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Abstract
In example-based inverse linear blend skinning (LBS), a collection of poses (e.g. animation frames) are given, and the goal is
finding skinning weights and transformation matrices that closely reproduce the input. These poses may come from physical
simulation, direct mesh editing, motion capture or another deformation rig. We provide a re-formulation of inverse skinning as a
problem in high-dimensional Euclidean space. The transformation matrices applied to a vertex across all poses can be thought
of as a point in high dimensions. We cast the inverse LBS problem as one of finding a tight-fitting simplex around these points (a
well-studied problem in hyperspectral imaging). Although we do not observe transformation matrices directly, the 3D position of
a vertex across all of its poses defines an affine subspace, or flat. We solve a ‘closest flat’ optimization problem to find points on
these flats, and then compute a minimum-volume enclosing simplex whose vertices are the transformation matrices and whose
barycentric coordinates are the skinning weights. We are able to create LBS rigs with state-of-the-art reconstruction error and
state-of-the-art compression ratios for mesh animation sequences. Our solution does not consider weight sparsity or the rigidity
of recovered transformations. We include observations and insights into the closest flat problem. Its ideal solution and optimal
LBS reconstruction error remain an open problem.
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1. Introduction

Linear blend skinning (LBS) is one of the most widely used tech-
niques for animation and deformation due to its simplicity and ef-
ficiency. The deformed position of a vertex is determined by the
weighted average of a set of transformations Tj:

v′
i =

h∑
j=1

wi, jTjvi, (1)

where {wi, j} are the skinning weights, {Tj} is the set of h affine
transformation matrices and vi is the undeformed position of the
i-th vertex (with the homogeneous coordinate = 1). The skinning
weights for each vertex are typically non-negative (wi, j ≥ 0) and
sum-to-one (

∑h
j=1 wi, j = 1). During animation, only the transfor-

mation matrices change. This reduces the amount of information
needed for creating and editing. Conceptually, the transformations
serve as the handles and may represent the ‘bones’ of a character.
The weights and transformations of a model are often called its rig.
See [JDKL14] for a recent survey.

Given the utility and ubiquity of LBS, it is desirable to obtain an
LBS rig given only a set of observed deformations. The observations
may come from physical simulation, direct mesh editing, motion
capture or another deformation rig. In this example-based inverse
skinning problem, the desired output is a set of transformation ma-
trices, skinning weights and possibly also the rest pose mesh itself.
In the most challenging version of this problem, the observations
come in the form of uncorrelated point clouds [CZ11, LCY*18].
Often a set of meshes with corresponded vertices are given [JT05,
KSO10, LD12], and the problem is to find a corresponding LBS
rig. In other words, given a set of deformed poses (vertices v′

p,i),
find the rig (wi, j,Tp, j) and possibly also the undeformed positions
vi. Inverse LBS can be formulated as a constrained least squares
problem [JDKL14]:

min
w,R,t,v

#poses∑
p=1

n∑
i=1

∥∥∥∥∥∥v′
p,i −

h∑
j=1

wi, jTp, jvi

∥∥∥∥∥∥
2

(2)
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Figure 1: Transformation matrices as points in R
3·4·#poses. Given

several poses (e.g. animation frames) of a linear blend skinned
model (right), each bone’s transformation matrices across all poses
are vertices of a simplex in R

3·4·#poses (left). Any vertex’s transfor-
mation (red circle) is the weighted sum of the bone transformations.
The weights wi of the LBS rig are the barycentric coordinates with
respect to the simplex.

subject to:

wi, j ≥ 0 and
h∑
j=1

wi, j = 1. (3)

The constraints in Equation (3) are convex combination constraints
on the skinning weights that ensure the blended transformations
interpolate the handle transformations. Two additional optional
constraints are per-vertex weight sparsity (‖w‖0 ≤ K) and rigid
handle transformations (Tj ∈ SE(3)). In this work, our assumptions
are that an undeformed mesh is given with vertex correspondences
between the undeformed mesh and deformed poses. We do not
consider weight sparsity or transformation rigidity.

Our key contribution is a re-formulation of inverse skinning as
a problem in high-dimensional space. The transformation matrices
applied to a mesh vertex vi across all poses can be thought of as a
point in R

3·4·#poses. All such points that can be generated by a given
LBS rig define a simplex whose vertices are the handle transforma-
tions across all poses (Figure 1). The simplex lives in an (h− 1)-
dimensional affine subspace of R3·4·#poses, where h is the number
of handles. As per the preferred terminology in mathematics, we
call an affine subspace a flat. (See Appendix A for definitions and
useful identities.) Therefore, our challenge is to fit a simplex to
the observed data. This is related to a well-studied problem in the
field of hyperspectral imaging, where the vertices of the smallest-
volume simplex enclosing all observed points are the ‘pure’, un-
mixed data [Cra94]. Although, in our setting, we do not observe
any transformation matrices directly, each vertex vi, based on its de-
formed position in other poses v′

p,i, defines a 9 · #poses-dimensional
flat in R

3·4·#poses. Our algorithm can be summarized as follows:

1. We first estimate a point in R3·4·#poses for each vertex. We do this
by intersecting vertices’ flats (Section 4.1).

2. For a rig with h handles, all points must lie on an (h− 1) dimen-
sional flat in R

3·4·#poses. We search for the (h− 1)-dimensional
flat whose distance to the vertices’ flats is minimized (Sec-
tion 4.2).

3. Finally, we compute the closest point on the (h− 1)-
dimensional flat to each vertex’s flat. The smallest enclosing

simplex for these points provides uswith the transformations (its
vertices) and skinning weights (trivially computed as barycen-
tric coordinates) (Section 5).

One advantage of our approach is that the simplex encloses the
observations and so has the lowest possible error of any set of han-
dles of given size (i.e. our approach can generally achieve smaller
reconstruction errors than the state of the art). By contrast, the clus-
tering used in previous inverse LBS algorithms may choose han-
dles inside the simplex which, due to the convexity constraints on
the weights, cannot contribute to all vertices. We re-frame inverse
LBS as two simple sub-problems: minimizing flat/flat distances and
finding the smallest-volume simplex. This has additional benefits:
(i) The reconstruction error is completely determined by the answer
to the first problem, enabling an efficient bisection search for the
optimal number of handles. (ii) The second sub-problem is actively
studied in the field of hyperspectral unmixing; improved algorithms
can, therefore, be immediately applied to improve inverse LBS re-
sults. (iii) Our per-vertex transformation matrix initial guess (Sec-
tion 4.1) could be used by other inverse LBS algorithms.

We evaluate our algorithm on 16 distinct models from the liter-
ature and newly created. Some models are based on performance-
capture data and some have known ground-truth rigs. We provide
numeric comparisons in all cases and video comparisons when
available. We also evaluate choices made in our algorithm’s design,
such as the impact of our initial guess.

Our approach to minimize flat/flat distances is not guaranteed to
find the global optimum. However, in posing inverse skinning as a
flat/flat distance minimization problem, we provide a fresh direction
for future progress on this problem. In Section 4 and Appendix C,
we describe numerous (inferior) alternative approaches to minimize
flat/flat distances and experiments with scenarios inwhich the global
optimum can be reliably found. We consider this to be an important
contribution of our work.

2. Related Work

2.1. Skinning decomposition

An early form of inverse LBSwas first studied byWang and Phillips
[WP02] as a way to overcome LBS artefacts like joint collapse and
the so-called candy-wrapper artefacts [GB08]. To overcome these
limitations, with the assumption that each pose is associated with
a bone skeleton, they solve for skinning parameters in a more gen-
eral model than LBS in which vertices have independent weights
for each entry in the transformation matrices. James and Twigg
[JT05] were the first to study the inverse LBS problem with a single
weight per transformation matrix. They proposed to extract rota-
tions from mesh triangles in correspondence via polar decomposi-
tion, and then apply mean-shift clustering on the rotations to obtain
an initial estimate of bone transformations. They then progressively
correct skinning weights and bone transformations to better match
the input. Various follow-up works also estimate full bone skeleton
hierarchies from example poses [SY07, DATTS08, HTRS10]. All
of these approaches are based on an analysis of 3D motion, often
including a clustering step. In contrast, our approach is based on
the convex geometric structure of transformation matrices as high-
dimensional points. We do not consider skeleton hierarchies or rigid
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transformations. Our handles are defined as the vertices of the sim-
plest possible convex hull—a simplex. Handles found by clustering
make a sub-optimal use of the affine subspace, since they cannot
contribute to points outside the convex hull of the handles. As a
result, our approach is able to achieve lower errors with the same
number of bones.

