
Populating Ancient Pompeii with Crowds of Virtual Romans

Jonathan Maïm1, Simon Haegler2, Barbara Yersin1, Pascal Mueller2, Daniel Thalmann1 and Luc Van Gool2

1Virtual Reality Laboratory, EPFL, Switzerland 2Computer Vision Laboratory, ETHZ, Switzerland

Abstract

Pompeii was a Roman city, destroyed and completely buried during an eruption of the volcano Mount Vesuvius.

We have revived its past by creating a 3D model of its previous appearance and populated it with crowds of Virtual

Romans. In this paper, we detail the process, based on archaeological data, to simulate ancient Pompeii life in real

time. In a first step, an annotated city model is generated using procedural modelling. These annotations contain

semantic data, such as land usage, building age, and window/door labels. In a second phase, the semantics are

automatically interpreted to populate the scene and trigger special behaviors in the crowd, depending on the

location of the characters. Finally, we describe the system pipeline, which allows for the simulation of thousands

of Virtual Romans in real time.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modelling. I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism - Animation.

1. Introduction

EPOCH [EPO] is a network composed of about a hundred
european cultural institutions whose goal is to improve the
use of Information and Communication Technology for Cul-
tural Heritage. Recently, a project has been conducted to re-
vive the ancient city of Pompeii. In the work presented here,
Pompeii has been virtually reconstructed based on archae-
ological data and crowds of Virtual Romans have been in-
troduced in its streets and houses to simulate life before the
eruption of volcano Mount Vesuvius in 79 A.D.

We show how a populated virtual version of ancient Pom-
peii (see Figure 1) has been created, starting with a set
of archaeological maps. Our contribution is twofold: (1)
We present how the procedural modelling tool CityEngine

is used to automatically generate an annotated city model
based on archaeological input data. (2) We introduce an au-
tomatic process that reads the city semantics and induces
special behaviors in the crowd of Virtual Romans, depend-
ing on their location in the city. We have empirically defined
each behavior as a series of scripted actions.

Our paper is organized as follows: In Section 1.1 we in-
troduce previous work in both procedural city modelling and
real-time crowd behavior simulation. A system overview of
the paper is given in Section 1.2. In Section 2 we present the
procedural modelling system CityEngine, able to generate a

Figure 1: A crowd of Virtual Romans simulated in a recon-

structed part of Pompeii.

city and attach semantic data to the geometry. In Section 3
the extraction of the semantics from the annotated city model
and its subsequent insertion into the navigation graph ver-
tices is explained. Section 4 describes the runtime pipeline
of the crowd simulation. In Section 5 we show the results
we have obtained, and finally, in Section 6 we summarize
this paper and discuss future work.

1.1. Related Work

The city of Pompeii has been studied previously in the LIFE-
PLUS cultural heritage project related to augmented real-
ity [PSO∗05]. The objective was to augment a cultural site

The 8th International Symposium on Virtual Reality, Archaeology and Cultural Heritage
VAST (2007)
D. Arnold, F. Niccolucci, A. Chalmers (Editors)

c© The Eurographics Association 2007.

http://www.eg.org
http://diglib.eg.org


of Pompeii with Virtual Romans. Devlin and Chalmers pro-
posed a perceptually valid method to visualize Pompeii fres-
cos [DC01]. Several cultural heritage projects related to vir-
tual reconstructions that include crowd simulation have been
done on other ancient sites [DEY03, FS07, RFD05].

For the creation of 3D models of existing cities, sev-
eral approaches exist [BBJ∗01]. Today, the most widespread
method is the use of GIS data, e.g., 2D maps of build-
ing footprints in combination with data from airborne sen-
sors [TSSS03, SMVG02]. Despite the impressive results
generated with these photogrammetric systems, they are not
suited for the reconstruction of partially destroyed archaeo-
logical sites, as the missing features and textures have to be
added manually or through mobile mapping techniques.

A second method uses GIS data in combination with
procedural modelling, the latter based on shape gram-
mars [SG71] and L-systems [PM01]. Shape grammars have
a long history in analysis and construction of architectural
designs [KE81, Dua02]. A shape grammar is composed of
a set of production rules which operate directly on shapes
(labeled lines and points). By iterative application of these
rules, more and more detail is added to a model. In these
earlier works, the derivation process was usually done man-
ually or by computer with human supervision.

