EUROGRAPHICS 98 / N. Ferreira and M. Gdbel
(Guest Editors)

Volume 17, (1998), Number 3

Dynamic Load Balancing in Distributed Virtual
Environments

Stephan Mantler and Dieter Schmalstieg

Vienna University of Technology, Austria
{step | dieter}@cg.tuwien.ac.at

Abstract

This paper introduces a new approach for improving the scalability of distributed virtual environments
by using a combination of visibility culling for communication and dynamic load balancing to keep the
system evenly loaded. An outline of the algorithm as well as some preliminary results are presented.

1. Introduction

In many Virtual Environments, there is a desire for
huge numbers of simultaneous participants. However,
current software and hardware often impose an up-
per limit to this number.. Increasing load will degrade
responsiveness until the system is rendered useless.
To overcome the restrictions, distributed designs are
needed that improve the scalability of the system.

An optimal design will therefore minimize commu-
nication through a careful decomposition of the sys-
tem; additional computational effort can be used to
further reduce the required communication, however
care must be taken that the increased processing will
not outweigh the improvements of distribution.

An efficient networking mechanism for this purpose
is multicast communication®. In addition to using such
a generic approach, improvements can be obtained by
exploiting properties specific to the virtual environ-
ment. For example, if the environment features dense
occlusion, such as in building interiors, this informa-
tion can be used to reduce the number of messages sent
to each client. This reduction is typically performed by
a network of servers, each of which possesses geometry
(and thus visibility) information about some part of
the environment as well as the clients within this part.
As a client can only see a small fraction of the total
number of avatars in such a system, filtering based
upon visibility information greatly reduces the num-
ber of messages that need to be passed, which leads
to a significant increase of the system’s scalability.

@© The Eurographics Association and Blackwell Publishers 1998.
Published by Blackwell Publishers, 108 Cowley Road, Oxford OX4
1JF, UK and 350 Main Street, Malden, MA 02148, USA.

Funkhouser described an architecture named
RING? which uses static visibility information to per-
form message filtering at runtime. The environment is
decomposed into adjacent parts, which are statically
distributed over a network of servers.

Such a system’s scalability is not longer limited by
the total number of clients in the environment, but by
the number of clients that need to be accounted for by
one server. This gives a drastic improvement, however
it is still possible for such a system to become over-
loaded as soon as one server reaches its limits, even if
the other computers are only very lightly loaded.

This paper introduces an architecture which ex-
pands the scalability of distributed virtual environ-
ments by employing dynamic load balancing to keep
all servers evenly loaded. The virtual world is sub-
divided into regions, the distribution (and hence the
cost of maintenance) of which is balanced among the
available servers. This architecture differs from previ-
ous design by allowing a dynamic reconfiguration of
the simulation subdivision among servers, including
database and network connections. Our approach also
allows to add and remove servers at runtime, which is
essential for Internet-based applications.

2. A system design with load balancing

In order to keep the system’s load distributed evenly
over all connected machines, some sort of workload
balancing needs to take place. Therefore, an over-
loaded server will aim to reduce its load by reducing



S. Mantler and D. Schmalstieg / Dynamic Load Balancing

Figure 1: Regions are transferred between servers to
balance system load.

the area of the world it has to handle, while a server
that it has little or nothing to do can request further
work. In this section, we outline our system design,
which was inspired by the RING architecture, but is
capable to include load balancing among servers.

For simplicity, we have limited the environment to
Z%D, which is sufficient for the representation of build-
ing interiors. Visibility can be determined from the
floor “map” with a fast on-the-fly algorithm?® through
rapid point-to-cell and cell-to-cell visibility computa-
tion. The world consists of a number of adjacent, non-
intersecting convex polygons, where each edge of the
polygon can be either transparent - representing an
open door - or opaque for walls. The size of these poly-
gons determines the granularity of the load balancing.

The simple heuristic used in our implementation
tries to estimate the server’s load by examining the
number of clients as well as the regions. By trying to
keep the client count below a certain level, the network
traffic and required computing power can be limited;
the tendency towards keeping the number of regions
down tries to keep an otherwise unloaded server from
“bad surprises” like a large number of clients entering
its regions. If it load balancing is required, the heuris-
tic tries to choose a region for transfer that will bring
the most benefit for the server, i.e. the one that will
move as many clients as possible to the other server.

Such transfers should not cause another server to
overload and initiate additional region transfers, since
this could cause unwanted oscillations as regions and
clients are handed over back and forth. Therefore,
there are two limits on the load scale:

o The high water mark defines the point above which
a server tries to get rid of a region.

o If a server’s load falls below the low water mark it
will try to take over a region from another server.

The latter is needed to evenly distribute the load
even in areas where the overall load is low by requiring
“bored” servers to take over some of the work from
other servers.

120

100 -

80+ - D T T T -
‘ number of regions on server A ——

\w number of regions on server B - -
60 -

40 - B

200 number of clients on server A —
’ number of clients on serverB - - -

0

Experiment Time

Figure 2: Load balancing in action: Initially server A
has too many clients and gradually passes regions and
clients to server B. As the clients move about ran-
domly, they become evenly distributed over the world
and cause B to return some regions to A.

3. Evaluation and Results

We have implemented a prototype of the design de-
scribed in the previous sections and are now exam-
ining the reaction of the environment to the change
of parameters (world size, number of servers, number
of clients, directed client movement vs. random walk).
To simulate a large number of participants and to be
able to reproduce the test situation under changing
conditions, the movement of the clients is controlled
by ”bots” which explore the world without user inter-
action. Preliminary results show that our approach is
feasible and appear encouraging.

To conclude, the presented system can be regarded
as a framework for further studies. This future work
will be aimed at examining potential heuristics and
performance optimizations as well as the integration
of the system with other ongoing research.

Acknowledgments This project is sponsored by the
Austrian Science Foundation (F'WF) under contract
number P11392-MAT.

References

1. M. Macedonia, M. Zyda, D. Pratt, D. Brutzman,
and P. Barham, “Exploiting reality with multicast
groups: A network architecture for large-scale vir-
tual environments”, Proc. VRAIS’ 95, (1995).

2. T. Funkhouser, “Network topologies for scalable
multi-user virtual environments”, Proceedings of
VRAIS’96, Santa Clara CA, pp. 222-229 (1996).

3. D. Schmalstieg and R. Tobler, “Exploiting coher-
ence in 2.5 d visibility computation”, Computers
and Graphics, 21(1), pp. 121-123 (1997).

@© The Eurographics Association and Blackwell Publishers 1998.



