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A B S T R A C T

In modern society, biometrics is gaining more and more importance,
driven by the increase in recognition performance of the systems. In
some areas, such as automatic border controls, there is no alternative
to the application of biometric systems.

Despite all the advantages of biometric systems, the vulnerability
of these still poses a problem. Facial recognition systems for example
offer various attack points, like faces printed on paper or silicone
masks. Besides the long known and well researched presentation
attacks there is also the danger of the so-called morphing attack.

The research field of morphing attacks is quite young, which is why
it has only been investigated to a limited extent so far. Publications
proposing algorithms for the detection of morphing attacks often lack
uniform databases and evaluation methods, which leads to a restricted
comparability of the previously published work. Thus, the focus of this
thesis is the comprehensive analysis of different features and classifiers
in their suitability as algorithms for the detection of morphing attacks.
In this context, evaluations are performed with uniform metrics on
a realistic morphing database, allowing the simulation of various
realistic scenarios.

If only the suspected morph is available, a HOG feature extraction
in combination with an SVM is able to detect morphs with a D-
EER ranging from 13.25% to 24.05%. If a trusted live capture image
is available in addition, for example from a border gate, the deep
ArcFace features in combination with an SVM can detect morphs with
a D-EER ranging from 2.71% to 7.17%.
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Z U S A M M E N FA S S U N G

In der modernen Gesellschaft gewinnt die Biometrie, insbesondere
durch die Steigerung der Erkennungsleistung der Systeme, zuneh-
mend an Bedeutung. In manchen Bereichen, zum Beispiel bei au-
tomatischen Grenzkontrollen, ist der Einsatz biometrischer Systeme
alternativlos.

Trotz aller Vorteile biometrischer Systeme stellt die Angreifbarkeit
dieser noch immer ein Problem dar. So bieten Gesichtserkennungs-
systeme verschiedene Angriffspunkte, zum Beispiel durch auf Papier
gedruckte Gesichter oder Gummimasken. Neben den länger bekann-
ten und gut erforschten Präsentationsangriffen besteht auch die Gefahr
des so genannten Morphingangriffs.

Das Forschungsfeld im Zusammenhang mit Morphingangriffen
ist noch jung, weshalb es bisher erst in einem überschaubaren Um-
fang bearbeitet wurde. Bei Publikationen, welche Algorithmen zur
Erkennung von Morphingangriffen vorschlagen, mangelt es häufig an
einheitlichen Datenbanken und Evaluationsmethoden, was zu einer
begrenzten Vergleichbarkeit der bisher publizierten Arbeiten führt.
Daher liegt der Fokus der vorliegenden Dissertation auf der umfas-
senden Analyse unterschiedlicher Merkmale und Klassifikatoren auf
ihre Eignung als Algorithmen zur Erkennung von Morphingangrif-
fen. Hierbei wird mit einheitlichen Metriken auf einer realistischen
Morphing Datenbank evaluiert, sodass verschiedene realitätsnahe Sze-
narien abgebildet werden können.

Steht nur der mutmaßliche Morph zur Verfügung, so kann HOG in
Kombination mit einer SVM Morphs mit einer D-EER zwischen 13.25%
und 24.05% detektieren. Steht zusätzlich eine vertrauenswürdige Auf-
nahme, zum Beispiel aus der Grenzkontrolle, zur Verfügung, so kann
eine Kombination aus den tiefen ArcFace Merkmalen in Kombination
mit einer SVM Morphs mit einer D-EER zwischen 2.71% uns 7.17%
detektieren.
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1
I N T R O D U C T I O N

Biometrics describes the automated recognition of individuals based
on their biological and behavioural characteristics [66].

The advantage of biometric systems over conventional authentica-
tion methods, such as password or token-based authentication is, that
it is impossible to lose, forget or share biometric characteristics [68].
However, this technology bears the disadvantage, that if someone
gains unauthorised possession of the Biometric Features of another
person, the corresponding characteristic (and thus the extractable
features) cannot be exchanged.

1.1 applications of biometric systems

Due to the advantages mentioned above, biometric systems are gaining
more and more popularity in a wide range of applications, so that
biometric systems generate a market value of 24.5 billion dollars to
day. Already 60% of all newly sold smartphones can be unlocked with
a biometric system and half of the companies worldwide are planning
to invest in biometric identity management systems [153].

In some applications, for example in smartphones or door locking
systems, the use of biometric systems mainly increases the conve-
nience of the identification process, in other applications there is no
alternative to the use of biometric systems. Particularly in scenarios
in which subjects itself are to be identified or verified independently
of further information such as tokens or passwords, for example in
the field of law enforcement and public security for the identification
of criminals or suspects or for the identification or verification of
civilians for example during elections, border controls or migration.
Especially at airports, border controls are to a large extent automated
by electronic border control systems (eGates). In 2018, more than 17
million border crossings were carried out at eGates in Germany alone;
at Germany’s airport with the highest throughput in Frankfurt, one
third of the border controls were carried out fully automated [15].

1.2 attacks on biometric systems

The increasing prevalence of biometric systems also increases interest
in circumventing or deceiving these systems through subversive use.
The different attack vectors during identification and verification are
defined as listed in International Organization for Standardization
(ISO)/International Electrotechnical Commission (IEC) 30107-1 [64]
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4 introduction

and illustrated in Figure 1.1. The most common attacks considered in
research are presentation attacks on the sensor (attack vector number
1 in Figure 1.1) [119]. These attacks can usually be performed without
knowledge of the nature of the biometric system, are easy to imple-
ment and universally applicable. If biometric systems are properly set
up and operated, the other attack vectors should not be accessible to
the user and are not further considered in ISO/IEC 30107-1.
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Figure 1.1: Attack points of biometric systems, inspired by [64]

Presentation attacks can be divided into two classes of subversive
use: biometric impostor (or impersonation attacks) and biometric
concealer (or obfuscation attacks) [64]. The objective of a biometric
concealer is to conceal its own biometric characteristics in a way that it
cannot be assigned to its biometric enrolment data record. This can be
achieved, for example, in FRSs by obscuring the face with wigs, hats,
beard, moustache, and sunglasses [84] or by changing the appearance
of the face by applying makeup [80]. The objective of a biometric
impostor, however, is to match to the reference of any or a specific
subject stored in the database. For this attack, artefacts reflecting the
biometric characteristics of the attacking subject can be presented to
the biometric system’s capture device. In FRSs, this can be done, for
example, by presenting a sheet of paper with the facial image printed
on it [3] or by wearing a silicone mask [31].

For biometric impersonator attacks, initially information about the
characteristics of the subject to be impersonated is required. In case
of face recognition a simple photo is usually sufficient, fingerprints
can be acquired from smooth surfaces [174]. Another possibility is
the theft of information stored in biometric databases, as, for example
in the case of the breach of the database of the security platform
Biostar 2 from the provider Suprema, in which over one million finger-
prints and face recognition information were stolen [157]. From the
obtained information so-called presentation attack instruments can be
constructed. For example silicone fingers to fool fingerprint readers or
latex masks to fool FRSs.
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In addition to the attack vectors illustrated in Figure 1.1, it is possible
to attack the biometric system during the enrolment of a subject. In
systems that allow the subject to hand over his or her own reference,
the reference may be distorted or, in particular in the case of FRSs,
manipulated by beautification [126]. If an attacker succeeds to submit
a manipulated sample to the system during enrolment, which, for
example, allows the verification of further subjects against the stored
reference, the unique link, essential for biometric systems, between
the subject and the reference is weakened. An attack based on this
scheme is the face morphing attack introduced in [39]. Face morphing
attacks and methods to detect those are investigated and described in
detail in this thesis.

1.3 thesis organization

In this section an overview of the content of the thesis is given. It is
divided into the following parts:

• Part I provides an overview of biometric systems, attacks on
biometric systems in general and in particular face morphing
attacks. Furthermore the structure of the thesis is described and
the scope of the thesis and research questions are defined.

• Part II provides the background information needed for the un-
derstanding of the thesis. In Chapter 5 the principles of machine
learning algorithms are described and in Chapter 6 different
image descriptors are introduced. Chapter 7 gives an overview
of the topology of biometric systems and their functioning, as
well as a more detailed introduction to FRSs. Chapter 8 describes
the concept of image morphing and its technical background.

• Part III describes the current techniques for the creation of mor-
phing attacks, as well as methods used to detect these attacks
and metrics to evaluate the detection performance of those. In
addition, a comprehensive overview of developed algorithms for
Morphing Attack Detection (MAD) is given.

• Part IV contains a description of the MAD pipeline implemented
for this thesis. Chapter 14 explains the chosen design of the
pipeline. The following chapters describe the preparation of the
data, feature extraction, feature preparation for the machine
learning algorithms and training of the machine learning algo-
rithms.

• Part V describes the creation of the morphing database used in
this thesis. The selection of the face databases used to create the
morphing database is explained in Chapter 20, the protocol for
creating the morphing database is described in Chapter 21.
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• Part VI contains the experimental evaluation of the database
created in Part V. First, in Chapter 23, the vulnerability of FRSs
to the created morphs is examined. In Chapter 24 the detection
performance of the MAD algorithms described in Part IV is
analysed.

• Part VII concludes the findings observed in Part VI, answers the
research questions defined in Part I and validates the observed
detection performances with independent benchmarks.



2
M O R P H I N G AT TA C K S

As mentioned in Section 1.2, biometric systems can be compromised
in their correct functioning during verification or identification by
injection of manipulated samples during the enrolment process. This
chapter first explains the underlying concept of attacks, followed by
a discussion of the impact of these attacks on real-world application
scenarios.

2.1 the underlying concept

The precondition for using morphing attacks is the possibility to ma-
nipulate the sample prior to enrolment. The basic concept of morphing
attacks is to combine the visual and biometric information of two or
more subjects in one sample in such a way that both subjects are
successfully verified against it. In this way, the otherwise unique link
between subject and sample is loosened. The morphing attack is easy
to implement for FRSs. Using known methods from the film industry,
two facial images can be merged into one, containing the character-
istics of both contributing subjects. Due to the fact that recording
conditions of facial images are usually unconstrained, FRSs tend to
offer a high robustness against changes in the image. As a consequence
they are particularly susceptible to morphing attacks.

2.2 passport application process

As, for a successful morphing attack, the sample used during enrol-
ment has to be manipulated, it cannot be performed on every FRS.
Systems in which the subject has access to the captured sample prior
to the enrolment process are Automated Border Control (ABC) sys-
tems, in which the passport application process corresponds to the
enrolment process.

The passport application process varies from country to country,
even within the EU these processes are not standardised. In Germany,
according to the passport regulations, a photograph has to be pre-
sented during the passport application process [14], the use of digital
photographs is not intended. Consequently, the passport holder is able
to manipulate the photograph used for enrolment, provided that it
passes the visual inspection during the passport application. If a mor-
phed passport photo is submitted and accepted, an authentic passport
would be created based on this manipulated photo, which can be used

7
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to enter over 170 countries without a visa application by both subjects
represented in the morph.

One possibility to overcome this weakness in the application process
would be the introduction of a live enrolment, in which the passport
photo would be captured directly at the application office. This would
prevent access to the recorded sample by the applicant, resulting in the
disabling of the attack vector necessary to launch a morphing attack. In
Germany, as a political reaction to the problem of morphed passport
photos, the discussion about the introduction of a live enrolment
was initiated [12]. However, due to concerns of the retail sector about
declining customer numbers of photographers, the creation of passport
photos by photo retailers has not yet been suspended so far [94], thus
the threat of attacks by morphed passport photos in German passports
remains.

2.3 threats against the operational systems

The threat of morphing attacks, in particular on border control sys-
tems, is not only an academic problem. The number of illegal border
crossings at the outer borders of the European Union is estimated
by the European Commission to be 150,000 in 2018 [34]. Due to the
lack of a system to record the real number of illegal border crossings,
the number can only be estimated. Nevertheless, the high estimates
indicate a great interest in illegal border crossings. Due to the easy
application and the high chance of success, morphing attacks are suit-
able to simplify them considerably. The feasibility of this attack was
demonstrated by the activist group Peng!, which in 2018 applied for a
passport with a morphed picture of one of the group members and
the former EU High Representative for Foreign Affairs and Security
Policy, Federica Mogherini [150].

To date, only few informations about detected cases of morphed
passports are available as they are not publicly announced by the
respective states. As no MAD methods have been installed so far,
the passport crossings with morphed passports have mostly been
discovered by chance. For example, an asylum seeker who wanted
to travel from Afghanistan via Belgium, Holland and Germany to
Canada with a morphed Dutch passport was stopped at the German
border on entry [79].

Apart from the illegal border crossing, the morphing attack can
also be extended to various other scenarios, such as gym membership
cards, driver licenses or insurance cards.



3
T H E S I S S C O P E

In this chapter the scope of the thesis is defined. First, the projects
related to the topic of the thesis are presented. Subsequently, research
questions are defined and research objectives are derived.

3.1 related projects

In the following the projects related to the topic of this thesis are
described.

3.1.1 SOTAMD

The objective of the State-Of-The-Art Morphing Detection (SOTAMD)
project is to identify the state-of-the-art of MAD mechanisms by
analysing its detection accuracy on a sequestered dataset. The partners
have jointly build up this dataset including morphed and bona fide
face images. This dataset serves as the basis for repeatable operational
testing of morphed face image detection mechanisms. This dataset was
collected in a distributed effort and subsequently a database of mor-
phed face images was constructed, for which image quality according
to International Civil Aviation Organization (ICAO) and European
Union (EU) Regulation 2252/2004 is ensured.

3.1.2 FACETRUST

In order to improve the security of facial biometric systems, the BSI has
launched the FACETRUST research project. The project FACETRUST
aims to investigate the attack vectors on facial biometric systems with
regard to their attack performance as well as suitable technical counter-
measures for the security of the EasyPASS-eGate technology. The focus
is on morphing attacks during the application and verification process,
as well as presentation attacks during the verification process.

3.1.3 NIST FRVT MORPH

The National Institute of Standards and Technology (NIST) Face Recog-
nition Vendor Test (FRVT) MORPH test provides ongoing independent
testing of prototype face morph detection technologies. The evalua-
tion is designed to obtain commonly measured assessment of morph
detection capability to inform developers and current and prospective
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end-users. FRVT MORPH is open for ongoing participation world-
wide, and NIST has since received multiple morph detection algorithm
submissions from different academic entities, e.g. Hochschule Darm-
stadt University of Applied Sciences, Norwegian University of Science
and Technology, and University of Bologna [103].

The test leverages a number of datasets created using different
morphing methods with goals to evaluate algorithm performance over
a large spectrum of morphing techniques. Testing was conducted using
a tiered approach, where algorithms were evaluated on low quality
morphs created with readily accessible tools available to non-experts,
morphs generated using automated morphing methods based on
academic research, and high quality morphs created using commercial-
grade tools.

3.2 research questions

In the context of the thesis, six research questions are defined:

rq1 : Which metrics are applicable to the evaluation of the vulnera-
bility of FRS and MAD algorithms?
In the research area of Morphing Attack (MA) and MAD, two types of
evaluations are required. The analysis of the vulnerability of the FRS
to the morphing attacks, and the evaluation of the detection perfor-
mance of the MAD algorithms. In order to be able to compare different
scenarios, unified metrics have to be defined. Two distinct research
objectives can be identified:

• Determination of metrics and methodologies for morph vulnera-
bility assessment.

• Determination of metrics and methodologies for morphing at-
tack detection performance assessment.

rq2 : Under which circumstances is a system vulnerable to morph-
ing attacks?
The general vulnerability of FRSs to morphing attacks has already
been shown in several publications, for example in [39]. However, a
deeper analysis of the impact of these attacks is missing. Subsequently,
various morphing attacks can be tested on different FRSs. Two distinct
research objectives can be identified:

• Analysis of the influence of different properties of face recogni-
tion algorithms, e.g. baseline performance, on the vulnerability
of the system.

• Analysis of the influence of different properties of various mor-
phing algorithms on the vulnerability of the system.
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rq3 : Does the consideration of images from unknown data sources
influence the evaluations results of MAD algorithms?
In the evaluation of machine learning algorithms it is common to
divide a database into disjoint training and test sets. Face databases
usually originate from a single camera, furthermore, in most publica-
tions on MAD, the morph samples in training and test sets are created
using a single morphing algorithm. In a realistic scenario, however,
the source of the images and the algorithm used for morphing are
not uniform and unknown. The influence of this variance is to be
investigated, leading to two distinct research objectives:

• Analysis of the influence of variations in the capture scenario
of the images (unknown capture device, different lightning con-
ditions, different distance to camera), which is simulated by
training and test on different face databases.

• Analysis of the influence of different morphing algorithms on
the evaluation performance of MAD algorithms.

rq4 : To what extent can morphed face images be reliable detected
by automated algorithms?
Depending on the given scenario, different architectures of MAD algo-
rithms are available. For each architecture a wide range of algorithms
is available for extracting descriptive features, which can subsequently
be used by different classifiers to detect morphing attacks. Depending
on the scenario, architecture, features, classifiers and their parameters,
different detection performances are achieved. It has to be investi-
gated which combination of architecture, features and classifiers is
best suited. Three distinct research objectives can be defined:

• Exploration of different MAD architectures.

• Theoretical consideration and practical investigation of which
feature extractors are suitable for the detection of morphed facial
images.

• Analysis of various classifiers for their suitability for the detec-
tion of morphed facial images.

rq5 : Which operational scenarios influence the detection of mor-
phed face images?
Considering a real application scenario for MAD of passport pho-
tographs, it has to be taken into account that passport photographs
may experience different processing steps prior to being stored in the
passport. It has to be determined which post-processings are to be
expected in passport photographs and their influence on the detection
performance of MAD algorithms. Two distinct research objectives can
be derived:
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• Define post-processing chains the passport images have under-
gone depending on specific MAD scenarios.

• Evaluate the influence of different post-processing chains (e.g.
resizing, print and scan, compression) to the evaluation results
of MAD algorithms.

rq6 : Can information fusion be used to improve the MAD perfor-
mance and robustness of the individual algorithms?
Score level fusion of different MAD algorithms may increase the per-
formance and robustness compared to the individual classifier [135].
It has to be examined whether the improvements are observable in
realistic scenarios as well. Two distinct research objectives can be
defined:

• Analysis of which algorithms are contributing to an improve-
ment of the resulting algorithm during fusion.

• Investigation whether the algorithms identified as suitable for
fusion are universally applicable or depend on the specific archi-
tecture.



4
S U M M A RY

Biometric systems are gaining more and more popularity as part of
identity management systems. This growing prevalence in turn leads
to an increased interest in attacks on these systems to deceive them
in such a manner that they assign a presented characteristic to a
false subject (biometric imposter or impersonation attacks) or fail to
assign a presented characteristic to the respective subject (biometric
concealer or obfuscation attack). The most common threat is the so-
called presentation attack where a copy of a characteristic is presented
to the sensor in order to deceive the system. This may be done by very
simple attacks, such as a face printed on a piece of paper, or by more
sophisticated attacks such as silicone masks.

A more recent and less researched attack are the so-called morphing
attacks, which are particularly applicable to FRSs. Morphing is the
combination of image and feature information of two subjects in one
sample. In this way, both contributing subjects’ samples are success-
fully matched with the manipulated sample. In case of an attack, this
manipulated sample is stored in the database of the biometric system
as a reference for one of the two subjects. Consequently, not only the
subject linked to the identity is accepted by the biometric system, but
also the other subject in the morph. This attack is particularly relevant
for FRSs in which the user provides the reference. The most widely
used systems in this context are automated border control systems,
as in many countries a printed passport photo is handed over on
passport application.
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5
M A C H I N E L E A R N I N G

Machine learning describes a sub-area of computational intelligence.
In simplified terms it includes all algorithms that learn from previous
observations and make decisions based on these observations [87].
Due to its universal applicability, machine learning has entered many
fields of application.

In many areas of signal processing (which also includes image
processing and thus, in the broadest sense, biometrics) machine learn-
ing based methods have become the standard approach for solving
problems.

Machine learning can be divided into two categories: predictive
and descriptive algorithms. Predictive algorithms, also referred to as
classifier, learn dependencies between populations in order to assign
new data points to a population based on this learned knowledge.
Descriptive algorithms aim to describe the population, e.g. in order
to cluster it. In biometrics predictive algorithms are mainly used, for
example to decide whether two samples originate from one subject or
from different ones. For the work presented in this dissertation only
predictive algorithms were used, which are presented in this chapter.

To visualize the methodology of the different classifiers, the three
two-dimensional data distributions shown in Figure 5.1 are employed.
The linear separable data in Figure 5.1a represents the simplest case for
classification. The examples in Figure 5.1b (circular) and Figure 5.1c
(moon-shaped) are more complex to classify. The distributions shown
are highly simplified. In real use cases, the data to be classified usually
have much higher dimensions. Also, the data is only rarely as clearly
separable as in the examples shown. Furthermore, the data could be
prepared for a simpler classification (for example, transforming the
circular distribution into a polar coordinate system). However, since
the strengths and weaknesses of different classifiers are to be shown,
this is deliberately omitted.

The classifiers described in this chapter are Support Vector Ma-
chine (SVM), Decision Tree, Random Forest, AdaBoost and Gradient
Boosting.

5.1 support vector machine

The SVM is the classifier most frequently used in biometrics. This is
largely due to the fact that the SVM has high generalisation capabilities
even with small amounts of data (if the hyperparameters are chosen
correctly), as often encountered in biometrics. Simplified, the SVM
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Figure 5.1: Exemplary two dimensional data distributions

separates space into two regions by the so-called hyperplane. The
hyperplane is positioned such, that the distance to the data points of
the different distributions (margin) is maximized and thus provides
the best generalization capacity to unseen data [87][p. 1505].

The concept of the hyperplane is depicted in Figure 5.2. The two
classes (red and blue) are to be separated by the SVM. For the posi-
tioning of the separating line, only the data points closest to the other
class are relevant, which are termed support vectors (black). This con- 1
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Figure 5.2: Example of the positioning of hyperplane and support-vectors of
a 2-D SVM

cept can be extended from two-dimensional space to any number of
dimensions. In the example shown, the separation can be represented
by a straight line, in three-dimensional space it would be a plane, in
even higher dimensions it is called a hyperplane.

Mathematically the hyperplane can be expressed as

w0 · x+ b0 = 0, (5.1)

whereas w0 is the normal-vector (weights), x the vector of training
data and b0 the offset (bias). For further information about the math-
ematical background of the hyperplane optimization the reader is
referred to [21]. The equation for the classification of new data points
is given as:

f(x) = w0 · x+ b0. (5.2)
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For a data point which lies on the hyperplane the equation is 0, if
the data point lies outside the plane, the equation takes a positive or
negative value depending on which side the data point lies on.

As shown in equation 5.1 and visualized in Figure 5.2, the hyper-
plane is given by a linear function. Therefore, the basic SVM can only
be used to separate linearly separable data. As shown in Figure 5.3,
only the data distribution in Figure 5.3a can be successfully separated.
The decision boundary is indicated by the black line. The darker the
colour in the hatched areas, the higher the certainty with which the
algorithm assigns a data point to the class with the respective colour.
In case of the moon-shape distribution (Figure 5.3c) a considerable
amount of data points are classified incorrectly as the hyperplane can
no longer be positioned in a way that both classes are completely
separated. In this case, the optimization tries to minimize the num-
ber of incorrectly classified data points. For the circular distribution
(Figure 5.3c) the hyperplane can no longer be placed in a sensible way.
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Figure 5.3: Classification examples of an SVM with linear kernel

To overcome this limitation of the SVM, it is possible to transform
the input vector into a higher dimensional space using a transforma-
tion function φ:

φ : <n → <N, (5.3)

whereas n is the dimension of the input vector and N the dimension
of the feature space. For the classification of new data x, they are first
transformed into the higher-dimensional, linearly separable space:

x 7→ φ(x). (5.4)

Thus, the classification function given in equation 5.2 changes to

f(x) = w0 ·φ(x) + b0. (5.5)

Furthermore, it can be shown that the normal vectorw0 can be written
as a linear combination of training samples [21]:

w0 =

l∑
i=1

yiα
0
ixi, (5.6)
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whereas l is the number of samples and α0i > 0 for support vectors.
Inserted in equation 5.2, this gives the following equation:

f(x) =

l∑
i=1

yiα
0
ixi · x+ b0, (5.7)

and for the transformed input data

f(x) =

l∑
i=1

yiα
0
iφ(xi) ·φ(x) + b0. (5.8)

If φ is a positive definite function, the scalar product φ(xi) ·φ(x) can
be computed directly by the kernel function K(xi, x) = 〈φ(xi),φ(x)〉,
which depends on the transformation function φ. The mathematical
proof can be found in [21]. The implicit calculation is much less com-
putationally demanding than a previous transformation of the input
data. More information about finding and creating kernel functions
can be found in [6] and [61]. In the following, the two most widely
known and frequently used kernel functions are introduced.

5.1.1 Polynomial Kernel

The polynomial kernel maps the dot product to a polynomial function
of arbitrary but fixed degree. The kernel function is given as:

K(xi, xj) = (axixj + b)
d, (5.9)

whereas d defines the degree of the polynomial function, a the co-
efficient and b is a free parameter [87][p. 1508]. The most important
parameter is the degree of the polynomial. If the degree is chosen too
low, the function may lack the necessary flexibility to classify the data
correctly. If a too high degree is chosen, the training of the classifier
becomes very complex and there is the risk of over-fitting.