Kavan et al. [KSO10] proposed to view the inverse skinning prob-
lem as a special case of matrix factorization. They achieve fast per-
formance in part by first reducing the dimensionality of the mesh
positions, followed by iterative quadratic optimization for all ver-
tices’ transformations, skinning weights and rest pose positions. In
particular, they solve small isolated problems or a system dependent
on the number of poses, not the number of vertices, and take the ad-
vantage of their weight sparsity assumption. Le and Deng [LD12,
LD13, LD14] presented a suite of works that address skinning de-
composition, weight compression and automatic riggingwith a bone
skeleton, respectively. Our problem statement is similar to Le and
Deng [LD12], which computes handle transformations and skin-
ning weights given a set of posed meshes. They optionally en-
force rigid handle transformations and sparse weights, which our
approach does not. In the absence of sparsity considerations, our
approach is faster and achieves lower errors. Recently, Mukai and
Kuriyama [MK16] proposed a practical method to synthesize plau-
sible and dynamic skin deformation based on an auxiliary helper
bone rig. Holden et al. [HSK15] introduced a method to solve
for high-level rig parameter given bone skeleton transformations.
Thiery and Eisemann [TE18] introduced a method to replicate non-
linear as-rigid-as-possible deformations, and optional given poses,
given a mesh and skeleton. They support skeleton joint limits and
provide interactive tools for editing weights. Loper et al. [LMR*15]
described SMPL, a skinning and blend shape-based model for hu-
man body shapes and poses. They obtain model parameters via opti-
mization (training), to minimize the error from observed data. They
have additional degrees of freedom (blend shape parameters) but
initialize and regularize their optimization with a known human rig.
Our approach could be useful within their optimization. We do not
consider these additional kinds of rigs or bones. Jacobson et al.’s
[JBK*12] FAST method takes as input a rigged model (including
skin weights) and transformations for a subset of the handles. Our
work is orthogonal, as it finds the rig and transformations. For a
recent survey of inverse LBS approaches, see [JDKL14] part IV.

In sharp contrast with all previous approaches, we solve the
inverse LBS problem from a fresh point of view: finding a sim-
plified convex hull of transformation matrices as points in a
high-dimensional geometric space. We accomplish this via flat
estimation followed by hyperspectral unmixing. We provide new
insights into the flat estimation problem and are quickly able to
generate solutions within a given reconstruction error.

2.2. Surface registration

Both our approach and the aforementioned inverse LBS approaches
assume vertex correspondences across all mesh poses. However,
several related works do not require this assumption. Chang and
Zwicker [CZ08, CZ09, CZ11] presented a series of works on sur-
face registration for articulated shapes; their solution takes the form

of LBSwith binary weights, which is akin to segmenting the surface
at joints and restricting transformations to rigid motions.

Surface registration is also a fundamental problem in computer
graphics. A large body of literature has been published on surface
registration via iterative closest point (ICP). Most closely related
to our needs, Amberg et al. [ARV07] extend the ICP framework
to non-rigid registration using different regularizations with an ad-
justable stiffness parameter. Like us, they also find per-vertex affine
transformation matrices. In contrast with our approach, they solve a
large, sparse system of equations with a smoothness term between
neighbouring vertices. Schneider and Eisert [SE09] describe a new
cost function for ICP by minimizing a first-order approximation of
its cost function. Yoshiyasu et al. [YMYK14] proposed to find geo-
metric as well as semantic consistencies with user-specified features
while preserving mesh topology. Among various surface registra-
tion applications, deformable 3D shape registration with a known
mesh topology draws our special attention. For example, Cao et al.
[CTA*14] proposed to first find the reliable correspondences us-
ing a spin-image method, and then minimize an energy consist-
ing of rotation, regularization and correspondence terms. Papazov
and Burschka [PB11] compute an as-rigid-as-possible deformation
based on local similarity transforms.We aim to address a much sim-
pler problem, since we are given the correspondence, with the re-
striction that our solution lies in a low-dimensional LBS subspace.

2.3. Sub-space clustering

Several existing works considered the problem of clustering onto
flats [ZSWL12, HYL*03] or clustering flats via closest points
[GLS10, LS13]. None of these works consider the scenario where
both the input data and output clusters are flats. In contrast, in our
scenario, the input data are flats (defined by each vertex’s unde-
formed and deformed positions) and the output is a single flat, since
in LBS all transformations must lie on the same flat. Our flat opti-
mization (Section 4) must solve the flat/flat distance problem.

2.4. Hyperspectral unmixing

Blind hyperspectral unmixing, also known as unsupervised hy-
perspectral unmixing, is an active area of research in signal
processing. The goal is to recover the spectral signatures of the
constitutive materials present in a hyperspectral image along with
their abundances in each pixel [MBDC*14]. In the terminology
of computer graphics, the input is an image with more than three
channels per pixel, and each pixel is assumed to be the linear
mixture of an unknown palette. The goal is to recover the palette,
which they call endmembers, and mixing weights, which they call
abundances. In our problem, we want to decompose per-vertex
transformation matrices into a set of handle transformations (pure
materials) and skinning weights (abundances). Craig [Cra94]
conjectured that the no-pure-pixel hyperspectral unmixing problem
could be solved by finding the minimum-volume simplex enclosing
the set of observed points. Since then, increasingly efficient and
more robust-to-outlier algorithms have been proposed [CCHM09,
BD09, ACMC10, ALBDP14, LCWC16]. In practice, these algo-
rithms work extremely well, despite it being well known that the
minimum-volume enclosing simplex problem, in general, has local
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minima and even infinite families of minimal solutions [HGPP13].
In the last few years, two independent sufficiency proofs have
explained why the optimal simplex can be exactly recovered under
surprisingly mild conditions [LML*15, FMHS15].

Hyperspectral unmixing is equivalent to non-negative ma-
trix factorization (NMF), whose solution in general is NP-
complete [Vav09]. Fortunately, if the NMF is separable, then the
time complexity becomes polynomial [AGKM12]. An NMF prob-
lem M = UV with (U,V ) ≥ 0 is called separable if there exists a
factorization where each column of U equals a column of M. Sep-
arability corresponds to the so-called pure-pixel assumption in hy-
perspectral unmixing, in which everymaterial is observed not mixed
with any others in at least one pixel. We do not make this assump-
tion, and we also do not want our handle transformations to be
non-negative.

3. Background

The 3 × 4 affine transformation matrices applied to a rest pose ver-
tex vi in every pose can be (row-major) vectorized and stacked ver-
tically, one pose above the other, to form a very tall column ma-
trix in R

12·#poses. The set of all transformation matrices obtainable
by an LBS rig,

∑h
j=1 w jTj such that

∑
w j = 1, forms an (h− 1)-

dimensional affine subspace, or flat, inR12·#poses. With the constraint
that weights are positive (w j ≥ 0), the set defines a simplex in the
flat. See Figure 1 for an illustration. In our inverse skinning problem,
this handle transformation flat is unknown.

