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Abstract
We introduce the parallel coordinates matrix (PCM) as the counterpart to the scatterplot matrix (SPLOM). Using
a graph-theoretic approach, we determine a list of axis orderings such that all pairwise relations can be displayed
without redundancy while each parallel-coordinates plot can be used independently to visualize all variables
of the dataset. Therefore, existing axis-ordering algorithms, rendering techniques, and interaction methods can
easily be applied to the individual parallel-coordinates plots. We demonstrate the value of the PCM in two case
studies and show how it can serve as an overview visualization for parallel coordinates. Finally, we apply existing
focus-and-context techniques in an interactive setup to support a detailed analysis of multivariate data.

Categories and Subject Descriptors (according to ACM CCS): Probability and Statistics [G.3]: Multivariate
Statistics—, Computer Graphics [I.3.3]: Picture/Image Generation—Display algorithms

1. Introduction

The scatterplot is one of the most popular and widely ap-
plied visualizations of 2D data. While a single scatterplot
represents two dimensions, the scatterplot matrix [Har75]
(SPLOM) visualizes all 2D axis-aligned projections of a
high-dimensional dataset. This is achieved by laying out 2D
scatterplots in a matrix where every row and every column
represents one dimension (Figure 1).

Multidimensional data can also be visualized using
parallel coordinates [Ins85, Ins09]. Here, a set of parallel
axes represent the dimensions while datapoints are rendered
as polylines crossing all axes. Exploiting the point-line
duality, parallel coordinates with two axes convey the same
information as their dual scatterplots, although some train-
ing might be required to see the same patterns [LMvW08].
In addition, parallel coordinates allow to visually trace
individual datapoints over all axes, providing a multidi-
mensional “profile” of the datapoints. However, the parallel
layout of axes also adds the constraint of a fixed ordering
of dimensions, hindering the visualization of all pairwise
relations in a single parallel-coordinates plot (PCP) without
duplicating axes. As can be seen in Figure 1, laying out
PCPs (with two dimensions each) in a scatterplot matrix
breaks the traceability of lines over all axes and therefore
one of the nice properties of parallel coordinates.

To combine the advantages of parallel coordinates and the
scatterplot matrix, we introduce the parallel coordinates ma-
trix (PCM) as the counterpart of the scatterplot matrix for
parallel coordinates. The design goals of the PCM are to

1. visualize all pairwise correlations without redundancy us-
ing parallel coordinates while

2. all PCPs represent the same set of dimensions.

The first design goal is required to ensure that all pairwise
correlations are presented to the user, while the second en-
sures comparability, consistency, and is required to obtain
a matrix layout. As a result, the PCM is a list of high-
dimensional PCPs, each with a different axis ordering. Since
the PCM is composed of a set of PCPs, many existing order-
ing algorithms, interaction techniques, and visual represen-
tations can be used with the PCM.

2. Related Work

Hartigan [Har75] visualized pairs of variables placing
two-dimensional scatterplots in a matrix. However, as
the layout of 2D plots in the traditional SPLOM is
symmetric, more than half of the scatterplots conveys
redundant information. Giving order to dimensions using
different measures was investigated extensively for the
SPLOM [WAG05, SNLH09, ABK98, Hur04] as well as for
parallel coordinates [WAG06, DK10, FR11].
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Figure 1: Replacing scatterplots in the SPLOM (top, left) with 2D parallel-coordinates plots (top, right) conveys the same
information, but breaks the continuity of lines. Both visualizations are symmetric such that the whole information is represented
by n(n−1)

2 2D plots. The corresponding parallel coordinates matrix (bottom, left) comprises b n
2c parallel-coordinates plots, each

representing n dimensions, while all pairwise correlations occur exactly once. The nodes of the complete graph K6 (bottom,
right) denote the dimensions of the dataset, while edges represent pairwise relations. To construct the parallel coordinates
matrix, the graph is decomposed into three Hamiltonian paths (red, blue, and black) describing the order of axes of the three
parallel-coordinates plots in the matrix. Together, they form the complete graph such that all pairwise relations are covered.
While all correlations can be seen in all three visualizations, the parallel coordinates matrix further shows lines expressing a
similar pattern over a subset of variables. This is probably most striking in the third row, where a small set of lines with high
values for “disp” move to the top of “wt” before dropping to low values for “mpg”.

