
relevant for the final decision?”. This can be regrouped into two categories first,
the possibility to ask free-from questions, and second the possibility to modify
the model’s attention. In order to be usable, and due to the number of queries an
expert may need to execute, both those manipulations require to interact with the
model in a reasonable amount of time, e.g. less than a couple of seconds.

3.6 Design of VisQA

We designed VisQA, an visual analytics tool designed to facilitate in-depth
analysis of the internal structure of transformers models applied to visual ques-
tion answering. VisQA implements attention heads and interactive heatmaps
visualizations, and other interactions such as free-form question and pruning

3.6 design of visqa 53

1

2

3

5

4
handle

Figure 3.6 – Opening the black box of neural models for vision and language
reasoning: given an open-ended question and an image À, VisQA enables to
investigate whether a trained model resorts to reasoning or to bias exploitation
to provide its answer. This can be achieved by exploring the behavior of a set
of attention heads Á, each producing an attention map Ä, which manages how
different items of the problem relate to each other. Heads can be selected Â, for
instance, based on color-coded activity statistics. Their semantics can be linked to
language functions derived from dataset-level statistics Ã, filtered and compared
between different models. This tool is available online at:
https://visqa.liris.cnrs.fr.

mechanisms, to assess whether a model resorts to reasoning or bias exploitation
when answering questions.

3.6.1 Workflow

Through iterative design resulting from frequent meetings with VQA experts
co-authors of this work, we extracted the following workflow of use of VisQA,
based on their experience analyzing VQA systems, and the mantra overview first,
zoom and filter, then details on demand [184]:

1. the user picks and loads into the model an instance, informed by the likeli-
ness of the question to be answered with bias;

2. the result of the model is presented both as attention heads (internal structure
of the model), as well as the top-5 predicted answers;

https://visqa.liris.cnrs.fr

54 visual question answering

3. the user then may interact with the model internal structure (e.g. heads
intensity, attention maps, etc.) which triggers updates to the statistical
views;

4. bounding boxes are displayed on the input image to reflect based on at-
tention heat-map selections, showing how the model associates words and
visual objects.

VisQA can also be used beyond this typical workflow for in real-time query of the
model by asking user-defined questions, or pruning attention heads, as further
detailed in Section 3.6.4.

3.6.2 Visualization of Instances

At its core, VisQA is organized following an end-to-end approach, from model
input to output. This is done to contextualize attention heads with their neighbor-
hood and position with the model (G4). We added input selection to guide users
in their exploration, and a visual summary of the attention of the model to keep
it visually compact.

Image ranking-by-feature (Figure 3.6 ¬) — In order to ease user exploration over
the complete dataset, VisQA displays images in the top bar from left to right
based on the likelihood of their questions to be answered using statistical biases.
To do so, we classify questions using ground truth answers, as proposed in [107]:
top 20% of the most frequent answer will be classified as Head, as opposed to Tail
which describes questions with the least frequent answers. We attribute a score to
each image based on their Head-questions/Tail-questions ratio. The more an image
has Tail-questions over Head-questions, the higher its score is. The underlying
hypothesis is that frequent answers will be chosen more likely when a model
tends to exploit biases (e.g. “Yellow bananas”). Also, frequent questions are harder
to analyze since if any bias is exploited by the model, it will answer correctly.
Answers and their frequencies are displayed in (Figure 3.6 ­ right) following
design goal (G4).

Instance view (Figure 3.6 ­) — This view, inspired by VL-Transformer represen-
tations illustrated in Figure 3.3, is the root of any analysis of attention maps using
VisQA (G4). It matches the internal data flow through the internal structure of the
model, from left to right: the input image/question pair, layers and heads with
intra-modality layers first, and finally the answer output distribution (encoded
as horizontal bars). A particular design decision was to display all attention
maps at once, using a single-colored rectangle encoding the attention intensity
as k-number [169] (see next paragraph for details). In the Instance view, attention
heads can be selected with a mouse-over interaction as illustrated in Figure 3.6 ®

3.6 design of visqa 55

in order to provide details on demand, by displaying the corresponding attention
heat-map Figure 3.6 ¯ and head statistics.

Visual summary — Our model uses 136 attention maps with dimensions varying
with respect to the number of words in the question and bounding boxes provided.
As displaying all of those matrices would prevent experts to analyze them in a
reasonable amount of time, we rely on summarizing each of them to a single
scalar. Such a scalar, referred to as k-number [169], represents the normalized
amount of tokens per row summed up to reach a threshold of 90% of energy.
A k-number close to 0 indicates that the corresponding row has peaky attention
focusing on only one column (as seen in Figure 3.5 ¬), and a high k-number
encodes a uniform attention (as in Figure 3.5 ­). Then we combine each of those
k-number together using either min, median, or max functions. Such functions can
be selected in VisQA by users, depending on the attention maps intensity they
want to investigate. VisQA provides this interaction because for a head to have
a low k-number, the majority of its rows needs to be highly activated. This can
shadow attention maps with less than half of their rows with peaky attention.
In VisQA, the k-number is discretized and color encoded in 4 categories as it
follows: . The decision to use a logarithmic discretization and color
encoding, as introduced in [169], was done to emphasize peaky attention maps
(k < 12) that need to be prioritized for analysis. In addition, this discretization,
used throughout VisQA, is particularly useful to regroup instances in head-stat
view Figure 3.6 ¯ and select them by clicking on the corresponding square (legend
on the right of ­ in Figure 3.6) for Head pruning further detailed in Section 3.6.4.
Finally, this reduces the learning curve of VisQA, as experts are familiar with this
discretization of k-numbers.

3.6.3 Visualization of Selected Heads

VisQA provides details for a selected head in the Instance view using the
attention map and head statistics.

Attention Maps (Figure 3.6 °) — are represented as heat-maps, with cell colors
encoding the attention intensity over a sequential, single hue scale from no atten-
tion (i.e. 0) in beige, to full attention (i.e. 1) in brown. This matrix-based approach
contrasts with bipartite connections representations found in Seq2Seq-Vis [194]
and BertViz [220]. We use matrices as they provide a clutter-free representation of
attention and they can display multiple heads at once by aggregating connections.
However, it may suffer from visual clutter issues as the number of words grows.
Seq2Seq-Vis tackles this issue by using interactions to hide graph lowest connec-
tions (i.e. lowest attention). In our case, we argue that visualizing the attention of

56 visual question answering

one head at a time can lead to a better understanding of its function in the model.
Such an exploration of head functions is further detailed in Section 3.8.

Head Statistics (Figure 3.6 ¯) — are represented using three charts. A verti-
cal area chart (leftmost chart) represents the distribution of k-numbers of the
selected head over the complete validation dataset (around 1500 image/question
pairs). The vertical axis encodes the values of k-numbers, while the horizontal
axis encodes the density of the corresponding k-number. The current k-number,
for the selected head, which corresponds to the image/question pair loaded in
VisQA, is represented as a horizontal red bar positioned on the vertical axis. This
area-chart provides insights such as the detection of useless heads with constant
high k-number which can be reduced to calculation on average overall items in-
stead of selecting specific items. In contrast, heads with constant low k-number
can be interpreted as conveying key information. More specialized heads, with
bi-modal k-number distributions, can also be observed. Two stacked bar-charts
represent the k-numbers of the selected head grouped by question operations
(G3). Question operations are ground truth information provided by the GQA
dataset [90] describing the semantic reasoning operation of asked questions (e.g.
select, query..). Each bar is associated with an operation, and its length encodes
how many questions in the dataset are using the corresponding operation.

3.6.4 Interacting with Models

VisQA also includes features, complementary to the usual workflow introduced
in Section 3.6.4, designed to investigate hypotheses on reasoning.

Free-form questions — By default, VisQA loads the GQA dataset [90] to provide
images and questions. But at any time, users can type and ask free-form open-
ended questions (G4). Such an interaction allows investigating the model’s bias
exploitation. For instance, when asked the following question from the GQA
dataset “Is this a mirror or a sofa”, the model correctly outputs “mirror”. However,
when asked the following user-inputted question “Is there a mirror in this image?”,
the model fails and outputs “no”. This suggests that the model might have
exploited biases when it answered the first question, which is supported by the
fact that in the GQA dataset, “mirror” is the correct answer to the question “Is this
a mirror or a sofa” in 85% of all cases.

Head filtering (Figure 3.7) — As shown in Figure 3.7 ¬, attention heat-maps
feature two interactions. First, hovering with the cursor a row, a column, a
cell, which corresponds to an object in the image, automatically displays its
corresponding bounding box along with its label over the input (Figure 3.7 ­).
The user can also, by clicking on a row, column, or cell, filter attention heads

3.6 design of visqa 57

1

2

3

Figure 3.7 – Hovering the mouse over a cell of the attention maps ¬ filters the
corresponding object bounding box in the input image ­. While clicking on
this cell filters attention heads in instance-view to display those within which the
selected cell is highly activated.

to only keep the ones in which the corresponding clicked element has attention
above a threshold. For rows and columns which contain multiple attention values,
such a filtering process will merge those values by using one of three functions
min, median, and max depending on a user selection. The result of such a filtering,
as displayed in Figure 3.7 ®, occurs in the instance view in which the size and
opacity heads that do not match with the user’s query are reduced while the
others are preserved. Such interactions facilitate seeking for heads in which a
specific association is expected e.g. a word in the question with an object of the
image required to answer.

Head pruning — Users can select attention heads by clicking on them in the
instance view, or by their k-number category. Such a selection can then be used
to prune the corresponding head for the next forward of the model. Pruning
here means that the attention head does not perform any focused attention, but
uniformly distributes attention over the full set of items (objects or words). Each
row of a pruned attention map is thus the equivalent of an average calculation.
At any time, users can request a new forward pass of the model by clicking on
the top left button “ask” (G4), which allows to see the effect of the configured

58 visual question answering

pruning on the model’s predictions. This can be used in order to test hypotheses
on attention head interpretations as explored in Section 3.8.2.

3.7 Implementation

The GQA [90] standard dataset provides question/image pairs along with
their answers, the ground truth of bounding boxes, and semantic descriptions of
questions. By default, VisQA provides around 1500 question/image pairs, but
as images are loaded progressively when users request it, such a quantity can
be increased without affecting performances. The models have been trained on
a significantly larger amount of training data (about 9M image/sentence pairs),
which is different from the validation data on which the performance is evaluated.
The user interface of VisQA is implemented using D3 [22], and directly interacts
with transformer models implemented in Pytorch [162], using JSON files through a
python Flask server. As the possibility to ask free-form questions offers an infinity
of possible combinations, each question/image pair is forwarded through the
model in a plug-in fashion, i.e. without altering the model and its performances.

3.8 Evaluation with Domain Experts

We conducted a user study with 6 experts with experience in building deep
neural networks, who were not involved in the project or the design process
of VisQA. We report on their feedback using VisQA to evaluate the decision
process of the Oracle transfer model, with 57.8% accuracy on GQA, introduced
in Section 3.4 on several provided problem instances, as well as insights they
received from this experience. Hypotheses drawn from single instances cannot
be confirmed or denied, but as illustrated in the following sections, such a fine-
grained analysis aims to provide cues (often unexpected) that can later be explored
through statistical evidence outside of VisQA.

3.8.1 Evaluation Protocol

For each expert, we conducted an interview session lasting on average two hours.
Sessions were organized remotely and began with a training on VisQA, showing
step-by-step how to analyze attention maps. During this presentation, experts
were able to ask questions. The study then began with questions on 6 problem
instances, i.e. image/question pairs loaded into VisQA in a browser window on
participants’ workstations. Those instances were balanced between the prediction
failures and successes, head or tail distributions of question rarity as described
in Section 3.3.2, as well as our estimation on whether the model resorts to bias

3.8 evaluation with domain experts 59

for this instance grasped using VisQA. VisQA, configured as conditioned during
evaluations is accessible online at: (https://theo-jaunet.github.io/visqEval/). The
model outputs were hidden and the experts were asked to use VisQA to provide
an estimate for two different questions: (Q1) will the model predict a correct
answer, (Q2) what will it be?, and (Q3) does it exploit biases for its prediction, or
does it reason correctly? During this part of the interview, experts were asked
to explain out loud what lead them to each decision. Once those questions were
completed, post-study questions were asked on the usability of VisQA, such
as “Which part of VisQA is the least useful?”, and “What was the hardest part to
understand?”.

Table 3.1 – Experts performances averaged by instances while evaluating VisQA.
We can observe that Expert#3 reached the best accuracy on every questions, while
Expert#5 reached the lowest results. Overall, the average performance for Q1 and
Q3 is 75% of accuracy, and 61% for Q2.

Experts Q1 Q2 Q3

Expert#1 0.6 0.5 0.67

Expert#2 0.83 0.67 0.83

Expert#3 1 0.83 1

Expert#4 0.83 0.67 0.5

Expert#5 0.5 0.33 0.67

Expert#6 0.67 0.67 0.83

Total 0.75 0.61 0.75

Results — The ability of users to predict failures and specific answers of VQA
systems has already been addressed through evaluation [39] under different
conditions. The experiment closest to ours is question+image attention [130] with
instant feedback — similarly to ours, users were asked to estimate whether a
model will predict a correct answer when provided with attention visualizations
of the model, and reaching a similar score of ∼75% accuracy. The difference is that
in [130] attention is overlaid over the visual input, whereas our attention maps
allow to inspect reasoning in a more detailed and fine-grained manner, and not
necessarily tied to the visual aspects. The similarity in results changes when users
are asked to provide the specific answer predicted by the model: this accuracy
drops to 61% in our case, and to 51% in [39]. While our results are promising,
they cannot be directly compared to their results due to the different pool and
amount of users. Future work will address studies on a larger number of human
experts.

(

60 visual question answering

Q: “Is the person
 wearing shorts?”

GT: “yes”

Is the[CLS] pe
rso

n
? [SEP]we

arin
g
sh
ort
s

shorts

woman

shirt
shoe
leg

woman

woman
woman

Figure 3.8 – When asked “Is the person wearing shorts?”, the oracle transfer model
successfully answers “yes”. It can be observed in its first Language-to-Vision
attention maps, that the word “shorts” (column) is strongly associated with the
object “shorts” (row). The same phenomenon is also observed for the word “person’,
strongly associated with objects labeled as “woman” among others.

More importantly, our work focuses on qualitative results of bias estimation
in which experts obtained a precision of 75% on whether the model exploited
any bias. We extracted the ground truth estimate by comparing the rarity of
the question, following the Head/Tail attribution from GQA-OOD [107]. These
results are encouraging, as they provide a first indication that the reasoning
behavior of VL models can be examined and estimated by human users with
VisQA. While 75% of performance reasoning vs. bias is not a perfect score, it is
also far away from the random performance of 50%, which is important given the
large capacity of these models, which contain millions of trainable parameters.
Details on individual performance with respect to questions can be observed in
Table 3.1.

3.8.2 Object Detection and Attention

To provide an answer, a model must first grasp which objects from the image
are requested and thus are essential to focus on. Such an association needs to
occur early in the model as those objects are needed for further reasoning. The
experts widely observed high intensity in the first Language-to-Vision (LV) layer.
As illustrated in Figure 3.8, when asked “Is the person wearing shorts?”, the attention
map LV_0_1 has peaky activations in the columns “person” and “shorts”. This
can be interpreted as the model correctly identifying with its self-attention for
language that those two words are essential to answer the given question. In

3.8 evaluation with domain experts 61

GT: “no” KNIVES

Pizza

Pizza

KNIVES

Q: “Are there both knives
 and pizzas in this image?”

“both”

1

2

“and”

Figure 3.9 – When asked “Are there both knives and pizzas in this image?”, the oracle
transfer model fails and answers “yes”. By filtering heads associated with a selected
word, we can observe that language self-attention heads are more responsive to
the word “both” ¬, as opposed to the word “and” ­.

Figure 3.8, the word “person” is associated with the bounding boxes labeled as
“woman”,“shirt”,“shoe”,“leg”, while the word “shorts” is associated with the “shorts”
bounding box. Based on this observation, all experts concluded that the model
correctly sees the required objects, and more broadly over the evaluation instances,
that the first LV layer might be responsible for the recognition of objects with
respect to the question. One of the experts mentioned that therefore, “if we don’t
see a good word/bounding-box association here, the model can hardly cope with such a
mistake and might exploit dataset biases”. In order to verify such a statement, we
pruned the four heads in this LV layer, to observe how the model would behave
with no association in them. From such pruning, we observe that the following
vision-to-language layers have lower attention distributions, close uniform in some
cases. In addition, after pruning, the model’s prediction wrongly switched from

“Yes”, a rare answer (in Tail), to “No”, the most frequent one.

3.8.3 Questions with Logical Operators

During the evaluation, experts were shown two instances with questions con-
taining the word “and”. Such instances are interesting because, as one of the
experts mentioned, “this word has a lot of importance is this question”. To answer
correctly, the model needs to grasp that it must analyze the image over two
different aspects. With the image, illustrated in Figure 3.9, and asked “Are there
both knives and pizzas in this image?”, the model fails and answer “yes”, the most
frequent answer despite having no knife in the picture nor provided bounding-
boxes. However, when asked “Are there knives in this image?” the model correctly
answers “no”. This suggests that the model failed to grasp the meaning of the
keyword “and”, and thus that the self-attention language heads might associate

62 visual question answering

Q: “What is the
woman holding?”

GT: “hair dryer”
[SEP]

?

[CLS]

what

is

the

woman

holding

hand
logoknob knob1 2

Vision-to-language Vision-to-Vision

Figure 3.10 – Without any"hair dryer" provided by the object detector, the oracle
transfer associates in its vision-to-language ¬ the object “hand” with the words
{“[CLS]”,“is”,“?”,“[SEP]”}. While vision-to-vision focuses on a “knob” object ­.

wrong words. Also, swapping the terms “knives” and “pizzas” in the question,
yields the correct answer, i.e. “no”. This indicates that the model ignores the
first term when questions contain the operator “and”. Using the head-filtering
interaction, we can observe that in self-attention heads, the word “and” has little
to no attention. Instead, the word “both” has peaky attention scattered across most
of self-language layers, and some language-to-language heads. Pruning those 19
heads makes the model correctly yield “no”, regardless of the order the words
“knives” and “pizzas” are in the question. Such a behavior can be observed over
our evaluation dataset, in which 34 questions have the keyword “and”. On those
questions the model, without pruning, can provide a correct answer 62% of cases,
up to 64% with the two words around “and” are swapped. In opposition, while
having the 19 attention-heads with peaky attention for the word “both” pruned,
the model reached an accuracy of 76%, down to 74% with words around “and”
swapped. Thus, in the worst case, this pruning of the 19 attention heads illustrated
in Figure 3.9 is responsible for an improvement of 10% on question containing the
operator “and”.

3.8.4 Vision to Vision Contextualization

When asked “What is the woman holding?”, with the image in Figure 3.10, the
Oracle transfer model fails and outputs “remote-control”, a frequent answer, instead
of “hair dryer”. This can be interpreted as the model exploiting a statistical bias
from its training dataset. However, in such a dataset, “remote-control” is not
among the 10 most common answers to this question. This raises the question
of what leads the model to output such an answer. During evaluation on this
instance, experts noticed that the object detector failed to provide a “hair dryer”
object. Similar to the use case given in Section 3.4, such a mistake forces the Oracle

3.9 discussions, limitations and future work 63

transfer to draw its attention towards other bounding boxes related to the missing
object. In this case, as observed by experts, a majority of the vision-to-language
reached their highest association between the word “holding” and bounding boxes
labeled as “hands”. Such an association is expected as held objects are directly
related to hands, and no “hair dryer” bounding box is provided. Among those
bounding boxes, we can observe the presence of one labeled as “television”, and
another as “knob” which are associated to “holding” and “woman” in both vision-
to-vision_2_2 and early vision-to-language layers. This suggests that those heads
might have influenced the model’s predictions towards “remote-control” instead
of the most common dataset bias. This can be confirmed by pruning those heads
which yields a more frequent answer: “cell phone”. In addition, one of the experts
also highlighted that those attention heads had a high association with the tokens

“[CLS]”, “is”, “?”, and “[SEP]”. Which the expert interpreted as “the model correctly
transferred the context of the question”.

3.9 Discussions, Limitations and Future Work

Usability of VisQA — Overall, VisQA was positively received by experts,
during discussions at the end of interviews, they expressed that VisQA is “well
designed”, “complete”, and “particularly useful as VQA transformers are hard to inter-
pret”. Two out of the six experts confessed that they felt “overwhelmed at first”, but
gradually “grasped where to look”, and getting “used to interactions”. Four out of
six experts stated that the head-statistics Figure 3.6 ¯ is the least useful feature
implemented in VisQA, as it felt “hard to understand”. One expert mentioned that
such a view is “useful in theory, but less usable in practice”. However, the rest of
the experts mentioned that the head-statistics view helped them while analyzing
attention to “see if heads acted out of their distribution”. Experts were unanimous, the
attention heat-map, and in particular, its interactions, is the most useful feature of
VisQA, as it “provides a lot of information’, and head filtering “speeds up the analysis”.
One of the experts used this interaction on the first language to vision layer as
an entry-point to grasp if the model had every information required to correctly
answer the given question.

Expert Suggestions — As expressed by experts during evaluation, the main
limitation of VisQA is how instances can be selected by users. Currently, such
selections are handled by a bar at the top of the tool (Figure 3.6 ¬), displaying
images ordered from left to right based on the likelihood of their questions to be
answered using statistical biases. However, during interviews, experts mentioned
their need to quickly switch between similar instances in order to grasp if a
behavior can be seen across different cases. To do so, experts suggested that
such similarity could be measured at three levels: switch to an instance with

64 visual question answering

the exact same question, switch to a similar image, and switch to an instance in
which a selected head has similar attention distribution. In addition, currently
in VisQA, it is difficult to evaluate how influential a head is over the model’s
output. To tackle such an issue, experts proposed to encode this information in the
representation size of the instance-view attention heads. The impact of each head
over the model’s input could be retrieved through back-propagation, in particular
by calculating the gradient of the model outputs with respect to a statistic of the
attention head, for instance, its k-number. In addition to addressing those limits
and experts’ suggestions, we plan as future works to adapt the usage of VisQA
on other problems involving transformers, such as machine translation, and to
further investigate the role of each attention heads as done in [222].

100 101

question/answer frequency

30

40

50

60

Ac
cu

ra
cy

Models
Tiny LXMERT
LXMERT

Figure 3.11 – Despite different performances, we can observe that both tiny-
LXMERT and large-LXMERT have the same behavior as the frequency of ques-
tion/answers increases. Hence, we can estimate that they may be exploiting
similar shortcuts defined in GQA-OOD [107].

Scalability — To date, the largest model loaded in VisQA is LXMERT with
12 attention heads per block and 768 hidden dimensions. As illustrated in Fig-
ure 3.11, such a model (in red), and tiny-LXMERT (in blue) experiments the same
performance drops as question/answer frequencies decreases, for average accu-
racy of 57.8% on GQA, compared to 59.6% for the large-LXMERT. It is also worth
noting that tiny-LXMERT can outperform the standard LXMERT with auxiliary
losses [109]. In addition, LXMERT is less accurate than the tiny-oracle model we
used for evaluation, on questions with rare answers–i.e. those that may be the most
susceptible to convey biases. While inspecting this model with VisQA, we noted
that the more the number of heads increases, the more summary and filtering of
heads became relevant for faster analysis. However, our visual encoding of heads
may become tedious to use as the number of heads increases, and the number of
pixels allocated per head decreases. A workaround can be to increase the desig-

3.9 discussions, limitations and future work 65

nated space of the model in instance-view, but ultimately, VisQA will be limited
by screen real-estate. Thus, larger models (e.g. UNITER-large [41]), may need their
heads to be filtered (e.g. by k-numbers) to avoid being overwhelming, before being
displayed in VisQA. Similarly, heatmaps of attention may suffer from the same
limitation. However, we decided to use them for attention as the maximum visual
object (36 in most VQA systems using a Faster R-CNN), and the average of words
per question is known beforehand. For larger sets of inputs, alternative designs
such as bipartite graphs combined with aggregation methods to hide elements
under a threshold of attention may be more space-efficient. However, we argue
that this is a trade-off as displaying every bounding boxes and their attention may
be relevant to evaluate a prediction (as depicted in Section 3.4).

Generalization — This work focuses on detector-based VL transformers such as
LXMERT, however other VQA systems may include single stream models such
as [41, 196]. While VisQA is applicable to both single and 2-stream models, we
decided to focus on the latest during evaluation. Those models are considered by
experts as more interpretable because self-attention layers for language and vision
can be observed separately, and there are no significant differences in performance
between both architecture [30]. VQA systems’ state-of-the-art often alternate
between detector-based approaches (e.g. VinVL [241]) and pixel models [89].
However, at its current state, VisQA is not applicable to the latter type, as it
would only require adapting to the higher number of visual tokens (depending
on the granularity of the method) which raises the challenge of scalability of
heatmaps discussed above. Future works can address this through aggregation
methods to reduce the number of tokens displayed (e.g. by dividing input images
into regions). Finally, our work mainly focuses on insights on reasoning skills
grasped from models on the GQA dataset. This decision was taken because it
has been argued [90] that it involves a larger variety of reasoning skills (spatial,
logical, relational, and comparative) than in a dataset with where questions were
annotated by humans directly (e.g. VQA2 [76]) which contains questions targeting
difficult external knowledge (e.g. a name of a baseball team). Despite not being
presented in this work, VisQA can directly be used on the VQA2 dataset.

Comparison of instances (Figure 3.12) — Comparison between models, and in-
stances can also yield interesting insights on how a model behaves [53]. Currently,
to this end, VisQA memorizes inputs and all intermediate and final results in-
cluding k-numbers and attention maps. This state can be saved, and then used
at any time and compared to a new current instance through the compare button
at the top of the instance-view. The comparison itself is obtained by computing
the difference of k-numbers, and complete attention maps. As a result, head
representations in instance-view now encode, with a single hue color scale, the
difference between the two attention maps. Besides, as shown in Figure 3.12,

66 visual question answering

Q: “Is the train ?”blue
red

Is the[CLS] train ? [SEP]
blue
red

GT: yesno

Figure 3.12 – Difference between the attentions of Head LV_1_0, when asked “is
the the train blue?”, and “is the the train red?”. We can observe that in this head,
the attention focuses on different objects (row) depending on the color asked
(column).

attention heat-maps also encodes such a difference using a diverging color scale
from dark blue for values close to −1, i.e. a cell with high attention in the previous
instance but not in the current one, to brown for values close to 1, the opposite.
Comparisons are particularly useful when combined with the possibility to ask
free-form questions. As it can be observed in Figure 3.12, the manually asked
questions “Is the train blue?” and “Is the train red?” are responsible for different
attention modes between the word representing the color and bounding boxes of
the image. By browsing those bounding boxes, it can be observed that the selected
head LV_1_00 associates them, in this case, to the word color only if their color
matches. As an example, in Figure 3.12 (right), the third row, which corresponds
to the bounding box of a blue train, is associated through attention with the word

“blue” but not the word “red”. In order for such a comparison to be relevant, shifts
between two instances must be on a few words of the question, as otherwise,
attention maps rows and columns would not align between the instances, and
thus any difference would occur for wrong reasons. We plan for future work to
enhance this functionality of VisQA through better visual encoding, more intuitive
interactions, and an evaluation.

3.10 conclusion 67

3.10 Conclusion

We introduced VisQA, an interactive visual analytics tool designed to perform
an instance-based in-depth analysis of the reasoning behavior transformer neural
networks for vision and language reasoning, in particular visual question answer-
ing. VisQA allows users to select display VQA instances based on the likelihood of
bias exploitation; to display attention head intensities; to inspect attention distribu-
tions; to prune attention heads; and to directly interact with the model by asking
free-form questions. Our quantitative evaluations are encouraging, providing first
evidence that human users can obtain indications on the reasoning behavior of a
neural network using VisQA, i.e. estimates on whether it correctly predicts an
answer, and whether it exploits biases. VisQA received positive feedback from
these experts, who also provided additional qualitative feedback on the nature of
the information they extracted on the behavior of different neural models.

