
Shape Segmentation Using Local Slippage Analysis

Natasha Gelfand and Leonidas J. Guibas

Computer Graphics Laboratory, Stanford University

Abstract

We propose a method for segmentation of 3D scanned shapes into simple geometric parts. Given an input point
cloud, our method computes a set of components which possess one or more slippable motions: rigid motions
which, when applied to a shape, slide the transformed version against the stationary version without forming
any gaps. Slippable shapes include rotationally and translationally symmetrical shapes such as planes, spheres,
and cylinders, which are often found as components of scanned mechanical parts. We show how to determine the
slippable motions of a given shape by computing eigenvalues of a certain symmetric matrix derived from the points
and normals of the shape. Our algorithm then discovers slippable components in the input data by computing
local slippage signatures at a set of points of the input and iteratively aggregating regions with matching slippable
motions. We demonstrate the performance of our algorithm for reverse engineering surfaces of mechanical parts.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational geometry
and object modeling

1. Introduction

Reverse engineering applications deal with reconstructing
a CAD model from an unstructured input dataset such as
one that may come from a laser scanner. A significant prob-
lem in reverse engineering is the segmentation of the input
dataset into a set of regions, such that each region can be ap-
proximated by a single simple surface. Segmentation is usu-
ally followed by surface fitting, where each component is
approximated by best fitting parametric surface. The prob-
lems of segmentation and surface fitting are closely related:
if we know the surfaces, we can segment the input pointset
by grouping together points that lie within a threshold of the
same surface. On the other hand, given a segmentation of
the pointset into components, we can find the approximating
surfaces by finding the best fitting surface for each compo-
nent. For general objects, segmentation and surface fitting
problems often require user input. However, in many CAD
applications, the underlying model is composed of simple
surfaces such as spheres, planes, cylinders and surfaces of
revolution. In such cases, automatic segmentation and sur-
face fitting are often possible.

There is a large body of research dealing with shape
segmentation. A general survey of segmentation and sur-
face fitting in reverse engineering of CAD objects can be

found in [VMC97]. Most automatic segmentation methods
fall into two general categories. Bottom-up, or region grow-
ing techniques, start with a set of seed points for which
some local surface characteristics are computed. New points
are then added to the seed regions as long as the com-
puted surface characteristic does not change. The other ap-
proach to automatic segmentation is to proceed top-down.
The original pointset is recursively subdivided until each
subset belongs to a single component. This approach is
common in image segmentation [SM00], however in model
segmentation most techniques tend to use the bottom-up
method, e.g. [SB95, BMV01]. For surface fitting of general
shapes, the segmentation problem is generally difficult, and
the user is often asked to indicate rough component bound-
aries [KL96], which are then refined and approximated with
parametric patches. In Computer Graphics, automatic meth-
ods for segmentation of arbitrary shapes are often used for
generating base mesh domains for multiresolution analysis
and texture mapping. Such methods are generally based on
generating regions that satisfy specific distance and planarity
constraints [KT03, GWH01, BM03, SSGH02, LPRM02].

In this paper we develop a bottom-up segmentation algo-
rithm that can be applied to engineering-type objects. The
algorithm recognizes in the input simple surfaces such as
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planes, cylinders, spheres, surfaces of revolution and sur-
faces of linear extrusion (also known as kinematic surfaces).
The algorithm is based on novel differential surface charac-
teristic called slippage signatures. The slippage signature of
a shape consists of the set of rigid motions that, when ap-
plied to the shape, slide the transformed copy along the orig-
inal without forming any gaps. We show how to compute
this surface characteristic by analyzing the Hessian matrix
of a certain minimization problem. We then develop a sur-
face comparison method that uses the slippage signatures to
decide when two pointsets belong to the same surface. We
demonstrate the performance of our segmentation algorithm
on a variety of pointsets representing mechanical parts.

