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Figure 1: Bowling game using XML3D Physics. From left to right: Firefox 5 & WebGL, modified Chromium & OpenGL,
modified Firefox & RTFact ray tracer. Invisible geometry objects along the track generate events on collision with the ball, used
to control the camera position.

Abstract
As interactive 3D graphics has become an integral part of modern Web browsers via the low-level WebGL
API [Khr11], it now becomes apparent that higher-level declarative approaches integrated with HTML5 are
needed in order to make 3D graphics broadly and easily accessible to Web developers. A key component of in-
teractive 3D scenes are physics simulations. However, specifying the physics properties required major changes
to the scene graph in the past. In this paper, we present a declarative and orthogonal physics annotation frame-
work that nicely separates the generic 3D scene description from its physics properties. The approach is based on
the declarative XML3D format as an extension to HTML5, has been implemented as a plug-in that runs in three
browsers that support XML3D and is demonstrated with a number of examples and performance evaluations.

Categories and Subject Descriptors (according to ACM CCS): I.3.6 [Computer Graphics]: Methodology and
Techniques—Standards

1. Introduction

Interactive 3D graphics is becoming a commodity: Graphics
hardware support has now been integrated onto all new desk-
top CPUs and even most mobile devices, most new TV-sets
are expected to be 3D-stereo capable, and even mobile In-
ternet speeds support larger 3D scenes and realtime remote
interaction.

Still, 3D graphics remains a broadcast medium where the
content is produced by only a few specialized companies
(mostly for games). This is in stark contrast to the rest of

the Internet, where user generated content (web sites, blogs,
twitter, etc.) now plays a major role. One reason for that is
the high complexity of authoring interactive 3D scenes. An-
other one is that there has been no widely accepted format
for the distribution of high-fidelity interactive 3D content on
the Web that tightly integrates with HTML. We are still miss-
ing the ability of users to create, share, and experience 3D
content in the same way as the use of video exploded due to
its integration into the Web by YouTube in 2005.

XML3D [SKR∗10] has been proposed as such a format.
It is a minimal and declarative 3D extension to HTML5
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that provides new tags for describing geometry, shaders,
lights, and other 3D scene objects based on a generic,
extensible, and orthogonal framework. Wherever possible
XML3D re-uses existing Web technology (DOM, CSS,
Events, JavaScript, etc.) thus making it simple for Web de-
velopers to start using interactive 3D graphics fully inte-
grated in their Web projects.

Physics simulations greatly improve the realism of and
intuitive interaction with the scene and its use can simplify
their design, e.g. of animations. However, in the past declar-
ative physics specifications have been very invasive to the
design of the 3D scene graph requiring the addition of many
new nodes distributed across the entire scene graph. This
would have been in clear conflict with the design goals of
XML3D and would not scale to the addition of other simu-
lations such as acoustics, haptics and others.

In this paper we propose XML3D Physics, a novel way
to provide physics properties to existing scenes descriptions
via orthogonal and optional physics annotations. These an-
notations are ignored by the visual rendering and are instead
operated on by a separate physics engine that communi-
cates with the rendering part through modifications of the
scene graph (e.g. motion of objects, etc.). Through events,
callbacks, and an additional API object, physically anno-
tated objects can be directly manipulated and interacted with
through JavaScript.

We aim to put Web developers to a position they are ca-
pable to use physics simulations without the need to cope
with a physics engine API and its internals. Thus XML3D
Physics was also designed with respect to this user group.

2. Related work

There are few portable 3D graphics formats that also contain
physics information. The most widely-known is the open
interchange format COLLADA [Khr08] from the Khronos
Group. As of Version 1.4, physics support was added to
the COLLADA standard. The COLLADA physics compo-
nent includes the description of physical material and ob-
ject parameters, proxy geometry for collision detection, con-
straints, and force fields. This functionality set was derived
from the functionality of popular rigid body dynamics en-
gines [CV07] and builds also the basis for the functionality
of XML3D Physics.

As a main difference, in COLLADA the physics infor-
mations are kept inside a physics scene separate from the
visual scene. The physics scene consists of rigid body in-
stances. These reference to a rigid body object configura-
tion, a physics material, and to the object that represents the
rigid body in the visual scene. Connecting physical object
parameters, material parameters, and a visual representation
in a separate context makes sense for an interchange format
where the main intention is to preserve as much information
as possible.

