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There is no justice in the laws of nature, no term for fairness in the equations of motion.
The Universe is neither evil, nor good, it simply does not care.
The stars don’t care, or the Sun, or the sky.

But they don’t have to. We care! There is light in the world, and it is us.

— Eliezer Yudkowsky

To my family
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Abstract

In our everyday life we interact with the surrounding environment using our hands. A main
focus of recent research has been to bring such interaction to virtual objects, such as the ones
projected in virtual reality devices, or super-imposed as holograms in AR/MR headsets. For
these applications, it is desirable for the tracking technology to be robust, accurate, and have
a seamless deployment. In this thesis we address these requirements by proposing an efficient
and robust hand tracking algorithm, introducing a hand model representation that strikes a
balance between accuracy and performance, and presenting the online algorithm for precise
hand calibration.

In the first part we present a robust method for capturing articulated hand motions in real
time using a single depth camera. Our system is based on a realtime registration process that
accurately reconstructs hand poses by fitting a 3D articulated hand model to depth images. We
register the hand model using depth, silhouette, and temporal information. To effectively map
low-quality depth maps to realistic hand poses, we regularize the registration with kinematic
and temporal priors, as well as a data-driven prior built from a database of realistic hand poses.
We present a principled way of integrating such priors into our registration optimization to
enable robust tracking without severely restricting the freedom of motion.

In the second part we propose the use of sphere-meshes as a novel geometric representation
for real-time generative hand tracking. We derive an optimization to non-rigidly deform a
template model to fit the user data in a number of poses. This optimization jointly captures
the user’s static and dynamic hand geometry, thus facilitating high-precision registration. At
the same time, the limited number of primitives in the tracking template allows us to retain
excellent computational performance. We confirm this by embedding our models in an open
source real-time registration algorithm to obtain a tracker steadily running at 60Hz.

In the third part we introduce an online hand calibration method that learns the geometry
as the user performs live in front of the camera, thus enabling seamless virtual interaction
at the consumer level. The key novelty in our approach is an online optimization algorithm
that jointly estimates pose and shape in each frame, and determines the uncertainty in such
estimates. This knowledge allows the algorithm to integrate per-frame estimates over time,
and build a personalized geometric model of the captured user. Our approach can easily be
integrated in state-of-the-art continuous generative motion tracking software. We provide a
detailed evaluation that shows how our approach achieves accurate motion tracking for real-
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Abstract

time applications, while significantly simplifying the workflow of accurate hand performance
capture.

Keywords: non-rigid registration, realtime hand tracking, realtime hand calibration, sphere-
meshes, markerless motion capture
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Résumé

Dans notre vie quotidienne, nous interagissons avec I’environnement en utilisant nos mains.
Un objectif principal de la recherche récente a été d’apporter une telle interaction a des objets
virtuels, tels que ceux projetés dans des dispositifs de réalité virtuelle, ou super-imposés
comme des hologrammes dans les casques AR / MR. Pour ces applications, il est souhaitable
que la technologie de suivi soit robuste, précise et transparente dans le déploiement. Dans
cette these, nous répondons a ces exigences en fournissant un algorithme de suivi manuel
efficace et robuste, en introduisant une représentation manuelle du modele qui équilibre la
précision et la performance, et en présentant ’algorithme en ligne pour un étalonnage manuel
précis.

Dans la premiere partie, nous présentons une méthode robuste pour capturer les mouve-
ments de la main articulée en temps réel en utilisant une caméra de profondeur unique.
Notre systeme est basé sur un processus d’enregistrement en temps réel qui reconstruit avec
précision les poses de la main en ajustant un modele de main 3D articulé aux images de
profondeur. Nous enregistrons le modele de la main en utilisant la profondeur, la silhouette
et 'information temporelle. Pour mapper efficacement des cartes de profondeur de basse
qualité a des poses de mains réalistes, nous régularisons I'enregistrement avec des priors ciné-
matiques et temporels, ainsi qu'un préréglage basé sur des données construit a partir d'une
base de données de poses réalistes. Nous présentons une méthode basée sur des principes
pour intégrer ces priors dans notre optimisation d’enregistrement pour permettre un suivi
robuste sans restreindre de maniere significative la liberté de mouvement.

Dans la seconde partie, nous proposons l'utilisation de mailles-spheres comme nouvelle
représentation géométrique pour le suivi génératif en temps réel. Nous dérivons une optimi-
sation pour déformer de maniere non rigide un modele étalon pour adapter les données de
l'utilisateur dans un certain nombre de poses. Cette optimisation capture conjointement la
géométrie de la main statique et dynamique de l'utilisateur, facilitant ainsi '’enregistrement de
haute précision. En méme temps, le nombre limité de primitives dans le modele de suivi nous
permet de maintenir d’excellentes performances de calcul. Nous confirmons cela en intégrant
nos modeéles dans un algorithme d’enregistrement en temps réel et code source ouvert pour
obtenir un tracker fonctionnant régulierement a 60Hz.

Dans la troisieme partie, nous introduisons une méthode de calibrage manuel en ligne qui
apprend la géométrie lorsque l'utilisateur se produit en direct devant la caméra, permettant



Résumé

ainsi une interaction virtuelle transparente au niveau du consommateur. La nouveauté clé
dans notre approche est un algorithme d’optimisation en ligne qui estime conjointement la
pose et la forme dans chaque trame, et détermine I'incertitude dans de telles estimations.
Cette connaissance permet a I'algorithme d’intégrer les estimations d'images dans le temps et
de construire un modele géométrique personnalisé de l'utilisateur capturé. Notre approche
peut facilement étre intégrée dans un logiciel de suivi de mouvement continu, a la pointe de la
technologie. Nous fournissons une évaluation détaillée qui montre comment notre approche
réalise un suivi de mouvement précis pour les applications en temps réel, tout en simplifiant
grandement le flux de travail pour une capture précise des performances de la main.

Mots-clés : enregistrement non-rigide, suivi des mains en temps réel, étalonnage manuel en
temps réel, maillages de spheéres, capture de mouvement sans marqueur
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Introduction

1.1 Motivation

Tracking humans in motion is a fundamental problem in computer graphics and computer
vision. A particularly important question is how to accurately reconstruct the shape and artic-
ulation of human hands. Firstly, because in our everyday life we interact with the surrounding
environment using our hands [Bullock et al., 2013], [Dollar, 2014]. Secondly, hand motion is a
crucial component of non-verbal communication [Goman, 2009], [Goman, 2011]. The digital
world applications of hand tracking follow from these two functions of hands in the real world.

Performance capture. Performance capture is essential in film and game production for
pre-visualization, where motion can be transferred in real-time to a virtual avatar. This allows
directors to plan shots more effectively, reduce turn-around times and hence costs. The
captured motion can also be analyzed for purposes like re-training after stroke, automatically
translating sign language, or giving feedback to piano students.

Remote communication. Being an important part of our body language, hand motion plays
a significant role in the animation of humanoid avatars. The first steps towards commercial
avatar-based communication were made by Microsoft Holoportation ' and Apple Animoji®.

Gesture control. Gesture control, a simplified version of hand tracking, becomes increasingly
popular as a replacement of remote control for home appliances. It is currently used in such
consumer products as Samsung Smart TV 3 and Singlecue*. A few other similar products are
currently under development.

Virtual interaction. Recently the field of virtual and augmented reality (VR/AR) has made
a large step forward. A number of VR/AR headsets were released, including Oculus, Vive,
Samsung Gear VR, Microsoft Hololens, PlayStation VR, Google Daydream, Microsoft Mixed

IHoloportation: https://www.microsoft.com/en-us/research/project/holoportation-3/, accessed on 27.11.2017
2Apple Animoji: https://support.apple.com/en-us/HT208190, accessed on 27.11.2017

3Samsung Smart TV: http://www.samsung.com/ph/smarttv/motion_control.html, accessed on 27.11.2017
4Singlecue: https://singlecue.com/, accessed on 27.11.2017
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Reality Headset, Intel Project Alloy and Meta 2 AR Headset. The technology is incomplete
without providing the user a way to interact with a virtual environment. Most of the listed
headsets started with dedicated controller devices. However, there is a trend in the field of
replacing controller devices by markerless hand control. Microsoft Hololens °, Meta 2 AR
Headset ® and Intel Project Alloy " are already released in a hand-controlled version and the
other main manufacturers are also currently developing similar technology. There are several
reasons why VR/AR helmets benefit from hand control. Firstly, according to the user study
conducted by Leap Motion 8, interacting with your own hands creates a more immersive
experience. Secondly, it takes time to get used to the controller device and to remember
the functionality assigned to each button. Moreover, hands control can potentially be more
expressive and subtle than a dedicated controller device.

Commercial hand control devices are still an emerging technology, because hand tracking is
challenging and remains a research problem. This was even more so at the start of my doctoral
studies in 2014. The challenges are described below.

Requirements

Any consumer application relies on robustness of the tracker. However, the applications listed
above have different requirements in terms of precision, efficiency and output format of the
hand tracking algorithm.

A gesture control system is only required to classify a gesture, thus inferring exact hand poses
is not necessary. For performance capture it is acceptable to have slower than real time
performance. In remote communication, the hand motion may be re-targeted to an avatar
hand. In that case it is only required to track joint positions as opposed to an entire hand
surface.

Virtual interaction is the most demanding, yet most promising application. It requires exact
tracking of hand movements. As explained below, accurate tracking is only possible if the
model is precisely calibrated to the user. Moreover, to be suitable for consumer application, it
is undesirable for the calibration to take a long time or require user input. Physically plausible
interaction with a virtual object requires the system to infer not just hand joint positions, but
its full 3D geometry.

5Microsoft Hololens: https:/ /www.microsoft.com/en-us/hololens, accessed on 27.11.2017

6Meta 2 AR Headset: https://www.metavision.com/, accessed on 27.11.2017

“Intel Project Alloy: https://newsroom.intel.com/press-kits/project-alloy/, accessed on 27.11.2017

8Leap Motion Blog:http://blog.leapmotion.com/image-hands-bring-your-own-hands- into-virtual-reality/,
accessed on 27.11.2017
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Challenges

Tracking challenges. Accurate hand tracking with a non-invasive sensing device in real-time
is a challenging scientific problem. Human hands are highly articulated and therefore require
models with sufficiently many degrees of freedom to adequately describe the corresponding
motion space. Hand motion is often fast and exhibits intricate geometric configurations with
complex contact patterns among fingers. With a single-camera RGBD setup, we are faced with
incomplete data due to self-occlusions and high noise levels.

Calibration challenges. High precision model based tracking is difficult without calibrating
the model to the specific user. The main challenge comes from the fact that tracking and
calibration procedures are interdependent. High quality tracking requires good calibration
and, to accurately calibrate the model, the motion needs to be precisely tracked. Moreover,
hand calibration is bound to consider multiple frames, since from a single frame only a subset
of the shape degrees of freedom can be estimated. For example, it is difficult to estimate the
length of a phalanx when observing a straight finger.

Setup

Tracking setup. Over the past two decades a number of techniques have been explored to
address the hand tacking problem, from expensive and unwieldy marker-based mocap [Welch
and Foxlin, 2002] to instrumented gloves [Dipietro et al., 2008] as well as imaging systems [Erol
et al., 2007]. Multi-camera imaging systems can recover the hand pose and hand-objects
interactions with high accuracy [Ballan et al., 2012], but the only system capable to approach
interactive applications is the 10Hz system of [Sridhar et al., 2013]. Conversely, in this thesis
we focus on hand motion tracking with a single RGBD sensor (e.g. Intel RealSense or Microsoft
Kinect), commonly predicted to be readily available in a typical AR/VR consumer experience.
This setup does not require the user to wear a glove or markers. Such single-camera acquisition
is particularly advantageous as it is cheap, does not require any sensor calibration, and does
not impede user movements.

Tracking: discriminative vs. generative. Modern systems for real-time tracking from RGBD
data [Sridhar et al., 2015, Sharp et al., 2015] rely on a combination of discriminative approaches
like [Keskin et al., 2012], and generative approaches such as [Oikonomidis et al., 2011]. The
per-frame re-initialization of discriminative methods prevents error propagation by offering
a continuous recovery from tracking failure. As these discriminative models are learnt from
data, they are typically limited in their precision by dataset annotation accuracy. Annotating
joint locations is challenging because it needs to be done in 3D, and because the joints are
situated inside the hand. These difficulties affect the labeling quality. Therefore, generative
models are used to refine the estimate by aligning a geometric template of the user hand to
the measured point cloud, as well as to regularize its motion through time. It is not surprising
that the quality of the template directly affects the quality of pose refinement.
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Calibration setup. The process of accurately generating a user-specific tracking model from
input data is referred to in the literature as calibration or personalization. Calibrating a
template from a set of static poses is a standard component in facial performance capture
[Weise et al., 2011, Cao et al., 2015], and the work of [Taylor et al., 2014] pioneered it within
the realm of hand tracking. However, current methods such as [Taylor et al., 2016] suffer a
major drawback: the template must be created during a controlled calibration stage where
the hand is scanned in several static poses (i.e. offline). While appropriate for professional
use, a calibration session is a severe drawback for seamless deployment in consumer-level
applications.

1.2 Contributions

This dissertation is based on and uses parts of the following papers published in the course of
my PhD:

1. TAGLIASACCHI A., SCHROEDER M., TKACH A., BoUuAZ1Z S., BOTSCH M., PAULY M.:
Robust articulated-icp for real-time hand tracking. Computer Graphics Forum(Proc. of
the Symposium on Geometry Processing). 2015.

2. TKACH A., PAULY M., TAGLIASACCHI A.: Sphere-meshes for real-time hand modeling
and tracking. In ACM Trans. Graph. (Proc. SIGGRAPH Asia). 2016.

3. TKACH A., TAGLIASACCHI A., REMELLI E., PAULY M., FITZGIBBON A.: Online gener-
ative model personalization for hand tracking. ACM Transactions on Graphics (Proc.
SIGGRAPH Asia). 2017.

The accompanying videos, Videol ?, Video2 !0, and Video3 !, illustrate the real-time tracking
performance of the presented systems.

The following paper, also published during my PhD, is not discussed in this thesis, since its
contributions are contained within the later work.

REMELLI E., TKACH A., TAGLIASACCHI A., PAULY M.: Low-Dimensionality Calibration
through Local Anisotropic Scaling for Robust Hand Model Personalization. Proceedings
of the International Conference on Computer Vision. 2017.

In summary, the contributions of this dissertation are:

* Robust real-time model-based hand tracking algorithm. We develope a robust model-
based hand tracking algorithm that efficiently integrates data and regularization priors

9Please find the accompanying Videol at http://lgg.epfl.ch/publications/2015/Htrack_ICP/new_video.mpA.
10pjease find the accompanying Video2 at http://lgg.epfl.ch/publications/2016/HModel/video.mp4.
please find the accompanying Video3 at http://lgg.epfl.ch/publications/2017/HOnline/video.mp4.



1.2. Contributions

into a unified real-time solver running at 60 FPS. The fist key component of the algorithm
is an efficient combined 2D/3D registration method to align the 3D hand model to the
acquired depth map and extracted silhouette image. The second key feature is a new
way of computing data-to-model correspondences that accounts for occlusions and
significantly improves the robustness of the tracking
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* Sphere-meshes model for efficient and accurate hand shape representation. We present
a sphere-meshes hand model and demonstrate that it provides superior hand tracking
performance for single-view depth sensors. We introduced an optimization approach
that allows adapting our tracking model to different human hands with a high level
of accuracy. The improved geometric fidelity compared to existing representations
leads to quantifiable reductions in registration error and allows accurate tracking even
for intricate hand poses and complex motion sequences that previous methods have
difficulties with. At the same time, due to a very compact model representation and
closed-form correspondence queries, our generative model retains high computational
performance, leading to sustained tracking at 60 FPS.

¢ Online hand model calibration. We introduce a principled way of integrating per-
frame information into an online real-time pose/shape tracking algorithm: one that
estimates the hand’s pose, while simultaneously refining its shape. That is, the more
of the user’s hand and articulation is observed during tracking, the more the tracking
template is progressively adapted to match the performer, which in turn results in more
accurate motion tracking. Our technique automatically estimates the confidence in
per-frame parameter computations, and leverages this information to build a tracking
model that selectively accumulates confident parameter estimates over time. Assuming
areasonable performance by the user, our system typically constructs a fully calibrated
model within a few seconds, while simultaneously tracking the user in real time.

* Open Source. Another important contribution is that we fully disclosed our source code.
We believe that publishing our code will not only ensure reproducibility of our results,
but also facilitate future research in this domain.

1.3 Overview

The remainder of the thesis describes our steps in solving the problem of precise model-based
hand tracking. The problem consists of two inter-dependent components: tracking and
calibration.

Section 1.4 presents a detailed review of existing real-time single view hand tracking systems
that are using depth input.

Chapter 2 describes our initial hand tracking system that uses the cylinders hand model. In
Sections 2.1 we place our work in a broader context. In Section 2.2 we address the challenges
of robust hand tracking by proposing a regularized articulated ICP-like optimization that
carefully balances data fitting with suitable priors. Our data fitting performs a joint 2D-3D
optimization. The 3D alignment ensures that every point measured by the sensor is sufficiently
close to the tracked model. Simultaneously, as we cannot create such constraints for occluded
parts of the hand, we integrate a 2D registration that pushes the tracked model to lie within the
estimated foreground. In Section 2.3 we detail a carefully chosen set of priors that regularize

6
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the solution to ensure the recovered pose is plausible. After discussing some implementation
details in Section 2.4, we analyze tracking performance by providing a comparison to several
state-of-the-art solutions in Section 2.5.

Chapter 3 addresses the choice of hand model representation that is suitable both for efficient
tracking and for accurate calibration. In Sections 3.1 and 3.2 we motivate the work, discuss
related literature and our contributions. In Section 3.3 we detail how our novel formulation
fits into previous generative real-time hand tracking technique, while still enabling efficient
correspondence computation. Section 3.4 explains how we build our template model from
3D scans acquired either through multi-view stereo or from depth maps. In Section 3.5 we
analyze the performance of our model for realtime tracking and provide comparisons to the
state-of-the-art.

In Chapter 4 we reconsider offline calibration, aiming to enhance user experience and push
calibration quality further. In Sections 4.1 and 4.2 we introduce the topic, explain the relevance
of our work and position it with respect to other approaches in the area. In Section 4.3 we
describe our joint calibration and tracking algorithm, which combines the Levenberg-style
optimization of previous hand trackers with the uncertainty bookkeeping of the Kalman
filter. In Section 4.4, to evaluate the technical validity of our approach, we corroborate the
formulation of our optimization on a synthetic 3D dataset, analyze its robustness by randomly
perturbing the algorithm initialization, and attest how our method achieves state-of-the-art
performance on publicly available datasets. In Section 4.6 we introduce the Kalman filter with
its extensions and derive the equivalence of the proposed online calibration scheme with a
recent tool from control theory — the Levenberg-Marquardt Kalman Filter.

1.4 Related Works

In this section we summarize the main works in real-time single view hand tracking from
depth input. The works from the other areas relevant to the subsequent chapters of this thesis
are reviewed in the related literature sections of the corresponding chapters.

Tracking algorithms can be roughly divided into two main classes: discriminative and genera-
tive.

 Discriminative methods directly predict hand pose from image features. State-of-the-art
approaches learn the mapping between the image and hand pose from the annotated
training data. The most widely used learning algorithms are Random Decision Forest
(RDF) [Keskin et al., 2012] and Convolutional Neural Networks (CNN) [Tompson et al.,
2014]. Discriminative algorithms regress a small number of key features, like joint
positions or angles, as opposed to the full hand geometry. The predicted hand pose can
afterwards be used to drive a hand model, however the surface of the model is often not
exactly aligned with the data.

* Generative methods minimize the discrepancy between the hand model and the input

7



Chapter 1. Introduction

data by solving a data-model alignment problem. The main algorithms used for this
task are gradient descent [Taylor et al., 2016] and Particle Swarm Optimization (PSO)
[Oikonomidis et al., 2011]. There are also some new works that use CNNs [Dibra et al.,
2017], [Wan et al., 2017]. Gradient Descent and PSO require initialization, which is either
obtained from hand pose at the previous frame or from a discriminative method.

1.4.1 Discriminative Methods

[Keskin et al., 2012] estimate hand pose by predicting the hand part labels probabilities for
each pixel. The labels prediction is done using an RDE The centers of the hand parts are
inferred by representing each label with a gaussian and finding the maximum on the resulting
surface. This is under the assumption that the pixel with maximum probability value for the
given hand part is situated in the center of that hand part. The hand skeleton is obtained by
connecting the joints according to their configuration in the hand. To improve performance,
the training set is split in clusters of similar hand poses. The results from different clusters are
aggregated by an expert network.

[Tang et al., 2014] present a method similar to the one introduced by [Keskin et al., 2012].
Differently from the former, instead of using an RDF for predicting hand parts, they adopt
Latent Regression Forest (LRF). In LRF the non-leaf nodes correspond to groupings of hand
parts. The method performs structured coarse-to-fine search, starting with the entire hand
and recursively splitting it, until locating all the skeletal joints. This work has superior perfor-
mance with respect to [Keskin et al., 2012], where one of the reasons is greater robustness to
occlusions.