2. Shape classification through slippable motions

2.1. Definition of slippable motions

Our surface descriptor is based on how the surface behaves
under different kinds of rigid motions. A rigid motion M(t)
consists of two time-varying components: R(t) ∈ SO(3),
which determines the rotational part of the motion and T (t)
which is the translational component. At time t, position of
a point x0 moving according to M is given by

x(t) = R(t) ·x0 +T (t). (1)

At a given time instance, the motion at a point x is lin-
ear, and the instantaneous velocity vector of x, obtained by
differentiating Equation 1, is given by

v(x) = r×x+ t, (2)

where r = (rx,ry,rz) is a 3× 1 vector of rotations around x,
y, and z axes and t = (tx, ty, tz) is a translation vector.

There are three kinds of motions where r and t are con-
stant over time:

• If r = 0, the motion M is a translation with constant ve-
locity along the direction t.

• If r · t = 0, M is a rotation with constant angular velocity.
• If r · t 6= 0, M is a uniform helical motion.

Given a surface S we call a rigid motion M a slippable mo-
tion of S if the velocity vector of each point x ∈ S is tangent
to S at x. If the instantaneous motion of each point is tan-
gential, it means that the distance between the transformed
surface and the original does not change, to first order. The
surface can be thought of as sliding against itself, without
forming any gaps between the moving surface and the origi-
nal copy. That is, the surface S is invariant under its slippable
motions. Surfaces which are invariant under one of the types
of rigid motions described above are known as kinematic
surfaces [PW01]. One can differentiate between kinematic
surfaces that are generated by rotational, translational or he-
lical motions [PR98, Sri03].

A kinematic surface can be slippable in more than one

way. The simplest example is a plane. Any translational mo-
tion along the plane is slippable, as is rotational motion
around the plane’s normal. A more interesting kinematic
shape is a cylinder, for which slippable motions include ro-
tations around the cylinder’s axis and translations along the
axis. Other kinematic shapes include spheres, helical sur-
faces, surfaces of revolution and surfaces of linear extrusion
(translationally slippable surfaces).

2.2. Computing slippable motions

The goal of our segmentation is to break up the input
pointset into component pointsets such that each component
can be well approximated by a connected piece of a sin-
gle kinematic surface. To differentiate between surfaces and
pointsets, we will call a set of points P slippable if it can
be approximated by some kinematic surface. Our segmen-
tation algorithm is based on breaking up the input data into
slippable components. First, we show how to determine if a
given surface S is a kinematic surface.

Let x be a point belonging to the surface S, and let n be the
vector normal to S at x. We will examine how x is affected by
an instantaneous motion whose parameters are given by the
6-vector [r t]. The amount of non-tangential motion is given
by the dot product of the velocity vector with the normal at
the point x:

vperp = (r×x+ t) ·n. (3)

The required condition for instantaneous motion [r t] to
be slippable is that the motion of each point is tangential to
the surface at that point. This can be written as:

∫

S
((r×x+ t) ·n)2dS = 0. (4)

We assume that the input data is given by a pointset P of
n points that have been sampled from some underlying sur-
face S. Our goal is to determine if S is a kinematic surface
and find its slippable motions. Each point pi ∈ P is given by
a 3- vector of its coordinates pi = (pix, piy, piz). We also as-
sume that at each point pi we have a corresponding normal
ni = (nix,niy,niz) that approximates the normal vector to the
surface S. If the input pointset is given as a mesh, we can use
the triangles around pi to estimate the normal. If no connec-
tivity information is given with the input, the normals can
be estimated by plane fitting using the technique described
in [MNG04].

We can find the slippable motions of P (and correspond-
ingly S) by posing Equation 4 as a minimization problem.
We want to find an instantaneous motion vector [r t] that,
when applied to P minimizes the motion along the normal
direction at each point.

min
[r t]

n

∑
i=1

((r×pi + t) ·ni)
2
. (5)
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Not surprisingly, the same minimization problem arises
in the context of pointset registration [CM91, RL01]. If we
think of the pointset P as having two copies, a moving ver-
sion PT and a stationary version PO, Equation 5 minimizes
the point-to-plane error metric of Chen and Medioni [CM91]
between the transformed and stationary pointset. A slippable
motion is the one where the point-to-plane distance between
PT and PO is zero [GIRL03]. Pottman [PR98, PHOW04] de-
termines if a given pointset is sampled from a kinematic sur-
face by analyzing the normals of P in line-space, which leads
to a similar minimization problem.