With the introduction of Split Grammars by Wonka et

al. [WWSR03], shape grammars drew the attention of
the Computer Graphics community. Geometric split oper-
ations are used as a basic operation to hierarchically subdi-
vide building facades. Based on this approach, Mueller et

al. [MWH∗06] recently introduced the CGA Shape gram-
mar, a complete shape grammar framework amenable to
computer implementation. The approach includes essen-
tial features like a rule syntax, practical shape definition,
context-sensitivity, occlusion handling and global synchro-
nization of splits. Complementary to shape grammars, cel-
lular textures [LDG01] can be used to compute brick pat-
terns, while generative mesh modelling allows to gener-
ate complex manifold surfaces from simpler ones [Hav05,
GBHF05].

In the domain of crowds, various methods have been stud-
ied on how to control their behavior by adding semantic data
to their virtual environment. Musse et al. [MBCT98] clas-
sified the environment information into points of interest.
Obstacle positions were labeled to avoid collisions with the
environment. Sung et al. [SGC04] developed a painting in-

terface to draw the regions where special events should oc-
cur. Based on these regions, their scalable behavioral model
was used to have characters react according to a probabilis-
tic action selection mechanism. Yersin et al. [YMdHC∗05]
added semantic information to the environment in real time,
allowing the user to interact with crowds through high-level
instructions. Shao and Terzopoulos [ST05] developed an au-
tonomous pedestrian model where virtual humans individu-

ally plan their actions based on different maps of their envi-
ronment.

More recently, a work similar to the one presented in this
paper has been proposed by Da Silveira and Musse [dSM06].
They introduced a semi-automatic city generation process
where semantic information such as population density was
used to create the environment. However, they were limited
to a fixed number of different buildings, previously stored
in a repository. Moreover, although they exploited semantic
data to choose where to put which kinds of buildings, this
information was not further used to populate the generated
environment or apply corresponding behaviors.

Figure 2: Left: the generated Pompeii districts. Right: Vir-

tual Romans instantiated from seven templates (male and fe-

male nobles, plebeians, patricians and a legionary).

1.2. System Overview

The main goal of our work is the real-time simulation of
a crowd of Virtual Romans exhibiting realistic behaviors
in a reconstructed district of ancient Pompeii (Figure 2).
In an offline process, the city is first automatically recon-
structed and exported into two different representations: (1)
a high-resolution model for rendering purposes and (2) a
low-resolution model labeled with semantic data. A second
preprocessing step is the extraction of the semantics to be
used during the real-time crowd simulation. Figure 3 dis-
plays an overview of the various pipeline stages.

In Table 1, we summarize the different semantics em-
bedded in the city geometry and the associated behaviors.
For this paper, we decided to concentrate on this small set
since we want to (1) explain the underlying mechanisms in
great detail, and (2) emphasize these specific behaviors in
the companion video. However, Table 1 is not exhaustive,
and many more behaviors could easily be added.

There are several buildings in the city model where Vir-
tual Romans can enter freely. Some of them are labelled as
shops and bakeries, and the characters entering them acquire
related accessories, e.g., oil amphoras or bread. These acces-
sories are directly attached to a joint of the virtual character’s
skeleton, and follow its movements when deformed. We can
attach accessories to various joints, depending on their na-
ture. Here, we illustrate this variety by empirically placing

c© The Eurographics Association 2007.

J. Maïm et al. / Populating Ancient Pompeii with Crowds of Virtual Romans110



Figure 3: The overall pipeline consists of an offline and on-

line part. The generation of the city model and semantics

is done in an offline preprocess, where also the navigation

graph is created and the behavior mapping is achieved. The

online part deals with the scene rendering and the execution

of the behavior actions based on character location.

the amphoras in the hands or on the heads of the romans,
depending on their social rank.

The idea of rich and poor districts is based on age maps
that were provided by archaeologists taking part in the
EPOCH project. These maps show the age of buildings in
the city. Although we do not yet have the building textures
to visually express these differences, we have decided to in-
stall the rich Roman templates in the most recent districts
and the poor people in older ones. From this, virtual charac-
ters know where they belong and while most parts of the city
are accessible for everybody, some districts are restricted to
a certain class of people: rich Romans in young areas and
slaves in poor zones. When the Virtual Romans wander in
the city, they may pass near an open door or a window. In
this case, we make the characters slow down and look at
them.

geometry
behavior actions

semantics

shop get amphora walk inside, get out with amphora.

bakery get bread walk inside, get out with bread.

young rich only rich people go there.

old poor only poor people go there.

door look at slow down, look through door.

window look at slow down, look through window.

stop look at accelerate, stop looking.