[Tompson et al., 2014] pioneered using CNNs for discriminative hand tracking. Their work
(and numerous subsequent methods) are enabled by the automatically labeled dataset that
they have constructed. The authors trained a CNN to generate a set of heat-map images for
key hand features, taking multi-resolution depth images as an input. At each resolution the
network contains two convolution layers; each convolution is followed by RELU and max
pooling. The concatenated outputs of convolution layers are fed to two fully connected layers.
The final kinematically valid hand pose is obtained by applying an inverse kinematic model
on the heat-maps.

[Sun et al., 2015] use cascaded regression for predicting hand pose. In the cascaded regression
framework, the pose is estimated iteratively by a sequence of regressors. Each regressor uses
the output of the previous one, progressively decreasing the error. The regressors are learned
with RDE The authors modify offset features, widely used for RDE to make them invariant to
3D transformations. They also propose a hierarchical approach to regress hand pose. Firstly,
the palm transformation is regressed. The inverse of this transformation is afterwards applied
to the fingers before estimating their poses. This approach is shown to perform better than
estimating the pose holistically, as it reduces appearance variations for the fingers.
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[Tang et al., 2015] propose to estimate hand pose hierarchically starting with the parameters
at the base of hand kinematic chain and inferring the parameters at each next layer condi-
tioned on the previous layer (layer 1 — wrist translation, layer 2 — wrist rotation, and so on
along the kinematic chain). For efficiency they formulate a cost function in terms of joint
positions only. Advantageously, evaluation of this cost function does not require rendering
the model or computing closest point correspondences. Moreover, this cost function can also
be evaluated for partial poses. The proposed hierarchical optimization framework generates
several samples of the partial pose at each layer, the sample with the minimal value of cost
function is then selected. To generate the samples, the authors train an RDF for predicting
partial poses. They use standard features for RDF on depth images. The system generates
multiple hypotheses using the described approach, the final pose is selected by evaluating the
“golden energy” suggested by [Sharp et al., 2015]. This approach outperforms the other works
that use hierarchical hand pose estimation algorithms, such as [Tang et al., 2014] and [Sun
etal., 2015].

[Li et al., 2015] extend the work of [Keskin et al., 2012] and [Tang et al., 2015] by proposing
another variant of RDE Similarly to [Tang et al., 2014], the method performs structured coarse-
to-fine search, starting with entire hand and splitting it recursively to joints. Differently
from [Tang et al., 2014] the division hierarchy of hand parts may not be the same for different
poses. The work achieves superior performance on the ICVL dataset ( [Tang et al., 2014]).

[Oberweger et al., 2015a] compare several CNN architectures and find that the best perfor-
mance is given by a deeper architecture that takes depth images at several scales as an input.
The rationale is that using multiple scales helps capturing contextual information. The authors
also propose to regress hand pose parameters in a lower-dimensional subspace. After the
initial estimation phase follows a refinement step. To enhance the location estimate provided
by the first stage, they use a different network for each joint. The per-joint networks look at
several patches of different sizes centered on the predicted joint location. The refinement step
is repeated several times, each iteration is centered on a newly predicted location.

[Ge et al., 2016] propose to project the input depth image onto orthogonal planes and use the
resulting views to predict 2D heat-maps of joint locations on each plane. These 2D heat-maps
are then fused to produce the final 3D hand pose. The fusion step is expected to correct the
imprecisions using the predictions from complementary viewpoints. The authors use a multi-
resolution CNN on each view with architecture similar to the one introduced by [Tompson
etal., 2014]. Given the 2D heat maps from the three views, they find the hand pose parameters
in a lower dimensional PCA subspace, such that the total heat map confidence at the joint
locations on the three views is maximized.

[Sinha et al., 2016] exploit activation features from a hidden layer of a trained CNN. The
assumption is that augmenting an output activation feature by a pool of its nearest neighbors
brings more reliable information about the hand pose. Drawing on the fact that CNNs are
less robust for regression than for classification, the authors compute the activation features
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from classifying joint angles into bins with a CNN (as opposed to regressing the exact values
of the joint angles). Since the number of quantized hand poses is very large, they propose a
two-stage classification. On the first stage global hand rotation is classified. Next, for each
rotation bin, five separate CNNs are trained to classify the poses of the fingers. At run time,
given the activation features, a pool of their nearest neighbors is efficiently retrieved from
a database. The final hand pose is computed from the assumption that a matrix of stacked
neighboring activation features concatenated with stacked corresponding hand poses has a
low rank. The unknown current hand pose is computed by matrix completion!?.

[Zhou et al., 2016] integrate domain knowledge about hand motion into a CNN. This is done
by adding a non-parametric layer that encodes a forward kinematic mapping from joint
angles to joint locations. Since the forward kinematic function is differentiable, it can be used
in a neural network for gradient-descent like optimization. This approach guarantees that
the predicted hand pose is valid. The remaining network architecture is similar to the one
introduced by [Oberweger et al., 2015a].

[Guo et al., 2017] propose to use a hierarchically-structured Region Ensemble Network (REN)
for hand pose inference. This architecture is inspired by the widely used approach of averaging
predictions from different crops of an original image. The averaging is beneficial since it
decreases the variance of image classification; however, it is computationally expensive. The
authors propose a solution that retains the advantages while cutting the costs. They suggest
to split the input image in several regions, predict the whole hand pose separately from
each region and aggregate regional results afterwards. The REN architecture starts with six
convolutional layers augmented with two residual connections. The region-wise prediction
is implemented through dividing the output of the convolutional layers into a uniform grid.
Each grid cell is fed into fully connected layers. Subsequently the outputs of all the cells are
concatenated together and used to predict the final hand pose. This approach has state-of-
the-art performance on the NYU and ICVL datasets.

[Madadi et al., 2017] propose a hierarchical tree-like CNN that mimics the kinematic structure
of human hand. The branches of the network are trained to become specialized in predicting
the locations of subsets of hand joints (local pose), while the parameters closer to the tree
root are shared for all hand parts. The network contains a loss term for each local pose.
Additionally, the outputs of the tree branches are concatenated and fed to the fully-connected
layer for estimating the final pose. The authors argue the later step allows to learn higher order
dependencies among joints. The loss function also contains the terms that penalize predicting
joint locations outside of data hull and encourage all joints from one finger to be co-planar.

[Mueller et al., 2017] present a method for predicting hand pose in egocentric view. Their
system is designed for hand-object interaction scenarios and is robust to occlusions. They

12Matrix completion is the task of filling in the missing entries of a partially observed matrix. One of the variants
of the matrix completion problem is to find the lowest rank matrix X which matches the matrix M, which we wish
to recover, for all entries in the set E of observed entries. "Matrix completion." Wikipedia: The Free Encyclopedia.
Wikimedia Foundation, https://en.wikipedia.org/wiki/Matrix _completion, [accessed 30 January 2018].
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estimate hand pose in several steps. Firstly, to localize the hand, a heat map of the hand root
position is regressed. Given the hand root, the input image is normalized and feed into a joint
regression network. This network outputs 2D heat maps and 3D positions of the joints. As
the last step, a kinematically valid hand pose is computed by optimizing a sum-of-energies
cost function. The cost function includes the closeness of optimized joint locations to the
CNN-predicted joint locations, joint limits and temporal smoothness term. Both networks are
trained on synthetic data generated by accurately tracked hand motion with existing tracker
and retargeting it to a virtual hand model.

[Oberweger and Lepetit, 2017] extend their previous work [Oberweger et al., 2015a]. They
carry out an extensive evaluation to show that the improved method achieves superior or
comparable performance to all recent works on three main benchmarks of hand tracking (NUY,
ICVL and MSRA). The authors introduce the following improvements: firstly, the training data
is augmented to 10M samples (by translating, rotating and scaling). The second enhancement
is training a CNN that regresses hand root for accurate hand localization. Finally, the new
pose network architecture is similar to ResNet: a convolution layer is followed by four residual
modules, that are in turn followed by several fully connected layers with dropout.

1.4.2 Generative Methods

[Oikonomidis et al., 2011] present a generative tracking approach. Their algorithm minimizes
the difference between the sensor data and the rendered capsules model. The optimization is
performed using Particle Swarm Optimization. The method runs at 15 fps on GPU and does
not include any re-initialization component in case of tracking failure.

[Melax et al., 2013] show compelling 60 fps realtime performance using gradient-based op-
timization. The authors introduce a convex polyhedral model and track it with a rigid body
dynamics solver. The rigid bodies from the model are constrained to come into alignment
with the point cloud. The hand parts are attached together by constraints of a larger strength.
Thus, in contrast with the majority of model-based systems, their technique does not use
Inverse Kinematics. Each data point adds a constraint on the closest articulated component
of the hand. The model is also constrained to stay within 3D hull of the point cloud by adding
collision planes constraints on the boundaries of the convex hull.

[Oikonomidis et al., 2014] extend their previous work [Oikonomidis et al., 2011] by introducing
a more advanced sampling strategy that improves tracking efficiency without compromising
quality. They sample the hand-pose vectors using quasi-random sequence that covers multi-
dimensional spaces better than random sampling. However, gradient-based optimization
approaches converge faster and more accurately than PSO when close to the solution.

[Qian et al., 2014] modify the PSO algorithm employed by [Oikonomidis et al., 2011] by adding
a gradient-based component to it. Each particle takes an additional ICP-like gradient descent
step in each PSO generation. This is intended to combine advantages and mitigate drawbacks

11
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of PSO and ICP. The authors demonstrate that their system has superior performance to
[Oikonomidis et al., 2011]. The presented system is hybrid, it uses a spheres model for ICP-PSO
optimization and detects fingertips with flood fill for re-initialization. Apart from closeness of
the model to the data, the cost function also includes a term that constrains the model to lie
within the sensor visual hull and behind the data.

[Schroder et al., 2014] formulate the optimization in a subspace of likely hand poses, rather
than resorting to reinitialization for robustness. They capture a dataset of human hand
movements with a Vicon motion tracking system. The dataset is employed as the ground truth
for deriving natural hand synergies based on principal component analysis. While the lower
number of optimization variables leads to efficient computations, tracking accuracy can be
limited by the reduced pose complexity induced by the subspace. The authors use a cylinder
hand model driven by Inverse Kinematics and apply ICP algorithm for aligning the model with
the data.

[Fleishman et al., 2015] present a system that uses capsules hand model and ICP-IK algorithm
for data-model alignment. For initialization they train an RDF classifier to label data pixels
with hand parts. To increase the robustness, the system generates several hypotheses of hand
pose from the labeled data. In the final step, they apply ICP-IK algorithm to each skeleton
hypothesis (with each finger being straight or bent). The closest-point correspondences are
only created between the same parts of the data and model. The authors show that ICP-IK
algorithm gives superior performance with respect to their implementation of PSO.

[Oberweger et al., 2015b] design a convolutional neural network capable of directly synthe-
sizing hand depth images. The motivation for this work is replacing hand model for hybrid
tracking. As a first step they use a CNN to predict an initial pose from the depth input. The
initial pose is used to synthesize a depth image. The synthesized image and the input image
are fed to an updater CNN. The updater learns to predict updates, which would improve the
pose estimate, given the input and the synthesized depth. This process is repeated for several
iterations. The synthesizer network consists of several fully-connected layers followed by
several unpooling and convolution layers. The updater network has a siamese architecture.
It consists of two identical paths of several convolutional layers. The final feature maps are
concatenated and fed into a fully connected network.

[Poier et al., 2015] initialize the proposed hybrid tracking system by regressing hand joint
locations with an RDE The authors consider several top predictions for each joint along with
the confidence score. The kinematic parameters of a 3D hand model are determined by
selecting a proposal for each joint location, such that the chosen locations for all joints form
an anatomically valid pose. They apply PSO algorithm for optimizing the described cost
function. For efficiency, the authors split the full PSO problem into sub-problems, solving
for the pose of each finger independently. Differently from [Oikonomidis et al., 2011], this
approach does not require rendering the model, thus it can run on CPU.

[Sharp et al., 2015] introduce a hybrid approach that minimizes the “golden energy” - the
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reconstruction error between a rendered 3D hand model and the observed depth image.
The rendered image has a potential to match the observed image, since they use a detailed
triangular mesh hand model instead of spheres/cylinders. The model is not differentiable;
thus the authors apply PSO algorithm for optimization. For re-initialization they use Kinect-
provided skeleton and train a two-staged RDF regressor. The first stage only deals with
predicting quantized global hand rotation, while the second stage refines the rotation and
regresses the pose. The system is robust and works well at a distance of several meters and in
moving camera scenarios.

[Sridhar et al., 2015] encode the model with a predefined mixture of Gaussians. The data is
also represented as a mixture of Gaussians. This is done through decomposing the depth
image into regions of homogeneous depth (using a quad-tree) and fitting a Gaussian to each
region. The authors optimize the closeness of model to the data with gradient descent. A
Gaussian mixture representation allows, instead of computing closest point correspondences,
to match data mixtures of Gaussians with the model. For robustness the system generates
multiple hypotheses of hand pose and chooses the best one based on pose fitting energy. One
of the hypothesis comes from an RDF hand parts classifier. For that hypothesis a different type
of energy is optimized: each Gaussian in the data is given a part label which is most frequent
amonyg its pixels; the model is aligned with the data according to hand part labels.

[Taylor et al., 2016] present a continuous registration framework for tracking hands with
triangular meshes. The control mesh is augmented with a continuous Loop subdivision
surface that provides gradients for optimization. Similar to [Tagliasacchi et al., 2015] they
define a differentiable cost function as a weighted sum of several terms, including data energy,
joint limits, pose prior, temporal prior, etc. For the data energy term they introduce an
alternative to the ICP algorithm. To compute closest point correspondences, they define a set
of corresponding variables that are optimized jointly with the model pose. Compared to ICB,
the proposed algorithm requires less iterations and has a wider convergence basin.

[Dibra et al., 2017] propose the first CNN-based approach that does not require an annotated
hand-motion dataset for training. As a first step, they train a network to predict an approximate
hand pose from synthetic depth images. As a second step, they refine the network by training
it on the unlabeled data. The loss function on unlabeled data is an L1 error norm between the
input depth image and a synthesized depth image, given the current hand pose. To enable
backpropagation of the error, the authors introduce a differentiable algorithm for “rendering”
the hand model. The algorithm applies linear blend skinning to the point cloud that was
uniformly sampled from the hand model. The authors also propose a differentiable method
for rendering only the visible part of the model, which relies on defining a support circle for
each model point. The presented system achieves performance comparable to state of the art
methods without requiring costly annotation.

[Taylor et al., 2017] introduce a new hand model representation that avoids the compromise
between efficiency and accuracy. This is achieved by constructing an articulated signed dis-
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tance function that provides closed-form distances to the model surface and is differentiable.
In more details, the hand model is driven by a linear blend skinned tetrahedral mesh, that
deforms a precomputed signed distance field into a given pose. The closest point correspon-
dences are computed in efficient and parallelizable manner. This allows the system to run
at ultra-high frame rates on GPU (1000Hz). Due to its efficiency and robustness, this system
accurately tracks complex interaction of two hands.

[Wan et al., 2017] propose a framework for learning from unlabeled data in a semi-supervised
manner. They learn a shared latent space where each point can be mapped both to a synthetic
depth image and to the corresponding hand pose parameters. The hand pose is regressed
by training a discriminator to predict a posterior of the latent pose given the input depth
image. The depth image generator and discriminator are trained jointly in order to improve
generalization. To avoid overfitting during posterior estimation the authors add additional
loss terms that share first several convolutional layers with pose estimation.

1.4.3 Comparison of Previous Works

The comparative summary of previous hand tracking works is presented in Table 1.1, while
the partial ranking of their accuracy on hand tracking benchmarks in shown in Table 1.2.

Comparative Summary. Table 1.1 includes the type of applied discriminative and/or genera-
tive algorithm, the type of hand model, the time complexity of the system (GPU/CPU and FPS)
as well as domain knowledge (priors) incorporated in each method and the type of final output.
The final output can be different from the model type for some discriminative approaches
that perform a model-fitting step after regressing joint locations.

We use the following naming conventions:

* inconsistent joints - model type for discriminative methods that predict a set joint
locations per-frame. Without an additional model fitting step, joint locations are not
guaranteed to correspond to a skeleton with consistent length of phalanges. Thus, they
can overfit to the input data and get higher performance score, but cannot be directly
used to drive a hand model.

e skeleton - model type for discriminative methods that regress joint angles. These meth-
ods use a skeleton with constant joint length to pose it with the predicted joint angles.

* <description> model - (volumetric) model type for generative methods, where the <de-
scription>names model components, such as capsules, spheres, triangular mesh, Gaus-
sians, ect.

* point cloud - model type for generative methods that train a CNN to regress an image/point-
cloud of the hand.
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Partial Ranking of Accuracy. Table 1.2 contains ranking of the described methods on the
following benchmarks:

e NUY dataset - introduced by [Tompson et al., 2014];

* NYU dataset, Subject 1 - introduced by [Tompson et al., 2014];

ICVL dataset - introduced by [Tang et al., 2014];

e MSRA dataset - introduced by [Sun et al., 2015];

e Dexter dataset - introduced by [Sridhar et al., 2013];

e FinterPaint dataset - introduced by [Sharp et al., 2015];

* Handy dataset - introduced by [Tkach et al., 2016]

The ranking of the methods on the above benchmarks is obtained from the following sources:
A - [Oberweger and Lepetit, 2017], Table 1;
B - [Oberweger and Lepetit, 2017], Figure 5;
C - [Oberweger and Lepetit, 2017], Table 2;
D - [Oberweger and Lepetit, 2017], Table 3;
E - [Taylor et al., 2017], Figure 12;
F - [Taylor et al., 2016], Figure 10;
G - [Taylor et al., 2017], Figure 15;
H - [Oberweger and Lepetit, 2017], Figure 6;
I - [Tang et al., 2015], Figure 6;
J - [Sridhar et al., 2015], Figure 4;
K - [Tkach et al., 2017], Figure 9;
L - [Dibra et al., 2017], Figure 8;
M - [Neverova et al., 2017], Figure 8;
N - [Tkach et al., 2017], Figure 8;
The reference to the source in the header of the column, for example NUY#, means that the
ranking of the all methods shown in the column was inferred from the source A. The reference
to the source in the table cell, for example 1H means that the ranking of the corresponding
method does not come from the source listed in the column header, but was inferred from the

source H. The interval of the ranks instead of a single number, for example [10 - 11], refers to
the fact that the exact rank is unclear and is somewhere in the interval.
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Paper

NUYA

NUY Subject 1 B

ICVL €

MSRA D

Dexter

E

Finger Paint F

Handy G

[Oikonomidis et al., 2011]

[Keskin et al., 2012]

11-12*

[Melax et al., 2013]

1-121

[Xu and Cheng, 2013]

[Oikonomidis et al., 2014]

[Qian et al., 2014]

[Schroder et al., 2014]

[Tang et al., 2014]

10

5J

[Tompson et al., 2014]

11

[Fleishman et al., 2015]

[Lietal., 2015]

[Oberweger et al., 2015a]

10

[Oberweger et al., 2015b]

[Poier et al., 2015]

[Sharp et al., 2015]

[Sridhar et al., 2015]

[Sun et al., 2015]

[Tagliasacchi et al., 2015]

[Tang et al., 2015]

[Ge et al., 2016]

[Sinha et al., 2016]

[1o-11M

[Taylor et al., 2016]

[2-3]

[Tkach et al., 2016]

[Wan et al., 2016]

[Zhou et al., 2016]

[Fourure et al., 2017]

[Dibra et al., 2017]

[4-7%

[Guo et al., 2017]

3H

[Madadi et al., 2017]

[Mueller et al., 2017]

[Neverova et al., 2017]

[Oberweger and Lepetit, 2017]

[Taylor et al., 2017]

[Tkach et al., 2017]

2-3N

[Wan et al., 2017]

7

2

Table 1.2 - Comparative performance of hand tracking methods
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Robust Articulated-ICP for Real-Time
Hand Tracking

I & & |

Figure 2.1 — Our system tracks the motion of hands while remaining robust to fast motion,
sensor imperfections and self-occlusions.
This chapter is based on the following publication:

TAGLIASACCHI A., SCHROEDER M., TKACH A., BOUAZIZ S., BOTSCH M., PAULY M.: Robust
articulated-icp for real-time hand tracking. Computer Graphics Forum(Proc. of the
Symposium on Geometry Processing) (2015).

The above publication also appears in the thesis of a co-author of the paper, Matthias Schroeder.

Abstract

We present a robust method for capturing articulated hand motions in real-time using a
single depth camera. Our system is based on a real-time registration process that accurately
reconstructs hand poses by fitting a 3D articulated hand model to depth images. We register
the hand model using depth, silhouette, and temporal information. To effectively map low-

21



Chapter 2. Robust Articulated-ICP for Real-Time Hand Tracking

‘I'I

|
\i

Figure 2.2 — The two different sensors used in our experiments provide data with substantially
different characteristics. Top: Intel’s Creative Interactive Gesture camera (time of flight)
provides a complete silhouette image S, but low quality depth measurements, resulting in
severe noise in the point cloud Xs. Bottom: Point clouds acquired by the PrimeSense camera
(structured light) are much smoother, but the silhouette image can contain significant gaps.

quality depth maps to realistic hand poses, we regularize the registration with kinematic and
temporal priors, as well as a data-driven prior built from a database of realistic hand poses.
We present a principled way of integrating such priors into our registration optimization to
enable robust tracking without severely restricting the freedom of motion. A core technical
contribution is a new method for computing tracking correspondences that directly models
occlusions typical of single-camera setups.