Flats generalize the concept of a line or plane (a linear subspace
offset from the origin) to higher dimensions. In 2D (respectively,
3D), two lines (respectively, planes) almost always intersect, be-
cause they are both hyperplanes, or flats whose dimension is exactly
one less than the ambient space. The general scenario, in which the
flat dimension is at least two less than the ambient dimension, is akin
to lines in 3D, which ‘rarely’ intersect. The distance between two
flats is the distance between their closest points. See Appendix A
for a detailed description of flats. Briefly, a flat can be defined ex-
plicitly as L = {p + Bz}, where the columns of the matrix B span
directions parallel to the flat, z is the vector of parameters and p is
again a point on the flat. A flat can also be written as L = {Fw},
where the columns of the matrix F are points in the flat and the pa-
rameters w must sum to 1. Finally, every matrix equation defines a
flat implicitly: L = {x ∈ R

n | Ax = a}.
In our inverse skinning setting, vectorizing the expression that the

transformation matrices applied to an undeformed vertex vi equals
its position in all poses {v′

p,i} implicitly defines a flat:

V̄ix =

⎡
⎢⎣
v′
1,i
...

v′
p,i

⎤
⎥⎦ = v′

i, (4)

where x is a point in the space of transformation matrices (R12·#poses)
and V̄i = I3·#poses ⊗ v	

i . The vi and v′
p,i are column matrices, and ⊗

is the Kronecker product. vi is in homogeneous coordinates, while
v′
p,i is not. V̄i is a (3 · #poses) × (12 · #poses) block diagonal ma-

trix with orthogonal rows. The implied flat V̄ix = v′
i is (9 · #poses)-

dimensional. The point x is the (row-major) vectorization of the

Figure 2: We seek the (h− 1)-dimensional handle transformation
flat whose distance to all vertex flats is minimal. Because h− 1 is
typically smaller than the vertex flat dimension (9 · #poses), we vi-
sualize the handle transformation flat as a line. The closest point in
transformation-space to a set of vertex neighbourhood flats is close
to the desired handle transformation flat. If the vertex neighbour-
hood flats all intersect at the same point, then the vertex neighbour-
hood has constant skinning weights. See the text for details.

3 × 4 affine transformation matrices stacked vertically one pose
above the other to form a column matrix. These per-vertex flats
are known based on the input to the inverse skinning problem. The
points in these flats are the matrices which transform an undeformed
vertex to its corresponding deformed positions. The flats are high
dimensional, because the transformations are not unique (e.g. pure
translations).

Our first goal (Section 4) is to find a handle flat that minimizes the
distance to all vertex flats (Figure 2). In general, this distance will be
non-zero, because the handle flat has a much lower dimension than
the ambient space or the vertex flats. Our second goal (Section 5)
is to find an appropriate simplex in the handle flat containing all
vertices’ transformations (Figure 1). This is a well-studied problem
in hyperspectral imaging. The simplex provides the solution to our
inverse skinning problem. It determines the skinning weights and
handle transformations for each pose.

4. Per-Vertex Transformations

The goal of this section is to find a flat L passing through or min-
imizing the distance to the vertices’ flats, V̄ix = v′

i (Figure 2). If L
is (h− 1)-dimensional, then any h affinely independent points in L
can be affinely combined to reproduce all points in L. (It is easy
to choose points for which the weights are convex combinations.)
Therefore, the LBS reconstruction error is determined by the flat,
not by the choice of points. Rather than searching for the handles
directly in R

12·#poses, we search instead for a handle transformation
flat L. The goal of Section 5 will be to find points on the flat to serve
as the handle transformations.

The dimension of L is h− 1, where h is the number of handles.
If h = 1, then L is a single point, and the solution can be found
in closed-form by inverting a small 4 × 4 square matrix. However,
when h > 1, we know of no guaranteed solution to the problem of
finding the flat L that minimizes the distance to a given set of flats
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V̄ix = v′
i:

argmin
L

∑
i

D(L, V̄ix = v′
i)

2, (5)

where D measures the Euclidean distance between flats. We exper-
imented with many ways to express and minimize the flat/flat dis-
tance: direct gradient and Hessian-based optimization for an explicit
representation of L, including optimization on the Graff manifold;
gradient-based optimization based on projection matrices; global
optimization via basin hopping; computing the Karcher mean; and
several alternating optimization strategies, one of which exhibited
the best performance of all approaches. We describe this supe-
rior approach in detail in Section 4.2. We describe alternative ap-
proaches in Appendix C.

A straightforward expression for Equation (5) is

min
p,B

∑
i

‖V̄i(p + Bzi) − v′
i‖2, (6)

where p ∈ R
12·#poses and B ∈ R

(12·#poses)×(h−1) are the explicit rep-
resentation for L, and zi ∈ R

h−1 are the parameters for the clos-
est point onL: zi = −(B	V̄	

i V̄iB)
−1B	V̄	

i (V̄ip − v′
i). The pseudoin-

verse should be used when 3 · #poses < h− 1.

The V̄i are defined in Equation (4) not to be orthonormal. As a
result, Equation (6) measures the distance from L to vertex i’s flat
in terms of the 3D position error, rather than the distance inR12·#poses.

Equation (5) is, in general, non-convex; to see this, consider a
cube inR3. Let the given flats be the lines through all 12 edges of the
cube. The line with the minimum distance to all given lines passes
through opposite corners of the cube; there are four equivalent so-
lutions separated by inferior solutions.

Figure 3 shows the results of an experiment in which we gener-
ate sets of 100 random d-dimensional flats in R

24 that intersect a
k-dimensional flat, and then optimize for the k-dimensional flat pa-
rameters from a random initial guess. We use a straightforward
explicit expression for the energy (Equation 6) optimized with a
Hessian-based trust region solver constraining B to lie on the Grass-
mann manifold [TKW16]. The solver terminated after a maxi-
mum of 200 iterations. (200 iterations took 20 min on average. We
achieved qualitatively similar results inR12 at up to 1000 iterations.)
We report the energy of the local minimum found. All experimental
setups have a known zero-energy solution. When d = 0, the given
flats are points and the problem degenerates to a simple linear least-
squares problem; a perfect solution is always found.More generally,
when d + k < 24, a zero-energy solution can often be recovered,
though with decreasing success and rapidly increasing computation
time as d + k approaches 24. When d + k ≥ 24, the problem is triv-
ial. The set of unknown flats that do not intersect all given flats has
measure-zero, and so a random initial guess almost surely has zero
energy. In our inverse LBS scenario, the ambient space is R12·#poses,
the given flats have dimension R

9·#poses and the number of handles
is a small number independent of #poses. This combination seems
to place our problem into the zone where solutions are challenging
to find naively even when a known zero-energy solution exists. See
Figure 4 and our Supplemental Materials for a visualization of the
k = 3 scenario. See our Supplemental Materials for an animation of
the optimization iterations for the d = k = 1 scenario in 3D.

Figure 3: Solutions obtained from numerical optimization with
varying given and unknown flat dimensions in R

24. A known zero-
error solution exists for all scenarios. The errors are shown at log10

scale; error is capped from below to 10−10. The number of solver
iterations was capped at 200. (We achieved qualitatively similar re-
sults in R12 at up to 1000 iterations.) See the Supplemental Materi-
als for animations of optimization iterations.

4.1. Initial guess

In the absence of a closed form solution to this problem, we con-
jecture that nearby vertices are likely transformed by similar trans-
formation matrices. (In LBS, this will be exactly true when vertices
share the same skinning weights for all bones.) For each vertex and
its neighbourhood, we can compute the point inR12·#poses whose dis-
tance to the vertices’ flats is minimized in a least squares sense:

xi = argmin
x

∑
j∈{i}∪N (i)

∥∥∥∥ 1

‖v j‖2
V̄	
j V̄j(x − t j )

∥∥∥∥
2

, (7)

where the divisor normalizes the rows of V̄j, N (i) are the one-ring
neighbours of vertex i, and t j is any valid transformation matrix in
vertex j’s flat as a point in R

12·#poses. Neighbours are needed be-
cause a single vertex does not uniquely determine a transformation.
A trivial valid transformation matrix can be obtained as the pure
translation matrix mapping v j to v′

p, j. V̄
	V̄ is a block diagonal ma-

trix whose diagonal blocks are each simply v	v. When scaled by
the divisor, it is a projection matrix. Minimizing the above entails
solving a 4 × 4 system of equations.

Since themetric we ultimately care about in inverse LBS is the 3D
error, we minimize a version of Equation (7) that applies the trans-
formation to v j (left-multiplying by V̄j), which leads to a simpler
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Table 1: Keeping different fractions of our per-vertex initial guess results in different final error after 10 iterations of our bi-quadratic flat optimization
(Section 4.2).