C
h

a
p

t
e

r 4
N AV I G AT I O N

Contents
4.1 Introduction . 71
4.2 Context and Background . 72

4.2.1 Navigation Problem Definitions 73

4.2.2 Navigation using the ViZDoom Simulation 73

4.2.3 Deep Reinforcement Learning and Memory 75

4.2.4 Visual Analytics and Deep Reinforcement Learning . . . 75

4.3 Model and Design Goals . 76
4.3.1 Deep Reinforcement Learning (DRL) Model 77

4.3.2 Constructing the Memory of DRL 78

4.4 Design of DRLViz . 80
4.4.1 Design Motivation and Goals 80

4.4.2 Overview and Workflow of DRLViz 80

4.4.3 Memory Timeline View 81

4.4.4 Derived Metrics View . 82

4.5 Implementation . 83
4.6 Evaluation by Experts . 85

4.6.1 Protocol and Navigation Problem 85

4.6.2 Feedback from Expert #1 86

4.6.3 Feedback from Expert #2 87

4.6.4 Feedback from Expert #3 87

4.7 Memory Reduction . 88
4.7.1 Evaluation of Reductions with DRLViz 88

4.7.2 MemRed, an Online Explorable 89

4.8 Discussion . 91
4.8.1 Summary of Experts Feedback 91

4.8.2 Limits . 92

4.9 Perspectives . 92
4.9.1 Guiding Exploration with Extended Timelines 92

4.9.2 Generalization to other Scenarios and Simulations 93

4.10 Conclusion . 94

69

70 navigation

Thanks to VQA as introduced in Chapter 3, we have robots able to understand
what we are looking for, and seek within an image for it. The next step to find
our keys, is for robots to successfully explore an environment (e.g. our apartment)
as depicted in Figure 4.1. The following chapter addresses step ­, referred to as
navigation, and how visual analytics systems can be designed to interpret models
trained with Deep Reinforcement Learning (DRL) and ultimately improve them.

Figure 4.1 – This chapter is dedicated to step ­ of finding my keys, i.e. the ability
for robots to explore unknown environments. To do so, such a robot relies on
images sampled from an onboard camera (most right) to decide what should be
its next direction.

In this chapter, we present DRLViz, a visual analytics interface to interpret
the internal memory of an agent (e.g. a robot) trained using DRL. This memory
is composed of large temporal vectors updated when the agent moves in an
environment and is not trivial to understand due to the number of dimensions,
dependencies to past vectors, spatial/temporal correlations, and co-correlation
between dimensions. It is often referred to as a black box as only inputs (images)
and outputs (actions) are intelligible for humans. Using DRLViz, experts are
assisted to interpret to investigate the role of parts of the memory when errors
have been made (e.g. a wrong direction). In this chapter, DRLViz is applied in
the context of video games simulators (ViZDoom) for a navigation scenario with
item gathering tasks in order to speed up the training process. The challenge of
transferring the knowledge acquired in simulation to robots in the real-world will
be addressed in Chapter 5. DRLViz has been evaluated by experts.

Finally, we conducted the experimentation of pruning the memory of DRL agents
down to core identified element, and evaluated the impact on their performances.

4.1 introduction 71

This was inspired by Macdonald et al. [132]’s definition of interpreting Deep
Neural Networks (DNN)s, to only consider a set of features relevant if a model’s
output distribution is preserved despite randomizing the remaining features. We
also designed MemRed, an online explorable of such an experiment, tailored for
non-expert users, which is detailed in Section 4.7.1 of this chapter.

This chapter is related to the following published materials:

• Théo Jaunet, Romain Vuillemot, and Christian Wolf. “DRLViz: Understand-
ing Decisions and Memory in Deep Reinforcement Learning”. Computer
Graphics Forum (Proceedings of EuroVis 2020), 2020.

• Théo Jaunet, Romain Vuillemot, and Christian Wolf. “What if we Reduce
the Memory of an Artificial Doom Player?”. IEEE Workshop on Visualization
for AI Explainability at IEEE VIS (VISxAI), 2019.

Both code (https://github.com/sical/drlviz), and an limited interactive pro-
totype (https://sical.github.io/drlviz) of DRLViz are available online. Simi-
larly, the MemRed (https://theo-jaunet.github.io/MemoryReduction/) and its
code (https://github.com/Theo-Jaunet/MemoryReduction), are also accessible.

4.1 Introduction

Automatic navigation is among the most challenging problems in Computer
Science with a wide range of applications, from finding the shortest paths between
pairs of points, to efficiently exploring and covering unknown environments, up
to complex semantic visual problems (“Where are my keys?”). Addressing such
problems is important for modern applications such as autonomous vehicles to
improve urban mobility, social robots, and assisting elderly people. Historically,
navigation was often solved with discrete optimization algorithms such as Di-
jkstra [55], A-Star [82], Front-propagation [235] etc., applied in settings where
spatial maps are constructed simultaneously with solving the navigation prob-
lem. These algorithms are well understood, but are restricted to simple waypoint
navigation. Recently, techniques from Machine/Deep Learning have shown spec-
tacular progress on more complex tasks involving visual recognition, especially
in settings where the agent is required to discover the problem statement itself
from data. In particular, Reinforcement Learning (RL) and the underlying Markov
Decision Process (MDP) provide a mathematically founded framework for a class
of problems focusing on interactions between an agent and its environment [200].
In combination with deep networks as function approximators, this kind of model
was very successful in problems like game playing [145, 186], navigation in simu-
lated environments [48, 75, 159], and work in Human-Computer Interaction (HCI)
emerging[51].

https://github.com/sical/drlviz
https://sical.github.io/drlviz
https://theo-jaunet.github.io/MemoryReduction/
https://github.com/Theo-Jaunet/MemoryReduction

72 navigation

The goal of Deep Reinforcement Learning (DRL) is to train agents which interact
with an environment. The agent sequentially takes decisions at, where t is a time
instant, and receives a scalar reward Rt, as well as a new observation ot. The
reward encodes the success of the agent’s behavior, but a reward Rt at time t does
not necessarily reflect the quality of the agent’s action at time t. As an example,
if an agent is to steer an autonomous vehicle, receiving a (very) negative reward
at some instant because the car is crashed into a wall, this reflects a sequence of
actions taken earlier than the last action right before the crash, which is known as
the credit assignment problem. The reinforcement learning process aims at learning
an optimal policy of actions which optimizes the expected accumulated future
reward Vt = ∑t+τ

t′=t Rt over a horizon τ.
If agents trained with DRL were deployed to real-world scenarios, failures and

unexpected behaviors [117] could lead to severe consequences. This raises new
concerns in understanding on what ground models’ decisions (e.g. brake) are
based [172]. To assess the decision of a trained model, developers [87] must explore
its context (e.g. a pedestrian on the road, speed, previous decisions) and associate
it with millions of deep networks parameters which is not feasible manually.
Analyzing a decision after-the-fact, referred to as post-hoc interpretability [126],
has been a common approach in visualization. It consists in collecting any relevant
information such as inputs and inner-representations produced while the model
outputs decision. With such an approach, DRL experts explore their models
without having to modify them and face the trade-off between interpretability and
performances. Visual analytics for post-hoc interpretability [87] yields promising
results on tasks such as image classification [157], or text prediction [193]; however,
it remains an under-explored challenge for DRL with memory.

We built DRLViz, a novel Visual Analytics interface aimed at making Deep
Reinforcement Learning models with memory more interpretable for experts.
DRLViz exposes a trained agent’s memory using a set of interactive visualizations
the user can overview and filter, to identify sub-sets of the memory involved in
the agent’s decision. DRLViz targets expert users in DRL, who are used to work
with such models (referred to as developers in [87]). Typically, those experts have
already trained agents and want to investigate their decision-making process. We
validated DRLViz usability with three experts and report on their findings that
informed us on future improvements such as applicability to other scenarios, and
novel interactions to reduce the memory of an agent and better find patterns
within it.

4.2 Context and Background

The context of our work is related to building deep neural network models
to train robots to achieve human assistance tasks in real-world environments.

4.2 context and background 73

As the sample efficiency of current RL algorithms is limited, training requires a
massive amount of interactions of the agent with the environment — typically
in the order of a billion. Simulators can provide this amount of interactions in a
reasonable time frame, and enable to work with a constantly controlled world,
that will generate less noise (e.g. a shade) in the agent’s latent representation.
We will discuss in the perspectives section, and in Chapter 5 the extension of
our work beyond simulators and the knowledge transfer from simulation to
real-world scenarios, where variability (e.g. lighting, clouds, shades, etc.) and
non-deterministic behaviors (e.g. robots may turn more or less depending on its
battery charge) occur.

4.2.1 Navigation Problem Definitions

Our focus is on navigation problems, where an agent (e.g. robot, human) moves
within a 2D space we call environment (Figure 4.2). An environment contains
obstacles (e.g. walls), items the agent may want to gather or avoid, and is usually
bounded (e.g. a room). The goal of the agent can vary according to the problem
variation, but typically is to reach a particular location (e.g. gather items, find a
particular spot). Importantly, the goal itself needs to be discovered by the agent
through feedback in the form of a scalar reward signal the environment provides:
for instance, hitting a wall may provide a negative reward, finding a certain item
may result in a positive reward. To discover and achieve the goal, the agent must
explore its environment using actions. In our case, those actions are discrete and
elements of the following alphabet: a∈A, with A ={forward, forward+right, right,
left, forward+left}. The navigation task ends when the agent reaches its goal, or
when it fails (e.g. dies, timeout).

As the agent explores its environment, it produces a trajectory. A trajectory
is a series of positions p (x,y) in a space S bounded by the environment. Those
positions are ordered by time-step t ∈ T, where t0 < t1 < tn, and the interval
between tn and tn+1 is the time the agent takes to act. In addition to positions,
trajectories contain complementary attributes b, which may vary depending on
the agent goal (e.g. number of gathered items, velocity, etc.). We call stept the
combination of both the agent position p and its attributes b, at a given time-step
t. Thus stept can be represented as follows <pt, bt>. The transition between steps
occurs as the agent makes a decision. An episode groups all iterations from the
first step at t0, until the agent wins or looses at tn.

4.2.2 Navigation using the ViZDoom Simulation

The simulation environment we use to train agents to navigate is ViZDoom [103]
which provides instances of the navigation problem based on Doom, a very

74 navigation

t

t t

Obstacles ItemsEnvironment

Trajectory

Field
of viewAgent

Perception

Memory

Decision

Action

Update

-2

-1

t-3
-4t

4

3

2

1

Controller

Input
(Image)

Output
(Action)

Perception

Update

Memory

Decision

Action

RewardRewardReward

Figure 4.2 – Our navigation problem consists in solving a visual task (e.g. fetch,
interact, or recognize items) while avoiding obstacles in an environment. Deep
Reinforcement Learning can be used to solve this problem by using an image as
input ¬ at time t. Features are then extracted from this image ­, and combined
with the previous memory vector t− 1 ®. Using this memory vector, the agent
decides to move forward or turn left, for instance ¯.

popular video game in the ’90s. ViZDoom is a 3D world and as such is a proxy
problem to mobile service robotics. It supplies different scenarios focusing on
various goals (e.g. survive, reach a location, gather items, avoid enemies, etc.).
For expert evaluation, and Figure 4.2 we used the k-items scenario from [18] with
k = 4. In this scenario, the agent, walls, and items are randomly placed in an
environment at the beginning of each episode. Then the agent needs to explore
the environment until it succeeds, fails or reaches a timeout of 525 steps. To
succeed the agent must first gather a green armor, then a red armor, followed
by a Health Pack, and finally a soul-sphere (blue circle). Gathering the items in
another order instantly kills the agent and ends the episode (fail). Gathering an
item in the right order grants a +0.5 reward r, while failing grants a reward of
−0.25. Additionally, the agent receives a reward of −0.0001 at each step. This
scenario has been designed to provide sufficient learning signals to the agent,
pushing it towards learning the positions of objects in maps. This is not the case

4.2 context and background 75

for simpler tasks requiring to search an object like "ObjectNav" [14], as in this case
collecting an object only requires to reach it immediately upon its detection.

Despite ViZDoom being a 3D world, the agent positions p are within a bounded
continuous 2D plane corresponding to the bird’s eye view of the environment.
We summarize a time-step t as follows: <pt, (rt)>.

This task is challenging as the agent is required to take a decision on the next
action based on partial information of the environment, i.e. the task is partially
observable. The observed image represents the agent’s Field of View (FoV) (i.e.
what is in front of it), in a 90-degree range and unlimited depth. The agent is
required to recall previously seen observations in some way as it doesn’t have
access to a global view of the map. These views are stored in its latent memory,
the representation studied in this work. The agent should also use its memory to
encode information on the items it gathered, and the positions of items or walls
encountered in order to quickly complete this task.

4.2.3 Deep Reinforcement Learning and Memory

As expressed in the taxonomy [10], DRL reached state-of-the-art performance
in tasks such as robot control [118] and board games [186, 94] where it even
surpasses humans in some cases. Recent Deep Reinforcement learning models,
such as Deep Q-Networks (DQN)s [144, 145], and Asynchronous Advantage Actor-
Critic (A3C) [146], learned to play video games with human-level control using
only images as input. As a result, they achieved human-level performances on
Atari 2600 games [19] such as breakout. Those models rely on the hypothesis that
the optimal action can be decided based on a single frame.

However, these approaches operate on environments that can be totally ob-
served (like chess or GO board game), and not partially observable, with a field
of view that is smaller than the environment. To address this, an internal la-
tent memory can be introduced [83] to provide a space the model can use to
store an approximation of the history of previous inputs and solve navigation
problems [142, 246, 154], allowing learning in simulated environments such as
Matterport3D [40], ViZDoom [103, 18].

4.2.4 Visual Analytics and Deep Reinforcement Learning

Thanks to analyses conducted with the help of visual analytics systems ad-
dressing sequential models (introduced in Chapter 2, Section 2.3.2), it has been
observed that a decision at a time-step t can be affected by an input seen at t− n.
In our case, such inputs are images and experts must first assess what the model
did grasp from them before exploring what is stored in the memory. In addition,
the rewards from navigation tasks are often sparse which results in a lack of

76 navigation

supervision over actions, known as the credit assignment problem inherent to RL
problems (the reward provided at a given time step can correspond to decisions
taken at arbitrary time steps in the past). The model interacts with an environment
it only sees partially, therefore, its performances can be altered by factors outside
its inputs. This forces experts to visualize multiple time-steps in order to analyze
a single decision which makes them more difficult to analyze with existing tools.

To our knowledge, DRL visualizations are under-represented in the literature
compared to other methods of visualizing deep learning. LSTM activations from
an A3C agent [142] have been displayed using a t-SNE [218] projection. Despite
being effective for an overview of the agent’s memory, it offers limited information
on the role of the memory. T-SNE projections have also been applied to memory-
less DRL agents on 2D Atari 2600 games, in the seminal DQN paper [145], and
in [239]. DQNViz [227] displays the training of memory-less models under 4
perspectives. First an overview of the complete training, action distribution
of one epoch, a trajectory replay combined with metrics such as rewards, and
whether an action was random. DQNViz also includes a detailed view to explore
Convolutional Neural Network (CNN) parameters. Such a tool demonstrates the
effectiveness of visual analytics solutions applied to DRL. However, DQNViz
focuses on the training of the model, and how random decisions through training
can affect it. In addition, the model of DQNViz is limited to fully observable 2D
environments in which the only movements available are left or right and thus
cannot be applied to navigation tasks. Finally, DQNViz is not designed to display
or analyze any memory.

In this chapter, we address the under-explored challenge of visualizing a trained
DRL model’s memory in a 3D partially observed environment. We contextualize
this memory with output decisions, inputs, and derived metrics. We also provide
interaction to overview, filter, and select parts of such memory based on this
context to provide clues on agents’ decision reasoning and potentially identify
how the model uses its memory elements.

4.3 Model and Design Goals

This section presents the model we used to design and implement DRLViz. We
describe the inner workings of those models and data characteristics. One key
aspect is how the memory of DRL is created and updated by the agent, over space
and time. Note that those data will be generated and then visualized with DRLViz
after the training phase.

4.3 model and design goals 77

4.3.1 DRL Model

The DRL model we relied on only receives pixels from an RGB image as input,
from which it decides the action the agent should perform with the Advantage
Actor-Critic (A2C) [146] algorithm. The model is composed of 3 convolutional
layers followed by a layer of Gated Recurrent Unit (GRU) [42], and Fully Connected
(FC) layers to match the actions set A. This model is inspired by LSTM A3C as
presented in [142] with A3C instead of A2C, and a LSTM [78] instead of GRU. Those
changes reduce the agent’s training time while preserving its performance. The
underlying structure that allows our model to associate raw pixels to an action is
illustrated on Figure 4.2 and described as follows:

Stage ¬: Environment → Image. First, the agent’s field of view is captured as
image xt, i.e. a matrix with dimensions of 112× 64 with 3 RGB color channels.

Stage ­: Image → Feature vector. The image xt is then analyzed by 3 convolu-
tional layers designed to extract features ft, resulting in a tensor of 32 features
shaped as a 10× 4 matrices. These features are then flattened and further pro-
cessed with a FC layer. Formally, the full stack of convolutional and FC layers
is denoted as function ft = Φ(xt, θΦ) with trainable parameters θΦ taking xt as
input and given features ft as output.

Stage ®: (Features + previous memory)→ New memory. The model maintains
and updates a latent representation of its inputs using a GRU [42] layer, a gated
variant of Recurrent Neural Network (RNN). This representation, called hidden
state ht, is a time varying vector of 128 dimensions, which is updated at each time-
step t with a trainable function Ψ taking as input the current observation, encoded
in features ft, and the previous hidden state ht−1, as follows: ht = Ψ(ht−1, ft, θΨ).

Stage ¯: Memory vector→ Action. The model maps the current hidden state ht
to a probability distribution over actions A using a fully connected layer followed
by a softmax activation function, denoted as the following trainable function:
at = ξ(ht, θξ) with trainable parameters θξ . The highest probability corresponds
to the action at which the agent estimated as optimal for the current step t.

The full set of parameters θ = {θΦ, θΨ, θξ} is trained end-to-end. We used 16
parallel agents and updated the model every 128 steps in the environments. The
gamma factor was 0.99, and we used the RMSProp [212] optimizer with a learning
rate of 7e− 4. We trained the agent over 5 million frames, with a frame-skip of 4.
During training, the agent does not necessarily pick the action with the highest
probability, as it needs to explore its environment, and eventually find better

78 navigation

Activated element

Not activated element

t t t t t-2 -1 +1 +2

Elements

Time-stepsStart (T) End (T)0 525

0

128

Activated

Not activated

Pos
itiv

e v
alu

e
Neg

ati
ve

 va
lue

Activated

Not activated

Positi
ve

 va
lue

Negative
 va

lue

Figure 4.3 – Memory construction process: at a current time-step t, the agent
updates its memory by producing a new memory vector. Each dimension of this
vector (represented as a column) is appended to the previous ones chronologically
(from left to right). As a result, each row of the appended vectors represent the
actions of a single memory element.

solutions. However, once the agent is trained, it always chooses the action with
the highest probability.

4.3.2 Constructing the Memory of DRL

In the partially observed navigation problem we focus on, the agent only
sees the current observation, i.e. what is in its field of view at the time-step t.
However, past observations are also relevant for decision making (e.g. to gather
previously seen items). Therefore the agent needs to build a representation of
relevant information extracted from the history of observations. This information
is encoded in ht, a high dimensional (128 in our case) time-varying vector.

Figure 4.3 represents the construction process of the hidden states matrix,
which consists of the hidden states ht over the time of an episode — the central
visualization in DRLViz (Figure 4.4). Each hidden state is vertically aligned per
time-step t at which they are produced. Therefore, the accumulation of hidden
states forms a large 2D matrix, where the horizontal axis is time (ht−1 < ht < ht+1)
and the rows are elements. A row of this 2D matrix represents the evolution and
activity of a hidden state element through time and space as the agent moves. The
activity of a hidden state element is characterized by its value. In our case, each
element of the hidden states is a quantity within the range [−1, 1]. A value close
to 0 represents low activity, whereas a value close to any extremity represents
high activity. As it can be seen in Figure 4.3, hidden states can drastically change
their values between two time-steps. Such value changes can be widely observed

4.3 model and design goals 79

Field of View Action Distribution Current Time Selected Memory

Current Time Trajectories

t-SNE Projection

Episodes
Derived Metrics

Timeline

Memory

Time-steps

Elements

1

2

3

4

Figure 4.4 – DRLViz displays a trained agent memory, which is a large temporal
vector, as a horizontal heat-map À. Analysts can browse this memory following
its temporal construction; filter according to movements of the agent and derived
metrics we calculated Á (e.g. when an item is in the field of view Â); and select the
memory to filter elements and compare them Ã.

across hidden states elements during episodes. However, it remains unclear which
elements, correspond to which representations, and thus, are responsible for
decisions.

Norms of latent activations are an informative way of visualizing influences [31,
243]. With modern training methods such as weight decay, dropout, and batch
normalization, it is highly improbable that a high activation can occur for unused
features. An alternative to hidden state activations would be to analyze gradients
of action probabilities with respect to hidden states [183, 37]. Such an approach
can provide information on how a chosen action is directly tied to the current state
of the memory, and which dimension influences the more this decision. However,
in DRLViz we focus on actions through the episode as a sequence rather than
small sub-sequences. When visualizing activations of an LSTM on text, Karpathy
et al. [99] discovered a pattern occurring outside back-propagation limitations of
the gradient signal. A solution would be to display both activations and gradients,
however preserving the usability and interpretability of a tool conveying such
information is a challenge yet to be tackled.

80 navigation

4.4 Design of DRLViz

We built DRLViz as a visual analytics interface to understand the connections be-
tween the latent memory representation (as depicted in Figure 4.3) and decisions of
an agent trained using Deep Reinforcement Learning. DRLViz primarily exposes
the internal memory (Figure 4.4) which is interactive and provides overviewing,
filtering and reduction both for exploration and knowledge generation [101]. DR-
LViz is designed towards experts in DRL to identify elements responsible for both
low-level decisions (e.g. move towards a spotted Health Pack) and eventually
higher-level strategies (e.g. optimizing a path).

4.4.1 Design Motivation and Goals

We iteratively built DRLViz with frequent meetings from colleagues experts in
Deep Learning and DRL (a total of 12 meetings with three experts over 7 months).
We first identified their current process to analyze trained agents, e.g. recording
videos to playback agents episodes (from its point of view) and decisions (actions
probability) to get a sense of the strategy. We also observed experts do a system
print of the models’ inner values, sometimes add conditions to those prints
(e.g. when an item is in the field of view of the agent), and manually look for
unusual values. Our approach was to re-build a similar interface in DRLViz with
input/output views and facilitate playback, but 1) in an interactive way, and 2) by
adding advanced, coordinated views to support advanced models visualization
aimed at models developers [87] (e.g. view on the agent’s memory).

Based on a review of the current practices of researchers from our focus group,
and related work, we identified the following design goals (G) to be addressed to
understand the behavior of a trained agent using a learning model for navigation
problems:

G1 Show an agent’s decisions over (a) space and (b) time, especially input and
outputs of the model.

G2 Expose the memory’s internal structure, i.e. the temporal vector built over
time (Figure 4.3).

G3 Link memory over (a) time and (b) decisions with multiple endpoints, e.g.
starting from any time, location, memory or trajectory point.

G4 Filter a sub-set of the memory (a sub-space) tied to a specific agent behavior
or strategy.

4.4.2 Overview and Workflow of DRLViz

Figure 4.4 shows an overview of DRLViz where the most prominent visualiza-
tion is the memory timeline of a trained agent (G2). The primary interaction is

4.4 design of drlviz 81

browsing the timeline and playback the input video feed and action probabilities
(G1). Beyond re-playing scenarios, DRLViz implements multiple interactions to:

1. Overview the memory and check what the agent sees and its decisions; visual
cues for selection are dark, consecutive patterns (Figure 4.3).

2. Filter the timeline when something is of interest, e.g. related to the activation,
but also with additional timelines (actions, etc.).

3. Select elements whose activation behavior is linked to decisions. Those ele-
ments are only a subset of the whole memory and are visible on Figure 4.4 Ã.

Those interactions are carried out using a vertical thumb similar to a slider to
explore time-steps t and select intervals. Such a selection is propagated to allow
the views on the interface, whose main ones are image (perception) and probabilities
(of actions) which provide context on the agent’s decisions (G1 (b)). The input
image can be animated as a video feed with the playback controls, and a saliency
map overlay can be activated [190, 79] representing the segmentation of the image
by the agent. The trajectories view (Figure 4.4) displays the sequence of agent
positions pt−1 > pt > pt+1 on a 2D map (G1 (a)). This view also displays the items
in the agent’s field of view as colored circles matching the ones on the timeline.
The position pt, and orientation of the agent are represented as an animated
triangle. The user can brush the 2D map to select time-steps, which filters the
memory view with corresponding time-steps for further analysis (G3 (a)). DRLViz,
also includes a t-SNE [218] view of time-steps t using a two-dimensional projection
(Figure 4.4 bottom left). T-SNE is a dimensionality reduction technique, which
shows similar items nearby, and in this view, each dot represents a hidden state
h occurring in a time-step t. The dot corresponding to the current time-step t is
filled in red, while the others are blue. The user can select using a lasso interaction
clusters of hidden states to filter the memory with the corresponding time steps.
Dimensions among the selected hidden states can then be re-ordered with any
criteria listed in Table 4.1, and brushed vertically (Figure 4.4 ¯).

The result of such an exploratory process is the subset of elements of the
memory (rows) that are linked to an agent’s decision (Figure 4.4 ¯). This addresses
the design goal G4. Such subset can be seen as a memory reduction that can be
used as a substitute to the whole memory (we will discuss it in the perspective
sections). This subset can also be used in other episodes listed as clickable squares
at the bottom left corner of DRLViz.

4.4.3 Memory Timeline View

The memory timeline exposes the memory’s internal structure (G2), which is
vector (vertical column) of 128 dimensions over 525 time-steps as a heat-map
(Figure 4.4 ­) from which an interval can be brushed for further analysis. Each
cell (square) encodes a quantitative value, whose construction is illustrated in

82 navigation

Table 4.1 – List of re-ordering criteria as they appear in DRLViz. t is the current
time-step, n the number of steps (525 at most), and i the element.

Criteria Formula Description

activation

n
∑

t=1
|hti| Elements most involved in deci-

sions.

change

n−1
∑

t=1
|hti − ht+1i| Maximal change.

stable change
−1 Minimal change.

similar | 1n
n−1
∑

t=1
hti − 1

k

k−1
∑

t=1
htj| Elements in average different

during an interval of k time-
steps than outside it.

Figure 4.3, using a bi-variate color scale from [124] with blue for negative values
and orange for positive values. Preserving the values as they were initially
produced by the model is pertinent as some memory elements (rows) can have
both positive and negative values, which may not have the same signification for
the model and thus cause different decisions. This will be further explored in
Section 4.6.4.

By default DRLViz displays the vector as it is produced by the model, hence
the order of elements has no particular semantic. The memory can be re-ordered
using a drop-down menu according to comparison criteria listed in Table 4.1. With
the activation criteria, a user can observe elements that may be most involved
in decisions, while with change, elements that may be the most used by the
model are emphasized, with similar, a user can see elements with constant
activations during selected intervals. In addition to those criteria, we provided
the possibility to re-order the memory as presented in [35] i.e. a one-dimensional
t-SNE projection of the absolute values. The re-ordering can either be applied to
the whole memory or a selected interval. An order is preserved across memory
filters and episodes until the user changes it.

4.4.4 Derived Metrics View

The derived metrics timeline addresses the design goals G3 and G4. It repre-
sents metrics calculated from ground truth information provided by the simulator.
Those metrics aim at supporting the user in finding interesting agent behaviors
such as What does a trained agent do when it has no health pack in its field of view?. The
view encodes measures of both the inputs (e.g. health pack is spotted) simulator
(e.g. reward) and outputs (e.g. actions). Finally, DRLViz features a stacked area
chart of actions probabilities encoding probabilities per action represented by

4.5 implementation 83

Table 4.2 – List of derived metrics (from top to bottom on Figure 4.4 ®)
Metric Data Type Values
Health of the agent Quantitative death [0,100] full
Event (item gathered) Flag (1) gathered
Item in FoV Binary no item (0, 1) item
Orientation to items Degree left [-45,45] right
Variation of orientation Quantitative stable [0,30] change
Decision ambiguity Ratio sure [0,1] unsure

colors corresponding to the ones on the action distribution graph in 4.4. With this
visualization, users can observe similar sequences of decisions.