2.1 Introduction

In this chapter we introduce a system for real-time hand tracking suitable for personal desktop
environments. Our non-invasive setup using a single commodity RGBD sensor does not
require the user to wear a glove or markers. Such single-camera acquisition is particularly
advantageous as it is cheap, does not require any sensor calibration, and does not impede
user movements.

Accurate hand tracking with a non-invasive sensing device in real-time is a challenging sci-
entific problem. Human hands are highly articulated and therefore require models with
sufficiently many degrees of freedom to adequately describe the corresponding motion space.
Hand motion is often fast and exhibits intricate geometric configurations with complex contact
patterns among fingers.

With a single-camera RGBD setup, we are faced with incomplete data due to self-occlusions
and high noise levels (see Figure 2.2).

Yet the simplicity of the hardware and the ease of deployment make this setup the most promis-
ing for consumer applications as evidenced by the recent proliferation of new consumer-level
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Figure 2.3 — A visualization of the template hand model with the number and location of
degrees of freedom of our optimization. From left to right: The cylinder model used for
tracking, the skeleton, the BVH skeleton exported to Maya to drive the rendering, the rendered
hand model.

Sensors.

To cope with the limited amount of available information, we employ an articulated template
model as a geometric prior for shape completion and topology control. Our model does not
only encode geometry, but also serves as a domain to represent information about plausible
hand poses and motions. This statistical information, built by analyzing a database of anno-
tated poses, is directly embedded into the optimization, which allows accurate tracking with a
high number of degrees of freedom even in challenging scenarios.

Contributions

We present a complete system for real-time hand tracking using a single commodity RBGD
input sensor. Our core technical contributions are:

e anovel articulated registration algorithm that efficiently integrates data and regulariza-
tion priors into a unified real-time solver; see Section 2.3 and Appendix 2.7.6,

¢ a combined 2D/3D registration method to align the 3D hand model to the acquired
depth map and extracted silhouette image; see Section 2.3.1,

¢ anew way of computing data-to-model correspondences that accounts for occlusions
and significantly improves the robustness of the tracking; see Section 2.3.1,

e anew regularization strategy that combines a statistical pose-space prior with kinematic
and temporal priors to simultaneously ensure the inferred hand poses are plausible and
aid the algorithm in recovering from loss-of-tracking; see Section 2.3.2,
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Figure 2.4 — Overview of our algorithm. For each acquired frame we extract a 3D point cloud
of the hand and the 2D distance transform of its silhouette. From these we compute point
correspondences to align a cylinder model of the hand to best match the data. This registration
is performed in an ICP-like optimization that incorporates a number of regularizing priors to
ensure accurate and robust tracking.

* exposing an interesting relationship between the well known point-to-plane registration
energy and Gauss-Newton; see Appendix 2.7.4.

Another important contribution is that we fully disclose our source code!. To the best of
our knowledge, no other freely available implementation is available, and we believe that
publishing our code will not only ensure reproducibility of our results, but also facilitate future
research in this domain.

Note that there is a widespread belief [Wei et al., 2012, Zhang et al., 2014, Qian et al., 2014]
that ICP-like techniques are too local and prone to local minima to successfully deal with fast
articulated motion. One of our contributions is to show this commonly held belief should
be re-considered. We demonstrate that a regularized geometric registration approach in the
spirit of ICP can achieve outstanding performance. We believe this will significantly impact
future research in this domain, as it will allow further development of registration techniques
for real-time tracking, in contraposition to commonly employed techniques from the vision
community like discriminative [Tompson et al., 2014] and PSO [Qian et al., 2014] methods.

Our regularized geometric registration achieves robust, highly articulated hand tracking at up
to 60 frames per second (fps). We quantitatively and qualitatively compare the performance
of our algorithm to recent appearance-based and model-based techniques (see Section 2.5).
These comparisons show a significant improvement in accuracy and robustness compared to
the current state-of-the-art.

2.2 Overview

Robust hand tracking with a commodity depth sensor is highly challenging due to self-
occlusion, low quality/density of sensor data and the high degree of articulation of the human
hand. We address these issues by proposing a regularized articulated ICP-like optimization

Ihttps://github.com/OpenGP/htrack
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Figure 2.5 — We first identify the wristband mask by color segmentation, then compute the 3D
orientation of the forearm as the PCA axis of points in its proximity. Offsetting a 3D sphere
from the wristband center allows isolating the region of interest. The obtained silhouette
image and sensor point clouds are shown on the right.

that carefully balances data fitting with suitable priors (Figure 2.4). Our data fitting performs
a joint 2D-3D optimization. The 3D alignment ensures that every point measured by the
sensor is sufficiently close to the tracked model M. Simultaneously, as we cannot create such
constraints for occluded parts of the hand, we integrate a 2D registration that pushes the
tracked model to lie within the sensor visual hull. A carefully chosen set of priors regularizes
the solution to ensure the recovered pose is plausible.

Acquisition device

Our system processes raw data acquired at 60 fps from a single RGBD sensor. Figure 2.2
illustrates this data for the PrimeSense Carmine 1.09 structured light sensor as well as the
Creative Gesture Camera time-of-flight sensor. From the raw data our algorithm extracts a
2D silhouette image S and a 3D point cloud X;. The two sensors exhibit different types of
imperfections. The precision of depth measurements in the PrimeSense camera is significantly
higher. However, substantial holes often occur at grazing angles, e.g. note the gap in the data
where we would expect to see the index finger. Conversely, the Creative Gesture Camera
provides an accurate and gap-free silhouette image, but suffers from high noise in the depth
measurements, therefore resulting in very noisy point clouds. Our algorithm is designed
to handle both types of imperfections. This is achieved by formulating an optimization
that jointly considers silhouette and point cloud, balancing their contribution in a way that
conforms to the quality of sensor data.
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Tracking model

Our algorithm registers a template hand model to the sensor data. Similar to other tech-
niques [Oikonomidis et al., 2011, Schroder et al., 2014], we employ a simple (sphere capped)
cylinder model as a geometric template; see Figure 4.10. We optimize for 26 degrees of free-
dom, 6 for global rotation and translation and 20 for articulation. Like in [Melax et al., 2013],
the model can be quickly adjusted to the user by specifying global scale, palm size and fin-
ger lengths. In most scenarios, it is sufficient to perform a simple uniform scaling of the
model. Such a coarse geometry is sufficient for hand tracking, as the signal-to-noise ratio
for commercially available RGBD sensors is low for samples on the fingers when compared
to the size of a finger. Furthermore, the computation of closest-point correspondences can
be performed in closed form and in parallel, which is essential for real-time performance.
The hand’s palm region may be better approximated by geometries other than a cylinder,
but we found using only cylinder primitives to work well for tracking in terms of accuracy
and efficiency. Furthermore, it simplified the implementation as the same correspondence
computation routine can be used for all primitives in the model. While the geometry of the
model used for tracking remains coarse, our algorithm computes joint angles (including rigid
transformation) in the widespread BVH motion sequence format; these can be used to drive a
high-resolution skinned hand rig as illustrated in Figure 4.10-d.

Preprocessing

The silhouette image S; is not directly available from the sensor and needs to be computed.
This labeling can be obtained by extracting the sensor color image and performing a skin color
segmentation [Oikonomidis et al., 2012, Schroder et al., 2014], or can be obtained directly from
depth images by performing a classification with random decision forests [Tompson et al.,
2014]. Another possibility is to exploit a full-body tracking algorithm [Shotton et al., 2011] and
segment the hand according to the wrist position. For gestural tracking, where the hand is
typically the closest object to the sensor [Qian et al., 2014], a black wristband can be used to
simplify segmentation by creating a gap in the depth image. Similarly to this method, in our
system the user wears a colored wristband. We first identify the position of the wristband in
the scene by color segmentation, then retrieve the 3D points in the proximity of the wristband
and compute the principal axis. This axis, in conjunction with the wristband centroid, is then
used to segment the hand point cloud. Any depth pixel within the hand point cloud is labelled
as belonging to the silhouette image S as shown in Figure 2.5.

2.3 Optimization

In this section we derive the objective functions of our model-based optimization method and
provide the rationales for our design choices. Let F be the sensor input data consisting of a
3D point cloud X and 2D silhouette S; (see Figure 2.2). Given a 3D hand model M with joint
parameters 0 = {61,05,...,0:¢}, we aim at recovering the pose 0 of the user’s hand, matching
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Figure 2.6 — Illustration of correspondences computations. The circles represent cross-sections
of the fingers, the small black dots are samples of the depth map. (a) A configuration that can
be handled by standard closest point correspondences. (b) Closest point correspondences to
the back of the cylinder model can cause the registration to fall into a local minimum. Note
that simply pruning correspondences with back-pointing normals would not solve this issue,
as no constraints would remain to pull the finger towards the data. (c) This problem is resolved
by taking visibility into account, and computing closest points only to the portion M of M
facing the camera.

the sensor input data F. To achieve this goal, we solve the optimization problem

rrgn ﬁ?)D + E2D+Ewrisg + Epose + Ekin. + Etemporal’ (2.1)

—

~~

Fitting terms Prior terms

combining fitting terms that measure how well the hand parameters 6 represent the data
frame JF, with prior terms that regularize the solution to ensure realistic hand poses. For
brevity of notation we omit the arguments 8, X, S; of the energy terms. We first introduce
the fitting terms and present our new solution to compute tracking correspondences. Then
we discuss the prior terms and highlight their benefits in terms of tracking accuracy and
robustness. More details on the implementation of the optimization algorithm will be given in
Section 2.4 and the Section 2.7.
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Figure 2.7 — Illustration of the impact of self-occlusion in correspondences computations.
(a) The finger c¢» initially occluded by finger ¢; becomes visible, which causes new samples
to appear. (b) Closest correspondences to the portion of the model visible from the camera
do not generate any constraints that pull ¢, toward its data samples. This is the approach
in [Wei et al., 2012], where these erroneous matches are then simply pruned. (c) Our method
also considers front-facing portions of the model that are occluded, allowing the geometry to
correctly register.

2.3.1 Fitting Energies
Point cloud alignment

The term E3p models a 3D geometric registration in the spirit of ICP as

Esp=w1 ), lIx—Tre x6)l3, (2.2)
xe X

where ||-||2 denotes the ¢, norm, x represents a 3D point of Xs, and I (g (x, 0) is the projection
of x onto the hand model M with hand pose 6. Note that we compute a sum of absolute
values of the registration residuals, not their squares. This corresponds to a mixed ¢,/¢; norm
of the stacked vector of the residuals. For 3D registration such a sparsity-inducing norm has
been shown to be more resilient to noisy point clouds containing a certain amount of outliers
such as the ones produced by the Creative sensor (Figure 2.2). We refer to [Bouaziz et al., 2014]
for more details.

3D correspondences

The 3D registration term involves computing the corresponding point y = IT x4 (x,6) on
the cylinder model M for each sensor point x € A;. In contrast to standard closest point
search, we define the correspondence y as the closest point on the front-facing part M of
M. This includes parts of the model that are oriented towards the camera but occluded
by other parts. In our experiments we learned that this seemingly simple extension proved
absolutely essential to obtain high-quality tracking results. Only considering model points that
are visible from the sensor viewpoint, i.e., matching to the rendered model, is not sufficient for
handling occlusions or instances of disappearing and reappearing sensor data; see Figure 2.6
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Figure 2.8 — Correspondence computations. The top row shows the strategy used in [Qian
et al., 2014] adapted to our gradient-based framework according to the formulation given
in [Wei et al., 2012]. The bottom row shows the improved accuracy of our new approach.

and Figure 2.7.

To calculate y, we first compute the closest points x¢ of x to each cylinder C € M. Recall that
our hand model consists of sphere-capped cylinders so these closest points can be computed
efficiently in closed form and in parallel for each x € Xs. We then identify back-facing points
using the dot product of the cylinder surface normal n at x; and the view ray vector v. For
efficiency reasons, we use a simplified orthographic camera model where the view rays are
constant, i.e., v=[001]7. Ifa point on a cylinder is back-facing mTv>0), we projectx onto the
cylinder’s silhouette contour line from the camera perspective, whose normals are orthogonal
tov.

A different strategy to address visibility issues has been introduced in [Qian et al., 2014].
These methods propose an energy that penalizes areas of the model falling in front of the
data, which is then optimized using particle swarms. This energy can be integrated into our
optimization following the formulation in [Wei et al., 2012, Eq. 15]. However, such an energy
is prone to create local minima in gradient-based optimization, as illustrated in Figure 2.8.
Here the thumb has difficulty entering the palm region, as it must occlude palm samples
before reaching its target configuration. Our correspondence search avoids such problems.
Furthermore, note how [Qian et al., 2014] follows a hypothesize-and-test paradigm where
visibility constraints in the form of ray-casting are easy to include. As discussed in [Ganapathi
et al., 2012], such constraints are much more difficult to include in iterative optimization
techniques like ours. However, our front-facing correspondences computation provides a
simple and elegant way to deal with such shortcomings.
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silhouette w/o silhouette w/ silhouette

Figure 2.9 — Our 2D silhouette registration energy is essential to avoid tracking errors for
occluded parts of the hand. When no depth data is available for certain parts of the model, a
plausible pose is inferred by ensuring that the model is contained within the sensor silhouette
image S.

Silhouette alignment

The 3D alignment energy Esp robustly measures the distance between every point in the 3D
point cloud X’ to the tracked model M. However, as hands are highly articulated, significant
self-occlusions are common during tracking. Such self-occlusions are challenging, because
occluded parts will not be constrained when only using a 3D alignment energy. For this reason,
we use a 2D silhouette term E»p that models the alignment of the 2D silhouette of our rendered
hand model with the 2D silhouette extracted from the sensor data as

Exn=w; Y. Ip-Ts, (03, (2.3)
peS,

where p is a 2D point of the rendered silhouette S;, and I1s, (p,0) denotes the projection of
p onto the sensor silhouette S;. Figure 2.9 shows why the silhouette term is crucial to avoid
erroneous poses when parts of the model are occluded. Without the silhouette energy, the
occluded fingers can mistakenly move to wrong locations, since they are not constrained by
any samples in the depth map.

2D correspondences

In Equation 2.3, we compute the silhouette image S, by first rendering the hand model M from
the viewpoint of the sensor, caching the bone identifier and the 3D location associated with
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Figure 2.10 — An illustration of the PCA pose-space used to regularize the optimization. Black
dots denote the samples of the data base. High likelihood poses are located nearby the
mean of the latent space (dark red). The eigenvalues of the PCA define the metric in the
low-dimensional space, skewing it in certain directions. Poses that, according to this metric,
are far from the mean are likely to be unnatural and will be penalized in the optimization.

each pixel in a texture. The projection function I1s, (p, @) to compute the closest corresponding
point to the sensor silhouette is evaluated efficiently using the 2D distance transform of S;.
We use the linear time algorithm of [Felzenszwalb and Huttenlocher, 2012] and store at every
pixel the index to the closest correspondence.

Wrist alignment

The inclusion of the forearm for hand tracking has been shown beneficial in [Melax et al.,
2013]. Our wrist alignment energy encodes a much simplified notion of the forearm in the
optimization that enforces the wrist joint to be located along its axis.

Eurist = 03 [1Top (ko () — T, (ko (0)) 113, (2.4)

Minimizing this energy helps preventing the hand from erroneously rotating/flipping during
tracking; an occurrence of this can be observed at Videol [04:03]2. Here k is the 3D position
of the wrist joint, and ¢ is the 2D line extracted by PCA of the 3D points associated with the
wristband; see Figure 2.5. Note that I[I,p causes residuals to be minimized in screen-space,
therefore the optimization of this energy will be analogous to the one of Equation 2.3. We
optimize in screen space because, due to occlusion, we are only able to observe half of the
wrist and this causes its axis to be shifted toward the camera.

2Please find the accompanying Videol at http://lgg.epfl.ch/publications/2015/Htrack_ICP/new_video.mp4 .
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Figure 2.11 - An illustration of the energies involved in our pose-space prior. For illustration
purposes the full dimensional parameter vector 6 € R®, while latent space variable 6 € R?.
The PCA optimization in [Schroder et al., 2014] constrains the pose parameters 6 to lie on
the subspace P. Conversely, we penalize the distance of our pose from P (Equation 2.5);
simultaneously, we ensure our pose remains likely by preventing it from diverging from the
mean of the distribution (Equation 2.6).

2.3.2 Prior Energies

Minimizing the fitting energies alone easily leads to unrealistic or unlikely hand poses, due to
the deficiencies in the input data caused by noise, occlusions, or motion blur. We therefore
regularize the registration with data-driven, kinematic, and temporal priors to ensure that
the recovered hand poses are plausible. Each of these terms plays a fundamental role in the
stability of our tracking algorithm, as we illustrate below.

Pose Space Prior (data-driven)

The complex and highly coupled articulation of human hands is difficult to model directly with
geometric or physical constraints. Instead, we use a publicly available database of recorded
hand poses [Schroder et al., 2014] to create a data-driven prior Epqse that encodes this coupling.
We construct a low-dimensional subspace of plausible poses by performing dimensionality
reduction using PCA (see Figure 2.10). We enforce the hand parameters @ to lie close to this
low-dimensional linear subspace using a data term Epose = Eprojection + Emean- To define the
data term, we introduce auxiliary variables 8, i.e, the PCA weights, representing the (not
necessarily orthogonal) projection of the hand pose € onto the subspace; see Figure 2.11.
The projection energy measures the distance between the hand parameters and the linear
subspace as

Eprojection = w4l (CE H) - Hpéllg, (2.5)
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Figure 2.12 - Beyond favoring natural poses, the data prior term also positively affects conver-
gence speed. Top: With the same number of iterations, only with activated data term does the
model fully register to the scan. The illustration below shows how the same final state requires
significantly fewer iterations with the data term.

where p is the PCA mean. The matrix [1p, i.e., the PCA basis, reconstructs the hand posture
from the low-dimensional space. To avoid unlikely hand poses in the subspace, we regularize
the PCA weights 0 using an energy

Emean = W5 ||29II§ (2.6)

2 is a diagonal matrix containing the inverse of the standard deviation of the PCA basis. Our
tracking optimization is modified to consider the pose space by introducing the auxiliary
variable @ and then jointly minimizing over 8 and . The difference between our approach
and optimizing directly in the subspace is further discussed in Section 2.7. Note how the
regularization energy in Equation 2.6 helps the tracking system recover from tracking failures.
When no sensor constraints are imposed on the model, the optimization will attempt to push
the pose towards the mean — a statistically likely pose from which tracking recovery is highly
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depth image without PCA with PCA

Figure 2.13 - Our pose-space regularization using a PCA prior ensures that a meaningful pose
is recovered even when significant holes occur in the input data.

effective.

Figure 2.13 illustrates how the PCA data prior improves tracking by avoiding unlikely poses, in
particular when the input data is incomplete. We found that even when data coverage is suffi-
cient to recover the correct pose, the data term improves the convergence of the optimization
as illustrated in Figure 2.12. Figure 2.14 shows how our regularized projective PCA formulation
outperforms the direct subspace optimization proposed in previous work.

Kinematic Prior

The PCA data term is a computationally efficient way of approximating the space of plausible
hand poses. However, the PCA model alone cannot guarantee that the recovered pose is
realistic. In particular, since the PCA is symmetric around the mean, fingers bending back-
wards beyond the physically realistic joint angle limits are not penalized by the data prior.
Similarly, the PCA model is not descriptive enough to avoid self-intersections of fingers. These
two aspects are addressed by the kinematic prior Exinematic = Ecollision + Ebounds- Under the
simplifying assumption of a cylinder model, we can define an energy E.opision that accounts
for the inter-penetration between each pair of (sphere-capped) cylinders:

Ecolision = ws Y. x(i, j)(d(ci,c/) = 1)?, 2.7)
{i,j}

where the function d(:,-) measures the Euclidean distance between the cylinders axes c; and
¢;j, and r is the sum of the cylinder radii. y (i, j) is an indicator function that evaluates to one if
the cylinders i and j are colliding, and to zero otherwise. The top row of Figure 2.15 shows
how this term avoids interpenetrations of the fingers.

To prevent the hand from reaching an impossible posture by overbending the joints, we limit
the joint angles of the hand model:

Epounds = w7 Y x(D)(0; —0,)* + (1) 0; —0)?, (2.8)
9,‘60_
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Figure 2.14 - Optimizing directly in the PCA subspace [Schroder et al., 2014] can lead to inferior
registration accuracy. We replicate this behavior by setting w4 in Equation 2.5 to a large value.
Even when increasing the number of PCA bases to cover 99% of the variance in the database,
the model remains too stiff to conform well to the input. Our approach is able to recover the
correct hand pose by optimizing for projection distances even with a very limited number of
bases (right).

where each hand joint is associated with conservative bounds [Q ,-»51-] . For the bounds, we use
the values experimentally determined by [Chan and Dubey, 1995]. ¥ (i) and ¥ (i) are indicator
functions. y (i) evaluates to one if 6; < 8, and to zero otherwise. y (i) is equal to one if 6; > 0;,
and zero otherwise. The bottom row of Figure 2.15 illustrates the effect of the joint angle
bounds.