Figure 5.4 shows an SVM with a polynomial kernel with d = 5,
a = 2 and b = 0 on the example data from Figure 5.1. The linear
data (Figure 5.4a) can be separated without false classifications. The
circular data (Figure 5.4b) can be classified to some extent correctly,
however a large percentage of the red class is falsely classified as
blue. Increasing the degree of the polynomial function may give better
results. The moon-shaped data (Figure 5.4c) are classified much more
successfully than by the linear SVM. However, a subset of the data
points (especially of the blue class) is classified incorrectly as well.

5.1.2 RBF Kernel

The Gaussian or Radial Basis Function (RBF) kernel implicitly maps
the data points into a space of infinite dimensions. Thus the RBF
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Figure 5.4: Classification examples of an SVM with polynomial kernel

kernel contains all possible functions, or can approximate them. The
kernel function is given as:

K(xi, xj) = e
−||xi−xj||

2

2σ2 , (5.10)

whereas σ is the scalar parameter of the RBF (or variance of the Gaus-
sian function) [16].

Intuitively described, the algorithm places a Gaussian function over
each data point, where Sigma determines the variance of the Gaussian
function. If σ is too large, the influence of the individual data points is
smoothed too much, making the SVM no longer adaptable enough to
model complex distributions. If the radius is too small, the SVM loses
the possibility to generalize (over-fitting).

The ability of the SVM with RBF kernel to model any data distri-
bution is shown in Figure 5.5. For the shown example, 1

2σ2
was set

to 2. All three distribution types can be successfully separated by
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Figure 5.5: Classification examples of an SVM with RBF kernel

selecting meaningful hyperparameters. Even the circularly separable
data in Figure 5.5b, which cannot be modelled by the two algorithms
presented above, are correctly classified by the SVM with RBF kernel.
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5.2 decision trees

Decision trees have been known since the early days of the research
on artificial intelligence. Decision trees can be used for example in
training of expert systems [117]. However, they are less suitable for the
application in this work, where classification problems usually have a
high dimension of real-valued data [78]. Nevertheless, the algorithm
is briefly described in this thesis, as it serves as a basis ensemble
classifiers (e.g. Random Forest), which is described below.

The concept of decision trees is so intuitive that the classifier can be
implemented by hand and without the need of training. A decision
tree consists of nodes and leaves. The classification process starts at
the root node. In each node, a decision for the further path in the tree
is made based on usually only one attribute from the feature vector.
From each node, at least two further nodes (or leaves) are accessible,
the next node is selected depending on the previous comparison.
Each path ends in a leaf, in which the result of the classification is
defined [130]. The complexity of a decision tree can be controlled by a
large number of parameters. These include the number of nodes, the
number of branches per node, and the number of attributes considered
per node.

The low-dimensional example data shown in Figure 5.1 can be
successfully modelled from a decision tree. Figure 5.6 visualizes the
decision of a decision tree without limitations for depth or number
of attributes per node. The linear data distribution (Figure 5.6a) can
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Figure 5.6: Classification examples of a Decision Tree

be separated without errors. Circular (Figure 5.6b) and moon-shaped
(Figure 5.6c) data distributions can also be separated, but training
artefacts occur and round shapes cannot be modelled adequately.

5.3 ensemble classifier

In [155], James Surowiecki states, that decisions based on the aggrega-
tion of information in groups often supersedes the decisions made by
a single member of the group. This insight is the fundamental motiva-
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tion for ensemble classifiers. Ensemble classifier is a collective term for
all classifiers that evaluate the results of several, separate classifiers
and derive a common result. At first glance, this method increases
the computational effort because several classifiers have to be trained.
But it is also capable of causing a significant reduction of complexity
for the individual classifier. An example of this are Decision Stumps,
which are explained in more detail in Section 5.3.2. Thus it is possible
to obtain a higher robustness of the overall classifier. Under certain
circumstances this enables solutions a single classifier might not be
capable of.

In this section three common ensemble classifiers are introduced,
namely Random Forest, AdaBoost and Gradient Boosting.

5.3.1 Random Forest

As the name indicates, this Ensemble Classifier is a collection of
several of the decision trees presented in Section 5.2. The concept was
described by Breimann in [13]. For the training of each individual
classifier, a random subset is selected from the training data. Thus,
each individual tree has different information available for training,
resulting in an individual tree. In [13] the decision is made by a
majority voting, which means that each individual classifier votes
for a single class and the class with the most votes is chosen by
the ensemble classifier as result. In state-of-the-art implementations1,
however, the probabilistic prediction of the individual classifiers is
usually averaged, as this considers the certainty of the individual
result.

Figure 5.7 shows the classification result of a random forest classifier
with 100 trees. The parameters of each tree are equal to those of the tree
visualized in Figure 5.6. For the linearly separable data (Figure 5.7a)
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Figure 5.7: Classification examples of a Random Forest Classifier

no significant difference can be seen. For the more complex cases

1 For example the implementation of scikit-learn used in this thesis:
https://scikit-learn.org/stable/modules/ensemble.html#random-forests

https://scikit-learn.org/stable/modules/ensemble.html#random-forests
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(Figure 5.7b and 5.7c), however, it can be observed that the shape of
the data distribution can be modeled better than with a single tree.
Even if the number of misclassifications does not differ significantly, it
can be concluded that the random forest has a higher generalization
power.

5.3.2 AdaBoost

The concept of AdaBoosting was proposed by Freund in [42]. It is not
a classifier, but a method to create a strong algorithm from several
so-called weak learners. The choice of the weak learner is not fixed.
The concept was already known before as Boosting, but AdaBoost
extends it. The basic idea is that in training each weak learner, the
errors of the previous weak learner are weighted higher. The process
of adaptive boosting gives AdaBoost its name.

The boosting process is executed iteratively. The number of iterations
depends on the number of weak learners to be trained. Initially, a
weight vector w1 is created:

w1i = D(i) for i = 1, . . . ,N, (5.11)

whereas D is the distribution and N the number of training data. The
following process is then carried out sequentially for all T weak learner,
the current iteration is given as t. First the weighted distribution pt is
calculated using the weight vector wt:

pt =
wt∑N
i=1w

t
i

. (5.12)

Subsequently the weighted distribution pt is evaluated by the weak
learner, leading to the hypothesis-vector ht. The resulting error εt is
determined by calculating the Sum of Absolute Differences between the
hypothesis ht and the ground truth of the data distribution c:

εt =

N∑
i=1

pti |ht(i) − c(i)|. (5.13)

In order to weight the individual weak learners within the ensemble
classifier according to their error, this error is stored in the vector β:

βt =
εt

1− εt
. (5.14)

The weight vector is then recalculated:

wt+1i = wtiβ
1−|ht(i)−c(i)|
t . (5.15)

The higher the previous error (|ht(i) − c(i)|) for a data point D(i), the
more its future weight wt+1i is increased.
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Once all weak learners have been iterated, the final ensemble clas-
sifier can be constructed. The classification of a data point D(i) is
calculated according to the following equation:

hf(i) =

1,
∑T
t=1(log

1
βt
ht(i)) > 1

2

∑T
t=1 log

1
βt

0, otherwise
(5.16)

The system evaluates whether the weighted sum of the response of
all weak learners is above the threshold value 1

2

∑T
t=1 log

1
βt

. The
derivation of the threshold formula can be found in [42].

As already mentioned, an arbitrary weak learner can be applied.
If a learner is chosen too complex, the boosting process becomes
very computationally intensive, since a new learner is trained in
each iteration. Furthermore this can lead to over-fitting. According
to [42] AdaBoost is able to convert "a weak Probably Approximately
Correct (PAC) learning algorithm that performs just slightly better
than random guessing into one with arbitrarily high accuracy." In state-
of-the-art implementations2, decision stumps are commonly used as
weak learners. A decision stump can be described as a binary decision
tree with a depth of one. Thus it is only able to binary separate the data
distribution in one dimension. But by combining several classifiers
of this type, it is eventually possible to solve problems of arbitrary
complexity.

The classification results for such an AdaBoost classifier consisting
of 100 decision stumps are shown in Figure 5.8. The linearly separa-
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Figure 5.8: Classification examples of AdaBoost

ble data (Figure 5.8a) can be easily classified (in this particular case
one decision stump would be sufficient). The circular separable data
(Figure 5.8b) can be separated to a large extent, but the algorithm is
struggling to model the circular shape of the data distribution. The
moon-shaped data distribution shown in Figure 5.8c is reproduced
quite accurately and missclassifications are quire rare.

2 For example the implementation of scikit-learn used in this thesis:
https://scikit-learn.org/stable/modules/ensemble.html#adaboost

https://scikit-learn.org/stable/modules/ensemble.html#adaboost
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5.3.3 Gradient Boosting

Gradient Boosting is a generalised adaptation of AdaBoost proposed
by Friedman in [43]. Like AdaBoost, Gradient Boosting is based on
training several weak learners to create a robust, more general classifier.
In contrast to AdaBoost, which aims to minimize the error given
in equation 5.13, Gradient Boosting can be used to minimize any
differentiable loss function L(y, F). Thus, Gradient Boosting can be
considered as a generalization of AdaBoost.

Gradient Boosting is optimized in an iterative process on the training
data (x,y) with N samples. To do this, the constant function F0 is
initialized first (for example as the mean value of the data points).
Then M iterations start, where m is the counter of the current iteration.
First, the loss function L(y, F(x)) is derived with respect to F, obtaining
the so-called pseudo-residuals ỹ:

ỹi = −

[
∂L(yi, F(xi))
∂F(xi)

]
F(x)=F(m−1(x))

, i = 1, . . . ,N. (5.17)

A weak learner hm(x) is trained on these pseudo-residuals. This step
can be interpreted as the approximation of the gradient of the steepest
ascend of the loss function. Next, the step size in the direction of the
previously calculated gradient is calculated by minimizing the sum
of the loss function L(yi, Fm−1(xi)) and the weighted weak learner
ρhm(xi):

ρm = arg min
ρ

n∑
i=1

L(yi, Fm−1(xi) + ρhm(xi)). (5.18)

In the last step the gradient boosting model is updated by adding the
weak learner weighted by ρm to the previous model:

Fm(x) = Fm−1(x) + ρmhm(x) (5.19)

Gradient Boosting is often used with decision trees as weak learners.
For this special case an adapted version of Gradient Boosting was
proposed in [44], referred to as Gradient Tree Boosting or Gradient
Boosted Decision Trees. The basic algorithm of gradient boosting is
maintained, but the training of the weak learner is changed. The
training data is divided into as many disjoint regions as there are
leaves in the decision tree to be trained. For each region, a constant
value is predicted by the decision tree. In addition, not one ρm per
weak learner, but a separate ρm per region is calculated.

Figure 5.9 visualizes the classification results of a gradient tree
boosting classifier with 100 decision trees of a maximum depth of
three. The linear separable data (Figure 5.9a) can be classified without
errors. The circularly arranged data in Figure 5.9b shows that the
classifier tries to reproduce the round shape. The moon-shaped data
(Figure 5.9c) can also be separated almost without error.
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Figure 5.9: Classification examples of Gradient Tree Boosting

5.4 neural networks

The inspiration for Neural Networks (NNs) as machine learning al-
gorithms is the structure of the mammal brain. The first steps in this
direction were already taken in the 1960s by Rosenblatt [128]. He
developed the Perceptron, which simulates the signal processing in a
neuron of the mammal brain in a highly simplified way. The structure
of a Perceptron is shown in Figure 5.10. On the left side, binary input

x1

x2

x3

w1

w2

w3

output

Figure 5.10: Schematic visualization of a Perceptron

data x is provided. Each input xi is weighted by the Perceptron with
weight wi. Subsequently, the weighted inputs are summed up. If the
sum exceeds the threshold value τ defined in the Perceptron the out-
put is activated (set to 1). The behaviour of the Perceptron, referred to
as activation function, can be formulated as follows [104]:

output =

0,
∑
jwjxj 6 τ

1,
∑
jwjxj > τ

(5.20)

The weighting and summation of the input values can be expressed
as a scalar product of the weight vector w and the input vector x.
Furthermore, the negative threshold value can be interpreted as a bias
(b = −τ), changing equation 5.20 to:

output =

0, w · x+ b 6 0

1, w · x+ b > 0
(5.21)
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Only the simplest linear correlations can be represented by the shown
model. In the human brain, about 85 billion neurons are linked to-
gether [7], which can not be modelled by current computers. However,
the concept can be transferred to the Perceptron. Figure 5.11 shows
a so-called Multi-Layer Perceptron (MLP). This consists of a layer of

output

Hidden Layers

x1

x2

x3

Input Layer

Figure 5.11: Schematic visualization of an MLP

input nodes, which has one node per feature of the input vector. The
next layers are the so-called hidden layers. These can contain almost
any number of nodes at any depth (multiple layers). At the end, the
networks has an output layer, containing as many nodes as the output
vector contains values. For example, if the NN is used for classification,
the network must have as many output nodes as classes available. If a
NN has at least 3 layers (input, hidden and output), it can model any
function [22].

In order to adapt a NN to a specific application, the weights of the
nodes are adjusted to minimize a previously determined error (the
loss function). Further information, in particular the mathematical
background for the training process of NNs can be found in [104].

The aforementioned concept introduces the basics of NNs. Even
though the concept is still valid today, many optimizations and adapta-
tions to specific use cases have been proposed over time. For example,
the activation functions of individual neurons have been revised. The
perceptron can only produce a binary output. Thus, a small change of
the input vector can produce a completely different result. To mitigate
this behavior it is possible to soften the threshold by using a sigmoid
function instead of the binary decision, which is defined as follows:

σ(z) =
1

1+ e−z
(5.22)
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Thus, the calculation of the output value given in equation 5.21 changes
to

σ(w · x+ b) = 1

1+ e−
∑
jwjxj−b

. (5.23)

This adaptation avoids an abrupt change of the output value from
0 to 1 (or vice versa) at the threshold value, but rather results in a
smooth transition from one value to another. However, the sigmoid
function also has disadvantages. The derivative is complicated and
the calculation is time consuming, in particular for NNs with multiple
layers and nodes. For these reasons, most current NNs use the Rectifier
suggested in [53] as activation function. A node with this activation
function is referred to as Rectified Linear Unit (ReLU). The Rectifier is
a highly simplified activation function, which is defined as

f(x) = max(0, x), (5.24)

modelling a ramp function starting at 0.
In this way, different types of neurons can be designed and also

combined with each other. An example are the so-called Convolu-
tional NNs (CNNs). These networks, which are frequently used in
image processing [85], are usually convoluting the input vector with
a matrix in the first layers of the network. Depending on the type of
matrix, different operations like smoothing or bandpass filters can be
performed.

In addition to changes to the activation function, new architectures
are regularly proposed for linking the neurons. Due to the increas-
ing performance of computers a trend has developed to design Deep
NNs (DNNs) (more hidden layers). These networks achieve unprece-
dented results in solving complex problems, e.g. speech-to-text con-
version [144], object detection [32], image super resolution [76] or face
recognition [164]. However, the necessity of this depth is controver-
sial [8]. The NNs used in this thesis are introduced in more detail in
the respective chapters.

Examples of the classification results of a MLP with 3 layers (1 hid-
den layer) are given in figure 5.12. The hidden layer consists of 100
neurons, the input layer consists of 2 neurons (x and y values of the
data points) and the output layer consists of 2 neurons, one per class.
The linearly separable data (Figure 5.12a) can be easily separated. For
the circulating separable data (Figure 5.12b) the data distribution is
modelled very precisely. For the data with moon shaped distribution
(Figure 5.12c), the data is correctly separated, but the shape of the
distribution is not modelled correctly.

In the example shown above, 400 weights already have to be found.
With increasing complexity of the network and increasing size of the
input vectors, the number of weights to be trained further increases.
In order to train these algorithms robustly, large amounts of training
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Figure 5.12: Classification examples of NNs

data are required, which are not available for the topic discussed in
this thesis, thus, no NNs are trained. However, pre-trained NNs are
used, e.g. to extract features from images. These are described in the
respective chapters.

5.5 machine learning related issues

Machine learning is an integral part of modern information processing
and thus also of biometrics. However, machine learning also has some
issues. The severest ones will be described in this chapter.

One problem is over- and underfitting of classifiers. In Figure 5.13,
the data distribution introduced in Figure 5.1c was made more difficult
to separate by pushing the distributions together. In the shown exam-
ple, an SVM with RBF kernel was applied. If a small hyperparameter
1
2σ2

is chosen, the flexibility of the SVM is not sufficient, as depicted in
Figure 5.13a. The SVM is no longer able to model the strong bending
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Figure 5.13: Examples of under- and overfitting SVMs

of the data distribution. This behaviour is called underfitting. If we
train with the parameters used in Subsection 5.1.2, the data can still
be separated except for one outlier, as shown in Figure 5.13b. If the
hyperparameter is further increased to correctly classify the last out-
liers of data points, this leads to the SVM visualized in Figure 5.13c.
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Here all data points are correctly classified, as the hyperplane exactly
models the contour of the blue distribution. However, it must be taken
into account that other data will contain a different variance. Thus,
new data is likely to be misclassified due to the lack of generalisation
capability of the model shown [55].

The appropriate hyperparameters differ depending on the training
data and the task at hand, which means that they have to be deter-
mined according to the application. This leads to another problem of
machine learning algorithms. For the example shown in Figure 5.1,
an appropriate hyperparameter can be found by visual inspection. In
real-world use cases, however, the training data is rarely two or three
dimensional but, as shown in the following chapter, usually feature
vectors with several 100 dimensions. In these cases, the trained algo-
rithms cannot be visualized anymore. To avoid undiscovered errors in
the algorithm, it is important to ensure that the data is well structured.

In general, machine learning algorithms are mainly dependent
on the training data. If the variance of the data to be classified is
missing in the training data, the distribution cannot be modelled
correctly. Furthermore an over-representation of one class can lead to
an unbalanced classifier [9]. In extreme scenarios, such as a massive
over-representation of class 1, a classifier could be trained to always
return class 1 as this results in the smallest error during training.

If training and evaluation are performed on the same data set,
unnaturally good classification results are obtained, due to the absence
of variance between training and test data. In a real scenario, however,
the data to be classified is unknown, meaning a natural variance has
to be expected. In order to simulate the condition of unknown data,
a strict separation of training and test data has to be established,
ensuring that the results of the evaluation are as close as possible to
the expected classification performance on realistic data.
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I M A G E D E S C R I P T O R S

The classifiers described in Chapter 5 are able to distinguish data on
the basis of feature vectors. Biometrics is based on the processing
of information from signals, which are usually present as images. In
order to process the information contained in the images by algorithms
(explicitly defined by an engineering approach or implicitly trained
by machine learning), they must first be extracted from the images.
Feature vectors extracted from images are collectively referred to as
Image Descriptors [50]. In this chapter different methods are presented,
which were used in this thesis to access different kinds of information
from the images, which can be categorised as follows:

• Texture Descriptors

• Gradient Based Descriptors

• Keypoint Descriptors

• Landmark Extractors

• Image Noise Pattern

• Deep Features

For each feature extractor a visualization of the extracted information
is shown. The two images shown in Figure 6.1 serve as a consistent
example. As this thesis focuses on the processing of facial images,

(a) Face Image (b) Non-Facial Image

Figure 6.1: Example images used to visualize image descriptors

Figure 6.1a depicts a female face. In order to avoid licensing issues, the
example image was generated by a Generative Adversarial Networks
(GAN) [72]. To show the applicability of the feature extractors to other
image contents, a natural image (macro shot of a hard disk read head,
Figure 6.1b) is used in addition.

33



34 image descriptors

In the following, an image is represented independently of the
previous image format as a three-dimensional matrix with the size:
(image height× image width× color channels). Since the presented
methods for feature extraction only work in the two-dimensional
space, the grey values of the images (as a two-diemensional matrix)
are used in the shown examples. However, by applying the feature
extractors separately on each colour channel, they can also be adapted
to colour images, increasing the length of the feature vector by factor
of the number of colour channels.

6.1 texture descriptors

Texture is one of the most important characteristics of images and
has been analysed since the early days of computer vision [89]. Many
fundamental tasks of image processing can be accomplished on the
basis of texture analysis, for example object recognition [70] or edge
detection [56]. A detailed overview of existing algorithms can be found
in [89].

In this section, the two most frequently used texture descriptors in
biometrics are described in detail, namely Local Binary Patterns (LBP)
and Binarised Statistical Image Features (BSIF).

6.1.1 Local Binary Patterns

LBP was first proposed by Ojala et. al in [106]. The concept of feature
extraction is illustrated in Figure 6.2.
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Figure 6.2: Schematic visualization of the process of LBP extraction
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For each pixel of the analysed image the difference to the neighbour-
ing pixels is calculated. The differences are then binarised, negative
values are mapped to 0, positive values to 1. The resulting sequence
of binary values is interpreted as a decimal value, ranging from 0 to
255 (28). This process is repeated for each pixel of the analysed image,
whereas for pixels located on the edge, it must be taken into account
that these do not have a neighboring pixel. In order to calculate an
LBP value for these pixels, the lowest row of the image could be used
as neighboring pixels. Examples of extracted LBP values are given in
Figure 6.3b and 6.3e. In the shown example it can be seen that similar

(a) Original (b) Default LBP (c) MB-LBP 9× 9

(d) Original (e) Default LBP (f) MB-LBP 9× 9

Figure 6.3: Example images of LBP

textures lead to similar LBP values and therefore similar grey values
in the example image.

The generated LBP image is equal to the size of the original im-
age. To compress the information into a compact feature vector, a
histogram with 255 bins of LBP values is created. The feature vector
thus represents the quantity of occurrences of a certain texture pattern
in an image.

A major advantage of LBP is the easy to use concept and the low
computational effort required to calculate the feature vector. However,
LBP is not robust against rotations (in a rotated image other LBP
patterns are detected) and scaling. A further disadvantage is the
fixation on neighboring pixels, which can be solved by using Multi-
Scale Block LBP (MB-LBP) [88].
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Figure 6.4: Example of a MB-LBP patch

For MB-LBP, the basic concept of Basic LBP is used. However, the
comparison operator for individual pixels of the 3× 3 neighborhood
is replaced by the comparison of averaged values of subregions. A
MB-LBP patch with subregions of 5× 5 pixels is shown in Figure 6.4.
If the average value was calculated for each subregion the subsequent
process is the same as for the base LBP. It is important to note that
the MB-LBP Patch needs a central pixel to position it on the image.
Thus, a subregion may only have an edge length of 2k+ 1. Examples
of result images of the MB-LBP with a patch size of 9× 9 pixels (i.e.
subregions of size 3× 3) are given in Figure 6.3c and 6.3f. It can be
observed that in comparison to the basic LBP in Figure 6.3b and 6.3e
the regions are much more homogeneous, due to the smoothing effect
of the larger MB-LBP patch. Thus, a larger patch size can lead to an
increased robustness of the feature extractor, but with the loss of high
frequency information.

6.1.2 Binarized Statistical Image Features

BSIF, proposed by Kannala et al. in [71] is based on the LBP described
in Section 6.1.1. The main differences are found in the calculation of
single patches. In contrast to LBP, where the calculation of the patch
was constructed heuristically, the BSIF patch (or filter) is based on
statistics of natural images.

As the BSIF filter is not divided into subregions of equal size like
the LBP patch, it can be created in arbitrary sizes with odd edge
length. In order to create new BSIF filters, Independent Component
Analysis (ICA) is used to find filters representing the differences in
given training images most accurately. A detailed description of the
creation of new filters is given in [71]. Training new filters using
images related to the problem (in this case facial images) can lead to
a loss of the generalisation ability of the filters. For this reason, the
pre-trained filters provided by [71] are used in this paper.

Figure 6.5 shows a set of 8 BSIF filters of 3× 3 pixels, directly com-
parable to the base LBP patch. An example of a set of larger filters
(9× 9 pixels) is given in Figure 6.6. For each pixel of the analysed
image, the response of each filter in the filter set is calculated by con-
volution. Thus, for the filter set shown in Figure 6.5, 8 filter responses
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(a) Filter 1 (b) Filter 2 (c) Filter 3 (d) Filter 4

(e) Filter 5 (f) Filter 6 (g) Filter 7 (h) Filter 8

Figure 6.5: BSIF filters for 3× 3, 8-bit

(a) Filter 1 (b) Filter 2 (c) Filter 3 (d) Filter 4

(e) Filter 5 (f) Filter 6 (g) Filter 7 (h) Filter 8

Figure 6.6: BSIF filters for 9× 9, 8-bit

are obtained per pixel of the analysed image. In the further process,
the filter responses are binarised and negative values are mapped to 0,
positive values to 1. The resulting sequence of binary values per pixel
is interpreted as a decimal value, in the case of the set of 8 filters it
is ranging from 0 to 255 (28). To create the feature vector, the decimal
values are transferred to a histogram with a length directly depending
on the number of filters present in the filter set, in this case 28 = 256.
The number of filters in the filter set can be arbitrarily selected during
training. As a general rule, the information represented in the feature
vector increases as the number of filters increases. However, this can
lead to unintentionally large feature vectors. The filter sets provided
by [71] contain 5 to 12 filters, whereas the 12 filters already result in
a feature vector of 212 = 4096 dimensions. Using a larger number of
filters might not be beneficial in most cases.
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(a) Original (b) BSIF 3× 3, 8-bit (c) BSIF 9× 9, 8-bit

(d) Original (e) BSIF 3× 3, 8-bit (f) BSIF 9× 9, 8-bit

Figure 6.7: Example images of BSIF

The BSIF images generated by the filter set shown in Figure 6.5,
depicted in Figure 6.7b and 6.7e, are directly comparable to the result
of the basic LBP in Figure 6.3b and 6.3e. As with LBP, areas with
similar texture produce similar grey values in the BSIF image. If a
filter set with larger filters is used (Figure 6.7c and 6.7f), a smoothing
effect is achieved. As the filters are trained to the appropriate size,
more detailed information can be extracted than with MB-LBP (see
Figure 6.3c and 6.3f).