Transformation errors/vertex errors ERMS

Model 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

cylinder 0.23 0.27 0.22 0.01 8e-3 0.02 0.13 0.2 0.16 0.16
21.59 15.89 17.77 1.0 0.88 2.34 17.37 13.22 12.88 12.67

cube 0.07 0.11 0.10 0.09 0.10 0.11 0.11 0.11 0.11 0.13
5.55 6.87 6.25 6.37 6.12 6.28 6.49 6.65 8.55 7.58

cheburashka 0.04 0.02 0.03 0.02 0.02 0.02 0.02 0.02 0.03 0.06
1.24 0.90 0.82 0.85 0.92 0.75 0.95 0.81 0.94 1.16

wolf 38.74 108.14 21.99 0.61 0.2 0.14 0.15 0.14 0.12 0.19
0.04 0.09 2e-3 4e-8 2e-8 1.5e-9 2e-9 1.2e-9 1.3e-9 8.9e-10

cow 1.81 0.46 0.39 0.36 0.41 0.66 0.96 0.65 0.68 0.72
0.49 0.18 0.21 0.14 0.20 0.31 0.23 0.25 0.25 0.29

The initial guess was computed via the unconstrained one-ring neighbourhood. The lowest error is found at approximately 50%.

expression:

xi = argmin
x

∑
j∈{i}∪N (i)

‖V̄jx − v′
j‖2 (8)

because 1
‖v j‖2 V̄jV̄

	
j = I. Due to the block diagonal structure of

V̄i, minimizing the expressions amounts to solving 4 × 4 systems
of equations.

A vertex’s flat has a (9 · #poses)-dimensional nullspace and
(3 · #poses)-dimensional row-space, so any four (or more) non-
planar vertices lead to a full-rank system. Intuitively, this is because
the action of a 3D affine transformationmatrix cannot be determined
from its action on a plane; the scale factor in the direction orthogonal
to the plane remains unconstrained. When the sum of squared dis-
tances (Equation 7 or 8) is exactly 0, we know that all flats intersect
at a single point, the minimizer xi. This will be the case for vertices
whose neighbourhoods always undergo the same affine transforma-
tions. This occurs in LBS whenever weights are locally constant.
This occurs at any rigid part of a shape. When the sum is non-zero,
the intersection point is still likely to be near the optimal handle
transformation flat (Figure 2).

Given the set of minimizers xi, one for each vertex with an as-
sociated full-rank system (Equation 8), we can compute an initial
guess for the desired flat Lguess via principal component analysis
(PCA). PCA directly provides an explicit representation for a flat:
the mean is a point on Lguess, and the first h principal components
form an orthonormal basis for directions parallel to it. Note that this
PCA projection error is only approximate. It does not exactly cap-
ture the desired flat/flat distance in R

12·#poses or in 3D (Equation 6).
The approximation is due to the fact that the distance from a ver-
tex flat to Lguess may be smaller than the distance from a particular
point on that flat. The distance could also be larger, if the minimiz-
ers xi of Equations (7) and (8) are not restricted to lie on the vertex
i’s flat. Since vertices whose reconstruction error is large should be
considered outliers, we experimented with the fraction of vertices
to keep before computing PCA (Table 1). The lowest error was ob-
tained near the 50th percentile, which we use for our results. See

Appendix B for additional experiments comparing variants of Equa-
tions (7) and (8).

In the following section, we improve the PCA approximation
Lguess via numerical optimization of Equation (6).

4.2. Flat optimization

We seek to minimize the sum of squared flat/flat distances (Equa-
tion 6) given an initial guess Lguess. To do so, we use the explicit
affine expression for the flat:

min
F

∑
i

‖V̄iFwi − v′
i‖2 (9)

subject to 1	wi = 1. This expression is quadratic in each of F , wi

and even the rest pose positions V̄i. The quadratic expressions for
each wi are independent of each other and entail solving an (h+
1) × (h+ 1) system of equations. (The extra row and column are
for enforcing the sum-to-one constraint with a Lagrange multiplier.)
The quadratic expressions for each vi are independent of each other
and entail solving a 3 × 3 system of equations. The minimizer for
F results in a linear matrix equation:∑

i

λi
(
I3·#poses ⊗ (viv	

i )
)
F
(
wiw	

i

) = −λi
∑
i

V̄iv
′	
i wi, (10)

where λi are per-vertexweights whichwe set to the smallest singular
value of the system used to solve for wi. Via the row-major vector-
ization identity vecrow(ABC) = (A⊗C	)vecrow(B), and the obser-
vation that the identity matrix in Equation (10) leads to a repeated-
block diagonal system matrix, this results in a 4h× 4h system of
equations. (Only a single block needs to be solved with multiple
right-hand sides.) We set the initial F to Lguess and then alternately
solve for wi and F (and optionally V̄i) for a few iterations (i.e. no
more than a specified maximum number of iterations, e.g. 2, or until
the Frobenius norm between successive iterations of F falls below
a threshold, e.g. 0.2).1

1To prevent tangential drift, we normalize W’s columns to be unit length
from their average. To measure convergence with principal angles, F could
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Figure 4: Visualization of bi-quadratic flat optimization on the cylinder example, with and without our proposed initial guess. In this example,
there are four bones, each with the vertex of a tetrahedron, so the desired handle flat is 3D. The points visualized here are the closest points
on the handle flat to each vertex’s flat (computed via projection). Because the orientation of the visualized 3D space is arbitrary (obtained via
PCA from the ambient R48), we apply a procrustes transformation between adjacent iterations. Top row: From our initial guess (Section 4.1),
our bi-quadratic optimization (Section 4.2) rapidly recovers a result close to the ground truth in only a few iterations. Bottom row: From a
random initial guess, our bi-quadratic optimization reaches a state dissimilar to the ground truth from which little progress is made. See the
Supplemental Materials for videos of the optimization progress.

Figure 5 compares our optimization approach with a variety of
alternatives. These approaches are detailed in Appendix C. Our al-
ternating bi-quadratic approach immediately achieves low error and
makes little further progress. Figure 4 and the Supplemental Materi-
als visualize the iterative optimization of a four-bone model (cylin-
der), with and without our proposed initial guess. The handle flat for
this model is a 3D affine sub-space. We visualize the closest points
on this flat to each vertex’s flat.

The result of this optimization is a flat L. This process is quick,
and exactly captures the LBS error for a rig with h handles. When
the desired number of handles is unknown, we run a binary search on
h to find the smallest number of handles whose LBS reconstruction
error is below a desired threshold.

The closest point on L to each vertex flat is given by Fwi.
These points are the input to the next stage of our algorithm,
which computes the final LBS rig (skinning weights and handle
transformations).

5. Handle Transformation and Skinning Weights Estimation

Given a set of points in R
12·#poses all lying on a flat with dimension

h− 1, the goal of this section is to compute a tight-fitting (h− 1)-
simplex around them. The h vertices of the simplex will serve as the
handle transformations. The points’ well-defined barycentric coor-
dinates will serve as their skinning weights. This is the minimum
volume simplex problem studied in the hyperspectral imaging com-
munity. We claim no particular contribution over the state-of-the-art
[CCHM09, BD09, ACMC10, ALBDP14, LCWC16], thoughwe are
the first to recognize its relevance for inverse skinning. We provide
a description for completeness.

be taken as a point on the Graff manifold and identified with a point on
the higher-dimensional Grassmann manifold (Appendix A). We found the
alternative of comparing both the principal angles of the parallel directions of
F alongwith the Euclidean distance between flats to be numerically unstable.

Any simplex enclosing the set of points provides us with a set of
handle transformations and skinning weights that satisfy the con-
vexity constraints. All such simplices will have the same error in
reproducing the poses; the error is entirely determined by the flat
chosen in the previous section. Due to the linearity of LBS, this
holds true even for arbitrary blends of the handle transformation
matrices (e.g. during animation). Linearity tells us that we would
see the same result as if we were to blend the observed posed mesh
vertices directly.

Finding a minimum volume enclosing simplex is useful insofar
as it leads to sparser skinning weights. The barycentric coordinates
of a point are sparser, the closer a point is to a face of a simplex.
(Lower dimensional faces are sparser than higher dimensional ones;
e.g. points that lie on 3-simplex faces of a simplex have only four
non-zeros.) The minimum-volume enclosing simplex ensures that
there are points at least on all (h− 2)-faces.

