
Workshop on Virtual Reality Interaction and Physical Simulation VRIPHYS (2013)
J. Bender, J. Dequidt, C. Duriez, and G. Zachmann (Editors)

Initial Steps for the Coupling of JavaScript Physics Engines
with X3DOM

L. Huber1

1Fraunhofer IGD, Germany

Abstract

During the past years, first physics engines based on JavaScript have been developed for web applications. These
are capable of displaying virtual scenes much more realistically. Thus, new application areas can be opened up,
particularly with regard to the coupling of X3DOM-based 3D models. The advantage is that web-based applica-
tions are easily accessible to all users. Furthermore, such engines allow popularizing and presenting simulation
results without having to compile large simulation software.
This paper provides an overview and a comparison of existing JavaScript physics engines. It also introduces a
guideline for the derivation of a physical model based on a 3D model in X3DOM. The aim of using JavaScript
physics engines is not only to virtually visualize designed products but to simulate them as well. The user is able
to check and test an individual product virtually and interactively in a browser according to physically correct
behavior regarding gravity, friction or collision. It can be used for verification in the design phase or web-based
training purposes.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Physically based modeling I.3.7 [Computer Graphics]: Three-Dimensional Graphics and
Realism—Virtual reality I.6.4 [Computer Graphics]: Model Validation and Analysis—

1. Introduction

Physics engines are systems whose importance has increased
within the past twenty years. They are already inherent parts
in the development of computer games, in the production of
films and of complex software systems in the areas of enter-
tainment, robotics, digital prototyping or training simulators.
They are able to fill virtual scenes with life and give them the
appropriate physical behavior. [BKJC12]

The motion of bodies is approximated according to basic
concepts of classical mechanics. Depending on the proper-
ties of bodies there are three paradigms: rigid body dynam-
ics, soft dynamics and fluid dynamics. Each paradigm uses
different methods for describing motion. Rigid body dynam-
ics are used for solids. Solids are bodies which are not de-
formable. In this connection, collision detection plays an im-
portant role since it prevents rigid bodies from penetrating.
Soft dynamics is concerned with the motion of deformable
bodies. Classic examples are clothes or substances in gen-
eral or things consisting of deformable matter such as rub-
ber. The third paradigm, fluid dynamics, is used if motions

of water or particle systems, e.g. the visualization of gas dis-
persion, are to be described. [Jon11, Diz12]

This paper, however, focuses on the first paradigm. So that
in the following, physics engines for rigid body simulations
shall be discussed.

A rigid body simulation is a timed continuous simulation
for the motion of rigid bodies which uses differential equa-
tions in order to describe physical laws [mac13]. It is exe-
cuted cyclically and in several phases.

One important requirement for physical simulations is the
definition of a physical model consisting of several rigid
bodies. A rigid body is ideally defined as a solid object,
meaning that the distance between each pair of points of the
body never changes even if huge forces are applied. Each
rigid body has a mass which is equally distributed through-
out the entire volume and a center of mass. Rigid bodies
are divided into moveable and non-moveable bodies. Bodies
with a mass of zero are static. Dynamic bodies have a posi-
tive mass. Besides, physics engines provide different shape

c© The Eurographics Association 2013.

DOI: 10.2312/PE.vriphys.vriphys13.081-090

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/PE.vriphys.vriphys13.081-090


L. Huber / Initial Steps for the Coupling of JavaScript Physics Engines with X3DOM

types for rigid bodies which range from geometric primi-
tives (e.g. box, sphere, cylinder) to complex 3D objects.
Generally, rigid bodies have six degrees of freedom and can
be moved and rotated in all three dimensions (Figure 1).
[BKJC12]

Figure 1: The six degrees of freedom of rigid bodies
(Source: http://basieandnewton.blogspot.de/).

Several rigid bodies that are connected by constraints are
called multi-body systems. Depending on the usage, dif-
ferent types of constraints are available (e.g. PointToPoint,
MaxDistance, Hinge, Degree6Dof). In complex models (e.g.
control of equipment and machines, animation of humans)
that consist of a greater number of parts, constraints play
a particularly important role. For each constraint two rigid
bodies are connected with each other. Constraints limit the
motion of bodies and specify what happens if these limits are
reached. [Jun11] Section 4.2.2 examines the functionality of
constraints in detail.

Figure 2 illustrates the phases of a simulation.

Figure 2: Phases of a rigid body simulation [BKJC12].

The simulation starts with a collision detection. This
phase is to check if there is a contact between two rigid
bodies. If so, the contact points have to be determined.

Since collision detection has to be virtually tested for all
pairs of bodies, it may lead to performance bottlenecks es-
pecially if more bodies are tested at once. Thus, the phase
is divided into a broad phase and a narrow phase. During
the broad phase, the bodies are enveloped by the smallest
enveloping body that completely contains them. Enveloping
bodies are usually simple geometric primitives, e.g. spheres.
Only in case of the enveloping bodies overlapping, the high-
performance narrow phase has to be started in order to test
the two rigid bodies for collision.

The following contact handling phase uses the calculated
contact points to derive the appropriate contact forces that
cause a repulsion of the bodies as a result of the collision.
This effect leads to an immediate change of the velocity and
motion of the bodies. These values are calculated during the
collision resolution. Before repeating the simulation run in
the last phase, the position and velocity of the bodies are
updated. [BKJC12]

The physical bases of the simulation are Newton’s laws
and other concepts of classical mechanics. For more infor-
mation please refer to [BKJC12] and [Jun11].