For a web delivery format such as XML3D, this concept
is way too complex and not intuitive. It would require the
user to update all the references in the physics scene every
time there is a structural change in the visual scene. Also,
the inclusion of physics into COLLADA lead to a significant
extension of the COLLADA format, something we wanted
to prevent for XML3D.

X3D is an ISO standard XML-based file format for rep-
resenting 3D computer graphics. In X3D, there is a Rigid
Body Physics component [Web08] since Version 3.2. The
feature set is similar to that of COLLADA. Like in COL-
LADA, physics parameters and objects are defined using a
dedicated set of X3D nodes. Basis is the newly introduced
non-hierarchical RigidBodyCollection. RigidBody nodes in
this collection define the physics objects parameters. In con-
trast to COLLADA, the RigidBody objects do not reference
their visual representation directly, but an CollidableShape
node that wraps a single Shape node in the scene graph. This
invasive design causes, that X3D Browser without support
for the Rigid Body Physics component are not even able to
display the visual part of the physics-enabled X3D scene.

To detect collisions, the author has to group objects of
interest (again the CollidableShapes) into a CollisionCollec-
tion. Placing a CollisionSensor in the scene graph that ref-
erences the CollisionCollection, allows listening to events
generated when those objects collide. This design requires
a whole range of new nodes, two collections alongside the
actual scene graph, references between these collections and
a special arrangement of the nodes in the scene.

Although it allows a granular configuration on object
participation in collision detection and rigid body simula-
tion, the complexity is unreasonably high and prevents non-
experts from using it. This might be a reason why few X3D
scenes using this component can be found on the web and
none of the three major X3D browsers (BS Contact [Bit11],
instantreality [Fra11] and Xj3D [Web11b]) are able to han-
dle the basic example files [Web11a] provided by the Web3D
Consortium. Instead, some vendors offer proprietary physics
extensions [Bit08].

Alongside XML3D there is a second approach for declar-
ative 3D within the DOM: X3DOM [BEJZ09] allows to in-
tegrate X3D nodes and concepts into HTML5. The function-
ality of X3DOM is restricted to the proposed HTML-Profile,
which does not include the Rigid Body Physics component
of X3D.

Few recent games can manage without physics simulated
by some means or another. There are a number of com-
mercial and non-commercial physics engines available: Ha-
vok Physics [Hav11], PhysX [NVI11], Bullet [C∗11], and
ODE [S∗11], just to name a few. Additionally there are
frameworks available, that abstract away implementation de-
tails of the various physics engines, provide a uniform API,
and make implementations comparable [BB07]. Although
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these API solutions are not directly related to our declara-
tive approach, they give a good overview on the common
functionality and parameter sets of recent physics engines.

Also most DCC tools offer functionality to rig graphical
objects with physics parameters and run a physics simula-
tion during rendering. Again, this demonstrates how helpful
even simple rigid body physics and collision detection can
be to allow authors the creation of realistic appearing virtual
environments.

Extending a format by annotation is a common ap-
proach in the XML/XHTML world. One example is the
annotation of semantic information to e.g. HTML5 using
RDF [W3C04]. Consequently, RDF can also be applied to
XML3D (as a HTML5 extension), as done in [KLN∗10],
where an AI engine is identifying semantic entities in the
scene graph from the semantic annotation and applies an
agent simulation on the XML3D world.

3. Design of XML3D Physics

The following sections explain the requirements for the
XML3D Physics extension, give an overview of the syntax
of the physics annotations, and show possibilities to interact
with the physics objects.

3.1. Requirements

The design of the physics integration into XML3D was de-
rived from following requirements:

• Usability. The usage of the physics component should be
as simple and intuitive as possible to also enable Web
developers and other non-graphics experts to use it in a
HTML5/Web context.

• Functionality. We wanted to achieve functionality com-
parable to the physics components of COLLADA and
X3D. This includes rigid body physics, constraints, and
collision detection.

• Orthogonality & Robustness. The base XML3D spec-
ification should not be changed because of the physics
extension. Also, the interpretation of physics related in-
formation should be independent from other simulations
such as visual rendering. Adding physics information
should not break rendering or other components in case
the available runtime environment cannot deal with the
physics information.