Temporal Prior

A common problem in particular with appearance-based methods are small-scale tempo-
ral oscillations that cause the tracked hand to jitter. A standard way to enforce temporal
smoothness is to penalize the change of model parameters 0 through time, for example, by
penalizing a quadratic energy accounting for velocity || 0|12 and acceleration ||0||% [Wei et al.,
2012]. However, if we consider a perturbation of the same magnitude, it would have a much
greater effect if applied at the root, e.g., global rotation, than if applied to an element further
down the kinematic tree, e.g., the last phalanx of a finger. Therefore, we propose a solution that
measures the velocity and acceleration of a set of points attached to the kinematic chain. We
consider the motion of vertices k of the kinematic chain X (Figure 4.10) and build an energy
penalizing the velocity and acceleration of these points:

Eemporal = 0g Y, Ik@)I5+ws Y 1k©)3. (2.9)
kiEK kiEK:
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collision
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Figure 2.15 — Kinematic priors augment the data prior to account for inconsistencies in the
pose space. The collision term avoids self-collisions (top row), while the term for joint angle
bounds avoids overbending of the finger joints.

Figure 2.16 illustrates how the temporal prior reduces jitter and improves the overall robustness
of the tracking; see also Videol [01:20].

2.4 Implementation

In this section we provide more details on the implementation of our optimization algorithm.
The derivation of the necessary gradients and Jacobians is given in the Section 2.7.

Optimization

The optimization of the tracking energy of Equation 2.1 over the pose 6 is performed by
solving the non-linear least squares problem with a Levenberg-Marquardt approach. The
assumption is that a current estimate of 8 is known from which we then compute an update.
More specifically, the high acquisition speed of the sensing device allows us to employ the
optimized parameters from the previous time frame as the starting estimate. We then itera-
tively approximate the energy terms using Taylor expansion and solve a linear system to get
the update 66 at each iteration (see appendix). As our algorithm achieves 60 fps tracking, the
previously reconstructed pose is of sufficiently high quality allowing our solver to converge
within seven iterations.
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Figure 2.16 — The effect of the temporal prior. The graph shows the trajectory of the y-
coordinate of the fingertip over time as the index finger is bend up and down repeatedly.
The temporal prior reduces jitter, but also helps avoiding tracking artifacts that arise when
fragments of data pop in and out of view.

Initialization

As a user enters the scene our method is initialized by the fingertip detection and fitting
from [Qian et al., 2014]. Other appearance-based methods could be used for initialization as
well [Tompson et al., 2014]. We also re-initialize the tracking in case a severe tracking failure is
detected using the method of [Wei et al., 2012]. Such re-initialization occurs rarely (e.g. less
than 0.5% of the frames in the sequence of Figure 2.22).

Rigid bias

To improve the convergence of our solver in case of fast motion, we first perform the optimiza-
tion in Equation 2.1 for the rigid motion only by optimizing for the root of the kinematic chain.
As shown in Figure 2.17, optimizing first for the rigid motion prior to the full pose estimation
leads to improved robustness of the tracking.

37



Chapter 2. Robust Articulated-ICP for Real-Time Hand Tracking

Figure 2.17 — During fast motion, optimizing directly for a fully articulated hand can lead to
incorrect correspondences and cause loss of tracking (middle row). By compensating for the
rigid motion ahead of solving for joint angles, our system can better capture fast movements
(bottom row).

Parameters

For all our results we fix our parameters to w; = w2 = w5 = 1, w4 = 103, w3 = wg = w7 = 108,
wg = w9 = 3. We determined these weights empirically by re-tracking multiple sequences with
different sets of parameters. Our system was tested on an Intel Core i7 4GHz with NVIDIA
GTX980 GPU running Ubuntu 12.02 . To run on a 60Hz RGBD device such as the PrimeSense
Carmine 1.09 or the Creative Gesture Camera, we perform 1 rigid iteration and 7 full iterations,
at 1.5ms per iteration. We perform closed form closest point correspondences and Jacobian
computation for the fitting energies on the GPU. The number of iterations can be easily
adapted to run on the new Intel RealSense 3D Camera (F200) at 120Hz or at even higher frame
rates on future devices.

2.5 Evaluation

We refer to Videol [06:20]to best appreciate the real-time tracking performance of our method.
Here we analyze its performance by providing a comparison to several state-of-the art solu-
tions.

Dexter-1 Dataset [SRS*14]

Figure 2.18 shows a quantitative comparison with several existing methods on a publicly
available data set acquired at 25 Hz. As the graph illustrates, our solution clearly outperforms
the method of [Tang et al., 2014] that uses regression forest classifiers in an appearance-
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Figure 2.18 — We quantitatively evaluate our algorithm on the Dexter-1 dataset from [Sridhar
et al., 2013]. The measurements report the root mean square errors of fingertip placements.
The acquisition setup consists of several calibrated video cameras and a single depth camera.
For our results and the method of [Tang et al., 2014], only the depth image is used for tracking,
while the algorithms of Sridhar and colleagues also use the video streams. The blue, green,
and purple bars are reproduced from [Sridhar et al., 2014]. For our algorithm we report results
without (red) and with (orange) reinitialization.

based approach to estimate hand poses. We also significantly improve upon the gradient-
based optimization methods of [Sridhar et al., 2013, Sridhar et al., 2014] that, in addition to
the depth information, use RGB data from five additional video cameras. As the dataset is
acquired at 25 Hz, the performance of our algorithm (red) is suboptimal. In particular, in
a single frame fingers are occasionally displaced by 2 to 3 times their radii, thus corrupting
ICP correspondences. By re-initializing with finger detection as in [Qian et al., 2014] our
performance considerably improves, as shown in the figure.

Subspace ICP [SMRB14]

Figure 2.19 shows a comparison to the model-based approach of [Schroder et al., 2014]. The
recorded sequences were directly processed by the authors and employed to pose our cylinder
model for ease of comparison. As the figure illustrates, our method clearly outperforms
this previous work. A key difference is that they optimize directly in a PCA subspace, which
tends to over-constrain the solution, while we introduce a PCA data term as a regularizer,
which preserves the full expressiveness of the tracking model. In addition, we introduce
collision handling, apply robust norms for automatic outlier detection, and employ a more
advanced correspondence search that handles self-occlusions. In combination, these factors
lead to substantial improvements in tracking accuracy and robustness without compromising
computational efficiency.
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Schroder [Schroder et al., 2014]
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Frame 158 Frame 234 Frame 780 Frame 923 Frame 1111

Figure 2.19 - A few comparison frames illustrating the difference in performance of our method
compared to [Schroder et al., 2014] (results provided by the authors of that paper). From left
to right we can observe problems related to: correspondences to the back of the model, lack of
silhouette energy (3 times) and loss of tracking due to fast motion.

Convex body solver [MKO13]

We compare to this algorithm by employing the precompiled binaries from the Intel Perceptual
Computing SDK. We modifed the demo application to save the recorded depth/color frames
to disk while tracking. We then re-tracked this data from scratch using our technique. As
illustrated in Video1 [05:20], as well as Figure 2.20, our method offers a substantial increase
in tracking robustness compared to [Melax et al., 2013]. This can be attributed to any of the
improvements we presented, but it is difficult to quantitatively identify the causes, because no
control on tracking parameters nor source code is given. Their approach computes closest
correspondences to the entire model, therefore not explicitly handling occlusion. The authors
also proposed a technique to ensure that the model is fully contained in the 3D convex hull of
the data. Note that in camera space, this amounts to constraints similar to the ones enforced
by our 2D registration (Equation 2.3), except that the distance transform would be computed
from the 2D convex hull of the silhouette image. Figure 2.20 (Frame 448) illustrates how our
2D registration better constrains feasible solutions. While in [Melax et al., 2013] correlation
between fingers is manually introduced as a grasping bias, our optimization is data driven and
encodes correlation in a more principled way. As illustrated in Figure 2.20 and Videol [05:20],
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Figure 2.20 — Comparison to the method of [Melax et al., 2013]. The full sequence can be
seen in the Videol [05:20]. We highlight a few frames that are not resolved correctly by this
method, but that can be handled successfully with our solution. The last frame shows the
better geometric approximation quality of the convex body model used in [Melax et al., 2013]
compared to our simpler cylinder model.

this approach often loses tracking during complex motion. However, it is sometimes capable
of recovering by sampling and then evaluating a reduced set of poses, with an approach
that is similar in spirit to [Oikonomidis et al., 2011]. One advantage of their method is the
higher geometric fidelity of their convex bodies hand model compared to our cylinder model.
Furthermore, our evaluation demonstrated how their more precise representation of the
hand’s Thenar eminence, as well as the thumb articulation, can result in more natural fitting
in these regions.

Convolutional Networks [TSLP14]

Figure 2.22 shows a quantitative comparison with the appearance-based method of [Tompson
et al., 2014] on a dataset provided by the authors of that paper. Overall, the tracking quality
is comparable, with a somewhat lower average error for our method. However, our solution
avoids many of the high-error peaks of [Tompson et al., 2014] where tracking is lost completely.
An additional advantage of our approach in comparison to any of the existing appearance-
based methods is that we can handle more complex interactions of two hands, since such
configurations are not part of the training data sets of existing methods; see Figure 2.21.

Limitations

Single-camera depth acquisition yields incomplete data and as such the pose reconstruction
problem is inherently ill-posed. Tracking errors can occur in certain situations as explained
above when insufficient data is acquired due to occlusions or fast motion. Similarly, the reso-
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Figure 2.21 - Developing robust model-based tracking is essential to enable tracking of hands
interacting with each other or with other objects in the environment. Here we illustrate that
for our method tracking accuracy is not significantly affected even though we are not modeling
the second hand. Note that such motion cannot be tracked successfully by appearance-based
methods such as [Tompson et al., 2014].
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Figure 2.22 — Quantitative comparison to [Tompson et al., 2014]. The graph shows the average
root mean square tracking error w.r.t. ground truth across 2440 frames. Some frames where
the accuracy of the two methods differs significantly are highlighted in the bottom row.

lution of the sensor limits tracking accuracy. As shown in Figure 2.23, when geometric features
become indiscriminate, our registration approach fails. Integrating color and shading infor-
mation could potentially address this issue [de La Gorce et al., 2011]. While our current system
requires the user to wear a wristband for detection and stabilization, this could be replaced by
automatic hand labeling, e.g. using random decision forest classifiers as in [Tompson et al.,
2014].

Our cylinder model proved adequate for the data quality of current commodity sensors, but
is overall limited in geometric accuracy, and hence might not scale with increasing sensor
resolution. Also, in our current implementation the model needs to be manually adapted
to the user through simple scaling operations. Without such adaptation, tracking accuracy
degrades as shown in Figure 2.24. This user-specific adaption could be automated [Taylor
et al,, 2014] and potentially even performed simultaneously with the real-time tracking as
recently proposed for face tracking [Bouaziz et al., 2013].

The PCA model used in the prior energy is an efficient, but rather simplistic representation of
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Figure 2.23 — Our algorithm relies on the presence of salient geometric features in the depth
map. Challenging sequences like a rotating fist lack such features when acquired with current
commodity depth sensors, which can result in loss of tracking.

the pose space. We currently do not consider the temporal order in which the hand poses of
the database have been acquired, which could potentially be exploited for more sophisticated
temporal priors.

2.6 Conclusions

We have introduced a new model-based approach to real-time hand tracking using a single low-
cost depth camera. This simple acquisition setup maximizes ease of deployment, but poses
significant challenges for robust tracking. Our analysis revealed that a major source of error
when tracking articulated hands are erroneous correspondences between the hand model
and the acquired data, mainly caused by outliers, holes, or data popping in and out during
acquisition. We demonstrate that these problems can be resolved by our new formulation of
correspondence search. In combination with suitable 2D/3D registration energies and data-
driven priors, this leads to a robust and efficient hand tracking algorithm that outperforms
existing model- and appearance-based solutions.

By fully disclosing our source code and data we ensure that our method and results are
reproducible, as well as facilitate future research and product development.

We are investigating a technique for efficient automatic personalization of the tracking model
to the user, in order to facilitate a more seamless usage of our system across different subjects.
Other examples of future efforts are robust two-hand tracking with object interactions, combi-
nations of hand tracking with full body tracking, and integrating our hand tracking solution to
new interfaces and real-time applications.
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"

Figure 2.24 — When tracking with an uncalibrated model, tracking correspondences can map
to data belonging to erroneous portions of the model. In the figure, the index finger remains
attached to samples associated with the thumb.

2.7 Implementation Details
2.7.1 Projective v.s. subspace PCA
In Equation 2.6, minimizing Epqse Over 0 has a closed form solution:
6 = (wsZ* + waD) ™ (w4I17,(0 — ).
We can therefore rewrite our data-driven energy only as a function of 6 as
Epose = 4l/(6 — ) — IIpMILL (0 — p) |13,

where M = w4 (w522 + w4I)~!. Our formulation does not only allow the solution to stay close
to the pose space, but also penalizes unlikely poses replacing the conventional orthogonal
projection matrix HpH7T, by a matrix prMH7T, taking into account the PCA standard deviation.
Note that when w5 = 0 we retrieve the orthogonal projection HpH7T,.

2.7.2 Jacobians
Perspective projection Jacobian

The Jacobian of the perspective projection is a [2 x 3] matrix depending from the focal length
of the camera f = [, f,] and the 3D position x at which it is evaluated [Bouaziz et al., 2014]:

fx/Xz 0 _x_xfxlxi

X) =
]persp( ) 0 fy/Xz —nyy/X§
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Skeleton Jacobian

The skeleton Jacobian Jg. (%) is a [3 x 26] matrix. For each constraint, the bone identifier
b = id(x) associated to each 3D point x determines the affected portion of the kinematic chain.
That is, it identifies the non-zero columns of Jg (X). As discussed in [Buss, 2004], the i-th
column of Jge) (X) contains the linearization of i-th joint about x.

2.7.3 Approximation using linearized function.

To approximate the following energies, we approximate E = ||f(x) ||§ by linearizing f(x) as
fx+0x)|x = f(x) + J(X)OX.

The approximation is then expressed as

E = Ifx) + Jx)5x|3. (2.10)

Joint bounds

The joint bounds energy can be written as

Epound = @7 Z x(0)(60; +0; _502_’_
9[€0

x()(E0;+6;-8,)°

Temporal coherence

To compute the velocity k(6) and the acceleration k(@) of a point k attached to the kinematic
chain, we use finite differences. The linearization of the temporal energy becomes

Etemporal = ws Z [1Tskel )60 + (k—k;—1) ||§
keC

+wg Y. [Tsket 86 + (k —2k;_1 + k)13,
ke/C

where k;_; and k;_, are the position of such points from the two previously optimized frames.

Data-driven (PCA)

The data-driven projection energy can be rewritten as

Epose = w4 || 1= TIpMIT5) (66 + 6 — ) |
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2.7.4 Approximation using Linearized ¢, Distance.

To approximate the following energies, we first reformulate the quadratic form E = |[f(x) II§ as
E = (Ifx)]12)%. We then linearize the ¢, norm ||f(X)|» as

fx)T
[fx+6x)ll21x = ) |2 + Jx)0x.
£ M1
The approximation is then expressed as
_ £)7 2
E=|I1fx 2+ I(X)6X) .
( 27 I 112

When the energy is of the form E = ||x - [1(x) |I§ where I1(x) is a projection operator, Bouaziz et
al. [Bouaziz et al., 2012] showed that f(x)'J(x) = f(x) . In this case, the approximate energy can
be simplified as

fox) 7 )2
x| .
1) 2

Contrary to the approximation in Equation 2.10, the Jacobian of the projection function does
not need to be known. This formulation is useful as the approximation in the equation above

E= (nf(x) ll2 +

only needs to evaluate the projection function and therefore allows to use arbitrarily complex
projection functions.

Point cloud alignment

We linearize the point cloud alignment energy as

Esp=w1 Y. orem! Jgel(y)50 + d))?,
xe X

wherey = T4 (x, ) is the closest point from x on the hand model M with hand pose 6. n is the
surface normal aty, and d = (y —x). As we minimize the £, norm we use a weight we = 1/]/d|l»
in an iteratively re-weighted least squares fashion.

Silhouette alignment

The silhouette energy is expressed in screen space, and therefore employs the perspective
projection Jacobian Jpersp (X), where x is the 3D location of a rendered silhouette point p.
Similarly to the point cloud alignment the linearization can be expressed as

Exp=w2 Y. " Jpersp ®Tskel (50 + d))?,
peS;

where d = (p — q) with q =I5, (p,0), and n is the 2D normal at the sensor silhouette location q.

46



2.7. Implementation Details

Figure 2.25 — (left) Collision constraints definition, deepest penetration points marked as
X;,X;. (right) When the collision energy is minimized in isolation the penetration points are
co-located.

Collision

Figure 2.25 illustrates the necessary notation with a 2D example, where x; and x; are the
end-points of the shortest segment between the two cylinders axes. The linearized energy is
defined as
Ecol. = wg {Z} X0, ) (0] (Osker %) = Joket ()56 + )
i,

where n; is the surface normal at x; (as shown in Figure 2.25), and d = (x; — ;).

2.7.5 Non-Linear Least Squares Optimization

To solve our optimization problem we use a Levenberg-Marquardt approach. We iteratively
solve Equation 2.1 using the approximate energies described in Section 2.7.2 through Section
2.7.4 leading to a damped least squares minimization

I%lien E3p + Ez2p + Ewrist + Epose + Exin. + Etemp. + Edamp,

and update our hand pose using the update 6 = 6 + 6. Note that since our energies are
written in the form:
2B =2i1:660 - el5,

our solve can be re-written as
-1
80=(2J71:) (Zd]e)=0. 2.11)
To stabilize the optimization, we introduce a damping energy Edamp = AII60|I§, where A = 100.

2.7.6 CPU/GPU Optimization

Our technique elegantly de-couples the components of our optimization on CPU and GPU.
With regards to Figure 2.4 only large-scale and trivially parallelizable tasks, like the computa-
tion of constraints associated with 2D/3D ICP correspondences are performed on GPU, while
all others run efficiently on a single CPU thread. In particular, the inversion in Equation 2.11 is
performed on CPU by Cholesky factorization (Eigen3). As the final solve is performed on CPU,
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we designed our optimization to minimize memory transfers between CPU/GPU. First of all,
note that although at each iteration we need to render an image of the cylinder model, the
texture is already located on the GPU buffers. Furthermore, although the large (= 20k x 26)
Jacobian matrices associated with Esp and Esp are assembled on the GPU, a CuBLAS kernel is
used to compute the much smaller (26 x 26, 26 x 1) matrices Il.T]i and ]l.Tei. Only these need to
be transferred back to CPU for each solver iteration.
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Sphere-Meshes for Real-Time Hand
Modeling and Tracking

Figure 3.1 — Three side-by-side comparisons of tracking performance from the HANDY/TEASER
sequence. Our model allows us to obtain much higher tracking quality. Tracking at a finer scale
is instrumental to prevent tracking failure. The whole sequence can be seen in Video2 [03:53].

This chapter is based on the following publication:

TKACH A., PAULY M., TAGLIASACCHI A.: Sphere-meshes for real-time hand modeling and
tracking. In ACM Trans. Graph. (Proc. SIGGRAPH Asia) (2016).

Abstract

Modern systems for real-time hand tracking rely on a combination of discriminative and
generative approaches to robustly recover hand poses. Generative approaches require the
specification of a geometric model. In this chapter we propose the use of sphere-meshes
as a novel geometric representation for real-time generative hand tracking. How tightly this
model fits a specific user heavily affects tracking precision. We derive an optimization to non-
rigidly deform a template model to fit the user data in a number of poses. This optimization
jointly captures the user’s static and dynamic hand geometry, thus facilitating high-precision
registration. At the same time, the limited number of primitives in the tracking template
allows us to retain excellent computational performance. We confirm this by embedding our
model in an open source real-time registration algorithm to obtain a tracker steadily running
at 60Hz. We demonstrate the effectiveness of our solution by qualitatively and quantitatively
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evaluating tracking precision on a variety of complex motions. We show that the improved
tracking accuracy at high frame-rate enables stable tracking of extended and complex motion
sequences without the need for per-frame re-initialization. To enable further research in the
area of high-precision hand tracking, we publicly release our source code and evaluation
datasets.

3.1 Introduction

The main goal of this chapter is to explore novel tracking models that strike an optimal balance
between accuracy and performance.

More specifically, we propose a geometric model that more accurately captures the user’s hand
geometry, while retaining the ability to answer registration queries in closed form with very
high efficiency. In Figure 3.2 and Video2 [03:53] ! we illustrate the importance of employing a
tracking template that strikes this delicate balance.