2. Related Work

In the field of entertainment, physics engines play an impor-
tant role especially in the development of computer games
and movies. In game engines, it was initially not impor-
tant to simulate physically correct behavior. Plausible be-
havior was perfectly adequate. Instead, game engines had
to be real-time capable to respond immediately to user in-
teraction. [BKJC12] With the increase of CPU performance
available and the ability to run simulations on the GPU,
the desire to develop more realistic simulations with higher
quality that support real-time capability rose. In this con-
text, [Cou13] introduces an approach to the GPU rigid body
simulation. Furthermore, [Pla12] discusses a sampler-based
motion-planning approach by the use of physics engines in
order to make the motion of virtual agents with regard to
collision detection much more efficient. The popular game
Angry Birds for example was developed by applying the 2D
physics engine Box2D [Box13]. Games like Toy Story or
movies such as 2012, Hancock and Sherlock Holmes were
implemented by using the popular open source 3D physics
engine Bullet Physics [Cou12].

In the field of digital prototyping, physics engines are
used for the verification of virtual products in the design
phase to check the functionality of products before they go
into development. This mainly counts for new developments
and intends to reduce development costs, save development
time and improve the quality of products. Since they rep-
resent an important base for the development of real prod-
ucts, physics engines are required to meet extremely high
needs of simulation accuracy and results. [BKJC12] Webots
and Microsoft Robotics Developer, for instance, are devel-
opment environments to model, program and simulate mo-
bile robots [CYB13,MIC13]. The physics engine PhysX was
used by the European Space Agency to perform the verifi-
cation of the Mars rover sample for the ExoMars program
to study the Martian environment [KJ11]. Furthermore, the
company machineering GmbH & Co. KG uses physics en-
gines to visualize the flow of materials and the behavior of
realistic systems in real time [mac13].

In the area of industrial and training simulators, physics
engines are used to train the operation of vehicles, machines

c© The Eurographics Association 2013.

82



L. Huber / Initial Steps for the Coupling of JavaScript Physics Engines with X3DOM

or equipment. Computer simulations are much cheaper and
less dangerous. Trainings on real objects or in real situa-
tions are expensive and sometimes hardly possible to do,
especially if trainings are to be made in critical or life-
endangering environments. Such an area of application de-
mands both, the accuracy simulations and the real-time ca-
pability to immediately respond to events and actions of the
trainees. [BKJC12] The commercial driving simulator Na-
tional Advanced Driving Simulator (NADS) is one of the
biggest and most complex driving simulators [NAD10]. Vor-
tex is also a commercial simulator that trains and tests the
behavior of vehicles, robots and heavy equipment [CML13].
Algoryx is a physically-based commercial simulator for ve-
hicles, ship management and robot simulations. As a multi-
physics solution, it is able to simulate rigid bodies, flu-
ids, clothes or particle systems. [Alg13] Gazebo is an open
source solution for multi-robot simulations in free environ-
ments in consideration of rigid body physics [Koe13].

In the field of digital prototyping and in the area of indus-
trial training simulators, the visualization and simulation of
virtual products put high requirements on hardware and soft-
ware. It is difficult to make them useable and accessible to all
kinds of users. The option of visualizing and simulating vir-
tual products by using standard web technologies, however,
extends the field of the application of virtual products. Now,
not only designers are able to use and access such applica-
tion but all persons involved in the lifecycle of a product, i.e.
marketing or web-based training purposes. [Gar13]

Since HTML5 has been introduced as the new web stan-
dard, it is possible to visualize 3D models via X3DOM in the
web. X3DOM is a framework for the visualization of X3D
models in a web browser based on WebGL. X3D, the suc-
cessor of VRML, is a description language for 3D models
which is based on XML. The use of X3D has several advan-
tages. First, X3D is an ISO standard for dynamic and inter-
active 3D content. It is not only supported by X3DOM but
by many different plug-ins as well. Besides, WebGL-based
libraries such as SceneJS or Three.js provide a JavaScript
API, meaning that 3D and DOM contents are decoupled
from each other. The X3DOM framework directly integrates
the X3D node into the HTML DOM tree and thereby fol-
lows the current HTML specification. This way, 3D content
can be generated, manipulated and removed the same way
as text, images, audio and video. Furthermore, X3DOM re-
quires no additional plug-ins. Issues like the incompatibility
on different platforms or missing rights for the installation
of required plug-ins that are not installed by default on most
systems can be avoided. [BEJZ09, BJK∗10, JLS∗13]

Especially for the development of web-based virtual prod-
ucts, for training purposes or for the verification of product
designs, the application of X3D offers a key advantage. The
bases for the production of products are CAD data from the
design engineering. With the aid of suitable CAD programs
that provide VRML or X3D export interfaces, CAD mod-

els can be converted into a VRML or X3D format. By using
X3DOM, these models can be included and visualized on
websites and can also be manipulated and interactively ani-
mated in the web browser. However, physically correct be-
havior such as gravity and collision detection is not included.
There are only a few very basic functionalities. Therefore,
first physics engines based on JavaScript were developed for
the web in the last years. They often are ports for already
existing physics engines, written in Java or C++.

The use of standard web technologies makes applications
accessible to all users. All that is required is a web browser
which is compatible with WebGL in order to validate and
test the functionality of virtual products (machinery, equip-
ment, e.g. cranes) according to physical laws.