Equation 5 is a least-squares problem whose minimum is
the solution of a linear system Cx = 0, where C is a (covari-
ance) matrix of second partial derivatives of the objective
function with respect to the motion parameters.

C =
n

∑
i=1

















cixcix cixciy cixciz cixnix cixniy cixniz
ciycix ciyciy ciyciz ciynix ciyniy ciyniz
cizcix cizciy cizciz ciznix cizniy cizniz
nixcix nixciy nixciz nixnix nixniy nixniz
niycix niyciy niyciz niynix niyniy niyniz
nizcix nizciy nizciz niznix nizniy nizniz
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


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(6)
where cik = (pi×ni)k. Therefore, the slippable motions of P
are those that belong to the null space of C. To compute the
actual motion vectors, we compute the eigenvalue decompo-
sition C = XΛXT . Eigenvectors of C whose corresponding
eigenvalues are 0 correspond to the slippable motions of the
pointset P. In practice, due to noise C is likely to be full rank.
In this case, the slippable motions are those eigenvectors of
C whose eigenvalues are sufficiently small. Figure 1 shows
examples of slippable shapes and their corresponding slip-
pable motions.

3. Segmentation into slippable components

In Section 2.2 we showed how to determine slippable mo-
tions of a pointset P. Based on the number and type of slip-
pable motions, we can classify the pointset as being sam-
pled from a surface that is spherical, planar, cylindrical, he-
lical, surface of revolution or surface of linear extrusion. In
this section, we develop an algorithm that segments pointsets
into slippable components.

3.1. Point classification

We cannot apply the method of Section 2.2 to the input
pointset P directly, since P as a whole may not be slip-
pable. Our goal is to discover a decomposition of P into
P1,P2, . . . ,Pk such that each Pi is large, connected, and slip-
pable.

Our approach falls into the class of bottom-up segmen-
tation algorithms. We start by computing for each point in
the input a guess at what kind of kinematic surface it was
sampled from. For each point pi ∈ P we form a neighbor-
hood Pi of m points around pi. This forms our original set of

components. If the input data is given with the connectivity
information, e.g. as a mesh, we can build each Pi by crawl-
ing the mesh structure outward from pi until m points are
encountered. If the input is given as a point cloud, we just
take the m nearest neighbors of pi.

Next, we compute the covariance matrix Ci of points in Pi
according to Equation 6. We make two modifications to the
basic equation to make the computation more numerically
stable. First, we shift all points in Pi so that the center of
mass lies at the origin of the coordinate system. Second, we
uniformly scale the points so that the average radius of the
patch is 1. These steps do not change the slippable motions
of the pointset, but ensure that the magnitude of the pi ×
ni term is comparable with the ni term in the computation,
making the computation more numerically robust.

The next step is to decide how many slippable motions
the neighborhood around pi has. Let λ1 ≤ λ2 ≤ . . .≤ λ6 be
the eigenvalues of Ci and x1,x2, . . . ,x6 be the corresponding
eigenvectors. We call the eigenvalue λ j “small” if the ratio
λ6
λ j

is greater than a given threshold g (we use a value be-
tween 100 and 300 in our implementation). If k is the number
of small eigenvalues of Pi, we call the eigenvectors x1, . . . ,xk
the slippage signature of pi. We write the slippage signature
in matrix form as X1...k, with the eigenvectors corresponding
to slippable motions arranged in columns.

The actual segmentation proceeds by aggregating neigh-
boring points into slippable components. Originally, the
neighborhood around each point pi is treated as a sepa-
rate patch Pi. Each patch has a covariance matrix Ci and a
slippage signature X i

1...k. Notice that a patch may not have
any slippable motions (if all eigenvalues of Ci are large), in
which case its slippage signature is empty. The algorithm
proceeds as follows:

1. Initialization: Compute a similarity score between each
pair of adjacent patches. In the case of mesh input, ad-
jacency is easy to determine. In the case of point cloud
input, two patches are adjacent if they share any vertices.
The similarity score is based on both the number and the
compatibility of the slippable motions of the two patches.
We use a priority queue to store the patch pairs, with the
pair that has the best similarity score at the top of the
queue.