Therefore, although our approach does not make sparsity guaran-
tees, this step increases sparsity and often leads to a large number of
almost-sparseweights (<0.1). One could apply theweight-reducing
post-process of [LS10]. (Intuitively, naive k-largest weight projec-
tion is akin to projecting points to the nearest (k − 1)-face of the
simplex. The discontinuities result from nearby points in R

12·#poses

being on opposite sides of an angle bisector.)

Minimum volume simplex techniques work well in practice,
even when all observed data are quite blended (the ‘no pure-
pixel’ assumption), despite the seeming ill-posedness of the prob-
lem [HGPP13]. In our experiments, for LBS-created animations,
given ground truth blended pose transformation matrices for mesh
vertices, the minimum volume enclosing simplex exactly recov-
ers the original LBS rig (handle transformations and skin weights)
(Table 5).

The surprising success of these algorithmswas recently explained
by two (independent) proofs of sufficiency criteria [LML*15,
FMHS15]. The criteria are fairly mild. They are summarized in
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Figure 5: Our alternating bi-quadratic optimization rapidly
achieves very low error compared to other experimental optimiza-
tion strategies. In one case (cylinder), Hessian-based optimization
restricted to lie on the Grassmann manifold achieves ground truth
and superlinear convergence after 93 min of computation. See Sec-
tion 4.2 and Appendix C for details of these approaches.

Figure 6. Interestingly, the criteria become easier to satisfy in higher
dimensions as 1√

h−1
decreases.

5.1. Finding a minimum volume enclosing simplex

Our first step is to apply PCA and project the (12 · #poses)-
dimensional points that lie on an (h− 1)-dimensional flat down to
h− 1 dimensions.

Let C be a matrix whose h columns are the (h− 1)-dimensional
vertices of a simplex in homogeneous coordinates (a 1 appended).
Then, C is a square h× h matrix whose bottom row is all 1’s. The
simplex volume is equivalent to the absolute value of the determi-
nant |C|. Let D be an h× #points matrix, where each column is one
of the (h− 1)-dimensional observed points in homogeneous coordi-
nates. Our straightforward objective function can be expressed as:

min
C

| det(C)| (11)

Figure 6: A simplex is always regular in weight-space. If the convex
hull (dashed line) of observed points (black dots) encloses a ball of
radius 1√

h−1
, and the ‘purest’ observed point prevents any rotated

regular simplex form also enclosing the points, then the minimum
volume enclosing simplex is unique and exactly recovers the ground
truth simplex vertices (blue dots).

subject to:

C−1D ≥ 0 (12)

Ch,i = 1, ∀i ∈ [1, h]. (13)

Equation (13) imposes the homogeneity of C, which in turn im-
poses the affinity of barycentric coordinates. In the above formu-
lations, the constraint Equation (12) which computes the barycen-
tric coordinates is non-linear, which makes Equation (11) difficult
to solve. Since det(C−1) = 1

det(C) , min(| det(C)|) ⇔ max(det(C−1)).

Let X = C−1. Because the volume of a simplex increases expo-
nentially with its dimension, the gradients of this objective func-
tion quickly become vanishingly small. Instead, one can optimize
the logarithm of the determinant of X as a better-behaved objective
function. This monotonic transformation does not affect the solu-
tion. Equation (11) can be reformulated as:

min(− log det(X )) (14)

subject to:

XD ≥ 0 (15)

X1h = [0, 0, 0, . . . , 1]T , (16)

where 1 is a column vector of 1’s. Equation (16) imposes the homo-
geneity of X−1. Equation (14) is a non-linear minimization prob-
lem with linear constraints. Constrained gradient-based optimiza-
tion, e.g. SLSQP [Kra88], works successfully albeit too slowly for
our large problems.

Following the work of Agathos et al. [ALBDP14], we opti-
mize the objective function using sequential quadratic programming
(SQP) with a local majorizer for the quadratic and linear terms:

f (x) = 1

2
x	Gx + c	x + constant, (17)
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Table 2: A comparison of reconstructed vertex error and computation time between [KSO10] and our flat optimization (Section 4).

Approx. error ERMS Execution time (min)

Dataset # vertices # poses # bones Kavan et al. Ours Kavan et al. Ours

crane 10 002 175 40 1.4 0.73 0.36 2.66
elasticCow 2904 204 18 3.6 3.23 0.08 1.16
elephant 42 321 48 25 1.4 0.46 0.37 3.49
horse 8431 48 30 1.3 0.35 0.07 0.67
samba 9971 175 30 1.5 0.86 0.26 2.1

Table 3: A comparison of reconstructed vertex error and computation time between SSDR [LD12] and our flat optimization (Section 4).

Approx. error ERMS Execution time (min)

Dataset # vertices # poses # bones SSDR Ours SSDR Ours

cat-poses 7027 9 10 6 5.51 0.5 0.34
15 4.2 3.02 0.8 0.50
20 3.3 1.32 1.3 0.57
25 2.5 0.47 1.9 0.61

chickenCrossing 3030 400 20 7.0 3.79 11.8 6.47
28 4.2 1.46 24.6 7.48

elephant-gallop 42 321 48 10 3.9 5.95 12.6 1.52
20 2.2 1.65 31.7 2.20
27 1.6 0.69 50.5 3.48

elephant-poses 42 321 10 10 6.6 15.982 5 1.47
21 2.8 2.52 17 1.92

face-poses 29 299 9 27 3.2 0.59 13.9 1.61
horse-collapse 8431 53 10 4.6 4.19 2.1 0.33

20 3.1 0.92 4.7 0.52
horse-gallop 8431 48 10 4.8 3.89 1.9 0.33

20 2.3 0.91 6 0.49
33 1.6 0.26 10.4 0.75

horse-poses 8431 10 10 5.5 4.89 0.6 0.24
20 2.6 1.11 1.6 0.32

lion-poses 5000 9 10 5.8 5.79 0.3 0.12
21 3.0 1.03 0.9 0.17

pcow 2904 204 10 7.3 5.98 2.5 0.97
24 3.3 2.25 7.4 1.25

pdance 7061 201 10 4.2 3.40 6 2.17
24 1.4 0.27 22.8 2.12

pjump 15 830 222 20 4.2 3.19 36.1 4.26
40 2.6 1.43 94.2 5.09

where c = g − Hx and G = diag(H ). g is the gradient of
− log det(X ) at our current (vectorized) guess for X , and H is
the Hessian. The gradient, Hessian and inverse Hessian have sim-
ple closed-form expressions. g = vec(−X−T ),H = X−T ⊗ X−1 and
H−1 = XT ⊗ X .

We solved Equation (17) subject to the constraint Equations (15)
and (16) with Mosek [ApS18] via cvxopt’s qp interface [ADV18].
If the returned solution increased the simplex volume (the majorizer
is only local), we iteratively bisect the line segment between the
returned solution and our previous solution until the simplex volume
decreases or convergence. Unlike [ALBDP14], we terminate after
a maximum of 10 rather than four SQP iterations; further iterations
make little progress.

Given a solution X , handle transformations in all poses are simply
the columns of X−1 rotated and translated back to R

12·#poses. Skin-
ning weights are trivially computed as XD.

5.1.1. Initial guess

We start optimization with a valid initial guess. We translate the
data points so that all entries become positive (the minimum cor-
ner of the axis-aligned bounding box b). The translated points
are now bounded on all-but-one side by the axis-aligned planes
through the origin. We then find the offset of the plane with nor-
mal 1 so that all translated points lie on the origin-side of the
plane. The smallest such offset d for this plane is the maximum L1
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Table 4: A comparison of reconstructed vertex error and bits per vertex per frame (bpfv) time between [LDJ*19] and our flat optimization (Section 4). Better
(lower) errors are indicated in bold.