3. Selecting a Suitable Physics Engine for the Coupling
with X3DOM

This paper intends to present a guideline for developing an
interface between a physics engine and X3DOM. For the
coupling with X3DOM a suitable physics engine is required.
It has to meet the following criteria:

• based on JavaScript
• 3D Physics Engine
• Open Source

For this purpose, a number of physics engines are avail-
able. [Pra12] provides a comparison of the 3D physics en-
gines Ammo.js, Cannon.js and JigLibJS and the 2D physics
engine box2dweb. Based on his findings, the test environ-
ment (see section 3.3) of [Pra12] was adopted and the 3D
engine Three.js was replaced by X3DOM to visualize the
scene. While [Pra12] provides a general overview, this com-
parison exclusively focuses on the coupling with X3DOM.
For the comparison, the following criteria are considered:

• features
• integration capability
• performance

In addition to the 3D physics engines comparison of
[Pra12], a fourth engine Bullet.js was selected. While
Ammo.js is based on the C++ library of Bullet, Bullet.js is
based on the Java library of Bullet. In conclusion, the follow-
ing libraries have been considered and compared with each
other:

• Cannon.js (http://schteppe.github.io/cannon.
js/)

• Bullet.js (http://code.google.com/p/bulletjs/)
• JigLibJS (https://github.com/supereggbert/

JigLibJS)
• Ammo.js (https://github.com/kripken/ammo.js)

3.1. Features

Talking about features does not only address general func-
tions of each library as in the case of [Pra12]. It has to be

c© The Eurographics Association 2013.

83

http://schteppe.github.io/cannon.js/
http://schteppe.github.io/cannon.js/
http://code.google.com/p/bulletjs/
https://github.com/supereggbert/JigLibJS
https://github.com/supereggbert/JigLibJS
https://github.com/kripken/ammo.js


L. Huber / Initial Steps for the Coupling of JavaScript Physics Engines with X3DOM

particularly evaluated, if necessary features for the coupling
with X3DOM are available. The main focus is on types of
shapes and constraints that are supported by each physics
engine.

In X3DOM there are built-in shapes (e.g. boxes,
spheres, cylinders) as well as user-defined shapes (e.g.
IndexedFaceSet). Especially the IndexedFaceSet node plays
a significant role in the generation of user-defined 3D ob-
jects in X3DOM. It consists of a set of points, faces which
are generated from the points and normals. The individual
physics engine has to provide appropriate shape types to
derive an equivalent physical object based on the data of a
3D object in X3DOM. Beyond that, appropriate constraints
must be available to connect several objects to a multi-body
system as well.

Cannon.js has a limited range of shape types. These in-
clude geometric primitives (boxes, planes, spheres), com-
posite shapes (compounds), particles and the user-defined
shape Polyhedron. The constraints include Contact, Dis-
tance, Point2Point and Hinge. In comparison to the other
physics engines, Cannon.js does not have as many features
but important shape types and constraints which are neces-
sary for the coupling with X3DOM.

Bullet.js partly features the extensive functionality of the
Java library JBullet. While numerous built-in and user-
defined shape types are available, the amount of constraints
is rather small but important constraints such as Hinge and
Generic6Dof are supported. However, the application of the
constraints and the meaning of the function parameters and
their settings are difficult to understand.

JigLibJS has a limited set of shape types for basic geo-
metric primitives. Shapes for generating user-defined 3D ob-
jects are missing. Similar to Cannon.js it also provides con-
straints such as MaxDistance, Point, PointWorld and Hinge,
whereby the hinge constraint does not seem to run stable or
at least faulty. JigLibJS has a wider range of features com-
pared to Cannon.js but lacks essential features for the cou-
pling with X3DOM.

Ammo.js has the most extensive library compared to the
other physics engines. Since the C++ source code of Bullet
has been automatically translated into JavaScript, Ammo.js
should have the same functionalities as the original physics
engine. Accordingly, a number of built-in and user-defined
shape types and many constraints are supported which are
also necessary for the coupling with X3DOM.

3.2. Integration capability

Integration capability means to determine how high the ef-
fort is to develop an interface between a physics engine
and X3DOM. It is particularly important whether or not 3D
data can be used directly in X3DOM to generate an equiva-
lent physical object or if complex calculations are needed

for conversions in advance. It is also examined if the re-
quired position and rotation data which were calculated by
the physics engine can be extracted and transferred directly
to X3DOM or whether conversions are required, too.

Cannon.js: The derivation of a physical model based
on the 3D model can be easily applied not only on geo-
metric primitives but also on user-defined objects based
on an IndexedFaceSet in X3DOM. The user-defined shape
Polyhedron is made the same way as an IndexedFaceSet
and consists of points and associated normals and faces
which can be extracted directly from an IndexedFaceSet in
X3DOM. The necessary values for the position and rotation
of the objects in the 3D model may be extracted from the
physical model and transferred to the 3D scene without fur-
ther conversions.

Bullet.js: The necessary values for the position and rota-
tion of the objects in the 3D model may be extracted from the
physical model without further conversions and transferred
to the 3D scene. Since dealing with the constraints already
was inconclusive and led to unsatisfactory results, no time
has been invested to examine the feasibility of generating
user-defined shapes based on the data of an IndexedFaceSet
node.

JigLibJS: JigLibJS has fundamental differences in its ap-
plication compared to other physics engines that need to be
figured out. The specification of the dimension is not always
in the typical xyz but xzy order. The derivation of a physical
model based on a 3D model in X3DOM can be implemented
easily for geometric primitives. Corresponding user-defined
shapes are missing. While the position of the objects can be
directly extracted and transferred to the 3D scene, the rota-
tion data are available in a 4x4 matrix and have to be con-
verted to the quaternion format.