The derived metrics and stacked area chart are below the memory timeline and
share the vertical thumb from the memory slider (G3 (a)) to facilitate comparisons
between the memory and the behavior of the agent (G3 (b)) as depicted in
Figure 4.5. The derived metrics can be dragged vertically by the user as an
overlay of the memory to compare metrics with activation values, and identify
memory elements related to them (G4). A constant activation of an element
during the same intervals of a metric such as Health Packs in FoV, while being
different otherwise; may hint that they are related. We provide a full list of metrics
in Table 4.2. Two metrics are particularly complex and described as follows:

variation describes how the the agent’s orientation (i.e. its FoV) changes over three
consecutive time-steps. High variations indicate hesitation in directions and
intervals during which the agent turns around, whereas low variations indicate
an agent aligned with where it wants to go. However, in some cases (e.g. the agent
stuck into a wall), actions may have no effect on the agent’s orientation which
leads the variation to remain low.

ambiguity of a decision is computed using the variance V of action probabilities.
The variance describes how uniform actions probabilities are with respect to the
mean. A variance V = 0 indicates that there is no difference between actions
probabilities, and hence that the agent is uncertain of its decision. On the other
way, a high variance represents strong differences in the actions probabilities
and the agent’s high confidence in its decision. Since the sum of all actions
probabilities equals to 1, the variance is bounded within the range [0, 1]. To
ease the readability, the variance is inverted as follows: ambiguity = 1−V. An
ambiguity close to 1 represents incertitude in the agent’s decision.

4.5 Implementation

To explore the memory of a trained agent, one needs to create instances of
exploration scenarios. For experts evaluations (Section 4.6) we used a trained

84 navigation

2

4

3
1

Figure 4.5 – DRLViz allows to compare selected time intervals ¬. For instance to
compare when agents face dead-ends ­ and when they face health-packs ®. One
can observe that more elements are active while the agent is facing Health Packs
than while facing a dead-end. Perhaps those elements are encoding information
concerning Health Packs. When facing a dead-end, both the orientation variation
and decision ambiguity are high which can be interpreted as the agent hesitating
on which action to choose.

agent to explore the environment 20 times with different configurations (i.e.
positions of items, start position of the agent, its orientation). During those
episodes, we collected information from the agent at each time-step such as
its FoV image, action probabilities, memory vector, and information from the
environment such as the items in the agent’s FoV, the position of the agent, the
agent’s orientation and its health. The collected data is formatted as a JSON file
which groups data elements per episode and then per step with an average of
30Mo per episode. Those data are generated using DRL models implemented in
Pytorch [161], and formatted in Python 3. The user interface of DRLViz loads
data using JavaScript and D3 [22]. The interactions between the model and the
front-end are handled by a Flask Python server. The data, separated per episode
is generated in a plug-in fashion i.e. without altering the model or the simulator.

4.6 evaluation by experts 85

Gathering soul-sphere

Same dead-endGathering armor

6

34

1

5 Flag for seeing health pack

2

8

2

Focus on item

9

7

Figure 4.6 – Summary of the insights gained by the experts. Expert #1 noticed
two intervals during which the agent only turned right, by using both trajectory ¬

and stacked area chart of actions ­ views. Once he replayed those sequences, he
stated that the agent came twice in the same dead-end ®. Expert #3 observed a
hidden state dimension which is blue when the agent sees the red armor before
the green armor, and then remained orange until when he saw the green armor ¯.
Expert #2 probed a dimension that is active as the agent first saw the Health Pack,
and remained active until it gathered it. Expert #1 also identified two hidden state
elements that change as the agent gathered the health pack and then kept their
values until the end of the episode ±. Using saliency maps ², Expert #2 observed
that the agent ignored the soul-sphere until it gathered the first three items ³.
Finally, Expert #3 identified clusters in the t-SNE projection which corresponds to
the agent’s objectives e.g. gathering the green armor ´.

4.6 Evaluation by Experts

We conducted a user study with three DRL experts who are experienced re-
searchers building DRL models and match the target profile for DRLViz [87]. We
report on their use of DRLViz, as well as insights they gathered. Those results
provide hints that can be leveraged to formulate hypotheses that can then be
studied outside DRLViz e.g. through statistical evidence.

4.6.1 Protocol and Navigation Problem

We recruited three DRL experts (Expert #1, Expert #2, Expert #3) from two
different academic laboratories to evaluate DRLViz. They were shown a 10

86 navigation

minutes demonstration of DRLViz on a simple ViZDoom scenario: health gathering
supreme. The evaluation started with DRLViz loaded with data extracted from a
model developed by Expert #1, and ended after 35 minutes, during which experts
could explore the displayed data. While using DRLViz experts were told to explain
their thoughts and what they wanted to see. Then, experts were asked to fill a
post-study questionnaire to collect their first impressions with open questions
such as "Which part of DRLViz was the least useful?". The evaluation ended with
a discussion guided by the post-study questionnaire on their experience using
DRLViz and how it can be improved. The complete evaluation lasted on average 1
hour depending on the length of the discussion. The model used was an A2C [146]
with 3 convolutional layers and GRU layer with 128 dimensions as memory.

4.6.2 Feedback from Expert #1

Expert #1 is the most experienced expert for this evaluation as he designed
both the model and the navigation task [18] and created animations of agents’
behaviors. Expert #1 was our primary collaborator to design and build DRLViz.

Figure 4.6 shows DRLViz loaded with the k-item scenario. Expert #1 first
selected an interval corresponding to the agent searching and gathering the last
item. This interval started one step after the agent gathered the Health Pack (third
item), and ended as the agent gathered the soul-sphere (last item). Expert #1,
then used the change criteria to re-order the interval. While replaying it, he
noticed two elements with similar activations (Figure 4.6 ±). Those elements
remained blue during the interval, however, they were inactivated (gray) during
the rest of the episode. With further investigation, Expert #1 noticed that those
elements were active 4 steps before the agent gathered the Health Pack. Expert #1

described those elements as flags i.e. elements that encodes binary information.
Expert #1’s intuition was that the agent learned to complete the navigation
problem by focusing on one item at a time. And only used its memory to
encode information on items it already gathered, and hence which item it should
currently gather. Expert #1 concluded that the two elements may be the agent’s
representation that it gathered the Health Pack, and hence that it should now
focus on gathering the soul-sphere.

Then using the action probabilities temporal stacked area chart (Figure 4.6 ­),
Expert #1 noticed a specific time interval during which the agent repeated the
same action for almost 15 steps. Intrigued by such behavior, Expert #1 replayed
this interval and noticed that the agent was within a dead-end (Figure 4.6 ®)
and repeated the action right until it changed its orientation up to 180 degrees.
Expert #1 commented that observing such interval is interesting because as the
agent converges towards an optimal policy, it may have fewer chances to encounter
dead-ends, and thus forget how to escape them. Expert #1 also observed a similar
interval with only right actions in which the agent escaped the same dead-end.

4.6 evaluation by experts 87

Expert #1 concluded that the dead-end was not encoded in the agent’s memory,
and hence the agent returned to it while searching for items.

4.6.3 Feedback from Expert #2

Our second expert, Expert #2, started by re-ordering the memory using the
stable criteria. He noticed a hidden state element, and zoomed (vertical brush)
on it. This element had continuous activations starting as the agent first saw the
Health Pack and remained active until the agent gathered both the red armor
and the Health Pack. Because such element is active regardless of the items the
agent gathered yet, Expert #2 interpreted this element as a flag encoding if the
agent has seen the health pack or not.

Then Expert #2 focused on the saliency maps combined with episode playback.
He noticed that in one episode, the agent encountered the soul-sphere (last item)
before it gathered the red armor (second item). During those time-steps, the
saliency maps are not activated towards the soul-sphere despite being the agent’s
FoV (Figure 4.6 ²), and the memory had no visible changes. Expert #2 intuition
was that the agent did not perceive the item. In the final steps of the episode, once
the agent gathered the firsts 3 items and then re-encountered the soul-sphere,
the saliency maps were activated towards it (Figure 4.6 ³) and the memory
activations changed. Expert #2 expressed that "It is interesting because as soon as
it sees it [the soul-sphere] its behavior changes". Expert #2 concluded that the agent
intentionally ignored the soul-sphere before it gathered previous items, and
as Expert #1 mentioned, the agent learned to solve this navigation problem by
focusing on one item at a time.

4.6.4 Feedback from Expert #3

Expert #3 began his exploration with the t-SNE 2D projection as an entry point
to identify clusters of hidden states. Expert #3 selected groups of states using
the lasso selection (Figure 4.6 ´) to filter the memory timeline. The selected
cluster represented consecutive steps, forming a continuous time interval. After
replaying this interval, Expert #3 observed that it started at the beginning of
the episode and ended when the green armor (first item) entered the agent’s
FoV. Expert #3 interpreted this cluster as corresponding to an agent objective,
in this case gathering the first item.

Following up on the previously identified cluster, Expert #3 re-ordered it with
the stable criteria. Expert #3 noticed one particular hidden state dimension that
was activated in blue until the green armor entered the agent’s FoV, and then was
activated in orange for the rest of the episode. Expert #3 interpreted such element
activation as a flag encoding if the agent has seen the green armor. However, after

88 navigation

observing this element activations across episodes, Expert #3 noted that it was
inactivated (grayish) at the start of an episode. After re-playing this episode he
observed that the agent had no armor in its FoV, as opposed to the first episode
analyzed where the agent started with the red armor in its FoV. In another episode,
where the agent has the green armor in its FoV since the start, the element was
constantly activated in orange. Expert #3 concluded that this element encoded
if the agent saw an armor rather than just the green armor. However, once the
agent gathered the green armor, the element remained orange despite still having
the red armor in the agent’s FoV. Expert #3 added that this element also encodes
if the agent gathered the green armor.

4.7 Memory Reduction

The following depicts how memory elements may be non-essential in order for
DRL agents to preserve their performances and a coherent behavior.

4.7.1 Evaluation of Reductions with DRLViz

As experts noticed during interviews, the agents’ memory can often be sparse
(e.g. Figure 4.4) or hold redundancy (e.g. Figure 4.6 ±). Thus we hypothesize
that some elements may either never be activated, or there might be redundant
activations at the same time. In order to explore such a hypothesis, we conducted
an experiment to assess that some sub-set of the memory is sufficient to solve a
navigation problem, and the rest may be discarded. We used the health gathering
supreme scenario in which the agent must collect Health Packs to survive, hence
it is easier to solve than k-item. During the experiment, with a memory of 512
dimensions, we "removed" hidden state elements by multiplying them by 0 before
going any further in the model’s decision process. And thus, while still within the
model, those nullified elements are conveying no information, and hence should
have little to no impact on any decision outside of their absence of activation. We
then re-run such a model with its reduced memory and generate new episodes
to be evaluated. For the experiment’s sake, we decided to only preserve the
half of most activated elements of the memory, sampled from DRLViz, with the
activation re-order metric on the health gathering supreme scenario and a large
memory of 512 dimensions.

The results of this experiment are presented in Table 4.3 which shows similar
performances between agents with full and half memory over the same 100
episodes lasting on average around 500 steps. The most notable difference is on
the agents’ ability to avoid poison vials, with the reduced model taking on average
slightly more of them. This might be explained by replaying episodes generated
of this model, in which we can observe that the agents’ actions seem a bit more

4.7 memory reduction 89

Table 4.3 – Performances of agents with different memory reduction strategies
(each averaged over 100 episodes). Best result of each column is bold.

Type of reduction Steps Health Pack Poison Health
survived gathered gathered

Full-memory 503.98 37.56 4.28 81.47

Half-memory 493.92 37.88 4.66 81.61

erratic, and thus, miss-steps more often. One hypothesis to draw is that the
agent has at least 256 non-essential elements. Efficient selection of those elements
remains a challenge, as it must account for complex temporal dependencies. This
might be due to the fact that the size of the memory (i.e. the number of elements),
is a hyper-parameter manually set by experts. And, when deciding on a size,
experts often tend to opt for a large memory to ensure that the memory is not a
bottleneck preventing the agent from learning complex behaviors.

With such memory reduction, i.e. masking undesired elements, they remain
within the model and take part in the computation. However, having smaller
models would be useful as they may be more interpretable, with fewer memory
elements to analyze, but also require less computing power and have a lower
energy consumption footprint. A solution would be to train a model with large
memory, through our reduction method grasp how many memory elements
would be optimal, and then re-train a new model with such a memory size.

4.7.2 MemRed, an Online Explorable

To address the challenge of optimizing the memory of DRL agents, and introduce
it to non-experts, we designed MemRed, an online explorable visualization (illus-
trated in Figure 4.7). This explorable leverage the views of DRLViz to deliver to
non-expert more accessible insights on a simplified agent’s memory and how it
can be reduced. In this explorable, users can only interact with a small memory
for easier interpretation. Users can experiment with different strategies to reduce
the memory of a simplified model with only 32 dimensions in the k-item scenario,
and asses how different their corresponding trajectories are. Here, the focus is
on a single episode, and hence our goal for models with reduced memory to
complete it with the same number of steps as with full memory. In addition, in
order to avoid being too overwhelming, the activation of memory elements is
encoded in a single color hue from 0 white to 1 brownish. Traditionally those
elements’ activations range from −1 to 1, hence we only display their absolute
value, representing how "used" is an element rather than what information it
conveys.

First, as an introduction, we provide random reductions, which yields agents
failing at different degrees from turning on the opposite direction of an item to

90 navigation

Figure 4.7 – Overview of MemRed, an online explorable in which users are invited
to try different strategies to reduce the memory of a DRL agent and observe how
it affects its behavior. This explorable earned the distinction of "best paper" at the
VISxAI workshop 2019.

collect, to turning in circles, skipping items, or succeeding. It is observed that
such degrees of failure are not correlated with the number of elements removed,
but rather which one. The next strategy is, similarly to the previous section, to
re-order the memory using metrics, and only preserve the top half or top-quarter.
With this, the best result, with the least number of elements is achieved with to
top 8 most changing elements, with the agent almost reaching the last items, but
taking too many steps to be there, ending the episode. Finally, the overall best
results are obtained by using those top 8 elements and manually adding 5 of them
that were active at the end when there was no reduction. This yields an agent
with only 40% of its memory able to successfully complete this selected episode.
While this paves the way for direct filtering by elements of the memory heat-map
in a future version of DRLViz, those results need to be analyzed through the lens
of multiple episodes and trajectories required, in order to ensure that the agent is
not lacking any knowledge to complete its task in harder situations.

4.8 discussion 91

4.8 Discussion

In this section, we discuss the collected feedback from experts, as well as the
limits of the current version of DRLViz.

4.8.1 Summary of Experts Feedback

Experts filled a post-study questionnaire relative to DRLViz usefulness and
usability. Overall DRLViz was positively received by all of them: both Expert #1

and Expert #2 stated that DRLViz is "interesting to explain the behavior of the agent"
and "easy to use". However, Expert #3 stated that he felt "overwhelmed at first, but
soon got used to navigation". All 3 experts evaluated the 2D t-SNE projection as
the most useful view because it can provide insights on the agent’s memory and
strategies. They used this view as an entry point on at least one episode. They
commented that the re-ordering was effective to observe desired hidden states
dimensions. Both Expert #2 and Expert #3 used the stable criteria because it
highlights elements that are different from the rest and should correspond to
the selected interval. On the other hand, Expert #1 preferred the change re-
ordering criteria because those elements have information concerning the interval.
Expert #3 also noted that "it´s handy being able to drag it up [derived metrics timeline]
and overlay it on the hidden states" (G3). The experts concluded that the agent
learned to solve this task sequentially, i.e. by focusing on gathering one item
at a time. And thus that the agent only stored information corresponding to
which items it has gathered rather than the positions of every seen item at any
time-steps.

All three experts evaluated the memory reduction interaction that filters the
memory view (zoom) as not intuitive and hard to use without losing visual
contact with the hidden state dimensions they wanted to focus on. This partially
validates our memory reduction goal (G4). On this matter, Expert #1 commented
that since this agent’s memory has 128 dimensions the zoom is not as useful
as it could on larger memories. Expert #2 also commented on the use of the
different re-ordering criteria, and that their specific functioning was hard to
understand, especially the projection. Expert #3 also mentioned that he "doesn’t
fully understand how the projections re-ordering methods are helpful". To tackle those
issues, Expert #3 suggested using the derived timeline to re-order the memory, i.e.
observe hidden states activations when a feature enters the FoV. Expert #3 also
commented that a horizontal zoom could be useful to focus on one particular
time interval, and reduce the number of steps to observe. Expert #1 mentioned
that brushing the memory while keeping activation areas as squares, i.e. both
horizontally and vertically could be a better way to implement a more consistent
zooming interaction.

92 navigation

4.8.2 Limits

Generalization and scalability are the main limits of the current version of DRLViz.
Regarding generalization, specific calculations need to be made such as for the
derived metrics timeline that is generated from the simulator i.e. the items in the
agent’s FoV. So the current metrics are tied to ViZDoom but a minor adaptation
of the tool to specific environments will be needed, but requiring technical
knowledge. In the next section, we will explain how the interaction techniques in
DRLViz can be used beyond the tool for better timeline comparisons. Scalability is
always a concern with visualization techniques. DRLViz supports long episodes
and variable memory size. However, if those are larger than the screen real estate
(e.g. beyond on average 1200 steps and more than 1000 memory dimensions) each
memory cell would be smaller than one pixel, and thus difficult to investigate. To
tackle such an issue, LSTMVis [193] introduced a parallel coordinate plot with
each line encoding a memory element. However, with DRLViz we sought to
support trend detection and thus encode the memory overview using colored
stripes [66] which complies with our data density challenge and requirement
to align the memory with the derived metrics below. We then rely on zoom
interactions for details for both time and elements.

We plan in the future to support aggregation strategies [233] to provide a more
compact representation of the timelines. Alignment by an event of interest [50]
(e.g. gathering an item) may also provide more compact representations of metrics,
and also better support comparison of behavior before and after this event. A
concern raised by experts was the communication of insights gained during
the exploration process. We plan to explore summarizing techniques for those
insights, such as state charts [178] in which each state corresponds to a local
strategy e.g. reach an item.

4.9 Perspectives

We present and discuss three works in progress that may be potential improve-
ments of DRLViz, based on experts feedback, that primarily expand its exploration
power and generalization.

4.9.1 Guiding Exploration with Extended Timelines

During our interviews, experts suggested to better support the memory analysis
process, as the current version of DRLViz relies on visual exploration by the user,
with no specific guidance. We identified two areas of improvement for a future
version of DRLViz: adding more metrics, and advanced filtering. Regarding the
metrics, Table 4.2 introduced derived indicators from the agent decision. Figure 4.8

4.9 perspectives 93

1

3

2

Figure 4.8 – Extended version of DRLViz loaded on with death-match data. From
a slit square selection ¬ outputs a timeline that summarizes the agent’s point of
view ­. And the additional metrics and operators ®.

illustrates that more metrics can be added using variations of their parameters
(e.g. changing variability thresholds or the distance to consider an enemy is in the
FoV or not) which support more questions a user may want to investigate. Such
metrics are represented in a compact way, and easy to activate by scrolling down,
while remaining focused on the memory. Regarding the comparison, the current
version only implements juxtaposition and overlay; while explicit encoding [71] is a
third way to compare timelines and memory. We applied this third way by adding
a boolean queries builder [119] using AND or OR to filter timelines. Those boolean
operators are also applicable to all views of DRLViz, such as 2D-map, t-sne, or a
brush on the memory. This helps users to combine multiple views and answer
questions such as Where are the areas of memory with the agent has high health, in this
part of the environment, with an enemy and an explosive barrel in FoV? This results in
intervals in which the agent is susceptible to shoot on barrels to kill enemies.

In order to summarize the input images and ease their comparison with derived
metrics, we developed slit square interaction based on slit tears [204]. With a slit
square, a user can brush a square on the inputs. Those squares are then compacted
to the width shared by all time-aligned elements in DRLViz.

4.9.2 Generalization to other Scenarios and Simulations

Finally, we started investigating using DRLViz as a general-purpose tool for
any trained agents with a memory and spatio-temporal information. Figure 4.8
illustrates DRLViz loaded with a different scenario where the agent shoots towards
enemies on the death-match [114] with the Arnold model. In general, DRLViz can
be used beyond ViZDoom (e.g. referred in [18]), such as Atari games [227] without

94 navigation

any major change. Using pixel-based representations [102] and zooming [105]
would assure scalability of the timeline representations with scenarios requiring
more time steps. We plan to conduct further research to identify other metrics
and extend DRLViz to other simulators mentioned by our experts, such as Matter-
port3D [40] and Habitat-AI [180] for real-world scenarios, and competitions such
as Animal-AI [47].

4.10 Conclusion

In this work, we introduced DRLViz, a visual analytics interface leveraging
activation and representation interpretability building blocks. This interface
empowers users to overview, filter and select the memory of Deep Reinforcement
Learning. Analysts using DRLViz were able to explain parts of the memory of
agents trained to solve navigation problems of the ViZDoom game simulator, in
particular local decisions and higher-level strategies. DRLViz received positive
feedback from experts familiar with DRL models, who managed to browse an
agent memory and form hypotheses on it. DRLViz paves the way for tools to
better support memory reductions of such models that tend to be large and mostly
inactive.

C
h

a
p

t
e

r 5
F R O M S I M U L AT I O N T O R E A L I T Y

Contents
5.1 Introduction . 97
5.2 Context and problem definition 99
5.3 Related work . 100
5.4 Design Motivation . 102

5.4.1 Tasks analysis . 102

5.4.2 Design goals . 103

5.5 Sim2RealViz: A visual analytics tool to explore the sim2real gap 104
5.5.1 Design rationale . 105

5.5.2 Main-stream workflow . 105

5.5.3 Geo-Map and Encoding of Positions 106

5.5.4 Heatmaps . 107

5.5.5 Contextualization on the global geo-map 109

5.5.6 Exploration of input configurations 109

5.6 Case studies . 110
5.7 Limitations and Perspectives . 114
5.8 Conclusion . 116

The final step, to find our keys, now that we are able to understand what we are
looking for (Chapter 3), and able to explore unknown environments (Chapter 4),
is to communicate their location (coordinates and orientation angle) from a given
image (as illustrated in Figure 5.1). In addition, in the previous chapters, our
robots were trained in simulation which bolsters thousandfold the number of
experiments possible in the same amount of time. However, despite the increasing
accuracy of realistic 3D simulators for large-scale training of robots, those robots,
once deployed to the real-world tend to fail. This is known as the Sim2Real gap

which emerges from gaps between simulation and real physical environment (e.g.
approximated physics engine), as well as dynamic changes in the real world such
as luminosity and lights through days, and objects displacements.

This chapter is dedicated to the analysis of the Sim2Real gap applied to the
task of ego-pose estimation, i.e. the estimation of a robot’s position using trained
models. To do so, we introduce Sim2RealViz, a visual analytics tool to assist
experts in understanding and reducing this gap for robot ego-pose estimation

95

96 from simulation to reality

On the Desk!
(α,x,y)

Where are my keys? 1

3

2

Figure 5.1 – When answering questions such as ”Where are my keys?”, robots need
to be able to communicate their position. To do so, we trained models to yield
coordinates and orientation angle from any given image ®. Such a task is also
used as a proxy to evaluate gaps between simulation and reality.

tasks. Sim2RealViz displays details of a given model and the performance of its
instances in both simulation and real-world. Experts can identify environment
differences that impact model predictions at a given location and explore through
direct interactions with the model hypothesis to fix it. In this chapter, we detail
the design of the tool, and case studies related to the exploit of the regression
to the mean bias and how it can be addressed, and how models are perturbed
by the vanish of landmarks such as bikes. Along with a new visual analytics
system, we designed Théo Guesser, an online explorable in which non-expert users
are introduced to the ego-pose localization task by playing against a model on
it. In addition, users are progressively introduced to the challenge that arises
with using real-world data and a model trained in a simulator, along with basic
domain randomization and domain adaptation methods to tackle it. Both this
challenge and solution are demonstrated using interpretability building blocks
we designed. This explorable is available online: https://theo-jaunet.github.
io/theo-guesser, and so is its code source: https://github.com/Theo-Jaunet/
theo-guesser.

The works presented here relies on the following published materials:

• Théo Jaunet, Romain Vuillemot, and Christian Wolf. “Théo Guesser”. IEEE
Workshop on Visualization for AI Explainability at IEEE VIS (VISxAI), 2020.

https://theo-jaunet.github.io/theo-guesser
https://theo-jaunet.github.io/theo-guesser
https://github.com/Theo-Jaunet/theo-guesser
https://github.com/Theo-Jaunet/theo-guesser

5.1 introduction 97

• Théo Jaunet, Guillaume Bono, Romain Vuillemot, and Christian Wolf. “Sim2RealViz:
Visualizing the Sim2Real Gap in Robot Ego-Pose Estimation”. NeurIPS XAI
Workshop on eXplainable AI approaches for debugging and diagnosis, 2021.

A special thanks goes to Guillaume Bono who handled the robot to collect
real-world data, and helped fine-tune the simulator-end of Sim2RealViz.

5.1 Introduction

Visual navigation is at the core of most autonomous robotic applications such
as self-driving cars or service robotics. One of the main challenges for the robot
is to efficiently explore the environment, to robustly identify navigational space,
and eventually be able to find the shortest paths in complex environments with
obstacles. The Robotics and Deep Learning communities have introduced models
trained with Reinforcement Learning (RL), Inverse RL, or Imitation Learning, tar-
geting complex scenarios requiring visual reasoning beyond waypoint navigation
and novel ways to interact with robots, e.g. combining vision, robotics, and natural
language processing through queries like “Where are my keys?”. Current learning
algorithms are not sampled efficiently enough, this kind of capability requires
an extremely large amount of data. In the case of RL, this is in the hundreds of
millions or in the billions of interactions — this simply cannot be addressed in a
reasonable amount of time using a physical robot in a real environment, which
also may damage itself in the process.

To tackle this issue, the field heavily relies on simulation, where training can
proceed significantly faster than in physical (wall clock) time on fast modern hard-
ware, easily distributing multiple simulated environments over a large number of
cores and machines. However, neural networks trained in simulated environments
often perform poorly when deployed on real-world robots and environments,
mainly due to the“Sim2Real gap”, — i.e. the lack of accuracy and fidelity in simulat-
ing real-world environment conditions such as, among others, image acquisition
conditions, sensors noise, but also furniture changes and other moving objects.
The exact nature of the gap is often difficult to pinpoint. It is well known that
adversarial examples, were only a few pixel shifts occur, considered as small
artifacts by humans, or which might even be undetectable by humans, can directly
alter the decisions of trained models [74, 148, 127].

The Sim2Real gap is currently addressed by various methods, including do-
main randomization, where the physical reality is considered to be a single
parametrization of a large variety of simulations [213, 136], and Domain Adapta-
tion, i.e. explicitly adapting a model trained in simulation to the real-world [216,
38]. However, identifying the sources of the sim2real gap would help experts in
designing and optimizing transfer methods by directly targeting simulators and
design choices of the agents themselves. To this end, we propose Sim2RealViz, a

98 from simulation to reality

α
x

α
x

α
x

y

α
x

y

y y

Figure 5.2 – In the studied robot ego-localization task, an RGB-D image ¬, is
given to a trained model ­, which uses it to regress the location (x, y), and
orientation angle (α) in the environment from which this image was taken from ®.
As illustrated above, images taken from the same coordinates in simulation and
real-world ¬ may lead to different predictions due to differences, such as here,
among others, the additional presence of a bike in the scene. We are interested in
reducing the gap between the SIM and REAL predictions.

visual analytics interface aiming to understand the gap between a simulator and
a real-world environment. We claim that this tool is helpful to gather insights on
the studied agents’ behavior by comparing decisions made in simulation and in
the real-world physical environment. Sim2RealViz exposes different trajectories,
and their divergences, in which a user can dive deeply for further analysis. In
addition to behavior analysis, it provides features designed to explore and study
the models’ inner representations, and thus grasp differences between the simu-
lated environment and the real-world as perceived by agents. Experts can rely on
multiple-coordinated views, which can be used to compare model performances
estimated with different metrics such as a distance, orientation, or a UMAP [135]
projection of latent representations. In addition, experts dispose of three differ-
ent approaches to highlight the estimated sim2real gap overlaid over either 3D
projective inputs or over a bird’s eye view (“Geo-map”) of the environment.