6.2 gradient based descriptors

The methods presented so far analyse the textures of images. An-
other possibility to extract information from images is the analysis of
changes in the information (the frequency). This is done by calculat-
ing the gradients, the partial derivatives of the image. In this section,
first the calculation of the gradient is described and then the more
advanced Histogram of Oriented Gradients (HOG) feature extractor is
introduced.

6.2.1 Gradients

The calculation of gradients (calculation of partial derivatives) is a basic
mathematical operation. In signal processing the gradient represents
the changes of the signal at the given position. For the processing of
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multidimensional matrices the gradient defined for one-dimensional
signals must be adapted. In standard implementations1 the gradients
are calculated for each dimension of the analysed matrix. Thus, two
gradient images are generated per grey value image.

Examples of the resulting gradient images are given in Figure 6.8.
For a better representation, the values of the gradients were averaged
over both gradient value images (horizontal and vertical). Figure 6.8b
and 6.8e show the calculated gradients on the images in their original
size (1024× 1024 pixels and 626× 626 respectively). If the images to be
analysed are scaled to 160× 160 pixels prior to the gradient calculation
(the corresponding gradient images are shown in Figure 6.8c and 6.8f),
the resulting gradient image (which in turn only consists of 160x160
pixels) shows a significantly coarser structure and the differences
between areas with high and low differences are increased. Please
note that for the creation of the gradient images the gradient values
were stretched in order to obtain visible grey values. Thus, the grey
values of the gradient images produced on the original and scaled
images are not directly comparable as the stretching factors might
differ.

(a) Original (b) Gradients on 1024 ×
1024 pixels

(c) Gradients on 160× 160
pixels

(d) Original (e) Gradients on 626× 626
pixels

(f) Gradients on 160 × 160
pixels

Figure 6.8: Example images of Gradient

The gradient images shown provide a representation of the changes
in the image signal. Strong changes result in high values, weaker

1 for example the implementation for the gradient calculation used in this thesis:
https://docs.scipy.org/doc/numpy/reference/generated/numpy.gradient.html

https://docs.scipy.org/doc/numpy/reference/generated/numpy.gradient.html
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changes in lower values. Thus, in the more homogeneous image areas
(e.g. background), considerably darker gray values (lower gradient
values) can be seen in the gradient image. A smoothed image with
less high frequencies will thus result in lower gradients.

6.2.2 Histogram of Oriented Gradients

HOG is a significantly extended representation of the gradients of an
image. The method was first mentioned in 1982 in an US patent [101],
but the name HOG was introduced after the expiration of the patent
by Dalal in [23]. By now, there are many tasks in which HOG is suc-
cessfully applied, including human detection [23], object detection [99]
and face recognition [30].

In order to compute HOG, the gradients for row and column of the
analysed image are determined as described in Section 6.2.1. For each
pixel, the direction and magnitude of a combined gradient is estimated
based on the previously calculated gradients. Subsequently, the image
is divided into fixed size cells, e.g. 8× 8 pixels. For each cell, a HOG
contained in the pixels of the cell is calculated. The histogram has a
fixed width, e.g. 8, so that the direction vectors are discretised into 8
directions. The magnitude of the direction vector is used as value in
the histogram. The calculated HOG values for the example images in
original size are given in Figure 6.9b and 6.9e, for the down-scaled
images in Figure 6.9c and 6.9f. On the smaller images the shown
results are better recognisable. For each cell, the values contained in
the histogram are plotted in the respective direction, resulting in a
star shape (in this case comprising 8 rays). The 160× 160 pixel image
contains a subdivision into 20× 20 cells for cells of size 8× 8 pixels.
With a higher pixel density of the analysed image, the number of cells
and thus the number of stars displayed increases.

To achieve a higher robustness against different lighting conditions
and contrasts, the histograms are normalised in blocks. A block con-
tains a fixed number of cells, e.g. 3× 3. In this block, the histograms
are normalised based on the energy of the histograms in the block
and subsequently stored in the feature vector. This process is repeated
per cell. Depending on the selected parameters, this might lead to a
cell being included and normalised in several blocks and thus being
represented in the feature vector in different ways of normalisation.
This is expected to provide additional stability against changes in
contrast and lighting conditions.

6.3 keypoint descriptors

The two classes of feature extraction algorithms presented so far rep-
resent holistic approaches, which extract all pixel based information
independent of the image content. Keypoint descriptors, in contrast,
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(a) Original (b) HOG on 1024 × 1024
pixels

(c) HOG on 160× 160 pix-
els

(d) Original (e) HOG on 626× 626 pix-
els

(f) HOG on 160 × 160 pix-
els

Figure 6.9: Example images of HOG

first identify points of interest in the image and explicitly analyse the
area around them. The advantage of this approach is that the feature
vector is likely to contain mostly relevant information. However, the
disadvantage is, that the feature vector may vary in length, depend-
ing on the number of points detected, which implies that no simple
distance metrics can be used for comparison. This section describes
the two commonly used keypoint descriptors Scale-Invariant Feature
Transform (SIFT) and Speeded Up Robust Features (SURF).

6.3.1 Scale-Invariant Feature Transform

SIFT was proposed by Lowe in 1999 [92]. The extracted features are,
within certain limits, robust against translation, rotation and scaling, as
well as other variations in the image, e.g. lighting conditions [93]. Due
to the robust properties of the feature extractor, it was successfully
used over many years in applications like video stabilization [60]
or object recognition [83], but also in the context of biometrics, for
example for comparisons of fingerprints [110] or iris images [173].

The process of SIFT feature vector calculation can be divided into
four steps: Scale-space extrema detection, keypoint localization, orien-
tation assignment and keypoint descriptors estimation.
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scale-space extrema detection In this step the points of inter-
est, a.k.a salient points, are to be found. The basic idea is to search for
extreme values in the second-order derivative of the image (calculable
by the Laplace operator), which represents significant changes in the
image, e.g. edges and corners. In order to achieve an insensitivity to
noise, the image is smoothed by a Gauss operator prior to the Laplace
operation.

These two operations can be performed by applying the Laplacian
of Gaussian (LoG) filter to the image by convolution. By varying the
variance (σ) of the Gauss function, the intensity of the smoothing and
thus the size of the corners can be adapted. To increase the robustness
to image scaling, a Gaussian pyramid (the term Gaussian is not directly
related to LoG) of the image is constructed. In a Gaussian pyramid,
the image is reduced by half in each step (octave). Afterwards the
LoG operator is applied to each octave of the pyramid. However, this
calculation might be very computationally expensive, thus the LoG can
be approximated by Difference of Gaussians (DoG). For this purpose,
the image (per octave) is smoothed with Gauss filters with different
σ resulting in multiple images per octave (in the following called
scales). Subsequently, the differences between neighboring scales are
calculated, resulting in an approximation of the LoG. The subtraction
preserves the high-frequency information of the less smoothed image,
therefore the DoG can be interpreted as a bandpass filter.

On this basis, local extreme values can be determined. To do this,
each value is compared with the neighboring pixels (3 × 3 neigh-
borhood), as well as with the pixels of neighboring scales (3× 3× 3
neighborhood). In this way, the local extreme values of the x and y
coordinates of the image as well as the σ coordinate of the scales are
found.

keypoint localization In order to obtain a more precise po-
sition of the extreme values in space (x and y) and scale (σ), it is
approximated by a Taylor series expansion. Subsequently, an extreme
value whose intensity is below a defined threshold is discarded, as
well as extreme values that are detected as edges by a Harris edge
detector. The latter ensures that a continuous edge does not create an
unlimited number of keypoints. The remaining, significant extreme
values are noted as keypoints.

orientation assignment In order to achieve rotation invari-
ance, an orientation is assigned to each keypoint. Therefore the gradi-
ent is calculated for each pixel in the neighbourhood of the keypoint.
Subsequently, gradients of a keypoint are transferred into a histogram
with 36 bins. The procedure corresponds to the calculation of HOG
and is described in Section 6.2.2. The bin with the largest value is
defined as the direction of the keypoint. If multiple bins of high val-
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ues are present in the histogram, additional keypoints with the same
position but different direction can be assigned for each value above a
defined threshold.

Examples of SIFT keypoints with direction and intensity are given
in Figure 6.10. The diameter of the circles shows the magnitude of the
extreme value, different keypoints are drawn with different colours.
In the original size images (Figure 6.10b and 6.10e), considerably more

(a) Original (b) SIFT on 1024× 1024 pix-
els

(c) SIFT on 160× 160 pixels

(d) Original (e) SIFT on 626× 626 pixels (f) SIFT on 160× 160 pixels

Figure 6.10: Example images of SIFT

keypoints are found than in the reduced size images (Figure 6.10c and
6.10f). However, it can be observed that in both images of different
size several keypoints with similar direction and intensity occur, for
example on the cheek or forehead in Figure 6.10b and 6.10c.

keypoint descriptors For each keypoint a keypoint descriptor
is calculated. This process creates a characteristic vector for each
keypoint, which can be used for the comparison of keypoints. For
this purpose a HOG is calculated as described in Section 6.2.2. The
length of the feature vector depends on the parameters of the HOG
calculation. For example, if the HOG is calculated for a neighborhood
of 16× 16 pixels around the keypoint with 16 blocks of 4× 4 pixels
and a histogram with 8 bins (8 directions), a feature vector with 128
values is obtained.
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6.3.2 Speeded Up Robust Features

SURF is a faster calculable variant of SIFT, which is proposed by Bay
et al. in [10]. For each operation an attempt is made to optimise the
calculation operations in order to achieve an acceleration of the feature
extraction. The major difference is the use of box filters instead of
Gauss Filters. As shown in Figure 6.11, box filters can be interpreted as
a rough approximation of the second order Gaussian partial derivative
(LoG) used in SIFT. Box filters can be calculated extremely efficiently

(a) Discretised
LoG filter in
y-direction

(b) Discretised
LoG filter in
xy-direction

1

−2

1

(c) Box filter ap-
proximation for
LoG filter in
y-direction

1 −1

1−1

(d) Box filter ap-
proximation for
LoG filter in
xy-direction

Figure 6.11: Example of LoG and box filters, adapted from [10]

if the integral image of the analysed image has been calculated before-
hand, as the sum of the intensities to be calculated in the box of the
box filter can be mapped to three additions in the integral image [10].

For SIFT the DoG are calculated on different sizes of the image
(octaves). For this purpose, the image must be scaled several times
and then the DoG must be calculated on each octave. For SURF,
the box filter is scaled instead of the image. An image half the size
corresponds to a box filter double the size. The advantage is, that the
integral image has to be calculated only once. It should be noted that
the high-frequency information that is lost in the scaling process of
SIFT remains present and therefore might influence the result of the
box filter.

The detection of keypoints is identical to the method described in
Section 6.3.1. The calculation of orientation vectors is also similar to the
method used in SIFT. However, instead of calculating gradients, the
filter responses of Haar Wavelets are calculated (in both dimensions
(dx,dy) of the image). The advantage of this approach is that the filter
response of the Haar Wavelet can be efficiently estimated based on the
already calculated integral image. It should be noted that the size of
the wavelet has to be adapted to the size of the box filter responding
to the related keypoint. The orientation vector is determined by the
sum of the Haar Wavelet’s filter responses.

Examples of the detected keypoints and the corresponding orien-
tations and intensities are given in Figure 6.12. In the facial images
(Figure 6.12b and 6.12c), less clearly correlating keypoints are found
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(a) Original (b) SURF on 1024 × 1024
pixels

(c) SURF on 160× 160 pix-
els

(d) Original (e) SURF on 626× 626 pix-
els

(f) SURF on 160× 160 pix-
els

Figure 6.12: Example images of SURF

for the two image sizes compared to SIFT (Figure 6.10b and 6.10c).
However, keypoints with the same orientation are recognisable as well,
especially in the area of the chin. In the sample images of the macro
shot (Figures 6.12e and 6.12f), considerably more keypoints are found,
due to the higher number of corners in the image.

As with the determination of orientation, the descriptors are ex-
tracted using the response of Haar Wavelets. A fixed region (e.g. 20×
20 pixels) around the keypoint is divided into 4× 4 subregions. For
each subregion, the responses to the Haar wavelet are calculated for
both dimensions of the image, horizontal (dx) and vertical (dy). Subse-
quently, the feature vector v is calculated for each subregion as follows:

v = (
∑

dx,
∑

dy,
∑

|dx|,
∑

|dy|) (6.1)

Subdividing the region of the keypoint into 4× 4 subregions, the
resulting feature vector of the keypoint has an overall length of 64
values.

6.4 landmark extractors

The keypoints described above are found on the basis of corners and
edges in the image and are largely independent of the displayed image
content. Another method to identify points of interest in images is to
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detect so-called landmarks. The idea is to find prominent points of a
known object type. An example is given in Figure 6.13. A landmark

(a) Example of facial landmarks on a
face image

(b) Example of facial landmarks on a
non-face image

Figure 6.13: Example images of extracted Landmarks

extractor for facial landmarks2 has been applied to the facial image
(Figure 6.13a) and the macro image (Figure 6.13b). For the facial image,
the landmarks were placed on the intended positions. If there is no
face in the image, the algorithm attempts to arrange the landmarks in
a face-like form. In contrast to the feature extractors presented so far,
landmark extractors are thus only suitable for application on a spec-
ified object type, for which the landmark extractor has been trained
on. Landmarks can be used for detection [20] or alignment [165] of
objects, also some approaches for using landmark based systems for
face recognition are available.

The detection of landmarks is usually based on the concept of Ac-
tive Shape Models as proposed by Cootes et al. [20]. The concept aims
to place a predefined mash of points on an image based on certain
criteria, minimizing the error caused by the individual points and
the deviation from the original shape. Thus, if a sufficient number of
correctly recognized landmarks is available, the other landmarks may
be set correctly due to the shape of the object, allowing, for example,
partially hidden objects to be correctly identified. A disadvantage of
this method is that the number and rough position of the landmarks
are determined during training of the landmark detector. If new land-
marks are to be added at a later date, the algorithm has to be trained
again.

There are many different methods and implementations for land-
mark detection. In addition, the individual algorithm depends on the
training data used, thus even one implementation can produce differ-
ent results depending on the training data. A detailed description of

2 The dlib [77] implementation for landmark detection was used.



6.5 deep features 47

two implementations of landmark detection is given in Part IV Attack
Detection Pipeline of the thesis, in Section 16.4.

6.5 deep features

The feature extractors presented so far aim to transform certain fea-
tures of the image into a feature vector. The design of the algorithm
already includes the consideration of which kind of attributes are
considered relevant (e.g. texture in case of LBP and BSIF). Another
possibility is to use machine learning to learn features that statistically
show the highest discrepancy on the training data between the classes
to be distinguished. If a new data point is presented to the trained
algorithm, it is transformed into the previously learned discriminative
space. In [105] it is shown that NNs are suitable to model feature
extractors for images and numeric data.

The advantage of these feature extractors is that they are able to
learn very complex correlations and thus (if there is enough vari-
ance in the training data) ensure a very robust feature extraction.
Unfortunately, the resulting algorithms are difficult to analyse and
comprehend, meaning that in case of insufficient training and test
data, a possible over-fitting or a focus on insignificant artefacts of
the algorithms is not apparent. Due to the abstractness and lack of
illustrative capabilities of the extracted features, this section does not
provide sample images of features extracted by such an algorithm. It
is possible to visualize single layers of NNs or to show the influence
of single areas of the image to the feature vector, but this has to be
considered during the training of the algorithm and is therefore not
possible for the pre-trained NNs used in this thesis. Due to the limited
amount of data available, no training of own feature extractors is done
for this thesis. Instead, DNN feature extractors pre-trained for other
applications are applied. This allows to exclude an over-fitting to the
problem and to expect a certain robustness of the feature extraction. A
detailed description of the algorithms used in this thesis is given in
Part IV Attack Detection Pipeline of the thesis, in Section 16.6.

6.6 image noise pattern

Image Forensics is a subfield of Digital Forensics. The goal of image
forensics is to detect the origin [18] or manipulation [152] of images.
In this section, sensor noise patterns are introduced which reflect the
fingerprint of the camera used to capture the image.

In digital photography, the photons stimulating the camera chip
transfer their energy to the electrons contained in the camera chip.
During this process, each pixel behaves individually, and the resulting
differences are transferred to the digital image as noise patterns. This
noise pattern is referred to as Sensor Pattern Noise (SPN) or Photo
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Response Non-Uniformity (PRNU). The extraction of these noise pat-
terns is achieved by using high-pass filters. Technically, a smoothed
version of the image is subtracted from the original. The resulting im-
age of high-frequency information (noise) depends on the smoothing
function applied. As described in [27], [28] and [132], specific features
can be extracted from the resulting image. For example, a histogram of
the existing frequencies can be created from which certain parameters
can be extracted.

An advantage of this feature extraction is the simplicity of the imple-
mentation and, when using the frequency information, the rotational
invariance. Since these features are based almost exclusively on the
high frequency information, they can be changed significantly by a
previous smoothing operation applied to the images.

Examples of PRNU noise patterns are given in Figure 6.14. Even

(a) Original (b) PRNU on 1024 × 1024
pixels

(c) PRNU on 160× 160 pix-
els

(d) Original (e) PRNU on 626× 626 pix-
els

(f) PRNU on 160× 160 pix-
els

Figure 6.14: Example images of PRNU

though PRNU and SPN are considered to be independent of the
image content, the former content is still recognisable. The example of
facial images was generated by a GAN [72]. Hence no camera noise is
present in this example, resulting in a very uniform noise pattern in
Figures 6.14b and 6.14c. The image analysed in Figure 6.14e and 6.14f,
on the other hand, originates from a digital photograph. The noise
pattern extracted in this case contains much more variance. It can be
seen that in lower resolution images (Figure 6.14c and 6.14f) the noise
pattern appears much coarser than in the higher resolution images
(Figure 6.14b and 6.14e).
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B I O M E T R I C S Y S T E M S

Biometric systems are a variation of identity management systems.
In contrast to conventional identity management systems, which are
either knowledge-based (with passwords) or token-based (with keys
or ID cards), biometric systems observe the subject’s biometric charac-
teristics. Features are extracted from the captured Biometric Sample
and compared with the features stored in the database. This section
describes the principles of biometric systems, in particular the archi-
tecture of FRSs.

7.1 topology

Independent of the biometric modality, the basic structure of biometric
systems can be described according to the scheme defined in ISO/IEC
19795-1 [62]. As shown in Figure 7.1, a biometric system can be divided
into five mandatory components:

Data Capture
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Enrolment
Database

Comparison

Quality
Control

Feature
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Verified? Identified?
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List

Verification
Outcome

Identification
Outcome

Features

Figure 7.1: Topology of biometric systems, inspired by [62]

data capture subsystem At the beginning of each process, a
sensor captures the biometric characteristic of a subject and transfers
it into a Biometric Sample, e.g. a camera capturing a facial image. In
this digital representation, the Biometric Sample is transferred to the
Signal Processing Subsystem for further processing.

49
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signal processing subsystem In the signal processing subsys-
tem, characteristics are extracted from the sample. The appropriate
method for feature extraction depends on the modality. Depending on
requirements, the samples may need to be segmented first. Optionally,
a quality control is performed at sample or feature level. The extracted
characteristics are either passed on to the data storage subsystem
for enrolment or to the comparison subsystem for identification or
verification.

data storage subsystem The references of the enrolled subjects
are stored in the data storage subsystem and forwarded to the compar-
ison subsystem on request. This subsystem might be implemented as
a database with several entries, for example an access control system
based on fingerprints. However, it can also contain a single entry,
as for example in the case of the electronic passport (ePassport), in
which only the facial image and fingerprints of the passport owner
are stored.

comparison subsystem In the data storage subsystem, the refer-
ence (verification) or references (identification) transferred from the
data storage subsystem and the probe transferred from the signal
processing subsystem are compared. The resulting comparison score
is available as either a similarity score or a dissimilarity score and is
passed on to the decision subsystem.

decision subsystem In the last step, the comparison score is
evaluated using a threshold value or a decision policy. The result is a
binary decision whether the subject could be verified or identified.

7.2 operation modes

Three different operation modes are available for biometric systems.
According to ISO/IEC 19795-1 [62], these are defined as follows:

biometric enrolment Regardless of the further use of the sys-
tem, the enrolment is an indispensable first step. This can be inter-
preted as the registration of a new subject in the system, which is
carried out by storing the subject’s reference in the data storage sub-
system. First, a sample is captured by the sensor in the data capture
subsystem. In the signal processing subsystem, features are extracted
from the sample, which are subsequently transferred to the data stor-
age subsystem, where they are stored as a template. For one subject
more than one template might be stored.

biometric verification The verification can be interpreted as a
confirmation of a biometric claim, for which a one-to-one comparison
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is performed. First, in the data capture subsystem the sensor captures
a sample, which is passed on to the signal processing subsystem.
Here the features of the sample are extracted, referred to as probe,
and passed on to the comparison subsystem for further processing.
Simultaneously, the reference from the data storage subsystem cor-
responding to the biometric claim is passed on to the comparison
subsystem. Subsequently, the reference is compared against the probe
and the resulting comparison score is transferred to the decision sub-
system, where the binary decision whether the biometric claim is true
(Accept) or not (Reject) is taken based on a threshold. The operation
mode is mainly used in the area of access control, e.g. for border
control systems or for authorized use of protected systems.

biometric identification The aim of the identification is to
find the corresponding biometric reference identifier of an individual.
The biometric reference identifier is a pointer to a specific template
stored in the data storage subsystem. As with verification, the process
commences with the creation of the probe sample by the data capture
subsystem and signal processing subsystem. However, during the
identification process, not only one reference is passed from the data
storage subsystem to the comparison subsystem, but all of them.
The comparison subsystem compares the probe with each individual
reference (a one-to-many comparison), and the resulting vector of
comparison scores is passed to the decision subsystem. The decision
subsystem uses this vector to decide whether a biometric reference
identifier could be returned or not. This operation mode is mainly
used in forensics (e.g. to identify flood victims), or for blacklists (e.g.
in casinos as blacklist for gambling addicts).

7.3 performance estimation

In conventional identity management systems there are only two
options: correct or incorrect (the password or key matches or not). In
biometric systems, however, there is a natural variance in the capture
process at the sensor, which is why probe and reference samples are
never identical. In order to be able to consistently measure and thus
compare the errors that arise in biometric systems, the following error
types are defined in [62] and [66].

Failure-To-Capture (FTC) The proportion of failures of the
biometric capture process to produce a captured Biometric Sample [66].
This describes failures that occur in the data capture subsystem. The
FTC can be calculated as:

FTC =
Ntca +Nnsq

Ntot
, (7.1)
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where Ntca is the number of terminated capture attempts, Nnsq the
number of images with insufficient sample quality and Ntot the total
number of capture attempts.

Failure-To-eXtract (FTX) The proportion of failures of the
feature extraction process to generate a template from the captured
Biometric Sample, Nngt, to the number of successful captured sam-
ples, Nsub. This describes failures that occur in the signal processing
subsystem. The FTX can be calculated as:

FTX =
Nngt

Nsub
. (7.2)

Failure-To-Enrol (FTE) The proportion of a specified set of
biometric enrolment transactions that resulted in a failure to create
and store a biometric enrolment data record,Nnec, to the total number
of subjects, intended to be enrolled in the biometric application, N [66].
This describes failures that occur in the data storage subsystem. The
FTE can be calculated as:

FTE =
Nnec

N
. (7.3)

Failure-To-Acquire (FTA) The proportion of a specified set of
biometric acquisition processes that were failure to accept for subse-
quent comparison of the output of a data capture process [66]. This
metric summarizes the failures of the data capture subsystem and the
signal processing subsystem. The FTA can be calculated as:

FTA = FTC+ FTX · (1− FTC). (7.4)

False Non-Match Rate (FNMR) Proportion of genuine at-
tempt samples falsely declared not to match the template of the same
biometric instance from the same subject supplying the sample [62].
This failure occurs in the algorithm of the comparison subsystem. The
FNMR for a specific threshold τ can be calculated as:

FNMR(τ) =

τ∫
0

Φg(s)ds, (7.5)

where Φg(s) represents the Probability Density Function (PDF) of
the genuine comparisons with s as similarity score. An example of a
FNMR is given in Figure 7.2.

False Match Rate (FMR) Proportion of zero-effort impostor
attempt samples falsely declared to match the compared non-self
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template [62]. This failures occur in the algorithm of the comparison
subsystem. The FMR for a specific threshold τ can be calculated as:

FMR(t) =

1∫
τ

Φi(s)ds, (7.6)

where Φi(s) represents the PDF for the imposter comparisons, with s
as similarity score. An example of a FMR is given in Figure 7.2.
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Figure 7.2: Visualization of FMR and FNMR

The two metrics, FNMR and FMR, describe comparison algorithm
errors. In order to determine the overall performance of a biometric
system further metrics are needed:

False Reject Rate (FRR) The proportion of verification transac-
tions with truthful claims of identity that are incorrectly denied [62].
The FRR can be calculated as [66]:

FRR = FTA+ FNMR · (1− FTA). (7.7)

False Accept Rate (FAR) The proportion of verification trans-
actions with wrongful claims of identity that are incorrectly con-
firmed [62]. The FAR can be calculated as [66]:

FAR = FMR · (1− FTA). (7.8)

Equal Error Rate (EER) Generally, the term EER denotes a
point at which two arbitrary errors, which have to be balanced against
each other, are of equal extent. However, it has become common
practice in biometrics to refer the EER to the point of equal error
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between FMR and FNMR. In order to avoid misunderstandings, the
EER in this thesis is therefore exclusively referred to FMR and FNMR.
If the operating point of equal error is calculated for other error types,
it will be defined separately.