Ammo.js: The derivation of a physical model can be easi-
ly implemented for geometric primitives. Since many user-
defined shape types are available, it is initially quite cum-
bersome to prove which shape is the best in order to cre-
ate an equivalent object in the physics engine based on an
IndexedFaceSet in X3DOM. However, it cannot be denied
that user-defined shapes that are used to derive a physical ob-
ject based on the data of an IndexedFaceSet are available. In
Ammo.js, the necessary values for the position and rotation
of the objects in the 3D model may also be extracted from
the physical model and transferred to the 3D scene without
any further conversions.

3.3. Performance

The physics engines are JavaScript libraries which can be
included as an external file in the HTML page with the
3D model. An additional script must be developed that pro-
vides an interface between the 3D model in X3DOM and
the JavaScript library of the physics engine by deriving a
suitable physical model based on the 3D model in X3DOM

c© The Eurographics Association 2013.

84



L. Huber / Initial Steps for the Coupling of JavaScript Physics Engines with X3DOM

and facilitating a permanent synchronization between the
physics engine and X3DOM during the simulation. In this
way, the 3D model permanently receives the calculated mo-
tion data (position, rotation) of the individual objects.

According to the 3D scene from [Pra12], the test scene
for the performance test consists of a ground plane and two
ramps. Balls are generated in predefined time intervals. Run-
ning over the ramps, they drop to the bottom (Figure 3).

Figure 3: Virtual test scene.

The test was performed on a workstation with an
Intel R©CoreTMi7-3720QM CPU and an NVIDIA Quadro
K1000M, running Windows 7 Enterprise 64 Bit (Service
Pack 1). The web browser was Firefox 22.0.

In order to evaluate the performance, the runtimes of
1,000 simulation steps were measured and compared with
each other. Additionally, the frame rate was determined for
this period.

Table 1: Runtime over 1000 simulation steps.

Engine Runtime

Cannon.js 23.823 ms

Bullet.js 69.0171 ms1

JigLibJS 25.407 ms

Ammo.js 44.426 ms

Table 1 lists the values of each measured runtime for each
physics engine. Figure 4 shows the frame rates of the indi-
vidual physics engines over the period of 1,000 simulation
steps.

It must be considered that the performance is influenced
by routines for measuring the time and the frame rate. At
the beginning of the simulation the start time is measured
and after 1,000 simulation steps the end time is taken. De-
termining the total running time is done by computing the
difference between end and start time. An additional exter-
nal script is included which measures the frame rate and is
called for each simulation step to determine the frame rate

1 Run time for only 800 simulation steps due to browser crash and
performance issues.

over the entire term. Furthermore, it needs to be stated that
the measured values for the duration and frame rate are only
snapshots, which may slightly vary with any repeated tests.
They, however, indicate a clear trend that can be used to as-
sess the performance.

Figure 4: Frame rate over a period of 1,000 simulation
steps.

Cannon.js is a lightweight engine which has been newly
introduced and is still under development. It does not feature
any port of an existing physics engine but has been writ-
ten from scratch in JavaScript and developed appropriately
optimized for the web. In comparison to the other physics
engines, Cannon.js delivers the best performance with the
shortest runtime and a frame rate which remains relatively
constant with only minor fluctuations over the entire runtime
of the simulation. The frame rate only drops slightly at the
end of the term.

Bullet.js is a port of parts of the physics engine JBullet
written in Java. It does not constitute an automatically gen-
erated port and, in comparison to the other physics engines,
has the worst performance with the longest runtime. The
frame rate also falls significantly. Both duration and frame
rate could only be determined for 800 simulation runs due to
its fairly poor performance. After that, the browser crashed
and could not run the script anymore.

JigLibJS is a port of the physics engine JigLib written in
C++. JigLibJS is not an automatically generated port but has
been developed in JavaScript and is optimized for the web
just like Cannon.js. Generally, the whole library will be inte-
grated as a complete script in the website. In JigLibJS, each
class of the library must be included separately in the web-
site. This improves performance since only the necessary
classes have to be included and loaded. Therefore, JigLibJS
has a similarly good performance as Cannon.js regarding the
duration with a relatively constant frame rate. Anyway, at
the end of the term the frame rate decreases more than with
Cannon.js.

Ammo.js is a port of the existing physics engine Bullet
and is also written in C++. In this case it is an automatically
generated Emscripten port. Basically, the JavaScript code of
automatically generated ports is not optimized for the web.
The run time is longer compared to Cannon.js and JigLibJS
but nevertheless, Ammo.js provides a good runtime result
compared to Bullet.js. The frame rate is slightly worse com-
pared to Cannon.js and JigLibJS. It falls between 50 and 100

c© The Eurographics Association 2013.

85



L. Huber / Initial Steps for the Coupling of JavaScript Physics Engines with X3DOM

simulation steps the first time and then between 350 and 400
simulation steps the second time. Otherwise, the frame rate
shows only minor fluctuations.

It is remarkable that at the end of the term the frame rate
is systematically reduced. The reason for this is the increas-
ing number of 3D objects because new balls are generated
in predefined time intervals. For each 3D object a collision
detection needs to be performed. This requires high comput-
ing power. That means an increasing number of 3D objects
continues to be spawned at the price of lower performance.

3.4. Summary

Before a conclusion is presented, the following table is
meant to provide an overview of pros and cons for all four
engines in the first place.

Table 2: Pros and cons of each physics engine.