Sim2RealViz targets domain experts, referred to as model builders and train-
ers [193, 87]. The goal is assistance during real-world deployment, pinpointing
the root causes of decisions. Once a model is trained in simulation, those experts
are often required to adapt it to real-world conditions through transfer learning
and similar procedures. In Section 5.6, we report on insights gained through
experiments using Sim2RealViz, on how a selection of pre-trained neural models
exploits specific sensor data, hints on their internal reasoning, and sensibility to
sim2real gaps.

5.2 context and problem definition 99

5.2 Context and problem definition

We study trained models for Ego-Localization of mobile robots in navigation
scenarios, which regress the coordinates (x, y) and camera angle α from observed
RGB and depth images. Physical robots take these inputs from a depth-cam,
whereas in the simulation they are rendered using computer graphics software
from a 3D scan of the environment.

Figure 5.2 provides a concrete example, where two images are taken at the same
spatial coordinates ¬, one from simulation and the other from a physical robot.
As our goal is to estimate the sim2real gap, we do not focus on generalization to
unseen environments. Instead, our simulated environment corresponds to a 3D
scanned version of the same physical environment in which the robot navigates,
which allows precise estimation of the difference in localization performance, as
the gap leads to differences in predicted positions. The full extent of the gap,
and how it may affect models is hard to understand by humans, which makes it
difficult to take design choices and optimize decisions for sim2real transfer.

Simulation — we use the Habitat [180] simulator and load a high fidelity 3D
scan of a modern office building 1 created with the Matterport3D software [40]
from individual 360-degree camera images taken at multiple viewpoints. The
environment is of size 22× 22 meters and can potentially contain differences to the
physical place due to estimation errors of geometry, texture, lighting, alignment of
the individual views, as well as changes done after the acquisition, such as moved
furniture, or opened/closed doors. The Habitat simulator handles environment
rendering and agent physics, starting with its shape and size (e.g. a cylindrical
with diameter 0.2m and height 1.5m), its action space (e.g. turn left, right or move
forward), and sensors — a simulated e.g. RGB-D camera. Depending on the
hardware, the simulator can produce up to 10.000 frames per second, allowing to
train agents on billions of interactions in a matter of days.

Real-world — As illustrated in Figure 5.3, our physical robot is a “Locobot” [150]
featuring a RGB-D camera and an additional lidar sensor which we installed. We
use the lidar and the ROS NavStack to collect ground truth information on the
robot’s position (x∗, y∗) and angle α∗, used as a reference to evaluate ego-pose
localization performances on the real-world. To increase precision, we do not
build the map online with SLAM, but instead, export a global map from the
3D scan described above and align this map with the lidar scan using the ROS
NavStack.

Ego-pose estimation: the trained agent — Traditionally, ego-pose estimation

1. The second floor of the CITI laboratory at INSA-Lyon.

100 from simulation to reality

1

2

Figure 5.3 – The capture of real-world images are carried by an embedded RGB-D
camera on a “Locobot” [150] ¬. On the right ­ such a robot is displayed with
respect to proportions in its environment.

of robots is performed from various inputs such as lidar, odometry, or visual
input. Localization from RGB data is classically performed from keypoint-based
approaches and matching/alignment [27]. More recently, this task has been
addressed using end-to-end training of deep networks.

We opted for the latter, and, inspired by poseNet [104], trained a deep convo-
lutional network to take a stacked RGB-D image Xi of shape (256×256×4) and
directly output a vector Yi = (xi, yi, αi) of three values: the coordinates xi, yi and
the orientation angle αi. The model is trained on 60.000 images sampled from the
simulator with varying positions and orientations while assuring a minimal dis-
tance of 0.3 meters between data points. We optimize the following loss function
between predictions Yi = (xi, yi, αi) and Ground-truth (GT) Y∗i = (x∗i , y∗i , α∗i) over
training samples i:

L = (1− γ)∑
i

∣∣∣∣∣∣∣∣ [xi
yi

]
−
[

x∗i
y∗i

] ∣∣∣∣∣∣∣∣2
2
+ γ ∑

i
|αi − α∗i |mod 2π (5.1)

where ||.||2 is the L2 norm and γ is a weighting hyper-parameter set to 0.3 in
our experiments.

5.3 Related work

Closing the sim2real gap and transfer learning — Addressing the Sim2Real

gap relies on methods for knowledge transfer, which usually combine a large
number of samples from simulation and/or interactions obtained with a simulator

5.3 related work 101

simulation with a significantly smaller number of samples collected from the real-
world. Although machine learning is a primary way of addressing the transfer,
it remains important to assess and analyze the main sources of discrepancies
between simulation and real environments. A common strategy is to introduce
noise to the agent state based on statistics collected in the real-world [180]. Ad-
ditionally, tweaking the collision detection algorithm to prevent wall sliding has
been shown to improve the performance in the real-world of navigation policies
trained in simulation [95], which tend to exploit inaccurate physics simulation.
Another approach is to uniformly alter simulation parameters through domain
randomization, e.g. modifying lighting and object textures, to encourage models
to learn invariant features during training [213, 214]. This line of work highly
benefits from domain expert knowledge on the targeted environment, which can
provide randomizations closer to reality [165, 92].

A different family of methods addresses the Sim2Real gap through Domain
Adaption, which focuses on modifying trained models’ and their features learned
from simulation to match those needed for high performance in real environments.
This has been explored by different statistical methods from the machine learn-
ing toolbox, including discriminative adversarial losses [216, 38]. Feature-wise
adaptation has also been addressed by extensive use of loss [65, 215], and through
fine-tuning [177]. Instead of creating invariant features, other approaches perform
Domain Adaption at pixel level [26, 25]. Despite great results, Domain Adaptation
suffers from the need for real-world data, which is often hard to come by. We
argue that there is a need for the assistance of domain experts and model builders
to understand the main sources of sim2real gaps, which can then be leveraged for
targeted adapted domain transfer, e.g. through specific types of representations
or custom losses.

Interpretable robotics — This classical line of work remains an under-explored
challenge when applied to regression tasks such as robot ego-localization, our
targeted application, in which attributions may be harder to interpret. To our
knowledge, visualization of transfer learning, and especially targeting sim2real
is an under-explored area, in particular for navigation tasks, where experiments
with real physical robots are harder to perform compared to, say, grasping
problems. In [201], the evolution of features is explored before and after transfer
through pair-wise alignment. Systems such as [131] address transfer gaps through
multi-coordinated views and in-depth analysis for models weights and features
w.r.t. domains. Finally, common visualizations consist of heatmaps designed to
illustrate results from papers in Machine Learning (ML) communities such as [216,
245]. Despite providing insights on how models adapt to different domains, and
in contrast to our work, those methods have not been designed to directly target
what parts of the environment, or which sensor settings may produce sim2real
gaps, which we consider as relevant information for domain experts.

102 from simulation to reality

5.4 Design Motivation

Prior to the design of Sim2RealViz, we conducted interviews with 3 experts
in Robotics and discussed their workflow, with the objective being to address
and identify sim2real gaps. Two of those experts, co-authors of this work, then
took part in the design of Sim2RealViz. The workflow of interrogated experts
consisted in identifying failure cases through statistics or video replaying a robot’s
trajectory, and then manually finding equivalent images in simulation to compare
to.

5.4.1 Tasks analysis

From those discussions with experts, and literature review introduced in Sec-
tion 5.3, we distill the process of analyzing Sim2Real gap transfer in the following
three families of tasks.

T1. Fine-grained assessment of model performance gap between SIM and
REAL — What is the best performing sim2real transfer method (e.g. fine-tuning,
domain randomization etc.)? What are the optimal hyper-parameters? Answering
those questions requires experts to study a large number of predictions in SIM
and REAL from a large number of observed images and evaluate performance
distribution over different environment conditions and factors of variation.

T2. Identification of the source of the performance gap — what are the factors
of variation in the environment, agent, or trained model, which are responsible
for the performance gap? This is inherently difficult, as the sources may be due to
the global environment (differences in e.g., lightening, 3D scanning performance),
the agent (e.g. differences in camera focal length or height) or changes due to the
time span between scanning and physical deployment (e.g. furniture changes).
In addition, some gaps may also be beyond human comprehension such as
adversarial noise. For a human designer, it may not immediately be clear, which
differences will have the largest impact on prediction performance.

T3. Closing the sim2real gaps — successful knowledge transfer requires the
simulator to be as close as possible to the real-world scenario with respect to the
factors of variation identified in T2. The goal is to close the loop and increase
prediction performance using the insights gained from using Sim2RealViz.

5.4 design motivation 103

5.4.2 Design goals

Based on the identified kind of tasks (T.) introduced in Section 5.4.1, literature
review, and interviews with domain experts, we distill the following key design
goals (G.) for Sim2RealViz.

G1. Summary of models’ performances w.r.t. their domain. Following chal-
lenge (T1.), in most cases the entry-point for any analysis of sim2real transfer
starts with experts trying the assess the performances of their models. Therefore,
to give users an overview of their model performances, we aim to create a visual
summary of each model, along with their performance distribution, while ensur-
ing a layout that eases comparisons between sim and real overall performances,
but also inter-domain comparisons of models to answer questions such as:“Which
is the most successful transfer knowledge method on real-world images?”

G2. Gather instances based on their performances. To ease the analysis of
sim2real performance gaps, users need to quickly identify instances sharing the
same performance gaps (T2.). For example, every image that contains a bike in
simulation, which is absent in the real-world, hence causing trouble in predictions.
That way, the analysis of sim2real gaps in any image of the set of instances, should
be useful for the rest of the set. In order to bolster its efficiency, This selection of
instances should rely on different metrics such as, among others, the sim or real
performance, the position of ground-truth, the position of sim/real prediction,
and instances invariant towards transfer knowledge approaches tried.

G3. Per instance Sim and Real comparison. To identify the source of per-
formance gap (T2.) on a designated instance, users need to inspect human-
understandable data —i.e. both RGB and Depth images from simulation and
real-world used as input. Thus, those images need to be as close as possible in
order to quickly overview the most obvious changes such as furniture. Inputs also
need to be inspected as perceived by the model, as some sim2real gaps that may
be salient to humans, can be irrelevant for it. Finally, the performance of models
is usually computed by the distance of their prediction to the corresponding
ground-truth. However, if the distance between sim and real is close to 0, and
the distance to ground-truth high, perhaps the corresponding instance is not
influenced by any sim2real gap.

G4. Adjust Sim and Real images. In order to ease the sim2real knowledge
transfer, users need for the simulation and real-world to be as close as possible
(T3.). However, aside from the camera settings such as height and resolution,
other shifts need to be tackled by manually adjusting images parameters such
as brightness or dynamic range from depth images. The task of finding the
correct configuration which makes real-world predictions more accurate can be

104 from simulation to reality

fastidious. Thus we aim at helping users with ways to manipulate images settings
and simulation settings of sensors to help experts quickly address some sim2real
gaps issued from inaccurate configurations.

5.5 Sim2RealViz: A visual analytics tool to explore
the sim2real gap

We introduce Sim2RealViz, an interactive visual analytics tool designed to
assist domain experts in conducting in-depth analyses of the performance gaps
between simulation and real environments of models whose primary task is
ego-localization. The tool is implemented in JavaScript and the D3 [22] library
to run in modern browsers and directly interacts with models implemented in
Pytorch [162]. The source code is available as an open-source project at:
https://github.com/Theo-Jaunet/sim2realViz .

2

4

3

1

Figure 5.4 – Using Sim2RealViz, the Sim2Real gap of a Data Augmentation model
can be compared against other models (e.g. Vanilla or Fine-tuned) and displayed
on the real-world environment map along with its performance metrics. In
particular, Sim2RealViz shows ¬ this model is particularly effective in simulation
but we identified errors in the environment, such as the model failing to regress
its position because of a closed-door that was opened in training. Such an error
can then be selected by instance on the map ­ to identify key features extracted by
the model either as superimposed on the heat-map ® or as a first-person view ¯.

https://github.com/Theo-Jaunet/sim2realViz

5.5 sim2realviz: a visual analytics tool to explore the sim2real gap 105

5.5.1 Design rationale

Our design is centered around the comparison of simulation instances and
real-world ones. As we deal with complex objects, and because sim2real gaps
can emerge from various sources, we implemented several views with different
comparison strategies [71]. As illustrated in Figure 5.4, Sim2RealViz follows the
overview+detail interface scheme [44] with a range from the most global views
(left), to the most specific ones (right). To ease the comparison, simulation and
real-world data are displayed next to each other within each view, with, if possible,
simulation on the left side and real-world on the right side. The objective of the
Statistics view (Figure 5.4 ¬) is to help in quickly identifying the performance
of a model and to grasp global behavior with simple visualizations. The Geo-
map (Figure 5.4 ­), is key in providing context on the instance predictions, and
for users to grasp what factors of variation may cause sim2real gaps. Finally,
the Instance view (Figure 5.4 ®), displays how models may perceive sim2real
gaps under different scopes. To encode the main information related to the
gap we used three colors corresponding to either SIM , REAL , or GT , across
the visualizations. We also used color to encode the distance between two sets
of coordinates or the intensity of the models’ attention towards parts of input
images using a continuous turbo [139] color scale, commonly used by experts, to
emphasize the most critical instances, i.e. those with high values.

5.5.2 Main-stream workflow

We now provide a typical workflow of use of Sim2RealViz:

1. Models are pre-loaded and their overall performances on both SIM and
REAL are displayed on the top left of Sim2RealViz (Figure 5.4 ¬).

2. After model selection, and following G1., users can start a fine-grained
performance analysis of sim and real models by observing global statistics
views such as a UMAP [135] projection of embeddings in which each dot
is an instance, and its color encodes how far it is to its counterpart (sim or
real). Followed by a radial bar chart of predicted or ground-truth orientation,
and finally, a distribution of positions in which each room is a bar, and
their height corresponds to how many predictions there are. In any of those
views, users can select a set of instances to be inspected, for example, a
cluster in UMAP G2.).

3. Any of those selection updates a geo-map (Figure 5.4 ­), i.e. a “geomet-
ric” bird’s eye view, in which users can inspect the predictions in a finer
scale. Users can adapt the geo-map to either color-mode which only dis-
plays ground-truth positions with their colors indicating how far sim and
real predictions are, or full-mode which displays sim predictions, ground-

106 from simulation to reality

truth positions, and real predictions. Instances can be selected for further
inspection by mouse-hovering them.

4. An instance selection updates the instance view (Figure 5.4 ®) and displays
heatmaps, which highlights the portions of images on which the model most
focuses on, or which it perceives as different (G3.). Such a heatmap is also
back-projected over the geo-map to highlight portions of the environment,
which most likely carry sim2real gaps (Figure 5.4 ¯).

The views in Sim2RealViz are multi-coordinated, i.e. any of them, including the
geo-map, can be used as an entry point to formulate complex queries such as “what
are the instances which perform poorly in simulation, but good in real-world while being
in a selected region of the environment?”. Concretely, those combinations of selection
can be done using sets operations ({union, intersection, and complementary}), which
can be selected through interactions with the corresponding views. This is further
emphasized by the fact that the performance differences between simulation and
real-world are also color-encoded on the geo-map.

21 3

Figure 5.5 – To tackle over-plotting in geo-map while preserving the insights users
can grasp with this view, Sim2RealViz provides three way to encode SIM /
REAL predictions along with their ground-truth. From ¬ which displays a pin

per domain and link them to their ground truth, to ­ a glyph in which portion
size encodes the distance to their color encoded domain, while their position
encodes their direction. Or ®, only display ground-truth pins with their color
encoding the distance between simulation and real-world.

5.5.3 Geo-Map and Encoding of Positions

Predictions need to be contextualized within their environment in order to
have a grasp on which portions of the environment may be susceptible to convey

5.5 sim2realviz: a visual analytics tool to explore the sim2real gap 107

sim2real gaps. This is emphasized by the fact that not every miss-prediction,
despite a similar distance, has the same significance. For example, we should
distinguish between predictions within the same room, and predictions in different
rooms or unreachable locations. As depicted in Figure 5.5 ¬, the ground-truth
coordinates (x, y) and view-point orientation angle (α), along with their sim and
real predictions are represented as pins on a bird’s eye top-down view of the
environment, with their color encoding the domain they belong to. However,
when several instances are displayed over the geo-map, pins of a single instance
need to be connected to avoid any confusion. With such an amount of marks
displayed per instance, this view can easily suffer from occlusion and over-
plotting (Figure 5.5 ¬).

To address the challenge of the triplet of coordinates visualizations, Sim2RealViz

provides three levels of aggregation of triplets that users can select at any time.
To limit occlusion, while preserving the information displayed, instances can
be encoded as glyphs (Figure 5.5 ­) positioned at ground-truth locations, and
with two wedges to represent SIM and REAL information. The radius of each
wedge encodes the distance of its color-encoded prediction to ground-truth, while
the centroid of the wedge points towards the position of this prediction. Users
can then easily compare sim and real predictions for selected instances. If those
wedges overlap, their intersection is color encoded in green, indicating that both
simulation and real-world predictions may be similar. Finally, as illustrated
in Figure 5.5 ®, by default instances are displayed on the geo-map using only
ground-truth pins, with their color encoding the distance between simulation
and real-world per instance. To ease the readability, the background map of
the environment can be clipped to only highlight the surroundings of selected
instances.

5.5.4 Heatmaps

To facilitate the inspection of the sim2real gap through image comparisons,
Sim2RealViz provides heatmaps superimposed over images, from a selected
instance, to draw user attention towards key portions of inputs extracted by the
trained model (Figure 5.4 ®). Feature-wise visualizations are essential, as visual
differences between simulated and real-world images perceived by humans may
not correspond to differences in features with a high impact on model decisions.
Figure 5.4 ® illustrates the result of three approaches to generate those heatmaps,
as follows (from top to bottom):

Regression activation mapping — Inspired by grad-CAM [182] and RAM [229],
we design heatmaps to highlight regions in the input, which have a high impact
on model prediction. For each forward-pass of a model, we collect feature maps
from the last Convolutional Neural Network (CNN) layer and multiply them by

108 from simulation to reality

the weights of the last Fully Connected (FC) layer, obtaining an overlay of the size
of the feature map, which is then re-scaled to fit the input image and normalized
to fit a turbo color scale (Section 5.5.1). The similarity of activation maps between
two similar sim and real images suggests a similarity of the two input images
from the model’s reasoning perspective.

Sim/Real occlusion — Occlusion sensitivity [240] is a common method to visu-
alize how neural networks in computer vision rely on some portions of their
input images. It consists in applying gray patches over an image, forwarding it
to a model, and observing its impact on the model’s prediction. By sampling a
set of patches, we can then overlay the input with this information, blue color
indicating that the occluded prediction is closer to the original ground truth, and
red otherwise.

In our case, the intuition and solution are slightly different from the standard
case. We are interested in areas of the input image, where the model performance
is improved when the real-world observation is replaced by simulated information,
indicating a strong sim2real gap. We, therefore, occlude input REAL images with
RGB or Depth patches from the corresponding simulated image. Thus, a further
advantage of this approach is the possibility to discriminate between gaps in
RGB or Depth input. The size of the patches is governed by a Heisenberg-like
uncertainty trade-off between localization performance and measurement power.
After experimenting with patch sizes ranging from 2× 2 pixels to 128× 128, we
concluded that patches of 40× 40 pixels, i.e. a total of 6× 6 patches per image,
are the more suitable to analyze images on our computer as we estimated that
response time for such an interaction should be less than one second. This is
due to the fact that this is displayed on mouse-over, hence multiple instances can
quickly be probed by a user, and a longer interaction time dampens the usability
and user experience of Sim2RealViz.

Feature map distance — Another approach implemented in Sim2RealViz is to
gather the feature map of the last CNN layer during a forward pass on both the
simulation and its corresponding real-world image, and then compute a distance
between them. The result is a matrix with the size of the feature map which is
then overlaid like the activation mapping. After some iterations, we opted for
the product of the cosine distance which favors small changes, and L1 which is
more inclined to produce small spots. Such a product offers a trade-off between
highlighting every change and facing over-plotting while focusing only on one
specific spot with the risk of losing relevant changes.

5.5 sim2realviz: a visual analytics tool to explore the sim2real gap 109

Distance
Pos. in Img

Height
Ratio
Fov

Coordinates
Orientation

Figure 5.6 – Conversion from pixels on a first-person point of view image to
coordinates on a bird’s eye geo-map (left) using inverse projection given a cali-
brated camera. Such a process, used in Sim2RealViz to display global heatmaps
(right) on the geo-map, relies on ground-truth, image, and camera information.
To optimize their computation, geo-maps are discretized into squares larger than
a pixel, as a trade-off between the accuracy of projections, and the user to the
feedback.

5.5.5 Contextualization on the global geo-map

As illustrated in Figure 5.4 ¯ and in Figure 5.6, information from the individual
first-person 3D projective input images, including heatmaps, can be projected into
the global bird’s eye view, and thus overlaid over the geo-map. This is possible
thanks to ground truth information, i.e. coordinates, and orientation of the instance,
combined with information of the calibrated onboard cameras (simulated and
real) themselves such as its field-of-view, position on the robot, resolution, and the
range of the depth sensor. To do so, the environment is discretized in 264× 264
blocks initially filled with zeroes, and images are downsampled to 128×128. Each
cell is converted into (x, y) coordinates, and its average value from a heatmap
is summed with the closest environment block to (x, y) coordinates. Finally, the
values of environment blocks are normalized to fit the turbo color scale and
then displayed as an overlay on the geo-map. This process can also be applied to
the complete dataset available at once to provide an overview of sim2real gaps
of the environment as perceived by a model. Figure 5.6 shows the conversion
of heatmaps from the complete real-world dataset to a geo-map overlay using
different aggregation strategies. This overlay can be displayed using the button
make-heat from the geo-map view (Figure 5.4 ­).

5.5.6 Exploration of input configurations

Following the design goal G4., to check the impact of sim2real gaps due to
global imaging parameters, Sim2RealViz provides ways to adjust real-world im-
ages through filters such as brightness, contrast, temperature, and dynamic range

110 from simulation to reality

of depth. As illustrated in Figure 5.7, those filters can be generated with sliders on
the right of instance view (Figure 5.4 ¯). Any adjustment on a selected instance
updates the corresponding prediction in real-time. Once a set of adjustments is
validated by the user, it can be saved, applied to the whole real-world dataset,
and treated as a new model in the model gaps overview ¬ for further analysis.

Figure 5.7 – By clicking on the adjust button (on the top-right of Figure 5.4), users
can display sliders on the right of instance view Figure 5.4 ¯) that can be used
to fine-tuning real-world images with filters and observe how it affect models’
prediction.

The configuration of inputs can also be used on images from simulation, to
analyze the performance of the model under specific Domain Randomization
configurations, or simulation settings such as, for example, the height of the
camera, or its Field of View (FoV). Of course, for the simulation to have an impact
on how models perceive real-world images, they need to be retrained outside of
Sim2RealViz. To do so, one must first generate a new dataset with the modified
settings, in our case 60k images, which can take around half an hour as we
also need to enforce diversity of sample images (coordinates and orientation).
Then, we train from scratch our model takes around 3 to 4 hours on our single
NVIDIA Quadro P4000 GPU. Despite such a delay, adjusting simulation images in
Sim2RealViz can be useful to help manually extract parameters of the real-world
camera, and hence assist in the configuration of the simulator. Producing images,
by configuring the simulator with direct feedback, should reduce the workload
usually required to configure simulators and real-world robots.

5.6 Case studies

We report on illustrative case studies we conducted to demonstrate how
Sim2RealViz can be used to provide insights on how different neural mod-

5.6 case studies 111

21

Figure 5.8 – By using the full encoding, we can observe that most real-world
predictions are located in the half left of the environment ¬. Hence, instances
sampled from the half-right of the environment provide the worst predictions.
However, when we slightly increase the brightness of each real-world image, we
can observe that instances are more evenly distributed over the environment ­.

els may be influenced by sim2real gaps. During these experiments, Sim2RealViz

is loaded with the following methods for sim2real transfer: vanilla (i.e. no transfer,
deployment as-is), dataAug (i.e. with Domain Randomization over brightness,
contrast, dynamic range, hue), fine-tuning on real-world images, and perlin, a
hand-crafted noise on depth images designed to be similar to real-world noise.
We use visual data extracted from two different trajectories of the physical Locobot
agent in the real environment performed with several months between them and
at different times of the day, which provides a diverse range of sim2real gaps and
optimizes generalization. Those models and data are available in our GitHub
repository at: https://github.com/Theo-Jaunet/sim2realViz .

Insights on sim2real gaps grasped using Sim2RealViz can be leveraged from
two different perspectives echoing current sim2real transfer approaches. First,
similar to Domain Adaptation, we can provide global modifications of the REAL
images (e.g. brightness), which can be placed as filters and used in Sim2RealViz.
Second, related to Domain Randomization, by modifying the simulator settings
(e.g. adding or removing objects in the environment), and then by training a new
model on it. In what follows, we describe several types of sim2real gaps, which
have been identified and partially addressed in our experiments.

Unveiling biases in predictions — Once loaded, users can observe how models
perform on simulated and real-world data provided by different models trained
and transferred with different methods, as shown in Figure 5.4 ¬. We report
that best real-world performances are reached using dataAug, with an average
of 84% accuracy, rather than Fine-tuning, with an average accuracy of 80%. This

https://github.com/Theo-Jaunet/sim2realViz

112 from simulation to reality

performance is evaluated on traj#1, whereas traj#2 had been used for fine-tuning
on real-world data, ensuring generalization over experimental conditions in the
environment. In what follows we will focus on the dataAug model, which a user
can further analyze by clicking on its corresponding diamond (Figure 5.4 ¬).
This updates every other view to display data extracted from this model. To
assess what the worst real-world prediction is, users can use the min filter on
the top of Figure 5.4 ¬. This removes from each view of Sim2RealViz instances
whose real-world performances are not among the bottom 15%. In our case,
the remaining data displayed corresponds to instances sampled from the right
corridor regardless of the model used. We conjecture, that corridors are among the
most difficult instances as they are quite large and lack discriminative landmarks.
However, in opposition, by using the max filter, we can also observe that the
left-side corridor is among the most successful predictions. By hovering those
corridor instances with a successful transfer, we can inspect activation heatmaps
and observe that model attention is driven towards the limit between a wooden
path (unique to the left corridor) and a wall. Thus, the model seems to have
learned to discriminate between corridors, which suggests that the confusion
between them may be due to other reasons. By switching the encoding on the
geo-map to full using the slider on the middle top of Sim2RealViz, the geo-map
updates to display SIM , REAL , and GT positions (Figure 5.8 ¬). With this,
we can observe that the vanilla model, incorrectly predicts real-world positions
from the half-right of the environment in the half-left. Since those instances are
correctly predicted in simulation, this indicates a very strong bias from most of
the half-right real-world instances. A similar phenomenon is also observed for the
dataAug model with instances on the right corridor creating predictions pointing
to the middle of the environment, which is also an unreachable area.

Closing the loop with filters —We verify the hypothesis of regression to the
mean, which is often an “easy” short-cut solution for a model in absence of
regularities in data, or when regularities are not learned. The following focuses
on the vanilla model, as it is the one with the most real-world predictions on
the half left of the environment. We perform global adjustments of the imaging
parameters of the real-world images as described in Section 5.5.6, in particular
setting both RGB and depth input to zero (i.e. uniform black images), leading to
the same constant predictions in the middle of the environment, corroborating
the hypothesis.