To fulfill the required functionality we had to provide a
way to define physics object parameters (e.g. mass), physi-
cal material parameters (e.g. friction and restitution), intra-
object constraints (e.g. hinge), global and local forces, and
proxy geometry for collision detection. Additionally we
wanted to provide a way to detect collisions between objects
using DOM Events [W3C00]. It should also be possible for
the user to easily detect collision with invisible objects. This
functionality enables authors to detect if for instance an ob-
ject penetrates a certain space in the scene.

3.2. Mark-up

The key design decision for XML3D Physics was to use
annotations to enhance the scene with physics information.
Firstly, this enables us to keep XML3D as lean as it is. There
was no need to introduce a whole collection of new nodes,
elements, and attributes in the base specification. Secondly it
enables us to design XML3D Physics in an orthogonal way,
keeping the physics simulation independent from other com-
ponents such as the visual rendering and other simulations.
The XHTML encoding of XML3D allowes us to use the
XML namespace concept for these annotations. Thus they
are not in the scope of the visual rendering, which just ig-
nores the additional information.

A second major decision was to annotate the information
in place where possible. We decided against having a second
parallel graph (as in COLLADA) or collection (X3D). Also
the references point in the opposite direction: Where refer-
ences are needed e.g. for the reuse of physical materials, we
reference the physics parameters from the object in the scene
graph using CSS for instance. In contrast, COLLADA and
X3D reference the visual representation from the physics
scene. Our approach makes it much easier and more intu-
itive for the user to augment the 3D scene with application-
relevant physics parameters and keeps the 3D scene as the
main reference model tying together visual and other simu-
lations.

The following section describes a selection of parameters
and how they are connected to corresponding XML3D el-
ements [SKR∗10]. All line references refer to Listing 3.2.
The physics parameters need to be defined in a dedicated
namespace, identified with a specific URL identifier (Line
3). Typically the namespace is bound to a prefix. This prefix
indicates the namespace for an element and all its children,
and attributes.

An XML3D scene within the website is enclosed within
an <xml3d> element. With respect to physics, it also starts a
self-contained physics world. Here we can also define global
physics parameters, for instance gravity (Line 4). It describes
a global force that applies to all dynamic physics objects in
the scene; a vector defines the magnitude and direction of
this force.

In XML3D, visual surface parameters are described
within a shader element. Shader are defined typically in the
<defs> section of the XML3D scene, a concept borrowed
from SVG [W3C09b], defining all reusable resources of a
scene. In computer graphics, the description of surfaces has
moved from a fixed to a programmable approach, where the
surface appearance is computed in a short program code
(the shader). This code can have nearly arbitrary parame-
ters. XML3D has a generic parameter model for shaders as
well as for meshes and light shaders. This parameter model
allows to append a child node to the shader element for each
parameter. The element type of the child node specifies the
type of the parameter, the name attribute defines its name
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and the text content specifies the value. Line 12 shows the
definition of a float-triple with the name diffuseColor.

Material parameters for a physics simulation correspond
very much to visual surface parameters for rendering. Thus
we decided to use the same mark-up and introduced a <ma-
terial> element for XML3D Physics. Lines 36-40 show the
definition of a physics material and its parameter set. Addi-
tionally, the material defines the role of the object within the
physics world. There are three kind of physical objects in the
scene. Objects marked as static contribute as collision ob-
jects but are neither moved nor any force is applied on these
objects. Kinematic objects are like static objects but can be
moved within the physics world. Forces are applied to all ob-
jects that are marked as dynamic. Objects that do not have a
physics material associated, are not taken into account by the
physics simulation. Currently supported material parameters
are friction, restitution, linear and angular damping.

The assignment of visual surface descriptions (shaders) to
a group of meshes is done via CSS [W3C09a]. This concept
has many advantages: CSS has a powerful selection mech-
anism and the rendering parameters are kept separate from
the 3D structure. It’s even possible to use different material
descriptions depending on the target device using CSS me-
dia queries [W3C10]. XML3D also provides the possibility
to assign surface description via attribute as fallback.

Again, we use the same mechanism for the assignment
of physics materials. A physics material gets assigned to a
group (see Line 48). The physics interpreter uses the refer-
enced material for all children of the group as long as it’s not
overwritten by another assignment.

The generic parameter model can also be used to describe
physics object parameters. If the user adds the mass param-
eter to a <mesh> element directly as shown in Line 24, it
is not passed to the surface shader because it is defined in
the physics namespace. The user can skip the prefix for the
<float> element, if he wants to use the parameter in the sur-
face shader. Another optional object parameter is the cen-
terOfMass parameter. If not given, it is calculated from the
geometry.