Table 1: Summary of semantics and associated behaviors.

Figure 4: The Pompeii shape grammar. Top row: On the

left an intermediate state in the grammar derivation pro-

cess after the volume assembly is shown. On the right we

show the final subdivided facades. Bottom row: the Pompeii

grammar rules contain built-in levels-of-detail which can be

controlled with a single variable LOD. From left to right with

increasing complexity: LOD=0 (quads only), LOD=1 (door

and window elements), LOD=2 (thick walls) and LOD=3 (in-

dividual roof tiles). The results presented in this paper make

use of LOD=0 and 1.

2. Semantic Reconstruction of Pompeii

The ancient site of Pompeii has been extensively studied due
to the good preservation of the ruins [Esc79, Ric88, WH94].
Pompeii contains centuries of architectural evolution: from
the Italic model of 4th-3rd century B.C. to that of the 1st

century A.D. Imperial Rome. The Pompeiian townhouses
vary greatly in size and elaboration, from two rooms to large
buildings with many rooms and courtyards. The city is di-
vided into blocks, where the individual houses were built
contiguously.

2.1. Grammar Rules

Our Pompeii model was created with an extended version of
the CityEngine presented in [PM01, MWH∗06]. The gram-
mar rules, based on [MVUG05], were enhanced with levels-
of-detail capability (see Figure 4), semantic information for
the crowd engine and more detailed textures and geometry.
The Pompeii grammar rules consist of a combination of vol-
umes and a repetitive subdivision scheme. In addition, the
rules contain a set of parameters, e.g., building dimensions,
facade proportions, door widths, which are defined as single
values or as ranges of values with upper and lower bounds
defined by archaeological findings [MVUG05]. The main
grammar components are as follows:

1. Each building possesses a main volume which is extruded
from the footprint polygon. An optional top volume rep-
resents the second floor. An additional volume called roof

is placed on top. If the roof is flat, then the top face of ei-
ther top or main is used instead.

2. The polygonal faces (facades) of the volumes are labeled
with an orientation, e.g., front for a face bordering to the
street, and tested on occlusion with neighbouring build-

c© The Eurographics Association 2007.

J. Maïm et al. / Populating Ancient Pompeii with Crowds of Virtual Romans 111



ings. The occluded areas are marked off and will not re-
ceive any detailed geometry in the final grammar inter-
pretation step.

3. The resulting raw facade areas are subdivided in a repet-
itive way: facade → floor → tile → window/door/. . .→
architectural elements.

4. The subdivision is completed with the instantiation and
fitting of manually designed architectural elements from
the CityEngine library.

In our Pompeii shape grammar structure, the semantic and
geometric data for the crowd is collected from several
places: the street graph and building footprints allow to con-
strain the navigation of the characters, while window and
door positions are extracted as additional behavior controls
for the "look at" action (see Table 1), as illustrated in Fig-
ure 5. All these structures contain semantic labels from
which the expected behavior will be derived.

Figure 5: A building contains invisible geometry (checker-

board) which is used to store the semantic information.

2.2. City Construction

In order to automatically generate the city, the first step in
the offline process (Figure 3) is the creation of the 2D maps.
The Street Graph, Block Extraction and Lot Subdivision are
executed based on satellite, land/water, elevation, age and
population density maps. From these steps, we get a 2D
city model composed of polygonal building footprints which
are annotated with all relevant data from the maps, e.g., the
color value of the land-use maps at the centroid of the foot-
print [MVUG05]. For the results presented in this paper, we
defined five different building types which are mapped to a
color code on the corresponding land-use map (Figure 6 (up-
per right)).

When the shape grammar rules are executed on the foot-
prints, the above mentioned gray value level is applied as
input to the grammar and after the Interpretation and Opti-

mization process, the name of each node in the exported city
model gets a suffix corresponding to the actual building type.
For convenience, as later detailed in Section 3, we store the
semantic information in a separate scene file, apart from the
actual rendered geometry. The navigation graph is then cre-
ated, based on the scene geometry. This process is not further
detailed here, since fully developed in [PdHCM∗06,PGT07].

Figure 6: Four stages in the offline preprocess. Upper left:

the manually designed map with five different gray levels for

the building types. Upper right: output of the semantic part

of the grammar (labeled footprints). Lower left: the output of

the geometric part of the grammar. Lower right: the gener-

ated navigation graph from the combined grammar output.