7.4 face recognition systems

Most FRSs can be divided into fife steps: (1) Face recognition, (2)
pre-processing, (3) feature extraction, (4) comparison and (5) decision.
The enumerated steps are described in more detail in this section.

7.4.1 Face Detection

The first step is to determine the position of the face in the captured
sample. The task of face detection is complicated by many factors.
The most common difficulties encountered with biometric systems
are [59]:

• The person may have different poses and facial expressions.

• The face may be covered, for example by hair or glasses.

• Various other features on the face, for example tattoos or pierc-
ings.

• Different illumination of the face.

Due to the high variance, robust face detection in real time was
considered a potentially unsolvable task. Only with the Viola-Jones
algrithm [162], introduced in 2001, real-time face detection became
feasible. Even though many new methods for face detection have been
proposed since then (an overview can be found in [54]), the Viola-Jones
algorithm, which is described below, is still state-of-the-art, especially
in terms of speed and accuracy.

The basic concept of the Viola-Jones algorithm is based on the En-
semble Classifiers (Section 5.3), where a strong algorithm is combined
from many weak classifiers. It is based on haar-like features, which
attempt to map basic features of a face, examples of those filters are
given in Figure 7.3. For example, the area around the eyes is usually

(a) Example 1 (b) Example 2 (c) Example 3 (d) Example 4

Figure 7.3: Example of Haar-like filters
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darker than the area of the cheeks, due to shadows. This property
can be modelled using the haar-like feature shown in Figure 7.3b,
which is dark in the upper area (eyes) and light in the lower area
(cheeks). The haar-like features are a form of box filter and can there-
fore be efficiently calculated on the integral image as described in
Section 6.3.2.

A filter cascade is trained from these haar-like features applying
AdaBoost (see Section 5.3.2). Cascade means that not all weak learners
are tested simultaneously, as in the case of the ensemble classifier, but
that it depends on the result of the previous classifier whether the
next one is tested or not, which can further increase efficiency. For a
more detailed description of the training process the reader is referred
to [162].

7.4.2 Pre-Processing

Once the face has been recognized, the next step is to prepare it in
a way that the subsequent feature extractors can reliably extract fea-
tures. For this purpose, the image is aligned, cropped and eventually
enhanced. For the alignment process, landmarks are detected first,
afterwards the face is aligned, e.g. by means of the eyes, in order to
compensate possible pose variations. Further details on the function-
ality of landmark extractors are given in Chapter 8. After alignment,
the face image is cropped, ensuring that only regions relevant for the
feature extractor are included. Most feature extractors rely on the fact
that the same facial sections are always presented to them. Finally,
if necessary, the image can be improved (or unified), for example by
performing a histogram normalization.

7.4.3 Feature Extraction

Various methods can be used to extract the facial features. Common
methods for feature extraction are LBP [2] (as described in 6.1.1), in
former times Eigenfaces [159] or shape based features [49]. However,
the current trend is towards Deep Features. Here DNNs are trained
to transform the facial image into a feature in a discriminatory space.
An overview of the current deep FRSs can be found in [164].

7.4.4 Comparison

A comparison score is calculated by comparing two feature vectors, ex-
tracted in the previous step. The easiest way to do this is to determine
the difference between the feature vectors using a distance metric, for
example the euclidean or cosine distance. However, depending on the
complexity of the feature output, these metrics may not be sufficient.
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In this case, machine learning algorithms, see Section 5, can be used
to estimate a decision score.

Regardless of the method used, the result is always a comparison
score, which can either be the distance scores between the two feature
vectors or the similarity score.

7.4.5 Decision

As shown in Figure 7.2, the comparison scores calculated from genuine
and impostor comparisons each form a distribution curve. These
curves should be clearly separable, assuming the system is working
properly. In a real world situation, the system must provide a binary
decision, for example, whether two samples stem from the same source
or not. For this purpose, a threshold value is set in the system, which
separates the genuine and the importor distribution as optimally as
possible and thus minimizes the resulting FNMR and FMR (or FAR
and FRR when considering the full system). The choice of the optimal
threshold value depends on the situation. If the system is used in a
safety-critical environment, the threshold value can be set in such a
way that the FMR is decreased, if more convenience is required, the
FNMR should be decreased instead.
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I M A G E M O R P H I N G

In image processing, morphing refers to the process of changing
one image or shape into another. The research field of morphing
is already decades old, the main motivation for this research is the
film industry [166]. In films, morphing is regularly used as a special
effect to optically transfer one image or object into the target image
or object. In this section the morphing process of two dimensional
images is considered. There is a wide range of different morphing
algorithms, but most of them can be divided into the following three
steps: correspondence determination, warping and blending. These
steps are described in the following section.

8.1 correspondences

In order to transfer one image to another, corresponding points in
both images must be determined first. A very simplified example
is given in Figure 8.1. In this example a car (Figure 8.1a) is to be

(a) Car (b) Truck

Figure 8.1: Example of correspondences for image morphing

morphed into a truck (Figure 8.1b). The corresponding points are
marked with different coloured circles. Since the two forms are very
similar in type (for example, the window in both examples consists of
four corners), finding the correspondence is done easily by hand. In a
real application, this might be significantly more difficult. Finding the
correspondence is done either manually or automatically by assigning
certain points in both images to each other. The manual determination
of correspondences can be arbitrarily precise, but is time-consuming.
The manual process might be simplified by using line segments or
curves and lead to better results. The automatic detection of corre-
spondences is mostly done with landmark extractors (see Section 6.4).
Besides the use of landmarks, there are other methods to determine
correspondences, e.g. via line segments [11] or curves [86]. However,
these older methods mainly aim at simplifying the manual definition
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of correspondences and are not used for the automated recognition of
correspondences.

8.2 warping

Based on the specific points of correspondence, one image can be
transformed to the other. The process corresponding to the example
presented is shown in Figure 8.2a. Each point is moved linearly from

(a) Transformation lines to transform the
car to a truck

(b) Intermediate image (αw = 0.5) of
transformation from car to truck

Figure 8.2: Example of the transformation of car to a truck

the position of the car to the position of the truck (visualized by the
dashed lines). The translation between two corresponding pixels P0
and P1 can thus be expressed by the warping function wP0→P1 :

P1 = wP0→P1(P0) (8.1)

The goal of morphing is to calculate intermediate images of this trans-
formation. This can be achieved by weighting the warping function
with the factor αw:

Pαw = αw ·wP0→P1(P0) (8.2)

An αw of 0 would thus correspond to the pixel positions of P0, an
alphaw of 1 to those of P1. Figure 8.2b shows an intermediate image
of the example. αw was set to 0.5, thus the shifting of the points is
only carried out to half of the distance.

The shown example has been simplified for a better explanation.
Thus both objects consist of the same number of corners, which are
connected by straight edges. The round shapes of the wheel cases and
tires were deliberately positioned identically and not marked with
landmarks. If more complex or different shapes are transformed, the
pixels located between the points need to be moved individually. For
the simplified example, linear interpolation can be performed between
the individual points. If, however, a circle is to be warped into a square,
for example, linear interpolation would only lead to the desired result
with an infinite number of corresponding points. For interpolation in
real applications, three main methods can be found in the literature:
grid warping, mesh warping and non-local warping methods.



8.3 blending 59

grid warping When using grid warping, the points marking the
relevant areas (i.e. landmarks) in both source images are mapped to a
virtual grid [166]. The coordinates of the landmarks within this grid
can now be used to easily determine how they need to change in the
transition. If a point is at (0|0) in the first image and at (100|100) in the
second image, the point is positioned at (25|25) for αw = 0.25. In this
approach, all points are uniformly adjusted by geometrical operations.

mesh warping A further possibility is the calculation of a mesh
adapted to the landmarks. The most frequently used function for
determining such a mesh is Delaunay triangulation [76], whereby all
triangles of the triangle mesh fulfil the so-called circumcircle condi-
tion: The circumference of a triangle of the mesh must not contain
any further landmarks. Subsequently, the optimal path of the transi-
tion is determined, by which the triangles of the first output image
are shifted and deformed towards the triangles of the second out-
put image, depending on the αw value. The warping is calculated
locally for each triangle separately by transforming it into the target
triangle. For this purpose an affine transformation may be applied.
When calculating the transformed pixels, it may be necessary to inter-
polate missing pixels or pixels from non-integer pixel positions. For
this interpolation the methods established for image scaling can be
used, e.g. bilinear or bicubic interpolation, Sinc or Lanczos filters. The
choice of the interpolation method can have a significant effect on the
result. Common methods and their advantages and disadvantages are
explained in [35].

non-local warping For the algorithms described so far, the
images to be warped are divided into geometric shapes (a fixed grid,
or triangles), which are subsequently distorted. This may result in
artefacts, for example at the transitions of two triangles, as the two
adjacent triangles may be distorted differently. To avoid these issues,
the warping can be calculated non-locally by interpolation between
the landmarks; possible methods are described in [129]. A method
for global transformation, which can also be well adapted to local
differences, is the use of radial basis functions [4]. A frequently used
radial basis function is Thin-Plate-Spline, which aims to model the
deformation of a thin metal sheet [86].

8.3 blending

So far, the warping only changed the position of the pixels. However, to
create the intermediate images it is required to change the textures as
well. This is done by blending. The simplest way of blending is linear
blending, where the colour values of the pixels of the two original
images are weighted and added. The parameter for the weighting is
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called αb. For a colour image, the value Iαb of the pixel at the position
(x,y) is calculated for each colour channel as the weighted sum of the
two source images:

Iαb(x,y) = (1−αb) · I0(x,y) +αb · I1(x,y) (8.3)

Thus, with αb = 0.5, the arithmetic mean of the values from the two
output images is obtained.

According to [154], linear blending does not always yield optimal re-
sults, since it can lead to an unnatural appearance in the target images.
This may result in artificially hard edges, blurred intermediate areas
or similar artefacts. Alternative methods of blending have therefore
been proposed, for example by minimizing a cost function (also called
energy function) that captures the local variance of brightness values,
resulting in a more natural appearance of colour gradients and less
blur [167].



9
S U M M A RY

In this part the technical basics for a deeper understanding of the
following chapters are described. The basics are divided into chapters
on Machine Learning, Image Descriptors, Biometric Systems and
Image Morphing.

Machine learning algorithms, as a sub-area of computational in-
telligence, are algorithms that make decisions based on previously
observed data. Machine learning algorithms can be divided into two
classes, predictive and descriptive algorithms. Descriptive algorithms
try to reproduce the population described by the data (for example by
clustering), predictive algorithms recognise the differences between
populations and aim to assign new data points to one of them. In this
thesis the principles of different predictive algorithms are described.
Firstly, it covers the SVM with different kernels, which, in particular
in biometrics, is a frequently applied classifier. Furthermore, decision
trees are described and different ensemble classifiers which can be
built based on decision trees, for example Random Forest, AdaBoost
or Gradient Boosting. Furthermore the basics of neural networks,
which are used in the currently popular deep learning methods, are
explained.

To be able to classify images with the described machine learning
algorithms, it is necessary to extract features from the images, which
can be used to train the classifiers and for decision making. The feature
extraction methods used in this thesis, so called image descriptors, are
described in chapter 6. Each class of descriptors can be used to extract
a certain property of an image and describe it in a feature vector.

Chapter 7 describes the basic structure and functionality of biomet-
ric systems. According to ISO/IEC 19795-1 [62] biometric systems can
be partitioned into five components: Data capture subsystem, signal
processing subsystem, data storage subsystem, comparison subsys-
tem and decision subsystem. The functionality of each subsystem
is described in Section 7.1. Furthermore, the standard describes the
different operation modes of biometric systems, as well as the metrics
standardised in [62] and [66] which are suitable for the evaluation of
biometric systems. Since FRSs play a superordinate role in this work,
their function and structure are discussed in more detail.

In Chapter 8 the technical basics of the algorithms used to morph
images are described. These can be divided into three components:
Correspondence recognition, warping and blending. In the first step,
corresponding points in both images are determined, which should be
superimposed in the resulting morph. Warping distorts the images in
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such a way, that the corresponding pixels are positioned in the same
location. The final blending combines the distorted images.
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10
M O R P H I N G O F FA C I A L I M A G E S

Chapter 2 describes the problem of morphing attacks on FRSs. Chap-
ter 8 explains the basic theory for morphing images. This chapter
will go into more details about the creation of morphed facial im-
ages and the state-of-the-art. The creation of morphed facial images
is done according to the concept described in Chapter 8: Detection of
correspondences, warping and blending. Afterwards, optimizations
tailored to morphed facial images can be applied, for example to avoid
typical artefacts that might occur during the morphing process.

10.1 correspondences

In publications on morphing and morphing attack detection, the
morphing algorithms are usually not described in detail. Especially in
the beginning, the correspondences of the images to be morphed were
often determined manually, e.g. in [39] and [120]. In the meantime,
several algorithms with automatic landmark detection are circulating
in the scientific community. These are mainly based on the open
source, pre-trained landmark extractors Dlib [77] and Stasm1, which
are based on the concept of the Active Shape Model, as described
in Section 6.4. In addition, there are approaches to detect landmarks
by applying an DNNs [36], which, however, can only determine a
limited number of landmarks so far, resulting in a significantly lower
quality of the generated morphs. Despite the wide range of landmark
detection algorithms available, there are no algorithms yet reliably
modelling the contour of the hair. Also the detection of the iris is not
provided by any algorithm so far. Although some algorithms position
a landmark in the centre of the eye (e.g. those of the Apple Vision
Framework2), they are always positioned centrally in the eye and are
not adapted to the actual position of the iris.

10.2 warping

Most algorithms use the Delaunay triangulation as described in Chap-
ter 8, for example the morphing method used in [39] using manual
determination of correspondences or the fully automatic morphing al-
gorithms used in [40] and [135]. An example of landmarks detected by
Dlib and the resulting Delaunay triangles are depicted in Figure 10.1.
If a sufficient number of correctly placed landmarks is available, high

1 http://www.milbo.org.stasmfiles/stasm4.pdf

2 https://developer.apple.com/documentation/vision
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(a) Example of Dlib landmarks (b) Resulting Delaunay triangles

Figure 10.1: Example of Delaunay triangulation

quality morphs can be created in an automated manner. However,
since the well-known landmark detection algorithms do not place
landmarks at the hairline and outer areas of the face, these areas
are prone to particularly severe artefacts. In these areas, additional
landmarks would allow the creation of more precise triangles and
thus more accurate morphs. Yet, using too many landmarks might
also lead to negative effects on the quality of the generated morphs.
For example, Dlib [77] detects separate landmarks for the upper lower
lip and the lower upper lip for more general results. Thus, if images
with closed mouths are morphed, these landmarks overlap, which
may result in artefacts. An example of such an artefact is given in
Figure 10.2.

Figure 10.2: Example of morphing caused by overlapping landmarks.

10.3 blending

Due to the preceding triangulation, the determination of the cor-
responding pixels is straightforward. The respective colour values
are calculated according to the selected αb using equation 8.3. Even
though there are possibilities to refine the blending process as de-
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scribed in Section 8.3, there is currently no implementation known
that does not calculate the blending using a weighted sum of the pixels
of both source images.

αw

αb

Figure 10.3: Morphed Face image with changing αw and αb-values

It should be noted, that the α values, for warping (αw) and blending
(αb), can be handled independently [38]. The changes in the appear-
ance of the morphed facial image depending on the two α values are
shown in Figure 10.3. In the common case both α values are set to 0.5,
which corresponds to the central frame in the transition from the start
image to the target image. In this case both contributing subjects are
equally represented.

Experience has shown that α values around 0.3 offer an increased
chance of success in deceiving human observers [40]. However, it
should be noted that the chance of success for attacks on FRS with
α values unequal to 0.5 decreases, partly considerably [138]. For this
reason, in this paper morphs are created with an α value of 0.5.

10.4 improvements

During the generation of morphed facial images by the methods
described above, unavoidable artefacts might be introduced. Most
of the errors are caused by too few or incorrectly positioned land-
marks, which is difficult to avoid when using automated morphing
algorithms [139]. In this section two methods are presented to au-
tomatically correct the most common artefact types, namely using
swapping and artefact replacement.
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10.4.1 Swapping

A significant number of artefacts are created in areas outside of the
landmarks, for example on the collar of clothing or in the region of
the hair. The automatic landmark detectors do not place landmarks
in these areas, thus no reasonable Delaunay triangles will be formed.
Since the problematic areas are of no great relevance for FRSs, a simple
solution is to replace the outer areas of the morph with the artefact-
free outer areas of one of the original images [97], [40]. To do this,
the original image is first adjusted to the morph by distortion and
eventual colour adjustments, afterwards the inner area of the morph
is swapped into the original image. Optionally a smoothing of the
transition line can be applied.

10.4.2 Artefact Replacement

There are also areas within the landmark area that are particularly
susceptible to artefacts. These include particularly contrast rich areas
such as the nostrils or the eyes. Examples of such artefacts are given
in Figure 10.4. These areas can be replaced using a similar method

(a) Example of morphing artefacts
at the iris.

(b) Example of morphing artefacts
at the nostrils.

Figure 10.4: Example of morphing artefacts.

as described in Section 10.4.1. For this purpose, a mask is defined
according to which certain areas of the original image are blended
over to the morph. An example of such a mask is given in Figure 10.5,
the white areas, in the given example eyes and nostrils, are blended
from the distorted original image over the morph. The fade is smooth
in order to avoid hard edges. This method is used, for example, in a
version of FaceFusion3 adapted for the FACETRUST project.

10.4.3 Manual Post-Processing

In addition to automatic post-processing, it is possible to manually
correct artefacts. However, this is very time-consuming, especially
if high-quality results are desired. Basically the same concept as in

3 http://www.wearemoment.com/FaceFusion/

http://www.wearemoment.com/FaceFusion/
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Figure 10.5: Example of a predefined mask for the replacement of critical
areas

Section 10.4.1 and 10.4.2 can be applied here, but without using pre-
defined masks. Instead, regions affected by artefacts are blended as
appropriate.

For the described improvements of the morphed face images it has
to be taken into account that with each replaced region the similarity to
one subject increases and the similarity to the other subject decreases.
Therefore, a balanced morph (αw = 0.5, αb = 0.5) can no longer be
considered balanced after such post-processing.
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D E T E C T I O N O F M O R P H E D FA C I A L I M A G E S

As described in Chapter 2, MAs pose a serious threat to FRSs, espe-
cially in the border control scenario. In order to guarantee a secure
operation of face recognition algorithms in the future, it is necessary
to be able to reliably detect morphed facial images and thus be able to
reject them during enrolment or verification. This chapter provides an
overview of the schematic structure of MAD algorithms and metrics
to measure and compare the MAD performance.

11.1 detection schemes

According to [139], MAD systems can be divided into two categories:
no-reference or single image MAD (S-MAD) and reference based or
differential MAD. The corresponding scheme for S-MAD is shown in
Figure 11.1a. The image to be analysed is passed to the MAD system.

Suspected
Face Image

Feature-
extraction

Feature-
vector

Classi-
fication

MAD-
Score

Bona Fide

Morph

Decision

(a) no-reference morphing detection scheme

Suspected
Face Image

Feature-
extraction

Feature-
vectors

Classi-
fication

MAD-
Score

Bona Fide

Morph

Decision

Trusted
Face Image

Feature-
extraction

Difference-
metric

Difference

(b) differential morphing detection scheme

Figure 11.1: Categorisation to no-reference and differential morphing detec-
tion scheme

First, features are extracted, based on which the classifier decides
whether the presented image is a morph or bona fide. The S-MAD
scheme can be used during enrolment as well as during verification.

Differential MAD can be used in scenarios where another image, a
Trusted Live Capture (TLC), is available in addition to the suspected
morph. For example, during verification, when the probe image is
acquired in addition to the stored reference (suspected morph). The
schematic process of differential MAD is depicted in Figure 11.1b.
The same features are extracted from both provided images. These
are compared according to a fixed metric and the classifier uses this
difference to decide if the suspected morph is a morph or bona fide.
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This method has the advantage that the additional information of
the TLC is used for the decision. However, it should be noted that
in real scenarios TLCs are usually acquired in semi-supervised envi-
ronments, e.g. border gate, and therefore show a lower quality and
higher variance than the suspected images extracted from the travel
document.

11.2 evaluation methodology and metrics

To compare different algorithms with each other, uniform evaluation
methods and metrics are essential. For the evaluation of the vulnera-
bility of FRSs against morphing attacks, different metrics have been
introduced in previous publications, which will not be described
further in order to avoid confusion. In this thesis only the metrics
proposed in [139] are described and applied. For the evaluation of
the MAD algorithms the metrics defined in ISO/IEC 30107-3 [65] are
applied.

11.2.1 Face Recognition System Vulnerability

In ISO/IEC 30107-3 [65], Impostor Attack Presentation Match Rate
(IAPMR) provides a metric to evaluate the success of attacks on a
biometric system:

IAPMR: in a full-system evaluation of a verification system, the
proportion of impostor attack presentations using the same PAI species
in which the target reference is matched [65].

Considering the PDFs depicted in Figure 11.2, the red and green
curves correspond to a biometric system, as described in Section 7.3.
The attacks should be separately identifiable and are represented in a
further, here yellow, curve. In a scenario without attacks, the threshold
τ would be set to minimize FMR and FNMR, in the given example 0.5.
The exemplary attack would thus be 94% above the selected threshold,
i.e. for 94% of the attacks the comparison with the subject would be
successful.

For presentation attacks this metric is applicable, since one artefact
is presented at a time, which is intended to circumvent the system. For
morphing attacks, however, it is necessary that at least two subjects
are successfully compared with the morph. In order to reflect this, the
IAPMR was extended to the Mated Morph Presentation Match Rate
(MMPMR) in [139]. According to [98], only uncorrelated comparisons
should be carried out in evaluations. Thus, each subject is compared
only once per morph. A morphing attack success is given if all subjects
contained in the morph have been successfully verified against it.
Therefore, only the minimum for similarity scores or the maximum
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Figure 11.2: Example of IAPMR

for dissimilarity scores has to be calculated over all comparisons of a
morph. For similarity scores the MMPMR is calculated as follows:

MMPMR(τ) =
1

M
·
M∑
m=1

{[
min

n=1,...,Nm
Snm

]
> τ

}
, (11.1)

whereas τ is the verification threshold, Snm the mated morph compar-
ison score of the n-th subject to morph m, M is the total number of
morphed images, and Nm the total number of subjects contributing
to morph m.

However, in most circumstances the requirement set out in [98]
cannot be met. On the one hand, the number of possible comparisons
is considerably reduced, so that, especially with a limited number
of subjects, no reliable evaluation can be carried out. On the other
hand, this does not necessarily reflect a realistic scenario. For example,
automatic border controls compare several live images of the same
subject with the passport photograph. To reflect this behaviour, the
MinMax-MMPMR was defined in [139] as visualised in Figure 11.3a.
If there are several images of the same subject, only the one with the
highest similarity score is considered (maximum). Across the subjects,
the minimum is calculated, as all subjects must be verified successfully.
Equation 11.1 is thus extended as follows:

MinMax-MMPMR(τ) =
1

M
·
M∑
m=1

{(
min

n=1,...,Nm

[
max

i=1,...,Inm
Sn,i
m

])
> τ

}
,

(11.2)

whereas Inm is the number of samples per subject n within morph m.
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Figure 11.3: Examples of the scheme of the different MMPMR definitions

However, if an unlimited number of comparisons per subject are
allowed, the MinMax-MMPMR reveals a shortcoming. The more com-
parisons per subject, the higher the probability that one comparison is
above the threshold of the system. Since only the closest comparison
is evaluated (maximum), this subject would be considered accepted.
In this way, many comparisons can artificially increase the success
chance of the morphing attack. To compensate for this effect, the
ProdAvg-MMPMR can be used as a probabilistic interpretation for a
large number of comparisons, the scheme is illustrated in Figure 11.3b.
In this case, each individual comparison is checked against the thresh-
old and the average of the successful verification of the individual
comparisons is estimated for each subject. The probabilities of all sub-
jects are then multiplied by each other as joint probabilities, resulting
in the following equation for the ProdAvg-MMPMR:

ProdAvg-MMPMR(τ) =
1

M
·
M∑
m=1

Nm∏
n=1

 1

Inm
·
Inm∑
i=1

{
Sn,i
m > τ

}
(11.3)

Both IAPMR and the variations of MMPMR derived from it are
directly dependent on threshold τ of the biometric system. If a highly
restrictive threshold value is set in the system, fewer attacks are con-
sequently accepted than with a less restrictive threshold value. This
might lead to a system with an unrealistically restrictive threshold
that takes a high FNMR and a very low MMPMR without being able
to separate the attacks from bona fide attempts. In order to take the
factor of the set threshold into account, the Related Morph Match
Rate (RMMR) as defined in [139] can be estimated. The RMMR con-
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siders the difference between MMPMR and True Match Rate (TMR)
(TMR = 1− FNMR) at the threshold and is defined as follows:

RMMR(τ) = 1+ (MMPMR(τ) − (1− FNMR(τ)))

= 1+ (MMPMR(τ) − TMR(τ))
(11.4)
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(b) RMMR of a reasonable system with
a restrictive threshold
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(c) RMMR of a reasonable system with
a highly restrictive threshold
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(d) RMMR of a reasonable system
with an unrealistic strict threshold
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(e) RMMR of a highly vulnerable sys-
tem an unrealistic strict threshold
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Figure 11.4: Examples of RMMR values in different systems with different
threshold configurations

Examples of MMPMR and RMMR for different systems with dif-
ferently set thresholds are given in Figure 11.4. The first example
(Figure 11.4a) shows the PDFs for a reliable FRS. The genuine and
impostor distributions are clearly separable, the distribution of attacks
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(mated morphs) is situated slightly in the genuine distribution. Since
the threshold is set to a very convenient level (low FNMR), not only
all genuine comparisons, but also all mated morph comparisons are
accepted, resulting in an RMMR of 1. If the threshold is more stringent
(Figure 11.4b), all genuine comparisons are still accepted, but half of
the mated morphs are rejected, resulting in an RMMR of 0.5. If the
threshold is set even stricter (Figure 11.4c), almost all mated morph
comparisons are rejected, but also some of the genuine comparisons,
the resulting RMMR is 0.07. If all mated morph comparisons are to
be rejected, the threshold has to be set even stricter (Figure 11.4d).
However, this will also cause half of the genuine comparisons to be
incorrectly rejected. Thus, the RMMR increases to 0.5 again. If the
genuine and mated morph comparisons are inseparable, as shown in
Figure 11.4e, approximately the same number of mated morph com-
parisons as genuine comparisons are accepted almost independently
of the threshold, resulting in an RMMR around 1. If the mated morph
comparisons are accepted more often than genuine comparisons (Fig-
ure 11.4f), RMMR values greater than 1 are possible. It is important
to note that in all cases the MMPMR should never be higher than the
TMR, otherwise the intra-subject similarity would be increased by the
morphing process, which is an unrealistic pre-requirement.