2. Patch growing: At each step, we select a pair of adjacent
patches that are the most similar and collapse them into
a single patch. The new covariance matrix is computed
from the covariance matrixes of the two patches to obtain
the slippage signature for the merged patch. We then up-
date the similarity score between the new patch and its
neighbors.

3. Termination: Stop aggregating when the similarity score
of the pair of patches at the top of the queue drops be-
low a threshold. We apply a cleaning step to remove any
small patches that may have remained. The resulting set
of patches is the segmentation of the pointset. Each slip-
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Num. small eigenvalues Type of eigenvectors Type of Surface

3 3 rotations sphere

3 2 translation, 1 rotation plane

2 1 translation, 1 rotation cylinder

1 translation linear extrusion

1 rotation surface of revolution

1 helical motion helix

Figure 1: Kinematic surfaces. For each surface, we indicate the number of small eigenvalues of the covariance matrix in
Equation 6 and the type of the corresponding eigenvectors. Notice, that the eigenvectors given are only one possible set of
slippable motions for that shape. Any motion that is a combination of the slippable eigenvectors is also slippable.

pable patch can be approximated by a single kinematic
surface.

We now examine the steps of the above algorithm in more
detail.

3.2. Similarity score

Given two patches Pi and Pj (these can be either single
points, whose slippage signature is computed from an ini-
tial neighborhood, or merged patches during the running of
the segmentation algorithm), we say that they belong to the
same component if:

• Their corresponding covariance matrixes Ci and C j have
the same number of small eigenvalues.

• The corresponding slippage signatures are the same, that
is we can express the slippable motions of Pi as a combi-
nation of slippable motions of Pj and vice versa.

As described in Section 2, we call λk a small eigenvalue if
λ6
λk

> g for some minimum “condition number” g. The num-
ber of slippable motions for a patch Pi is given by the largest
k for which the above condition holds:

s(Pi) = argmaxk{
λ6
λk

> g} (7)

This means that the distance between the moving and
the stationary copy of the patch Pi changes as least g times
slower in the direction of slippable motions than any other
motions. For a non-degenerate patch (i.e. not a curve),
the maximum number of slippable motions is 3. We call
a pointset with k small eigenvalues k-slippable. Figure 2

Figure 2: Coloring points of a shape consisting of kinematic
surfaces based on the number of small eigenvalues of the
region around the point. Points whose neighborhoods are
one-slippable are colored red, and whose neighborhoods are
three-slippable are colored blue. Gray regions correspond
to points in neighborhoods with no slippable motions, while
green points are incorrectly classified as being two-slippable
(See Section 4). The width of the one-slippable regions de-
pends on the size of the initial neighborhood around each
point (set to 10 points in this example).

shows a simple object whose points are colored according
to the number of small eigenvalues in a region around each
point. Notice that the planar and the spherical regions are
colored the same. This means that we cannot use just the
number of small eigenvalues as the surface descriptor for
segmentation, we need to look at the corresponding slippable
motions as well.
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The first test for similarity between patches Pi and Pj re-
jects the patch pairs for which the number of slippable mo-
tions computed according to Equation 7 is different.

For the second similarity test, let X1...k and Y1...k be the
slippage signatures of patches Pi and Pj respectively and let k
be the number of slippable components of each patch. Since
the first test was successful, k is the same for both patches.
Each component of the slippage signature is a 6× 1 vector
corresponding to a rigid motion. Two slippage signatures are
compatible if the rigid motions of one can be expressed as
combination of rigid motions of the other.