Implicit vs. explicit templates

In modern digital production the de-facto standard is to represent objects by a surface mesh
of their boundary (e.g. triangle or quad meshes). Fast rendering and easy direct manipula-
tion make explicit surface representation attractive for many applications. However, unlike
implicit models [Bloomenthal et al., 1997], explicit representations cannot efficiently answer
queries such as the distance from a point to the object’s boundary, or whether a point lies
inside/outside the model [Botsch et al., 2010, Ch.1]. In tracking applications these queries play
a fundamental role, as the optimization attempts to find configurations where the average

IPlease find the accompanying Video2 at http://lgg.epfl.ch/publications/2016/HModel/video.mp4.

Figure 3.2 — (left) Tracking when the model from [Tagliasacchi et al., 2015] is used without
proper coarse scale calibration. (middle) A roughly manually calibrated model can help
increasing the fitting fidelity, but tuning becomes increasingly difficult with more degrees of
freedom. (right) The proposed automatically calibrated model.
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Figure 3.3 — The sphere-mesh skeleton S identifies sphere positions and radii. The surface
of the object is obtained as the convex-hull of the spheres on the vertices of the skeleton.
Sphere-meshes can be rendered through GPU ray-tracing, or by meshing the zero-crossing of
their implicit function; see Equation 3.1.

distance from model to data is minimized. Similarly, a tracker should prevent the model from
assuming implausible configurations, for example by preventing self-intersections as mea-
sured by inside/outside predicates. For all these reasons, and as demonstrated by compelling
results in rigid [Newcombe et al., 2011] and non-rigid [Newcombe et al., 2015] reconstruction,
implicit models are highly suitable for registration applications.

To address the challenges of real-time registration, we propose to employ a hybrid model that
combines the advantages of explicit and implicit representations.

Hybrid sphere-mesh templates

The model we propose in this chapter is a variant of a convolution surface [Bloomenthal and
Shoemake, 1991]. Its fundamental building blocks are illustrated in Figure 3.3. The surface is
defined as the zero iso-level of the scalar function

¢x) = min Bx|c,r(c)) (3.1
ceS
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Figure 3.4 — (left) The skeleton S parametrizes the sphere-mesh through vertex positions
and radii. In our template, articulated components are shown in dark green while flexible
components in purple. (right) Calibration instantiates our template by adjusting the skeletal
vertex positions and radii.

where S is a skeletal control mesh (a segment or a triangle in the simple examples of Figure 3.3),
and B is the implicit function of a sphere given its center ¢ and radius r:

Bxle, ) = Ix—c||* - r? (3.2)

The sphere centers ¢ span the skeleton S, while the radii are a function of the position ¢
within an element, linearly interpolated from values r. = r(c.) specified on the skeletal mesh
vertices c.. This is indeed a hybrid model, as Equation 3.1 defines an implicit surface M =
{x € R"|¢p(x) = 0}, while the underlying skeleton S is an explicit representation (i.e. a simplicial
complex). We generalize this construct to devise a model suitable to represent a human hand;
see Figure 3.4. Distances to M can conveniently be computed by querying distances to the
piecewise linear elements of S; see Figure 3.7.
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Tracking and calibration with sphere-meshes

Our novel tracking model has two significant advantages. (1) Distance queries to M can be
executed by measuring the distance to the skeletal structure S. The number of elements in S
is significantly smaller (30 in our model) than the number of polygons in a typical triangular
mesh surface representation [Thiery et al., 2013]. Therefore, distance queries can be performed
efficiently using a brute force approach, which leads to a simple algorithm that is trivially
parallelizable. (2) The parameterization of our hand model is compact, as we can generate a
family of models by simply adjusting positions and radii of the control skeleton vertices ¢, € S.
This allows adapting the model to the hand geometry of a specific user.

Contributions

The core contribution of this chapter is to demonstrate that sphere-meshes provide superior
hand tracking performance for single-view depth sensors. We introduce an optimization
approach that allows adapting our tracking model to different human hands with a high level
of accuracy. The improved geometric fidelity compared to existing representations leads to
quantifiable reductions in registration error and allows accurate tracking even for intricate
hand poses and complex motion sequences that previous methods have difficulties with. At
the same time, due to a very compact model representation and closed-form correspondence
queries, our generative model retains high computational performance, leading to sustained
tracking at 60Hz.

Overview

The remainder of the chapter is structured as follows: We survey related work in Section 3.2. In
Section 3.3 we describe our generative real-time hand tracking technique, which details how
our novel formulation enables efficient correspondence computation. Section 3.4 explains
how we build our template model from 3D scans acquired either through multi-view stereo
or from depth maps. In Section 3.5 we analyze the performance of our model for real-time
tracking and provide comparisons to the state-of-the-art. We conclude in Section 3.6 with a
discussion of current limitations and ideas for future work.

3.2 Related Work

Generative tracking models

The capsule model originally proposed by [Rehg and Kanade, 1994] has been adopted by
a number of researchers [Oikonomidis et al., 2011, Schroder et al., 2014, Fleishman et al.,
2015, Tagliasacchi et al., 2015]; see Figure 3.5(a). Such a coarse representation is suitable
to the task given the low signal-to-noise ratio in modern depth sensors, while its simplicity
enables the efficient closed-form computation of alignment queries. Cylinders can also
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Figure 3.5 — Several tracking templates employed by recent generative (or hybrid) real-time
hand-tracking methods. Images courtesy of (a) [Oikonomidis et al., 2011], (b) [Sridhar et al.,
2013], (c) [Taylor et al., 2016], and (d) [Melax et al., 2013].

be approximated by a small set of disconnected spheres [Qian et al., 2014], but this rough
approximation is only sufficient for coarse-scale tracking. An alternative to cylinders and
spheres is the use of isotropic [Sridhar et al., 2013, Sridhar et al., 2015], as well as anisotropic
Gaussians [Sridhar et al., 2014]; see Figure 3.5(b). The use of surface meshes, while widespread
in other domains (e.g. face tracking [Bouaziz et al., 2013] or offline registration [Loper and
Black, 2014]), has been limited to the visualization of tracking performance through skinned
model animations [Tompson et al., 2014, Schroder et al., 2014]. Sharp et al. [Sharp et al., 2015]
employed mesh models for tracking in a render-and-compare framework, while the very
recent work of [Taylor et al., 2016] presents the first attempt towards a continuous registration
framework for tracking hands with triangular meshes; see Figure 3.5(c). Other variants of
tracking models include the union of convex bodies from [Melax et al., 2013], a convolutional
neural network capable of directly synthesizing hand depth images [Oberweger et al., 2015b],
and some initial attempts at tracking with implicit templates [Plankers and Fua, 2003]. Our
sphere-mesh model offers accuracy comparable to triangle meshes used in recent hand
trackers, while retaining a compact representation for efficient correspondence queries and
effective user adaptation.

Template calibration

Albrecht et al. [Albrecht et al., 2003] pioneered the creation of a realistic hand model (i.e.
bones and muscles) by aligning a template mesh to data acquired by a laser-scanned plaster
cast. Rhee et al. [Rhee et al., 2006] use a simpler setup consisting of a single color image to
identify approximate joint locations by localizing skin creases, and adapt a mesh template
to conform to its silhouette. While these methods focus on a static template, in [de La Gorce
etal., 2011] a model is roughly adapted to the user through simple bone scaling to produce
the first animatable template. Calibration of a cylinder model through particle swarm has
been investigated in [Makris and Argyros, 2015]. Mesh calibration techniques were proposed
in [Taylor et al., 2014] and extended in [Khamis et al., 2015], which introduces compact and
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Figure 3.6 — (a) An artist creates a hand model by first sketching its topological structure as a
union of spheres (ZSphere). (b) The model is then converted into a volumetric representation
and meshed (Unified Skinning) to be further refined (c,d).

linear shape-spaces of human hand geometry. The method in [Taylor et al., 2014] shares some
similarities with our work, where the model is adjusted to jointly fit a set of depth frames, but
with a fundamental difference in the way in which geometry is represented. Our sphere-mesh
model is naturally compact, leading to straightforward calibration and tracking algorithms.

Implicit modeling

Implicit sculpting tools have recently become a viable alternative to mesh or spline-based
approaches for modeling complex geometries. This paradigm lies at the basis of the success
of the PixoLogic ZBrush product line. For articulated geometry, it is often convenient to first
create a coarse geometric structure analogous to the one described in Equation 3.1, a process
that PixoLogic has re-branded as ZSphere modeling; see Figure 3.6. Editing the radii and
centers of the sphere-mesh offers a natural way of editing the model, making it easy for both
humans and algorithms to calibrate. Note that any geometric model can be approximated, to
any desired precision, as a union of spheres [Tagliasacchi et al., 2016]. However, by considering
spheres that are linearly interpolated across edges, we can heavily reduce the required number
of primitives. Following this principle, [Thiery et al., 2013] recently investigated a method
to automatically generate Sphere Meshes provided a (static) input model. Extending this
work, [Thiery et al., 2016] proposed a method to fit a model to a sequence of dynamic meshes.
While seemingly related, our calibration optimization is solving a fundamentally different
problem, as in our technique a template is fixed and provided in input.

3.3 Tracking

Given a calibrated hand model M, our real-time tracking algorithm optimizes the 28 degrees
of freedom 6 (i.e. joint angles) so that our hand model matches the sensor input data; the
generation of a calibrated model M for a user is detailed in Section 3.4. Directly extending the
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Figure 3.7 — The computation of closest point correspondences on pill (left) and wedge (right)
elements can be performed by tracing a ray along the normal of the line (resp. plane) tangent
to the circles (resp. spheres).

open source htrack framework of [Tagliasacchi et al., 2015], we write our tracking optimization
in Gauss-Newton/Levenberg-Marquardt form:

0,=argmin Y wrEr(D;,0,0,1) (3.3)
0 Teﬁrack

where fitting energies are combined with a number of priors to regularize the solution and
ensure the estimation of plausible poses.

The energy terms 7i;ack in our optimization are:

d2m each data point is explained by the model

m2d the model lies in the sensor visual-hull

pose hand poses sample a low-dimensional manifold
limits joint limits must be respected

collision fingers cannot interpenetrate

temporalthe hand is moving smoothly in time

We limit our discussion to the computational elements that need to be adapted to support
sphere-meshes, while referring the reader to [Tagliasacchi et al., 2015] for other details.

Hausdorff distance

The similarity of two geometric models can be measured by the symmetric Hausdorff distance

Px-v:

Px—y = MaXgex [Minyey @(x,)]
Qy—x = mMaxyey [Mingex @(x,)]

Pxoy = max{dx_y,py—x}
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Figure 3.8 — (a) A visualization of the posed kinematic frames T.. (b) The kinematic chain and
number of degrees of freedom for posing our tracking model. Tracking quality with (c) optimal
and (d) non-optimal kinematic transformation frames.

We therefore interpret our terms E;,,, and E,,;»4 as approximations to the asymmetric Haus-
dorff distances ¢ x_y and ¢y_ x, where the difficult to differentiate max operators are re-
placed by arithmetic means, and a robust ¢ distance is used [Tagliasacchi and Li, 2016].

Data — Model

The first asymmetric distance minimizes the average closest point projection of each point p
in the depth frame D:

Egom=1DI™' Y Ip-Tame (I3 (3.4)
peD

Adapting this energy, as well as its derivatives, to sphere-meshes requires the specification of
the projection operator I1 4 that is described in Section 3.3.1.

Model — Data

The second asymmetric distance considers how our monocular acquisition system does not
have a complete view of the model. While the 3D location is unknown, we can penalize the
model from lying outside the sensor’s visual hull:

Epza = M@ f Ix—TIpI} 3.5)

xXeM(0)

In the equation above, the integral is discretized as a sum over the set of pixels obtained
through rasterization; see Section 3.3.2. The rasterization renders the model to the image
plane using the intrinsic and extrinsic parameters of the sensor’s depth camera.
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®  query point gs ®Ps
® front-facing correspondence
back-facing correspondence

= camera view direction
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Figure 3.9 — In monocular acquisition only the front-facing part of the model should be
registered to the data. Here the camera is observing (left to right) two elements and the
occluded parts of the model are marked. Correspondences whose normals point away from
the camera are discarded, and replaced by the closest amongst silhouette correspondences or
front-facing portions of wedges.

3.3.1 Correspondences

Our correspondence search leverages the structure of Equation 3.1, by decomposing the
surface into several elementary elements £¢, where e indexes the 30 elements of our template;
see Video2 [00:58]. As illustrated in Figure 3.7, elements are classified into pill and wedge
implicit primitives, with an associated implicit functions ¢,. Given a point p in space, the
implicit function of the whole surface can be written by evaluating the expression:

¢ (p) = argmin ¢, (p) (3.6)
e=1..E

Given a query point p, we can first compute the closest-points q, = [1g¢(p) to each element
independently; within this set, the closest-point projection to the full model q = IT 4 (p) is the
one with the smallest associated implicit function value ¢.(p). In a tracking session with an
average of 2500 points/frame the computation of closest-point correspondences takes 250
ws/iteration. We now describe in detail how the projection is evaluated on each element in
closed form.
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Pill correspondences: q = I1;; (p)

A pill is defined by two spheres B;(c1, 1) and Bz (cz, 2). By construction the closest point
correspondence lies on the plane passing through the triplet {c;, c2, p}, thus allowing us to
solve the problem in 2D; see Figure 3.7-(left). We compute the intersection point s of the ray
r(f) = p+ tn with the segment ¢, ¢, and parametrize its location in barycentric coordinates as
s=ac;+(1-a)cy. If a €10,1], our closest point correspondence is given by q = I (p), that is,
the intersection of ¢;¢; and r(#). If @ < 0 or a > 1, then the closest point will be q = I, (p) or
q =1IIp, (p), respectively.

Wedge correspondences: q = [yedge (p)

A wedge is defined by three spheres B; = {c;, r;}. Figure 3.3 illustrates how a wedge element
can be decomposed in three parts: spherical, conical, and planar elements, associated with
vertices, edges, and faces of the sphere-mesh skeleton. For the planar element P(t;,n) with
normal n and tangent t; to 3; we compute the skewed projection s by finding the intersection
of the ray r(#) = p + tn with the triangle 7 formed by ¢, ¢y, ¢3. According to the position of s
we have two possible solutions: If s lies inside the triangle 7, then our footpoint is q = ITp (p).
Otherwise, we use the barycentric coordinates of s in 7 to identify the closest pill element and
compute q = [Ty (p).

Monocular Correspondences

In monocular acquisition (i.e. single sensor), an oracle registration algorithm aligns the portion
of the model that is visible from the sensor viewpoint to the available data. Hence, when
computing ICP’s closest-point correspondences, only the portion of the model currently visible
by the camera should be considered [Tagliasacchi et al., 2015]. Given the camera direction v, we
can test whether the retrieved footpoint q is back-facing by testing the sign of v- Ay (q), where
the second term is the object’s normal at q. As illustrated in 2D in Figure 3.9, whenever this
test fails, there are additional candidates for closest point that must be checked: (1) the closest-
point on the silhouette of the model (e.g. p23,,7), and (2) the front facing planar portions
of elements (e.g. ps). These additional correspondences for the query point are computed,
and the one closest to p becomes our front-facing footpoint q. The additional computational
cost caused by front-facing correspondences with an average of 2500 points/frame is 100
ps/iteration.

Silhouette computation

The object-space silhouette 0M is a (3D) curve separating front-facing from back-facing
portions of a shape [Olson and Zhang, 2006, Sec.1]. To simplify the silhouette computation
we approximate the perspective camera of the sensor with an orthographic one. We then
offset all elements on the 2D camera plane, and perform a cross-section with this plane:
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Figure 3.10 — The image-space silhouette of the model computed by projecting the model in
the camera plane (left). The 2D object-space silhouette curves are computed separately for
palm and fingers and then composited back together (center). The 3D object-space silhouette
(pink) is re-projected in 3D (right).

spheres are replaced with circles and planes/cylinders with segments; see Figure 3.10-(left).
We then compute an arrangement, splitting curves whenever intersection or tangency occurs;
see Figure 3.10-(center). We traverse this graph, starting from a point that is guaranteed to be
on the outline (e.g. a point on the bounding box). The traversal selects the next element as the
one whose tangent forms the smallest counter-clockwise angle thus identifying the silhouette.
Once the 2D silhouette has been computed, it can be re-projected to 3D; see Figure 3.10- (right).
Note the process described above would compute the image-space silhouette of our model.
Therefore, we apply the process to palm and fingers separately, and merge them in a second
phase. The merge process simply checks whether vertices v € .M are contained within the
model, which means it discards those where ¢ ¢(v) < 0. In our experiments the average
computation of the silhouette on the CPU takes 150 us/iteration.

3.3.2 Rendering

Rendering the sphere-meshes in real time is not only employed for visual verification of
tracking performance; e.g. Figure 3.2. The real-time tracking algorithm reviewed above
performs a 2D registration in the image plane that requires the computation of an (image-
space) silhouette. There are two alternatives for rendering a sphere-mesh model like the one
shown in Figure 3.4. One possibility is to explicitly extract the surface of individual elements
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Figure 3.11 — Each plot visualizes on the y axis the portion of frames with a mean error metric
below the value reported on the x axis. We employ the HANDY/TEASER sequence for this
purpose. Curves closer to the top-left quadrant indicate better performance.

by computing the convex hull of pairs or triplets of spheres; see Figure 3.3. While this process
would be suitable in applications where the model is fixed, it is hardly appropriate in our
scenario where we want to calibrate the model to the user. Therefore, similarly to [Thiery
et al., 2016], we ray-trace the model on the GPU. We render a unit fullscreen quad and in
the fragment shader use the camera intrinsics to compute the camera ray r(x) associated
with each pixel x. Each ray is intersected with each element of our model, and the closest
intersection point is retained. Tests are performed with the planar, conical, and spherical
primitives that compose each element. Rendering at a resolution of 320 x 240 pixels provides
the best trade-off between accuracy and performance, leading to a total rendering time of
= 3ms for visualization and = 500us/iteration for the evaluation of E;;;24.

3.4 Calibration

Our calibration procedure adapts our template model to a specific user from a set of N 3D
measurements {D; ... Dy} of the user’s hand in different poses. Multiple measurements are
necessary, as it is not possible to understand the kinematic behavior by analyzing static geom-
etry, and the redundancy of information improves fitting precision. Further, in monocular
acquisition this redundancy is essential, as single-view data is highly incomplete, making the
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problem ill-posed. In our research we have experimented with datasets {D,} acquired via
multi-view stereo (e.g. Agisoft Photoscan), as well as a single RGBD sensor. Our calibration
formulation can be employed for both acquisition modalities. Dynamic reconstruction frame-
works such as [Newcombe et al., 2015] or [I[nnmann et al., 2016] could also be used to generate
a dynamic template mesh over which sphere-mesh decimation could be executed [Thiery
etal., 2016]. However, as no public implementation is currently available, it is currently unclear
how well these methods would cope with loop-closure for features as small as human fingers.

Kinematics

The rest-pose geometry of our model is fully specified by two matrices specifying the set of
sphere positions C and the set of radii t. The geometry is then posed through the application
of kinematic chain transformations; see Figure 3.8a. Given a point p on the model M at rest
pose, its 3D position after posing can be computed by evaluating the expression:

p= [erK(p)TkaTil] p (3.7)

where T, are the pose transformations parameterized by 6 and IT left multiplies matrices by re-
cursively traversing the kinematic chain K of point p towards the root [Buss, 2004]. Each node
k of the kinematic chain is associated with an orthogonal frame T}, according to which local
transformations are specified. In most tracking systems, the frames T, are manually set by a 3D
modeling artist and kept fixed across users. However, incorrectly specified kinematic frames
can be highly detrimental to tracking quality; see Figure 3.8(c,d) and Video2 [02:12]. Therefore,
in our formulation, the kinematic structure (i.e. the matrices T.) is directly optimized from
acquired data.

Formulation

Let 8, be the pose parameters optimally aligning the rest-pose template to the data frame D,,,
and 0 be the posture parameters representing the transformations T, via Euler angles.

For notational brevity, we also define ®,, = [0}, d,C, ). Our calibration optimization can then
be written as:

N
argminz Z wrET(Dy,0;) (3.8)
{@n} n=1 T€7::alib

We employ a set of energies T¢aiip to account for different requirements. On one hand we want
amodel that is a good fit to the data; on the other, we seek a non-degenerate sphere-mesh
template that has been piecewise-rigidly posed. The following calibration energies 7T¢aiib
encode these requirements:

d2m data to model distance
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Figure 3.12 - Calibrating progressively improves the 2D /3D tracking metrics, showing a remark-
able improvement in tracking fidelity from [Tagliasacchi et al., 2015] to [Proposed Method].

initialization intermediate converged ’ initialization intermediate converged

Figure 3.13 — A visualization of a few iterations of our calibration optimization procedure; see
Video2 [01:30]. Each quadrant displays a data frame D,,, n = 1...4. Within each quadrant
we show three iterations of the optimization. The model being calibrated here is the one
employed for real-time tracking in Video2 [02:57].

m2d model to data distance
rigid elements are posed rigidly
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valid elements should not degenerate

To make this calibration more approachable numerically, we rewrite Equation 3.8 as an
alternating optimization problem:

argmin Y Y7 wrEr(D,,CyC1) (3.9)
{C.LCF
argmin Y3 Yrer,, wrET(Cy,0,) (3.10)
{0,1,0

Our first step adjusts rest-pose sphere centers C and radii , by allowing the model to fit to the
data without any kinematic constraint beyond rigidity, and returning as a side product a set
of per-frame posed centers {C,}. Our second step takes the set {C,} and projects it onto the
manifold of kinematically plausible template deformations. This results in the optimization of
the rotational components of rest-pose transformations T., as their translational components
are simply derived from C.