11.2.2 Theoretical System Vulnerability Assessment

If no concrete values for the evaluation of the system’s vulnerability
are available, it is possible to evaluate the system using the framework
described in [47] and [48]. The main assumptions are, firstly, that the
impostor comparisons are Gaussian distributed and, secondly, that the
morph comparison score is exactly midway between the mean of the
impostor distribution and the genuine comparison score of the sample
used for morphing. Thus the distribution of the morph comparisons
is approximated by averaging the Genuine distribution and the mean
value of the Impostor distribution. For a specific threshold value, the
approximated distribution can be used to predict the susceptibility of
the system to morphing attacks.

11.2.3 Morphing Attack Detection Performance

To evaluate the performance of MAD algorithms, each comparison is
considered individually, since each morph has to be detected sepa-
rately. For this reason, the metrics defined in ISO/IEC 30107-3 [65] for
the performance reporting of presentation attacks can be used here,
namely Attack Presentation Classification Error Rate (APCER) and
Bona Fide Presentation Classification Error Rate (BPCER), which are
defined as follows:
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APCER: proportion of attack presentations using the same Presen-
tation Attack Instrument (PAI) species incorrectly classified as bona
fide presentations in a specific scenario [65].

As an equation, the APCER can be expressed as follows:

APCER = 1−

(
1

NPAIS

)NPAIS∑
i=1

Resi, (11.5)

whereas NPAIS is the number of attack presentations for the given
presentation attack instrument species. This can be replaced by the
number of MA samples. Resi is equal 1 if the ith presentation is
classified as an attack presentation, and 0 if classified as a bona fide
presentation.

BPCER: proportion of bona fide presentations incorrectly classified
as presentation attacks in a specific scenario [65].

As an equation, the BPCER can be expressed as follows:

BPCER =

∑NBF
i=1

NBF
, (11.6)

whereas NBF is the number of bona fide presentations. Again Resi is
equal 1 if the ith presentation is classified as an attack presentation,
and 0 if classified as a bona fide presentation.
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Figure 11.5: Visualization of ACPER and BPCER

As depicted in Figure 11.5, APCER and BPCER of a MAD system
are comparable to FMR and FNMR of a FRS. In a proper MAD system,
the resulting MAD scores of MA and bona fide samples should be
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clearly separable. For overlapping PDF curves, a trade-off between
security (low APCER) and high throughput (low glsbpcer) has to be
found by setting the threshold τMA.

11.2.4 Equal Error Rate

As described in Section 7.3, the EER is not standardized. In Biometrics
it is usually interpreted as the operating point of equal FMR and
FNMR, thus, in order to avoid confusion, the operating point of equal
error between APCER and BPCER will be referred to as Detection
Equal Error Rate (D-EER).

11.2.5 Detection Error Trade-off Plots

The D-EER merely reflects the error rates in a single operating point.
However, if algorithms are to be compared independently of the oper-
ating point, the Detection Error Trade-off (DET) plot is recommended.
A DET plot corresponding to the PDFs shown in Figure 11.5 is given
in Figure 11.6. In the case of MAD systems, the APCER is plotted in
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Figure 11.6: Example of an DET-plot of PDF-plot shown in Figure 11.5

relation to the BPCER. If a low APCER is required (very strict thresh-
old), it leads to a higher BPCER and vice versa. In an optimal system,
the DET plot would therefore be located in the lower left corner of
the graphic. For a fixed APCER, this will result in a fixed BPCER for
the system. These BPCER values can be reported, e.g. as BPCER-10
(for an APCER of 10%) or BPCER-20 (for an APCER of 5%). In the
example shown, the DET plot consists of a straight line. This is not
common and is due to the fact that the PDFs shown in Figure 11.5 are
pure Gaussian distributions.
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C U R R E N T S TAT E - O F - T H E - A RT I N M O R P H I N G
AT TA C K D E T E C T I O N

In recent years, since the first description of the problems of face mor-
phing attacks in [39], many articles proposing new MAD techniques
have been published. In this chapter the existing publications are listed
in Table 12.1, 12.2, 12.3 and 12.4. If more than one approach was pro-
posed in a publication, only the algorithm performing best according
to the publication will be listed in the table. The proposed algorithms
can be divided into two classes according to the scheme described in
Section 11.1: Single image and differential MAD algorithms.

Many of the algorithms show promising results on the databases
used for testing, but it has to be considered that mostly small databases
with a lack of variance were used for training and testing, thus it is dif-
ficult to give a clear statement about the generalisation capability and
robustness of the algorithms. Further, since the morphing databases
are mainly in-house databases, no direct comparison between the
algorithms is possible. For these reasons, the reported performance
of the individual algorithms from the literature will not be discussed.
For comparable performance evaluations, algorithms can be tested on
common platforms under the same conditions, for example the NIST
FRVT MORPH (see Section 3.1.3) and the Face Morphing Challenge
of the SOTAMD project (see Section 3.1.1).

At time of the commencement of the work for this thesis there were
exclusively two publications on the topic of morphing attacks, namely
the first description of the problem [39] and a first approach to the
detection of morphing attacks using BSIF [120]. During the work on
the topic many new papers were published. Some of them build on
the work presented in this thesis, for some it is the other way round.
Due to this interdependence, a separation into own work and related
work would disturb the logical and chronological connection between
the publications. For this reason, the works are presented collectively.
A list of the publications published in the context of this thesis can be
found on page vii.

12.1 single image morphing attack detection

In this section, the existing S-MAD algorithms are subdivided accord-
ing to the features used for classification, as introduced in Chapter 6.
Features used for MAD are Texture Descriptors, Image Forensics
(including Image Noise Pattern) and Deep Features.

79
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pub . approach MA source database post-proc . remarks

[120] BSIF + SVM GIMP/GAP in-house - -

[134] BSIF + SVM GIMP/GAP in-house print and scan adapted DB of [120]

[137] BSIF + SVM triangulation
+ blending

FRGCv2 [114] - -

[136] HOG + SVM triangulation
+ blending

FRGCv2 [114],
FERET [115],
ARface [100]

-
cross database
performance
evaluation

[151] LBP + SVM triangulation
+ blending

FRGCv2 [114],
FERET [115]

-
cross database
performance
evaluation

[25] LBP + SVM MorGan [25] CelebA [91] - -

[123] multi-channel-LBP
+ Pro-CRC

OpenCV FRGCv2 [114] print and scan -

[124] multi-channel-LBP
+ SRKDA

[125] [125] print and scan -

[163] high-dim.
LBP + SVM

triangulation
+ blending
+ swapping

Multi-PIE [52] - -

[5, 69] ULBP + RIPS +
KNN

[97] Utrecht [160] - -

[133] MB-LBP + SVM
triangulation
+ blending
+ swapping

FRGCv2 [114],
FERET [115]

print and scan,
rescaling,
JP2000 compression

cross database
performance
evaluation

[1] WLMP + SVM Snapchat in-house - -

[135]

general purpose
image descriptors
+ score-level
fusion

triangulation
+ blending

FRGCv2 [114] - -

Table 12.1: Relevant S-MAD algorithms based on texture descriptors

texture descriptors Relevant algorithms based on texture de-
scriptors are listed in Table 12.1. In the first publication on MAD [120],
the use of BSIF and an SVM for the detection of morphed images is
proposed. In previous publications, the combination of BSIF features
with an SVM has shown to be a suitable method for similar problems,
for example for the detection of presentation attacks [118]. However,
[134] proved that with a realistic separation of training and test data,
the detection performance of BSIF and SVM decreases significantly
for MAD especially if the images were first printed and scanned (as
is expected for passport photos). The same approach was analysed
again in [137] and it is shown that if the filter parameters of the BSIF
and hyperparameters of the SVM are chosen properly and a database
of sufficient size is available, good detection rates can be achieved.
However, this was only evaluated on a single database (with clear
separation of training and test set) and without post-processing.

If strong differences in the quality of the databases exist, the detec-
tion performance drops considerably. A low but stable performance
is shown for HOG features in combination with an SVM in [136].
Furthermore, LBP is able to achieve a good detection performance of
morphed facial images [151], even across databases. In [25] LBP is not
only tested against conventionally generated morphs (as described
in Chapter 10), but also against morphs generated by a DNN (a so
called GAN). These morphs can also be detected as well, the detection
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performance increases if the morph type to be detected is included in
the training data. Furthermore, there are several suggestions for the
extension of the classical LBP aiming to improve the detection perfor-
mance of the resulting algorithm. For instance, in [123] it is proposed
to perform the LBP extraction not on the greyscale image but sepa-
rately on each colour channel of the colour image, to fuse the channels
at feature level and subsequently process the resulting feature vector
with an Spectral Regression Kernel Discriminant Analysis (SRKDA)
classifier. Unfortunately, this approach is not compared to an SVM
based approach, thus no conclusions about the advantages of feature
extraction on individual colour channels and the advantage of using a
different classifier can be drawn. In [163] it is proposed to extract a
high-dimensional LBP as described in [17]. For this purpose, LBP is ex-
tracted in different scales and merged into a high-dimensional feature
vector, subsequently it is classified employing an SVM. A fusion of
several LBP extractors using a Vietoris-Rips complex is proposed in [5]
and [69]. The Vietoris-Rips complex is built using the response of the
uniform LBP (a simplified version of the LBP using a reduced number
of predefined LBP filers). The ideas from [123] and [163] are combined
and extended in [124]. In this paper it is proposed to extract LBP
features with three different scales for the two colour spaces (HSV and
YCbCr) on all three colour channels. One SRKDA classifier is trained
for each scale and channel, finally a score level fusion is performed.
Although the proposed algorithms were partially evaluated on printed
and scanned images, the robustness against database changes and
further alterations in the testing environment are not analysed. The
robustness of LBP based MAD algorithms against these changes is
investigated in [133]. Different combinations of LBP scaling and cell
subdivisions in combination with an SVM are merged in a score level
fusion, in order to compensate for the sensitivity of LBP to variations
in the testing environment. It is shown that the proposed algorithm is
very robust against variances occurring in a natural scenario. Experi-
ments are performed on four different morphing algorithms, different
post-processing methods (print and scan, rescaling, JP2000 compres-
sion), and two different databases. Furthermore, in [1] a variant of
LBP is proposed as a MAD algorithm, called Weighted Local Magni-
tude Patterns (WLMP). Instead of the binarization performed in the
standard LBP, the individual fields of the LBP are weighted according
to the previously calculated differences.

The advantage of the fusion of several algorithms based on different
feature extractors is investigated in [135]. It is shown that especially the
fusion of LBP or BSIF with additional feature extractors can improve
the robustness of the resulting algorithm.

image forensics Relevant algorithms based on image forensics
are listed in Table 12.2. During the creation of morphed facial images,
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pub . approach MA source database post-proc . remarks

[81] image
degradation

triangulation
+ blending
(+ swapping)

in-house,
Utrecht [160]

- -

[27, 28] PRNU analysis triangulation
+ blending

FRGCv2 [114] hist. equalization,
scaling, sharpening

-

[171] SPN analysis
triangulation
+ blending
(+ swapping)

Utrecht [160],
FEI [158]

- -

[132] PRNU analysis
triangulation
+ blending
(+ swapping)

FRGCv2 [114] print and scan

further analysis
of behaviour of
PRNU on Dresden
image database [46]

[26] PRNU analysis MorGan [25] CelebA [91] - -

[161]
Denoise-CNN
+ Pyramid LBP
+ SRKDA

[123], [151]
FRGCv2 [114],
PUT [73],
in-house

- -

[125]

luminance
component
+steerable
pyramid
+ ProCRC

unclear [123] extended print and scan -

[97]
double-
compression
artefacts

triangulation
+ blending
(+ swapping)

Utrecht [160],
FEI [158]

- -

[58]
double-
compression
artefacts

[97] Utrecht [160],
FEI [158]

- -

[141] reflection
analysis

triangulation
+ blending
(+ swapping)

in-house - -

Table 12.2: Relevant S-MAD algorithms based on image forensics

at least two facial images are manipulated (warping) and merged
(blending). Hence, it is reasonable to attempt to detect these manip-
ulations by means of image forensic techniques. One possibility is
to try to detect the morphed face images on the basis of a reduced
image quality of the morphed images, which is investigated in [81].
However, this approach is only applicable if a lower quality of morphs
compared to bona fide images can be assumed. However, in reality
this assumption is mostly incorrect.

Another possibility is to analyse the noise pattern of the images.
For this purpose PRNU or SPN, as described in Section 6.6, can be
applied, which are usually applied to detect image manipulations or to
determine the sources of images. The information extracted by PRNU
or SPN can be used in explicit algorithms, for example by analysing
individual parameters such as position or value of the maximum of
the Discreet Fourier Transformation (DFT) magnitude histogram of
the noise pattern [28] or by comparing the DFT magnitude histograms
of different areas in the image [27]. Furthermore, [171] introduces an
algorithm which implicitly processes the information contained in the
noise pattern by means of an SVM. In [132] the effect of morphing on
the noise pattern is investigated in more detail and the generalisability
of PRNU based algorithms across different camera types is shown. In
addition, it was observed that PRNU is able to robustly detect morphs
generated with a GAN [26].
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The algorithm proposed in [161] follows a similar concept as PRNU
and SPN. The method used to extract the noise pattern is the denoising
CNN presented in [169]. The noise pattern is extracted per HSV
color channel. Subsequently, an LBP pyramid in combination with
an SRKDA classifier is applied to the extracted noise pattern, which,
according to the authors, captures the noise patterns.

In [124] another algorithm for the analysis of high-frequency im-
age information is proposed. Even though, the algorithm analyses
texture features, it is categorized as an image forensic algorithm due
to its focus on high-frequency information. First, the image is con-
verted into a greyscale image based on luminance, subsequently the
high-frequency information is extracted from this image. A Collabora-
tive Representation Classifier (CRC) classifier [172] is trained on the
resulting high-frequency image.

An approach presented in [97] and [58] proposes to detect morphed
facial images by means of double compression artefacts. This approach
is based on the assumption that by repeatedly saving with lossy
compression during the morphing process, detectable artefacts are
introduced into the image. However, since it can be assumed that an
attacker will always choose the technically best option and thus be
saving the images in raw format or with lossless compression, this
assumption does not hold in a real scenario.

Furthermore, it is possible to detect morphed facial images on basis
of inconsistencies in the facial image. In [141] it is proposed to anal-
yse the reflections in the face, as it can be assumed that they change
unnaturally as a result of the morphing process. Using a digital 3D re-
construction, the expected reflections are approximated and compared
to the reflections in the image to be checked. Although this concept is
very interesting, it will not be used for morph detection in passport
photos, as the ISO/IEC standard requires the absence of hot spots and
reflections in facial images used in electronic travel documents. In par-
ticular, diffuse lighting, multiple symmetrical sources or other lighting
methods should be used, i.e. a single bright "point" light source such
as a camera-internal flash is not acceptable for imaging [63].

deep features As described in Section 6.5, any feature extrac-
tors can also be modelled by NN, extracting so called deep features.
Relevant algorithms based on deep features are listed in Table 12.3.

Since large amounts of natural training data are required for the
training of DNNs, which are usually not available in the area of
MAD, the proposed algorithms use pre-trained networks or adapt
them by transfer learning. In [122] it is proposed to modify two
CNNs, namely VGG19 [146] and AlexNet [82], by transfer learning in
order to adapt them to the MAD problem and apply the intermediate
features of both algorithms to train a CRC. A deeper analysis of the
use of CNN features for the detection of morphed facial images in
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pub . approach MA source database post-proc . remarks

[122]
VGG19
+ AlexNet
+ ProCRC

[134] in-house print and scan -

[143] VGG19
triangulation
+ blending
(+ swapping)

BU-4DFE [168],
CFD [95],
FEI [158],
FERET [115],
PUT [73],
scFace [51],
Utrecht [160],
in-house

motion blur,
Gaussian blur,
salt-and-
pepper noise,
Gaussian noise

trained on all
combinations
(no unseen
attack classes)

[142]
VGG19
+ GoogLeNet
+ AlexNet

triangulation +
blending
(+ swapping)

in-house - -

Table 12.3: Relevant S-MAD algorithms based on deep features

general, is presented in [142]. For this purpose, three different CNNs
are benchmarked, each pre-trained and trained from scratch, namely
VGG19 [146], AlexNet [82] and GoogLeNet [156].

The publications described above mostly ignore the issue of over-
fitting, as pointed out in Section 5.5. Due to the fact that morphing
attacks for the training and test set database are usually generated
by one algorithm from one database, there is a high risk that the
algorithms will over-fit on the particular data and that this over-fitting
will not be detected during evaluation. In [143] an attempt is made to
analyse this problem in more detail. For this purpose the images are
processed with various post-processing (motion blur, Gaussian blur,
salt-and-pepper noise, Gaussian noise). In addition, in some images
certain regions are occluded (eyes, nose, mouth) to prevent over-fitting
to artefacts occurring in these areas. Since training and testing is
carried out on all combinations, a statement about the influence of the
individual factors is not possible.

The training of the DNNs is usually performed on the entire image,
thus it is difficult to determine which areas of the facial image are
considered by the classifier. A rough idea can be given by visualizing
the weights of the input pixels in a heat-map, showing which areas
tend to have a higher weight and therefore a stronger presence in the
feature vector [143].

12.2 differential morphing attack detection

Differential MAD algorithms have the conceptual advantage over
S-MAD algorithms that they have access to the information of the
TLC in addition to the suspected morph. Thus, these algorithms
are potentially able to work more robust [137]. For processing this
additional information, two types of algorithms are known, in this
thesis divided into feature comparison and morphing reversion. The most
important, existing algorithms are listed in Table 12.4.
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pub . approach MA source database post-proc . remarks

feature comparison

[137] differential
BSIF + SVM

triangulation
+ blending

FRGCv2 [114] - -

[131] landmark angles OpenCV ARface [100] - -

[24] directed distances
of landmarks

triangulation
+ blending
(+ swapping)

FERET [115] - -

[148]
SfSNet [145]
+ AlexNet [82]
+ SVM

[123] in-house printed and scanned -

[138] ArcFace [100] + SVM
triangulation
+ blending
+ swapping

FRGCv2 [114],
FERET [115]

print and scan,
rescaling,
JP2000 compression

cross database
performance
evaluation

morphing reversion

[40] Demorphing GIMP/GAP ARface [100] - -

[41] Demorphing GIMP/GAP ARface [100],
CAS-PEAL-R1 [45]

-
CAS-PEAL-R1
contains images with
pose variations

[112] DNN-Demorphing triangulation
+ blending

in-house - -

[109] DNN-Demorphing
triangulation
+ blending
+ swapping

in-house - -

Table 12.4: Differential algorithms

feature comparison An intuitive approach to incorporate the
features of the TLC is a subtraction with the feature vector of the
suspected morph. It is expected that features of the subject contained
in both, the suspected morph and the TLC, will be reduced and any
differences between the morph and the subject will be amplified,
resulting in a more robust MAD. In [137] it was shown that this
may improve, e.g. the detection performance of BSIF based MAD
algorithms.

Another approach is to observe differences in facial geometry be-
tween the two images. During the warping process, the geometry of
the morph is changed due to the warping process. In [131] an attempt
is made to detect these changes by measuring the angles between the
landmarks, but unfortunately no stable detection performance can be
achieved. Damer et al. are refining the approach in [24] and propose
the use of directed distances between the landmarks.

A further approach is proposed in [148]. Using an CNN (SfS-
Net [145]) the image is decomposed into a normal image, an albedo
image (which represents reflectance) and a shading image (which
represents illuminance). From shading and the albedo image a recon-
struction of the original image is generated. The reconstruction of
the suspected morph and the TLC are combined in a further CNN
(AlexNet [82]), which generates a feature vector, which is classified
using a linear SVM. In addition, feature vectors are extracted from
both normal images using AlexNet and classified using a linear SVM.
The results of both classifiers are combined in a weighted score level
fusion.
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Although DNNs offer a great risk of undetected over-fitting, they
can still be used to extract robust feature vectors. In [138] it is shown
that for example the feature vectors of the ArcFace FRS [100] can be
used to perform robust MAD. For this purpose the ArcFace features
of the suspected morph and the TLC are extracted and subtracted
from each other. The difference vector is used to train an SVM with a
polynomial kernel. The advantage of this procedure is that the feature
extractor is not adapted. I.e. it was trained for face recognition, so
no morphed face images were present in the training set, thus it
can be excluded that the feature extractor is over-fitted for certain
morphing artefacts. The robustness of the resulting overall algorithm
is demonstrated on different databases with various post-processings
(print and scan, rescaling, JP2000 compression).

morphing reversion The objective of morphing reversion is to
use the TLC to invert the morphing process, such that, in the case of a
morphed image, the TLC does not match the demorphed image during
a comparison. This concept was first proposed in [40]. However, this
approach encountered the limitation, that even a slight pose variance,
which can occur especially with TLCs recorded under semi-controlled
conditions, strongly influences the result of the demorphing process.
Therefore, [41] proposed an improved version of demorphing, which
normalizes the images previous to the demorphing process. In [112]
and [109] it is proposed to map the process of demorphing by a DNN.
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S U M M A RY

In this part, the publications related to the topic of the thesis are dis-
cussed. First, the state-of-the-art in face morphing is summarised. The
technique is based on the steps described in Chapter 8: Determining
correspondence, warping and blending. The different methods for
determining the correspondences are described. Those are mainly im-
plemented by landmark detection based on active shape models. For
the warping and morphing process the images are usually divided into
Delaunay triangles, which are subsequently distorted and blended.
Since this simple method of morphing is prone to produce artefacts,
especially in regions of the image where not enough or too imprecise
landmarks are located, Section 10.4 introduces several techniques to
improve the resulting morph, namely swapping, artefact replacement
and manual post-processing.

Furthermore, the basics of algorithms for the detection of morphed
facial images, so-called MAD algorithms, are discussed in this part.
Basically, these algorithms can be separated into two classes: single
image and differential detection schemes. In the single image scheme
only the information of the morph to be evaluated is available, in the
differential scheme a live image (which can be assumed to be a bona
fide) is available in addition to the potential morph.

In order to allow an objective evaluation of the morphing attacks
and MAD algorithms, two classes of metrics are presented. On the
one hand, with the MMPMR, an adapted variant of the IAPMR stan-
dardised in ISO/IEC 30107-3 [65] is presented for the evaluation of
FRS vulnerability, as well as with the RMMR a variant of the metric
depending on the performance of the FRS, on the other hand, metrics
for measuring the performance of MAD systems are given with the
APCER and BPCER standardised in ISO/IEC 30107-3 [65].

Finally, Chapter 12 provides a comprehensive overview of the cur-
rent state-of-the-art of MAD algorithms. Divided into single image
and differential MAD algorithms, as well as subdivided according to
the analysed features, the approaches presented in the publications
are listed and evaluated. Since the proposed algorithms have been
tested on inconsistent databases with partially inconsistent metrics, a
direct comparison of the algorithms is not available.
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D E S I G N D E C I S I O N S

In the context of this thesis, MAD algorithms based on different
features were created, in this part the structure of the individual
algorithms is described in more detail. In order to minimize the devel-
opment effort, the algorithms are modular in design, which allows to
adapt the algorithms by exchanging single modules. The individual
modules of the pipeline for the creation of new algorithms are illus-
trated in Figure 14.1. It consists of the following 4 steps: data prepa-
ration, feature extraction, feature preparation, and classifier training.

