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Abstract

There is a general shortage of standardized comparisons in the field of appearance modeling. We therefore introduce a
benchmark for assessing the quality of reflectance models on a dataset of high quality material measurements obtained with a
commercial appearance scanner. The dataset currently consists of 56 fabric materials which are measured as radiometrically
calibrated HDR images together with a precise surface geometry. We pose a public challenge to attract further participation
and spark new research. Participants evaluate their models on provided directional light and view sampling to recreate the
appearance of a set of unseen images per material. The results are automatically evaluated under various image metrics and
ranked in a public leaderboard. Our benchmark provides standardized testing and thus enables fair comparisons between

related works. We also release baseline SYVBRDF material fits.

Categories and Subject Descriptors (according to ACM CCS): 1.3.7 [Computer Graphics]: Three-Dimensional Graphics and

Realism—Color, shading, shadowing, and texture

1. Introduction

Appearance modeling deals with finding representations of cap-
tured or simulated reflectance. The goal is to recreate realis-
tic reflectance behanvior when evaluating the developed models.
Before modelling, one needs to acquire real surface reflectance.
This usually requires expensive and carefully calibrated setups
that densely sample the surface in the angular domain of light
and view directions. Specialized, self-calibrating hardware al-
lows to capture spatially resolved reflectance on a large scale
[Deb12, KNRS13, SRT* 14, XR18]. In parallel developed software
packages like Adobe’s Substance Designer [Sub20a] and Quixel’s
Mixer [Mix20] provide convenient tools for artists to create re-
alistic materials. Thus, obtaining databases of hundreds of dif-
ferent material samples is easily possible. Commercial databases
like Adobe Substance3D [Sub20b], Poliigon Textures [Pol20],
or the Quixel Megascans [Meg20] are abundant, but difficult to
use for research purposes due to high purchase costs. A line
of works [NDMO5, DAD*18, DJ18, MHRK 19] publicly released
their datasets, enabling usage of such material collections as
training data for machine learning techniques [LXR*18, LSC18,
YLD*18,BMS*19,BL19,DAD*19,GLD*19,KXH*19,RIGW 19,
VCGLM19,BXS*20, BJK*20,RGIW20].

The growth of available data has so far not provided any means
for systematic comparisons between existing works. Appearance
modelling has the advantage that methods can be directly evalu-
ated on training materials by just picking a new combination of
light and view directions that is unseen in the training data. This is
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in fact how most works are validated. However, only few of them
provide extensive comparisons with related works. This is mainly
for two reasons: First, not all existing works provide their code,
while the re-implementation effort is usually not justified for com-
parison purposes only. Second, a lot of works do not provide the
datasets they use for their evaluation, ruling out comparisons of
new methods against their previous results.

We are therefore motivated to improve this situation by estab-
lishing a benchmark for appearance modelling. We build upon
the UBOFAB19 material database [MHRK19] which consists of
378 fabric materials, scanned with a commercial appearance scan-
ner [XR18]. Each scan consist of several hundred radiometrically
calibrated HDR images, associated with pixel-wise light and view
directions. We extend this dataset with the APPBENCH release of
56 completely new fabrics. Contrary to UBOFAB19, 10% of the
HDR images are held back for usage in the benchmark evaluation.
We only provide the directional sampling for the images in this
holdout set. Thus, one can ensure that comparisons are fair, as the
images in the holdout set are guaranteed to be unseen. We pose the
benchmark as a challenge on the codalab platform, where partic-
ipants can upload their methods’ reconstructions. These uploaded
images are automatically evaluated against the ones in the holdout
set under a set of standard image metrics.

2. Related Work

Perhaps most closely related to our work is the SynBRDF bench-
mark dataset [KGT*17]. It consists of 5000 Ward BRDFs, rendered
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Figure 1: Overview of the 56 new fabric materials released in our APPBENCH dataset, available at https://cg.cs.uni—-bonn.de/

appbench/. Colored frames indicate the fabric type.

on 5000 shapes under 20 natural environment maps. The authors
create half a million LDR and HDR RGBD images together with
ground truth information of BRDF parameters, 3D shape, illumi-
nation and camera pose. However, the dataset is more interesting
for “in-the-wild” settings, whereas our contribution is based on
radiometrically calibrated reflectance measurements. This allows
much better investigation of the reflectance models’ accuracy, as
other error sources, resulting e.g. from inaccuracies in the illumi-
nation, are ruled out. More importantly, the BRDF parameters in
SynBRDF are sampled from OpenSurfaces [BUSB13], a dataset
of real-world photographs annotated with homogeneous BRDF pa-
rameters. However, variations in surface reflectance make up a cru-
cial part of real object appearance and perfectly homoegenous sur-
faces are the exception. There are several other works with homo-
geneous BRDF datasets, most of which are measured in calibrated
setups like gonioreflectometers [MPBMO3, FVH14, FV14, DJ18].
We consider heterogenous surfaces a much more challenging and
realistic setting, which is why we use spatially varying reflectance
in our benchmark.

Deschaintre et al. [DAD*18] released an extensive dataset of
renderings of spatially varying, but synthetic materials. Though
considerably realistic, these materials tend to lack the last bit of
imperfections and variations that distinguish them from real-world
images. Furthermore, the realism of renderings is limited by the ex-
pressiveness of the BRDF model used during rendering, so other
datasets like the synthetic renderings of measured Adobe Stock
SVBRDFs [ XSHR18] face the same limitation.