While adjusting the brightness filter, we noticed that making images from the
right corridor darker, yielded real-world predictions to be even more to the half left
of the environment. In opposition, by making those images 15% brighter, yielded
real-world predictions, more accurately, in the half right of the environment
leading to a slight improvement of the overall performance of 1.5% (Figure 5.8 ­).

5.6 case studies 113

Simulator Edited Simulator
1

2

Figure 5.9 – With global heatmaps of feature-distance, we can observe (in red) areas
of the environment that may be affected by a sim2real gap. Those areas correspond
to changes in objects present in the simulation, for instance as illustrated here, a
fire-extinguisher. By removing such objects in simulation and retraining a model
on them, we can observe that they disappeared from most highlighted areas.

Sim2real gaps due to layout changes — Trained models deployed to real environ-
ments need to be resilient to dynamic layout changes such as opened/closed doors,
the presence of humans or moved furniture and other objects. In Sim2RealViz,
this can be investigated using the global heatmap with feat-dist, displayable with
the make heat button on the middle top of Sim2RealViz as seen in Figure 5.4. In
such geo-map overlay, some areas of the environment noticeably stand out (red
in Figure 5.9). By hovering over instances on the geo-map nearby those areas,
and browsing their corresponding images (as in Figure 5.4 ¯), we can observe
that those areas are triggered by different factors. For instance, in Figure 5.9 ­,
the highlighted area corresponds to the presence of a bike in the simulated data,
which was not present when the real-world data had been captured. Other areas
correspond to changed furniture, and imperfections of the simulation when ren-

114 from simulation to reality

dering, for instance, a fire-extinguisher (Figure 5.9 ¬). Such behavior, which can
be observed across models, may benefit from specific attention while addressing
sim2real transfer.

Editing the simulator — In order to test such a hypothesis, we manually edited
the simulator and removed objects corresponding to two red areas using blender,
a 3D modeling software. This new simulation is then used to generate 60k
new images. Using these data, we trained a new dataAug model and loaded its
predictions in Sim2RealViz to evaluate the influence of those changes on real-
world performance. Figure 5.9 shows the global feat-dist heatmap on trajectory#1

created with the new model, taking into account the changes. We can see that the
areas with the most significant differences are more uniformly distributed over
the environment. Since global heatmaps are normalized over the complete dataset,
this indicates that, to the model, those areas are now closer in feature space.

The experiments described above have led to a better understanding of the
sim2real gap of our baseline agent, and we reported more robust localization
performance once these insights were leveraged to modify the simulator or by
learning filters for the existing model. We hope that Sim2RealViz will be adopted
and facilitate the design and training of trained robotic agents.

5.7 Limitations and Perspectives

Evaluation — While the case studies detailed in Section 5.6 showcase how
Sim2RealViz can be useful to identify potential sources of sim2real gaps, it
would be beneficial to conduct a thorough expert evaluation—similar to the other
visual analytics systems introduced in thesis. Such perspective should address
both the usability of Sim2RealViz for Deep Learning (DL) experts, and their ability
to identify sim2real gaps with our visual analytics system. To this end, we plan
to evaluate Sim2RealViz in two ways. First, experts can be asked to identify the
most adequate model and instances the most susceptible to convey sim2real gaps
as quickly as possible. Time would be a relevant performance measure for this
task, along with comparing the instances picked by experts. This should provide
a better understanding of how reliable Sim2RealViz can be when used by experts.
The second phase of the evaluation will be follow-up interviews with the same
experts to collect qualitative insight from this experience. Thirdly, in order to
evaluate Sim2RealViz’s ability to identify the source of sim2real gaps, we propose
to manually select instances, and balance their distribution on their potential
presence or not of gaps, and rooms from which they are sampled. Then, these
instances will be loaded in Sim2RealViz while hiding their real-world predictions,
and ask experts to answer the following questions: 1) "Where do you think the

5.7 limitations and perspectives 115

real-world prediction is?", 2) "Do think such an instance may be sensitive to a sim2real
gap?", and 3) "If yes, what can it be?". Answers will be collected and analyzed
quantitatively in order to assess Sim2RealViz’s ability to empower experts to
conduct an in-depth analysis of models’ decisions.

Comparison of models and robots — Currently, in Sim2RealViz models can only
be compared through the parallel plot visualization as illustrated in Figure 5.4 ¬.
However, such a comparison could also be beneficial if it was propagated to other
views (e.g. the geo-map or the instance view). That way, we expect experts could
to be more confident to evaluate if a particular model has overcome a sim2real
gap that the others did not. On the geo-map, such a comparison could also enable
experts to analyze if certain models are more adapted to certain areas of the
environment, or rather, as illustrated in Section 5.6, follow the same regression to
the mean bias. Furthermore, aside from comparing models, it could be useful to
adapt Sim2RealViz to account for different robots. Indeed, many sim2real gaps
may directly emerge from the robot itself. For example, a different focal lens of
the camera, vibrations that blur images, or more basically a different colorimetry.
In the future, being able to distinguish from which robot an instance is sampled,
may empower experts to more quickly identify what are the differences and hence
the potential gaps that may occur.

In addition, the only way to leverage any insight on how a model behaves is to
train a new model on, for instance, a new simulation. However, such a process
is time-consuming as it requires for a model to be completely trained for hours,
and manually added into Sim2RealViz. This is doomed to be repeated if the
analysis of the new model is not conclusive. Hence hindering the deployment
of our system into any expert’s workflow. This may be tackled by including the
analysis of models in earlier stages of their training into Sim2RealViz. That way,
experts could compare models without having to wait for their training, and hence
more quickly assess if any of their updates is effective. While such a solution is
limited as experts still need to manually adapt their models (e.g. add or remove
layers, add a new loss function) outside of Sim2RealViz, we argue that we cannot
anticipate every changes an expert may potentially execute on their model, and
hence that at some point they will be forced to go back to their own code.

Future visualizations — Finally, another perspective is to extend the views of
Sim2RealViz to include a deeper level of available information on the environment.
For instance, the bird’s eye geo-map could be combined with a 3D view of the
simulation. Such a view can exploit the same first-person to coordinates projection
to produce a heatmap on textures (e.g. a red tint on a wall could indicate a presence
of a gap). This would result in a more immersive and precise analysis of sim2real
gaps, while the bird’s view provides a more global view of the environment’s
heatmap. Additionally, the encoding of positions on the geo-map may suffer

116 from simulation to reality

from overplotting issues as the number of instances to be displayed increases.
Our glyph encoding only partially tackles this problem, occlusion issues can
still be encountered as the density of positions increases. Future works could
address this issue by relying on aggregation methods to limit the number of
instances to be displayed. A representation for such an aggregation could be a
new glyph that emphasizes the number of instances it encodes along with the
overall discrepancies (e.g. average distance between them) between simulation,
ground-truth, and real-world predictions.

Finally, Sim2RealViz heavily relies on real-world images with ground-truth
labels, and hence their simulation equivalent. Here, such an alignment for pairs
of images is done manually with the help of heuristics and a lidar. Hence, such
a process is laborious and may have approximations. As a result, the amount of
real-world data available for analysis is limited. Future works could loosen this
requirement by empowering users with the ability to manually adjust ground-
truth labels to fix any potential approximations. Furthermore, the requirement for
the lidar to generate ground-truth labels of real-world images could be avoided.
This can be done by giving real-world images (without any label) to the model
and collecting their predictions. That way, we could rely on those potentially
false predictions to generate to which simulation image they correspond to. By
comparing both images, we may be able to assess if the model yielded correct
coordinates and orientation angle for the real-world image. Such a comparison
can either be done manually or with the help of metrics—(e.g. with the Mean
Squared Error (MSE)). While this process does not provide the same sim/real
alignment, it has the benefit to be able to process a large amount of data, and sort
instances by how likely they are to be influenced by sim2real gaps. As a result, this
approach could potentially help experts browse through more discrepancies, and
eventually n adjust false predictions for more in-depth analysis which requires an
alignment.

5.8 Conclusion

We introduced Sim2RealViz, an interactive visual analytics tool designed to
perform an in-depth analysis of the emergence of sim2real gaps from neural
networks applied to robot ego-localization. Sim2RealViz supports both overview
and comparison of the performances of different neural models, which instances
can be browsed based on metrics such as performance or distribution. Those
metrics can be combined using set operations to formulate more elaborated
queries. We also reported scenarios of use of Sim2RealViz to investigate how
models are inclined to exploit biases, such as regression to the mean, and are
easily disturbed by layout changes, such as moved objects.

C
h

a
p

t
e

r

6
C O N C L U S I O N A N D F U T U R E D I R E C T I O N S

Contents
6.1 Summary of Contributions . 117
6.2 Perspectives for Future Works . 119

6.2.1 Invade and Conquer Model Builders’ Workflow 120

6.2.2 Mitigating Human Biases 122

6.2.3 Finally Finding those Keys! 124

6.1 Summary of Contributions

This thesis provides contributions to multiple fields, including interactive data
visualization, machine learning, and how to build bridges between those two
worlds. Those contributions can be summarized as follows:

Assessing reasoning bias in Visual Question Answering (VQA) — Preventing
models, especially large ones such as transformers, to learn to blindly yield
outputs known by heart instead of learning a proper reasoning process, is key for
a future of Artificial Intelligence (AI) that impacts our everyday life. In Chapter 3,
we identified, thanks to interviews and participatory design with model builders,
their workflow to analyze bias in the attention of their models, and design goals
for a visual analytics system to assist them. We designed VisQA, an interactive
visual analytics system, with a new set of visualizations to analyze the attention
mechanism of bi-modal transformer models. This visualization is the first to
display attention maps in a layout following the studied model’s structure enabling
a fast identification, and selection of these maps while mitigating the learning
curve required by such a tool. VisQA is available as an online prototype (https://
visqa.liris.cnrs.fr), and is open-source (https://github.com/Theo-Jaunet/VisQA).
This system is the first to address the bi-modality attention of VQA transformer
models, and is the first to provide interactions to alter models’ attention in real-
time. As a result, experts can explore models’ predictions and draw hypotheses
on the role of a selected set of attention maps. Through an evaluation protocol we

117

https://visqa.liris.cnrs.fr
https://visqa.liris.cnrs.fr
https://github.com/Theo-Jaunet/VisQA

118 conclusion and future directions

designed, we showed first evidence that human users can obtain indications on the
reasoning behavior of a neural network using our system. During this evaluation,
domain experts, builders of Deep Neural Networks (DNN) models, were able
to estimate whether the model correctly predicted an answer and whether it
exploited biases. These insights lead to improvements of the state-of-the-art
LXMERT model.

Understanding the Memory of Deep Reinforcement Learning (DRL) — The
memory of robots trained with DRL is at the root of their decisions, thus analyzing
it, and being able to grasp how it is used by a model may provide a glimpse
into the black-box that is their decision process. In Chapter 4, we addressed
the under-explored challenge of visualizing such a memory and went further
by contextualizing it within the environment, previous decisions, and other
metrics. After discussions with domain experts about their workflow of training
DRL agents on navigation tasks, we designed a new interactive visual analytics
system to help them study the memory of their trained models. This prototype
is available online (https://sical.github.io/drlviz), and is open-source (https:
//github.com/sical/drlviz). In this system, the contextualization of the memory
is carried by a surrounding set of multiple-coordinated views which can be used
to filter and query any subset of memory. In particular, we provide a timeline of
events dissecting a robot’s action which can be used as an overlay of the memory
through an interaction we designed. This tool has been evaluated by domain
experts during qualitative interviews during which they noticed, among other
things, how some memory elements may function as "flags" encoding whether
or not the model has collected an item. It can be observed that in some cases the
agent may miss an item and lose vision of it, inducing those memory elements to
behave as they would if the agent had successfully gathered such an item. This
led to the design of memory reduction, a new interaction directly tied to the model.
Which such an interaction, a user can select a subset of the memory, and observe
how the model would behave without it. This was combined with the intuition
that the size of memories is manually picked by the model’s builder, hence
resulting in an often too large memory. Using this, we discovered that in some
cases the robot can preserve a similar performance with only a key subset of less
than half of the memory elements. We extended such interaction and addressed
it to a non-expert audience in an online explorable (https://theo-jaunet.github.
io/MemoryReduction), in which they were invited to explore different strategies to
reduce a robot’s memory, along with an explanation of how it works.

Identifying the Root of Gaps Between Simulation and Real-world — Despite
great progress in DRL, robots are yet to be seen in our everyday life. This can be
explained by the fact that in many cases robots trained in simulation tend to have
unexpected behavior when deployed into real-world conditions. However, we

https://sical.github.io/drlviz
https://github.com/sical/drlviz
https://github.com/sical/drlviz
https://theo-jaunet.github.io/MemoryReduction
https://theo-jaunet.github.io/MemoryReduction

6.2 perspectives for future works 119

need to rely on simulation to train them as they require millions, and sometimes
billions, of interactions with their environment to learn, which is infeasible in
real-time. In Chapter 5, we introduced non-expert users to this challenge, by
designing Théo Guesser, and online explorable (https://theo-jaunet.github.io/
theo-guesser/) in which users are invited to explore how a model trained in
simulation might be sensible to noises on input images, and one may tackle such
an issue. In addition, we addressed the challenge of transferring the knowledge
of a DNN model trained for ego-pose localization on simulation to the real-
world. To do so, we designed and trained a model to yield its position within
its environment from an image input. Along with such a model, we designed
an interactive visual analytics system to visually compare how the model may
differently perceive a simulation and a real-world environment. This open-source
system (https://github.com/Theo-Jaunet/sim2realViz) provides an overview in
multiple-coordinated views on how the model performs in simulation and real-
world, which can be used to provide a bird’s eye view of the environment, and
only display data-points that may be altered by real-world conditions (e.g. a
moving object). In such a system, we provide visualization methods, such as
the ability to convert gradient heatmaps such as grad-cam (as introduced in
Section 2.2.2) from the robot’s first-person point of view, into a 2D bird’s eye view
of the environment. By doing so, one can quickly analyze which are the most
troublesome areas of the environment and hence act in consequence (e.g. edit the
simulator). Additionally, in this chapter we managed for the simulation and real-
world images to be aligned—i.e. have a simulation and real-world image sampled
from the same coordinates and camera orientation. Inspired by occlusion [240],
we designed a new technique named domain occlusion which applies patches
over an input image to investigate if the output is further or closer than the
ground-truth. However, instead of applying gray patches, we switch from one
domain to another, e.g. replace a region of an image from simulation with the
region from real-world. This allows to assess how the model may exploit biases
such as a regression to the mean, and whether it is sensitive to moving objects
such as bikes, or wrong texture mapping in simulation. Thanks to the system’s
ability to directly manipulate the simulator settings, and apply filters (e.g. increase
brightness) to real-world images, we explored how those biases and layout-related
issues may be tackled.

6.2 Perspectives for Future Works

The contributions of this thesis, along with the recent advances from literature,
spurred new opportunities, and a wide range of perspectives for future work. In
this section, we distilled some possible directions for the challenges we tackled

https://theo-jaunet.github.io/theo-guesser/
https://theo-jaunet.github.io/theo-guesser/
https://github.com/Theo-Jaunet/sim2realViz

120 conclusion and future directions

in this thesis, along with the rise of more global research directions for the
community.

6.2.1 Invade and Conquer Model Builders’ Workflow

Despite the plethora of visual analytics systems, and building blocks for DNNs’
interpretability designed by the community, interpretability is yet to be a common
practice in model builders’ workflow. Nonetheless, during evaluations, it has
been shown that with the help of those systems, model builders were able to
identify issues among their models, and eventually leverage such information to
improve them. We can therefore raise the question: Why are such tools not included
in the design process of models yet? A light can be shed onto this question using the
following lenses:

The trenches of training and optimization— A vast majority of visual analytics
systems for interpretability, including those introduced in this manuscript, are
designed and used to analyze trained DNNs, which is often done after the hyper-
parameter optimization phase. As a result, most of this process, which is the most
time-consuming step for model builders, is excluded from these visual analytics
systems, hence forcing them to rely on alternative tools and methodology to
study their models in their early stages. For example, a common approach is to
either directly monitor a model’s loss evolution on a terminal console, or rather
to use TensorBoard [232, 207]. TensorBoard is one of the most popular toolkits,
which, among other features, enables users to plot metrics as line charts. We
argue that easing the burden of optimizing a model under construction and
including this step of model-building into the design of our visual analytics
systems could encourage model builders to share such a time-span, usually
allocated to optimization, with interpretability. Thus reinforcing the message
that a model’s accuracy on a dataset does not describe its ability to exploit, or
convey biases [56]. Currently, such a step may be incorporated manually in visual
analytics systems by using snapshots of a model. However, in addition to being
too laborious to be incorporated into builders’ workflow, such a solution, and
our current visual analytics systems also lack the capability to compare models.
Such a comparison is, however, core to the optimization phase, and perhaps could
also be crucial for its interpretability. For instance, comparing activations of two
different models using the same input may reveal which one is relying on the
most interpretable information to convey an output.

Vanquish the learning curve— By itself, understanding the decision process
arising from a single neuron is straightforward. It is their overpowering number
within a DNN, and the time it would require for a Human to analyze them all, that
makes a model a "black-box". Similarly, our visual analytics systems, through their

6.2 perspectives for future works 121

large number of multi-coordinated visualizations, interactions available, and data
displayed tend to be overwhelming for users. This results in a steep learning curve,
which in many cases discourages users and may even prevent them to understand
the core functionalities of a visual analytics system without any assistance. This
is emphasized by the fact that many visual analytics systems are instance-based,
meaning that they are dedicated to the analyzing of a single data-point and
output at a time. While this provides a fine-grained analysis, this also raises the
challenging task of selecting which data-point may be susceptible to portrait a
model’s faults, and hence worth analyzing. As a result, those visual analytics
systems tend to convey a feeling of "Where to begin?" even to experimented users.
Currently, in the community, such an issue is tackled through the use of an
interactive representation block (e.g. Chapter 4), in which one may click on any
dot, updating other views with the corresponding input. Another approach is
to rely on a metric describing the model performance to re-order inputs, and
draw users’ attention to the worst ones (e.g. Chapter 3). However, this approach
depends on the metric’s ability to describe bias exploitation from a model, and
the users’ comprehension of such a metric. Finally, some works in the shape of
prototypes, choose to only offer the possibility to switch between a handful of
inputs, manually selected for their ability to portrait the studied model’s biases,
hence avoiding for their users the task of finding relevant inputs to analyze.
With the ever-growing size of state-of-the-art models and the amount of data
they digest, future studies should focus on understanding how experts use visual
analytics systems, and provide different levels of information, in order to ease their
experience and screen-space real-estate taken by visualizations, and hence limit
the amount of time required to efficiently analyze a single data-point. Along with
such a study, understanding how to more efficiently identify inputs that should
interest the user, e.g. with data-mining methods, and more global visualization of
models’ behavior is a core research direction for better interpretability of DNNs.

Blitz deployment of systems— Designing a visual analytics system to interpret a
model’s decision requires time, and lasting collaboration between model builders,
and visual analytics designers. This is emphasized by the fact that such systems
often require a lot of programming and engineering, shaped as the collection
of data from models (e.g. activations), the construction of systems, and the in-
frastructure to bridge models often on python, and in-browser visualizations on
JavaScript, along with knowledge from both worlds. As a result, in most cases,
the emergence of tools to interpret a new model comes with a delay. Thus many
published models are not evaluated with respect to their interpretability, and
visual analytic systems fail to cope with the ever-increasing fast-paced creation
of new models. This is because those systems are designed for one specific
implementation of a model within a class of models (e.g. the LXMERT among
transformers in Chapter 3), a specific dataset (e.g. GQA), a unique task (e.g. VQA).

122 conclusion and future directions

Therefore, the deployment of a visual analytics system to another configuration
requires for such an engineering time needs to be repeated, hence hindering model
builders from easily interpreting variations of a model. However, as experimented
in this manuscript despite different models, datasets, and tasks addressed, our
visual analytics systems and those from the community share common features.
Each of those systems needs to obtain information from models, and for example,
share common visualizations such as the visualization of attention and memory
as heatmaps, the presence of interactive representation view issued from a di-
mensionality reduction algorithm, or even the softmax distribution of top classes
for an output. Hence, in the future, we should inquire how can we rest on the
shoulders of giants, and ease the burden of future engineering requirements.
This can be done by adapting a system to another related model, by studying
and designing more modular and generic systems. Along with that comes the
need for future works to tackle the unexplored challenge of adapting those visual
interfaces to the ever-increasing size of models and dataset, dampening their
ability to have a reasonable response time for their interactions, and increasing
overall performances required to even load those systems in a web browser.

6.2.2 Mitigating Human Biases

When analyzing and interpreting models’ decision processes one should also
be on alert for one’s own biases. For instance, as humans, we tend to expect
models to have explanations for each of their decisions, because we mistakenly
believe that each of our decisions has rational explanations, instead of anchored
priors [96]. Such biases may blind the shortcomings of our interpretations and
should be taken into account when analyzing a model’s decision. Future works
could address this with the following research directions:

Evaluate interpretations — When interpreting a decision, we, as humans, are
looking for patterns and clues that help us seek a reasoning process similar to
our own, thanks to DNN’s data (e.g. activations). This is known as confirmation
bias, and because of this, we may interpret an explanation as in favor of our
intuition concerning a decision, and consider it as an artifact any explanation
that points toward something different. As an example, a heatmap around a
cat’s whiskers from an input image may be interpreted as the model correctly
assimilating that indeed cats have whiskers, when in reality, it may be the model
mistaking the background in-between whiskers as a discriminatory feature for
cats. Furthermore, deciding when one has enough information to interpret a
model’s decision, and not missing any piece of information that could shatter
one’s conclusion, is a challenge even for model builders. This may result in a
trade-off between jumping to conclusions in the interest of time and eventually
missing crucial information, and being too meticulous, hence taking too much

6.2 perspectives for future works 123

time on a single input and eventually skipping inputs that could yield valuable
insight.

The study of human biases, and their effect on decision-making through visu-
alization [225], and visual analytics [224], is an on-growing area of research that
provided metrics describing biases to a user [224], and a design space to mitigate
cognitive biases [226] which may be hidden when analyzing a visualization. In
addition to those contributions, we should also consider studying those biases
with respect to DNN interpretability. Hence a rising need for stronger evaluation
protocols of how users may interpret decisions thanks to visual analytics systems.
Currently, a vast majority of research reports introducing new visual analytics
systems for DNN interpretability provide illustrative examples and case studies.
While this may showcase how a new system can be used and what kind of expla-
nation can be found with it, we argue that a more thorough evaluation of how
users may adapt to this new system, and evaluation of the interpretations they can
grasp may be beneficial. This trend may be explained by the fact that interpreting
a model’s decision is a challenging task, and thus such an operation is often
addressed in lengthy qualitative interviews, with model builders experimented
with the studied model. Such conditions limit the pool of available experts able
to participate in an experiment, resulting in only a handful of experts. In a few
cases, these experts contributed to the design of the visual analytics system being
evaluated, which hinders the evaluation of a new user’s adaptation to the system.
Despite the emergence of strategies and protocols to evaluate an interpretation [56,
181], the quantification of what is a "good" interpretation, and when a model is
"good enough" remains an open challenge. Thus, their applications to visual ana-
lytics remain elusive. As an example, for VisQA (Chapter 3), such an application
relies on a more practical approach consisting in hiding the model’s output and
asking users to estimate, based on their analysis, what it should be. That way, we
quantitatively compare the results between users, and between an answer and the
model’s prediction.

Include end-users into the loop — When building a model, we tend to follow
our intuition and biases based on our experience. For example, with statements
such as "Traditionally this amount of parameters are enough", or "Usually such a loss
yields great results". However, it has been shown that such fine-grained changes
may have a direct impact on how a model behaves [173]. A solution would be to
formulate an exhaustive exploration of every combination of hyper-parameters per
model, which is not feasible in a timely manner and would sky-rocket the energy
consumption of model training. This illustrates that breaking away from Human
biases is nearly impossible, especially if a model builder analyzing a model has
no knowledge of what may constitute an inequality of opportunity [81]. Thus,
a key research direction is to empower end-users with the ability to experiment
not only how a model may treat one’s data, but also how other cases are handled.

124 conclusion and future directions

However, this leads to the seemingly insurmountable challenge of adapting visual
analytics systems to accommodate non-expert users to prevent them from being
overwhelmed. Or rather build on existing non-expert works for interpretability,
which are often relying on simplified models, and toy datasets. Those works
then need an adaptation to fit the desired model and dataset. Such an adaptation
may, however, bring back the same feeling of being overwhelmed, despite having
a limited exploration space and hence a chance to miss potential explanations.
Moreover, even with the consideration that end-users are able to analyze the
decision of models, how they may leverage any insight to improve them, remains
an open problem.

6.2.3 Finally Finding those Keys!

Throughout this manuscript, we designed and analyzed DNN models, each
addressing a step required for a robot to answer a question such as: "Where
are my keys?". The next logical step is to combine these models into a single
stack to finally have a robot able to understand what we are looking for from
a natural language question, and through its environment (e.g. an apartment)
finding and communicating its location. To do so, the VQA model, as introduced
in Chapter 3, should both communicate to the model dedicated to the robot’s
navigation what it should look for, and when it should stop (e.g. when the keys
are visible). Technically, this would require for the navigation model to be re-
trained to support a slightly different task, in a more realistic simulator. Instead
of reaching several items in an order, as instructed by a reward function, the
model must focus on exploring efficiently its environment (e.g. avoid coming back
into previously scanned rooms), and thus yield the robot’s next actions until the
VQA model detects the presence of "keys". This approach could be improved as
it would result in a robot aimlessly roaming its environment, instead of being
guided by intuitive biases. For instance, if the navigation model knew that it
is looking for keys, it could exploit prior knowledge such as that the keys are
often left on a desk. Hence a better solution would be to adapt the VQA model
to share with the navigation model what item it must detect. Such information
may take the form of an embedding of the question or rather be issued from a
modification of the VQA model with an auxiliary branch trained to output the
name of the object from a question (e.g. "keys") which can then be used as input
to the navigation model (using a representation of this class (e.g. one-hot vector,
embedding, or a word2vec representation). That way, such a model, may learn
the intuition that the keys are often on the same desk, directly head for it without
exploring the complete environment. And once the VQA model detects those
keys, it can provide the ego-pose localization model with the image from the
robot’s perspective to yield the position of the keys. In that sense, one could
consider for the navigation model, and the ego-pose localization one the share the

6.2 perspectives for future works 125

same Convolutional layers and weights, since both of their goals require an inner
representation of the environment’s layout. This would have the benefit of easing
endeavors to interpret the decisions of those models as they would have fewer
parameters to analyze. This has also the benefit of preserving task-specialized
visualizations on their respected fully-connected layers.

Similarly, the task of using a robot to answer VQA questions, known as Embodied
Question Answering (EQA) [48], with a hierarchical approach gained popular-
ity [75, 49]. This approach combines low-level controllers executing actions (similar
to our navigation model), along with higher-level modules either designed to
process the natural language questions, or designed as a planner that yields a
sequence of action to execute. Alternatively, EQA have been tackled by a single
model. For instance, in target-driven navigation [246], such a model is asked to
reach a destination by using as input the image corresponding to the point of view
of the robot, along is a target image corresponding to the view from the robot’s
perspective of its destination. More recently, Suglia et al. [197] relied on a single
transformer model using jointly the input image of the robot’s point of view, and
is asked to yield the next action the robot should do. While there is no consensus
in the community on whether a single model, or a multiple-stacked one, may have
the best performances, we argue that relying on multiple models may be more
interpretable. One argument is that each model may be interpreted and evaluated
with respect to its own goal—e.g. the ability to identify the presence of keys in
an image. Therefore, model builders may be able to act upon the observation of
bias exploitation on a specific task (e.g. re-train a model with new loss), without
dampening the performances of other models.