Other layouts for 2D PCPs were proposed to visualize
single-to-many [JCJ05] and many-to-many [LJC09] rela-
tions. For the latter, line continuity is not achieved while
the first does not represent all pairwise relations. The P-
SPLOM [VMCJ10] comprises the same number of plots as
the SPLOM and thus contains the same redundancy. Albu-
querque et al. [AEL∗09] order PCPs with 3 axes in a matrix
of (n−1)/2 columns and n rows, rendering a total of n2−1
pairwise relations.

In the general framework for the layout of 2D plots pre-
sented by Claessen and van Wijk [CvW11], axes can be
placed freely in Cartesian space such that both a SPLOM
and a PCM could be generated. However, doing so still re-
quires a significant amount of manual labor, even for low-
dimensional datasets.

3. The Parallel Coordinates Matrix

We describe how the parallel coordinates matrix is obtained
from an n-dimensional dataset based on the work by Weg-
man [Weg90] and Hurley and Oldford [HO10]. Wegman de-
scribes how to compute all orderings of PCPs required to see
all pairwise relations using a graph-theoretic approach. Hur-
ley and Oldford use a slightly modified algorithm to create a
single PCP with all possible pairwise permutations.

3.1. Pairwise Correlation Graph

The first design goal of the PCM is to visualize all (un-
ordered) pairwise relations of an n-dimensional dataset.
Finding these relations can be translated to visiting all edges
in the undirected complete graph Kn = (V,E), where the set
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of vertices V = {1, ...,n} represent dimensions and the set of
edges E = {ei j|i, j ∈V, i 6= j with ei j = e ji} represent 2D re-
lations between dimensions i and j. The number of pairwise
relations (edges) is |E|= n(n−1)

2 .

Using independent 2D data representations (such as scat-
terplots), all plots may be distributed arbitrarily over the
available space in any table layout. For parallel coordinates,
however, it might be beneficial to exploit the multidimen-
sional nature of the plot, such that polylines representing
individual data points can be traced across more than two
axes. Hence, it is desirable to see every dimension at least
once in every PCP. Using a graph description, this translates
to a path in the corresponding complete graph that visits all
vertices at least once.

3.2. Eulerian Trails and Hamiltonian Decomposition

A Hamiltonian decomposition is an edge decomposition of a
graph into Hamiltonian paths or Hamiltonian cycles. An Eu-
lerian trail is a trail in a graph that visits every edge exactly
once and an Eulerian cycle is an Eulerian trail that ends in
the starting vertex. A Hamiltonian path is a path in a graph
that visits every vertex exactly once and a Hamiltonian cycle
is a Hamiltonian path ending in the starting vertex.

There are (n− 1)! Hamiltonian cycles for the complete
graph Kn. We employ the Lucas-Walecki Hamiltonian de-
composition to obtain m = n

2 Hamiltonian paths for even n
and m = n−1

2 Hamiltonian cycles for odd n. In the follow-
ing, we use the construction algorithms described by Hurley
and Oldford [HO10]. For n = 2m, we construct the m× n
layout-matrix Hn by defining

Hn[1,1] = 0

Hn[1, j] = (Hn[1, j−1]+ (−1) j( j−1))(mod n)

Hn[k, j] = (Hn[k−1, j]+1)(mod n)

where j = 2, ...,n and k = 2, ...,m. Adding one to every value
results in a matrix of indexes to dimensions that we use to
layout axes on the available canvas. The rows of Hn are
Hamiltonian paths in Kn. For n = 6 the layout matrix is:

H6 =
1 2 6 3 5 4
2 3 1 4 6 5
3 4 2 5 1 6

Hurley and Oldford [HO10] concatenate the rows to form an
Eulerian trail T that is used to render one “long” PCP. This
has the disadvantage of introducing duplicate edges between
vertices Hn[i,n] and Hn[i+1,1]. Instead, we use the rows of
Hn as axis order for n

2 independent PCPs.