Criteria Cannon.js Bullet.js JigLibJS Ammo.js

Performance very good poor very good good

Amount of
shape types

small numerous more than
Cannon.js

numerous

Important built-
in shape types

yes yes yes yes

Important user-
defined shape
types

yes no
statement
possible

no yes

Amount of
constraints

small small small numerous

Important
constraints

yes yes no yes

Functionality of
constraints

feasible inconclusive inconclusive feasible

Data exchange no
conversions
required

no
conversions
required

conversions
required

no
conversions
required

Developing
activities

yes inactive
for
more than
two years

inactive
for
more than
two years

yes

It can be concluded that the application of the constraints
basically was consuming in all four physics engines. It al-
ways required a little effort before the optimal settings could
be figured out. The best credits were given to Cannon.js and
Ammo.js. Compared to Ammo.js, Cannon.js is more com-
pact, more comprehensible, more powerful with regard to
its performance and also easier to understand. It is surely
preferred over Ammo.js. However, depending on the use, it
must be taken into account whether the available features are
already sufficient. For the prototypical development of an in-
terface for the coupling with X3DOM which is presented in
the following chapter the Ammo.js physics engines was cho-
sen.

4. Interface between X3DOM and a physics engine

This chapter presents a guideline for developing an interface
between the physics engine Ammo.js and X3DOM.

The 3D model used is based on a davit system courtesy of
Davit International GmbH. It is written in X3D. A davit sys-
tem is a life-saving system for life or rescue boats which are
installed on larger vessels like cruise liners etc. The model
represents one of the cranes which are used to lift lifeboats
over a ship’s side.

The system consists of two fixed components - the base
and the fixation which are stationary. The other components
- main arm, small arm, outer push cylinder and inner push
cylinder - are moveable parts. All components have to be
connected by constraints. The connection points are circled
in red (hinge constraint) and orange (slider constraint) (Fig-
ure 5).

Figure 5: 3D model of a davit system.

An XHTML file holds the X3D model within the HTML
DOM tree and includes the library for the physics engine
Ammo.js and the JavaScript interface.

The coupling process is divided into three phases which
are described in detail in the following chapters:

• pre-processing of the 3D model
• derivation of the physical model
• simulation

4.1. Pre-processing of the 3D model

Depending on the complexity of the model, a reduction of
the geometry might be required. Complex models in X3D
consisting of a large number of IndexedFaceSets can be very
performance-hungry for the physics engine, because each
IndexedFaceSet represents a single rigid body in the physics
engine. In a car model for instance, every single minor com-
ponent such as bolts, door handle and hubcaps, is described
by an IndexedFaceSet. However, for the physics engine it
is quite sufficient if several objects such as tires, hubcaps,

c© The Eurographics Association 2013.

86



L. Huber / Initial Steps for the Coupling of JavaScript Physics Engines with X3DOM

rims, bolts, etc. are summarized as a single object wheel. In
the field of virtual product development, so-called Digital-
Mock-Ups (DMU) are developed for the verification in the
design phase, such as the simulation of geometrical prob-
lem definitions during the reassembly of the components of
a product. Instead of the geometry of a product being gener-
ated in a CAD system, a DMU only contains the enveloping
geometry of the components of a product thus reducing the
amount of data. [BNM13]

Different tools are available in order to reduce the geom-
etry of 3D models. In the presented application, the com-
mand line tool aopt and the graphics manipulation tool Right
Hemisphere were used. Aopt is part of the mixed reality sys-
tem Instant Reality.

Removing non-visible and non-relevant objects

To optimize the model in a first step, all non-visible and
non-relevant parts not necessary for the physical simulation
of a 3D object are removed (e.g. bolts). The tool Right Hemi-
sphere allows to manually remove non-relevant and non-
visible objects from the scene tree where all the objects of
a scene are hierarchically structured.

Merging of several IndexedFaceSets

Afterwards, several IndexedFaceSets of an object are
merged into a useful single IndexedFaceSet with the help of
the command line tool aopt by using the following command
line:
-i [input.x3d] -F Scene:"maxtris(4000000)" -x [output].x3d

Reducing the geometry

Depending on the requirements, the remaining Indexed-
FaceSets can be compressed again by reducing the number
of triangles. As a result, a more abstract 3D object can be
generated. The difference between reduced and non-reduced
geometry is illustrated in Figure 6. In the case of the 3D
object with reduced geometry, non-visible and non-relevant
objects were removed and the number of triangles was re-
duced by 90%.

Figure 6: 3D object without and with reduced geometry.

Table 3 shows the potential of compression by illustrat-
ing the differences between the original object and the com-
pressed 3D object based on the criteria number of objects,
points and triangles.

Table 3: Comparison of original and compressed 3D object.

level 02 level 13 level 24

objects 16 16 6

points 3300 340 66

triangles 6596 660 120

Reducing the geometry improves the performance, espe-
cially for very complex 3D models. However, for the qual-
ity of the simulation two criteria have to be taken into ac-
count - performance und accuracy. Accuracy mainly con-
cerns the coupling of individual rigid bodies by constraints,
which significantly affects the movement of rigid bodies to
one another and the quality of the simulation results regard-
ing physically correct behavior. It can be stated that the re-
duction of geometry is limited because an increased reduc-
tion will affect the quality of the simulation. There is a con-
flict between performance and accuracy needs since good
performance often comes at the expense of accuracy. The
challenge is to achieve a good balance between these two
requirements.