Approx. error ERMS bpfv

Dataset # vertices # poses # bones Luo et al. Ours Luo et al. Ours

chickenCrossing 3030 400 20 12.34 3.79 4.02 4.13
28 6.90 1.46 5.62 5.79

elephant-gallop 42 321 48 10 29.48 5.95 6.57 6.76
20 7.86 1.65 13.50 13.51
27 4.11 0.69 18.49 18.24

horse-collapse 8431 53 10 1.83 4.19 6.67 6.49
20 0.31 0.92 12.55 12.99

horse-gallop 8431 48 10 33.28 3.89 7.01 7.12
20 5.59 0.91 14.85 14.24
33 1.73 0.26 23.82 23.50

pcow 2904 204 10 61.57 5.98 2.84 2.89
24 11.28 2.25 6.92 6.94

pdance 7061 201 10 40.30 3.40 2.79 2.14
24 8.11 0.27 5.17 5.13

pjump 15 830 222 20 11.28 3.19 3.33 3.37
40 2.07 1.43 6.89 6.74

crane 10 002 175 40 3.37 0.73 8.76 8.85
elasticCow 2904 204 18 20.45 3.23 5.97 5.20
elephant 42 321 48 25 4.64 0.46 17.07 16.89
horse 8431 48 30 2.45 0.35 20.94 21.37
samba 9971 175 30 3.58 0.86 6.60 6.64

norm of any translated point. The vertices of a valid initial simplex
are the intersection points of the plane with each coordinate axis:
(d, 0, 0, . . .), (0, d, 0, . . .), . . . alongwith the origin. (These vertices
must be translated by −b.)

6. Results and Evaluation

We evaluated our algorithms on a 2015 13”MacBook Pro with a 2.9
GHz Intel Core i5-5257U processor and 16 GB of RAM. We tested
our methods on various models with different sets of poses given
as 3D triangle meshes with vertex correspondence. The dataset in-
cludes new examples with known ground truth bone transformations
and per-vertex weights computed via bounded biharmonic weights
[JBPS11]. Tables B.2 and 5 and Figure 8 show reconstruction er-
rors for per-vertex transformations and per-bone transformations,
respectively. In this validation experiment, we run our simplex op-
timization until convergence.

We also evaluated our algorithm on examples from two state-of-
the-art approaches, [KSO10] and [LD12]. These examples were not
created by LBS and do not have zero-energy solutions. For all ex-
amples, we run our bi-quadratic flat optimization with our initial
guess (unconstrained, one-ring neighbourhood keeping transforma-
tions for vertices with the 50th percentile lowest error). The running
time for the initial guess is small, less than 10 s for most models and
approximately 30 s for the elephant, our most complex example.

We compared our bi-quadratic flat optimization approach with
two state-of-the-art inverse skinning models, [KSO10] and smooth
skinning decomposition with rigid bones (SSDR) [LD12]. Le and
Deng [LD12] discussed and showed the superiority of their SSDR

method over previous approaches like skinning mesh animations
[JT05] and learning skeletons for shape and pose [HTRS10].
For the consistency of comparison, we use the same error met-
ric used by SSDR and proposed in [KSO10], which is ERMS =
1000

√∑
i ‖v̂i−v′

i‖2
3|V ||P| , where v̂ and v′ are the recovered and ground truth

vertex positions, |V | is the number of vertices and |P| is the number
of poses. Our bi-quadratic flat optimization reduces error quickly
in most cases (Figure 5). Therefore, for the sake of efficiency, we
terminate optimization after four iterations. Table 2 shows that our
bi-quadratic flat optimization achieves a smaller vertex error than
Kavan et al.’s approach, though at the cost of slightly longer com-
putation time. We speculate that Kavan et al.’s better performance
is due to their assumption of four-sparsity for the weights. By fix-
ing the sparsity pattern, they have 4 degrees of freedom per vertex
rather than h. They also operate in reduced coordinates by elimi-
nating vertices with linearly dependent trajectories. Table 3 shows
that our approach not only generally outperforms SSDR in error
measurement, but also has a big win over SSDR on performance.
Table 3 contains the error and running time as reported in [LD12];
we also ran their code without the rigidity constraint with virtu-
ally no change to the reported error and running time. Figure 7
and the supplemental videos show that our output closely matches
the ground truth, whereas [LD12] produces visual artefacts. (See
the Supplemental Materials for full recovered sequences, including
side-by-side comparisons with previous work when available.) Un-
like these approaches, we do not enforce four-sparsity for the re-
covered weights. Popular automatic skin weight approaches do not
generate sparse weights [JBPS11, BP07].

Inverse skinning can also be used as a form of mesh anima-
tion compression. Mesh animation compression algorithms take a
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Table 5: Information about per-bone transformation estimation (Section 5) on various models.

# iterations Transformation Optimization
Model # vertices # faces # bones to converge error per bone Weight error time (min)

cylinder 420 800 4 4 6.1e-5 2.1e-5 <0.005
cube 1538 3072 4 3 2.9e-5 2.4e-4 <0.005
cheburashka 6669 13 334 11 9 2.9e-6 9.7e-7 0.96
wolf 5075 10 018 21 13 7.3e-5 4.8e-6 5.12
cow 11 666 23 328 15 10 8.8e-5 7.1e-7 16.19

Each model’s examples are generated manually from skeletal deformation. Hyperspectral unmixing approach can recover ground truth within minutes.

Figure 7: Our output closely matches the input mesh sequences.
The output from SSDR [LD12], even without rigidity constraints,
displays clear visual artefacts. (We render with flat shading to ac-
curately portray surface quality.) See the Supplemental Materials
for entire mesh sequences.

temporally coherent sequence of frames as input and produce an
encoding that aims to minimize the reconstruction error for a tar-
get bits per vertex per frame (bpfv). The bpfv for an uncompressed
3D vertex is 3 · 32 bits using single-precision floating-point num-
bers. In inverse skinning, the handle weights are a fixed cost per
vertex (h · 32 bits using single-precision floats), regardless of the
animation length. Each animation frame requires an affine transfor-
mation matrix per handle to be shared by all vertices ( 12·h

#vertices · 32
bits). The total bpfv for a given mesh animation compressed us-
ing inverse skinning is obtained by adding the per-frame bits to the
fixed cost amortized across all frames. In Table 4, we compare our
approach to a state-of-the-art mesh animation compression method
[LDJ*19]. (We omit examples consisting of temporally incoherent
poses, for which the technique of Luo et al. [LDJ*19] is not appli-
cable.) In all but one animation, our approach obtains a much lower
reconstruction error for the same total bpfv. Across all examples, our
approach’s reconstruction error is a factor of 4.6× lower (geomet-
ric average). In the one example for which our approach is inferior,
a horse collapses as if made of cloth. We conjecture that any ani-
mations in which large portions of a shape move coherently (if not
rigidly) will be better compressed using inverse skinning.

Figure 8: Given ground truth per-vertex transformations (left), the
recovered weights and bone transformations match almost exactly
(middle). However, recovered per-vertex tranformations enclose too
big a volume in transformation space, resulting in incorrect bone
transformations and low sparsity (right). In all cases, vertex posi-
tions are recovered almost exactly. Each handle is assigned a colour
and visualized per-vertex via colour mixing and with a yellow dot
at its centre-of-mass.

As shown in Table 5 and Figure 8, our hyperspectral unmixing
approach recovers nearly exact ground-truth per-bone transforma-
tions and skinning weights when given perfect (ground-truth) per-
vertex transformations. To measure transformation error, we use the
mean absolute error across all 12 · #poses entries in the transfor-
mation matrices. To further verify the recovery’s correctness, we
visualize each bone’s position as the weighted centre of mass of
all vertices and each bone’s influence as a distinct colour. Figure 8
shows that our hyperspectral unmixing approach is sensitive to er-
rors from per-vertex transformations. For this table and figure, we
ran flat optimization and simplex fitting each for 10 iterations. We
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Figure 9: The results of our hyperspectral inverse skinning pipeline
on examples not created with linear-blend skinning. These exam-
ples do not have zero-energy solutions or ground-truth per-vertex
transformations. Human motion sequences are performance cap-
tured. Our approach recovers the vertex positions with state-of-
the-art error. However, recovered per-vertex tranformations often
enclose large volumes in transformation space, resulting in low
sparsity. Each handle is assigned a colour and visualized per-vertex
via colour mixing and with a yellow dot at its centre-of-mass.

experimented with random sampling to drop outliers, but found that
it did not help.When comparing the visual distribution of per-vertex
transformation matrices between our recovered results and the
ground truth, there is sometimes a systematic error to our local min-
ima (rotation inRn) rather than noise (Figure 4). Figure 9 visualizes
our estimated bones’ positions and weights on examples not created
with LBS and so without a zero-energy solution or ground-truth per-
vertex transformations. The humanmotion sequences were obtained
via performance capture. Run-time performance ranges from a few
seconds to minutes for larger models and is dominated by the num-
ber of handles rather than the number of vertices. In the future, we
would like to experiment with other simplex fitting algorithms that
claim superior performance [BD09, LCWC16].