The definition of proxy geometries requires structured
data, thus we introduced a <shape> element for XML3D
Physics (see Line 25). Again, the generic parameter model
is used to define the parameters of the proxy geometry.
This way it is much easier to extend the number of sup-
ported proxy geometries. If no proxy geometry is given or
is the given proxy type is not supported by the physics inter-
preter, the geometry as specified in the base XML3D struc-
ture should be used. If the physics interpreter detects more
than one proxy geometry it uses the union of these geome-
tries.

A somehow little more complex task is to describe con-
straints between objects. While the annotation of parame-
ters and assignment of physics materials was straightfor-

1 <xml3d style="width: 300px; height: 200px;"
2 xmlns="http://www.xml3d.org/2009/xml3d"
3 xmlns:physics="http://www.xml3d.org/2010/physics"
4 physics:gravity="0 -9.81 0">
5 <defs>
6 <transform id="boxTransform1"
7 translation="0.1 7 5"
8 rotation="0.5 0.9076 0.7066 0.9" />
9

10 <shader id="crateMat"
11 script="urn:xml3d:shader:phong">
12 <float3 name="diffuseColor">1.0 0.9 0.8</float3>
13 <float name="ambientIntensity">0.4</float>
14 <texture name="diffuseTexture" ...>
15 <img src="textures/crate.png" />
16 </texture>
17 </shader>
18 ...
19 <data id="box">
20 <int name="index">0 1 2 2 ...</int>
21 <float3 name="position">-1.0 1.0 1.0 ...</float3>
22 <float3 name="normal">0.0 0.0 -1.0 ...</float3>
23 <float2 name="texcoord">1.0 0.0 1.0 ...</float2>
24 <physics:float name="mass">10.0</physics:float>
25 <physics:shape>
26 <string name="type">box</string>
27 <float3 name="extends">2 2 2</float3>
28 </physics:shape>
29 </data>
30 <data id="ground">
31 <int name="index">0 1 2 2 3 0</int>
32 <float3 name="position">-50.0 -4.0 ...</float3>
33 <float3 name="normal">0.0 1.0 0.0 ...</float3>
34 <float2 name="texcoord">1.0 0.0 ...</float2>
35 </data>
36 <physics:material id="phCubemat">
37 <string name="type">dynamic</string>
38 <float name="friction">0.5</float>
39 <float name="restitution">0.2</float>
40 </physics:material>
41 <physics:material id="phGroundmat">
42 <string name="type">static</string>
43 <float name="friction">1.0</float>
44 <float name="restitution">1.0</float>
45 </physics:material>
46 </defs>
47 <group transform="#boxTransform1" shader="#crateMat"
48 physics:material="#phCubemat">
49 <mesh type="triangles" src="#box" />
50 </group>
51 <group shader="#groundMat"
52 physics:material="#phGroundmat"
53 physics:oncollision="alert(’Object dropped on the floor’)">
54 <mesh type="triangles" src="#ground" />
55 </group>
56 </xml3d>

Figure 2: An XML3D scene containing physics annotations.

ward, a constraint defines a relationships between objects
that (in most cases) differs from the parent-child relation-
ship within the DOM. If one considers for instance a hinge
constraint, the author might not want to structure the scene
so that the two parts of the hinge are children of the con-
straint but rather wants to follow some other application-
specific logic. As a result, it is necessary to define the ob-
jects of a constraint using second-class references, refer-
ences that are only known by the application logic and not
by the DOM. If such a reference cannot be resolved or points
to a unsupported element type, the reference is dangling
and the constraint is not taken into account by the physics
simulation. As common for XML3D, we use the URI syn-
tax to describe references to other objects. Listing 3 shows
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...
<physics:constraint objects="#box1 #box2">

<string name="type">slider</string>
<float2 name="linearXMinMax">4.0 8.0</float2>
<float2 name="angularXMinMax">-0.1 1.5</float2>

</physics:constraint>
...

Figure 3: Definition of a "‘slider"’ constraint between two
objects in the scene.

the definition of a constraint and the references to the in-
volved objects. XML3D Physics currently supports follow-
ing constraint types: point2point, hinge, slider, conetwist,
generic6dof, and generic6dofspring [C∗10].