Converting the X3D model into a X3DOM model

After having reduced the geometry, the given X3D model
can be converted into a X3DOM model by using the com-
mand line tool aopt while typing the following command
line:
-i [input.x3d] -M [output].xhtml

Adding metadata and required X3D nodes to the 3D
model

Another precondition for the derivation of the physical
model is the compliance with relevant modeling conventions
in X3DOM. It must be ensured that each object in X3DOM
is included by a transform node. Transform nodes hold in-
formation on translation and rotation in order to correspond-
ingly move and rotate the object in all three dimensions. The
two attributes are addressed during the simulation in a way
that they permanently receive the current position and rota-
tion data from the physical model. Therefore, missing trans-
form nodes in the 3D model must be generated automati-
cally. A script parses the whole X3D tree and checks if every
shape node has a transform node as a parent node. Other-
wise, the missing transform node will be generated. Addi-
tionally, each object in the 3D model must be provided with
an Id that is defined in the accompanying transform node. In
the derivation of the physical model, the equivalent physi-
cal object receives the same Id as the 3D object in X3DOM.

2 No compression.
3 Compression of the geometry by 90%.
4 Removing non-visible and non-relevant objects, followed by a
compression of the geometry by 90%.

c© The Eurographics Association 2013.

87



L. Huber / Initial Steps for the Coupling of JavaScript Physics Engines with X3DOM

That way, a distinct mapping is guaranteed for the physical
and the 3D object, so that the calculated position and rota-
tion data of the physical simulation can be transferred to the
associated 3D object in X3DOM. While parsing the whole
X3D tree in order to generate missing transform nodes, an
additional attribute Id will be added to each transform node
with an associated value.

Each generation of a physical model requires the specifi-
cation of a mass which also affects the movement of objects.
Based on the 3D model, no information of the mass of the
individual objects can be derived. Depending on the applica-
tion, realistic data are required to simulate a realistic expres-
sive behavior. If the necessary data are available, they can
be added to the individual 3D objects in X3DOM as meta-
data. These metadata can then be extracted automatically in
the derivation of the physical model. This paper, however,
merely examines the functionality and feasibility of such an
application, so that only assumptions on the mass of objects
were made.

In this phase, only the last step can be automated and rep-
resents the first function of the interface between X3DOM
and the physics engine. The previous steps manipulate the
3D model with the use of different tools. The whole work-
flow is illustrated in Figure 7.

Figure 7: Pre-processing of the 3D model.

4.2. Derivation of the physical model

In the derivation of the physical model based on the 3D
model a distinction is made between the generation of rigid
bodies and the definition of constraints for connecting rigid
bodies to a complex multi-body system.

4.2.1. Rigid Bodies

As a first step, the derivation of the physical model requires
the identification of all the geometric objects in the X3DOM
model. For this purpose, the whole scene within the X3D
node has to be parsed in order to find all transform nodes. At
first, the transform node holds the value of the associated Id
of the object which has to be extracted and assigned to the
physical model in order to match physical und 3D objects
during the simulation. In the next step, the transform node in-
cludes a shape node that consists of a geometry node, which
indicates the type of the shape, and an appearance node. For
every geometry node, the required geometric data have to be
extracted. Depending on the shape type, the library of the

physics engine offers different functions for different shape
types. In order to match a shape type with the appropriate
function, it is necessary to predetermine what kind of shape
type calls which function. These functions indicate which
geometric data are needed and how they are processed in or-
der to generate an equivalent physical object.

The derivation of physical objects for built-in shapes such
as geometric primitives is very simple, because geometric
primitives are defined by using fixed principles. While a box
is defined by the edge lengths of width, depth and height in
computer graphics, a ball is basically defined by its radius.

For user-defined shape types the creation process is much
more complicated because there are different types of mod-
eling depending on the physics engine.

In X3DOM user-defined 3D objects are usually defined as
an IndexedFaceSet (illustrated in Listing 1), which consists
of points, normals and faces.

<Transform Id=’IFS01’ translation=’0 0 0’ rotation=’0 0 1 0’>
<Shape>

<Appearance></Appearance>
<IndexedFaceSet coordIndex=’ ’/>

<Coordinate point=’ ’/>
<Normal vector=’ ’/>

</IndexedFaceSet>
</Shape>

</Transform>

Listing 1: Definition of a user-defined 3D object as
IndexedFaceSet in X3DOM

Extensive libraries as offered in Ammo.js mean different
types of user-defined shape types that must first be tested for
their suitability.

In early implementations the following shapes have been
found potentially suitable convex shape types in Ammo.js
which can approximate the geometry of a 3D object for the
physical model:

• btConvexHullShape: implements an implicit convex hull
of an array of points [Cou12], the points of the
IndexedFaceSet nodes can be extracted in X3DOM

• btConvexTriangleMeshShape: implements a convex hull
of a btTriangleMesh, that defines a mesh of an array of
triangles (each consisting of three points) [Cou12], the
triangles can be derived from the points and faces of the
IndexedFaceSet nodes in X3DOM

For performance reasons it is recommended to use
btConvexHullShape for user-defined 3D objects [Cou12].

The whole workflow can be automated and represents a
further function of the interface between X3DOM and the
physics engine.

4.2.2. Constraints

So far, there is no mechanism to automatically derive con-
straints based on a 3D model in X3DOM. The 3D model
lacks required data that indicate which objects have to be

c© The Eurographics Association 2013.