7. Conclusion

We have shown that a re-formulation of inverse skinning as a prob-
lem in high-dimensional Euclidean space leads to a very fast and
novel decomposition of the problem. Our first stage poses the prob-
lem of finding per-vertex transformations as flat/flat distance mini-
mization. This problem has a simple expression. We experimented
with many approaches to solve this problem, resulting in a fast and
efficient solver. However, we consider this to still be an open prob-
lem. No approach is yet capable of recovering known ground truth
solutions. Our second stage connects skinning decomposition to hy-
perspectral image unmixing, which is well studied in the field of
remote sensing. These algorithms make mild assumptions and are
capable of simultaneously recovering ground truth bone transfor-
mations and per-vertex skinning weights given correct per-vertex
transformations. Similar ideas involving the convex hull were suc-
cessfully used to find palette colours in RGB colour space [TLG16].
The idea can be naturally transplanted to decomposing transforma-

tion data, where the number of independent bones equals the dimen-
sionality of all per-vertex transformations (e.g. reduced by PCA).

7.1. Limitation and future work

Our approach has several limitations. We do not consider weight
sparsity. In our scenario, four-sparsity can be interpreted as finding
a set of tetrahedra sharing vertices. It may be worth exploring an
optimization for the vertices of a tetrahedral mesh or in which a set
of intersecting 3D flats are optimized. Second, we do not constrain
transformations to be rigid. This may or may not be appropriate de-
pending on the application. This may aid in recovering ground truth
per-vertex transformations, which our flat optimization is currently
unable to do. One could constrain the vertices of the simplex to be
rigid transformations, but this may require an adjustment to the han-
dle flat itself. Alternatively, one could skip flat optimization and for-
mulate aminimum-volume simplex optimization problemwhere the
simplex vertices directly lie inR12·#poses. Finally, we do not consider
artistic controls, such as allowing the user to specify or suggest a
handle’s position.
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Appendix A: Flats

A flat is an affine subspace of Rn. It generalizes the concept of a
line or plane (a linear subspace offset from the origin) to higher di-
mensions. A flatL can be defined implicitly viaL = {x ∈ R

n | Ax =
a}, where the row-space of the matrix A ∈ R

k×n is spanned by the
directions orthogonal to the flat and a is the product of A and a point
on the flat. The rows of A are often assumed to be orthonormal. We,
too, assume this, and so our flat is (n− k)-dimensional. Note that
when k = 1, this implicit form becomes the familiar expression for
a (hyper)plane with normal n: A = n	 and soL = {x | n	x = n	p},
where p ∈ R

n is a point on the flat (hyperplane). A hyperplane is a
flat whose dimension is one less than the ambient space. It always
has one direction of perpendicularity, which is easy to visualize in
3D. A line in 3D has a 2D space of normals (and two rows in its A):
the plane perpendicular to it (Figure A.1).

A flat can also be defined explicitly as L = {p + Bz}, where the
columns of the matrix B span directions parallel to the flat, z is the
vector of parameters and p is again a point on the flat. The columns
of B span the nullspace of A. If we assume that the columns of B
are orthonormal, then B ∈ R

n×(n−k) and z ∈ R
n−k. A flat can also

be written as Fw, where the columns of the matrix F ∈ R
n×(1+n−k)
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Figure A.1: A one-dimensional flatL = p + Bz and its orthogonal
directions A in R3.

are affinely independent points in the flat and the parameters w ∈
R

1+n−k must sum to 1.

It is also useful to consider projections onto flats. Assuming A
has orthonormal rows, Prow = A	A is a projection matrix mapping
a point in R

n to the closest point in A’s row-space. (If the rows of
A are linearly independent but not orthonormal, then the projection
matrix is A	(AA	)−1A.) The matrix I − Prow is a projection matrix
onto A’s nullspace. Given Bwith orthonormal columns, Pnull = BB	

and I − Pnull are projection matrices onto the nullspace and row-
space, respectively. (If B’s columns are linearly independent but not
orthonormal, Pnull = B(B	B)−1B	.) Depending on n, k and the data
at hand, desired projection matrices may be more readily computed
in one or the other manner. Given a projection matrix P, P	 = P =
PP. The eigenvalues of P are either 0 or 1.

The reader is referred to DuPré and Kass [DK92] for an in-depth
discussion on distance and degrees of parallelism between flats.

The space of all k-dimensional linear subspaces ofRn is known as
the Grassmann manifoldGr(k,Rn). The space of all k-dimensional
affine subspaces of a vector space is the less well-known Graff
manifold Graff(k,Rn). The Graff manifold can be identified with
Gr(k + 1,Rn+1) by intersecting a linear subspace with the plane
xn+1 = 1 (the hyperplane perpendicular to the last or n+ 1-th co-
ordinate axis). This intersection results in k + 1 points in R

n (the
n+ 1-th coordinate for all points is 1). These k + 1 points span the
affine subspace. The canonical or principal angles between k and
l-dimensional linear subspaces (defined by a k × n matrix B1 and

l × n matrix B2, each with orthonormal columns) can be computed
as the arccos of the singular values of B	

1 B2; when k �= l, there are
additional |k − l| principal angles of π

2 .

Appendix B: Per-Vertex Transformation Experiments

We experimented with Equations (7) and (8) (Section 4.1) with
and without the constraint that xi exactly reproduces the observed
deformation (e.g. V̄ixi = v′

i) and with three notions of vertex neigh-
bourhoodsN (i): the one-ring and randomly sampling vertices from
within a Euclidean or geodesic distance of vi.

Table B.1 shows 3D positional and transformation errors result-
ing from Equation (8) on a set of models with known ground-truth
transformations. In all tables, position errors inR3 are computed via
ERMS from [KSO10]. Transformation errors inR12·#poses are element-
wise average absolute deviation. For the unconstrained approaches,
the one-ring neighbourhood generated the lowest 3D position er-
ror. The exact reproduction constraint increased the transformation
error with negligible visual benefit to the position error. The Eu-
clidean neighbourhood leads to slightly lower transformation error
but substantially increased position errors. The geodesic neighbour-
hood produces worse results than the Euclidean. We experimented
with various Euclidean and geodesic random sampling strategies.
We found that the best result among 10 random subsets of 48 ver-
tices taken from the 120 nearest neighbours generally produced
the lowest error, so we used this random sampling strategy in our
tables. The tables show the result of minimizing 3D error (8), which
produced superior results to (7).

Table B.2 compares the downstream performance of these strate-
gies followed by PCA as the initial guess for flat optimization (Sec-
tion 4.2). In this experiment, we perform PCA on the 50% of per-
vertex initial guesses with lowest position error. The unconstrained
one-ring neighbourhood outperformed the other strategies. As a re-
sult of our experiments, and owing to its simplicity and run-time per-
formance, we use the one-ring neighbourhood with unconstrained
3D error (8) for our results.

Appendix C: How Not to Minimize Flat/Flat Distances

We seek to minimize the sum of squared flat/flat distances
(Equation 6) given an initial guess Lguess. This minimization can

Table B1: The error resulting from various initial guess schemes compared with ground truth.

Transformation errors/vertex errors ERMS

Unconstrained approaches Constrained approaches

Model One-ring Euclidean Geodesic One-ring Euclidean Geodesic

cylinder 0.19/7.65 0.09/38.3 0.34/167.55 0.24/0.0 0.08/0.0 0.32/0.0
cube 0.12/4.69 0.04/12.96 0.18/11.09 0.12/0.0 0.04/0.0 0.18/0.0
cheburashka 0.04/0.22 0.03/4.0 0.05/6.20 0.04/0.0 0.03/0.0 0.05/0.0
wolf 0.04/0.40 0.03/3.43 0.18/14.47 0.04/0.0 0.03/0.0 0.19/0.0
cow 0.25/0.13 0.18/1.21 2.18/29.85 0.25/0.0 0.18/0.0 2.12/0.0

Position errors in R
3 are computed via ERMS from [KSO10]. Transformation errors in R

12·#poses are element-wise average absolute deviation.