3. From Semantic Map to Behaviors

From the semantic labels created in the city generation (Sec-
tion 2), a simple file is extracted, containing the data strictly
necessary to identify places where specific behaviors should
be applied. This file is only composed of labeled building
footprints and quads representing windows and doors.

3.1. Extract Geometry Semantics

In the crowd engine, motion planning is based on a navi-
gation graph [PdHCM∗06, PGT07] automatically generated
from the 3D Pompeii geometry model in an offline prepro-
cess. This navigation graph is represented with circular areas
- graph vertices - where it is possible for characters to navi-
gate without colliding with the environment (Figure 6 (lower
right)). If two graph vertices intersect, characters can freely
move from one to the other. From this, we can find paths be-
tween different areas of the city. Thus, at runtime, there is no
direct interaction between the Romans and the city geome-
try. Instead, they interact with the navigation graph. In order
to have them behave differently given their surroundings, the
semantic data contained in the geometry need to be trans-
fered into the navigation graph vertices. This is achieved in
an offline preprocess (Figure 3) where the behavior data and
their location are output into a dedicated script.

Depending on the behavior we want to trigger and its lo-
cation, graph vertices are identified in different ways. For
instance, we would like people to slow down and look at
the doors and windows when walking past them. In such
a situation, we need to identify the graph vertices that are
within a certain distance from the doors and windows. For

c© The Eurographics Association 2007.

J. Maïm et al. / Populating Ancient Pompeii with Crowds of Virtual Romans112



Figure 7: Graph vertices are marked with special behav-

iors: “look at” (in white), “stop looking at” (in black), and

“target point” (in red).

the shop and bakery buildings, the Virtual Romans should
be able to find their way to get indoors. In this case, we have
to find the graph vertices that are contained inside the build-
ing footprint; outside vertices, even if close to the building,
should not be considered. We have designed an algorithm
to read the simplified city model and automatically extract
its semantic data to identify the influenced navigation graph
vertices. This automatic process is detailed in Algorithm 1:

Algorithm 1: Semantic Mapping.

Data: set of simple geometries with semantic labels, set
of graph vertices with their position and radius.

Result: subset of graph vertices GV where to apply
corresponding behavior.

for each geometry g do1

extract semantic label s from g.name2

switch s do3

GV = identi f yGraphVertices(s,g)4

computeBehaviorParameters(GV,s)5

In our specific scenario of Pompeii, we have developed
two methods to identify the graph vertices (line 4) which
will adopt a special behavior. The first one, used for window
and door semantics, given a range r, returns all the graph
vertices that are at a maximum distance of r to the vertices
of the geometry g. The second method, exploited for shop
and bakery building footprints, detects all the graph vertices
contained inside the footprint geometry g. For this particu-
lar function, we can reduce the problem to a 2D approach
(working on the OpenGL XZ plane). Based on [Bou87], we
easily determine when a point p is contained in the geometry
vertices by computing and summing the angles ̂vi pvi+1 be-
tween each pair of geometry vertices (vi,vi+1) and the graph
vertex position p. If the sum of these angles equals 2π, then
the graph vertex is contained inside the polygon. In our par-
ticular Pompeii case, the buildings all have simple footprints
which allow to exploit this algorithm.

We illustrate the result of our semantic mapping in Fig-
ure 6 (bottom right). As shown in Algorithm 1 (line 3),
it is possible to treat each semantic label with differ-
ent methods, depending on their location and effects.
At line 5, there is also a second important function
computeBehaviorParameters that can be developed differ-
ently, depending on the semantic label and the correspond-
ing wished behavior. The purpose of this method is detailed
in the next section.

3.2. Semantics to Behavior

We know that each semantic label corresponds to a specific
behavior. For instance, the window and door semantics trig-
ger a "look at" behavior that makes Virtual Romans slow
down and look through the window (see Table 1). To keep
our crowd engine as generic as possible, each graph vertex
triggering a special behavior also receives a series of vari-
ables used later on for parameterization. For our example,
this means that each graph vertex associated with this be-
havior should make Romans look through the window or the
door. In order to know exactly where Romans have to look,
each of these graph vertices also receives a target point, com-
puted as the center of the window/door quad. Thus, for each
behavior, it is possible to compute specific parameters during
the graph vertex identification in Algorithm 1. More specif-
ically, at line 3, we test the semantic labels to know which
parameters need to be computed, and how the graph vertices
should be identified.