There are other image-based reflectance models like Bidirec-
tional Texture Functions (BTFs) [DGNK97] which do not suf-
fer from these limitations. Instead of BRDFs, they are composed
of apparent BRDFs (ABRDFs), which contain arbitrarily com-
plex reflectance, including interereflections and shadowing ef-
fects. Though they are available in several rich material databases
[SSK03,RSK10,HM12, WGK 14, FKH* 18], BTFs are not suitable
for arbitrarily glossy materials, as their acquisition, storage, post-
processing and rendering grow more expensive with high glossi-
ness due to the necessary denser angular sampling to faithfully cap-
ture all highlights.

The images in our dataset contain reflectance measurements of

real-world materials. They are obtained with the commercial TAC7
appearance scanner, manufactured by X-Rite [XR18]. Similar to
BTFs, our images contain ABRDFs, but with per pixel varying an-
gular sampling. This avoids the error-prone step of resampling the
measurement images. Our benchmark extends the existing UBO-
FAB19 dataset [MHRK19] of TAC?7 fabric scans.

3. Dataset

In this section we describe the details of our material dataset. It
consists of 56 new fabric materials that are selected from a wide
range of fabric categories, ranging from brocades to velvet, see Fig.
1.

The TAC7 appearance scanner rotates material samples on a
turntable under four fixed panchromatic cameras, 29 fixed white
point-like LED light sources, as well as a strip-like light source
(called linear light source, LLS) that is mounted on an arm and
can be rotated to arbitrary inclination angles. Optionally, samples
can be placed on a back-lit diffuser plate for translucency measure-
ments. The surface geometry is obtained via structured light mea-
surements from a single projector. Color information is captured by
rotating filter wheels in front of five of the LEDs. Measurements
are performed by rotating the turntable to one of five orientations
(0, 45, 90, 135 and 180 degrees). All four cameras then capture ex-
posure series for each individual light source (and optionally color
filter), including the structured light projector. Depending on a user-
selected glossiness preset, the LLS is rotated with a step size of 6
(low gloss), 3 or 0.5 degrees (high gloss) for each turntable ori-
entation. The total number of measured images (excluding struc-
tured light and back-lit images) per material are 388 point-lit, out
of which 100 are color images, as well as respectively 280, 560 or
3300 line-lit images for the low-, medium- or high-gloss presets.

All images are radiometrically calibrated, i.e. all camera non-
linearities are calibrated out of the data during HDR combination.
The same holds for illumination or camera effects like light falloff
or lens vignetting, which are removed via white-frame calibration.
Color images are provided in linear SRGB color space under equal
energy illuminant E.

Confidence maps: During post-processing, per-pixel confidence
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maps are calculated for each measurement image, indicating ge-
ometric and radiometric uncertainties in the data:

w; = min (mi,maX(O, (n,-,li) . <Ili,Vi>)) s

where the masking term m; = 0 indicates that pixel i is shadowed
or occluded, otherwise m; € [0,1] indicates potential radiometric
uncertainties (e.g. over-exposure remaining after HDR combina-
tion for extremely bright highlights). The weights in unmasked re-
gions are the product of the cosines of the angles between light re-
spectively view and the normal. Thus, lower weights are assigned
for grazing angles due to increased geometrical uncertainties. This
weighting scheme is known from BRDF fitting [BSN16] or as part
of a perceptual BRDF similarity metric [Rym18].

Holdout set: For each material, we select about 10% (40 images)
of the point-lit images for a non-public test set, which is reserved
for evaluation of challenge submissions. The images are selected
to cover a wide range of light and view directions and are the same
for each material.

4. Challenge

We pose the benchmark as a competition on the codalab platform.
Participants can upload their result images, which are created by
evaluating reflectance models, e.g. SVBRDFs, on the directional
sampling corresponding to the images in the holdout set. The chal-
lenge is split into two branches:

Standard branch: The results are automatically compared against
the holdout images using the following image metrics: mean abso-
lute deviation (MAD), mean square error (MSE), Structural Sim-
ilarity Index (SSIM) [WBSS04], HDR-VDP 2.2 [NMSCI15], and
for color images additionally CIE AE»poo [CIEO1]. These metrics
all return error maps, which are averaged over all pixels and, where
available, over the color channels. Before computing the metrics,
we apply masks that effectively correspond to a binarized version of
the masking term m; from above, i.e. indicating occluded or shad-
owed regionns in the images. The final metric scores are obtained
by averaging over the 40 images times 56 materials.

Weighted branch: Here we additionally apply the confidence
maps before computing the metrics, i.e. for a given metric we com-
pute the error score E as

_LiMwolLwol);
Yiwi ’

where © is the element-wise product, / is a reference image from
the holdout set and I is the corresponding user reconstruction. M(-)
is the channel-averaged error map under the selected metric, which
is summed up over all pixels i and normalized by the sum over all
confidence map pixels w;.

E

We motivate this weighted branch as follows: The observations
in the TAC7 images are ABRDFs, i.e. reflectance overlaid by shad-
owing, masking and interreflections. Furthermore, imperfections in
the geometry reconstruction or fuzzy structures like small fibers
can cause interactions between neighboring pixels. The confidence
maps encode such uncertainties, at least to a limited degree. By
weighing down pixels with lower confidence, we intend to put more
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focus on the actual reflectance behavior. In this way we hope to bet-
ter assess the quality of purely local reflectance models like BRDFs
that cannot represent shadows or other global effects.

Baselines: We use single-lobe Ward SVBRDFs fit with the Pantora
software [ XR20] as baseline model.

Duration: There is no time-limit for the challenge. We plan to ex-
tend it by further branches covering new material classes in the
future.
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