© 2020 The Authors Computer Graphics Forum © 2020 Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd



62 S. Liu et al. / Hyperspectral Inverse Skinning

Table B2: The error resulting from various initial guess schemes followed by 10 iterations of our bi-quadratic flat optimization (Section 4.2) compared with
ground truth.

Transformation errors/vertex errors ERMS

Unconstrained approaches Constrained approaches

Model One-ring Euclidian Geodesic One-ring Euclidian Geodesic without initial guess

cylinder 0.01/0.88 0.21/13.52 0.52/18.42 0.01/1.48 0.2/12.91 0.58/20.1 0.45/31.29
cube 0.10/6.12 0.11/6.59 0.28/10.76 0.11/5.97 0.09/7.96 0.34/9.52 0.2/15.51
cheburashka 0.02/0.92 0.04/0.83 1.02/1.59 0.02/0.83 0.03/0.91 0.99/2.15 0.1/1.22
wolf 0.2/1e-8 1.12/6.7e-8 2.19/1.3e-4 0.2/6.7e-9 2.11/1.1e-6 0.58/2.7e-5 0.32/5e-10
cow 0.42/0.2 5.53/0.27 10.92/0.98 0.27/0.22 1.46/0.31 18.57/1.76 1.63/0.74

In this experiment, we keep the 50% of per-vertex initial guesses with lowest position error.

be expressed in numerous ways. See Figure 5 for a comparison
where relevant.

Direct optimization (p,B). We directly optimize Equation (6) us-
ing the BFGS algorithm [NW06]. This never achieves the low er-
ror of our proposed bi-quadratic approach. We also experimented
with a combination of these two approaches, where we improve the
bi-quadratic solution with direct optimization or switch approaches
every 10 iterations. These combinations were inferior to simply run-
ning the bi-quadratic approach for additional iterations.

Optimization on an appropriate manifold (p,B manifold). We
optimize Equation (6) with various algorithms (gradient descent,
conjugate gradient and trust region) on the space of Rn × Gr(h−
1,Rn) [EAS98, TKW16]. The gradient descent and conjugate gradi-
ent algorithms are slower to compute and achieve higher error per it-
eration than our proposed bi-quadratic approach. TheHessian-based
trust region algorithm is much slower to compute, taking hours to
execute 20 iterations. However, on our simplest example, a cylin-
der with four bones, the trust region algorithm achieves superlinear
convergence and the known ground truth solution (Figure 5).

Global optimization. We employed basin hopping [WD97],
which is a stochastic global minimization algorithm in which ran-
dom modifications of the current state are optimized via continuous
optimization. We used our proposed approach (Section 4.2) for the
continuous optimization. Basin hopping failed to improve upon the
error of our proposed approach alone. The random modifications
did not find basins with lower error. This approach is not plotted in
Figure 5, because the curve would cover that of our proposed bi-
quadratic approach.

Karchermean. We experimented with computing the Riemannian
centre of mass or Karcher mean of the given flats. The Karcher mean
was proposed in the literature [CHV17, MRBD*14] as an effective
technique for finding the centroid to a set of points on a Riemannian
manifold. We experimented with representing flats as points on (1)
the product manifold Rn × Gr(h− 1,Rn) or (2) the Graff manifold
identified with points on the higher dimensional Grassmann man-
ifold (Appendix A). In our setting, the unknown flat has different
dimension than the given flats; in this case, the additional principal

angles needed for the geodesic distance computation are taken as π

2 .
Unfortunately, this approach does not find a flat with small distance
to other flats. We believe that this is due to the distortion of distances
on the product or Graff manifolds.

Iterative PCA. We optimize Equation (6) with a different alter-
nating decomposition than our proposed bi-quadratic approach. In-
stead, we alternate between (1) solving for the closest point on each
vertex’s flat to the handle flat L and then (2) solving for the flat that
minimizes the squared distance to these closest points. Step (1) can
be solved via

argmin
x

(x − p)	Pnull (x − p) (C.1)

subject to:

V̄ix = v′
i, (C.2)

where Pnull = I3·#poses − B(B	B)−1B	 = I3·#poses − BB† is the
orthogonal projector onto the null-space of the handle flat
(Appendix A) and B† is the Moore–Penrose pseudo-inverse of
B. This requires solving a different (3 · #poses) × (3 · #poses)
system of equations for each vertex, with the constraint imple-
mented either via Lagrange multipliers or as a least squares soft
constraint. Step (2) can be solved by PCA, taking the first h− 1
principal components as the parallel directions for the handle
flat and the centre as the point through which the handle flat
passes.

This iterative PCA (IPCA) approach produces better results than
all other techniques except for our bi-quadratic approach (and
the very expensive Hessian-based trust region approach). Our bi-
quadratic approach alternates between (1) solving for the closest
point on the handle flat L to each vertex’s flat (in terms of han-
dle flat parameters wi) and (2) solving for a new handle basis ma-
trix F that minimizes the distance to the vertex flats using the wi

parameters. Our bi-quadratic approach is faster to compute, as it
only requires the solution to a single, smaller 4h× 4h system of
equations.

Iterative Laplacian re-weighting. Any point on a d-dimensional
flat can be represented as the weighted average of d + 1 or more
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affine independent points. In our setting, this implies that the fol-
lowing energy for per-vertex transformation matrices ti ∈ R

12·#poses

should be zero:

Elocal =
∑
i

∥∥∥∥∥∥ti −
∑
j∈N (i)

wi jt j

∥∥∥∥∥∥
2

, (C.3)

whereN (i) are the neighbours of vertex i and wi j are scalar weights
that sum to one. Elocal can be expressed as Elocal = ∑

i ‖Lt̄‖2, where
L is a 12 · #pose · #vertices laplacian matrix and t̄ is a column vector
containing all vertices’ transformation matrices across all poses. We
experimented with two definitions of vertex neighbours: the one-
ring; and a fixed, random set of 2h vertices. To reproduce the ob-
served poses, we wish to minimize:

Edata =
∑
i

‖V̄iti − v′
i‖2. (C.4)

We optimize the sum of the two terms. The expression Elocal + Edata

is quadratic in either wi j or ti, so we alternate between solving for
onewhile fixing the other.When solving forwi j,Edata is constant and
can be ignored, resulting in a small, typically underdetermined, local
system per-vertex that can be solved in a least-square sense. Solving
for ti, however, amounts to solving a very large, sparse system of
equations. Finally, we take the first h− 1 principal components of
the final ti to be the handle flat.

Because of the very large system of equations, this approach ex-
ecutes much more slowly than our proposed bi-quadratic approach
and produces solutions with more error per iteration.

Orthogonal projector. The minimal distance between flats (Equa-
tion 5) can be written as ‖C(x0 − y0)‖, where x0 is any point on one
flat and y0 is any point on the other flat andC is the projection matrix
onto the intersection of the two flats’ orthogonal spaces [DK92]. For
our problem, this results in the expression:

∑
i

‖Ci(p − ti )‖2 = p	
(∑

i

Ci

)
p +

(∑
i

t	i Citi

)
− 2p	

(∑
i

Citi

)
,

(C.5)

where the ti are any valid transformation matrix in vertex i’s flat
(Equation 7). The projection matrix Ci can be written (via the
Anderson–Duffin formula) asCi = 2PV̄i (PV̄i + PB)†PB, where PB and
PV̄i are orthogonal projectors onto the column-space of B and the
row-space of V̄i, respectively. This approach is unstable and tends to
increase error from a good initial guess.

Equation (C.5) is minimized (by setting the derivative with re-
spect to p to 0) when p = (

∑
i Ci)

−1(
∑

i Citi). Substituting this
expression for p results in:

min
B

(∑
i

t	i Citi

)
−
(∑

i

Citi

)	(∑
i

Ci

)−1(∑
i

Citi

)
. (C.6)

This expression is numerically unstable, because Ci is rank defi-
cient. This rank deficiency corresponds to the fact that p can be
any point on a flat. Even with a pseudoinverse, the expression is
unstable.
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