In general, deciding if a given rigid motion M can be ex-
pressed as a combination of other rigid motions M1 . . .Mk
is a difficult problem. The space of all rigid motions of
<3, SE(3), is a curved manifold, which means simple
interpolation techniques cannot be applied to rigid mo-
tions [Ale02, PR97]. In our case, however, we are dealing
with instantaneous rigid motions, since the eigenvectors of
the matrix C correspond to velocities. This means that the
eigenvectors of C lie in the tangent space of SE(3), which is
flat. As a result we can treat the components of the slippage
signatures as vectors in <6. The columns of each slippage
signature form an orthogonal basis for the space of all in-
stantaneous slippable motions of the corresponding pointset.
To answer if two slippage signatures X1...k and Y1...k are com-
patible, we just need to test if each column X1...k can be ex-
pressed as a linear combination of columns of Y1...k.

Because of noise in the data we will never be able to per-
fectly express the slippable motions of Pi in terms of the
slippable motions of Pj . Therefore, we need to look at the
residual after the approximation. The amount by which two
slippage signatures are dissimilar is given by the (k + 1)st
singular value of the combined matrix [X1...kY1...k]. In the ac-
tual implementation we need to transform the rigid motions
of one patch into the coordinate system of the other since we
applied a shift and scaling in the computation of the covari-
ance matrix.

We combine the two similarity tests into one similarity
score as follows:

Sim(Pi,Pj) =

{

0 if s(Pi) 6= s(Pj)
F(σk+1) where k = s(Pi) otherwise.

(8)
where s is computed according to Equation 7, σk+1 is the
(k +1)st singular value of the combined matrix [X1...kY1...k],
and F is described below.

We would like the similarity score to increase as the
patches become more similar, so the function F maps small
singular values into high similarity scores. We also use F to
map the similarity scores into the range of values between
0 and 1. F is a Gaussian centered around 0, whose width
determines how different slippage signatures of two patches
that are considered similar can be.

X

X

X

j
P Pi j

X
i

iX

Xi
22

3

j
11

3

j

Figure 3: Two patches that are part of a shallow cylinder
incorrectly classified as having three slippable motions. The
first two eigenvectors, which correspond to translation along
the cylinder (direction of translation indicated as solid ar-
row) and rotation around the cylinder’s axis (indicated with
dashed arrow) match for both patches. Since the cylinder is
shallow, rotation around the plane of the patches (indicated
with dashed arrow) also has a small eigenvalue, but the cor-
responding eigenvectors do not match. Such classification
errors are the motivation for our multi-pass algorithm.

4. Robust implementation

Using Equation 8, we can now assign a similarity score to
each pair of patches and run our clustering algorithm. Since
the width of the Gaussian in F controls how fast the similar-
ity score drops when the slippage signatures become differ-
ent, we can terminate the algorithm when the similarity score
of the next candidate pair of patches drops too low. However,
using Equation 8 in its present form will result in poor seg-
mentation due to a number of robustness issues, largely due
to incorrectly determining the number of slippable motions
of a patch. We now present an algorithm that is tolerant to
such mistakes.

4.1. Multi-pass segmentation algorithm

Incorrectly determining the number of small eigenvalues
of a patch can affect the similarity score in two ways. First, if
we set g in Equation 7 too high, we can miss some slippable
motions for a patch and decide that two patches are incom-
patible because they have a different number of small eigen-
values. If we set g too low, we can pick eigenvectors that are
not slippable as part of the slippage signature. This can make
patches incompatible because the non-slippable motions of
the patches are not likely to match. Therefore, the perfor-
mance of our algorithm depends on how well we identify
the number of slippable components of each patch.

In practice, it turns out that it is difficult to correctly deter-
mine the number of slippable motions of a patch, especially
in the early iterations of the algorithm when the patches are
still small, and in the presence of noise in the data. The rea-
son for this is that a small neighborhood around a point gen-
erally looks planar, e.g. looking around a point we cannot tell
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Algorithm 1 Multi-pass segmentation of a point set P into
slippable components.

1: for each point pi ∈ P do
2: Form patch Pi of m vertices (using mesh crawling or

nearest neighbors).
3: Form the covariance matrix C according to Equa-

tion 6 and compute its eigenvector decomposition
C = XΛXT .

