
Improvement Rendering of Web3D Using the Shading
Language

Masahiro Sakai1,2 Noriyuki Ichijo1 Yoshinori Dobashi2 and Tshuyoshi Yamamoto2

1Micronet Co.,Ltd., Hokkaido, Japan
2Hokkaido University, Hokkaido, Japan

Abstract
Many Web3D systems for managing 3DCG in the contents of HTML pages use fixed shaders for graphics API
for real-time 3DCG rendering, so it is difficult to simulate the global illumination. We propose a solution to the
problem of global illumination that uses a Web3D environment map in our proprietary Web3D format, "3DX" and
the GPU shading language.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image Generation
– Bitimap and Frame buffer operations I.3.7 [Computer Graphics]: Three–Dimentional Graphics and Realism –
Color, Shading, Shadowing and Texture

1. Introduction

The three-dimensional spaces on the web has progressed
since the 1990s. Such one technology domain is called
Web3D. The first technology of this kind was VRML (Vir-
tual Reality Modeling Language) in 1995, followed by a
number of Web3D formats introduced and used on the In-
ternet since 2000. Since the purpose of Web3D is real-time
rendering, many systems used fixed shaders that depend on
the graphics API of the operation system to display shapes.
As a result, processes to display the effects of shading and
illumination were restricted by graphics API and the rep-
resentation of 3D images was dependent upon it. Also, not
many attempts have been made to simulate dynamic global
illumination in Web3D. This paper focuses especially on this
problem and confirms the effect of improving the represen-
tation of Web3D by applying the shading language, which is
currently appraised in a wide variety of computer graphics
research fields, to our Web3D format, "3DX."

2. Related studies

Web3D technologies progressed dramatically once VRML
was introduced. This section summarizes related studies by
several topics. Web3D content consists mainly of two pro-
cesses. The first is the content creation process. The second
is the display process mentioned in the previous section.

2.1. Studies for improvements in the creation process

Representation became redundant when 3D graphics were
described by polygon meshes, and this was a hindrance to
the spread of the system in the 1990s as it caused inconve-
nience on the narrow-band Internet. While it was possible to
display graphics smoothly by using a larger number of poly-
gon meshes, long transfer time and high-performance graph-
ics hardware were required [WYHC01]. Wakita et al. pre-
sented a lattice mesh creation method for creating freeform
surfaces from initial simple polygons, and added a frame-
work to handle freeform surfaces by extending VRML97
[WMYTC00].

2.2. Studies for improvements in the display process

For solution of the display process problem, the application
of programmable shaders using graphic hardware resources
has been presented as a direction for X3D, which is an up-
grade from VRML. In the display process of conventional
Web3D, the luminance distribution on the object surface was
calculated in advance and was mapped on the surface as tex-
ture to create a 3D image representing the shading effect.
Instead of these, the use of the shading function of graph-
ics hardware for Web3D is currently being considered [GN-
MdC04].

c© The Eurographics Association 2008.

EGVE Symposium (2008) Posters
B. Mohler and R. van Liere (Editors)

http://www.eg.org
http://diglib.eg.org

M. sakai & N. Ichijo & Y. Dobashi & T.Yamamoto / Improvement Rendering of Web3D Using the Shading Language

3. Structure of the 3DX Web3D format

This section describes the 3DX Web3D format presented by
authors used in the method proposed here.

3.1. File format

The file structure of 3DX can be divided into the model part,
the file that puts animation data and link information with
other Web sites together (.3dx) and the texture part used in
the model part. While the model part of a 3DX file con-
sists of form tags called "chunks" which represent geometry,
it also includes animation-related information and texture-
based animations.

3.2. Rendering method

Rendering was achieved by sending information on geome-
try, illuminant, view position (camera position) and texture
obtained from the above-mentioned chunks to OpenGL 1.1,
1.3, 1.5 or other standard graphic libraries. Extensions by
nVidia CgFX and Open GL 2.0 were also added in this study.

3.3. Browser plug-in

Different versions of the browser plug-in have been created
and provided by implementation for Internet browsers to be
compatible on various operating systems. The browser plug-
in also has a function to interpret JavaScript to realize the
interaction with HTML as mentioned below. This enables
users to manipulate a 3D space on an Internet browser in an
interactive manner.

3.4. Interaction with HTML

The browser plug-in is called up from HTML by describing
the tag and rendering the display screen together with other
information contained in the HTML page. It is also possible
to embed JavaScript in HTML to realize interactivity with a
3D space.

4. Irradiance environment map used for graphics
hardware

This paper presents a concrete method for improving the
representation of Web3D by using the shading language of
graphics hardware. Among the methods for achieving global
illumination effects by dynamic illumination and objects, the
method for calculating an irradiance environment map has
been presented by King [Kin05]. Based on these methods,
the authors implemented the method below.