3.3. Interaction

Figure 4: Scene demonstrating the interaction capabilities
of XML3D Physics. It includes pushing of objects (imple-
mented as shown in Listing 5), several proxy geometries, and
dynamic addition of new objects by clicking on a HTML but-
ton.

There are two ways to interact with the physics scene:
Events and JavaScript calls. Events can be thrown, when two
physics objects collide. It is necessary to register a listener to
the object of interest to receive those events. This is done ex-
actly the same way as for other DOM events. We introduce a
new event type with the string identifier collision. Then the
user can either use the event attribute oncollision as shown
in Line 53, or use the element’s addEventListener method
to register a JavaScript callback function. The received col-
lision event contains information about the involved objects.
XML3D geometry objects that have the visibility flag set to
false are not considered during rendering, but they can still
be used to detect collision events as explained above. This is
very useful to detect when objects enter a certain area in a
scene.

A second way to interact with the physics world is via
JavaScript calls. Each object that is marked as dynamic im-
plicitly has an additional property called physics. This prop-
erty contains a PhysicsObject with an interface that allows

to apply a force or an impulse to the center of the object or
to a specific position. This makes it very simple for the user
to interact with the physics engine. Listing 5 shows the few
lines of code needed to push an object with a mouse click.
Figure 4 shows a scene demonstrating the interaction capa-
bilities of XML3D Physics.

<script type="text/javascript">
function pushObject(event) {
var po = event.target.physics;
if (po) {
po.applyImpulse(event.normal.scale(-20),

event.position);
}
}
</script>
...
<mesh src="#box" onclick="pushObject(evt);"/>

Figure 5: Applying an impulse to an object using the
physics interface. The impulse goes along the negative nor-
mal at the position where the object was clicked.

4. Implementation

There are three implementations of XML3D. First there
are the ones natively implemented in C++: We have
added XML3D to two of the major browsers, Firefox and
Chromium, both supporting all XML3D features. Inter-
nally we use a separate data structure for the 3D scene
graph [RGSS09] that uses typed data structures and wrap-
pers to implement the DOM interfaces. The rendering of
the XML3D scene happens asynchronously on this data
structure and the result is embedded into the browser’s
compositing engine. Several renderers can be attached to
the internal scene graph. There are currently two renderers
available: a CPU ray-tracer and a hardware renderer based
on OpenGL. A third portable implementation is done in
JavaScript and uses WebGL for rendering. This version runs
only on browsers supporting WebGL. All implementations
are available on http://www.xml3d.org.

For prototyping we implemented the physics interpreter
for XML3D as a plug-in. This decision was mainly based on
the fact, that this way we forced ourselves to keep renderer
and physics engine separate. The communication is only
possible through the DOM and DOM-API calls. As a re-
sult, this guaranteed us an orthogonal design. Of course, the
implementation could easily be integrated into the XML3D
core of the browsers. As the physics engine we chose Bul-
let [C∗11], because it was free, open-source, and known to
support all needed features robustly.

There are several ways of communication between the
DOM and the physics plug-in. In the initialization phase the
plug-in sets up the physics simulation and creates all physics
objects with references to their corresponding objects in the
DOM. It parses all the required information through the stan-
dard DOM API. This includes all the attributes and elements
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Scene 1 crate 10 crates 100 crates
Sim. time (ms) 474 521 1991
Pose updates (PU) 298 2523 80851
Bullet PU/s 63.1 484.3 4060.8
DOM v1 PU/s 63.0 482.6 630.6
DOM v2 PU/s 62.9 480.6 785.6
DOM v3 PU/s 62.9 480.2 1233.5
DOM v4 PU/s 62.9 481.5 2270.3

Table 1: XML3D Physics performance in comparison to the
raw physics simulation. The test scenes consist of 1, 10 and
100 falling boxes. The simulation steps, time and pose up-
dates are measured until no further updates appeared due to
convergence of the simulation.

from the physics namespace as well as necessary data from
the reference 3D scene, such as the structure of the tree,
transformations, and geometry where no proxy geometry is
given. The physics simulation can be explicitly started (and
stopped) calling a corresponding JavaScript method on the
<xml3d> element. As soon as the physics simulation has
started, the calculation for the objects in the physics world
are performed and changes were applied on the correspond-
ing objects in the DOM. This involves mainly changes on
the dynamic objects’ transformations and firing of collision
events. The plug-in monitors the scene in the DOM for:

• Parameter changes. These changes are then reflected in
the physics world

• Transformation changes on those objects marked as kine-
matic or dynamic. Events generated by the plug-in itself
are marked as such using a dynamic object property and
then filtered out. The remaining foreign transformation
events are either generated by user interaction or by other
components and are applied on the objects in the physics
world.