4: end for
5: k← 3
6: while k 6= 0 do
7: for each pair of adjacent patches (Pi,Pj) do
8: Form combined matrix of slippage signatures,

[X1...kY1...k], as described in Section 3.2.
9: Compute (k + 1)st singular value σk+1 of

[X1...kY1...k].
10: Compute Sim(Pi,Pj) according to Equation 9.
11: end for
12: Initialize priority queue to empty.
13: Insert all pairs of adjacent patches into the priority

queue in order of decreasing similarity score.
14: (Pi,Pj) =EXTRACTMAX(pqueue)
15: while Sim(Pi,Pj) >MINSIMILARITY do
16: Pi j =MERGE(Pi,Pj)
17: for Pk ∈ neighbors(Pi) ∪ neighbors(Pj) do
18: Remove pair (Pk,Pi) (correspondingly Pj) from

the priority queue.
19: Compute Sim(Pk,Pi j) according to Equation 9

and insert pair (Pk,Pi j) into the priority queue.
20: end for
21: (Pi,Pj) = EXTRACTMAX(pqueue)
22: end while
23: k← k−1
24: end while

if the point should belong to a plane or a cylinder of large ra-
dius. In general we cannot reliably classify which shape the
neighborhood belongs to until it grows sufficiently large. But
growing the patch depends on merging it with its neighbors,
which is in turn based on comparing the slippage signatures.
For example, if we try to treat two patches that are part of the
cylinder as planar, we are likely to get a bad similarity score
from their slippage signatures, since only two of the three
eigenvectors in each slippage signature are going to match
well (See Figure 3). This is the general "chicken and egg
problem" of segmentation [VMC97]: we cannot make a de-
cision about a pointset until we know what shape it belongs
to, that is until we have segmented the input. Therefore, we
will need to make our algorithm robust against misclassify-
ing shapes at the early stages of segmentation.

Our solution is based on the observation that any k-
slippable shape is also (k− 1)-slippable. Therefore, instead
of comparing just the k-column slippage signatures of the
two patches, we should also compare the slippage signatures

made from the first (k−1) eigenvectors etc. The best of the
(at most three) similarity scores is assigned as the merge
score for the two patches. In the case of misclassifying the
cylindrical patches as planar, the first two eigenvectors of
each patch will form the basis for the slippable motions of
the cylinder, while the third will be the one that belongs to
the plane (rotation around the normal at the center of the
patch). In this case, comparing the slippage signatures with
k = 2 will give a high similarity score.

However, picking too few components as slippable mo-
tions of a patch can result in undesirable segmentation. To
illustrate, suppose we have a shape consisting of a cone
and a cylinder, which share an axis of revolution. There are
two valid segmentations into slippable components: both the
cone and the cylinder are in one component, which is one-
slippable, with the rotational motion; or there are two com-
ponents, a two-slippable cylinder and a one-slippable cone.
The input clearly consists of two different geometric shapes,
so we would like the segmentation determined by our algo-
rithm to reflect that.

We will do the segmentation in several passes. First, we
try to merge together all three-slippable components. There
may be many patches that are classified as three-slippable
because the patch size is not large enough to correctly de-
termine the number of slippable motions. However, the only
patches that will be merged are those whose slippable mo-
tions are compatible, which are the patches that belong to
planar and spherical components of the input. In the second
pass, we merge all patches that are classified by the size of
their eigenvalues as at least two-slippable, i.e. we allow a
patch to "drop" a slippable motion. In comparing the slip-
page signatures of such patches, we only use the first two
eigenvectors of each covariance matrix as the slippage sig-
nature (i.e. the largest slippable eigenvector is dropped). This
handles the case of two-slippable patches being classified as
planar. In the final pass, we merge all patches that are at least
one-slippable, using the first eigenvector as the slippage sig-
nature for each patch. In practice, we repeat this process sev-
eral times, every time making the width of the Gaussian in F
larger to accommodate more noise as patches become larger.
Finally, since we tend to misclassify patches more often at
the early stage of the segmentation, we do not allow patches
that consist of a large number of points to drop slippable
motions (this prevents the case of merging the cone with the
cylinder as described above). Our new similarity score is as
follows:

Sim(Pi,Pj) = F(σk+1) ·G(Pi,k) ·G(Pj,k). (9)

Here, the function G acts as a confidence multiplier for the
similarity score. The simplest form of G is just a cutoff. At
each iteration of the algorithm, let k be the minimum number
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of slippable components that we are considering. Then

G(Pi,k) =











1 if λ6
λk
≥ g and λ6

λk+1
< g

1 if λ6
λk+1
≥ g and |Pj|< N

0 otherwise

(10)

Here N is the desired size of individual segmented compo-
nents. Notice that G also prevents the algorithms from merg-
ing patches which have different number of small eigenval-
ues, so we do not need to explicitly test for the number of
small eigenvalues of a patch. Algorithm 1 contains the pseu-
docode for the multi-pass segmentation algorithm.

4.2. Initial patch size selection

The last important parameter that affects the robustness of
our algorithm is the size of the initial neighborhood formed
around each patch. As described above, we do not need to
reliably determine the number of small eigenvalues of the
patch, but if two patches belong to the same component, we
would like the corresponding eigenvectors to match within
the threshold set by F .

In practice, we noticed that the algorithm is most sensitive
to the value of initial patch size m, as opposed to the value of
the condition number g. Therefore, selecting the right patch
size is important for good segmentation.

Unfortunately, this parameter is difficult to determine an-
alytically. Therefore, in our implementation, we determine
the correct initial patch size by the quality of the final seg-
mentation. If the initial neighborhood size is too small, the
eigenvectors in the slippage signature of each point will not
match the point’s neighbors, and the algorithm will not be
able to aggregate large patches. The final output will be over
segmented: there will be a large number of components, with
only a few points in each. Therefore, if the final segmenta-
tion has too many components, we increase the value of m
and try again.

4.3. Post-processing steps

After the completion of the algorithm, it is likely that a num-
ber of regions remains that are not part of any slippable com-
ponent. One reason of this is that those parts corresponds
to areas of the shape that are not slippable. However, often
there are regions in the input that are actually part of a slip-
pable shape, but due to noise did not get clustered correctly.
We therefore allow large slippable regions to absorb their
small neighbors, as long as the overall region remains slip-
pable.

We also apply some simplification to the border between
regions. The exact border between two components depends
on the neighborhoods size, m, that was used in the initial
point classification. For example, in Figure 2, a larger neigh-
borhood size would increase the width of the one-slippable

regions. While we may need larger size of m for the initial
clustering, we often prefer the points to belong to a more
slippable component at the end of the segmentation. There-
fore, when a point can be classified as belonging to two dif-
ferent patches, as happens near the border between two re-
gions, we assign the point to the more slippable region. In a
way, we allow the more slippable regions to eat into the less
slippable regions, but only as long as no regions become dis-
connected.

5. Results

In this section, we show the results obtained by our segmen-
tation algorithm.

Figure 4: Segmentation of a simple model into slippable
components. Grey areas correspond to stable regions. Notice
that even through the spherical part and planar parts were
classified as having the same number of small eigenvalues
in Figure 2, since their slippable motions are incompatible
with each other, they are segmented into separate regions.

Figure 4 shows the final segmentation of the shape in Fig-
ure 2. The shape consists of a cube with a hemisphere at-
tached to one of the faces. The final segmentation consists of
three-slippable and one-slippable regions, as well as a num-
ber of stable (not slippable) corners. The planar faces and
the sphere are segmented into separate components, since
even though they have the same number of slippable mo-
tions, the motions themselves are different. The segmenta-
tion also includes one-slippable components that correspond
to the edges between the three-slippable regions. The width
of these components depends on the size of the initial neigh-
borhood that is built around each point. Our second cleaning
step thins such edge pieces as long as they don’t fall apart
into disconnected regions. In our application, the input to the
algorithm was given as a mesh. Therefore, we used the con-
nectivity of the input to prevent the segmented regions from
forming disconnected components during thinning. In the
case when input data is given without any underlying con-
nectivity, more sophisticated methods for preserving topol-
ogy of the regions are required [ELZ02].