4.1. Calculation of diffuse light intensity

The diffuse light intensity L from the surface where the nor-
mal vector is N can be expressed by the equation below on

the assumption that the incident light intensity from direc-
tion ω is L(ω) and the solid angle in the direction is dω.

L =
Z

L(ω) ·max(N ·ω,0) ·dω (1)

Where, L(ω) is expanded in spherical harmony as shown be-
low.

L(ω) = ∑
lm

Llm ·Ylm(ω) (2)

Llm =
Z

L(ω) ·Ylm(ω) ·dω (3)

Where, ∑lm represents the total for all the bases of spherical
harmonics. Next, the incident light from the entire globe sur-
rounding the surface is substituted by an environment map.

L = ∑
i

L(i) ·max(N ·ω(i),0) ·dω(i) (4)

L(i) = ∑
lm

Llm ·Ylm(i) (5)

Llm = ∑
i

L(i) ·Ylm(i) ·dω(i) (6)

Where,∑i represents the total for all the texels of the envi-
ronment map, L(i) is the intensity of texel no. i on the en-
vironment map, ω(i) is the direction and dω(i) is its solid
angle. The equations below can be obtained by substituting
Eq. 5 for Eq. 4.

L=∑
lm

Llm(∑
i

Ylm(i) ·max(N ·ω(i),0)dω(i))

(7)

L=∑
lm

Llm ·Alm (8)

Alm = ∑
i

Ylm(i) ·max(N ·ω(i),0)dω(i) (9)

Because Alm is an amount that depends only on the normal
vector of the surface, it is calculated in advance for all the
directions of N and set on the global map. Llm is calculated
in accordance with Eq. (6) by dynamically creating a dual-
paraboloid environment map whenever there is a change of
scene, and the result is stored as texture in the same way as
the immediately aforementioned method. As represented by
Ylm(i) ·dω(i) of Eq. 6, all the texels on both sides of the dual-
paraboloid environment map are calculated in advance and
stored as texture to improve the processing speed. Lastly,
certain pixels are sampled from these two textures and their
sum is used to calculate the diffuse light intensity.

5. Implementation

The irradiance environment map described in the previous
section was implemented by the method below.

c© The Eurographics Association 2008.

14

M. sakai & N. Ichijo & Y. Dobashi & T.Yamamoto / Improvement Rendering of Web3D Using the Shading Language

5.1. Changing the file format

First, improvements were made to increase shading language
chunks and create a link to the shading language on the tex-
tured surface of a 3D object.

5.2. Implementation of the irradiance environment map

5.2.1. Alm,Ylm(i) ·dω(i) texture creation

When calculating irradiance or other values on graphics
hardware, the calculation result is stored according to the
texture format. Fig. 1 displays an example of a created tex-
ture. While four textures were supposed to be created if there
were 16 coefficients, the calculation result was stored by di-
viding one texture into four segments for the convenience of
shader processing. Because the textures were floating-point
ones, they were scaled to be within the range of 0 to 255 by
giving a bias so that they could be displayed as 32-bit Bitmap
files.

Figure 1: A sample texture.

5.2.2. Creation of the dual-paraboloid map

While it is possible to use a cube map as an environment map
to approximate incident light on a surface, a dual-paraboloid
map was used here since it requires six textures. The line
of sight was changed to −Z and +Z from the center of the
surface to be rendered.

5.2.3. Llm texture creation

Llm is the adding up all the texels on the dual-paraboloid map
and those corresponding to the Ylm(i) ·dω(i) textures.

5.2.4. Final rendering

The diffuse light intensity of the rendering surface was found
by sampling values from the Alm texture using the normal
vector of the surface as the texture coordinate, integrating the

values with the corresponding texel value of the coefficient
of the Llm texture, and by calculating the total for all l and m
values. A dynamic irradiance environment map shader cre-
ated by the shading language is set for the globe at the center
of the room.

5.3. Application to architectural content

Considering the use in an actual Web3D content, a "vase"
subject to 2,496-polygon global illumination was placed in a
5,186-polygon apartment and an experiment was conducted
using Intel Pentium4 (3.8 GHz) as its CPU and Nvidia Cor-
poration’s GeForce 6800 as its graphics hardware and image
size (640 x 480) (Fig. 2). The measured value of imaging

Figure 2: A first step example with our proposal method.

speed was a little lower than 18 fps indicating the possibility
of application to actual contents.

6. Texture-based global illumination

In the previous section, multiple reflection was not taken into
account. When the entire radiance is taken into considera-
tion, the radiance from the surface where the normal vector
is N can be expressed by the rendering equation below.