Optimization

The energies above are non-linear and non-convex, but can be optimized offline, as real-time
tracking only necessitates a pre-calibrated model. For this reason, we conveniently employ
the Isgnonlin Matlab routine, which requires the gradients of our energies as well as an
initialization point. The initialization of C is performed automatically by anisotropically
scaling the vertices of a generic template to roughly fit the rest pose. The initial transformation
frame rotations é are retrieved from the default template, while {0} are obtained by either
aligning the scaled template to depth images, or by executing inverse kinematics on a few
manually selected keypoints (multi-view stereo). Our (unoptimized) Matlab script calibrates
the model within a few minutes for all our examples.

3.4.1 Energies

Our fitting energies are analogous to the ones used in tracking. They approximate the sym-
metric Hausdorff distance, but they are evaluated on a collection of N frames:

N
Eppm= Y D™ Y Ip—Tamee, @3 (3.11)
n=1 peD,
N
Epmpa= Y, IM®)" Y Ix-TIp, )3 (3.12)
n=1 xXeM(O,,)

Note that the projection operator IIp, changes according to the type of input data. If a
multi-view acquisition system is used to acquire a complete point cloud, then the projection
operator fetches the closest point to p in the point cloud of frame D,,. If D;, is acquired through
monocular acquisition, then I1p, computes the 2D projection to the image-space silhouette
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of the model.

Rigidity

It is essential to estimate a single user template that, once articulated, jointly fits the set of data
frames {D,}. For this purpose we require each posed model to be a piecewise-rigid articulation
of our rest pose. This can be achieved by constraining each segment {(c,, ;, ¢y, ;) | ij € S} of Cy,
to have the same length as the corresponding segment (€;,€;) of the rest pose configuration C:

Erigia= Y. (lcn,i—cnjll - lIE; — €51 (3.13)
ijeS
Note that only a subset of the edges of our control skeleton, as illustrated in Figure 3.4, are
required to satisfy this rigidity condition.

Validity

The calibration optimization should avoid producing degenerate configurations in our rest
pose template C. For example, a pill degenerates into a sphere when one of its balls is fully
contained within the volume of the other. Analogously, a wedge can degenerate into a pill
or a sphere. We monitor validity by an indicator function y (13;) that evaluates to one if B; is
degenerate and zero otherwise. We make a conservative choice and use y (13;), which verifies
whether €; is inside £\ 3;, the element obtained by removing a vertex, as well as all its adjacent
edges, from €. This leads to the following conditional penalty function:

Evaia= Y., Y. xBlei—Tgz €)I5 (3.14)
EeCBie€

3.5 Results

We evaluate our technique on a variety of sequences across a number of users, and performe
qualitative as well as quantitative comparisons of our method to the state-of-the-art [Qian
etal., 2014, Sridhar et al., 2015, Tagliasacchi et al., 2015, Sharp et al., 2015, Taylor et al., 2016]. We
also propose new algorithm-agnostic metrics tailored to high-precision tracking evaluation,
and introduce the HANDY dataset.

Template Calibration

The calibration of our model to a collection of 3D data frames is illustrated in Figure 3.13;
note that the same model is rigidly articulated to fit to multiple poses. While for this user we
build a model from multi-view stereo data (omni-directional, complete), it is important to
notice that the use of multiple frames in different poses is a necessity. Only in this situation
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can the centers {C,} be jointly adjusted to create an articulated model that consensually fits
the whole dataset. We refer the reader to Video2 [01:30] for a visualization of our iterative
calibration procedure. The calibration from RGBD datasets can be seen at Video2 [01:45], and
the resulting models are illustrated in Figure 3.4.

Kinematic Calibration

The importance of adjusting kinematic chain transformations is shown in Figure 3.8, as well
as the first images pair in Figure 4.1. With incorrect transformations, joint limits and the
articulation restrictions of the kinematic chain can prevent the model from being posed
correctly; see a dramatization in Video2 [02:12]. In our experiments we discovered it was
crucial to identify the typical kinematic chain structure using the dataset in Figure 3.13;
user-specific calibration optimization used these transformations as initialization.

Comparison metrics

Taylor and colleagues [Taylor et al., 2016] have recently reported how state-of-the-art hand
tracking algorithms have reached human precision in determining the location of key features
(e.g. fingertips and wrist position). Therefore, publicly available datasets like [Tompson et al.,
2014] and [Sridhar et al., 2013], often relying on human labeling of data, are now unsuitable
to quantitatively evaluate the quality of high-precision tracking. We propose two easy-to-
compute metrics to evaluate the quality of generative tracking algorithms. A core element that
makes these metrics appealing is that, much like key feature positions, they are completely
algorithm agnostic: they can be evaluated as far as a depth map of the tracking model can
be synthesized. This is essential, as it will enable the research community to validate and
compare results through quantitative analysis. We achieve this goal by expressing these
metrics exclusively as a function of the acquired depth image D,, and of the depth image R,
of the rendered model. Below we drop the subscript n for notational brevity and only consider
points p within the Rol. The data-to-model metric is:

Esp=IDI7" Y Ip-TIrpll; (3.15)
peD

Differently from before, [Tz computes the (kd-tree accelerated) closest point correspondence
to the rendered model point cloud, rather than to the model itself. The model-to-data metric
is:

Exp=IR\oDI™" Y Ix-Tip®ly (3.16)
XeER\OD

Each summation term above can be evaluated efficiently by pre-computing the 2D Euclidean
distance transform of the Rol’s (image-space) silhouette 0D [Tagliasacchi et al., 2015], where
the transform evaluates to zero for a pixel inside the silhouette. Another algorithm agnostic
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Figure 3.14 — [Tkach et al. 2016] is quantitatively compared over time to [Tagliasac-
chietal. 2015], [Sharp et al. 2015] and on the HANDY/TEASER sequence.

metric is the golden energy from Sharp et al. [Sharp et al., 2015], but this distance does not
encode a monocular Hausdorff like ours do.

Handy dataset

We create the new HANDY tracking dataset for the evaluation of high-precision generative
tracking algorithms. Our dataset contains = 30k depth and color images recorded with an Intel
RealSense SR300 sensor. The dataset is designed to cover the entire range of motions that has
been surveyed in recent techniques. As detailed in Figure 3.16, we identified three main axes
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Figure 3.15 — Aggregated errors are reported for the tracking sequences in Figure 3.14. These
aggregated measures reveal a significant improvement in tracking precision; see legend in
Figure 3.14.

of complexity in the hand tracking literature, and devised the TEASER dataset to thoroughly
sample this space; see Video2 [02:51].

Further, to enable qualitative comparisons to motions from state-of-the-art papers we also
devised an additional set of sequences:

Video2 [04:53] - TAYL1 rigid and clenching
Video2 [05:40] - SRID1 fingers extension
Video2 [05:56] — SRID2 fingers contact
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Figure 3.16 — Our dataset contains a wide range of motions. We identify three main axes of

complexity by analyzing recent hand-tracking papers; see Video2 [02:51]. The distance to the
origin indicates the level of tracking difficulty.

Video2 [06:15] - SRID3  crossing fingers
Video2 [06:29] - SRID4 pinching

Video2 [07:33] — SHAR]1 fast and complex
Video2 [08:07] — SHAR2 fast rigid

Video2 [08:37] - SHAR3 rotating fist

The sequences marked as fayl* srid*, and shar* are respectively designed to emulate the
motions in [Taylor et al., 2016], [Sridhar et al., 2015] and [Sharp et al., 2015]. We do not devise

sequences for [Qian et al., 2014] and [Tompson et al., 2014], as the previous datasets already
covered the motion space.

Self evaluation

In Figure 3.11, we adopt the self-evaluation visualization proposed by [Taylor et al., 2016].
We study the changes in algorithm performance as we disable the tracking energy terms in
Equation 3.3 on the HANDY/TEASER sequence — in all tests, the d2m term is never disabled,
as otherwise immediate loss of tracking occurs. Not surprisingly, we identify the m2d and
pose terms to be the ones dominating tracking performance. Similarly to [Taylor et al., 2016],

while the contribution of other terms is small, we found that it still yields a visually noticeable
improvement.
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Quantitative comparison

Our algorithm has been tested with the Intel RealSense SR300 (QVGA@60Hz). We have tai-
lored the method of [Tagliasacchi et al., 2015] to support this sensor to enable quantitative
comparisons. In Figure 3.14, our two metrics are plotted per-frame as multiple tracking al-
gorithms are executed on the HANDY/TEASER sequence, while Figure 3.15 reports aggregated
errors; see Video2 [03:53]. It is important to note our metrics are designed to evaluate fitting
precision; the method of [Sharp et al., 2015] still achieves good tracking robustness on the test
sequences, but the lack of user calibration heavily biases this metric. Aggregated performance
comparisons are also reported in Figure 3.17 for each sequence in the HANDY dataset; see
Video2 [04:50]. These metrics reveal a consistent and significant increase in performance.
Figure 3.12 quantitatively illustrates the tracking benefits of template calibration.

Qualitative comparison

We employ the HANDY sequences to perform a qualitative comparison to [Qian et al., 2014,
Sridhar et al., 2015, Sharp et al., 2015, Taylor et al., 2016]. As it can be observed in Video2 [04:50],
our calibrated tracker is capable to replicate any of the motions benchmarked by state-of-the-
art techniques with excellent accuracy.

Further comparisons

Given a sufficiently rich annotated data sample, it is generally possible to adapt a discrim-
inative tracker to a different sensor from what it was originally designed for. However, for
generative algorithms the task requires some parameter tweaking, a challenging task to achieve
without direct access to each sensor variant. For these reasons, comparisons to datasets de-
veloped on different sensors like DEXTER [Sridhar et al., 2013] or FINGERPAINT [Sharp et al.,
2015] would be misleading. Most importantly, these datasets were acquired at 30Hz, while our
generative algorithm is specifically designed to execute at 60Hz. To enable a fair comparison,
we would require the per-frame re-initializer employed by the authors, but no source code for
these algorithms is available.

3.6 Discussion

Our analysis demonstrates how sphere-meshes tracking templates are particularly well suited
for real-time hand-tracking. Our calibration and tracking algorithms are simple to implement,
efficient to optimize for, and allow for the geometry to be represented with high fidelity. While
the calibration algorithm is currently implemented in Matlab, we are confident real-time
performance can be achieved with a simple C++ port of our code. The recently proposed
system of Taylor and colleagues [Taylor et al., 2016], has also demonstrated excellent tracking
quality. Their formulation employs a triangular mesh model and optimizes it in a semi-
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Figure 3.17 — Average 2D/3D tracking performance metrics of the proposed method compared
to [Tagliasacchi et al., 2015]. In the additional material we report error plots through time for
the aggregated data above.

continuous fashion. However, as their model is articulated through linear blend skinning, joint
collapse artifacts can occur. Conversely, our model is volumetric and naturally overcomes
this shortcoming; see Video2 [01:18]. Although it is difficult to predict whether surface or
volumetric models will eventually prevail, we believe the simplicity of our representation will
lead to extremely performant articulated tracking algorithms.

Generative tracker

In this chapter we demonstrated a generative algorithm that yields unprecedented levels of
robustness to tracking failure. We would like to stress that our real-time tracking algorithm
is (almost) purely generative: a discriminative technique [Qian et al., 2014] is only employed
in the first frame for tracking initialization. We believe our robustness is due to the quality of
the calibrated model, and to the ability to optimize at a constant 60Hz rate. Discriminative
algorithms could still be necessary to compensate for situations where the hand re-appears
from complete occlusions, but their role in real-time tracking will diminish as RGBD sensors
will start offering imaging at frequencies above 60 Hz. To highlight our high frame-rate depen-
dancy, in Video2 [11:02] we analyze the performance on the tracker with varying frame-rates
(60Hz, 30Hz, 15Hz and 7.5Hz) while the additional material reports the corresponding tracking
metrics. In Video2 [10:30] we further investigate tracking failures that include long phases of
total occlusion; note how in these scenarios the mean-pose (Probabilistic PCA) regularizer
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described in [Tagliasacchi et al., 2015, Eq.6] helps tracking recovery.

Downsampling

Although the Intel RealSense sensor is a short range camera, in this work we have downsampled
the depth image to QVGA format with a median filter, giving an average of 2500 pixels/frame;
this is approximatively the number of samples found on a hand in long-range cameras. The
recent work of [Taylor et al., 2016] reports a total of 192 pixels/frame, therefore enabling CPU
optimization without significant loss of tracking precision. Inspired by this work, we have
experimented with further downsampling and reached analogous conclusions. However, the
computational bottleneck of the htrack system lies in the overhead caused by render/compute
context switching. While this is currently an issue, it is possible to optimize the m2d energies
without rasterizing the model at each iteration. Instead, similarly to [Qian et al., 2014], we
could compute screen-space coordinates of sphere centers, and then construct our m2d
registration energies on this subset.

Reproducibility

The weights of the energy terms used in tracking and calibration optimizations have been
identified by manually tweaking the runtime until our tracker reached the desired performance
level. The parameters of our system are T g2y, = 1, T2 = .5, Trigia = -3, Tyalid = 1€2, Tpose =
1e4, Tiimirs = 1e7 and T.417i5i0n = 1€3. We use 7 iterations for the tracking LM optimization,
while Isgnonlin automatically terminates in 5-15 iterations. Source code and datasets are
available at: http://github.com/OpenGP/hmodel.

3.7 Conclusion

In this chapter we have introduced the use of sphere-meshes as a novel geometric representa-
tion for articulated tracking. We have demonstrated how this representation yields excellent
results for real-time registration of articulated geometry, and presented a calibration algorithm
to estimate a per-user tracking template. We have validated our results by demonstrating
qualitative as well as quantitative improvements over the state-of-the-art. Our volumetric
model can be thought of as a generalization of the spherical models presented in [Sridhar
etal., 2015,Qian et al., 2014], and the cylinder models of [Oikonomidis et al., 2011, Tagliasacchi
etal, 2015]. It is also related to the convex body model from [Melax et al., 2013], with the core
advantage that its control skeleton compactly parameterizes its geometry. Our calibration
optimization is related to the works in [Taylor et al., 2014, Khamis et al., 2015, Tan et al., 2016],
with a fundamental difference: the innate simplicity of sphere-meshes substantially simplifies
the algorithmic complexity of calibration and tracking algorithms. This considered, we believe
that with the use of compute shaders, articulated tracking on the GPU can become as effortless
and efficient as simple mesh rasterization.
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Limitations and future work

The topology of our template has been defined in a manual trial-and-error process. A more
suitable topology could be estimated by optimization, possibly even adapting the topology for
specific users; For example, the work in [Thiery et al., 2016] could be extended to space-time
point clouds. Similarly, one could think of a variant of [Newcombe et al., 2015] where sphere-
meshes are instantiated on-the-fly. The use of more advanced re-initialization techniques
than [Qian et al., 2014], like [Krupka et al., 2014] or [Oberweger et al., 2015b], would be
beneficial. Further, we believe an interesting venue for future work is how to elegantly integrate
per-frame estimates into generative trackers. Model calibration is currently done in pre-
processing. For certain consumer applications, it would be desirable to calibrate the model
online during tracking, as recently proposed for face tracking systems [Bouaziz et al., 2013].
Our sphere-mesh models are a first approximation to the implicit functions lying at the core
of the recently proposed geometric skinning techniques [Vaillant et al., 2013, Vaillant et al.,
2014]. Therefore, we believe the calibration of sphere-meshes to be the first step towards
photorealistic real-time hand modeling and tracking.
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Figure 4.1 — Our adaptive hand tracking algorithm optimizes for a tracking model on the fly,
leading to progressive improvements in tracking accuracy over time. Above: hand surface
color-coded to visualize the spatially-varying confidence of the estimated geometry. Insets:
color-coded cumulative certainty. Notice how in the last frame all parameters are certain.
Below: histograms visualize the certainty of each degree of freedom, that is, the diagonal
entries of the inverse of the covariance estimate from: (a) data in the current frame X*, or (b)
the information £ accumulated through time by our system.

This chapter is based on the following publication:

TKACH A., TAGLIASACCHI A., REMELLI E., PAULY M., FITZGIBBON A.: Online gener-
ative model personalization for hand tracking. ACM Transactions on Graphics (Proc.
SIGGRAPH Asia). 2017.

Abstract

We present a new algorithm for real-time hand tracking on commodity depth-sensing devices.
Our method does not require a user-specific calibration session, but rather learns the geometry
as the user performs live in front of the camera, thus enabling seamless virtual interaction
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at the consumer level. The key novelty in our approach is an online optimization algorithm
that jointly estimates pose and shape in each frame, and determines the uncertainty in such
estimates. This knowledge allows the algorithm to integrate per-frame estimates over time,
and build a personalized geometric model of the captured user. Our approach can easily be
integrated in state-of-the-art continuous generative motion tracking software. We provide a
detailed evaluation that shows how our approach achieves accurate motion tracking for real-
time applications, while significantly simplifying the workflow of accurate hand performance
capture. We also provide quantitative evaluation datasets at http://lgg.epfl.ch/publications/
2017/HOnline/index.php

4.1 Introduction

Tracking templates and personalization

Since depth imagery provides incomplete 3D data of the tracked object, generative trackers
attempt to register a geometric template, also referred to as a tracking model, to 3D data so
to minimize alignement residuals. The more accurately a model fits the observed user, the
better tracking accuracy can be achieved [Tkach et al., 2016, Taylor et al., 2016]. The process
of accurately generating a user-specific tracking model from input data is referred to in the
literature as calibration or personalization.

Calibrating a template from a set of static poses is a standard component in the workflow
of facial performance capture [Weise et al., 2011, Cao et al., 2015], and the work of [Taylor
etal., 2014] pioneered it within the realm of hand tracking. However, current methods such
as [Taylor et al., 2016] and [Tkach et al., 2016] suffer a major drawback: the template must
be created during a controlled calibration stage, where the hand is scanned in several static
poses (i.e. offline). ~ While appropriate for professional use, a calibration session is a severe
drawback for seamless deployment in consumer-level applications. Therefore, inspired by
recent efforts in facial performance capture that calibrate templates while tracking [Li et al.,
2013, Bouaziz et al., 2013], in this chapter we propose a pipeline for online model calibration.
The approach we present has been tailored to monocular acquisition, where we tackle the
significant technical challenges created by missing data due to self-occlusions.

Contributions

Our core contribution is a principled way to integrate per-frame information into an online
real-time pose/shape tracking algorithm: one that estimates the hand’s pose, while simultane-
ously refining its shape. That is, as more of the user’s hand and articulation is observed during
tracking, the more the tracking template is progressively adapted to match the performer,
which in turns results in more accurate motion tracking. From a single frame only a subset
of the shape degrees of freedom can be estimated, for example, it is difficult to estimate the
length of a phalanx when observing a straight finger. Our technique automatically estimates
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the confidencein per-frame parameter computations, and leverages this information to build a
tracking model that selectively accumulates confident parameter estimates over time. Assum-
ing a reasonable performance by the user, our system typically constructs a fully calibrated
model within a few seconds, while simultaneously tracking the user in real time. Perhaps more
importantly, however, if the user is “unreasonable”, holding his/her hand in an ambiguous
pose (e.g. fingers unbent), the system maintains its shape uncertainty until a constraining
pose is adopted.

The key technical component of our solution is a recent tool from control theory — the
Levenberg-Marquardt Kalman Filter (LMKF) of [Skoglund et al., 2015]. Although it has long
been known [Bell and Cathey, 1993, Bellaire et al., 1995] that there are strong links between
Levenberg-style algorithms and the Kalman filter, and that Kalman filters are useful to main-
tain uncertainty in visual tracking and SLAM [Strasdat et al., 2012], only recently have the
advantages of both views been combined. This chapter shows, in both qualitative and quanti-
tative performance evaluations, that the LMKF enables practically useful online calibration.
Overall, our solution yields a fully automatic, real-time hand tracking system that is well-suited
for consumer applications.

4.2 Related Work

Model personalization is a core ingredient in generative motion tracking. Due to the large
number of hand self-occlusions, the low signal-to-noise ratio in current depth sensors, a
globally unconstrained pose, and the similar appearance of fingers make the personalization
of a hand model a harder problem than face or body model calibration; see [Supancic et al.,
2015].