Morph
Database

Data
Preparation

normalised
images

Feature
Extraction

extracted
features

Feature
Preparation

normalised
features

Classifier
Training

Figure 14.1: Design of MAD pipeline

data preparation For most feature extractors applied, it is nec-
essary to prepare the image data to be processed beforehand, similar
to the pre-processing in FRS. In Chapter 6 it has already been shown,
that the result of most feature extractors depends on the resolution
of the analysed image, requiring a normalisation of the image size.
Furthermore, especially with the TLCs, variances in position and pose
may occur, which can be corrected by the data preparation. In addition,
it is useful, for example for texture-based feature extractors, to crop
the image to the relevant facial area, ensuring that no information
from the background influences the feature vector. The different data
preparation methods of the MAD pipeline are described in Chapter 15.

feature extraction The next module is the feature extraction,
controlling which information of the image is used in the further pro-
cess. Depending on the feature extractor selected and the configuration,
the feature vector will contain different information, information not
contained in the feature vector is not available to the algorithms in the
further process. For example, if a basic LBP histogram is calculated
as described in Section 6.1.1, the feature vector will not contain any
spatial information. If, despite the use of LBP histograms, spatial infor-
mation is to be included in the feature vector, the image to be analysed
can be divided into cells, a histogram can be calculated for each cell
and the resulting histograms can be concatenated. Thus, spatial infor-
mation in resolution of the cells can be preserved, however, the length
of the feature vector increases accordingly. The concepts of the feature
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extractors examined in this thesis are described in Chapter 6, details
on the implementation and configuration of the individual feature
extractor are given in Chapter 16.

feature preparation Once the feature vectors have been cre-
ated, they have to be prepared for the training of the classifier. For
example, many classifiers only accept one-dimensional input data,
requiring multi-dimensional characteristics to be prepared accordingly.
Further, for differential MAD algorithms, this module combines the
feature vectors of the suspected morph and the TLC. The choice of
the combination method is arbitrary, but determines the length of
the resulting feature vector as well as the contained information. A
description of the feature preparation for differential and single image
MAD is given in Chapter 17. Most classifiers require normalized data
for optimal training, thus the feature vectors are zero-centred and
calibrated to a scale between −1 and 1. The feature normalization
used in this processing pipeline is described in Section 17.3.

classifier training In the last module classifiers are trained on
basis of the previously prepared feature vectors. In order to achieve the
best possible separation of the feature vectors into classes, appropriate
classifiers and parameters have to be chosen. The optimal classifier
and parameters depend on the information in the respective feature
vectors. The functional principle of the classifiers applied in this work
is described in Chapter 5, the classifier training module is described
in Chapter 18. The extracted features can usually be visualized and
thus the proper functioning of the algorithms can be verified. The
classifiers, on the other hand, can hardly be visualized and an analysis
of the trained classifier is, if at all, only possible with great difficulty,
meaning that errors in the training may not be noticed, even during
the evaluation, and thus the outcome of the evaluation may be incon-
clusive. In order to minimize this risk, basic principles during training
should be considered, which are described in Section 18.1.
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D ATA P R E PA R AT I O N

The training data of the classifiers, should sufficiently represent the
variance of the data to be classified, in order to obtain a robust model.
At the same time, however, unnecessary variances should be reduced
in order to keep the training process and the classifier model as simple
as possible.

In the case of facial images, the natural variance includes, for ex-
ample, the pose of the face, the position in the image or lighting and
shadows. To minimize this variance in passport photographs, ICAO
recommends following the standard for capturing facial images de-
fined in [63]. Even if, consequently, a certain level of image quality can
be assumed in passports, and thus for the suspected morphs to be anal-
ysed, a certain variance remains. For the TLCs, a significantly higher
variance is to be expected, as the capture process is semi-controlled,
thus no constant quality can be expected.

To reduce the variance of the facial images, a normalisation of the
positioning of the face in the image prior to the feature extraction can
be performed. If identical normalisation procedures are carried out
during training and in the later operation, the variance of the training
data as well as the data to be classified is reduced simultaneous, which
simplifies the training of the algorithm and increases its robustness.
The following section describes the technical implementation devel-
oped in this work for normalisation of position, slight pose variations
and image size.

15.1 image normalisation

In the normalisation applied in this work, the image is changed ex-
clusively by rotation (horizontal alignment) and scaling (adjustment
of the size of the image), which largely avoids changes in texture and
color values. In rare situations, pixels have to be approximated during
the operations, which may result in a slight change of the image at
pixel level. However, this effect is negligible compared to the benefits
of normalisation.

The first step of normalisation is the horizontal alignment of the
image by rotation. Since faces seldom exhibit perfect symmetry, it is
necessary to determine fixed points for orientation during alignment.
The images in this work are normalised according to the centre of
the eyes. On the one hand, they are automatically detectable with
good accuracy, on the other hand, the definition for biometric passport
images described in [63] refers to the position of the eyes. Furthermore,
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the minimum size of passport photos is also defined by the inter-eye
distance.

Technically, the detection of the eyes is based on landmarks. As
described in Chapter 6.4, most landmark detection algorithms do
not detect the centre of the eye, but only the pixels surrounding the
eye. Thus, the average of all eye-surrounding landmarks is calculated,
providing a suitable approximation of the centre of the eye. In Fig-
ure 15.1a, an example of the approximated eye centre is given. The
detected landmarks are coloured in blue, the approximated landmarks
are coloured in red. Once the eye centres have been estimated, the hor-

(a) Example of approx-
imated eye centres
(coloured in red)

α

(b) Visualization of angle
calculation

w

0.25 ·w

0.6 ·w

h

(c) Visualization of crop-
ping calculation

Figure 15.1: Example of face normalisation

izontal alignment of the image can be commenced. For this purpose,
the eye centres are brought to a horizontal line by rotating the image.
First, the angle α between the line through both eye centres and the
horizontal, as visualised in Figure 15.1b, is calculated:

α = tan−1

(
eyerx − eye

l
x

eyery − eye
l
y

)
, (15.1)

whereas eyerx refers to the x-coordinate of the right eye, eyely to the
y-coordinate of the left eye and vice versa. Based on the calculated
angle, a rotation matrix is determined, according to which the image
is rotated by affine transformation around the centre between both
eyes. As a result of the rotation the position of the eye centre point
in the image changes, thus the new position has to be determined.
The y value for the position of both eye centres is the average of the y
values of the eye centres prior to rotation. The x value corresponds to
the previous distance to the centre of both eye centres (the centre of
rotation), which can be estimated by the Pythagorean theorem:

rotatedEyelx = cx −
√
(eyelx − cx)

2 + (eyely − cy)
2

rotatedEyerx = cx +
√
(eyerx − cx)

2 + (eyery − cy)
2,

(15.2)
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whereas c refers to the coordinates of the rotation point.
Once the horizontal alignment is applied, the face images should be

cropped, such that the faces are aligned at a constant size in a constant
position of the image. For this purpose, the guidelines of ISO/IEC
19794-5 [63] are followed. For biometric passport photographs, a mini-
mum face width and height in the image is requested. Since these
two parameters are difficult to measure in an automatic manner, the
standard for token images is applied instead in this thesis. According
to the standard, the facial images will be cropped according to the
centre of the eyes, which are given, due to the previous horizontal
alignment. It is specified that the inter-eye distance should be 25% of
the image width, and the eyes should be horizontally centred in the
image. The distance of the eyes to the upper edge of the image should
be 60% of the image width. An example of the cropping of a facial
image is depicted in Figure 15.1c, the facial image would be cropped
to the dimensions displayed in green. In addition to the alignment of
the face in the image, [63] requires a minimum resolution for biometric
passport images. The minimum resolution is defined to correspond to
at least 180 pixel width of the head, which, according to the standard,
is equivalent to an inter eye distance of at least 90 pixels, resulting in a
minimum image resolution of 360× 480 pixels, higher resolutions are
admitted as well. An example of a cropped full face image is given in
Figure 15.2a.

(a) Example of a cropped
full face image

1
3h

1
3h

37.5%h

(b) Example of the crop-
ping of the facial area

Figure 15.2: Example of close crop of the facial area

15.2 image cropping

As described in Chapter 14, some feature extractors require that only
the relevant areas of the image are passed. In this work, the cropping of
the facial area has been chosen to ensure that no background is present
on the cropped areas and that artefact-threatened areas, such as the
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neck or hair, are omitted. For full face images normalised according to
Section 15.1, a suitable cropping was determined to be a square with
edge length of 13 of the image height, centred horizontally and at a
distance of 37.5% of the image height from the top edge of the image.
An example of this cropping is shown in Figure 15.2b.
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F E AT U R E E X T R A C T I O N

After normalising the images, the feature extraction module extracts
the features relevant for classification. Each feature vector transfers
the image, which is represented as a matrix, into a typically lower
dimensional space, which promises a higher discriminant power for
the respective problem, making it easier to separate the data. In this
thesis different categories of features are investigated, which con-
tain mostly different information. The following classes of feature
extractors are implemented in this framework: Texture descriptors
essentially describe the surface structure of the image. Gradient infor-
mation is extracted either globally, for example via HOG, or locally via
SIFT and SURF. An extraction of pure spatial information is provided
by landmark detection algorithms. For the analysis of noise patterns
PRNU or SPN based approaches can be used. If the features are to be
determined in a purely probabilistic way, DNNs can be used to extract
so-called deep features. This chapter motivates the use of the selected
algorithms whose concepts were presented in Chapter 6 and describes
them in more detail regarding implementation and configuration.

16.1 texture descriptors

During the creation of morphed facial images, the morphing process
introduces changes into the image that can be used to detect said
images. In particular, these changes are reflected by faulty regions,
such as overlapping landmarks, which result in incorrectly distorted
triangles, as shown in Figure 16.1a. Another error common to auto-
mated morphing algorithms are artefacts in the eye region, which is
particularly prone to errors due to the high contrast provided by shad-
ows and wrinkles, and the difficult detection of the iris as described
in Section 10.1. An example of artefacts in the eye region is given in
Figure 16.1b. Furthermore, ghost artefacts can be caused by landmarks
that are too few or too poorly positioned. This happens frequently in
the area of the neck or hair, as visualized in Figure 16.1c. In order to
be able to map this kind of image changes in feature vectors, texture
descriptors can be used. In this thesis the suitability of LBP and BSIF
for describing these artefacts is investigated.

16.1.1 LBP

The basic concept of the applied LBP is described in 6.1.1. The LBP
implementation uses the image normalized and cropped according to
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(a) Example of errors in-
troduced by incorrectly
distorted triangles

(b) Example of errors in eye
region

(c) Example of errors in
hair region

Figure 16.1: Example of errors introduced by incorrect morphing

Section 15.2 as input image. Prior to processing, the regions are scaled
to a fixed size of 160× 160 pixels to achieve an independence from the
size of the analysed image. Although it was shown in [136] that the use
of MB-LBP patches may contribute to the stability of the system, the
performance of the classical LBP is far ahead of the MB-LBP in other
scenarios [137], which can be explained by the high relevance of the
detailed information, which cannot be mapped by MB-LBP, due the
smoothing effect of the bigger patch. Thus, the classical LBP with a 3
LBP patch, as well as an MB-LBP with a 9× 9 patch are implemented.

By calculating the LBP histogram, any local information contained
in the image is discarded. To preserve local information, the LBP image
can be divided into cells, subsequently a histogram is calculated for
each cell. As a result, the length of the feature vector multiplies by the
number of cells, but spatial information is obtained in resolution of
the cell division. An inevitable correlation exists between cell division,
patch size, image size and the resulting histogram. The finer the cell
division and the larger the patch, the fewer values can be calculated
per cell and the sparser the histogram. As the resolution increases,
the number of values per cell increases as well. For the applied patch
sizes and the region of 160× 160 pixels, a subdivision into 4× 4 cells
has shown to be appropriate, thus it is implemented in addition to the
LBP calculation without cell division.

16.1.2 BSIF

As a further texture descriptor, BSIF is implemented as described in
Section 6.1.2. The implementation receives pre-cropped face regions,
which are scaled to 160× 160 pixels prior to the processing step. As
for LBP, it has been shown that the use of larger BSIF patches results
in more robust systems [136], but using smaller BSIF patches results
in significantly higher performance [137]. In order to allow a better
comparison to LBP, BSIF with a patch size of 3× 3 and 9× 9 pixels
with 8 filters are used. The resulting feature vector of a length of 256
is directly comparable to that of the LBP.
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As for LBP, the spatial information is lost during the calculation
of the histogram, an effect which can be prevented by the previous
division into cells. The behaviour of the feature vector is identical
to that of LBP, which is why, also to ensure comparability, the same
configuration as for LBP of no cell division and division into 4× 4
cells is implemented.

16.2 gradient based descriptors

Morphing can be simplified as an averaging of two images. This
process reduces the probability of the occurrence of extreme values,
resulting in a smoothing of the image. This smoothing, which is hardly
visible in the image, can be captured by gradient extraction. A basic
approach is the calculation of the Mean of Gradients, a more elaborate
method is the extraction of HOG features.

16.2.1 Mean of Gradients

This approach to extract gradient features is straight-forward. In a first
step, the previously cropped face region is scaled to 160× 160 pixels,
afterwards a gradient image is calculated for x and y dimension, as
described in Section 6.2.1. Finally, the mean value per gradient image
is estimated, resulting in a feature vector of length 2.

Due to the calculation of the mean, any spatial information is
dropped. Thus, in order to avoid said loss, a subdivision into cells can
be applied. For comparability with previous algorithms, a subdivision
into 4× 4 cells is implemented in addition to the mean of gradients
without cell division, resulting in a feature vector of length 32.

16.2.2 HOG

A much more elaborate extraction of the gradient information is
achieved by calculating the HOG on the previously cropped face
region, scaled to 160 × 160 pixels. As indicated in the description
of the technical background of HOG in Section 6.2.2, considerably
more parameters have to be configured, compared to the previous
presented feature extractors. First, the region is already divided into
cells by default, second, the number of discrete directions and thus
the length of the histogram per cell has to be defined, finally the
number of cells to be combined into a block has to be specified as
well. The definition of the parameters influences the result of the
histogram calculation, as well as the length and content of the feature
vector. In order to achieve a robust and general applicable HOG
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extraction, recommended standard parameters1 are applied, namely 9
orientations, 8× 8 pixels per cell (which corresponds to 20× 20 cells
for regions of 160× 160 pixels), and 3× 3 cells per block, resulting in
a feature vector of length 26,244.

16.3 keypoint descriptors

The feature extractors described in Section 16.2 transfer the entire pro-
vided image evenly into a feature vector. As described in Section 6.3,
keypoint descriptors, such as SIFT and SURF, extract the features in
a similar way to HOG, but with a focus on prominent regions. Thus,
the resulting feature vectors do not provide a constant length, but
depending on the number of detected prominent regions, meaning
that the resulting feature vectors are not suitable for subsequent use
in classifiers. For that reason, a modified variant of the keypoint de-
scriptors is applied in this thesis. Under the assumption stated in
Section 16.2, that the morphing process smoothes the generated image,
the number of prominent points (e.g. edges) in the image decreases.
Thus, the number of detected keypoints should allow a statement
about whether an image has been morphed or not.

16.3.1 SIFT

Since it is assumed that morphed facial images can be identified by
the number of detected keypoints, this implementation, as described
in Section 6.3.1, initially computes the SIFT keypoints on the 160×
160 pixels facial region, however, subsequently only the number of
keypoints is assessed, discarding any further information extracted by
SIFT. The parameters relevant to the number of keypoints, namely the
number of octave layers, as well as the thresholds for contrast (to filter
weak keypoints) and edge detection (to filter edges), are set according
to the recommended default parameters2: 3 octvave layers, contrast
threshold of 0.04 and edge threshold of 10.

Since the generated result is a scalar, it can directly be used as an
MAD score, meaning that the training of classifiers can be omitted at
this point. In order to avoid discarding the spatial information during
the calculation, the facial region can be divided into cells prior to
the counting of keypoints, determining the number of keypoints per
cell. In this implementation, a subdivision of 4× 4 cells was chosen,
resulting in a feature vector of length 16.

1 The standard parameters are derived from the documentation of the used HOG
implementation: https://scikit-image.org/docs/dev/api/skimage.feature.html

2 The standard parameters are derived from the documentation of the used SIFT
implementation:
https://docs.opencv.org/3.4.9/d5/d3c/classcv_1_1xfeatures2d_1_1SIFT.html

https://scikit-image.org/docs/dev/api/skimage.feature.html
https://docs.opencv.org/3.4.9/d5/d3c/classcv_1_1xfeatures2d_1_1SIFT.html
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16.3.2 SURF

As described in Section 6.3.2, the functionality of SURF is very similar
to that of SIFT, the major difference lies in the implementation of SURF
optimised on the computational time. For this reason, the concept for
extracting feature vectors described in 16.3.1 can be fully adopted,
with a difference in the definition of the parameters. In the employed
library3, the number of octave layers and a threshold value for the
determination of keypoints has to be defined. In this implementation,
both values are set according to the recommendations of the employed
library, namely 3 octave layers and a threshold value of 100 for the
keypoints.

16.4 landmark extractors

During the morphing process, the two images to be morphed are
distorted in a way, that corresponding landmarks overlap. Hence, it
can be assumed that morphed images may be detected by measuring
the landmark shift compared to the original. Due to the absence of the
original image, the potentially morphed image has to be compared
with an unaltered image of the subject, the TLC. Thus, landmark based
methods are among those that can only be applied in the differential
scenario. In [131] it is proposed to determine angles and distances
between the landmarks and use these as a feature vector for classifica-
tion, however, the resulting detection performance is not convincing.
In [24] a refined approach is presented in which the distances between
corresponding landmarks are considered separately for the x and
y dimension. Since considerably better results are reported for the
second approach (even if a direct comparison is not feasible, due to
different databases and classifiers), the approach proposed in [24] is
implemented in the applied MAD pipeline. For landmark extraction,
the two algorithms presented in the following sections are employed.

16.4.1 Dlib

Dlib is a comprehensive library for machine learning and image pro-
cessing [77]. This library contains an implementation for training
shape predictors according to [74] and provides a pre-trained model
for the detection of 68 landmarks in facial images.

Initially, a Region of Interest (RoI) is determined in which the land-
marks should be located. For this purpose, a face detection is carried
out applying HOG features and a linear SVM on an image pyramid.
Based on the RoI, the landmark detection is conducted on the basis of
an ensemble of regression trees. A pre-trained classifier is included

3 The Implementation for SURF of the OpenCV library was applied:
https://docs.opencv.org/3.4/d5/df7/classcv_1_1xfeatures2d_1_1SURF.html

https://docs.opencv.org/3.4/d5/df7/classcv_1_1xfeatures2d_1_1SURF.html
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in the library. The training is realized with the gradient tree boosting,
described in Section 5.3.3. The constant function F0, which is required
for training, is described by the average position of each landmark
in the RoI on the training data. This ensures that the detected land-
marks are roughly face shaped. As a feature for landmark detection
the algorithm utilises the difference of intensity values of pixel pairs.
A detailed explanation for the choice of algorithms, parameters and
features can be found in [74].

16.4.2 WING

A further approach for the extraction of facial landmarks is described
in [36], where a CNN with a customised loss function is proposed.
The network accepts a three-dimensional matrix of 64× 64× 3 (x, y,
and color channels) as input vector and returns a vector with the
2D coordinates of the landmarks. The proposed network is a basic
CNN consisting of five convolutional layers of size 3× 3, one fully
connected layer and the output layer. The special characteristic is the
use of the so called Wing-Loss instead of the L2-Loss, commonly
used for landmark extraction. Wing-Loss was designed to provide the
non-linear behaviour of a log function for small errors, compensating
the influence of errors of different sizes. For large errors, however, the
function behaves like an L2-error, in order to be able to adapt to large
errors, e.g. strong pose variations. The resulting function is given as
follows:

wing(x) =

w ln(1+ |x|
ε ) if |x| < w

|x|−C otherwise
(16.1)

w limits the non-linear (upper) part of the equation to the inter-
val [−w,w] and ε defines the curvature of the non-linear function.
C = w−w ln(1+ w

ε ) is a constant depending on w and ε, which al-
lows a smooth transition between the linear (lower) and the non-linear
(upper) part of the equation. An example of Wing-Loss with w = 5

and ε = 0.5 in comparison to L2-Loss (scaled by 0.1) is depicted in
Figure 16.2.

The implementation4, applied in this thesis, provides a pre-trained
CNN which determines the position of 19 landmarks.

16.5 image noise pattern

The origin of images can be determined on the basis of the image
noise pattern, a high frequency feature unique to each camera chip.
Bona fide images are captured by a single camera mostly without

4 The Matlab implementation for Wing-Loss landmark detection provided by the
authors can be found at: https://github.com/FengZhenhua/Wing-Loss.

https://github.com/FengZhenhua/Wing-Loss


16.5 image noise pattern 103

−20 −10 0 10 20
0

10

20

30

40

50
L2 Loss
Wing Loss

Figure 16.2: Example of L2-Loss and Wing-Loss Function

further processing, thus a single image noise pattern of one camera
can be detected in the image. Morphed images, on the other hand,
consist of a merge of at least two images, which may originate from
different cameras resulting in a superposition of two different image
noise patterns. In addition, the images to be morphed are distorted,
which alters the image noise pattern. Based on these effects, it can
be assumed that morphed images can be detected by the analysis of
the image noise pattern. In the framework used for this work, two
different interpretations of the image noise pattern are implemented,
which are described in the following sections.

16.5.1 PRNU

Likewise the previous algorithms, this algorithm operates on the
cropped facial regions of normalized images, initially scaling them to
160× 160 pixels to produce results independent of the image size. The
extraction of the PRNU is basically only a high pass filtering of the
image. For this purpose the image I is denoised with a denoising func-
tion F(I), the PRNU corresponds to the residuals WI of the difference
between the image and the smoothed image:

WI = I− F(I). (16.2)

The resulting PRNU depends on the choice of the filter function. For
the PRNU extraction in this work, the filter suggested in [102] was
applied.

For further analysis of the extracted PRNU, the system proposed
in [132] is utilized. Different concepts have been proposed in several
publications [28], [27], [132], however, the MAD pipeline implemented
for this work is limited to two approaches, which have proven to
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offer a high performance [132], both in testing on the database and in
robustness across different camera types.

For both concepts the PRNU signal is initially divided into 10× 10
cells. The first approach calculates a histogram Hp of the distribution
of the PRNU values per cell. Per histogram the variance is calculated,
resulting in a scalar value per cell:

Pvar =
1

B

B∑
n=1

(HP(n) −HP)
2, (16.3)

whereas B represents the number of bins and HP the average of the
frequencies of the Bins of histogram Hp. In [132] different methods
for the aggregation over all cells of the scalar SVn of the single cell n
are examined. The most effective aggregation for Pvar was found to
be the aggregation by calculating the maximum, referred to as Amax:

Amax = max
∀n∈1...N

SVn. (16.4)

For the sake of simplicity, in the following this approach will be
referred to as PRNU-1.

The second approach analyses the spectral characteristics of the
PRNU signal. First the DFT transformed of the PRNU is calculated,
subsequently, the energy of the DFT magnitudes per cell are estimated:

Den =
∑
x∈M

|x|2, (16.5)

where M represents the DFT magnitudes and x the respective values.
The aggregation of the scalars of the cells is carried out by calculating
the minimum over all cells:

Amax = min
∀n∈1...N

SVn. (16.6)

For the sake of simplicity, in the following this approach will be
referred to as PRNU-2.

Since the extracted characteristics are scalars, they can directly be
used for classification, avoiding the need to train a classifier.

16.5.2 SPN

A further method for the analysis of the image noise pattern was
proposed in [171] in parallel to the algorithm used in Section 16.5.1.
As with the calculation of PRNU, the high-frequency information
of the facial region, scaled to 160 × 160, is extracted according to
equation 16.2, however, the guided image filtering suggested in [57]
is used as filter function F(I). Further, an adaptive Wiener filtering is
performed on the residuals, providing the SPN. Under the assumption
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that differences in the frequency response of the SPN for bona fide
and morphed images are detectable, the 2D Fourier transform of the
SPN signal is computed by means of DFT. The Fourier transform is
divided radially into 18 areas and each area is further divided into 7
axial sub-areas, creating 144 individual regions. Due to the symmetry
of the Fourier spectrum, however, the upper and lower halves are
identical, thus the lower half can be discarded. For each remaining
region, the mean and variance of the contained values is computed,
resulting in a feature vector with length of 144.

16.6 deep features

As described in Section 6.5, machine learning algorithms, especially
DNNs, can be used to extract statistically significant features from
images in addition to hand-crafted feature extractors. The difficulty
of this approach is the dependence of the information represented
in the extracted features on the nature of the training data used to
train the feature extractor. If the wrong training data is chosen, this
might cause an over-fitting of the feature extractor, resulting in very
good results on known data, which, however, cannot be reproduced
in a real use case. In order to avoid this effect, only DNNs pre-trained
for face recognition are applied in this thesis. These networks have
been trained to extract representative features from facial images,
without containing morphed facial images in the training process,
thus implicitly preventing an over-fitting to artefacts of a specific
morphing algorithm. In the implemented MAD pipeline the feature
extractors of three different FRSs are used, which are described in
more detail in the following sections.

16.6.1 FaceNet

The first FRS utilised for the extraction of deep features is a reimple-
mentation5 of FaceNet, a deep CNN FRS proposed in [140]. FaceNet
is built following the topology of Inception-Resnet-v1 (also known as
GoogLeNet) proposed in [156]. The distinctive element of this topology
is the use of so-called inception modules. The determination of the
optimal kernel size for the convolution step in CNNs is not trivial, due
to the non-constant size of the objects to be described. For this reason,
several kernel sizes are used in parallel in the inception modules,
promising an increased robustness of the algorithm. In the case of the
Inception-Resnet-v1, 9 inception modules are concatenated, resulting in
a network with a depth of 27 layers.