In our Pompeii scenario, only the "look at" semantics re-
quires extra parameters. Since a graph vertex may be close
to several windows or doors at the same time, we make sure
to save a set of target points (one per door/window) as its
behavior parameters. When a Virtual Roman crosses such a
graph vertex, he chooses among the target points the clos-
est one facing him. For other semantics, no parameter is re-
quired. However, the engine has been developed to accept
variables in any number.

Finally, this process outputs a script describing which be-
haviors apply to which vertices and with which parameters.
This script is later used at the initialization of the crowd sim-
ulation to assign behaviors to graph vertices.

3.3. Long Term vs Short Term Behaviors

There are many behaviors that can be triggered when a Vir-
tual Roman passes over a graph vertex. Some of them are
permanent, i.e., once they are triggered for a Roman, they
are kept until the end of the simulation, while others are tem-
porary: once the Roman leaves their area, the behaviors are
stopped. For instance, a Roman entering a bakery acquires
some bread and will keep it when leaving the bakery until
the end of the simulation. However, a Roman passing close
to a window will slow down to look through it until he is too
far away and then resume a faster walk.

c© The Eurographics Association 2007.

J. Maïm et al. / Populating Ancient Pompeii with Crowds of Virtual Romans 113



The permanent behaviors are not complex to manage.
Once triggered, they modify parameters within the Roman
data that will never be set back to their previous value. For
temporary behaviors however, it is important to detect when
a Roman leaves an area with a specific behavior, and set his
modified parameters back to normal values. We have chosen
to treat this specific case as follows: when Algorithm 1 is
called, for each temporary behavior b, a new behavior stopb

is created as its opposite. To identify the graph vertices that
should trigger stopb, we iterate over all vertices invoking b,
and check the behavior of their neighbors. If a vertex trig-
gering b has a neighbor that is not triggering b, we have
found a vertex that borders the b area. We thus flag it with
stopb. Note that it is possible for a graph vertex to trigger
several behaviors. An example of the “look at” behavior is
illustrated in Figure 7.

4. Online Crowd Simulation

At runtime, it is very important to optimize the different
pipeline stages to be able to simulate crowds in real-time.
Efficient crowd simulation is obtained by targeting comput-
ing resources where the attention of the user is focused. The
online simulation pipeline in Figure 3 is composed of six im-
portant steps and receives two major inputs: the camera view
frustum, and a navigation graph filled with Virtual Romans.
This graph is used for crowd motion planning [MYMT07]
and as a general-purpose structure to hierarchically process
Virtual Romans throughout the pipeline.

The Simulation Scaler is the first stage of the pipeline.
User focus is determined by simple rules that allow to spread
computing resources throughtout the environment. Depend-
ing on the camera frustum, each graph vertex is categorized
with two scores :

• A representation score, determined by finding the dis-
tance from the vertex to the camera and its eccentricity
from the middle of the screen. This score determines the
Virtual Roman representation.

• A score of interest, resulting in an environment divided
into regions of different interest (ROI) [MYMT07]. For
each region, we choose a different motion planning al-
gorithm. Regions of high interest use accurate, but more
costly techniques, while regions of lower interest exploit
simpler methods.

A special scoring is applied to invisible vertices: those con-
taining no Romans are directly frustum culled without scor-
ing and not further considered in the current frame. The in-
visible vertices filled with at least one character are still kept,
but for them, only the ROI score needs to be computed; no
rendering is needed for these Romans, but they still require
a minimal simulation to move along their path.

The purpose of the second stage of the pipeline, the Simu-

lator, is to ensure that each Roman comes closer to its way-
point. Indeed, each Virtual Roman stores a waypoint, which

is the position of its next short-term goal to reach. Depending
on the ROI, path smoothing is applied, and efficient internal
book-keeping of the Virtual Romans on the underlying nav-
igation graph is done.

The third stage, Animator, is responsible for animat-
ing characters whichever the representation they are using.
We use three different representations decreasingly costly
to render and animate : deformable meshes which are de-
formed in real time using a skeleton and a skinning tech-
nique, rigid meshes whose derformation are precomputed,
with respect to an animation repertoire [UdHCT05], and im-

postors, extensively exploited in the domain of crowd ren-
dering [TLC02,DHOO05,MR06]. The animation process is
similar for all representations: depending on the animation
time, the correct keyframe is identified and retrieved. Then,
each representation is modified accordingly.