88



L. Huber / Initial Steps for the Coupling of JavaScript Physics Engines with X3DOM

connected by a constraint. This requires the semantic en-
richment of the 3D model while the parameter settings for
each constraint are usually very individual. Due to the com-
plex dependencies when using constraints, it is normally re-
quired to test the settings of constraints in the finished simu-
lation model in order to get their optimal setting. Thus, it is
not possible to define the optimal settings and add them as
metadata to the 3D model in advance.

So far, each constraint has to be defined individually.
First and according to the application it must be selected
between different types of constraints (e.g. PointToPoint,
Hinge, Slider). Depending on the type of the constraint vari-
ous parameters and functions are available. Each type of
constraint has its own settings in order to manipulate the be-
havior of objects.

In the following, parameters and feature settings of the
hinge constraint shall be presented which were increasingly
used in the prototypical implementation. First, two bodies
that are meant to be connected by a constraint must be speci-
fied. Then, a pivot point has to be determined for each body.
By default this is the center of each body with the local co-
ordinate (0, 0, 0) (Figure 8). If two boxes, for example, are
supposed to be connected to each other on their edges along
the z-axis, the pivot points of both bodies must be shifted
right or left along the x-axis (see Figure 8), so that both pivot
points are between the boxes. The hinge constraint limits the
bodies in two degrees of freedom so they can only rotate
around one axis. This axis is called the hinge axis, and must
also be specified for each of the two bodies when defining
a constraint. Furthermore, optional maximum and minimum
limits can be set to limit the angle of body rotation around
the hinge axis. With the help of motors, the movement of
the bodies can be controlled. For this purpose, forces and
pulses, the direction of the force and the speed can be set to
simulate the automatic opening and closing of a door for in-
stance. Listing 2 shows an example of a definition of a hinge
constraint.

Figure 8: Box without and with shifted pivot point.

var hingeConstraint = new Ammo.btHingeConstraint(
bodyA,\\bodyA
bodyA,\\bodyB
new Ammo.btVector3(0,0,0), \\pivot point of bodyA
new Ammo.btVector3(0,0,0), \\pivot point of bodyB
new Ammo.btVector3(0,0,1), \\hinge axis of bodyA
new Ammo.btVector3(0,0,1), \\hinge axis of bodyA
false); \\use reference frameA

var min = -Math.PI/2, max = Math.PI/2;
hingeConstraint.setLimit(min, max);

Listing 2: Definition of a hinge constraint

The above settings must be set individually for each de-
fined constraint even if it is the same kind of constraint. The

values of the parameters can vary depending on the desired
behavior. Currently, the process of constraint definition can-
not be automated and is very expensive.

4.3. Simulation

During each simulation step, the position and rotation data
are updated in the last phase of the simulation loop as de-
scribed in chapter 1. These data can be extracted for each
body and are transferred to the corresponding 3D object in
X3DOM. In Ammo.js no data conversion is required be-
fore transferring the data. Each physical object has an ID.
It is used to get access to the transform node in the X3D
tree with the same ID via JavaScript DOM by using the
getElementById command to update the corresponding at-
tributes of translation and rotation with the calculated po-
sition and rotation data (see Listing 3 and 4). In this way,
a permanent synchronization between the physical and 3D
model is possible.

<Transform Id=’IFS01’ translation=’0 0 0’ rotation=’0 0 1 0’>
<Shape>

<Appearance></Appearance>
<IndexedFaceSet coordIndex=’ ’/>

<Coordinate point=’ ’/>
<Normal vector=’ ’/>

</IndexedFaceSet>
</Shape>

</Transform>

Listing 3: X3DOM - transform node with enclosed
IndexedFaceSet node

for(var i=0; i<bodies.length; i++){
//Get position and rotation
bodies[i].getMotionState().getWorldTransform(transform);
var origin = transform.getOrigin();
var r = transform.getRotation();
quat.setValue(r.x(),r.y(),r.z(),r.w());
var a = quat.getAxis();

document.getElementById(’ ’).setAttribute(’translation’,
origin.x()+’’+origin.y()+’’+origin.z());

document.getElementById(’ ’).setAttribute(’rotation’,
a.x()+’’+a.y()+’’+a.z()+’’+quat.getAngle());

}

Listing 4: Ammo.js - access to the transform node via
JavaScript DOM

The update of the 3D model during the simulation repre-
sents the last function of the interface between X3DOM and
the physics engine.

Figure 9 illustrates the data exchange between the 3D
model and the physical model via the interface.

Presently, all functions can be automated except the
derivation of constraints. Besides, all steps that are respon-
sible for the reduction of the 3D model are not automated
and decoupled from the interface. They require the use of
external tools.

c© The Eurographics Association 2013.

89



L. Huber / Initial Steps for the Coupling of JavaScript Physics Engines with X3DOM

Figure 9: Data exchange between the 3D model and the
physical model via the interface.

5. Conclusion

The current progress of coupling X3DOM with JavaScript
physics engines shows the possibilities, potential and chal-
lenges of such an interface. Basically, a coupling of X3DOM
with physics engines is possible and offers great options of
extending the application field of web-based 3D models with
respect to physically realistic behavior. That is particularly in
terms of the interactive control of virtual products in a web
browser to verify their functionality while being in the de-
sign or testing phase.