L =
ρ

π

Z
L(ω) ·max(N ·ω,0) ·dω (10)

By applying the Monte Carlo method with a sample number
of N to this integral, the equation below can be obtained.

L =
ρ

π

Z
dω · (1

N
) ·L(ω) ·max(N ·ω,0)

=
4ρ

N ∑L(ω) ·max(N ·ω,0)

(11)

The one way to reuse the output from the shader in GPU
is by rendering to a texture with consideration to the calcu-
lation result of global illumination found by a texture atlas
using DirectX UVAtlas API [NAC04].

c© The Eurographics Association 2008.

15

M. sakai & N. Ichijo & Y. Dobashi & T.Yamamoto / Improvement Rendering of Web3D Using the Shading Language

6.1. Texture atlas

Each texture atlas consists of position and normal atlases. As
the initial radiance map, the rendering result obtained only
with direct illumination is used.

6.2. Representation of shadows by the depth buffer
shadow method

In this study, shadow was also drawn into the initial radiance
map using the depth buffer shadow method described below.
The depth buffer shadow method is used to judge whether
a position is in shadow from a light source by storing the
depth of the object as a color in a shadow texture using a
camera positioned at the light source and comparing the ren-
dered vertex with the depth at the time of rendering. First,
the parallel light source was implemented to simulate by the
depth buffer shadow method. Second, The Z coordinate was
outputted to the fragment shader as a color.

6.3. Visible point determination using the depth
separation method

Visible point determination is necessary for calculating
global illumination. Hachisuka developed a method for
very high-speed visible point determination by applying
depth separation, which was originally proposed by Everitt
of nVidia as a method for accurate translucency process-
ing without presorting [Hac05]. This was adopted in this
study to reduce the computation load. Depth separation is
a method to express a scene by separated images (color tex-
ture) in the order of depth by storing the depth value in both
the Z buffer and texture (depth texture) and repeating sub-
sequent rendering processes several times without rendering
the values that are the same or smaller than the depth value.

6.4. Texture synthesis based on the Monte Carlo
integral of a diffuse light rendering

In this study, irradiances were sampled once using the
method described in section 6.3, and the global illumination
effect was calculated based on Eq. 11 using samples of 256
directions. The results of actual rendering performed by fol-
lowing the above procedure are shown below.

Figure 3: Result with only direct OpenGL light (left) and
that after the application of global illumination (right).)

6.5. Experiment of the effects

By using the aforementioned method, it was possible to add
the global illumination effect even to large objects. Consid-
ering the use in sample Web3D contents and an experiment
was conducted using same PC configuration in section 5.3.
The measured value of the global illumination computing
speed was from 1.5 to 2.0 seconds to actual contents with
our proposal method.

7. Conclusion

7.1. Summary of the effects

This paper presents a method for simulating global illumi-
nation by applying the shading language to Web3D and with
the assistance of graphics hardware. Since it is also desirable
to improve the representation of Web3D contents, the imple-
mentation of Web3D, with which global illumination can be
simulated, is considered highly advantageous.

7.2. Future tasks

As a future task in the display process, it will be necessary to
examine other method of the shading. At present, the speed
problem cannot be solved even with the support of GPU in a
3D space consisting of a large number of polygons. This is
due to current GPU not being capable of reading and writing
simultaneously for one texture. Since it is possible to im-
prove the entire throughput if the efficiency of this process
can be increased even slightly, it will be necessary to con-
sider different methods.

References

[GNMdC04] G. N. M. DE CALVALHO T. GILL T. P.: X3d
programmable shaders. In Proc. of the ninth international
conference on 3D Web technology (2004), pp. 99–108.

[Hac05] HACHISUKA T.: GPU Gem2, japanese ed. Born
Digital, 2005.

[Kin05] KING G.: GPU Gem2, japanese ed. Born Digital,
2005.

[NAC04] N. A. CARR J. C. H.: Meshed atlases for real-
time procedural solid texturing. ACM Transactions on
Graphics 2, 21 (Feb. 2004).

[WMYTC00] WAKITA A., M. YAJIMA T. H., TORIYA

H., CHIYOKURA H.: A compact and qualitied 3d repre-
sentation with lattice mesh and surface for the internet. In
Proc. of VRML 2000 (2000), pp. 45–51.

[WYHC01] WAKITA A., YAJIMA M., HARADA T.,
CHIYOKURA H.: A compact and qualifired web3d rep-
resentation based on a lattice structure(in japanese). Jour-
nal of Information Processing Society of Japan 42, 5 (May
2001), 1170–1181.

c© The Eurographics Association 2008.

16