Offline model calibration

[Albrecht et al., 2003] pioneered the construction of realistic (skin, bone and muscles) person-
alized models. They proposed a pipeline for the registration of a 3D mesh model to RGB data
manually pre-processed by the user. Reducing the amount of manual interaction required
from the user, [Rhee et al., 2006] showed how skin creases and silhouette images can also be
used to guide the registration of a model to color imagery. [Taylor et al., 2014] introduced a
more automatic pipeline, generating personalized hand models from input depth sequences
where the user rotates his hand while articulating fingers. More closely related to ours is
the work by [Tan et al., 2016]. They show how to robustly personalize a hand model to an
individual user from a set of depth measurements using a trained shape basis such as the one
proposed by [Khamis et al., 2015]. The calibration pipeline, although robust and efficient,
is not fully automated as the user needs to manually pick the set of frames over which the
calibration optimization is performed. In facial calibration, [Weise et al., 2011] asked users
to assume a set of standard facial expressions to match standard poses in the Facial Action
Coding System (FACS) of [Ekman and Friesen, 1977]. Inspired by these approaches, [Taylor
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et al., 2016] recently proposed an analogous offline hand calibration method, but the question
“which is the set of optimal hand poses that allows to properly capture the hand’s geometry?”
has yet to be addressed. Hence, none of the above methods is suitable or easily adaptable to
the kind of consumer-level applications that we target.

Online model calibration

In [de La Gorce et al., 2011], the authors introduced a (non real-time) model-based approach
for hand tracking from a monocular RGB video sequence. Hand pose, texture and lighting
are dynamically estimated, while shape is determined by optimizing over the first frame
only. Recently [Makris and Argyros, 2015] proposed a model-based approach to jointly solve
the pose tracking and shape estimation problem from depth measurements in an online
framework. They solve for the cylindrical geometry of a hand through render-and-compare
evaluations over a set of frames with particle swarm optimization (PSO). Their pipeline runs in
real-time (30fps), but lacks the degree of robustness and accuracy desirable for consumer level
applications, and does not address uncertainty. More sophisticated approaches to information
agglomeration such as the ones for face tracking/modeling by [Bouaziz et al., 2013], [Li et al.,
2013] and [Thies et al., 2015], where shape estimation is performed over the whole set of frames,
allow to obtain more accurate results, while guaranteeing real-time performances. [Thies
et al., 2015] jointly optimize face identity and expression during calibration stage and keep
identity fixed during tracking. The work of [Zou and Tan, 2013], although in a different
applicative domain, is also related to ours, as they solve for SLAM by considering uncertainties
when aggregating information through time. [Gu et al., 2017] propose a holistic approach for
aggregating per-frame measurements. They demonstrate how an LSTM layer in a CNN allows
to maintain an online estimate that surpasses the performance of a more standard Kalman
filter approach.

Online algorithms offer other key advantages compared to offline methods: (1) the ability to
offer immediate feedback to the user on the quality of the result [Izadi et al., 2011], (2) the
potential to dynamically adapt to transparently hot-swap users [Bouaziz et al., 2013], and
(3) reduced storage and computational resources, as information is integrated frame-by-frame,
in a streaming fashion.

4.3 Online model calibration

We now describe our joint calibration and tracking algorithm, which combines the Levenberg-
style optimization of previous hand trackers with the uncertainty maintenance framework of
Kalman filtering. Previous hand tracking work has made use of temporal smoothing priors
to propagate pose information from previous frames, without the use of filtering. However
this approach cannot be used for shape because it is so weakly constrained in any given frame,
and because its temporal prior is so strong, as shape parameters are persistent over time: we
observe the same user performing in front of the camera for thousands of frames. However,
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Figure 4.2 — (Per-frame regression) We abstract the hand shape/pose estimation problem
from a single frame into the one of a simpler 2D stick-figure. Note, however, that this illus-
tration is not hand-crafted, but is derived from numerical optimization executed on these
simplified datasets. When the finger is straight (left), it is difficult to estimate the length of
individual phalanges as the optimization problem is ill-posed. With a bent finger (right) the
problem is better conditioned. We analyze the landscape of the registration energy E(f[1),
and observe how estimation uncertainty relates to the width of the local minima valley. This
uncertainty, the posterior distribution of shape parameters after computing their estimate
from the data in the current frame, can be estimated through a quadratic approximation

, derived from the Hessians of the registration energies.

sufficient information to estimate certain shape parameters is simply not available in certain
frames. For example, by observing a straight finger like the one in Figure 4.2-(left), it is difficult
to estimate the length of a phalanx. Therefore, knowledge must be gathered from a collection

of frames capturing the user in different poses.

As we illustrate in Figure 4.2 and Figure 4.4, the confidence in regressed shape parameters
is conditional on the pose of the current frame. Rather than manually picking a few frames
in different poses as in [Taylor et al., 2016], we show how propagation of not just the shape
estimate, but also its uncertainty allows reliable calibration even if the initial poses fail entirely
to constrain some shape dimensions. Additionally, the temporal priors of previous work are

easily incorporated in the LMKF formulation.

Input data and shape model

The input data are a sequence of depth frames D;,, which are segmented via a wristband [Tagliasac-
chi et al., 2015] to produce a point cloud d,, = R3. The pose vector in frame 7 is 6, and our
shape model M (6; B) is the sphere mesh of [Tkach et al., 2016]. Shape is encoded via scalar

length parameters f instead of sphere positions; see Figure 4.10 and [Remelli et al., 2017].
79



Chapter 4. Online Generative Model Personalization for Hand Tracking

I
=
<

."

i i !
: 3 4 H
H .. : # H
s H - H . H
5 é -~ H R HE H
s S i - i : i
< 5 $ / 0 i H
£ i | B Y H i
3. 5 3 : H
.
* *
Q 1 ° ﬂ.S
5 E ° :
P =1 _
S5l 0
S
N . .
© R
~ £ h Bs
© ° .
(Vi E i
& B b
= B
n=1 n=2 n=3 n=4 n=>5

Figure 4.3 — (Cumulative regression) We visualize several temporally sorted frames of in-
put data d,, the uncertainty ellipsoid X} estimated by per-frame regression, and the online
uncertainty estimate 3,,. For illustration purposes, we only display the two-dimensional
ellipsoids representing the covariance of f;) and ). Although X7 = X, observe how
21 > X25: in the last frame we have a confident estimate as the information from frames
2:4 has been integrated. Further, notice how even though the parameter f2; was not ob-
served directly in any of the presented frames, its value was inferred from the highly-certain

measurements (B1)) ,=2 and (B1) + Bi2)) n=4.

Estimation

Let x,, = [0,,; B] denote the model state: the vector of coalesced pose and shape parameters
at frame n. Our goal in tracking is to produce the best estimate X, at frame n, of the state x,,
given all the data seen previously, d, ..., d,,. Additionally, we want to estimate not just the state,
but the parameters of the probability distribution over the state p(x,|d;.,). Thus, if we write

pxnldyn) = N (xn | 0, Z0), (4.1)

we are saying that x, approximately follows a normal distribution with mean X, and co-
variance 2,. When we display a tracked hand to the user, we will most likely just draw the
hand with pose and shape parameters %,, which sometimes leads to %, being called “the
estimate of x,”, but it is more correctly “the estimate of the mean of the distribution p(x,)”,

and similarly with %,,.

It is generally computationally intractable to estimate the parameters conditioned on all the
previous history d;_, at every frame (although in Section 4.3.4 we compute some related
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Table 1 — Split cumulative regression — Kalman Filter (KF)

quantities as a baseline), so the estimation is typically expressed in terms of a per-frame
term p(xyldy), which describes the components due only to information in frame d, and
cumulative term p(xy|dy,...,dn—1). Different approximations for this term lead to different
methods, denoted split cumulative and joint cumulative below.

4.3.1 Per-frame estimate - p(x,|d;)

The distribution p(x,|d,) is, by Bayes’ rule, proportional to the product of a data term and
a prior p(d,lx,) p(x,), which is naturally related to the traditional energy formulations by
identifying the negative log likelihood with the energy. Consider the energy:

E(xy) = ) Er(dp, xn) 4.2)
T€T
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Where the terms 7 ensure that:

d2m data points are explained by the model
m2d model lies in the sensor visual-hull
smooth recorded sequence is smooth
pose-prior calibrated hand pose is likely
shape-prior calibrated hand shape is likely
pose-valid semantics: collisions and joint limits
shape-valid semantics: finger order and connectivity

The energy terms in the objective function are detailed in [Tkach et al., 2016] and [Tagliasac-
chi et al., 2015], with the exception of shape-prior and shape-valid that are discussed in
Section 4.3.5. Given E as above, we can write

p(x,ldy) x exp(—E(xy)), (4.3)

but to perform propagation, we will need a more compact form, for example a Gaussian
approximation. A natural choice is the Laplace approximation: a Gaussian with its mean at the
mode of (4.3) (see Appendix 4.6.1) and covariance chosen to match a second-order expansion
of E about that mode. The mode computation is the standard energy minimization

x,, = argmin E(x,) (4.4)
Xn

which can be solved by nonlinear optimization given an initialization x (obtained from a
discriminative method or from the solution of the previous time-step), and indeed this is
the same minimization performed by current state-of-the-art hand trackers. The covariance
matrix X of the Laplace approximation is the inverse of the Hessian of E, and as we are
using a Gauss-Newton solver, E(x) is of the form | d,, — F(x,) 12, so we may make the G-N
approximation of the Hessian in terms of the Jacobian of F(x,) =d,—F(x,), yielding

n 0x 0x

foeny T afee))
z*:(aF(x) aF(x)) ' (4.5)

Thus, after processing the information in a frame d,,, the sought-after quadratic approximation
of posterior distribution of model parameters is

pxnldy) = N (x;,Z3,), (4.6)

so the “per-frame” posterior parameters are X, = X}, 2, = X.

4.3.2 Split cumulative estimate — p(x,|d; ;)

The per-frame distribution in Section 4.3.1 encodes the uncertainty in pose and shape solely
due to the data in frame n. To aggregate information from previous frames, we would like a
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Table 2 — Joint cumulative regression — Iterated Extended KF (IEKF)
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Figure 4.5 - We evaluate our real-time calibration framework on twelve different subjects. For
each user we show a frame in a (more-or-less) rest pose configuration, as well as a different
pose selected from the recorded sequence. These results are better appreciated by watching
our Video3 [04:03].

simple form of the distribution p(x,|d; . ,), for example a Gaussian:
p(xXuldi.n) = N (Zn,Zn) 4.7)

Then, given values of the parameters %;_1, 3,1 at the previous timestep, we must update
them to incorporate the new information in frame n. This leads to the following pair of
inductive update equations:

N (xpli1,21) = N (xnlxf, 29 (4.8)
N Gnlfn, 20) = N (xnl Zp-1, En-1)N (xnlx), Z5) (4.9)

By applying the product of Gaussians rule [Petersen et al., 2008], we obtain update equations
for £, and 2,,:

£n z;;(in_l +20) i1 + 201 G + 20
(4.10)

n

. wol a1 )L
Sp=Sp G+ 7z = (27 4 5L
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Figure 4.6 — We illustrate the formulation in Section 4.3 on the calibration of four different
degrees-of-freedom on the Handy/Teaser dataset. (top) Frames are indexed by n and we
display: , per-frame estimate §;, and cumulative estimate f3; the scale
for these quantities is relative to 8, and shown on left-hand side of each axis. In the same plot,
we also visualize the inverse of the diagonal entry of the covariance matrices (i.e. certainty) for

and estimates; the scale for these quantities is on the right-hand
side of each plot. (bottom) We also display the pose corresponding to a selection of frames in
the sequence (dashed); please note the correlation between pose and uncertainty.

In Appendix 4.6.2, we shown how Equation 4.10 is equivalent to the Kalman Filter (KF) update
equations in Table 1, with measurement x,, and measurement noise covariance X;. This
optimization, which we refer to as split cumulative is arguably the simplest way of achieving
an online parameter regression: by treating the results of the per-frame solve N/ (x}, =%) as the
measurements in a KE

4.3.3 Joint cumulative estimate — p(x,|d;_ ;)

The optimization in Table 1 does not provide any information about the current estimate
of the parameters X, to the independent solve described in Section 4.3.1. This could be
problematic, as in this case Equation 4.2 does not leverage any temporal information aside
from initialization, while relying on a sufficiently good initialization to compute N (x,,Z}).
We propose to coalesce the cumulative and per-frame optimization resulting in the joint
cumulative regression scheme in Table 2. The optimization in Table 2 can be expressed in
least-squares form, and embedded in Equation 4.2 through the term:

Eiekt = 12,2 (tn = Zn-0 5 (4.11)

In Appendix 4.6.3 we link this update to LM [Skoglund et al., 2015], demonstrating that
optimizing the objective in Table 2 with a Levenberg Marquardt method is equivalent to an
Iterated Extended Kalman Filter (IEKF) with measurement update d;,. In a practical setting,
this observation creates a very simple way to encode IEKF-like behavior within existing LM
optimization codebases.
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4.3.4 Joint multiframe (batch/offline) estimate

While we focus on an online/streaming algorithm, we also describe an offline baseline calibra-
tion procedure — inspired by the work of [Taylor et al., 2014] — where multiple frames in the
input sequence are simultaneously considered.

Offline-Hard

To achieve this, Equation 4.2 is modified to consider N frames, each with its own pose param-
eters 8, but with the same underlying shape S, resulting in what we refer to as Offline-Hard
calibration: N

argmin Y Y E;(dp,[0n, B)) (4.12)

ﬂy{gn} n=1 TET

Such optimization is initialized with a single ,60, and in our experiments, we noticed how this
resulted in reduced convergence performance and a propensity for the optimization to fall
into local minima.

Offline-Soft

Therefore, we introduce the Offline-Soft calibration, where the constraint that a single § should
be optimized is enforced through a soft penalty:

N N
argmin Y Er(dp, [0n, Bul) +wp Y IIfn— BII* (4.13)
B0 n=11eT n=1

The initializations 8, are derived from the per-frame optimization of Equation 4.2, while
the penalty weight is set to a large value (wp = 10e4). The advantage of Offline-Soft over
Offline-Hard can be clearly observed in Figure 4.8, where the former achieves a performance
comparable to the one of the (overfitting) per-frame optimization. Finally, note that in practice
we do not consider every frame as this large problem would not fit into memory, but instead we
sub-sample at a = 1/20 rate, the same subsampling is used for Kalman measurement updates
in our online solution to avoid a bias in the comparisons.

4.3.5 Shape regularizers

Hand shape variation can be explained in a low dimensional space whose fundamental degrees
of freedom include variation like uniform scale, palm width, and finger thickness [Khamis
et al., 2015]. We follow the ideas presented in [Remelli et al., 2017], and build a latent-space
encoding hand shape variability through anisotropic scaling. By setting Wshape-space<<1, this
prior acts as a soft regularizer and does not prevent the algorithm from computing a tight fit:

Eshape—space =1p- (B OIB) ||2 (4.14)
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where 8 € R? is a latent vector encoding relative changes in hand height, width and sphere
thickness with respect to the default template 8, while 7 is a matrix mapping latent DOFs to the
corresponding full-dimensional DOFs f;}; see Figure 4.10. Since our shape-prior has a small
weight, unfeasible hand-shape configurations are still possible, such as a finger floating in mid-
air, or when the natural order of fingers {index, middle, ring, pinky} has been compromised. We
overcome this problem by a set of quadratic barrier constraints that are conditionally enabled
in the optimization when unfeasible configurations are detected (encoded via y.(f8) € {0, 1}):

C
Eshape-valid = Y Xc (B (B, 1) 15 (4.15)
c=1

For example to avoid middle and index fingers from permuting, one such constraint is written
in the following form, and yo(f) = 1 only when an invalid configuration is detected:

2
Xo (ﬁ) l ﬁidx—base—x - ,Bidx—base—rad - ,Bmid—base—x + ,Bmid—base—rad ”2

4.4 Evaluation

To evaluate the technical validity of our approach we verify its effectiveness by applying it
to a new dataset acquired through commodity depth cameras (Section 4.4.1); corroborate
the formulation of our optimization on a synthetic 3D dataset (Section 4.4.2); analyze its
robustness through randomly perturbing the algorithm initialization (Section 4.4.3); and
attest how our method achieves state-of-the-art performance on publicly available datasets
(Section 4.4.4 and Section 4.4.5).

4.4.1 Calibration dataset: Handy/GuessWho? - Figure 4.5

We stress-tested our system by qualitatively evaluating our calibration technique with data
acquired from fwelve different users performing in front of an Intel RealSense SR300 camera
(a consumer-level time-of-flight depth sensor). Snapshots of the twelve calibration sequences
are reported in Figure 4.5. While ground truth information is not available, these datasets
will enable comparisons to our method through the use of empirical metrics; e.g. Eqoy, and
Enoq [Tkach et al., 2016], or the golden-energy [Taylor et al., 2016].

4.4.2 Synthetic dataset: formulation analysis - Figure 4.6

For synthetic data the ground truth shape parameters f3 are readily available, and the sphere-
mesh model M (6, f) is animated in time with the ] n parameters of the complex motions in
the Handy dataset [Tkach et al., 2016].
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The following metric measures average ground-truth residuals (in millimeters):

Eg=rg 2 |Bimi—Biml (4.16)
meM

For ground-truth comparisons, analogously to [Taylor et al., 2016], we selected a subset
of shape parameters in Figure 4.10: M = {0:16, 19, 22, 25, 28, 45:74}. This is necessary as
sphere-centres on the palm can move without affecting the tracking energy — a null-space
of our optimization. The tracking algorithm is initialized in the first frame by §,.  In Fig-
ure 4.6, we report an experiment analogous to that of Figure 4.3 but on a full 3D sequence.
Consider Figure 4.6b, where we report the runtime estimates for the length of the middle-
finger’s middle-phalanx; the subscript [7] will henceforth be implied. Congruously to the
discussion in Section 4.3, the phalanx length estimates computed in frames where the finger
is bent are given a large weight. Per-frame estimates 8}, can often oscillate away from the
ground truth, but these incorrect estimates are associated with a small weight. Our algorithm
estimates these per-frame uncertainties }, and accordingly updates the online cumulative
estimates f3, and £,.

4.4.3 Synthetic dataset: robustness — Figure 4.7

We evaluate the robustness of the algorithm by analyzing its convergence properties as we vary
the magnitude of perturbations. We provide two experiments: synthetic and real. The real
dataset consists of depth maps {D,} measured by an Intel Realsense SR300 sensor, where we
track motion with the multi-view stereo (MVS) calibrated model from [Tkach et al., 2016] to
estimate a sequence of pose parameters {,,}; the shape parameters f3 of this user are known
with good confidence thanks to the MVS data. In the synthetic dataset, depth images {D;}
are generated by animating the sphere-mesh model M (@,,, B) and then rasterizing the model
as in Section 4.4.2. To achieve this, random initializations for the user-personalized models
are drawn from the Gaussian distribution N'(,0). A few examples of such perturbations
for o = .4 are visualized in Figure 4.7. In our experiments, we draw fifteen random samples
per each value of o, and compute mean and standard deviation of the measured ground
truth residuals Eg.  As each sample requires the re-tracking of the entire sequence (= 20
seconds) with a new initialization, the two plots in Figure 4.7 amount to roughly four hours
of footage. For this reason, in Video3 [03:16] ! we only display a few examples of calibration
and apply a random perturbation every few seconds. Notice that although we still have a
non-zero average residual of = 1mm, the video shows how the model is an excellent fit to
the synthetic data. In both experiments, Offline-Hard performs worse than Offline-Soft for
the reasons discussed in Section 4.3.4. With the large (o = .4) perturbations Offline-Soft still
had some troubles converging to the correct results, as per-frame pose initializations were
too significantly wrong; in this regard, we believe discriminative pose re-initializers such
as [Oberweger et al., 2015a] could be helpful to increase the performance of both offline

calibration algorithms.

IPlease find the accompanying Video3 at http://lgg.epfl.ch/publications/2017/HOnline/video.mp4.
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Figure 4.7 — Mean and standard deviation for ground-truth calibration residuals as we vary the
algorithm’s initialization with a random perturbation of standard deviation o. We evaluate the
residuals on (top) synthetic depth maps, as well as (bottom) on the raw depth maps. (right)
the exemplars drawn from the o = 0.4 perturbation used in the evaluation.

Technically we could not display the per-frame algorithm performance in Figure 4.7, since it
does not provide a single final estimate of shape parameters. To do this, we employ the model
parameters it estimated in the last frame of each sequence. In the last frame the error is low,
as each frame is initialized with the values from the previous frame; see Video3 [03:41]. Note
how per-frame calibration performs excellently, even outperforming Offline-Hard. This is
because, thanks to our carefully designed shape priors, per-frame calibration is quite robust;
see Video3 [03:41]. This is essential in cumulative calibration, as the true value of a parameter
can be recovered only if accurate measurements are available in at least some poses. The per-
frame algorithm should also not be mistaken for tracking algorithm (where shape parameters
are fixed) which is twice more efficient (calibration executes at 30 Hz, while tracking executes
at 60 Hz) and, in general, much more robust.
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Figure 4.8 — Evaluation on the NYU dataset from [Tompson et al., 2014] reporting the per-
centage of frames with average (top) and max (bottom) ground-truth marker-error less than
€.