There are, however, still some challenges to overcome.
This will be the subject of future work. Firstly, solutions for
the derivation of the physical model need to be optimized
in order to develop an appropriate method that meets the re-
quirements of both accuracy and performance. Secondly, the
issue of authoring should be in the focus of attention plus the
question on how to develop an interface between X3DOM
and physics engines as much generically as possible in order
to simplify the process of pre-processing the geometry of the
3D model and transferring the geometric data to the physical
model. In this context, [CP04] proposes a generic framework
which takes every step of the coupling process into account.
The generic formalism, a so called Physical Modeling Lan-
guage (PLM) based on XML, organizes the geometry rep-
resentation, the definition of the properties and the behavior
and the specification of the constraints and animation motors
in order to make the process of deriving a simulation model
much more comfortable. The approach was originally de-
veloped for continuous and discrete models in the field of
medicine but can be used for any type of approach.

References
[Alg13] ALGORYX: Multiphysics and 3d simulation, 2013. URL:
http://www.algoryx.se. 3

[BEJZ09] BEHR J., ESCHLER P., JUNG Y., ZÖLLNER M.:
X3dom - a dom-based html/ x3d integration model. In Web3D
2009, Darmstadt, Germany, June 16 - 17 (2009). 3

[BJK∗10] BEHR J., JUNG Y., KEIL J., DREVENSEK T., ZOELL-
NER M., ESCHLER P., FELLNER D.: A scalable architecture for

the html5/ x3d integration model x3dom. In Web3D 2010, Los
Angeles, California, June 24 - 25 (2010). 3

[BKJC12] BENDER J., KENNY E., JEFF T., COUMANS E.: Inter-
active simulation of rigid body dynamics in computer graphics.
In EUROGRAPHICS 2012, the 33rd Annual Conference of the
European Association for Computer Graphics (2012). 1, 2, 3

[BNM13] BEUTNER E., NEUKIRCHNER H., MAAS G.: Virtuelle
Produktentwicklung. Wuerzburg: Vogel Buchverlag, 2013. 7

[Box13] BOX2D: A 2d physics engine for games, 2013. URL:
http://box2d.org/. 2

[CML13] CMLABS: Vortex by cmlabs - behaviour in motion,
June 2013. URL: http://www.vxsim.com. 3

[Cou12] COUMANS E.: The bullet physics library, 2012. URL:
http://bulletphysics.org. 2, 8

[Cou13] COUMANS E.: Gpu rigid body simulation. In Game
Developer Conference 2013 (2013). 2

[CP04] CHABANAS M., PROMAYON E.: Physical model lan-
guage: Towards a unified representation for continuous and dis-
crete models. Springer-Verlag Berlin, Heidelberg (2004). 10

[CYB13] CYBERBOTICS: Webots 6, 2013. URL: http://
www.cyberbotics.com/products/webots. 2

[Diz12] DIZIOL R.: Simulation inkompressibler deformierbarer
Körper. PhD thesis, Karlsruhe Institute of Technology (KIT),
Department of Informatics, 2012. 1

[Gar13] GARIN F.: Digital mock-up management inside the web
browser using standard html. In Web3D 2013, San Sebastian,
Spain, June 20 - 22 (2013). 3

[JLS∗13] JUNG Y., LIMPER M., STEIN C., WAGNER S., STORK
A.: Fast delivery of 3d web content: A case study. In Web3D
2013, San Sebastian, Spain, June 20 - 22 (2013). 3

[Jon11] JONES M. T.: Open source physics engines. develop-
erWorks (2011). URL: http://public.dhe.ibm.com/
software/dw/opensource/os-physicsengines/
os-physicsengines-pdf.pdf. 1

[Jun11] JUNG T. J.: Methoden der Mehrkörpersimulation als
Grundlagen realitätsnaher virtueller Welten. PhD thesis, RWTH
Aachen University, 2011. 2

[KJ11] KAPELLOS K., JOUDRIER L.: Planetary exploration
missions simulation using 3dro. In Euromech colloquium on
"Nonsmooth contactand impact laws in mechanics", Grenoble,
France, July 6th-8th 2011 (2011). 2

[Koe13] KOENIG N.: Gazebo, 3d multiple robot simulator with
dynamics, 2013. URL: http://gazebosim.org/. 3

[mac13] MACHINEERING: Simulaton - automation, 2013.
URL: http://www.machineering.de/simulation.
html. 1, 2

[MIC13] MICROSOFT: Microsoft robotics, 2013. URL:
http://www.microsoft.com/robotics. 2

[NAD10] NADS: National advanced driving simulator, 2010.
URL: http://www.nads-sc.uiowa.edu/. 3

[Pla12] PLAKU E.: Motion planning with discrete abstractions
and physics-based game engines. Springer-Verlag, Berlin Hei-
delberg, 2012 7660 (2012), 290–301. 2

[Pra12] PRALL C.: Javascript physics engines comparison,
August 2012. URL: http://buildnewgames.com/
physics-engines-comparison/. 3, 5

c© The Eurographics Association 2013.

90

http://www.algoryx.se
http://box2d.org/
http://www.vxsim.com
http://bulletphysics.org
http://www.cyberbotics.com/products/webots
http://www.cyberbotics.com/products/webots
http://public.dhe.ibm.com/software/dw/opensource/os-physicsengines/os-physicsengines-pdf.pdf
http://public.dhe.ibm.com/software/dw/opensource/os-physicsengines/os-physicsengines-pdf.pdf
http://public.dhe.ibm.com/software/dw/opensource/os-physicsengines/os-physicsengines-pdf.pdf
http://gazebosim.org/
http://www.machineering.de/simulation.html
http://www.machineering.de/simulation.html
http://www.microsoft.com/robotics
http://www.nads-sc.uiowa.edu/
http://buildnewgames.com/physics-engines-comparison/
http://buildnewgames.com/physics-engines-comparison/