The Renderer stage represents the phase where draw
calls are issued to the GPU to display the crowds. Shadows
are also handled at this stage using a shadow mapping algo-
rithm [RSC87]. The whole process thus becomes a two-pass
algorithm: first, deformable, rigid meshes, and impostors are
sequentially rendered from the point of view of the main
light. Then, the process is repeated from the point of view
of the camera. Roman accessories are also rendered in this
stage. The renderer is the last stage of the current frame. The
next pipeline stages operate on the subsequent frame.

The Path Planner stage performs the collision avoidance
between Virtual Romans. Due to a complexity in O(n2),
it runs at a significantly lower frequency than the previous
stages. Regions of high interest, typically in the vicinity of
the camera, are treated with a long-term collision avoidance
strategy, while other ROI are treated with short-term algo-
rithms [MYMT07].

Finally, the last stage of the crowd pipeline is the Behav-

ior. In our simulation, crowd behavior is updated individu-
ally for each Roman, based on the navigation graph vertices.
The first step is to retrieve a list of graph vertices for each
possible behavior. This is efficiently achieved, due to opti-
mized data structures. Note that it is possible for a graph
vertex to be associated with several behaviors. For each be-
havior, the Behavior stage iterates over its graph vertices,
gets the associated Romans, and applies the corresponding
actions to them. As detailed in Section 1.2, individual be-
haviors are mostly expressed through accessories acquisi-
tion and animation changes. Such changes do not need to
be applied at high frequencies, and a Virtual Roman usually
takes more than 1s to cross a graph vertex. Thus, for a realis-
tic crowd simulation, a frequency of 10Hz for the Behavior
stage is sufficient.

5. Results

The accompanying video demonstrates the results of our
work in reviving the ancient city of Pompeii. First, its streets

c© The Eurographics Association 2007.

J. Maïm et al. / Populating Ancient Pompeii with Crowds of Virtual Romans114



and buildings have been automatically reconstructed and an-
notated. Second, they have been populated with crowds of
Virtual Romans, presenting several different behaviors, and
thus offering a realistic and varied simulation (Figure 8).

The city reconstruction is based on a CGA Shape gram-
mar with nine different facade designs derived from archae-
ological drawings. It contains 4 levels-of-detail (LOD), 16
different wall types and 3 roof styles. Of this grammar 16
variations were automatically generated by combining the
facades and roofs with specifically designed color palettes.
This number could be arbitrarily increased, but practical as-
pects of the rendering limited the usable number of materi-
als. The CGA Shape grammar has proven its great flexibility,
for instance during the optimization of the levels-of-detail
for the rendering process.

As for the crowd, seven human templates have been ex-
ploited to create the paper images as well as the companion
video: male and female nobles, plebeians, patricians and fi-
nally, a male legionary. These seven templates are instanti-
ated several hundred times to generate large crowds. To en-
sure a varied and appealing result, per body part color vari-
ety techniques are exploited. The simulation of the crowd

Figure 8: Crowds of Virtual Romans in a street of Ancient

Pompeii.

in the city has been achieved with an Intel core duo 2.4
GHz 2 Gb RAM and a Nvidia Geforce 8800 GTX 768 Mb
RAM. The crowd engine is mainly implemented in C++,
but to ease the definition of behavior actions, we use the Lua

scripting language. One of its main advantages is the fast
test/fix cycles while programming behavior functions. The
city part used for the simulation (illustrated in Figure 6, bot-
tom left) is composed of about 700,000 triangles and 12 Mb
of compressed textures. For the crowds, combining the dif-
ferent LOD, it is possible to simulate in this environment
4,000 Romans, i.e., about 600,000 triangles and 88 Mb of
compressed textures, with real-time performance (30 fps in
average). Note however that we have reduced the number of

Romans to 2,000 in the video sequences, due to the require-
ments of the real-time capture software.

6. Conclusion and Future Work

Based on archaeological data, we have presented the differ-
ent steps of our work to generate the ancient city of Pompeii
and populate it with Virtual Romans. Thanks to the semantic
data labeled in the geometry, crowds are able to exhibit par-
ticular behaviors relatively to their location in the city. Our
results and companion video show that we are able to simu-
late several thousands virtual characters in the reconstructed
city in real-time. The use of a procedural technique for the
creation of city models has proven to be very flexible and al-
lows for quick variations and tests not possible with manual
editing techniques. For instance, it allowed us to modifiy the
land-use maps and recreate the whole model with updated
semantics in about 20 minutes. It was also very easy to re-
duce the model complexity for the crowd engine by omitting
some grammar rules, e.g., replacing some window primitives
with simpler versions.