It is difficult to differentiate the split vs. joint cumulative variants in the synthetic dataset,
as calibration converges very effectively when it can rely on precise measurements. Overall,
on the sensed dataset our joint cumulative calibration performs the best. Our split variant
performs very well when per-frame consistently provides an accurate solution (e.g. on the
synthetic sequences). Nonetheless, we noticed that how with more challenging motions, the
joint-cumulative can aid the per-frame solver by providing a temporal regularization. This is
beneficial when dealing with an uncooperative user, or to perform calibrations in sequences
that were not specifically designed for this task (e.g. fast motion and long-term occlusions).
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Figure 4.9 — Evaluation on the Handy/Teaser dataset, reporting the percentage of frames with
an average Eqoy, data-to-model energy below €.

4.4.4 Marker-based evaluation on NYU dataset — Figure 4.8

Although several marker-based datasets are available, such as [Qian et al., 2014], [Sharp
etal., 2015] and [Yuan et al., 2017], state-of-the-art generative methods have focused on the
NYU [Tompson et al., 2014] and Handy [Tkach et al., 2016] datasets for quantitative evaluation.
On the NYU dataset, to properly compare to [Taylor et al., 2016], we evaluate the metrics on the
first 2440 frames (user #1), and consider only markers on finger joints. This dataset allow us to
compare our method (and its variants) to a number of other algorithms including: the PSO
tracker by [Sharp et al., 2015], the calibration methods by [Khamis et al., 2015] and [Tan et al.,
2016], the subdivision tracker of [Taylor et al., 2016], the cylindroid tracker by [Tagliasacchi
et al., 2015], the sphere-mesh tracker by [Tkach et al., 2016], the Gaussian tracker of [Sridhar
etal., 2015], and discriminative methods such as those of [Tompson et al., 2014], [Tang et al.,
2015] and [Oberweger et al., 2015a]. Our online algorithm achieves very competitive tracking
performance while being the first capable of calibrating the user-personalized tracking model
online, rather than in an offline calibration session like [Taylor et al., 2016]. Notice how the
best performance is achieved by either: (1) the per-frame optimization, where per-frame
overfitting takes place, or (2) by offline calibration techniques such as Offline-Soft or [Taylor
etal., 2016]. This is expected, as offline algorithms jointly consider all available information,
while online/streaming algorithms can only integrate information one frame at a time.

4.4.5 Dense evaluation on the Handy dataset — Figure 4.9

Another way to evaluate the quality of tracking/calibration is to compare the depth map D,
(i.e. sensor point cloud) to the tracking model depth map D(8, f) (i.e. model point cloud);
see [Tkach et al., 2016]. The model depth map is obtained by rendering M (0, B) with the
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same intrinsic/extrinsic parameters of the sensor. The following metric measures the average
magnitude of data-to-model ICP correspondences:

_ 1
Edom = a7 X;,j Ipj —Tpg,6 @Iz (4.17)
pj€ n

where I1 is an operator computing the closest-point projection of points in the sensor’s point
cloud, onto the point-cloud associated with the synthetic depth-map D(8, §). This metric is
dense, as it computes residual of an entire geometry model rather than just a sparse set of
markers. If Eqor, = 0 (up to sensor noise) in every frame, then the personalized model is a
seemingly perfect dynamic replica of the user’s hand. The Handy dataset from [Tkach et al.,
2016] enables these type of comparisons and includes rendered depth maps for [Tagliasacchi
et al., 2015], [Sharp et al., 2015], as well as the state-of-the-art method of [Taylor et al., 2016].
Further, note how this dataset considers a range of motion substantially more complex than
the one in the NYU dataset. Like in earlier comparisons, the per-frame technique performs
best as it overfits to the data, by generating a collection of 8, instead of a single tuple . Our
techniques calibrate a model with performance comparable to that of [Tkach et al., 2016],
where a high-quality MVS point cloud with manual annotations was used for calibration.

4.5 Conclusions

From an application point of view, our approach significantly improves on the usability
of real-time hand tracking, as it requires neither controlled calibration scans nor offline
processing prior to tracking. This allows easy deployment in consumer-level applications.
From a technical point of view, we introduce a principled approach to online integration of
shape information of user-specific hand geometry. By leveraging uncertainty estimates derived
from the optimization objective function, we automatically determine how informative each
input frame is for improving the estimates of the different unknown model parameters. Our
approach is general and can be applied to different types of calibration, e.g., for full body
tracking. More broadly, we envisage applications to other difficult types of model estimation
problems, where unreliable data needs to be accumulated and integrated into a consistent
representation.

Limitations and future works

The intrinsic limitation of our online approach as well its offline counterparts is reliance on rea-
sonable tracking quality during calibration. If tracking fails, the model quality is compromised
as shown in the Video3 [07:18]. Currently, our optimization relies on heavy parallelization
and high-end GPU hardware — we use a 4GHz i7 equipped with an NVIDIA GTX 1080Ti. In
future we want to reduce computational overhead to facilitate deployment on mobile devices.
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Figure 4.10 — The degrees of freedom of our optimization, where use a cartesian right-handed
coordinate frame for translational DOFs. For pose parameters, global translation is represented
by 6;1li € [0, 1,2] and rotation by 8;1|i € [3,4,5]. We then color code DOFs according to whether
they represent flexion, , and abduction. For shape parameters, we color code DOFs
for lengths, , 3DOFs vertices (x,y,z), 2DOFs vertices (x,y), and passive DOFs (linearly
dependent).

4.6 Implementation Details

Kalman Filter (KF)

Following the notation in [Welch and Bishop, 1995], let us denote the latent state of a discrete-
time controlled process as x, € RV, a generic measurement as z, € RM and let us consider the
following linear stochastic difference equations

Xp=AXp-1+ Wp-1

Zp=Jxn+ vy
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Time Measurement
20=%, K,=PyJ Py + B!
Py=P,1+Q fn =9+ Kn(2n - JAY)

P, =(I-K,))P)

Table 3 — Kalman Filter update equations (with A = I).

where w is a normally distributed process noise p(w) ~ N'(0,Q), and v is a normally dis-
tributed measurement noise p(v) ~ N (0, R). The matrix A provides a linear estimate for state
updates, while / maps the state x, to the measurement z,. Given a generic frame n, let us
define an initial (a priori) state estimate 9, together with an improved (a posteriori) state
estimate X, accounting for the measurement z,,. We can then define a priori and a posteriori
estimate error covariances as

P) =El(x, — %) (20 — 29)] (4.20)
Py = El(xp — &) (xn — £0)]. (4.21)

The Kalman Filter (KF) estimates the latent state x, of a discrete control linear process by
minimizing the a posteriori error covariance. In particular it estimates the process through
a predictor-corrector approach: given a generic time n the filter first estimates the process
state (time update equation) and then obtains feedback in the form of noisy measurements
(measurement update equation). Let us now particularize the system above to our framework,
where the latent state of our system corresponds to hand parameters and the measurement
corresponds to the solution of Equation 4.2. An estimate of the current hand parameters is
given by the one of the previous time-step up to Gaussian noise, that is x, = x,-1 + w,_1,
while the noisy measurement corresponds to the state itself, meaning that / = I (note that
in order to highlight the similarities to other Kalman filter formulations we will maintain the
notation J). Our discrete-time process can simply be written in the following form, resulting in
the equations of Table 3; see [Welch and Bishop, 1995]:

Xn=Xp-1+Wn-1 (4.22)
Zn=Jxn+ vy, (4.23)
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Time Measurement
£ = &n1 Kn=PYJyU.POTE + R
szpn—l""Q fcn:fc(r)ﬁ‘Kn(zn_Fn)

Pp=I~-KyJn)P

Table 4 — Extended Kalman Filter update equations (with linear F).

Extended Kalman Filter (EKF)

The Extended Kalman Filter (EKF) extends the KF to the case in which the process to be
estimated and/or the measurement relationship to the process are not linear:

Xn = F(xn—lr Wp-1) (4.24)
zp = F(xp, vp) (4.25)

where F relates the current latent state x,, to the previous time step one x,,_; and F relates the
current latent state x,, to measurement z,,. The EKF simply estimates the latent state of such
system by means of linearization of process and measurement equations around the current
estimate; see [Welch and Bishop, 1995] for a detailed overview. We can apply this framework
to ours and, differently from the linear case, consider now the input depth map d,, as system
measurement. The function F(:) therefore maps state x, to measurement z, by applying
shape and pose parameters to the template hand model and computing the closest model
points to sensor data points, while as discussed in the previous section F(-) is a simple identity
mapping. We can write the non-linear process and measurement equations associated to our
framework as:

Xp=Xp-1+Wn-1 (4.26)
zn=F(xp) + vy (4.27)

By defining F;, = F(fc‘,)l) and Inij) = 0F /ax[j] (fc(,)l), the EKF update equations can be written
as reported in Table 4; see [Welch and Bishop, 1995].

Iterated Extended Kalman Filter (IEKF)

The EKF performs well for systems with mildly nonlinear measurement functions, but if the
measurement equation is strongly nonlinear the performance of the filter deteriorates; see
[Havlik and Straka, 2015]. To address this problem, we can perform measurement updates in
several steps, where in each one we linearize the measurement function F around the updated
value iteration fcfl, leading to the Iterated Extended Kalman Filter (IEKF) formulation [Havlik
and Straka, 2015]. The time update equation for IEKF is analogous to the one in Table 4, while
the measurement update is reported in Table 5.
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Extended Information Filters (EIF)

In order to ease the derivations of the upcoming section let us observe that the EKF measure-
ment updates can also be rewritten in the equivalent Extended Information Filter form [An-
derson and Moore, 1979]; see Table 6. We introduce this formulation in order to ease the
upcoming derivations. Note that in order to do that we need to assume the measurement
noise to be independent and identically distributed (i.i.d.) across samples, therefore R =rI
where r € R* and I is the identity matrix. Further, similarly to EKE we can write the iterated
version of an EIF, as reported in Table 7.

4.6.1 Laplace Approximation

To derive our uncertainties, we start by converting the data terms d2m and m2d of Equation 4.2
into probabilistic form:

p(dnlxn) = exp (=3 (dn — Fxp) " (dn — F(xp))) (4.28)

By temporarily omitting the frame index n for conveniency, our problem is rewritten as a
maximum likelihood optimization:

x* = argmaxlog p(d|x) = argmax L(x) (4.29)
X X

We now perform a second-order Taylor expansion of the log-likelihood of the data L(x) around
the optimal solution x*:

L(x) ~ L) = Lx*) + 2HE A+ IAx T2 Ay 4 hoot. (4.30)

where Ax = x— x*, and let 0 f(x*)/0x indicate the partial derivative of f(x) evaluated at x*. We
rewrite F(x,) = d, — F(x,) for brevity. Note how the Jacobian and the Hessian are respectively

for i=1..imax
Fl = F(&)) = T}y = OF ()/0x(,)
Koy =Pl UpPuJy| + B!
£ =20 4 Kl (2, - FL - JL(R0 - 21))
end
fp =%

P,=(U-K,J)P?

Table 5 — Iterated EKF measurement update equations.
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Ex. Kalman Filter Ex. Information Filter
Hy=(Pp)™"
Kn=PyJ UnPyJf+R)™" Hy=Hy+J R,
Fn = %9+ K2y — Ey) K,=H, 'YJIR™!
Py =(I-KynJn)P, Xn = £y + Kn(zn — Fp)

Table 6 — Analogy of EKF and EIE

for i=1...imax
HY =10 HS + i)
K= 5H,
£ =20 L Kl (2, — FL - JE(R0 - 11))
end

Xo=%)

Table 7 — Iterated EIF update equations.

zero and positive definite at our optimal point x* (see [Nocedal and Wright, 2006, Sec. 10.2]):

6La(;c ) — —F_(x*)Ta%(;C ) -0 4.31)
PLa) ., F) ToF) & w1
o " ax ax — = <0 (4.32)

From Equation 4.30, using p(d|x) = exp(i(x)), we can then derive the approximated posterior
distribution:

pldlx) =exp(-1(x— x5 - x| =V (x7,37) (4.33)

4.6.2 Derivation for Section 4.3.2

Let us consider the Kalman Filter measurement update equations introduced in Table 4,
recalling to the reader that we are considering the case in which the measurement z,, = x;, is
in the same space of the estimated state X,,, thus when J is the identity matrix.

% =20+ PP+ Rz, - 20)
=PY+RPY+ R0+ POPY + R (2, - 20)
=R(PY+R) 20+ PAUPY+ Rz,
n =P+ R(P+R) - POPY+ R)HPO = R(PY + R)"! PO
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Note how setting z,, = x};, P} =%,_; and R = X} the measurement update equations coincide
with Equation 4.10 for product of two Gaussians, showing how the inter-frame regression
algorithm is indeed equivalent to a KE

4.6.3 Derivation for Section 4.3.3

Focusing on the optimization associated to Table 2, let us consider a generic Gauss-Newton
iterative update which reads:

x = x! (gl )T E, (4.34)

observing that

(4.35)

dy—F}
212 (xh = %)

_ —Ji _
]n:[ 2—172 ] Fyp =

n-1

we obtain what follows:

o = T - Al _

Jrg =71 i+ 5 = A7t

e - T . A . .

JhEp==T} (zn—F)+ 5,1 (xh = 20)
where F,’l =F (xfl) and J ﬁl = g—i (xfl). Hence, expanding the matrix products in (4.34), we can
write:

B
——

X = xl e AT (dy - F = AS) (6 = %00) =
=Xy +B-ASL () — &)+ AATN (X~ Ry0) =
= Fn1+B+ACS T3 (%) =

=X, 1+B+ A],’;T]fl(xz —Xp-1) =

R ST . ~_ -1 .7 . . .
=g+ (1 T+ 550 ) T (dn - B = TG - ).

Recalling the definition of the a priori estimate x(,)L = X1, setting Hg = H,_; and denoting
i;ll =r H,_1 we can now see that such an iterative update is equivalent to the update of the
IEIF from Table 7 for measurement z,, = d,,. Finally, under the assumption of the measurement
noise to be i.i.d. across samples, we can conclude that the optimization from 7 is indeed
equivalent to an IEKE
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Conclusion

5.1 Summary

In Chapter 2 we have presented a new model-based approach to real-time hand tracking
using a single low-cost depth camera. This simple acquisition setup maximizes ease of
deployment, but poses significant challenges for robust tracking. Our analysis revealed that a
major source of error when tracking articulated hands are erroneous correspondences between
the hand model and the acquired data, mainly caused by outliers and missing data. We
demonstrate that these problems can be resolved by our new formulation of correspondence
search. In combination with suitable 2D/3D registration energies and data-driven priors, this
leads to a robust and efficient hand tracking algorithm that outperforms existing model- and
appearance-based solutions. In our experiments we show that our system runs seamlessly for
sensors capturing data at 60 Hz.

In Chapter 3 we have introduced the use of sphere-meshes as a novel geometric representation
for articulated tracking. We have demonstrated how this representation yields excellent results
for real-time registration of articulated geometry, and presented a calibration algorithm to esti-
mate a per-user tracking template. We have validated our results by demonstrating qualitative
as well as quantitative improvements over the state-of-the-art. Our calibration optimization
is related to the works of [Taylor et al., 2014], [Khamis et al., 2015] and [Joseph Tan et al.,
2016], with a fundamental difference: the innate simplicity of sphere-meshes substantially
simplifies the algorithmic complexity of calibration and tracking algorithms. This considered,
we believe that with the use of compute shaders, articulated tracking on the GPU can become
as effortless and efficient as simple mesh rasterization. Our sphere-mesh models are first
approximations to the implicit functions lying at the core of the recently proposed geometric
skinning techniques [Vaillant et al., 2013], [Vaillant et al., 2014]. Therefore, we believe the cali-
bration of sphere-meshes to be the first step towards photorealistic real-time hand modeling
and tracking.

In Chapter 4 we have presented the first accurate online hand calibration system. From an
application point of view, our approach significantly improves on the usability of real-time
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hand tracking, as it requires neither controlled calibration scans nor offline processing prior to
tracking. This allows easy deployment in consumer-level applications. From a technical point
of view, we introduce a principled approach to online integration of shape information of user-
specific hand geometry. By leveraging uncertainty estimates derived from the optimization
objective function, we automatically determine how informative each input frame is for
improving the estimates of the different unknown model parameters. Our approach is general
and can be applied to different types of calibration, e.g., for full body tracking. More broadly, we
envision applications to other difficult types of model estimation problems, where unreliable
data needs to be accumulated and integrated into a consistent representation.

By fully disclosing our source code and data we ensure that our method and results are
reproducible, as well as facilitate future research and product development.

5.2 Future Work

Discriminative Tracking

Our previous work was focused on the generative component of a hand tracking system. For
re-initialization we used a simple algorithm, similar to the one proposed by [Qian et al., 2014].
Meanwhile, discriminative tracking quality and efficiency was greatly improved in recent
works. The use of more advanced re-initialization techniques like [Oberweger and Lepetit,
2017] would benefit our system. Furthermore, we believe an interesting venue for future
work is how to optimally integrate per-frame estimates into generative trackers. State-of-
the-art discriminative algorithms regress a full hand pose; however, a generative component
of a system might only require predicting the palm transformation to re-initialize, similar
to [Taylor et al., 2017]. It is instructive to research what would be the most suitable form an
input provided by discriminative algorithm to a model-based tracker.

Hand Calibration for CNN

In discriminative tracking a costly and time-consuming part is annotating the training data.
Recently [Dibra et al., 2017] presented a system that eliminates the need for annotation. They
use a differentiable rendering algorithm and predict hand pose by training a CNN to match
a synthesized depth and an input depth. The accuracy of this system could be enhanced
by regressing hand shape online in addition to hand pose. In previous work we developed a
shape-parametrized sphere-meshes hand template which could be used for this purpose.

Hand Tracking from RGB

Currently our system is only using depth images as an input. In the future we could incorporate
an RGB-based term in our optimization. An RGB input is complementary to depth data, since
it does not contain holes and sensor noise. Moreover, it provides higher quality edges and finer
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texture details. For example, [Weise et al., 2011] have proposed an optical flow constraints
energy term. We could use a similar energy as a starting point of our experiments. The
discriminative component of hand tracking system can also benefit from being augmented
with RGB input. Recently the first hand-tracking approaches that require RGB-only input were
presented [Simon et al., 2017], [Zimmermann and Brox, 2017]. These techniques could be
further explored and combined with standard depth input.

Improving Efficiency

In future work we plan to reduce computational overhead to facilitate deployment on mobile
devices. In our system the closest point correspondences are computed independently for
each point, thus the algorithm has a parallelizable structure. The run time can be decreased
in several ways: through the use of compute shaders that eliminate context switch time
between CUDA and OpenGL; via on-chip implementation of the algorithm; or through higher
downsampling factors of the input data (possibly with adaptive rates depending on the hand
part).

Feedback for Hand Calibration

To obtain a complete personalized tracking model, the user needs to perform a suitable series
of hand poses. As discussed above, if a finger is never bent, the estimates of the phalanx
lengths will be unreliable. Currently, the system provides limited visual feedback to the user to
guide the calibration. In the future, we aim to design a feedback system that provides visual
indication of the most informative hand poses given the current model estimate. For example,
one could create a dictionary containing a suitable pose for estimating each parameter with
high certainty. During calibration the user is prompted to show hand pose corresponding to
the lowest certainty parameter.

Tracking Hands and Body

Other interesting avenues for future work include adapting the method to other tracking
scenarios, such as full body tracking. The first offline hands and body tracking system was
recently introduced by [Romero et al., 2017]. We envision full-body avatars used for communi-
cation as a primary application of such methods, which necessitates interactive frame rates.
Approaches like [Dou et al., 2017] are developed for high frame rates, however they struggle
handling high deformation exhibited during hand motion.

Dynamic Fusion with Sphere Meshes

The topology of our sphere-meshes template has been defined in a manual trial-and-error
process. A more suitable topology could be estimated by optimization, possibly even adapting
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the topology for specific users; For example, the work in [Thiery et al., 2016] could be extended
to space-time point clouds. Similarly, one could think of a variant of [Newcombe et al., 2015]
where sphere-meshes are instantiated on-the-fly.

Two hands and Hand-object Interactions

Building upon the basis of high-precision generative hand tracking developed in our previous
works, one could extend the system to enable two hands or hand-object interaction. The
main component to be added is a discriminative system that labels the pixels of the input
image as right hand, left hand, object or background. Another crucial modification would be
adjusting the optimized energy to work robustly under heavy occlusion. Excellent works in
two-hand and hand-object interaction were recently presented - [Taylor et al., 2017], [Mueller
etal., 2017]. However, this is still a very new area with room for improvement in accuracy.

Photorealistic Hands Avatars

Photorealistic hands could be used as a part of body avatar for communication or for increasing
immersion in virtual reality applications. Systems for creating photorealistic face avatars were
already proposed, for example [Thies et al., 2016] and [Tewari et al., 2017]. In our work we have
already developed a parametric model of hand pose and shape. For creating hand avatars
similarly to [Thies et al., 2016] and [Tewari et al., 2017], we need to also create a parametric
model of hand texture. Alternatively, the texture along with fine geometric details could
accumulated from RGB input during the calibration sequence.

Natural User Interfaces

Integrating our hand tracking solution to natural user interfaces and testing its capabilities for
interaction with virtual objects could drive further research directions. Through this kind of
testing we could learn which components require improvement and which are not so crucial
for the control applications.
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