Many segmentation algorithms perform edge detection
as the first step of segmentation, using the assumption
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(a) (b)

Figure 5: Segmentation without sharp edges. (a) The back
of the fandisk model contains a cylindrical region (blue) and
a planar region (red). Even though there is no sharp edge
between them, our segmentation algorithm is able to recog-
nize the two regions. (b) Outline of the bottom of the model,
showing the shape of the cylindrical and planar region.

that different regions in the input are separated by sharp
edges [BMV01]. Our algorithm does not need the edge de-
tection step, and in fact can find boundaries between slip-
pable regions even if no sharp edge is present in the data.
Figure 5 shows a shape containing a cylindrical part that
smoothly joins to a plane, which are correctly identified by
our algorithm.

Figure 6 shows the segmentation of a mechanical part
consisting mostly of cylinders and surfaces of revolution.
The input pointset contains 20,000 vertices. The initial patch
classification of a neighborhood of 30 vertices is shown in
Figure 6(a). The size of the neighborhood was not large
enough to correctly classify all vertices that belong to the
cylindrical regions, as indicated by the blue coloring (cor-
responding to the three-slippable regions) at the lower part
of the shape. The misclassified vertices were not aggregated
in the first pass of the algorithm, since treated as planes,
their similarity score was too low. However, in the second
pass, they were correctly treated as two-slippable regions
and clustered. The results are shows in Figure 6(b)-(d). No-
tice that the segmentation captures the edge between the pla-
nar bottom part and the cylindrical side part as a separate
one-slippable component. The fact that the algorithm clas-
sifies sharp edges as separate components can be advanta-
geous in reverse engineering. Since sharp edges are gener-
ally hard to capture accurately in laser scanning, this com-
ponent is useful as an indicator of the area that is likely to
contain a sharp edge. In the construction of a CAD model
from this input pointset, this component can be replaced by
a surface blend [BMV01].

Finally, Figure 7 shows segmentation of another mechan-
ical part, consisting of a larger number of slippable com-
ponents. The model consists of 40,000 points, and the in-

(a) (b)

(c) (d)

Figure 6: Segmentation of a mechanical part consist-
ing mostly of cylinders and surfaces of revolution. (a) Ini-
tial classification of neighborhoods into one-slippable (red),
two-slippable (green), and three-slippable (blue). Notice
that some cylindrical neighborhoods are incorrectly classi-
fied as planar. (b) Segmentation obtained by our algorithm.
(c) View of the bottom of the part. Notice that the join be-
tween the planar bottom and the cylindrical side is captured
as a separate rotationally symmetrical component. (d) View
of the top of the part.

put neighborhood size was set to 30 vertices. After the ini-
tial segmentation, the post-processing pass thinned the one-
slippable components to the maximum width of 5 vertices.

6. Conclusions

We presented an algorithm for segmenting an input pointset
into regions that can be well approximated by kinematic sur-
faces. A sample application for such algorithm is the seg-
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(a) Top view

(b) Bottom view

Figure 7: Segmentation of a part consisting of planar and
cylindrical components. Edges between the planar compo-
nents and between the planar and cylindrical components
are captured as separate regions.

mentation of mechanical parts in the area of reverse engi-
neering. We see another use of our algorithm in segmen-
tation of scans of architectural structures, which are often
composed of planar surfaces (walls) and surfaces of linear
extrusion (corners, door frames).

Several directions are possible for future work. We need
an analytic way to choose the neighborhood size parameter
used for the initial classification of points. As mentioned in
Section 4.2, neighborhood size that is too small leads to slip-
page signatures that are essentially random, and results in a
poor segmentation. We expect that we can characterize the
optimum neighborhood size in terms of the local curvature
and an estimate of noise in the data.

In this paper, we focused on developing the concept of
slippable motions and the idea of using slippage signature of
a neighborhood around a point as a local surface descriptor.
Our segmentation algorithm is a simple greedy clustering
method. We expect that we can improve the quality of the

segmentation by using more sophisticated clustering tech-
niques such as [KT03] with our surface descriptor.
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