Nonetheless, in contrast to the works introduced in this manuscript (i.e. the
study individual models), in large industries, the deployment of multiple stacked
models is frequent e.g. Google home [120], or Amazon’s Alexa [210], and by self-
driving cars by Waymo [13, 198] or Tesla [98, 9]. Those solutions, and the future
works for EQA stacked models, carry the yet-to-tackle challenge of designing
visual analytics systems able to help domain experts explore the overwhelming
amount of data those collection models may represent, along with how they
depend on each other. For example, raising questions such as: "Is a mistake
occurring because the last model needs to be re-trained, or rather because it
received faulty inputs?". This is emphasized by the fact that in many cases models
within a stack are trained individually, and hence the model builder may not
have access to the upstream, i.e. to inner workings of models it depends on, nor
to the downstream ones affected by it. Thus, a challenge for designing more
interpretable models is not only to mitigate their bias exploitation, but also to
understand how their decisions may induce errors in downstream models of a
stack. As an example, the LXMERT model introduced in Chapter 3, first receives
inputs from a RCNN model, whose noisy predictions have a direct impact on
the downstream transformer model’s ability to learn a proper reasoning. This

126 conclusion and future directions

influence may not be straightforward to grasp when analyzing the RCNN by itself.
Such findings pave the road for new research opportunities, especially for the
interpretability and understanding of biases that may be buried within decisions
and the design of models in a stack.

B I B L I O G R A P H Y

[1] Ehsan Abbasnejad, Damien Teney, Amin Parvaneh, Javen Shi, and Anton
van den Hengel. “Counterfactual vision and language learning”. In: Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
2020, pp. 10044–10054 (cit. on p. 47).

[2] Abien Fred Agarap. “Deep Learning using Rectified Linear Units (ReLU)”.
In: arXiv preprint arXiv:1803.08375 (Mar. 2018). url: https://arxiv.org/
abs/1803.08375v2 (cit. on p. 11).

[3] Aishwarya Agrawal, Dhruv Batra, and Devi Parikh. “Analyzing the behav-
ior of visual question answering models”. In: arXiv preprint arXiv:1606.07356
(2016) (cit. on pp. 40, 47).

[4] Aishwarya Agrawal, Dhruv Batra, Devi Parikh, and Aniruddha Kembhavi.
“Don’t just assume; look and answer: Overcoming priors for visual question
answering”. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. 2018, pp. 4971–4980 (cit. on p. 47).

[5] ALL OF IT | Explorable Explanations. url: https://explorabl.es/all/
(cit. on p. 7).

[6] Peter Anderson, Xiaodong He, Chris Buehler, Damien Teney, Mark John-
son, Stephen Gould, and Lei Zhang. “Bottom-up and top-down attention
for image captioning and visual question answering”. In: Proceedings of the
IEEE conference on computer vision and pattern recognition. 2018, pp. 6077–
6086 (cit. on p. 44).

[7] Robert Andrews, Joachim Diederich, and Alan B. Tickle. “Survey and
critique of techniques for extracting rules from trained artificial neural
networks”. In: Knowledge-Based Systems 8.6 (Dec. 1995), pp. 373–389 (cit. on
p. 13).

[8] Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Margaret Mitchell, Dhruv
Batra, C Lawrence Zitnick, and Devi Parikh. “Vqa: Visual question answer-
ing”. In: Proceedings of the IEEE international conference on computer vision.
2015, pp. 2425–2433 (cit. on p. 39).

[9] Artificial Intelligence & Autopilot | Tesla. url: https://www.tesla.com/AI
(cit. on p. 125).

[10] Kai Arulkumaran, Marc Peter Deisenroth, Miles Brundage, and Anil An-
thony Bharath. “Deep Reinforcement Learning: A Brief Survey”. In: IEEE
Signal Processing Magazine 34.6 (Nov. 2017), pp. 26–38 (cit. on p. 75).

127

https://arxiv.org/abs/1803.08375v2
https://arxiv.org/abs/1803.08375v2
https://explorabl.es/all/
https://www.tesla.com/AI

128 bibliography

[11] Daniel Asimov. “The Grand Tour: A Tool for Viewing Multidimensional
Data”. In: Scientific and Statistical Computing 6.1 (July 2006), pp. 128–143

(cit. on p. 27).

[12] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. “Neural Ma-
chine Translation by Jointly Learning to Align and Translate”. In: 3rd
International Conference on Learning Representations, ICLR 2015 - Conference
Track Proceedings. International Conference on Learning Representations,
ICLR, Sept. 2015. url: https://arxiv.org/abs/1409.0473v7 (cit. on
pp. 22, 32).

[13] Mayank Bansal, Alex Krizhevsky, and Abhijit Ogale. “ChauffeurNet: Learn-
ing to Drive by Imitating the Best and Synthesizing the Worst”. In: Robotics:
Science and Systems. 2019. url: https://sites.google.com/view/learn-
to-drive/ (cit. on p. 125).

[14] Dhruv Batra, Aaron Gokaslan, Aniruddha Kembhavi, Oleksandr Maksymets,
Roozbeh Mottaghi, Manolis Savva, Alexander Toshev, and Erik Wijmans.
“ObjectNav Revisited: On Evaluation of Embodied Agents Navigating to
Objects”. In: CoRR (Jan. 2020) (cit. on p. 75).

[15] David Bau, Hendrik Strobelt, William Peebles, Jonas Wulff, Bolei Zhou,
Jun-Yan Zhu Torralba, and Antonio. “Semantic Photo Manipulation with a
Generative Image Prior”. In: ACM Transactions on Graphics (Proceedings of
ACM SIGGRAPH) 38.4 (2019) (cit. on p. 2).

[16] David Bau, Bolei Zhou, Aditya Khosla, Aude Oliva, and Antonio Tor-
ralba. “Network Dissection: Quantifying Interpretability of Deep Visual
Representations”. In: Computer Vision and Pattern Recognition (CVPR). 2017,
pp. 6541–6549. url: http://netdissect.csail.mit.edu (cit. on pp. 19,
20).

[17] Alex Bäuerle and James Wexler. “What does BERT dream of?” In: Proceed-
ings of the Workshop on Visualization for AI explainability (VISxAI). Ed. by
Mennatallah El-Assady, Duen Horng (Polo) Chau, Fred Hohman, Adam
Perer, Hendrik Strobelt, and Fernanda Viégas. 2020 (cit. on p. 24).

[18] Edward Beeching, Christian Wolf, Jilles Dibangoye, and Olivier Simonin.
“Deep Reinforcement Learning on a Budget: 3D Control and Reasoning
Without a Supercomputer”. In: arXiv preprint arXiv:1904.01806 (2019) (cit.
on pp. 74, 75, 86, 93).

[19] Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling.
“The Arcade Learning Environment: An Evaluation Platform for General
Agents”. In: Journal of Artificial Intelligence Research (2013) (cit. on p. 75).

https://arxiv.org/abs/1409.0473v7
https://sites.google.com/view/learn-to-drive/
https://sites.google.com/view/learn-to-drive/
http://netdissect.csail.mit.edu

bibliography 129

[20] Y Bengio, Aaron Courville, Dumitru Erhan, Yoshua Bengio, and Pas-
cal Vincent. Visualizing Higher-Layer Features of a Deep Network Visualiz-
ing Higher-Layer Features of a Deep Network Département d’Informatique et
Recherche Opérationnelle. Tech. rep. University of Montreal, 2009. url: https:
//www.researchgate.net/publication/265022827 (cit. on p. 23).

[21] Tolga Bolukbasi, Kai-Wei Chang, James Y. Zou, Venkatesh Saligrama, and
Adam T. Kalai. “Man is to Computer Programmer as Woman is to Home-
maker? Debiasing Word Embeddings”. In: Advances in Neural Information
Processing Systems 29 (2016) (cit. on p. 3).

[22] Michael Bostock, Vadim Ogievetsky, and Jeffrey Heer. “D3: Data-Driven
Documents”. In: IEEE Trans. Visualization & Comp. Graphics (Proc. InfoVis)
(2011) (cit. on pp. 58, 84, 104).

[23] Bostock Mike. Let’s Try t-SNE! url: https://observablehq.com/@mbostock/
lets-try-t-sne (cit. on p. 26).

[24] Léon Bottou. “From machine learning to machine reasoning”. In: Machine
learning 94.2 (2014), pp. 133–149 (cit. on p. 40).

[25] Konstantinos Bousmalis, Alex Irpan, Paul Wohlhart, Yunfei Bai, Matthew
Kelcey, Mrinal Kalakrishnan, Laura Downs, Julian Ibarz, Peter Pastor,
Kurt Konolige, and others. “Using simulation and domain adaptation to
improve efficiency of deep robotic grasping”. In: 2018 IEEE international
conference on robotics and automation (ICRA). IEEE, 2018, pp. 4243–4250 (cit.
on p. 101).

[26] Konstantinos Bousmalis, Nathan Silberman, David Dohan, Dumitru Erhan,
and Dilip Krishnan. “Unsupervised pixel-level domain adaptation with
generative adversarial networks”. In: Proceedings of the IEEE conference on
computer vision and pattern recognition. 2017, pp. 3722–3731 (cit. on p. 101).

[27] Eric Brachmann, Martin Humenberger, Carsten Rother, and Torsten Sattler.
“On the Limits of Pseudo Ground Truth in Visual Camera Re-localisation”.
In: arXiv preprint arXiv:2109.00524 (Sept. 2021). url: http://arxiv.org/
abs/2109.00524 (cit. on p. 100).

[28] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Ka-
plan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry,
Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger,
Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey
Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz
Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam
McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. “Language
Models are Few-Shot Learners”. In: Advances in Neural Information Process-
ing Systems 2020-December (May 2020). url: https://arxiv.org/abs/
2005.14165v4 (cit. on pp. 2, 3).

https://www.researchgate.net/publication/265022827
https://www.researchgate.net/publication/265022827
https://observablehq.com/@mbostock/lets-try-t-sne
https://observablehq.com/@mbostock/lets-try-t-sne
http://arxiv.org/abs/2109.00524
http://arxiv.org/abs/2109.00524
https://arxiv.org/abs/2005.14165v4
https://arxiv.org/abs/2005.14165v4

130 bibliography

[29] G Brunner, Y Liu, DP Ortiz, O Richter, and M Ciaramita. “On Identifiability
in Transformers”. In: International Conference on Learning Representations
(ICLR). 2020. url: https://research.google/pubs/pub48972/ (cit. on
p. 34).

[30] Emanuele Bugliarello, Ryan Cotterell, Naoaki Okazaki, and Desmond El-
liott. “Multimodal Pretraining Unmasked: A Meta-Analysis and a Unified
Framework of Vision-and-Language BERTs”. In: Transactions of the Asso-
ciation for Computational Linguistics (2021). url: https://arxiv.org/abs/
2011.15124 (cit. on p. 65).

[31] Remi Cadene, Hedi Ben-Younes, Matthieu Cord, and Nicolas Thome.
“Murel: Multimodal relational reasoning for visual question answering”. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
2019, pp. 1989–1998 (cit. on p. 79).

[32] Jize Cao, Zhe Gan, Yu Cheng, Licheng Yu, Yen-Chun Chen, and Jingjing
Liu. “Behind the scene: Revealing the secrets of pre-trained vision-and-
language models”. In: European Conference on Computer Vision. Springer,
2020, pp. 565–580 (cit. on p. 46).

[33] Nicholas Carlini, Florian Tramer, Eric Wallace, Matthew Jagielski, Ariel
Herbert-Voss, Katherine Lee, Adam Roberts, Tom Brown, Dawn Song,
Ulfar Erlingsson, Alina Oprea, and Colin Raffel. “Extracting Training Data
from Large Language Models”. In: (Dec. 2020). url: https://arxiv.org/
abs/2012.07805v2 (cit. on p. 3).

[34] Shan Carter, Zan Armstrong, Ludwig Schubert, Ian Johnson, and Chris
Olah. “Activation Atlas”. In: Distill (2019) (cit. on p. 31).

[35] Shan Carter, David Ha, Ian Johnson, and Chris Olah. “Experiments in
Handwriting with a Neural Network”. In: Distill (2016) (cit. on pp. 21, 22,
46, 82).

[36] DV Carvalho, EM Pereira, and JS Cardoso. “Machine learning interpretabil-
ity: A survey on methods and metrics”. In: Electronics 8.8 (2019), p. 832.
url: https://www.mdpi.com/503892 (cit. on p. 5).

[37] Dylan Cashman, Genevieve Patterson, Abigail Mosca, and Remco Chang.
“RNNbow: Visualizing Learning via Backpropagation Gradients in Recur-
rent Neural Networks”. en. In: (), p. 9 (cit. on pp. 32, 79).

[38] Aaron Chadha and Yiannis Andreopoulos. “Improved techniques for ad-
versarial discriminative domain adaptation”. In: IEEE Transactions on Image
Processing 29 (2019), pp. 2622–2637 (cit. on pp. 97, 101).

[39] A Chandrasekaran, V Prabhu, D Yadav, P Chattopadhyay, and D Parikh.
“Do explanations make VQA models more predictable to a human?” In:
EMNLP. 2018 (cit. on p. 59).

https://research.google/pubs/pub48972/
https://arxiv.org/abs/2011.15124
https://arxiv.org/abs/2011.15124
https://arxiv.org/abs/2012.07805v2
https://arxiv.org/abs/2012.07805v2
https://www.mdpi.com/503892

bibliography 131

[40] Angel Chang, Angela Dai, Thomas Funkhouser, Maciej Halber, Matthias
Niessner, Manolis Savva, Shuran Song, Andy Zeng, and Yinda Zhang.
“Matterport3D: Learning from RGB-D Data in Indoor Environments”. In:
International Conference on 3D Vision (3DV). 2017, pp. 667–676. url: https:
//matterport.com/ (cit. on pp. 75, 94, 99).

[41] Yen-Chun Chen, Linjie Li, Licheng Yu, Ahmed El Kholy, Faisal Ahmed,
Zhe Gan, Yu Cheng, and Jingjing Liu. “Uniter: Universal image-text repre-
sentation learning”. In: European Conference on Computer Vision. Springer,
2020, pp. 104–120 (cit. on pp. 45, 65).

[42] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio.
“Empirical evaluation of gated recurrent neural networks on sequence
modeling”. In: arXiv preprint arXiv:1412.3555 (2014) (cit. on p. 77).

[43] CNNVIs online prototype. url: http://shixialiu.com/publications/
cnnvis/demo/ (cit. on p. 30).

[44] Andy Cockburn, Amy Karlson, and Benjamin B Bederson. “A review
of overview+ detail, zooming, and focus+ context interfaces”. In: ACM
Computing Surveys (CSUR) 41.1 (2009), pp. 1–31 (cit. on p. 105).

[45] Kristin A; Cook and James J Thomas. Illuminating the Path: The Research
and Development Agenda for Visual Analytics. Los Alamitos: IEEE Computer
Society Press, 2005. url: https://www.osti.gov/biblio/912515 (cit. on
p. 10).

[46] Nicolas Coudray, Paolo Santiago Ocampo, Theodore Sakellaropoulos,
Navneet Narula, Matija Snuderl, David Fenyö, Andre L. Moreira, Narges
Razavian, and Aristotelis Tsirigos. “Classification and mutation prediction
from non–small cell lung cancer histopathology images using deep learn-
ing”. In: Nature Medicine 2018 24:10 24.10 (Sept. 2018), pp. 1559–1567. url:
https://www.nature.com/articles/s41591-018-0177-5 (cit. on p. 2).

[47] Matthew Crosby, Benjamin Beyret, and Marta Halina. “The Animal-AI
Olympics”. In: Nature Machine Intelligence 1.5 (2019), p. 257 (cit. on p. 94).

[48] A Das, S Datta, G Gkioxari, S Lee, D Parikh, and D Batra. “Embodied
Question Answering”. In: CVPR. 2018 (cit. on pp. 71, 125).

[49] Abhishek Das, Georgia Gkioxari, Stefan Lee, Devi Parikh, and Dhruv
Batra. “Neural Modular Control for Embodied Question Answering”. In:
Proceedings of the Conference on Robot Learning (CoRL). 2018 (cit. on p. 125).

[50] Taowei David Wang, Catherine Plaisant, Alexander J Quinn, Roman Stan-
chak, Ben Shneiderman, and Shawn Murphy. Aligning Temporal Data by
Sentinel Events: Discovering Patterns in Electronic Health Records. 2008 (cit. on
p. 92).

https://matterport.com/
https://matterport.com/
http://shixialiu.com/publications/cnnvis/demo/
http://shixialiu.com/publications/cnnvis/demo/
https://www.osti.gov/biblio/912515
https://www.nature.com/articles/s41591-018-0177-5

132 bibliography

[51] Q Debard, J Dibangoye, S Canu, and C Wolf. “Learning 3D Navigation
Protocols on Touch Interfaces with Cooperative Multi-Agent Reinforcement
Learning”. In: To appear in European Conference on Machine Learning and
Principles and Practice of Knowledge Discovery in Databases (ECML-PKDD).
2019 (cit. on p. 71).

[52] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. “Ima-
genet: A large-scale hierarchical image database”. In: 2009 IEEE conference
on computer vision and pattern recognition. 2009, pp. 248–255 (cit. on p. 31).

[53] Joseph F DeRose, Jiayao Wang, and Matthew Berger. “Attention Flows:
Analyzing and Comparing Attention Mechanisms in Language Models”.
In: IEEE Transactions on Visualization and Computer Graphics (2020) (cit. on
pp. 33, 46, 65).

[54] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
“BERT: Pre-training of Deep Bidirectional Transformers for Language Un-
derstanding”. In: Proceedings of the 2019 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers). 2019, pp. 4171–4186 (cit. on pp. 33,
42, 45).

[55] E W Dijkstra. “A note on two problems in connexion with graphs”. In:
Numerische mathematik 1.1 (1959), pp. 269–271 (cit. on p. 71).

[56] Finale Doshi-Velez and Been Kim. Towards A Rigorous Science of Interpretable
Machine Learning. Tech. rep. url: https://arxiv.org/pdf/1702.08608.
pdf (cit. on pp. 5, 6, 13, 120, 123).

[57] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn,
Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer,
Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. “An
Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”.
In: International Conference on Learning Representations. 2021. url: https:
//openreview.net/forum?id=YicbFdNTTy (cit. on p. 40).

[58] Anca D Dragan, Kenton C T Lee, and Siddhartha S Srinivasa. “Legibility
and predictability of robot motion”. In: 2013 8th ACM/IEEE International
Conference on Human-Robot Interaction (HRI). IEEE, 2013, pp. 301–308 (cit. on
pp. 5, 35).

[59] B Duke, A Ahmed, C Wolf, P Aarabi, and G W Taylor. “SSTVOS: Sparse
Spatiotemporal Transformers for Video Object Segmentation”. In: CVPR.
2021 (cit. on p. 40).

[60] Adrien Ecoffet, Joost Huizinga, Joel Lehman, Kenneth O. Stanley, and Jeff
Clune. “Go-Explore: a New Approach for Hard-Exploration Problems”. In:
(Jan. 2019). url: https://arxiv.org/abs/1901.10995v4 (cit. on p. 4).

https://arxiv.org/pdf/1702.08608.pdf
https://arxiv.org/pdf/1702.08608.pdf
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy
https://arxiv.org/abs/1901.10995v4

bibliography 133

[61] Carsten Eickhoff. “Cognitive biases in crowdsourcing”. In: Proceedings of
the eleventh ACM international conference on web search and data mining. 2018,
pp. 162–170 (cit. on p. 47).

[62] Jesse H Engel, Kumar Krishna Agrawal, Shuo Chen, Ishaan Gulrajani,
Chris Donahue, and Adam Roberts. “GANSynth: Adversarial Neural Au-
dio Synthesis”. In: 7th International Conference on Learning Representations,
(ICLR). OpenReview.net, 2019. url: https://openreview.net/forum?id=
H1xQVn09FX (cit. on p. 2).

[63] Explorable explanation - Wikipedia. url: https://en.wikipedia.org/wiki/
Explorable_explanation (cit. on p. 7).

[64] Kevin Eykholt, Ivan Evtimov, Earlence Fernandes, Bo Li, Amir Rahmati,
Chaowei Xiao, Atul Prakash, Tadayoshi Kohno, and Dawn Song. “Robust
Physical-World Attacks on Deep Learning Visual Classification”. In: Pro-
ceedings of the IEEE conference on computer vision and pattern recognition. 2018,
pp. 1625–1634. url: https://iotsecurity.eecs.umich.edu/#roadsigns
(cit. on p. 4).

[65] Kuan Fang, Yunfei Bai, Stefan Hinterstoisser, Silvio Savarese, and Mrinal
Kalakrishnan. “Multi-task domain adaptation for deep learning of instance
grasping from simulation”. In: 2018 IEEE International Conference on Robotics
and Automation (ICRA). IEEE, 2018, pp. 3516–3523 (cit. on p. 101).

[66] Johannes Fuchs, Fabian Fischer, Florian Mansmann, Enrico Bertini, and
Petra Isenberg. “Evaluation of alternative glyph designs for time series
data in a small multiple setting”. In: Proceedings of the SIGCHI conference on
human factors in computing systems. 2013, pp. 3237–3246 (cit. on p. 92).

[67] Zhe Gan, Yen-Chun Chen, Linjie Li, Chen Zhu, Yu Cheng, and Jingjing Liu.
“Large-Scale Adversarial Training for Vision-and-Language Representation
Learning”. In: Advances in Neural Information Processing Systems. Ed. by H
Larochelle, M Ranzato, R Hadsell, M F Balcan, and H Lin. Vol. 33. Curran
Associates, Inc., 2020, pp. 6616–6628. url: https://proceedings.neurips.
cc/paper/2020/file/49562478de4c54fafd4ec46fdb297de5-Paper.pdf
(cit. on p. 45).

[68] Peng Gao, Zhengkai Jiang, Haoxuan You, Pan Lu, Steven C H Hoi, Xi-
aogang Wang, and Hongsheng Li. “Dynamic fusion with intra-and inter-
modality attention flow for visual question answering”. In: Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition. 2019,
pp. 6639–6648 (cit. on p. 42).

[69] Leon Gatys, Alexander Ecker, and Matthias Bethge. “A Neural Algorithm
of Artistic Style”. In: IEEE conference on computer vision and pattern recognition.
Vol. 16. 12. Association for Research in Vision and Ophthalmology (ARVO),
Sept. 2016, p. 326 (cit. on p. 2).

https://openreview.net/forum?id=H1xQVn09FX
https://openreview.net/forum?id=H1xQVn09FX
https://en.wikipedia.org/wiki/Explorable_explanation
https://en.wikipedia.org/wiki/Explorable_explanation
https://iotsecurity.eecs.umich.edu/#roadsigns
https://proceedings.neurips.cc/paper/2020/file/49562478de4c54fafd4ec46fdb297de5-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/49562478de4c54fafd4ec46fdb297de5-Paper.pdf

134 bibliography

[70] R Girdhar, J Carreira, C Doersch, and A Zisserman. “Video Action Trans-
former Network”. In: CVPR. 2020 (cit. on p. 40).

[71] Michael Gleicher, Danielle Albers, Rick Walker, Ilir Jusufi, Charles D
Hansen, and Jonathan C Roberts. “Visual comparison for information
visualization”. In: Information Visualization 10.4 (2011), pp. 289–309. url:
http://ivi.sagepub.com/content/10/4/289.short (cit. on pp. 93, 105).

[72] Gabriel Goh, Chelsea Voss, Daniela Amodei, Shan Carter, Michael Petro-
vJustin, Jay Wang, Nick Cammarata, and Chris Olah. Multimodal Neu-
rons in Artificial Neural Networks. 2021. url: https://openai.com/blog/
multimodal-neurons/#rf22 (cit. on p. 4).

[73] Tejas Gokhale, Pratyay Banerjee, Chitta Baral, and Yezhou Yang. “MUTANT:
A Training Paradigm for Out-of-Distribution Generalization in Visual
Question Answering”. In: Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP). 2020, pp. 878–892 (cit. on
p. 47).

[74] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. “Explaining
and harnessing adversarial examples”. In: arXiv preprint arXiv:1412.6572
(2014) (cit. on pp. 4, 97).

[75] Daniel Gordon, Aniruddha Kembhavi, Mohammad Rastegari, Joseph Red-
mon, Dieter Fox, and Ali Farhadi. “IQA: Visual Question Answering in
Interactive Environments”. In: CVPR. IEEE, 2018 (cit. on pp. 71, 125).

[76] Yash Goyal, Tejas Khot, Douglas Summers-Stay, Dhruv Batra, and Devi
Parikh. “Making the V in VQA matter: Elevating the role of image un-
derstanding in Visual Question Answering”. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. 2017, pp. 6904–6913

(cit. on pp. 40, 47, 65).

[77] Yash Goyal, Akrit Mohapatra, Devi Parikh, and Dhruv Batra. “Towards
transparent ai systems: Interpreting visual question answering models”.
In: arXiv preprint arXiv:1608.08974 (2016) (cit. on p. 46).

[78] Klaus Greff, Rupesh Kumar Srivastava, Jan Koutn\textbackslash’\{{\textbackslash}textbackslashi}k,
Bas R Steunebrink, Jürgen Schmidhuber, Jan Koutník, Bas R Steunebrink,
Jürgen Schmidhuber, Jan Koutn\textbackslash’\{{\textbackslash}textbackslashi}k,
Bas R Steunebrink, Jürgen Schmidhuber, Jan Koutník, Bas R Steunebrink,
and Jürgen Schmidhuber. “LSTM: A Search Space Odyssey”. In: 10 (),
pp. 2222–2232 (cit. on p. 77).

[79] Sam Greydanus, Anurag Koul, Jonathan Dodge, and Alan Fern. “Visual-
izing and understanding atari agents”. In: arXiv preprint arXiv:1711.00138
(2017) (cit. on p. 81).

http://ivi.sagepub.com/content/10/4/289.short
https://openai.com/blog/multimodal-neurons/#rf22
https://openai.com/blog/multimodal-neurons/#rf22

bibliography 135

[80] Sorin Grigorescu, Bogdan Trasnea, Tiberiu Cocias, and Gigel Macesanu. “A
survey of deep learning techniques for autonomous driving”. In: Journal of
Field Robotics 37.3 (Apr. 2020), pp. 362–386. url: https://onlinelibrary.
wiley.com/doi/full/10.1002/rob.21918https://onlinelibrary.wiley.
com/doi/abs/10.1002/rob.21918https://onlinelibrary.wiley.com/
doi/10.1002/rob.21918 (cit. on p. 2).

[81] Moritz Hardt, Eric Price, Eric Price, and Nati Srebro. “Equality of Opportu-
nity in Supervised Learning”. In: Advances in Neural Information Processing
Systems 29 (2016) (cit. on p. 123).

[82] P E Hart, N J Nilsson, and B Raphael. “A formal basis for the heuristic
determination of minimum cost paths”. In: IEEE transactions on Systems
Science and Cybernetics 4.2 (1968), pp. 100–107 (cit. on p. 71).

[83] Matthew Hausknecht and Peter Stone. “Deep Recurrent q-learning for
Partially Observable mdps”. In: 2015 AAAI Fall Symposium Series. 2015

(cit. on p. 75).

[84] Lisa Anne Hendricks, Zeynep Akata, Marcus Rohrbach, Jeff Donahue,
Bernt Schiele, and Trevor Darrell. “Generating Visual Explanations”. In:
European conference on computer vision. Vol. 9908 LNCS. Springer, 2016,
pp. 3–19. url: https://link.springer.com/chapter/10.1007/978-3-
319-46493-0_1 (cit. on p. 16).

[85] Geoffrey Hinton, Oriol Vinyals, and Jeffrey Dean. “Distilling the Knowl-
edge in a Neural Network”. In: NIPS Deep Learning and Representation
Learning Workshop. 2015. url: https://research.google/pubs/pub44873/
(cit. on p. 28).

[86] Fred Hohman, Haekyu Park, Caleb Robinson, and Duen Horng Chau.
“Summit: Scaling Deep Learning Interpretability by Visualizing Activation
and Attribution Summarizations”. In: IEEE Transactions on Visualization and
Computer Graphics (TVCG) (2020) (cit. on p. 31).