One possible follow-up work would be to make the Vir-
tual Romans interact with the model, e.g., opening doors.
This would allow to create more intelligent and varied be-
haviors for crowds. From an archaeological point of view the
simulation would also benefit from a validation of the Virtual
Roman behavior based on historical data. Finally, to reduce
the complexity of collision avoidance between characters,
investigating spatial hashing [SGG∗07] could be benificial
in our architecture.

Acknowledgments The authors would like to thank Mireille
Clavien for designing the Virtual Romans and for her great help
in this project. Thanks to Damien Maupu for his contribution in
the EPOCH project, and to the anonymous reviewers for their com-
ments. The crowd algorithms have been supported by the Swiss Na-
tional Research Foundation. The integration and application to cul-
tural heritage have been sponsored by the EC IST Network of Excel-

lence EPOCH. The procedural city modelling has been supported in
part by EPOCH as well and by EC IST Project CyberWalk.

References

[BBJ∗01] BIRCH P., BROWNE S., JENNINGS V., DAY A.,
ARNOLD D.: Rapid procedural-modelling of architectural struc-
tures. In Proc. VAST (2001), pp. 187–196.

[Bou87] BOURKE P.: Determining if a point lies on the interior
of a polygon, 1987.

[DC01] DEVLIN K., CHALMERS A.: Realistic visualisation
of the pompeii frescoes. In Proc. AFRIGRAPH 2001 (2001),
pp. 43–47.

[DEY03] DIKAIAKOU M., EFTHYMIOU A., Y. C.: Modelling
the walled city of nicosia. In Proc. VAST (2003), pp. 61–70.

[DHOO05] DOBBYN S., HAMILL J., O’CONOR K.,
O’SULLIVAN C.: Geopostors: a real-time geometry / im-
postor crowd rendering system. In SI3D: symposium on

interactive 3D graphics and games (2005), pp. 95–102.

c© The Eurographics Association 2007.

J. Maïm et al. / Populating Ancient Pompeii with Crowds of Virtual Romans 115



[dSM06] DA SILVEIRA L. G., MUSSE S. R.: Real-time gener-
ation of populated virtual cities. In Proc. ACM VRST (2006),
pp. 155–164.

[Dua02] DUARTE J.: Customizing mass housing: A discursive
grammar for siza’s malagueira houses. Phd dissertation, De-

partment of Architecture, Massachusetts Institute of Technology,

Cambridge, MA (2002).

[EPO] EPOCH: Excellence in Processing Open Cultural Her-
itage. http://www.epoch-net.org/.

[Esc79] ESCHEBACH H.: Zur Entwicklung des Pompeianischen
Hauses. In Wohnungsbau im Altertum (Diskussion zur archaeol-

ogischen Bauforschung 3) (1979), pp. 152–161.

[FS07] FRISCHER B., STINSON P.: The Importance of Scientific
Authentication and a Formal Visual Language in Virtual Models
of Archeological Sites: The Case of the House of Augustus and
Villa of the Mysteries. In Interpreting the Past: Heritage, New

Technologies and Local Development (2007), p. 49.

[GBHF05] GERTH B., BERNDT R., HAVEMANN S., FELLNER

D. W.: 3d modeling for non-expert users with the castle con-
struction kit. In Proc. VAST (2005), pp. 49–57.

[Hav05] HAVEMANN S.: Generative Mesh Modelling. PhD the-
sis, UB Braunschweig, 2005.

[KE81] KONING H., EIZENBERG J.: The language of the prairie:
Frank Lloyd Wright’s prairie houses. Environment and Planning

B 8 (1981), 295–323.

[LDG01] LEGAKIS J., DORSEY J., GORTLER S.: Feature-based
cellular texturing for architectural models. In Proc. ACM SIG-

GRAPH (New York, NY, USA, 2001), ACM Press, pp. 309–316.

[MBCT98] MUSSE S. R., BABSKI C., CAPIN T., THALMANN

D.: Crowd modelling in collaborative virtual environments. In
Proc. ACM VRST (1998), pp. 115–123.

[MR06] MILLAN E., RUDOMIN I.: Impostors and pseudo-
instancing for gpu crowd rendering. In Proc. GRAPHITE (2006),
pp. 49–55.