• Insertion or removal of DOM elements. It then adds or
removes the corresponding physics objects if necessary.

The plug-in also adds the physics property to the JavaScript
API of dynamic elements and thus allows to apply forces as
explained above.

4.1. Performance

The major concern in using the HTML DOM as a physics
scene graph together with the browser’s plug-in API
(NPAPI [Moz11]) was the overhead generated to update the
DOM. The DOM was originally intended for XML data pro-
cessing not as a base data structure for a runtime environ-
ment. The DOM is a very generic data structure, primary
designed for string operations. Browser vendors recently im-
proved the performance of DOM operations, but the basic
problem still remains.

Performing the physics simulation, there are three threads

involved: The physics simulation thread, the plug-in thread
and the browser’s main thread. The simulation thread runs
the bullet engine’s simulation loop in an arbitrary and con-
figurable update frequency. The plug-in thread interfaces be-
tween the simulation and the browser. In the plug-in thread,
the results of the simulation are collected, the inverse op-
eration of flattening the scene graph structure is performed,
and finally the DOM operations are called asynchronously.
These calls are executed in the browser’s main thread.

The NPAPI has a reflection model that allows to query
object pointers for methods and property using names. This
query in turn returns a pointer to the corresponding object.
Functions can then be called with a list of variant objects as
parameters. Ultimately, all calls need to be broken down to
primitive data types or strings. This overhead combined with
the overhead coming from the thread communication and
from the browser’s thread event queue is the overall over-
head we expected when we decided for a plug-in prototype.

We tested four variants of passing the information to the
DOM from simple pose updates. We measured the time
needed until the information is available in the DOM and
compared them to the raw output of the physics engine. For
the tests, we run the simulation at ∼60Hz, resulting in a
maximum of 60 pose updates per object per second. As it
can be seen in Table 1, the overhead for small and medium
scenes is negligible. As of more than 1000 updates per sec-
ond, the DOM updates start lagging behind. We were able
to improve this behavior comparing different kind of DOM
assignments:

1. V1: Two setAttribute calls, one for rotation, one for trans-
lation. This method is a generic string based DOM setter
method, thus the arguments need to be parsed after as-
signment.

2. V2: Gathering of all assignment calls in one large string
and execute those in JavaScript. Each assignment consists
of a getElementById call to get the targeted element in the
DOM and the two setAttribute calls as explained in V1.

3. V3: The XML3D specification defines rotation and trans-
lation properties of the <transform> element. These are
of type XML3DRotation and XML3DVec3, which exist as
native or JavaScript objects in the browser depending on
the XML3D implementation. It’s possible to create new
instances of these types from within the plug-in. Then one
DOM call is needed to assign those objects to the rotation
property and translation property respectively.

4. V4: We used a setPose(translation, rotation) call to as-
sign rotation and translation in a single step. As this
method is not defined in the XML3D specification we
simulated it in JavaScript. Just as in V3, we used native
or JavaScript objects as parameters for the function.

As it can be seen from Table 1, the performance varies
depending on the type of DOM assignment. It can be said,
that an asynchronous DOM call is expensive and should be
avoided. The JavaScript engine seems to have better access
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to the DOM: In V2 the instructions need to be parsed before
execution and three DOM-API calls are performed. Never-
theless, this solution is faster than calling just two methods
from within the plug-in. We propose the introduction of a
setPose method to the XML3D <transform> element, that
allows setting of translation and rotation using a vector and
a rotation object in one single step. Using this method we
reach up to 2300 DOM updates per second, which seems to
be the limit for the browser frameworks with DOM updates
running in a single thread. The simulation produces approx-
imately 4000 updates per second running at 60 simulation
steps per second with 100 objects and lots of intra-object
collisions. Figure 6 shows the rendering of a similar scene
as used for the performance tests, other scenes provide sim-
ilar results.

From our observations above, we did a comparison using
just the JavaScript engine for pose updates. Using the same
kind of assignment as in V2, we can perform 12500 pose up-
date per seconds. Using XML3DRotation and XML3DVec
objects for the assignment as done in V3, we can update the
pose even 54975 times per seconds. These results from these
tests show clearly, that the current bottleneck is the asyn-
chronous DOM update from within the plug-in. Avoiding the
NPAPI interface to access the DOM would gain a significant
performance improvement.