For n = 2m+ 1, Hn is constructed by adding n at the be-
ginning and the end of each row of Hn−1. This results in
m Hamiltonian cycles in Kn. Concatenating the cycles and
duplicating the common vertices at Hn[i,n] and Hn[i+ 1,1]
results in an Eulerian cycle of Kn. Using this algorithm, H7

reads:

H7 =
7 1 2 6 3 5 4 7
7 2 3 1 4 6 5 7
7 3 4 2 5 1 6 7

4. Results

Figures 2 and 3 show the PCM for two datasets [Ins09,
EDF08] of different dimensionality. Figure 3 exemplifies
linking & brushing as well as the use of a focus-and-context
technique similar to the Table Lens [RC94] with the PCM.
The accompanying video [Hei12] further demonstrates the
same analyses in an interactive setup. Note that the analysis
conducted here was driven by looking for patterns first, fol-
lowed by investigating which dimensions contribute to these
patterns. This complies with the visual information-seeking
mantra [Shn96], as no particular question about the data has
been raised prior to the analysis.

5. Discussion and Conclusion

To the best of our knowledge, the PCM is the first visu-
alization presenting all pairwise correlations using parallel
coordinates without redundancy for any number of dimen-
sions. Using a simple layout algorithm, the PCM serves as a
promising overview for PCPs making it a valuable tool to get
an idea of a dataset and then focus on individual relations or
plots. Due to the fact that the rows of a PCM are composed
of independent high-dimensional PCPs, different rendering
or interaction techniques can easily be incorporated, as we
have shown in a small example using linking and brushing
as well as a focus-and-context technique. Highlighting axes
representing the same data dimension is another possible in-
teractive addition.

In contrast to the SPLOM, the PCM makes more efficient
use of the available screen real-estate, as pairwise relations
appear only once. However, the layout of the SPLOM facil-
itates labeling and navigation to particular scatterplots. We
hypothesize that the SPLOM performs better at finding the
relation of a particular pair of dimensions, which however
needs yet to be confirmed by a user study. Conversely, if the
task is exploratory such that recognition of patterns is more
important than finding a specific pair or dimensions, we ar-
gue that the analyst might benefit from the space gained us-
ing a PCM instead of a SPLOM. In any case, it is important
to note that the PCM is not intended to replace the SPLOM,
but to be its natural counterpart for parallel coordinates.
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Figure 2: PCM of a 7-dimensional financial dataset [Ins09]. In this dataset, every line represents weekly stock-market quotes
over a period of several years. Starting in the bottom row of the left PCM, we note a small cluster at the bottom between the
“SP500” index and “GOLD” prices, indicating a positive correlation. The lower-left part of the middle row shows another
positive correlation between “SP500”, “GDM” (German Dmark), and “YEN”. Being interested in this pattern, we brush it
and see the corresponding lines in the other plots. For a detailed view, the middle PCP has been focused (right). Now we see
that low “SP500”, “GDM”, “YEN”, and the British Pound Sterling “BPS” go with a negative correlation between “BPS” and
“TB3M” (interest rates in percent for the first three months). As expected, “GOLD” prices are low, while “TB30Y” (interest
rates in percent for 30-year bonds) varies in the mid-price section.

Figure 3: PCM of the 12-dimensional cameras dataset [EDF08]. The “Price” and neighboring “Max res[olution]” and “Low
res[olution]” in the first row show us that (1) there are three dense price-segments: two low-cost segments, a small set of mid-
price models, and only three expensive cameras. From the direction of lines leaving the “Price” axis for the mid-priced models,
we can tell that the distributions of “Max” and “Low” resolutions is similar and there are no outliers. This is more difficult
to say for low-cost cameras, as their resolutions seem to have a “wider” distribution over the neighboring axes. The “Price”
in row four suggests that the price for a camera does not necessarily predict the storage included. The most expensive models
come without storage. Regarding the “Zoom wide” dimension, if an analyst only had the bottom-most PCP for analysis, he
might think at first glance that there is single outlier with no zoom at all, as we see a perfectly horizontal line to the neighboring
axes. Comparing this with row number four, it becomes evident that there are many of such models.
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