[87] Fred Matthew Hohman, Minsuk Kahng, Robert Pienta, and Duen Horng
Chau. “Visual Analytics in Deep Learning: An Interrogative Survey for the
Next Frontiers”. In: IEEE Transactions on Visualization and Computer Graphics
(2019) (cit. on pp. 10, 29, 41, 72, 80, 85, 98).

[88] Benjamin Hoover, Hendrik Strobelt, and Sebastian Gehrmann. “exBERT: A
Visual Analysis Tool to Explore Learned Representations in Transformer
Models”. In: Proceedings of the 58th Annual Meeting of the Association for Com-
putational Linguistics: System Demonstrations. Online: Association for Com-
putational Linguistics, July 2020, pp. 187–196. url: https://aclanthology.
org/2020.acl-demos.22 (cit. on pp. 33, 34).

https://onlinelibrary.wiley.com/doi/full/10.1002/rob.21918 https://onlinelibrary.wiley.com/doi/abs/10.1002/rob.21918 https://onlinelibrary.wiley.com/doi/10.1002/rob.21918
https://onlinelibrary.wiley.com/doi/full/10.1002/rob.21918 https://onlinelibrary.wiley.com/doi/abs/10.1002/rob.21918 https://onlinelibrary.wiley.com/doi/10.1002/rob.21918
https://onlinelibrary.wiley.com/doi/full/10.1002/rob.21918 https://onlinelibrary.wiley.com/doi/abs/10.1002/rob.21918 https://onlinelibrary.wiley.com/doi/10.1002/rob.21918
https://onlinelibrary.wiley.com/doi/full/10.1002/rob.21918 https://onlinelibrary.wiley.com/doi/abs/10.1002/rob.21918 https://onlinelibrary.wiley.com/doi/10.1002/rob.21918
https://link.springer.com/chapter/10.1007/978-3-319-46493-0_1
https://link.springer.com/chapter/10.1007/978-3-319-46493-0_1
https://research.google/pubs/pub44873/
https://aclanthology.org/2020.acl-demos.22
https://aclanthology.org/2020.acl-demos.22

136 bibliography

[89] Zhicheng Huang, Zhaoyang Zeng, Bei Liu, Dongmei Fu, and Jianlong
Fu. “Pixel-bert: Aligning image pixels with text by deep multi-modal
transformers”. In: arXiv preprint arXiv:2004.00849 (2020) (cit. on p. 65).

[90] Drew A Hudson and Christopher D Manning. “Gqa: A new dataset for
real-world visual reasoning and compositional question answering”. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
2019, pp. 6700–6709 (cit. on pp. 45, 46, 56, 58, 65).

[91] Sarthak Jain and Byron C Wallace. “Attention is not Explanation”. In: Pro-
ceedings of the 2019 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies NAACL-HLT.
Ed. by Jill Burstein, Christy Doran, and Thamar Solorio. Association for
Computational Linguistics, 2019, pp. 3543–3556. url: https://doi.org/
10.18653/v1/n19-1357 (cit. on p. 33).

[92] Stephen James, Paul Wohlhart, Mrinal Kalakrishnan, Dmitry Kalashnikov,
Alex Irpan, Julian Ibarz, Sergey Levine, Raia Hadsell, and Konstantinos
Bousmalis. “Sim-to-Real via Sim-to-Sim: Data-efficient Robotic Grasping
via Randomized-to-Canonical Adaptation Networks”. In: Computer Vision
and Pattern Recognition (CVPR). 2019 (cit. on p. 101).

[93] John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Fig-
urnov, Olaf Ronneberger, Kathryn Tunyasuvunakool, Russ Bates, Augustin
Žídek, Anna Potapenko, Alex Bridgland, Clemens Meyer, Simon A. A.
Kohl, Andrew J. Ballard, Andrew Cowie, Bernardino Romera-Paredes,
Stanislav Nikolov, Rishub Jain, Jonas Adler, Trevor Back, Stig Petersen,
David Reiman, Ellen Clancy, Michal Zielinski, Martin Steinegger, Michalina
Pacholska, Tamas Berghammer, Sebastian Bodenstein, David Silver, Oriol
Vinyals, Andrew W. Senior, Koray Kavukcuoglu, Pushmeet Kohli, and
Demis Hassabis. “Highly accurate protein structure prediction with Al-
phaFold”. In: Nature 2021 596:7873 596.7873 (July 2021), pp. 583–589. url:
https://www.nature.com/articles/s41586-021-03819-2 (cit. on p. 2).

[94] Niels Justesen, Philip Bontrager, Julian Togelius, and Sebastian Risi. “Deep
learning for video game playing”. In: IEEE Transactions on Games (2019)
(cit. on p. 75).

[95] Abhishek Kadian, Joanne Truong, Aaron Gokaslan, Alexander Clegg, Erik
Wijmans, Stefan Lee, Manolis Savva, Sonia Chernova, and Dhruv Batra.
“Sim2Real predictivity: Does evaluation in simulation predict real-world
performance?” In: IEEE Robotics and Automation Letters 5.4 (2020), pp. 6670–
6677 (cit. on p. 101).

[96] Daniel Kahneman. Thinking, Fast and Slow. 2013 (cit. on p. 122).

https://doi.org/10.18653/v1/n19-1357
https://doi.org/10.18653/v1/n19-1357
https://www.nature.com/articles/s41586-021-03819-2

bibliography 137

[97] M Kahng, P Y Andrews, A Kalro, and Polo Chau DH. “ACTIVIS: Visual
Exploration of Industry-Scale Deep Neural Network Models.” In: IEEE
Transactions on Visualization and Computer Graphics 24.1 (2017), pp. 88–97

(cit. on p. 31).

[98] Andrej Karpathy. “[CVPR’21 WAD] Keynote”. In: Workshop on Autonomous
Driving, IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
2021. url: https://www.youtube.com/watch?v=g6bOwQdCJrc (cit. on
p. 125).

[99] Andrej Karpathy, Justin Johnson, and Li Fei-Fei. “Visualizing and under-
standing recurrent networks”. In: arXiv preprint arXiv:1506.02078 (2015)
(cit. on p. 79).

[100] Andrej Karpathy, Justin Johnson, and Li Fei-Fei. “Visualizing and Un-
derstanding Recurrent Networks”. In: Workshop track-ICLR. 2016 (cit. on
p. 21).

[101] Daniel Keim, Gennady Andrienko, Jean-Daniel Fekete, Carsten Görg, Jörn
Kohlhammer, and Guy Melançon. “Visual Analytics: Definition, Process,
and Challenges”. In: Information Visualization. Springer Berlin Heidelberg,
2008, pp. 154–175 (cit. on pp. 10, 80).

[102] Daniel A Keim. “Designing Pixel-Oriented Visualization Techniques: The-
ory and Applications”. In: IEEE Transactions on Visualization and Computer
Graphics 6.1 (Jan. 2000), pp. 59–78. url: http://dx.doi.org/10.1109/2945.
841121 (cit. on p. 94).

[103] Michał Kempka, Marek Wydmuch, Grzegorz Runc, Jakub Toczek, and
Wojciech Jaśkowski. “ViZDoom: A Doom-based AI Research Platform
for Visual Reinforcement Learning”. In: IEEE Conference on Computational
Intelligence and Games. IEEE, Sept. 2016, pp. 341–348 (cit. on pp. 73, 75).

[104] Alex Kendall, Matthew Grimes, and Roberto Cipolla. “Posenet: A convolu-
tional network for real-time 6-dof camera relocalization”. In: Proceedings
of the IEEE international conference on computer vision. 2015, pp. 2938–2946

(cit. on p. 100).

[105] Peter Kerpedjiev, Nezar Abdennur, Fritz Lekschas, Chuck McCallum,
Kasper Dinkla, Hendrik Strobelt, Jacob M Luber, Scott B Ouellette, Alaleh
Azhir, Nikhil Kumar, Jeewon Hwang, Soohyun Lee, Burak H Alver, Hanspeter
Pfister, Leonid A Mirny, Peter J Park, and Nils Gehlenborg. “HiGlass: web-
based visual exploration and analysis of genome interaction maps”. In:
Genome Biology 19.1 (Aug. 2018), p. 125. url: https://doi.org/10.1186/
s13059-018-1486-1 (cit. on p. 94).

[106] C Kervadec, T Jaunet, G Antipov, M Baccouche, R Vuillemot, and C Wolf.
“How Transferable are Reasoning Patterns in VQA?” In: CVPR. 2021 (cit. on
pp. 41, 51).

https://www.youtube.com/watch?v=g6bOwQdCJrc
http://dx.doi.org/10.1109/2945.841121
http://dx.doi.org/10.1109/2945.841121
https://doi.org/10.1186/s13059-018-1486-1
https://doi.org/10.1186/s13059-018-1486-1

138 bibliography

[107] Corentin Kervadec, Grigory Antipov, Moez Baccouche, and Christian Wolf.
“Roses Are Red, Violets Are Blue... but Should Vqa Expect Them To?” In:
IEEE Conference on Computer Vision and Pattern Recognition (2021) (cit. on
pp. 40, 47, 48, 54, 60, 64).

[108] Corentin Kervadec, Grigory Antipov, Moez Baccouche, and Christian
Wolf. “Weak Supervision helps Emergence of Word-Object Alignment
and improves Vision-Language Tasks”. In: European Conference on Artificial
Intelligence. 2019 (cit. on p. 48).

[109] Corentin Kervadec, Christian Wolf, Grigory Antipov, Moez Baccouche, and
Madiha Nadri. “Supervising the Transfer of Reasoning Patterns in VQA”.
In: arXiv preprint arXiv:2106.05597 (2021) (cit. on p. 64).

[110] Sana Ullah Khan, Naveed Islam, Zahoor Jan, Ikram Ud Din, and Joel J.P.C.
Rodrigues. “A novel deep learning based framework for the detection
and classification of breast cancer using transfer learning”. In: Pattern
Recognition Letters 125 (July 2019), pp. 1–6 (cit. on pp. 2, 34).

[111] Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin Johnson, Kenji Hata, Joshua
Kravitz, Stephanie Chen, Yannis Kalantidis, Li-Jia Li, David A Shamma,
and others. “Visual genome: Connecting language and vision using crowd-
sourced dense image annotations”. In: International journal of computer vision
123.1 (2017), pp. 32–73 (cit. on p. 45).

[112] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “ImageNet Classi-
fication with Deep Convolutional Neural Networks”. In: Advances in neural
information processing systems (NIPS)). 2012. url: http://code.google.com/
p/cuda-convnet/ (cit. on p. 2).

[113] Carmen Lacave and Francisco J Díez. “A review of explanation methods
for Bayesian networks”. In: The Knowledge Engineering Review 17.2 (2002),
pp. 107–127 (cit. on p. 13).

[114] Guillaume Lample, Devendra Singh Chaplot, Devendra Singh Chaplot,
Devendra Singh Chaplot, and Devendra Singh Chaplot. “Playing FPS
games with deep reinforcement learning”. In: Thirty-First AAAI Conference
on Artificial Intelligence. 2017 (cit. on p. 93).

[115] Sebastian Lapuschkin, Stephan Wäldchen, Alexander Binder, Grégoire
Montavon, Wojciech Samek, and Klaus-Robert Müller. “Unmasking Clever
Hans predictors and assessing what machines really learn”. In: Nature
Communications 2019 10:1 10.1 (Mar. 2019), pp. 1–8. url: https://www.
nature.com/articles/s41467-019-08987-4 (cit. on p. 29).

[116] Y LeCun, B Boser, JS Denker, D Henderson Neural . . ., and undefined
1989. “Backpropagation applied to handwritten zip code recognition”. In:
Neural computation (1989). url: https://ieeexplore.ieee.org/abstract/
document/6795724/ (cit. on pp. 2, 18).

http://code.google.com/p/cuda-convnet/
http://code.google.com/p/cuda-convnet/
https://www.nature.com/articles/s41467-019-08987-4
https://www.nature.com/articles/s41467-019-08987-4
https://ieeexplore.ieee.org/abstract/document/6795724/
https://ieeexplore.ieee.org/abstract/document/6795724/

bibliography 139

[117] Joel Lehman, Jeff Clune, Dusan Misevic, Christoph Adami, Lee Altenberg,
Julie Beaulieu, Peter J Bentley, Samuel Bernard, Guillaume Beslon, David
M Bryson, and others. “The surprising creativity of digital evolution: A
collection of anecdotes from the evolutionary computation and artificial
life research communities”. In: Artificial life 26.2 (2020), pp. 274–306 (cit. on
pp. 4, 72).

[118] Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. “End-to-
End Training of Deep Visuomotor Policies”. In: The Journal of Machine
Learning Research 17.1 (2016) (cit. on p. 75).

[119] Alexander Lex, Nils Gehlenborg, Hendrik Strobelt, Romain Vuillemot,
and Hanspeter Pfister. “UpSet: visualization of intersecting sets”. In: IEEE
transactions on visualization and computer graphics 20.12 (2014), pp. 1983–1992

(cit. on p. 93).

[120] Bo Li, Tara N Sainath, Arun Narayanan, Joe Caroselli, Michiel Bacchiani,
Ananya Misra, Izhak Shafran, Hasim Sak, Golan Punduk, Kean Chin,
Khe Chai Sim, Ron J Weiss, Kevin W Wilson, Ehsan Variani, Chanwoo
Kim, Olivier Siohan, Mitchel Weintraub, Erik Mcdermott, Rick Rose, and
Matt Shannon. “Acoustic Modeling for Google Home”. In: Interspeech. 2017

(cit. on p. 125).

[121] Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui Hsieh, and Kai-Wei
Chang. “What Does BERT with Vision Look At?” In: ACL (short). 2020

(cit. on p. 46).

[122] Mingwei Li, Zhenge Zhao, and Carlos Scheidegger. “Visualizing Neural
Networks with the Grand Tour”. In: Distill 5.3 (Mar. 2020), e25. url: https:
//distill.pub/2020/grand-tour (cit. on pp. 26, 27).

[123] Xiujun Li, Xi Yin, Chunyuan Li, Pengchuan Zhang, Xiaowei Hu, Lei Zhang,
Lijuan Wang, Houdong Hu, Li Dong, Furu Wei, and others. “Oscar: Object-
semantics aligned pre-training for vision-language tasks”. In: European
Conference on Computer Vision. Springer, 2020, pp. 121–137 (cit. on p. 45).

[124] Adam Light and Patrick J Bartlein. “The end of the rainbow? Color schemes
for improved data graphics”. In: Eos, Transactions American Geophysical
Union 85.40 (2004), pp. 385–391. url: www.ColorBrewer.org (cit. on p. 82).

[125] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona,
Deva Ramanan, Piotr Dollár, and C Lawrence Zitnick. “Microsoft coco:
Common objects in context”. In: European conference on computer vision.
Springer, 2014, pp. 740–755 (cit. on p. 45).

[126] Zachary C Lipton. “The Mythos of Model Interpretability: In machine
learning, the concept of interpretability is both important and slippery.”
In: Queue 16.3 (2018), pp. 31–57 (cit. on pp. 13, 26, 28, 46, 72).

https://distill.pub/2020/grand-tour
https://distill.pub/2020/grand-tour
www.ColorBrewer.org

140 bibliography

[127] Mengchen Liu, Shixia Liu, Hang Su, Kelei Cao, and Jun Zhu. “Analyzing
the noise robustness of deep neural networks”. In: 2018 IEEE Conference on
Visual Analytics Science and Technology (VAST). IEEE, 2018, pp. 60–71 (cit. on
p. 97).

[128] Mengchen Liu, Jiaxin Shi, Zhen Li, Chongxuan Li, Jun Zhu, and Shixia Liu.
“Towards better analysis of deep convolutional neural networks”. In: IEEE
transactions on visualization and computer graphics 23.1 (2016), pp. 91–100

(cit. on p. 30).

[129] Jiasen Lu, Dhruv Batra, Devi Parikh, and Stefan Lee. “Vilbert: Pretraining
task-agnostic visiolinguistic representations for vision-and-language tasks”.
In: Advances in Neural Information Processing Systems. 2019, pp. 13–23 (cit. on
pp. 40, 45).

[130] Jiasen Lu, Jianwei Yang, Dhruv Batra, and Devi Parikh. “Hierarchical
question-image co-attention for visual question answering”. In: Proceedings
of the 30th International Conference on Neural Information Processing Systems.
2016, pp. 289–297 (cit. on p. 59).

[131] Y Ma, A Fan, J He, A R Nelakurthi, and R Maciejewski. “A Visual Analytics
Framework for Explaining and Diagnosing Transfer Learning Processes.”
In: IEEE Transactions on Visualization and Computer Graphics (2020) (cit. on
p. 101).

[132] J Macdonald, S Wäldchen, S Hauch arXiv preprint arXiv . . ., and undefined
2019. “A rate-distortion framework for explaining neural network deci-
sions”. In: arxiv.org (). url: https://arxiv.org/abs/1905.11092 (cit. on
p. 71).

[133] Varun Manjunatha, Nirat Saini, and Larry S Davis. “Explicit bias discovery
in visual question answering models”. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition. 2019, pp. 9562–9571 (cit. on
pp. 40, 47).

[134] Warren S. McCulloch and Walter Pitts. “A logical calculus of the ideas
immanent in nervous activity”. In: The bulletin of mathematical biophysics
1943 5:4 5.4 (Dec. 1943), pp. 115–133. url: https://link.springer.com/
article/10.1007/BF02478259 (cit. on p. 2).

[135] Leland McInnes, John Healy, and James Melville. “Umap: Uniform man-
ifold approximation and projection for dimension reduction”. In: arXiv
preprint arXiv:1802.03426 (2018) (cit. on pp. 25, 98, 105).

[136] Bhairav Mehta, Manfred Diaz, Florian Golemo, Christopher J Pal, and Liam
Paull. “Active domain randomization”. In: Conference on Robot Learning.
PMLR, 2020, pp. 1162–1176 (cit. on pp. 23, 24, 97).

https://arxiv.org/abs/1905.11092
https://link.springer.com/article/10.1007/BF02478259
https://link.springer.com/article/10.1007/BF02478259

bibliography 141

[137] William van Melle, Edward H Shortliffe, and Bruce G Buchanan. “EMYCIN:
A knowledge engineer’s tool for constructing rule-based expert systems”.
In: Rule-based expert systems: The MYCIN experiments of the Stanford Heuristic
Programming Project (1984), pp. 302–313 (cit. on pp. 1, 13).

[138] Sachit Menon, Alexandru Damian, Shijia Hu, Nikhil Ravi, and Cynthia
Rudin. “Pulse: Self-supervised photo upsampling via latent space explo-
ration of generative models”. In: Proceedings of the ieee/cvf conference on
computer vision and pattern recognition. 2020, pp. 2437–2445 (cit. on pp. 3, 4).

[139] Anton Mikhailov. Turbo, An Improved Rainbow Colormap for Visualization.
2019. url: https://ai.googleblog.com/2019/08/turbo- improved-
rainbow-colormap-for.html (cit. on p. 105).

[140] Tim Miller. “Explanation in artificial intelligence: Insights from the social
sciences”. In: Artificial Intelligence 267 (Feb. 2019), pp. 1–38 (cit. on p. 16).

[141] Yao Ming, Shaozu Cao, Ruixiang Zhang, Zhen Li, Yuanzhe Chen, Yangqiu
Song, and Huamin Qu. “Understanding Hidden Memories of Recurrent
Neural Networks”. In: IEEE Conference on Visual Analytics Science and Tech-
nology (VAST) (Oct. 2017), pp. 13–24 (cit. on p. 32).

[142] Piotr Mirowski, Razvan Pascanu, Fabio Viola, Hubert Soyer, Andrew J
Ballard, Andrea Banino, Misha Denil, Ross Goroshin, Laurent Sifre, Koray
Kavukcuoglu, others, Dharshan Kumaran, Raia Hadsell, others, Dharshan
Kumaran, and Raia Hadsell. “Learning to Navigate in Complex Environ-
ments”. In: 5th International Conference on Learning Representations, {ICLR}
2017. 2017 (cit. on pp. 75–77).

[143] Brent Mittelstadt, Chris Russell, and Sandra Wachter. “Explaining explana-
tions in AI”. In: FAT* 2019 - Proceedings of the 2019 Conference on Fairness,
Accountability, and Transparency. Association for Computing Machinery, Inc,
Jan. 2019, pp. 279–288 (cit. on p. 16).

[144] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin Riedmiller. “Playing Atari with
Deep Reinforcement Learning”. In: arXiv:1312.5602 [cs] (Dec. 2013) (cit. on
p. 75).

[145] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel
Veness, Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K
Fidjeland, Georg Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik,
Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wierstra,
Shane Legg, and Demis Hassabis. “Human-level control through deep
reinforcement learning”. In: Nature 518.7540 (2015) (cit. on pp. 2, 71, 75,
76).

https://ai.googleblog.com/2019/08/turbo-improved-rainbow-colormap-for.html
https://ai.googleblog.com/2019/08/turbo-improved-rainbow-colormap-for.html

142 bibliography

[146] Volodymyr Mnih, Adrià Puigdomènech Badia, Mehdi Mirza, Alex Graves,
Tim Harley, Timothy P Lillicrap, David Silver, and Koray Kavukcuoglu.
Asynchronous Methods for Deep Reinforcement Learning. Tech. rep. 2016 (cit.
on pp. 75, 77, 86).

[147] Grégoire Montavon, Wojciech Samek, and Klaus-Robert Müller. “Methods
for Interpreting and Understanding Deep Neural Networks”. In: Digital
Signal Processing (2017). url: https://arxiv.org/pdf/1706.07979.pdf
(cit. on p. 16).

[148] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard.
“Deepfool: a simple and accurate method to fool deep neural networks”. In:
Proceedings of the IEEE conference on computer vision and pattern recognition.
2016, pp. 2574–2582 (cit. on p. 97).

[149] A Mordvintsev, C Olah, and M Tyka. “Inceptionism: Going deeper into neu-
ral networks”. In: (2015). url: https://research.google/pubs/pub45507/
(cit. on p. 23).

[150] Adithyavairavan Murali, Tao Chen, Kalyan Vasudev Alwala, Dhiraj Gandhi,
and Lerrel Pinto Saurabh Gupta Abhinav Gupta. “PyRobot: An Open-
source Robotics Framework for Research and Benchmarking”. In: arXiv
preprint arXiv:1906.08236 (). url: https://www.pyrobot.org (cit. on pp. 99,
100).

[151] Anh Nguyen, Alexey Dosovitskiy, Jason Yosinski, Thomas Brox, and Jeff
Clune. Synthesizing the preferred inputs for neurons in neural networks via deep
generator networks. 2016 (cit. on p. 24).

[152] Andrew P. Norton and Yanjun Qi. “Adversarial-Playground: A visualiza-
tion suite showing how adversarial examples fool deep learning”. In: 2017
IEEE Symposium on Visualization for Cyber Security, VizSec 2017 2017-October
(Oct. 2017), pp. 1–4 (cit. on p. 34).

[153] Fabian Offert. “"I know it when I see it". Visualization and Intuitive In-
terpretability”. In: Proceedings of NIPS Symposium on Interpretable Machine
Learning. Nov. 2017. url: https://arxiv.org/abs/1711.08042v2 (cit. on
p. 6).

[154] Junhyuk Oh, Valliappa Chockalingam, Satinder Singh, and Honglak Lee.
“Control of Memory, Active Perception, and Action in Minecraft”. In: (May
2016) (cit. on p. 75).

[155] Chris Olah and Shan Carter. “Attention and Augmented Recurrent Neural
Networks”. In: Distill (2016). url: http://distill.pub/2016/augmented-
rnns (cit. on p. 22).

[156] Chris Olah, Alexander Mordvintsev, and Ludwig Schubert. “Feature Vi-
sualization”. In: Distill 2.11 (Nov. 2017), e7. url: https://distill.pub/
2017/feature-visualization (cit. on p. 23).

https://arxiv.org/pdf/1706.07979.pdf
https://research.google/pubs/pub45507/
https://www.pyrobot.org
https://arxiv.org/abs/1711.08042v2
http://distill.pub/2016/augmented-rnns
http://distill.pub/2016/augmented-rnns
https://distill.pub/2017/feature-visualization
https://distill.pub/2017/feature-visualization

bibliography 143

[157] Chris Olah, Arvind Satyanarayan, Ian Johnson, Shan Carter, Ludwig Schu-
bert, Katherine Ye, and Alexander Mordvintsev. “The Building Blocks of
Interpretability”. In: Distill (2018) (cit. on p. 72).

[158] OpenAI Microscope. url: https://microscope.openai.com/models (cit. on
p. 31).

[159] E Parisotto and R Salakhutdinov. “Neural Map: Structured Memory for
Deep Reinforcement Learning”. In: ICLR (2018) (cit. on p. 71).

[160] Parliament and C. of the European Union. General data protection regulation.
2016 (cit. on p. 3).

[161] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward
Yang, Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and
Adam Lerer. “Automatic differentiation in PyTorch”. In: (2017) (cit. on
p. 84).

[162] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury,
Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito,
Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu
Fang, Junjie Bai, and Soumith Chintala. “PyTorch: An Imperative Style,
High-Performance Deep Learning Library”. In: Advances in Neural Infor-
mation Processing Systems 32. Curran Associates, Inc., 2019, pp. 8024–8035

(cit. on pp. 58, 104).

[163] Adam Pearce. Hidden Bias. 2020 (cit. on p. 34).

[164] Adam Pearce. Measuring Fairness. 2020 (cit. on p. 34).

[165] Aayush Prakash, Shaad Boochoon, Mark Brophy, David Acuna, Eric Camer-
acci, Gavriel State, Omer Shapira, and Stan Birchfield. “Structured domain
randomization: Bridging the reality gap by context-aware synthetic data”.
In: Proceedings - IEEE International Conference on Robotics and Automation.
Vol. 2019-May. Institute of Electrical and Electronics Engineers Inc., May
2019, pp. 7249–7255 (cit. on p. 101).

[166] Marcelo O.R. Prates, Pedro H. Avelar, and Luís C. Lamb. “Assessing gender
bias in machine translation: a case study with Google Translate”. In: Neural
Computing and Applications 32.10 (May 2020), pp. 6363–6381 (cit. on p. 3).

[167] Thomas Preusse. Interactive Convolutional Neural Network. url: https :
//observablehq.com/@tpreusse/interactive-convolutional-neural-
network (cit. on p. 34).

https://microscope.openai.com/models
https://observablehq.com/@tpreusse/interactive-convolutional-neural-network
https://observablehq.com/@tpreusse/interactive-convolutional-neural-network
https://observablehq.com/@tpreusse/interactive-convolutional-neural-network

144 bibliography

[168] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel
Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin,
Jack Clark, Gretchen Krueger, and Ilya Sutskever. “Learning Transferable
Visual Models From Natural Language Supervision”. In: ArXiv 2103.00020
(2021). url: https://github.com/OpenAI/CLIP. (cit. on p. 4).

[169] Hubert Ramsauer, Bernhard Schäfl, Johannes Lehner, Philipp Seidl, Michael
Widrich, Lukas Gruber, Markus Holzleitner, Milena Pavlović, Geir Kjetil
Sandve, Victor Greiff, and others. “Hopfield networks is all you need”. In:
arXiv preprint arXiv:2008.02217 (2020) (cit. on pp. 54, 55).

[170] Paulo E Rauber, Samuel G Fadel, Alexandre X Falcao, and Alexandru C
Telea. “Visualizing the hidden activity of artificial neural networks”. In:
IEEE transactions on visualization and computer graphics 23.1 (2016), pp. 101–
110 (cit. on p. 27).

[171] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. “Faster R-CNN:
Towards Real-Time Object Detection with Region Proposal Networks”. In:
Advances in Neural Information Processing Systems. Ed. by C Cortes, N D
Lawrence, D D Lee, M Sugiyama, and R Garnett. 2015, pp. 91–99 (cit. on
p. 49).

[172] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. “Why should i
trust you?: Explaining the predictions of any classifier”. In: Proceedings of
the 22nd ACM SIGKDD international conference on knowledge discovery and
data mining. ACM, 2016, pp. 1135–1144 (cit. on pp. 5, 14, 28, 29, 72).