The performance we measured for the XML3D Physics
plug-in is much lower (∼56%) than the fully native imple-
mentation (e.g. on the GPU). Nevertheless, the implementa-
tion is fast enough for a first revision that has to deal with
the overhead coming from the plug-in API.

5. Conclusions and Future Work

In this paper we presented XML3D Physics, a novel ap-
proach for rigid body physics and collision detection support
within a declarative DOM-based interactive 3D graphics for-
mat on the Web. We added the physics informations using
annotations instead of adding extra nodes to the XML3D
specification. Thus we proposed a fully orthogonal design
based format, that for the first time allows to keep the vi-
sual rendering and physics simulation independent and ex-
changeable. We demonstrated the orthogonality of our ap-
proach with a physics simulation plug-in that works for all
XML3D implementations, the two native XML3D browsers
and the WebGL/JavaScript renderer.

The physics annotations can be easily added by hand or
– more convenient – through our XML3D Blender exporter
that we extended for that purpose. This way it is easy to con-
figure the geometry and appearance as well as the physical
parameters within Blender, export the result as XML3D em-
bedded in a web page, and then to view the result immedi-
ately in the browser. The physics simulation combined with
the JavaScript API and the collision events greatly simplifies
the creation of interactive 3D web applications. It enabled

bachelor students with basic XML3D knowledge to create
an interactive 3D bowling game within two days, including
modeling, game logic development, and design of the web-
page (s. Figure 1).

Figure 6: Performance test scene. 300 crates in a colliding
tower, rendered using real-time ray tracing.

Within the enlightenment project [Zak11], an extension
to the the compiler framework LLVM was developed, that
allows to compile from C to JavaScript. As an example,
the Bullet physics engine was compiled to JavaScript. We
would like to integrate this version of Bullet as it could
prove that also the physics simulation is exchangeable and
would allow performance comparison between the native
plug-in and JS interpreted version. Finally, a combination of
WebGL/XML3D and Bullet in JavaScript would allow the
worldwide exchange of 3D graphics with rigid body physics
simulation without the need of a specific program installed
other than a standard browser.

The approach we used for physics annotation is applica-
ble to a number of other simulation domains, such as sound
rendering and haptics by simply adding other annotations
to the scene description. Some of them might also simply
use generic semantic annotations via RDF for their purpose
(such as identifying cars in a scene). In general, XML3D
can be used as the central 3D model reference, while sim-
ulations monitor the scene and expose their results to the
scene. The generality of the DOM, the fast scripting engines
and the ubiquity of browsers (also on mobile devices) give
good reason to run such simulations in the browser context
for making them broadly available.

From our measurements we see, that the system is run-
ning reasonable fast for small and medium sized scenes. We
found that the communication between browser and plug-in
is not yet fast enough to fully reach the performance level
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of native physics engines. In this first revision we preferred
the guaranteed orthogonality over performance. But we in-
tend to integrate the physics component into the native im-
plementations with its optimized data structure. This will by-
pass the communication overhead and DOM issues and thus
will allow us to fully exploit the performance of the physics
engine.

However, as the Internet has moved to an area of user gen-
erated content, we have to expect arbitrary content, rather
than hand optimized scenes. Thus we want to investigate
more in the optimization of browser frameworks and their
underlying data structures and runtime models for 3D graph-
ics, simulations and other domains dealing with large data
sets, and high data transmission and update rates.

We would also like to integrate other aspect of physics
such as soft body physics and fluid dynamics. These aspects
require frequent and computationally expensive geometry
processing. In physics and game engine, these operations
are typically optimized for a multi- and many-core archi-
tectures on CPUs or GPUs. Thus a pure DOM-based solu-
tion is not applicable. But as dynamic meshes are required
in many applications, we developed XFlow as an extension
to XML3D. This system allows the declarative description
of a flow graph and a novel programming abstraction. It al-
lows scripting of flow graph node operations and compiles
optimized code for CPUs and GPUs. The publication of this
system is pending.

We started to standardize our XML3D ideas within a W3C
Community (formerly Incubator) Group. In this group we
set amongst others a focus on usability and content creation.
Physics could eventually become a part of these efforts.
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