Different pre-trained models are available for the employed im-
plementation, in this work, the most recent model was chosen. The

5 The utilized implementation can be found at:
https://github.com/davidsandberg/facenet.

https://github.com/davidsandberg/facenet
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model was trained on the VGGFace2 database [111], normalised by
MTCNN [170] and resized to 160× 160 pixels. Thus, all images whose
features are to be extracted are also preprocessed as full face images
in the same manner and subsequently passed to FaceNet.

The network extracts feature vectors of length 512.

16.6.2 ArcFace

As described for example in [111], an optimization of deep CNNs as
FRSs is often carried out based on the soft-max loss, which can be
represented in a simplified way according to [90] as follows:

L = −
1

N

N∑
i=1

log
eW

T
yi
xi∑n

y=1 e
WT
j xi

, (16.7)

whereas xi represents the feature of the i-th sample, belonging to class
yi. Wj represents the j-th column of weights W, N is the number of
samples and n is the number of classes (in the described application
n = 2). However, according to [29], the soft-max loss has the disad-
vantage of not explicitly optimizing the features by increasing the
similarity of the features for intra-class comparisons and decreasing
it for inter-class comparisons. Thus, trained CNNs do not provide
optimal robustness against high intra-class appearance variations, e.g.
due to different poses or different age at the time of recording. For
that reason, Deng et al. [29] suggest using the ArcFace loss instead.
The main difference to the soft-max loss given in equation 16.7 is that
WT
j xi is replaced by ‖Wj‖‖xi‖cosθj, where θj is the angle between

weight Wj and feature xj. In order to achieve a higher inter-class dis-
crepancy and intra-class compactness of the features, a margin penalty
m is introduced in addition, resulting in the following ArcFace loss:

L = −
1

N

N∑
i=1

log
es(cos(θyi+m))

es(cos(θyi+m)) +
∑n
j=1,j6=yi e

s(cosθj)
, (16.8)

where s represents a re-scaling factor for ‖x‖. A detailed deduction
of the ArcFace loss, as well as the mathematical background and
reasoning behind the design can be found in [29].

In the MAD pipeline the existing implementation6 of the authors
of [29] is utilized. As with the FaceNet, described in Section 16.6.1,
the images are normalised using MultiTask Cascaded convolutional
Neural Network (MTCNN) and scaled to 112× 112 pixels, prior to
training or feature extraction. The authors offer several pre-trained
models, in this pipeline the model LResNet50E-IR,ArcFace@ms1m-refine-
v1 is chosen, since, according to the authors, it achieves the most stable
performance on the tested databases. The architecture of the selected

6 The corresponding source code can be found at:
https://github.com/deepinsight/insightface.

https://github.com/deepinsight/insightface
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network is, as the name suggests, a residual network comprised of 50
layers. A residual network is characterised by shortcut connections
between different layers, allowing the output of a previous layer
(residuals) to be processed as input on subsequent layers, simplifying
the computationally expensive training of very deep CNNs.

The network extracts feature vectors of length 512.

16.6.3 Eyedea

The third type of Deep Features is provided by the commercial FRS
EyeDentity7 of the company eyedea. Unlike for the other FRSs utilised,
the implementation is a company secret and thus not openly available,
however, in contrast to most other commercial products, the software
allows separate extraction of feature vectors, allowing their use for
MAD. According eyedea the feature extraction is done by an DNN.
However, little information is available about the extraction process.
Full facial images in gray scale or colour are accepted as input, the
extracted feature vector has a length of 256.

7 Further information regarding the software and the company can be found at:
https://www.eyedea.cz/eyedentity/

https://www.eyedea.cz/eyedentity/
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F E AT U R E P R E PA R AT I O N

The feature vectors extracted by the algorithms described in Chapter 16
could, in theory, directly be used as an input for classification by
machine learning algorithms. However, there are a couple of reasons
for a prior preparation of the feature data. First, for most machine
learning algorithms, it is important that the training data is zero-
centred and has a variance of 1 (as a consequence, all other data has
to be normalized according to the same scheme in order to enable
classification). Furthermore, a feature level fusion can be performed
at this point, enabling, for example, in the differential MAD scenario,
the features of the suspected morph and the TLC to be merged into a
single feature vector. In the MAD pipeline applied in this work, both,
single image algorithms and differential algorithms, are implemented,
the construction of the respective feature vectors is described in the
following sections.

17.1 single image features

In order to implement an algorithm according to the scheme described
in Section 11.1 and illustrated in Figure 11.1a, no further action is
required at this point. In principle, all features not requiring a com-
parison with an additional feature can be used. This includes all
multidimensional features extracted by the algorithms described in
Section 16.4. However, in some scenarios the features do not contain
information relevant for MAD without the information of the TLC.
For example, landmark features are not considered in the single image
scenario, as only by the comparison of the landmarks of the suspected
morph with those of a TLC a statement an be made about whether or
not the considered image has been morphed.

17.2 differential features

In the differential scenario a TLC is available in addition to the sus-
pected morph. As described in Chapter 12, the TLC can be either
utilized for attempted morph reversal, so called de-morphing, or for a
comparison of the features of the suspected morph and the TLC. Due
to the fundamental differences of de-morphing, it is regarded outside
the MAD pipeline and is solely used for comparisons in the evaluation
as a black box. There are unlimited possibilities for the combination of
features for comparative algorithms, the characteristic of the resulting,
fused feature vector and the contained information, varies accordingly.

109



110 feature preparation

An obvious combination is the concatenation of the feature vectors. In
this case, no information is discarded, meaning all information from
both feature vectors is available in a subsequent training. However,
this procedure doubles the number of dimensions in the feature vector.
The increasing length of the feature vectors has a high impact on the
training of the classifiers, as a higher dimension of the input data
leads to a larger number of free variables in the classifier (e.g. more
dimensions of the hyperplane of an SVM). From a mathematical point
of view, the training of a machine learning algorithm is the solving
of an equation. If the number of free variables (dimensions in feature
space) doubles, twice the number of data points (training samples) is
needed in order to solve the equation. Another possibility is to capture
the differences between the two feature vectors. This causes the loss
of the information about the absolute of the individual values in the
feature vector, which is considered to be acceptable, as the relevant
information is assumed to lie in the differences. An advantage of this
representation is that the dimensions of the feature vector remains the
same as for the single image scenario. For this reason, the calculation
of the difference between the feature vectors of the potential morphs
and the TLCs for the creation of the merged features was chosen in
this MAD pipeline.

17.3 feature normalisation

Regardless of whether single image features or differential features
are used, the machine learning algorithms to be trained benefit from a
normalisation of the features [147]. The goal of the normalisation is to
zero-centre the data and to set the variance to 1. The normalisation
hereby is applied to the dimension of the feature vectors. I.e. every
feature of the feature vector is normalised across all data points. If
the data is not zero-centred, it might lead to the effect that during
the first iterations of the machine learning algorithms only the offset
of the data is compensated. For example, with a linear SVM the hy-
perplane would initially be shifted in one direction only. This might
cause a considerable extension of the training process. If the variance
is much greater than 1, the errors occurring during training are sig-
nificantly larger, since the absolute distances between the data points
are bigger, changing the ratio of the errors to the fixed variables of
the loss function, which in turn changes the training behaviour of the
algorithms.

Different algorithms can be used for normalisation. An intuitive
approach is the min-max normalisation. In this approach, the value
range of each feature across all data points is first transformed by sub-
tracting the minimum, such that the value range starts at 0, afterwards
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the value range is mapped to 1 by dividing with the value range. The
corresponding equation is given as:

yi =
xi −min(xi)

max(xi) −min(xi)
, (17.1)

whereas xi represents the vector of the i-th feature over all data points
and yi the normalised values of the i-th feature of all data points. The
min-max normalisation bears the disadvantage that outliers in the
value range can have a huge influence on the result of the normali-
sation. To reduce the influence of outliers, the Z-score normalisation
can be applied. Instead of min() and max() −min(), the mean value
and the standard deviation are used, as they react more robustly to
outliers:

yi =
xi −mean(xi)

std(xi)
. (17.2)

Due to the more robust behaviour, the Z-score normalisation is used
in this MAD pipeline. It is important to note that the exact same mean
and standard deviation of the data used for training have to be used to
normalise the data to be evaluated as well, making the normalisation
function identical.
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T R A I N I N G O F C L A S S I F I E R S

In order to be able to make a statement about whether a sample
has been morphed or not, based on the feature vectors extracted as
described in Chapter 16 and prepared as described in Chapter 17, a
classification of the feature vectors is necessary, reducing the high-
dimensional space of the feature vectors to a one-dimensional score,
which can be used to derive a binary decision based on a threshold
value.

As described in Chapter 5, the result of training the machine learn-
ing algorithms is hard to comprehend, thus a possible over-fitting
can only be proven by appropriate testing. For this reason, it is rec-
ommended to minimize the risk of errors by adhering to training
principles, which are described in Section 18.1.

Various classifiers are implemented in the MAD pipeline used in
this work. Section 18.2 describes the unification of the usage of the
different classifiers, in order to keep them interchangeable and to
allow a good comparability of obtained results.

As described in Chapter 5, the choice of the hyperparameters of a
classifier can significantly influence the result of the training process.
Hence, Section 18.3 discusses the finding of optimal hyperparameters,
describes the problems associated to this and explains the choice of the
hyperparameters implemented in this pipeline. Finally, Section 18.4
gives an overview of the classifiers available in this pipeline.

18.1 training principles

For the training and evaluation of machine learning algorithms for
the classification of suspected morphs, the general principles for the
training of machine learning algorithms as well as for the training and
evaluation of biometric systems have to be considered. Furthermore,
specific effects resulting from the self-generated morphing databases
have to be considered.

In general, it should be ensured that any feature vector used in
the context of the algorithm (regardless of whether it is used for
training, evaluation or in a real-world deployment scenario) exhibits
the same dimensions. This requirement refers not only to the length
of the feature vectors (it is mathematically and logically impossible to
process vectors of different lengths in the presented machine learning
algorithms), but also to the nature of the dimensions. If the feature
vectors have been normalized for training, the same must be applied
to all other feature vectors used with this algorithm.
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A further prerequisite is a clear separation of the data sets [98]. The
data used for training must not be present in the evaluation. In the
case of morphed facial images, it should be noted that the images used
for the creation of the morph are directly related to the morph itself,
consequently the training and test sets should be separated based on
the subjects, prior to the creation of the morphs.

In addition to the clear separation of subjects, it should be ensured
that, as described in Chapter 5.5, the number of samples per class
is balanced. In the case of MAD, it is much easier to increase the
number of morphed samples than the number of bona fide samples,
since, in theory, all subjects in a subset can be morphed among each
other, resulting in an exponentially increasing number of morphed
samples in relation to the number of subjects. Thus, a pre-selection of
the morphs to be created has to be made, in order to create a balanced
dataset.

Furthermore, there are no public morphing databases that can be
used to train the algorithms. Thus, the morphs in the databases used
in most of the publications are created by the authors themselves,
usually using only one morphing algorithm. As a result, the training
and test data comprise morphs that contain the same artefacts and in-
consistencies. Over-fitting of machine learning algorithms to artefacts
specific to a morphing algorithm can only be detected by evaluating
morphs created by an algorithm with different characteristics. Other-
wise, no statement can be made about the generalizability of the MAD
algorithm.

18.2 training framework

In order to enable a fair benchmark of the applied classifiers, the ma-
chine learning algorithms used as classifiers in the MAD pipeline are
unified. Initially, the feature vectors, previously extracted according
to Chapter 16 and prepared according to Chapter 17, are loaded. At
classification stage it is irrelevant whether the features are for the
differential or single image use-case. The parameters of the normali-
sation applied in Section 17.3 have to be stored, as it is mandatory to
normalise all further data with identical parameters. The preparation
is performed independently of the machine learning algorithm to be
trained.

The model to be trained, depending on the selected algorithm, is ini-
tialised with fixed parameters. The choice of parameters is described
in more detail in Section 18.3. Due to the choice of fixed parameters,
the different machine learning algorithms can be considered as black
boxes, receiving the feature vectors as input and generating a pre-
dictive model. The generated models are stored together with the
parameters for normalisation for the evaluation of further data.
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18.3 parameters for classifiers

The choice of hyperparameters of machine learning algorithms has
an influence on the training and subsequent structure of the gen-
erated model. The selectable parameters of the individual machine
learning algorithms and their influence on the model are described
in Chapter 5. The determination of the optimal hyper parameters
is a complex issue [19]. On the one hand, the search spaces for the
optimal hyperparameter set are often very large, on the other hand,
the optimal hyperparameters also depend on the nature of the training
data, meaning the optimal hyperparameter set has to be determined
for each dataset individually.

Different approaches exist to detect the optimal hyperparameters.
The easiest approach is a grid search. The optimal value is searched in
a defined range for each definable hyperparameter. Since the hyperpa-
rameters might influence each other, the optimal parameter set must
be determined throughout all dimensions, leading to an explosion of
possibilities, especially for algorithms with multiple hyperparameters.
One model has to be trained and evaluated for each parameter set,
meaning that this method is only feasible for a small number of param-
eters or a small range of possible values per parameter. More elaborate
is the search for hyperparameters via optimisation algorithms, so-
called auto-tuning, for example by Bayesian optimisation [149]. The
model itself is considered as a function to be optimised, which allows
a stepwise tuning of the parameters in certain directions, reducing the
number of models to be trained.

For the algorithms trained in this thesis, auto-tuning of the hyperpa-
rameters was omitted. Due to the limited size of the databases and the
limited computing resources, the optimisation of the hyperparameters
did not prove useful. To achieve robust algorithms the recommended
standard parameters are applied. It should be noted that an optimisa-
tion of the hyperparameters might bring a further performance gain,
but this has to be analysed in more detail on larger databases for a
smaller number of algorithms, in order to avoid an over-fitting.

18.4 chosen classifiers

In the MAD pipeline used, four different machine learning algorithms
are implemented, which are listed including the defined hyperparame-
ters in Table 18.1. The freely available implementations of SciKit-Learn1

have been used for the respective algorithms.

SVM The first classifier used is an SVM with RBF kernel. SVMs are
a widely used and often applied classifier in biometrics, for example

1 The documentation for the used implementations can be found at:
https://scikit-learn.org/

https://scikit-learn.org/
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algorithm hyperparameter

SVM with RBF kernel C = 1.0, γ = 1
nfeatures

Random Forest nestimators = 100
AdaBoost nestimators = 50, learningrate = 1
Gradient Boosting nestimators = 100, learningrate = 0.1

Table 18.1: Machine learning algorithms and respective parameter sets im-
plemented in the MAD pipeline

for FRSs [116] or Presentation Attack Detection (PAD) for FRSs [121].
As described in Section 5.1, the RBF kernel provides the possibility
to robustly separate data distributions in arbitrary constellations. In
the used implementation two hyperparameters have to be set, C and
γ. C is the regulatory parameter for the training of the algorithm.
A lower C reduces the flexibility of the training process. The default
parameter is C = 1. The parameter γ corresponds to 1

2σ2
, as described

in Section 5.1.2, defining the radius of influence for a single data point.
By default γ is set based on the number of features (nfeatures) and
the variance of the training data (var(X)):

γ =
1

2σ2
=

1

nfeatures · var(X)
(18.1)

Due to the fact that the training data in this MAD pipeline is nor-
malised according to Section 17.3, setting the standard deviation to 1,
a value of 1 can be assumed for the variance as well, resulting in a γ
in a reverse relationship to the size of the feature vector.

random forest In [37] different classifiers are evaluated on dif-
ferent data. It is shown, that in addition to SVM with RBF kernel,
decision tree based ensemble classifiers are very universally appli-
cable. Thus, 3 different decision tree based ensemble classifiers are
implemented in the MAD pipeline. Based on the results from [37], a
random forest classifier is used, a classifier which has already proven
to be suitable for other fields of biometrics, for example fingerprint
quality assessment [107, 108]. The used random forest classifier is
implemented according to the concept described in Section 5.3.1. The
only hyperparameter affecting the ensemble itself is the number of
decision trees to train (nestimators), which is set to 100 by default.
All other parameters determined the character of the individual trees.
The trees themselves are almost not restricted, no maximum depth is
defined and no specifications are made about the number of samples
per node. This configuration would result in a high probability of
over-fitting for a single decision tree, but when used in an ensemble,
the possible over-fitting of a single tree is balanced by the repeated
training on different subsets.
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adaboost A further ensemble classifier employed is AbaBoost
with decision stumps. As described in Section 5.3.2, decision stumps
can be interpreted as binary decision trees of depth one, so that the
AdaBoost used can be understood as an ensemble classifier based on
decision trees. The hyperparameters concerning the ensemble are the
number of weak learner (nestimators) to be trained, which is set to
50 by default, and the learningrate, which will control the influence
of each weak learner in the final algorithm. A lower learning rate
reduces over-fitting, but requires more weak learners to achieve the
same algorithm performance. The parameter is set to 1 by default,
resulting in full influence of each weak learner. Since the weak learner
is a binary decision tree of depth one, no further parameters need to
be defined.

gradient boosting The last machine learning algorithm em-
ployed is gradient boosting with decision trees. An implementation ac-
cording to Gradient Tree Boosting, as described in Section 5.3.3, is used.
For this implementation, significantly more ensemble-related hyperpa-
rameters are definable, compared to the ensemble classifiers described
above. In addition to the number of decision trees (nestimators) and
learningrate, which, by default, are set to 100 and 0.1, respectively,
the number of subsamples, which, by default, is set to 1, can be speci-
fied, meaning that no subsampling is performed. The decision trees
themselves are mainly not restricted, only the maximum depth is
limited to 3 .
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Part IV describes the design decisions and the resulting structure of the
MAD pipeline used in this thesis. In order to ensure the greatest pos-
sible flexibility and to reduce the implementation effort, the pipeline
is designed as a modular system. The modules are Data Preparation,
Feature Extraction, Feature Preparation, and Training of Classifiers.

Depending on the scenario, only passport photos or passport photos
and TLCs are available to the pipeline. The variance of the passport
photographs is limited by the standards for passport photographs
defined by ICAO, see [63]. However, the variance of TLCs can be
much higher as they are captured in a semi supervised environment.
In order to ensure a robust feature extraction, all images are prepared
in advance in a uniform way. For this purpose, the images are rotated,
ensuring that the eye centers are on a horizontal line. The rotated
image is subsequently cropped according to the proportions defined
in [63]. Some feature extractors are dependent on obtaining a fixed
facial section of the same size in order to return proper results. For
these feature extractors, a fixed region is cut out of the previously
normalised facial image.

After the normalisation of the images, the features can be extracted.
For this purpose, different types of feature extractors are implemented
in the pipeline: texture descriptors, gradient based descriptors, key-
point descriptors, landmark extractors, image noise pattern, and deep
features. The exact implementation, selected parameters, and a moti-
vation for the use of the individual feature extractors is described in
the respective sections of Chapter 15.

Depending on whether the images are to be evaluated in a single im-
age scenario, or whether a TLC is available for differential evaluation,
the data has to be prepared differently for the use in training a ma-
chine learning algorithm. In the differential scenario, the information
of the feature vectors of the suspected morph and the TLC need to be
merged. In this pipeline the difference between the two feature vectors
is calculated. Most machine learning algorithms require zero-centered
data with a variance of 1 for proper training. In order to ensure this,
all feature vectors, whether single image or differential, are scaled
using z-score normalisation.

In the final step, the classifiers are trained using the previously
prepared data. Due to the uniform implementation of the pipeline, the
training of the individual classifiers hardly differs. In order to keep
the subsequent evaluation clear and comparable, the optimisation
of the hyper parameters was deliberately omitted. The classifiers
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implemented in the pipeline are listed in Section 18.4 including the
selected parameters and a motivation for the use of the respective
classifier.



Part V

E X P E R I M E N TA L D ATA
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FA C E I M A G E D ATA B A S E S E L E C T I O N

Despite numerous publications concerning MAD, no viable public
databases for the training of MAD algorithms are available. The main
reason for this are legal restrictions. Especially in Europe, the acquisi-
tion of biometric databases is accompanied by a high legal requirement
of data protection, resulting in the fact that acquired databases cannot
be distributed, as the acquired subject has the right to withdraw his
or her consent to contribute to the database at any time, in accor-
dance with General Data Protection Regulation (GDPR) Article 7 -
"Conditions for consent". The issue with the use of publicly available
databases is that the respective license agreements usually prohibit
further processing and redistribution.

With the NIST FRVT MORPH, described in Section 3.1.3, and SO-
TAMD, described in Section 3.1.1, projects are initiated to create
databases as a basis for a uniform evaluation, however, these databases
will only be used for independent third party reconfirmation of the
performance of MAD algorithms and are not accessible for the cre-
ation of algorithms, thus they are not considered in this Chapter. For
training and for in-house testing the need for dedicated morphing
databases is given.

Thus, a dedicated MAD database was constructed for this thesis.
The decision criteria for the selection of the used face databases are
described in Section 20.1, the available face databases are listed and
evaluated in Section 20.2.

20.1 prerequisites for realistic databases

In order to create a database that realistically reflects the nature of
expected passport photographs (morph and bona fide), as well as
TLC images, for example from the border gates, the underlying face
database has to meet certain criteria.

No standardised specifications regarding the nature of the image
are available for the TLC sample. Since the capturing process is semi-
supervised and in a less controlled environment, the TLC images may
exhibit a high degree of variance. A prerequisite for the creation of a
realistic database is thus the presence of facial images reflecting this
variance.

In order to create morphs, two facial images are needed that meet
the requirements of a passport photo, which are defined by ICAO
9303 [67], which refers to ISO/IEC 19794-5 [63]. The properties of
images contained in passports in actual use may deviate from the de-
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fined standard, as the standard might not be correctly applied during
capturing and transfer of the photograph to the passport. However, the
database to be created is assumed to comply with the standards as far
as possible. The most important properties of a passport photograph
defined in the standard are defined below.

20.1.1 Pose

The first set of rules concerns the subject represented in the image.
First of all, the pose of the subject in the image is specified. It should
be as neutral as possible, meaning that deviations from the frontal
pose should be kept to a minimum. For the morphing process, an iden-
tical pose of both contributing subjects is required. Slight variances,
which are covered by the standard, can be normalised by the process
described in Section 15.1, which, however, may lead to a shoulder pose
which is not permitted according to the standard.

Furthermore, the standard requires a neutral facial expression. This
requirement cannot be met by subsequent corrections, thus it must be
ensured that, for example, no closed eyes or exposed teeth are present
in the data used as passport photograph.

Furthermore, the position of the face in the picture is of importance.
The standard defines a frame in which the face has to be located.
However, this requirement can be met by subsequent normalisation,
given that there is a sufficient margin and the resolution of the facial
area is sufficient.

20.1.2 Artefacts

In general, all types of face-covering artefacts, such as scarves or
headgear, should be avoided in the image. However, some artefacts are
part of the appearance of the subject. For example, a subject wearing
glasses will also wear them when crossing the border, meaning that
they may also be present in the passport photo. In this case, the glasses
have to be transparent, the frame must not cover the iris and there
must be no reflections in the glasses. In the case of headgear that
cannot be removed for the picture, e.g. due to religious reasons, it
must be placed such, that the face is not covered.

20.1.3 Image Quality

An important criterion for the suitability of a picture as a passport
photo is the quality, which is a very broad term and thus summarises
many picture characteristics. An essential factor is the resolution of the
image. In [63] it is specified, that the width of the face should consist
of at least 180 pixels, which, according to the parameters described
in Section 15.1, corresponds to an overall resolution of at least 360×
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480 pixels. If the images are not of sufficient size, upscaling is not
recommended, as the missing information cannot be reconstructed.

Other factors, such as the contrast or focus of the image, are also
described in the standard, however no objective metrics are defined,
leaving some leeway for implementation. The methods available for a
quantitative quality assessment can, according to [75], be divided into
three categories:

• Full-reference methods

• Reduced-reference methods

• No-reference methods

The full-reference and reduced-reference methods are easier to im-
plement and designed to describe quality degradation [113]. For the
full-reference method an image in original quality is available in addi-
tion to the image to be examined, enabling a direct comparison of both
images. For the reduced-reference methods, only features extracted
from the original image are available for comparison. However, the
quality evaluation of passport photographs is not relative, but an ab-
solute value is required, meaning that the reference-based methods
are not applicable. The no-reference methods are more complicated to
implement than the reference-based methods, since the direct compar-
ison of values is not available. An algorithm designed for referenceless
quality evaluation of images is, for example, Blind/Referenceless Im-
age Spatial Quality Evaluator (BRISQUE) [96], extracting statistical
features of natural images, and subsequently evaluating them with an
SVM, in order to obtain a measure of the quality of the image. In the
quality evaluation, factors as compression, noise and sharpness are
evaluated.

Despite existing methods for the quantitative quality determina-
tion of images, the actual quality of accepted passport photographs
may vary. Consequently, the passport photographs contained in a
realistic database cannot be selected according to quantitative quality
characteristics, but should exhibit a certain variance in quality.