[173] Samuel Ritter, David G T Barrett, Adam Santoro, and Matt M Botvinick.
“Cognitive Psychology for Deep Neural Networks: A Shape Bias Case
Study”. In: ICML’17: Proceedings of the 34th International Conference on Ma-
chine Learning. 2017 (cit. on p. 123).

[174] R Roscher, B Bohn, MF Duarte, J Garcke Ieee Access, and undefined
2020. “Explainable machine learning for scientific insights and discoveries”.
In: ieee Access (2020). url: https://ieeexplore.ieee.org/abstract/
document/9007737/ (cit. on p. 15).

[175] Cynthia Rudin. “Stop explaining black box machine learning models for
high stakes decisions and use interpretable models instead”. In: Nature
Machine Intelligence 2019 1:5 1.5 (May 2019), pp. 206–215. url: https :
//www.nature.com/articles/s42256-019-0048-x (cit. on p. 15).

[176] Alexander M Rush, Sumit Chopra, and Jason Weston. “A Neural Attention
Model for Sentence Summarization”. In: Conference on Empirical Methods in
Natural Language. Association for Computational Linguistics, 2015 (cit. on
p. 22).

https://github.com/OpenAI/CLIP.
https://ieeexplore.ieee.org/abstract/document/9007737/
https://ieeexplore.ieee.org/abstract/document/9007737/
https://www.nature.com/articles/s42256-019-0048-x
https://www.nature.com/articles/s42256-019-0048-x

bibliography 145

[177] Andrei A Rusu, Matej Večerík, Thomas Rothörl, Nicolas Heess, Razvan
Pascanu, and Raia Hadsell. “Sim-to-real robot learning from pixels with
progressive nets”. In: Conference on Robot Learning. PMLR, 2017, pp. 262–270

(cit. on p. 101).

[178] Sergio Salomón, Cristina Tîrnăucă, Sergio Salomón, and Cristina Tîrnăucă.
“Human Activity Recognition through Weighted Finite Automata”. In:
Proceedings 2.19 (Oct. 2018), p. 1263 (cit. on p. 92).

[179] Giovanni Sartor. The impact of the General Data Protection Regulation (GDPR)
on artificial intelligence | Think Tank | European Parliament. url: https://www.
europarl.europa.eu/thinktank/en/document/EPRS_STU(2020)641530
(cit. on p. 3).

[180] Manolis Savva, Abhishek Kadian, Oleksandr Maksymets, Yili Zhao, Erik
Wijmans, Bhavana Jain, Julian Straub, Jia Liu, Vladlen Koltun, Jitendra
Malik, Devi Parikh, and Dhruv Batra. Habitat: A Platform for Embodied AI
Research. Apr. 2019 (cit. on pp. 94, 99, 101).

[181] Udo Schlegel, Hiba Arnout, Mennatallah El-Assady, Daniela Oelke, and
Daniel A. Keim. “Towards a rigorous evaluation of XAI methods on time
series”. In: Proceedings - 2019 International Conference on Computer Vision
Workshop, ICCVW 2019 (Oct. 2019), pp. 4197–4201 (cit. on p. 123).

[182] Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna
Vedantam, Devi Parikh, and Dhruv Batra. “Grad-cam: Visual explanations
from deep networks via gradient-based localization”. In: Proceedings of the
IEEE international conference on computer vision. 2017, pp. 618–626 (cit. on
pp. 23–25, 107).

[183] Ramprasaath R Selvaraju, Stefan Lee, Yilin Shen, Hongxia Jin, Shalini
Ghosh, Larry Heck, Dhruv Batra, and Devi Parikh. “Taking a hint: Lever-
aging explanations to make vision and language models more grounded”.
In: Proceedings of the IEEE International Conference on Computer Vision. 2019,
pp. 2591–2600 (cit. on p. 79).

[184] Ben Shneiderman. The eyes have it: A task by data type taxonomy for information
visualizations (cit. on p. 53).

[185] Robik Shrestha, Kushal Kafle, and Christopher Kanan. “A negative case
analysis of visual grounding methods for VQA”. In: arXiv preprint arXiv:2004.05704
(2020) (cit. on p. 47).

[186] D Silver, J Schrittwieser, K Simonyan, I Antonoglou, A Huang, A Guez,
T Hubert, L Baker, M Lai, A Bolton, Y Chen, T Lillicrap, F Hui, L Sifre,
G van den Driessche, T Graepel, and D Hassabis. “Mastering the game of
Go without human knowledge”. In: Nature (2017) (cit. on pp. 2, 71, 75).

https://www.europarl.europa.eu/thinktank/en/document/EPRS_STU(2020)641530
https://www.europarl.europa.eu/thinktank/en/document/EPRS_STU(2020)641530

146 bibliography

[187] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. “Deep in-
side convolutional networks: Visualising image classification models and
saliency maps”. In: 2nd International Conference on Learning Representations,
ICLR - Workshop Track Proceedings. International Conference on Learning
Representations, ICLR, 2014 (cit. on p. 22).

[188] Daniel Smilkov, Shan Carter, D. Sculley, Fernanda B. Viégas, and Martin
Wattenberg. “Direct-Manipulation Visualization of Deep Networks”. In:
Aug. 2017. url: https://arxiv.org/abs/1708.03788v1 (cit. on p. 34).

[189] Kacper Sokol and Peter Flach. “One Explanation Does Not Fit All”. In:
KI - Künstliche Intelligenz 2020 34:2 34.2 (Feb. 2020), pp. 235–250. url:
https://link-springer-com.docelec.insa-lyon.fr/article/10.1007/
s13218-020-00637-y (cit. on pp. 6, 29).

[190] Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, and Martin
Riedmiller. “Striving for Simplicity: The All Convolutional Net”. In: (Dec.
2014) (cit. on pp. 19, 22, 23, 81).

[191] Stefan Wojcik Emma Remy and Chris Baronavski. “How Does a Computer
"See" Gender?” In: Proceedings of the Workshop on Visualization for AI explain-
ability (VISxAI). 2020. url: https://www.pewresearch.org/interactives/
how-does-a-computer-see-gender/ (cit. on p. 35).

[192] Gregor Stiglic, Primoz Kocbek, Nino Fijacko, Marinka Zitnik, Katrien Ver-
bert, and Leona Cilar. “Interpretability of machine learning-based predic-
tion models in healthcare”. In: Wiley Interdisciplinary Reviews: Data Mining
and Knowledge Discovery 10.5 (2020), e1379 (cit. on p. 27).

[193] H. Strobelt, S. Gehrmann, H. Pfister, and A. M. Rush. “LSTMVis: A Tool for
Visual Analysis of Hidden State Dynamics in Recurrent Neural Networks”.
In: IEEE Transactions on Visualization and Computer Graphics 24.1 (Jan. 2017),
pp. 667–676 (cit. on pp. 32, 72, 92, 98).

[194] Hendrik Strobelt, Sebastian Gehrmann, Michael Behrisch, Adam Perer,
Hanspeter Pfister, and Alexander M Rush. “Seq2seq-vis: A visual de-
bugging tool for sequence-to-sequence models”. In: IEEE transactions on
visualization and computer graphics 25.1 (2018), pp. 353–363 (cit. on pp. 32,
55).

[195] Pascal Sturmfels, Scott Lundberg, and Su-In Lee. “Visualizing the Impact
of Feature Attribution Baselines”. In: Distill 5.1 (Jan. 2020), e22. url: https:
//distill.pub/2020/attribution-baselines (cit. on p. 23).

[196] Weijie Su, Xizhou Zhu, Yue Cao, Bin Li, Lewei Lu, Furu Wei, and Jifeng
Dai. “Vl-bert: Pre-training of generic visual-linguistic representations”. In:
arXiv preprint arXiv:1908.08530 (2019) (cit. on pp. 45, 65).

https://arxiv.org/abs/1708.03788v1
https://link-springer-com.docelec.insa-lyon.fr/article/10.1007/s13218-020-00637-y
https://link-springer-com.docelec.insa-lyon.fr/article/10.1007/s13218-020-00637-y
https://www.pewresearch.org/interactives/how-does-a-computer-see-gender/
https://www.pewresearch.org/interactives/how-does-a-computer-see-gender/
https://distill.pub/2020/attribution-baselines
https://distill.pub/2020/attribution-baselines

bibliography 147

[197] Alessandro Suglia, Qiaozi Gao, Jesse Thomason, Govind Thattai, and
Gaurav Sukhatme. “Embodied bert: A transformer model for embodied,
language-guided visual task completion”. In: arXiv preprint arXiv:2108.04927
(2021) (cit. on p. 125).

[198] Pei Sun, Henrik Kretzschmar, Xerxes Dotiwalla, Aurélien Chouard, Vi-
jaysai Patnaik, Paul Tsui, James Guo, Yin Zhou, Yuning Chai, Benjamin
Caine, Vijay Vasudevan, Wei Han, Jiquan Ngiam, Hang Zhao, Aleksei Tim-
ofeev, Scott Ettinger, Maxim Krivokon, Amy Gao, Aditya Joshi, Yu Zhang,
Jonathon Shlens, Zhifeng Chen, and Dragomir Anguelov. “Scalability in
Perception for Autonomous Driving: Waymo Open Dataset”. In: In Pro-
ceedings of the IEEE/CVF conference on computer vision and pattern recognition.
2020. url: http://www.waymo.com/open. (cit. on p. 125).

[199] Mukund Sundararajan, Ankur Taly, and Qiqi Yan. “Axiomatic Attribution
for Deep Networks”. In: Proceedings of the 34th International Conference
on Machine Learning. PMLR, July 2017, pp. 3319–3328. url: https : / /
proceedings.mlr.press/v70/sundararajan17a.html (cit. on p. 23).

[200] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduc-
tion. 2018 (cit. on p. 71).

[201] Róbert Szabó, Dániel Katona, Márton Csillag, Adrián Csiszárik, and Dániel
Varga. “Visualizing Transfer Learning”. In: arXiv preprint arXiv:2007.07628
(2020) (cit. on p. 101).

[202] Hao Hao Tan and Mohit Bansal. “LXMERT: Learning Cross-Modality
Encoder Representations from Transformers”. In: Empirical Methods in
Natural Language Processing. 2019 (cit. on pp. 38, 40, 43–45, 48).

[203] Sarah Tan. “Interpretable Approaches to Detect Bias in Black-Box Models”.
In: Proceedings of the 2018 AAAI/ACM Conference on AI, Ethics, and Society.
AIES ’18. New York, NY, USA: Association for Computing Machinery, 2018,
pp. 382–383. url: https://doi.org/10.1145/3278721.3278802 (cit. on
p. 27).

[204] Anthony Tang, Saul Greenberg, and Sidney Fels. “Exploring video streams
using slit-tear visualizations”. In: CHI’09 Extended Abstracts on Human
Factors in Computing Systems. ACM, 2009, pp. 3509–3510 (cit. on p. 93).

[205] Damien Teney, Kushal Kafle, Robik Shrestha, Ehsan Abbasnejad, Christo-
pher Kanan, and Anton van den Hengel. “On the Value of Out-of-Distribution
Testing: An Example of Goodhart’s Law”. In: arXiv preprint arXiv:2005.09241
(2020) (cit. on p. 47).

http://www.waymo.com/open.
https://proceedings.mlr.press/v70/sundararajan17a.html
https://proceedings.mlr.press/v70/sundararajan17a.html
https://doi.org/10.1145/3278721.3278802

148 bibliography

[206] Ian Tenney, James Wexler, Jasmijn Bastings, Tolga Bolukbasi, Andy Coenen,
Sebastian Gehrmann, Ellen Jiang, Mahima Pushkarna, Carey Radebaugh,
Emily Reif, and Ann Yuan. The Language Interpretability Tool: Extensible,
Interactive Visualizations and Analysis for NLP Models. 2020. url: https:
//www.aclweb.org/anthology/2020.emnlp-demos.15 (cit. on p. 33).

[207] TensorBoard | TensorFlow. url: https://www.tensorflow.org/tensorboard?
hl=fr (cit. on p. 120).

[208] TensorSpace.js. url: https://tensorspace.org/ (cit. on p. 34).

[209] Tesla Autopilot Faces U.S. Inquiry After Series of Crashes - The New York
Times. url: https://www.nytimes.com/2021/08/16/business/tesla-
autopilot-nhtsa.html (cit. on p. 3).

[210] The 16 Alexa-related papers at this year’s Interspeech - Amazon Science. url:
https://www.amazon.science/blog/the-16-alexa-related-papers-at-
this-years-interspeech (cit. on p. 125).

[211] The Cube Rule. url: https://cuberule.com/ (cit. on p. vii).

[212] Tijmen Tieleman and Geoffrey Hinton. “Lecture 6.5-rmsprop: Divide the
gradient by a running average of its recent magnitude”. In: COURSERA:
Neural networks for machine learning 4.2 (2012), pp. 26–31 (cit. on p. 77).

[213] Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba,
and Pieter Abbeel. “Domain randomization for transferring deep neural
networks from simulation to the real world”. In: 2017 IEEE/RSJ international
conference on intelligent robots and systems (IROS). IEEE, 2017, pp. 23–30

(cit. on pp. 97, 101).

[214] Jonathan Tremblay, Aayush Prakash, David Acuna, Mark Brophy, Varun
Jampani, Cem Anil, Thang To, Eric Cameracci, Shaad Boochoon, and
Stan Birchfield. “Training Deep Networks With Synthetic Data: Bridging
the Reality Gap by Domain Randomization”. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR) Workshops.
June 2018 (cit. on p. 101).

[215] Eric Tzeng, Coline Devin, Judy Hoffman, Chelsea Finn, Pieter Abbeel,
Sergey Levine, Kate Saenko, and Trevor Darrell. “Adapting deep visuo-
motor representations with weak pairwise constraints”. In: Algorithmic
Foundations of Robotics XII. Springer, 2020, pp. 688–703 (cit. on p. 101).

[216] Eric Tzeng, Judy Hoffman, Kate Saenko, and Trevor Darrell. “Adversarial
discriminative domain adaptation”. In: Proceedings of the IEEE conference on
computer vision and pattern recognition. 2017, pp. 7167–7176 (cit. on pp. 97,
101).

https://www.aclweb.org/anthology/2020.emnlp-demos.15
https://www.aclweb.org/anthology/2020.emnlp-demos.15
https://www.tensorflow.org/tensorboard?hl=fr
https://www.tensorflow.org/tensorboard?hl=fr
https://tensorspace.org/
https://www.nytimes.com/2021/08/16/business/tesla-autopilot-nhtsa.html
https://www.nytimes.com/2021/08/16/business/tesla-autopilot-nhtsa.html
https://www.amazon.science/blog/the-16-alexa-related-papers-at-this-years-interspeech
https://www.amazon.science/blog/the-16-alexa-related-papers-at-this-years-interspeech
https://cuberule.com/

bibliography 149

[217] F-Y Tzeng and K-L Ma. “Opening the black box-data driven visualization
of neural networks”. In: VIS 05. IEEE Visualization, 2005. IEEE, 2005, pp. 383–
390 (cit. on p. 14).

[218] Laurens Van Der Maaten and Geoffrey Hinton. “Visualizing Data using
t-SNE”. In: Journal of Machine Learning Research 9 (2008), pp. 2579–2605

(cit. on pp. 25, 76, 81).

[219] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Kaiser, and Illia Polosukhin. “Attention is all you need”.
In: Advances in neural information processing systems. 2017, pp. 5998–6008

(cit. on pp. 22, 33, 34, 40, 42, 43).

[220] Jesse Vig. “A multiscale visualization of attention in the transformer
model”. In: arXiv preprint arXiv:1906.05714 (2019) (cit. on pp. 33, 55).

[221] Oriol Vinyals, Igor Babuschkin, Wojciech M. Czarnecki, Michaël Math-
ieu, Andrew Dudzik, Junyoung Chung, David H. Choi, Richard Powell,
Timo Ewalds, Petko Georgiev, Junhyuk Oh, Dan Horgan, Manuel Kroiss,
Ivo Danihelka, Aja Huang, Laurent Sifre, Trevor Cai, John P. Agapiou,
Max Jaderberg, Alexander S. Vezhnevets, Rémi Leblond, Tobias Pohlen,
Valentin Dalibard, David Budden, Yury Sulsky, James Molloy, Tom L. Paine,
Caglar Gulcehre, Ziyu Wang, Tobias Pfaff, Yuhuai Wu, Roman Ring, Dani
Yogatama, Dario Wünsch, Katrina McKinney, Oliver Smith, Tom Schaul,
Timothy Lillicrap, Koray Kavukcuoglu, Demis Hassabis, Chris Apps, and
David Silver. “Grandmaster level in StarCraft II using multi-agent reinforce-
ment learning”. In: Nature 2019 575:7782 575.7782 (Oct. 2019), pp. 350–354.
url: https://www.nature.com/articles/s41586-019-1724-z (cit. on
p. 2).

[222] Elena Voita, David Talbot, Fedor Moiseev, Rico Sennrich, and Ivan Titov.
“Analyzing Multi-Head Self-Attention: Specialized Heads Do the Heavy
Lifting, the Rest Can Be Pruned”. In: Proceedings of the 57th Annual Meeting
of the Association for Computational Linguistics. 2019, pp. 5797–5808 (cit. on
pp. 43, 64).

[223] Chelsea Voss, Nick Cammarata, Gabriel Goh, Michael Petrov, Ludwig
Schubert, Ben Egan, Swee Kiat Lim, and Chris Olah. “Visualizing Weights”.
In: Distill 6.2 (Feb. 2021), e00024.007. url: https://distill.pub/2020/
circuits/visualizing-weights (cit. on p. 14).

[224] Emily Wall, Leslie M. Blaha, Lyndsey Franklin, and Alex Endert. “Warning,
Bias May Occur: A Proposed Approach to Detecting Cognitive Bias in
Interactive Visual Analytics”. In: 2017 IEEE Conference on Visual Analytics
Science and Technology, VAST 2017 - Proceedings (Dec. 2018), pp. 104–115

(cit. on p. 123).

https://www.nature.com/articles/s41586-019-1724-z
https://distill.pub/2020/circuits/visualizing-weights
https://distill.pub/2020/circuits/visualizing-weights

150 bibliography

[225] Emily Wall, Arpit Narechania, Adam Coscia, Jamal Paden, and Alex Endert.
“Left, Right, and Gender: Exploring Interaction Traces to Mitigate Human
Biases”. In: IEEE Transactions on Visualization and Computer Graphics 28.1
(Jan. 2022), pp. 966–975 (cit. on p. 123).

[226] Emily Wall, John Stasko, and Alex Endert. “Toward a Design Space for
Mitigating Cognitive Bias in Vis”. In: 2019 IEEE Visualization Conference,
VIS 2019 (Oct. 2019), pp. 111–115 (cit. on p. 123).

[227] Junpeng Wang, Liang Gou, Han-Wei Shen, and Hao Yang. “Dqnviz: A
visual analytics approach to understand deep q-networks”. In: IEEE trans-
actions on visualization and computer graphics 25.1 (2018), pp. 288–298 (cit. on
pp. 76, 93).

[228] X Wang, R Girshick, A Gupta, and K He. “Non-local Neural Networks”.
In: CVPR. 2018 (cit. on p. 40).

[229] Zhiguang Wang and Jianbo Yang. “Diabetic retinopathy detection via
deep convolutional networks for discriminative localization and visual
explanation”. In: arXiv preprint arXiv:1703.10757 (2017) (cit. on p. 107).

[230] Zijie J Wang, Robert Turko, Omar Shaikh, Haekyu Park, Nilaksh Das,
Fred Hohman, Minsuk Kahng, and Duen Horng Chau. “CNN Explainer:
Learning Convolutional Neural Networks with Interactive Visualization”.
In: IEEE Conference on Visual Analytics Science and Technology (VAST) (2020)
(cit. on p. 34).

[231] Sarah Wiegreffe and Yuval Pinter. “Attention is not not explanation”. In:
EMNLP-IJCNLP 2019 - 2019 Conference on Empirical Methods in Natural
Language Processing and 9th International Joint Conference on Natural Language
Processing, Proceedings of the Conference (2020), pp. 11–20. url: http://bit.
(cit. on p. 33).

[232] Kanit Wongsuphasawat, Daniel Smilkov, James Wexler, Jimbo Wilson,
Man´ Mané, Doug Fritz, Dilip Krishnan, Fernanda B Ví, and Martin
Wattenberg. “Visualizing Dataflow Graphs of Deep Learning Models in
TensorFlow”. In: IEEE transactions on visualization and computer graphics
(2017) (cit. on pp. 14, 31, 120).

[233] Krist Wongsuphasawat, John Alexis Guerra Gómez, Catherine Plaisant,
Taowei David Wang, Ben Shneiderman, and Meirav Taieb-Maimon. Life-
Flow: Visualizing an Overview of Event Sequences. 2011 (cit. on p. 92).

[234] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad
Norouzi, Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus
Macherey, and others. “Google’s neural machine translation system: Bridg-
ing the gap between human and machine translation”. In: arXiv preprint
arXiv:1609.08144 (2016) (cit. on p. 42).

http://bit.

bibliography 151

[235] B Yamauchi. “A frontier-based approach for autonomous exploration”. In:
Symposium on Computational Intelligence in Robotics and Automation. 1997

(cit. on p. 71).

[236] Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. “How trans-
ferable are features in deep neural networks?” In: NIPS. 2014 (cit. on
p. 51).

[237] Jason Yosinski, Jeff Clune, Anh Nguyen, Thomas Fuchs, and Hod Lip-
son. “Understanding Neural Networks Through Deep Visualization”. In:
arXiv:1506.06579 [cs] (June 2015) (cit. on p. 30).

[238] Zhou Yu, Jun Yu, Yuhao Cui, Dacheng Tao, and Qi Tian. “Deep Modular Co-
Attention Networks for Visual Question Answering”. In: IEEE Conference
on Computer Vision and Pattern Recognition. 2019 (cit. on pp. 40, 42).

[239] Tom Zahavy, Nir Ben Zrihem, Shie Mannor, Nir Ben-Zrihem, Shie Mannor,
Nir Ben Zrihem, Shie Mannor, Nir Ben-Zrihem, Shie Mannor, Nir Ben
Zrihem, and Shie Mannor. “Graying the black box: Understanding dqns”.
In: International Conference on Machine Learning. Feb. 2016, pp. 1899–1908

(cit. on p. 76).

[240] Matthew D Zeiler and Rob Fergus. “Visualizing and understanding con-
volutional networks”. In: European conference on computer vision. Springer,
2014, pp. 818–833 (cit. on pp. 20, 21, 29, 31, 108, 119).

[241] Pengchuan Zhang, Xiujun Li, Xiaowei Hu, Jianwei Yang, Lei Zhang, Lijuan
Wang, Yejin Choi, and Jianfeng Gao. “Vinvl: Revisiting visual representa-
tions in vision-language models”. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. 2021, pp. 5579–5588 (cit. on
p. 65).

[242] H Zhao, J Jia, and V Koltun. “Exploring Self-attention for Image Recogni-
tion”. In: CVPR. 2020 (cit. on p. 40).

[243] Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio
Torralba. “Learning deep features for discriminative localization”. In: Pro-
ceedings of the IEEE conference on computer vision and pattern recognition. 2016,
pp. 2921–2929 (cit. on p. 79).

[244] Bolei Zhou, Aditya Khosla, Àgata Lapedriza, Aude Oliva, and Antonio
Torralba. “Object Detectors Emerge in Deep Scene CNNs.” In: International
Conference on Learning Representations (ICLR). Jan. 2015 (cit. on p. 19).

[245] Fengda Zhu, Linchao Zhu, and Yi Yang. “Sim-real joint reinforcement
transfer for 3d indoor navigation”. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. 2019, pp. 11388–11397 (cit. on
p. 101).

152 bibliography

[246] Yuke Zhu, Roozbeh Mottaghi, Eric Kolve, Joseph J Lim, Abhinav Gupta,
Li Fei-Fei, and Ali Farhadi. “Target-driven Visual Navigation in Indoor
Scenes using Deep Reinforcement Learning”. In: 2017 IEEE international
conference on robotics and automation (ICRA). 2017, pp. 3357–3364 (cit. on
pp. 75, 125).

	Abstract
	Abstract
	Resume

	Résumé
	Acknowledgments

	-0.3cmRemerciements0.35cm
	Contents

	Contents
	List of Figures

	List of Figures
	List of Tables

	List of Tables
	Acronyms
	1 Introduction
	1.1 Robotics Task: "Where are my keys"
	1.2 Visual Analytics for Model Interpretability
	1.3 Thesis Overview

	2 Related Work
	2.1 Definitions
	2.1.1 Visual Analytics
	2.1.2 Deep Neural Networks
	2.1.3 Interpretability
	2.1.4 Interpretability Vs. Explainability
	2.1.5 Explanations

	2.2 Building Blocks of DNN Interpretability
	2.2.1 Activations of Neurons
	2.2.2 Visualization with Gradients
	2.2.3 Inner Representation of Data
	2.2.4 Model-Agnostic Methods

	2.3 Leveraging Building Blocks in Visual Analytics
	2.3.1 Interactive Activations
	2.3.2 Sequential Activations and Gradients
	2.3.3 Interacting with Models for Non-experts
	2.3.4 Interpretable Visual Analytics Throughout this Manuscript

	3 Visual Question Answering
	3.1 Introduction
	3.2 Background
	3.2.1 Transformers and Attention
	3.2.2 Vision-Language (VL)-Transformers

	3.3 Related Work
	3.3.1 Interpretability of VQA
	3.3.2 Bias Reduction in VQA

	3.4 Motivating Case Study
	3.5 Design Goals
	3.6 Design of VisQA
	3.6.1 Workflow
	3.6.2 Visualization of Instances
	3.6.3 Visualization of Selected Heads
	3.6.4 Interacting with Models

	3.7 Implementation
	3.8 Evaluation with Domain Experts
	3.8.1 Evaluation Protocol
	3.8.2 Object Detection and Attention
	3.8.3 Questions with Logical Operators
	3.8.4 Vision to Vision Contextualization

	3.9 Discussions, Limitations and Future Work
	3.10 Conclusion

	4 Navigation
	4.1 Introduction
	4.2 Context and Background
	4.2.1 Navigation Problem Definitions
	4.2.2 Navigation using the ViZDoom Simulation
	4.2.3 Deep Reinforcement Learning and Memory
	4.2.4 Visual Analytics and Deep Reinforcement Learning

	4.3 Model and Design Goals
	4.3.1 DRL Model
	4.3.2 Constructing the Memory of DRL

	4.4 Design of DRLViz
	4.4.1 Design Motivation and Goals
	4.4.2 Overview and Workflow of DRLViz
	4.4.3 Memory Timeline View
	4.4.4 Derived Metrics View

	4.5 Implementation
	4.6 Evaluation by Experts
	4.6.1 Protocol and Navigation Problem
	4.6.2 Feedback from Expert #1
	4.6.3 Feedback from Expert #2
	4.6.4 Feedback from Expert #3

	4.7 Memory Reduction
	4.7.1 Evaluation of Reductions with DRLViz
	4.7.2 MemRed, an Online Explorable

	4.8 Discussion
	4.8.1 Summary of Experts Feedback
	4.8.2 Limits

	4.9 Perspectives
	4.9.1 Guiding Exploration with Extended Timelines
	4.9.2 Generalization to other Scenarios and Simulations

	4.10 Conclusion

	5 From Simulation to Reality
	5.1 Introduction
	5.2 Context and problem definition
	5.3 Related work
	5.4 Design Motivation
	5.4.1 Tasks analysis
	5.4.2 Design goals

	5.5 Sim2RealViz: A visual analytics tool to explore the sim2real gap
	5.5.1 Design rationale
	5.5.2 Main-stream workflow
	5.5.3 Geo-Map and Encoding of Positions
	5.5.4 Heatmaps
	5.5.5 Contextualization on the global geo-map
	5.5.6 Exploration of input configurations

	5.6 Case studies
	5.7 Limitations and Perspectives
	5.8 Conclusion

	6 Conclusion and Future Directions
	6.1 Summary of Contributions
	6.2 Perspectives for Future Works
	6.2.1 Invade and Conquer Model Builders' Workflow
	6.2.2 Mitigating Human Biases
	6.2.3 Finally Finding those Keys!

	Bibliography
	Index