[MVUG05] MUELLER P., VEREENOOGHE T., ULMER A.,
GOOL L. V.: Automatic reconstruction of roman housing ar-
chitecture. In Recording, Modeling and Visualization of Cultural

Heritage (2005), pp. 287–298.

[MWH∗06] MÜLLER P., WONKA P., HAEGLER S., ULMER A.,
GOOL L. V.: Procedural modeling of buildings. In Proc. ACM

SIGGRAPH (2006), pp. 614–623.

[MYMT07] MORINI F., YERSIN B., MAÏM J., THALMANN D.:
Real-time scalable motion planning for crowds. In Proc. Cyber-

worlds (2007), p. to appear.

[PdHCM∗06] PETTRÉ J., DE HERAS CIECHOMSKI P., MAÏM J.,
YERSIN B., LAUMOND J.-P., THALMANN D.: Real-time navi-
gating crowds: scalable simulation and rendering. CAVW 17, 34
(2006), 445–455.

[PGT07] PETTRÉ J., GRILLON H., THALMANN D.: Crowds of
moving objects: Navigation planning and simulation. In Proc.

IEEE ICRA (2007).

[PM01] PARISH Y. I. H., MÜLLER P.: Procedural modeling of
cities. In Proc. ACM SIGGRAPH (2001), pp. 301–308.

[PSO∗05] PAPAGIANNAKIS G., SCHERTENLEIB S.,

O’KENNEDY B., AREVALO-POIZAT M., MAGNENAT-
THALMANN N., STODDART A., THALMANN D.: Mixing
virtual and real scenes in the site of ancient pompeii: Research
articles. CAVW 16, 1 (2005), 11–24.

[RFD05] RYDER G., FLACK P., DAY A.: A framework for real-
time virtual crowds in cultural heritage environments. In Proc.

VAST (2005), pp. 108–113.

[Ric88] RICHARDSON L. J.: Pompeii. An architectural history.

Johns Hopkins University Press, 1988.

[RSC87] REEVES W. T., SALESIN D. H., COOK R. L.: Ren-
dering antialiased shadows with depth maps. In Proc. ACM SIG-

GRAPH (1987), pp. 283–291.

[SG71] STINY G., GIPS J.: Shape Grammars and the Generative
Specification of Painting and Sculpture. In Proc. IFIP Congress

(1971), pp. 125–135.

[SGC04] SUNG M., GLEICHER M., CHENNEY S.: Scalable be-
haviors for crowd simulation. Computer Graphics Forum 23, 3
(2004), 519–528.

[SGG∗07] SUD A., GAYLE R., GUY S., ANDERSEN E., LIN

M., MANOCHA D.: Real-time navigation of independent agents
using adaptive roadmaps. In Proc. ACM VRST (2007), p. to ap-
pear.

[SMVG02] SCHOLZE S., MOONS T., VAN GOOL L.: A generic
3d model for automated building roof reconstruction. In ISPRS

Commission V Symposium 34 (2002), pp. 204–209.

[ST05] SHAO W., TERZOPOULOS D.: Autonomous pedestrians.
In Proc. ACM SIGGRAPH/EG SCA (2005), pp. 19–28.

[TLC02] TECCHIA F., LOSCOS C., CHRYSANTHOU Y.: Image-
based crowd rendering. IEEE CGA 22, 2 (2002), 36–43.

[TSSS03] TAKASE Y., SHO N., SONE A., SHIMIYA K.: Auto-
matic generation of 3d city models and related applications. In
International Archives of Photogrammetry, Remote Sensing and

Spatial Information Sciences (2003).

[UdHCT05] ULICNY B., DE HERAS CIECHOMSKI P., THAL-
MANN D.: Crowdbrush: interactive authoring of real-time crowd
scenes. In Proc. ACM SIGGRAPH/EG SCA (2005), p. 3.

[WH94] WALLACE-HADRILL. A.: Houses and Society in Pom-

peii and Herculaneum. Princeton University Press, 1994.

[WWSR03] WONKA P., WIMMER M., SILLION F., RIBARSKY

W.: Instant architecture. In Proc. ACM SIGGRAPH (2003),
pp. 669–677.

[YMdHC∗05] YERSIN B., MAÏM J., DE HERAS CIECHOMSKI

P., SCHERTENLEIB S., THALMANN D.: Steering a virtual crowd
based on a semantically augmented navigation graph. In Proc. V-

CROWDS (2005).

c© The Eurographics Association 2007.

J. Maïm et al. / Populating Ancient Pompeii with Crowds of Virtual Romans116