20.1.4 Passport and TLC Images

A morphing database consists of three different types of images. The
suspected or passport images can be both bona fide and morphed, the
TLCs or eGate images are always bona fide. Therefore, besides the two
quality classes described above, the number of images of each class is
of importance. In an optimal case, at least two passport quality images
per subject are available (one for morphing, the other as a bona fide
reference), as well as at least one TLC image in a quality expectable
from an eGate. A higher number of reference images increases the
number of comparisons in the differential scenario. For the single
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name provider resolution passport
quality

TLC
quality

subjects

ARFacea Ohio State
University

768× 576 No Yes 126

AT&T Database
of Facesb

AT&T 92× 112 pixels No Yes 50

BioID Facec BioID 384× 286 pixels No Yes 23

CelebAd University
of Hong Kong

178× 218 pixels No Yes 10.177

Color FERETe NIST 512× 768 pixels Yes Yes 856

Face in Actionf Carnegie Mellon
University

640× 480 pixels No Yes 180

FRGCv2g NIST average 250 pixels
inter-eye distance

Yes Yes 570

Labelled Faces in
the Wildh

University
of Massachusetts

150× 150 pixels No Yes
1680 with
two or
more images

Multi-PIEi Carnegie Mellon
University

∼ 2180× 2884 pixels Yes No 337

Yale Facej Yale University 320× 243 pixels No Yes 15

Table 20.1: Available face databases

a http://www2.ece.ohio-state.edu/~aleix/ARdatabase.html

b No direct link available
c https://www.bioid.com/facedb/

d http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html

e https://www.nist.gov/itl/products-and-services/color-feret-database

f No direct link available
g https://www.nist.gov/programs-projects/face-recognition-grand-challenge-frgc

h http://vis-www.cs.umass.edu/lfw/

i http://www.cs.cmu.edu/afs/cs/project/PIE/MultiPie/Multi-Pie/Home.html

j http://cvc.cs.yale.edu/cvc/projects/yalefaces/yalefaces.html

image scenario, the number of comparisons can only be extended
by increasing the number of available passport quality images. If the
database lacks passport quality images, images used for morphing
can be additionally included as bona fide images. Whilst this violates
the independence of the individual comparisons among each other,
as demanded in [98], no influence on the expected result of an eval-
uation is known, due to the fact that the evaluations are performed
independently of each other.

20.2 existing face image databases

A broad range of face databases is available for research, however,
only a few of them meet the requirements to be used for the creation
of a morphing database. The databases considered in this thesis and
their properties are listed in Table 20.1. The databases can be divided
into three classes: Web-scraped databases, recorded databases in low
quality and recorded databases in high quality.

The CelebA and Labelled Faces in the Wild are databases of the first
category. Both contain a large number of subjects, but without quality
standards for the images. The resolution does not meet the minimum

http://www2.ece.ohio-state.edu/~aleix/ARdatabase.html
https://www.bioid.com/facedb/
http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
https://www.nist.gov/itl/products-and-services/color-feret-database
https://www.nist.gov/programs-projects/face-recognition-grand-challenge-frgc
http://vis-www.cs.umass.edu/lfw/
http://www.cs.cmu.edu/afs/cs/project/PIE/MultiPie/Multi-Pie/Home.html
http://cvc.cs.yale.edu/cvc/projects/yalefaces/yalefaces.html
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requirements for passport photos. Thus, databases of this category
can be excluded.

The second category mostly consists of older databases, which, due
to their age, do not meet the required quality standards. The AT&T
Database of Faces was recorded in the AT&T Labs between 1992 and
1994. The images contain a variance in pose and gestures, but are
only available as low-resolution greyscale images and are therefore,
like the images of the BioID Face or Yale Face DB, not suitable for
use as passport photos. The Face in Action is much more up-to-date
with pictures taken between 2004 and 2005, but the recording scenario
was deliberately chosen to correspond to the pictures taken at the
border crossing. Thus only images satisfying the requirements for TLC
images are available.

Face databases suitable for the creation of morphing databases can
be found in the third cathegory. The ARFace offers color images of
136 subjects in neutral and non-neutral poses, with different lighting
and occlusions of the face (for example by scarf and cap) in a suffi-
cient resolution. Unfortunately, the images are blurry, making them
unsuitable as bona fide passport images or as a basis for the creation
of morphs. The Multi-PIE offers very high resolution images of 337
subjects, however, the images were recorded in a highly constrained
scenario, leaving not enough variations for TLC images. The FERET
was taken at NIST between 1993 and 1996 with an analogue camera
and digitalised in 2003. Due to the high quality scans, enough images
satisfying the requirements for passport photos are available. It has
to be noted, the scanned analogue photos exhibit a different camera
noise properties as digital captured images. The database partly con-
tains grey scale images, which are not considered as passport photos.
Since the subjects were taken with a non-neutral facial expression in
addition to the neutral facial expression, sufficient images are available
which can be used as TLC images. The FRGCv2 was recorded by NIST
at a more recent date. In addition to portraits, which are suitable as
passport photos, the subjects were captured in different locations with
different lightings and backgrounds, resulting in a variance, allowing
them to be used as TLC images.

Due to the described properties, the morphing database of this
thesis is built on the basis of color FERET (referred to as FERET) and
FRGCv2 (referred to as FRGC).
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M O R P H D ATA B A S E C R E AT I O N

This chapter describes the creation of the morphing database used in
this thesis, based on the face databases selected in Section 20.2. Not
all images contained in the face databases are suitable for the creation
of the morphing database, therefore the images are pre-selected ac-
cording to the scheme described in Section 21.1. The image pairs to
be morphed are determined according to the scheme described in
Section 21.2. Finally, the images are post-processed as described in
Section 21.3.

21.1 image pre-selection

The creation of the morphing database requires 3 categories of images:
Bona fide reference images, morph input images and TLC images.
The Bona fide reference images correspond to an unaltered passport
image and should meet the corresponding quality criteria described
in Section 20.1. The morph input images are used in pairs for the
morphing process. These should be of passport image quality as well.
For the selection of the images in passport image quality, the guidelines
standardised in ISO/IEC 19794-5 [63] are followed. Consequently, only
images with a closed or minimally opened mouth and a neutral
facial expression or a slight smile are included. Images with reflecting
glasses are discarded. The class of TLC images corresponds to live
recordings, for example at the eGate. Therefore, the images should not
be of a controlled, high quality, as this cannot be expected from semi-
supervised capturing. For this class, all images not classified as suitable
for passport photos in the above pre-selection can be considered.
Thus, the images contain unsharpness, uneven lighting, non-neutral
facial expressions, pose variations, etc. The partitioning of the images
into the classes passport image quality and TLC quality was carried
out manually. The result of the division of the databases is listed
in Table 21.1. Besides the number of subjects, the biggest difference
between the databases is the variance of the images in the category

database subjects quality samples subjects per # samples
1 2 3 4 >5

FERET 529 Passport image 761 443 78 54 - -
TLC Image 1389 267 88 64 42 68

FRGC 533 Passport Image 984 24 58 20 27 404
TLC Image 2967 121 86 68 61 197

Table 21.1: Categories of images in both face databases
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TLC image quality. In the FERET database, mainly different facial
expressions and slight rotations in the pose are included, examples
are given in Figure 21.1. In the FRGC database the variances are

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 21.1: Examples of reference and grey scale TLC images for FERET

more significant. In addition to different facial expressions, different
backgrounds, illuminations and focuses of the images can be observed,
examples are shown in Figure 21.2.

Based on the two pre-sorted classes, the images are divided into
three categories (bona fide reference images, morph input images and
TLC images). In order to create realistic scenarios, the time of capture
between the passport images and the probe images is maximized as far
as possible on the basis of the databases. Due to the large differences
in the number of images per subject between the databases, different
protocols are used for both databases.

For FERET the images are selected per subject according to the
following scheme:

1. The chronologically last image of the class TLC image quality is
used as TLC image.

2. If more than one recording session is available, all images of the
passport image quality class from the same recording session as
the TLC image selected in step 1 are discarded.

3. The chronologically first sample of the class passport image quality
is used as bona fide sample.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 21.2: Examples of reference and grey scale TLC images for FRGC

4. The chronologically last sample of the class passport image quality
is used as morph input image.1 If, following step 2, only one
sample remains in class passport image quality, the sample used
for bona fide and morph input is identical.

5. If there is more than one sample in class TLC image quality, a
second sample image is selected, preferably with a different pose
than the first sample image and with a maximum time difference
to the selected images of class passport image quality.

For FRGC the images are selected per subject according to the
following scheme:

1. Up to 4 samples are selected from class passport quality in chrono-
logically equal intervals. Even ones serve as bona fide, odd ones
as morph input images. If only one image is available, it will be
used as both, bona fide and morph input image.

2. From the class TLC image quality up to 5 chronologically equidis-
tant samples are selected as probe images.

The composition of the resulting database is described in Table 21.2.

1 This method has the side effect that the samples used for morphing are closer in
time to the sample than the bona fide. However, since there is rarely more than one
recording session, this effect is negligible.
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database subjects male female bona fide morph input TLC

FERET 530 330 200 530 530 791

FRGC 533 231 302 984 964 1726

Table 21.2: Composition of the database resulting from the image pre-
selection

21.2 image morphing

In order to enable the morphing database to be used for evaluating
the generalisability of MAD algorithms towards differing morphing
algorithms, four different morphing algorithms are applied to con-
struct the database, hereafter referred to as FaceFusion2, FaceMorpher3,
OpenCV and UBO Morpher.

facefusion FaceFusion is a proprietary morphing algorithm. Orig-
inally being an iOS app, an adaptation for Windows which uses the
68 landmarks of Dlib and Delaunay triangles was applied. After the
morphing process, certain regions (eyes, nostrils, hair) of the first face
image are blended over the morph to hide artefacts. Optionally, the
corresponding landmarks of upper and lower lips can be reduced
as described in [97] to avoid artefacts at closed mouths. The created
morphs have a high quality and low to no visible artefacts. An example
is shown in Figure 21.3b.

facemorpher FaceMorpher is an open-source implementation
using Python, realising the morphing concept described in Chapter
10. In the version applied for this work, the algorithm uses STASM for
landmark localisation. Delaunay triangles, which are formed from the
landmarks, are warped and blended. The area outside the landmarks
is averaged. The generated morphs show strong artefacts in particular
in the area of neck and hair. An example is shown in Figure 21.3c.

opencv The OpenCV based algorithms is a self implemented mor-
phing algorithm derived from “Face Morph Using OpenCV”4. This
algorithm works similar to FaceMorpher. Important differences be-
tween the algorithms are that for landmark detection Dlib is used
instead of STASM and that for this algorithm landmarks are posi-
tioned at the edge of the image, which are also used to create morphs.
Thus, in contrast to FaceMorpher, the edge does not consist of an
averaged image, but like the rest of the image, of morphed trian-
gles. However, strong artefacts outside the face area can be observed,
which is mainly due to missing landmarks. An example is shown in
Figure 21.3d.

2 www.wearemoment.com/FaceFusion

3 github.com/alyssaq/face_morpher

4 www.learnopencv.com/face-morph-using-opencv-cpp-python

www.wearemoment.com/FaceFusion
github.com/alyssaq/face_morpher
www.learnopencv.com/face-morph-using-opencv-cpp-python
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(a) Subject 1 (b) FaceFusion (c) FaceMorpher

(d) OpenCV (e) UBO Morpher (f) Subject 2

Figure 21.3: Examples of morphed face images from all four algorithms

ubo morpher UBO Morpher is the morphing tool of University
of Bologna, as used, e.g., in [40]. This algorithm receives two input
images as well as the corresponding landmarks. Dlib landmarks were
used in this work. The morphs are generated by triangulation, warping
and blending. To avoid artefacts in the area outside the face, the mor-
phed face is copied to the background of one of the original images.
Even if the colors are adjusted, visible edges may appear at borderline
of the blended areas. An example is shown in Figure 21.3e.

The morph input images, pre-selected in Section 21.1, are used to
create the morphs. A blind morphing of each morph candidate with
each other would result in over 100,000 morphs for the morph input
images included in FERET alone. The massive imbalance between
morphs and bona fide passport images would unilaterally affect the
training of the classifiers and cause a bias in the evaluation. Hence,
morph pairs are formed in a meaningful manner, in order to keep
the ratio between morphs and bona fide images in balance. Two
parameters, namely sex and whether the subject wears glasses, are
taken into account for the construction of the morph pairs. Morphing
subjects of different sexes usually results in morphs with unnatural
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appearance. The creation of morphs with subjects of different sex are
not to be expected in the real scenario, thus they are excluded from the
database. Furthermore, it has been found, that if two subjects wearing
glasses are morphed, the resulting morph contains double glasses. To
avoid this kind of artefacts, morph pairs are formed with at most one
subject wearing glasses.

The morph pairs are formed within one face database, in order to
enable a clear separation of datasets during training and evaluation.
Due to the different number of morph input images per subject in
both databases, different protocols are defined.

FERET contains one morph input image per subject. Per sex, the
images are sorted such that subjects with and without glasses are
alternating. Since the database contains more subjects without glasses,
the end of the list contains only subjects without glasses. From the list,
a morph pair is formed from each subject with its successor (the last
subject forms a morph pair with the first one), resulting in the same
number of morph pairs as morph input images.

In FRGC, up to two morph input images are available per subject.
Based on the concept of the image pair creation of FERET, for each
sex a list is created consisting of the first morph input images, from
which the morph pairs are created. A second list, containing the
available second morph input images, is constructed in the same
manner, meaning that no two subjects wearing glasses are adjacent to
each other. Since not all subjects available in the database provide two
morph input images, the order of subjects in both lists might differ.
From the second list, the morphing pairs are created by keeping a
distance of two subjects between the paired images. This procedure
ensures that the morphing pairs are not containing the same subjects
as those created from the first list and that no two subjects wearing
glasses are combined.

With each morphing tool morphs are created from all available
morph pairs. The morphs are created with an αb and αw of 0.5,
however, due to the automatic improvement processes of FaceFusion
and UBO Morpher, the morphs created by these algorithms are not
symmetrical.

21.3 image post-processing

The passport images (morph and bona fide) and the TLC images
are post-processed in a different way. The TLC images are converted
to greyscale, as some camera systems used at the border are only
providing monochrome images. Since the morphing algorithms pro-
duce different, and sometimes recognisable, outputs, for example, by
partially normalising the images, all passport images (including the
bona fides) are normalised according to the procedure described in
Section 15.1, in order to prevent over-fitting to artefacts not present
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(a) NPP (b) RS (c) JP (d) PS

Figure 21.4: Examples of an original image and the three post-processing
types

in a real scenario, such as different image sizes between morphs and
bona fides. During the normalisation process, images are scaled to
960× 720 pixels, resulting in a face region of 160× 160 pixels.

Depending on the process by which the facial image is inserted
into the passport, various post-processing steps are performed on
the image. To reflect the realistic scenarios, the database contains
four different post-processing chains for all passport photographs
(Examples are shown in Figure 21.4):

unprocessed The images are not further processed. In the text
below referred to as NPP (no post-processing). This serves as baseline.

resized The resolution of the images is reduced by half, reflecting
the average size of a passport image. In the text below referred to as
RS. This pre-processing corresponds to the scenario that an image is
submitted digitally by the applicant.

jpeg2000 The images are resized by half and then compressed
using JPEG2000, a wavelet-based image compression method that is
recommended for EU passports [33]. The setting is selected in a way
that a target file size of 15KB is achieved. This scenario reflects the
post-processing path of passport images if handed over digitally at
the application desk. In the text below referred to as JP.

print/scan - jpeg2000 The original images (uncompressed and
not resized) are first printed with a high quality laser printer (Fujifilm
Frontier 5700R Minlab on Fujicolor Crystal Archive Paper Supreme HD
Lustre photo paper) and then scanned with a premium flatbed scanner
(Epson DS-50000) with 300 dpi. A dust and scratch filter is then applied
in order to reduce image noise. Subsequently, the images are resized
by half and then compressed to 15 KB using JPEG2000.5 This scenario

5 Due to the lustre print, the scans exhibit a visible pattern of the paper surface, which is
only partly removed by the dust and scratch filter and results in stronger compression
artefacts than for scans of glossy prints.
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database genuine comp.
bona fide comp.

impostor
comparisons

morph
comparisons

bona fide
samples

morph
samples

FERET 791 418,966 791 530 529

FRGC 3,298 1,695,086 3,246 984 964

Table 21.3: Number of comparisons per post-processing in the resulting
database

reflects the post-processing path of passport images if handed over
at the application desk as a printed photograph. In the text below
referred to as PS.

The properties of the resulting database are listed in Table 21.3. The
number of Genuine and Impostor comparisons is relevant for the
analysis of the recognition performance of FRSs. For the evaluation
of differential MAD algorithms the number of bona fide comparisons
and morph comparisons is relevant, for S-MAD algorithms the num-
ber of bona fide samples and morph samples. The values given are per
post-processing, quadrupling the actual number of passport images
contained in the database.
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Part V describes the database used for training and evaluation of the
MAD algorithms in this thesis. At present no database with morphed
images suitable for the training of MAD algorithms is available, hence
databases for this thesis were generated by the author.

In order to create a database with morphed images, a face database
with suitable images is required. The images have to meet certain
prerequisites in order to be applicable for the morphing process. These
requirements include pose, artefacts and image quality. More details
about the required characteristics of suitable facial images are given
in Section 20.1. If the database should be usable for testing differential
MAD algorithms as well, then, in addition to the morphed and bona
fide images in passport image quality, TLCs are required as well,
which, in the real scenario, may exhibit a significantly lower quality
due to the uncontrolled recording conditions and should therefore not
exhibit passport image quality in the database either. In Section 20.2
an overview of face databases available for research is given along
with an assessment of their suitability for the creation of a database
for training and evaluation of MAD algorithms. Eventually only two
databases were found to be suitable: color FERET and FRGCv2.

The selected databases are initially divided into images in passport
quality and TLC image quality. Morph pairs are built from the images
in passport photo quality. Four different morphing algorithms are used
to create the morphs, namely FaceFusion, FaceMorpher, an OpenCV
based algorithm and UBO Morpher. The properties and functionality
of the different algorithms are described in Section 21.2.

Depending on the process chain during the passport application
process, the passport images may undergo various post-processing
steps. In order to reproduce these, the passport images in the database
(both morphs and bona fide) are subjected to various post-processing
operations. NPP are the not post-processed images and serve as base-
line, RS corresponds to the post-processing of a digitally transmitted
passport image. JP corresponds to the post-processing of a digitally
transmitted image stored in the passport and PS corresponds to an
analogously transmitted, scanned and subsequently stored passport
image.
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V U L N E R A B I L I T Y A S S E S S M E N T

First, it is investigated whether the morphs generated for the database
pose a threat to state-of-the-art FRSs. For this purpose the metrics
described in Section 11.2.1 are applied. Four FRSs (two open source
and two commercial) are examined, which are described in detail in
Section 23.1.

23.1 facial recognition systems

As open source algorithms FaceNet and ArcFace are employed, whose
feature extractors are described in Section 16.6.1 and Section 16.6.2
respectively. In the original implementation, the distances between
the feature vectors (the distance score of the FRS) are calculated as
L2-norm in case of FaceNet and as squared L2-norm in case of ArcFace.
In this thesis, the L2-norm is used for both classifiers, resulting in an
altered value range for ArcFace, but no changes in the error rates.

The commercial algorithms used are Eyedea, which is described in
Section 16.6.3, and another commercial system, which, due to terms
of use, is referred to COTS in the remainder of this work. For both
commercial systems the internally used algorithms are unknown, thus
only the results can be evaluated.

23.2 results

First, the face recognition performance of the algorithms is evaluated
on the database created in Chapter 21. The thresholds of the face
recognition algorithms are set to an FMR of 0.1%, as recommended by
Frontex in [127] for border control systems. Based on this threshold,
the vulnerability of the face recognition algorithms for morphing
attacks is evaluated in Section 23.2.2.

23.2.1 Recognition Performance

For the evaluation of the recognition performance of the algorithms,
the databases arranged in Chapter 21, namely FERET and FRGC, are
evaluated independently. For the evaluation, only the unprocessed
passport images (NPP) are considered. As indicated in Table 21.3, a
significant imbalance between the number of genuine and impostor
comparisons exists, which, however, does not influence the evaluation
of the algorithms negatively, but rather results in a more meaningful
impostor distribution. The PDFs of the examined algorithms on both
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database algorithm FMR FNMR TMR threshold

FERET

FaceNet 0.1% 6.3% 93.7% 0.76

ArcFace 0.1% 0% 100% 1.12

Eyedea 0.1% 0% 100% 0.42

COTS 0.1% 0% 100% 0.63

FRGC

FaceNet 0.1% 71.7% 28.3% 0.76

ArcFace 0.1% 5.3% 94.7% 1.09

Eyedea 0.1% 5.4% 94.6% 0.39

COTS 0.1% 0% 100% 0.62

Table 23.1: Performance of face recognition algorithms

databases are shown in Figure 23.1 along with the determined thresh-
old values. The open source FRSs provide a distance (dissimilarity
score) as result, whereas the commercial FRSs return a similarity score.
In order to achieve a uniform presentation, the results of the open
source FRSs are displayed with inverted x-axis. In general, it can be
observed that the genuine and the impostor comparisons of the FERET
database are significantly more distinctive than those of the FRGC,
regardless of the face recognition algorithm applied. This behaviour
can be attributed to the nature of the TLC images. As described in
Section 21.1, the TLC images of FERET usually only contain variations
in pose and facial expression, whereas the TLC images of FRGC, with
various backgrounds, lighting and sharpness, are of less stable quality,
rendering the face recognition process considerably harder.

The detailed values for the examined algorithms are listed in Ta-
ble 23.1. It can be observed, that the threshold value for each algorithm
behaves similar for both databases, suggesting an almost identical im-
postor distribution. In contrast, the significant change in FNMR from
FERET to FRGC for FaceNet shows that the genuine distribution of
FRGC is much closer to the impostor distribution. Even though the
FNMR of the other FRSs is not measurable for either database, it
can be concluded from Figure 23.1 that the genuine distributions of
FRGC are considerably closer to the impostor distribution than for
FERET. Furthermore, it can be observed that face recognition algo-
rithms clearly separating the comparisons of the FERET database (e.g.
COTS in Figure 23.1c) are more capable of separating the compar-
isons of FRGC (see Figure 23.1h) as well, thus, a better generalisation
capability of these classifiers can be concluded.

23.2.2 Vulnerability to Morphing Attacks

The vulnerability of the FRSs to morphing attacks can be analysed
on the basis of the thresholds defined in Section 23.2.1. Figure 23.2
depicts, in addition to the genuine and impostor distributions and
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database algorithm mmpmr/rmmr
facefusion facemorpher opencv ubo

FERET

FaceNet 31.4%/37.3% 17.6%/24.3% 18.0%/24.3% 29.3%/35.6%

ArcFace 96.2%/96.2% 81.5%/81.5% 85.0%/85.0% 95.2%/95.2%

Eyedea 71.6%/71.6% 90.0%/90.0% 87.5%/87.5% 72.6%/72.6%

COTS 97.7%/97.7% 90.7%/90.7% 92.4%/92.4% 99.1%/99.1%

FRGC

FaceNet 10.7%/82.4% 5.2%/76.9% 4.6%/76.3% 8.0%/79.3%

ArcFace 92.0%/97.3% 71.3%/76.6% 74.5%/79.8% 87.9%/93.4%

Eyedea 64.7%/70.2% 64.6%/70.1% 46.7%/52.1% 47.3%/52.7%

COTS 98.3%/98.3% 87.2%/87.2% 90.4%/90.4% 97.8%/97.8%

Table 23.2: Vulnerability of face recognition algorithms to morphing attacks

the threshold τ, the distribution for comparisons with the morphs
generated by the morphing algorithms described in Section 21.2. In
general, it can be stated that the distributions of morphing attacks
are situated between the impostor and genuine distribution. The dis-
tributions of the different morphing algorithms are situated close to
each other, however the distributions of the more complex morphing
algorithms (FaceFusion and UBO Morpher) are consistently closer to
the genuine distribution than the distributions of the more basic mor-
phing algorithms (FaceMorpher and OpenCV). Furthermore, it can be
observed that with more robust face recognition algorithms, which are
able to separate the impostor and genuine distributions more effec-
tively (for example, COTS on the FERET database in Figure 23.2g), the
distribution of morphing attacks is closer to the genuine distribution
than with less robust algorithms achieving a less clear separation of
genuine and impostor distribution (for example FaceNet on the FRGC
database in Figure 23.2b). Detailed error values are given in Table 23.2.
The error metrics MMPMR and RMMR described in Section 11.2.1
are reported. Due to the limited number of morph comparisons per
subject, the MinMax-MMPMR defined in equation 11.2 is applied. The
error metrics are estimated per morphing algorithm.



144 vulnerability assessment

1

0.20.40.60.811.21.41.6
0

5 · 10−2

0.1

0.15

0.2

τ

comparison score

de
ns

it
y

Genuine
Impostor

(a) FERET FaceNet

1

0.20.40.60.811.21.41.6
0

5 · 10−2

0.1

0.15

0.2

τ

comparison score

de
ns

it
y

Genuine
Impostor

(b) FRGC FaceNet1

0.20.40.60.811.21.41.6
0

5 · 10−2

0.1

0.15

0.2

τ

comparison score

de
ns

it
y

Genuine
Impostor

(c) FERET ArcFace

1

0.20.40.60.811.21.41.6
0

5 · 10−2

0.1

0.15

0.2

τ

comparison score

de
ns

it
y

Genuine
Impostor

(d) FRGC ArcFace1

−0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

5 · 10−2

0.1

0.15

0.2 τ

comparison score

de
ns

it
y

Genuine
Impostor

(e) FERET Eyedea

1

−0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

5 · 10−2

0.1

0.15

0.2 τ

comparison score

de
ns

it
y

Genuine
Impostor

(f) FRGC Eyedea1

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

τ

comparison score

de
ns

it
y

Genuine
Impostor

(g) FERET COTS

1

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

τ

comparison score

de
ns

it
y

Genuine
Impostor

(h) FRGC COTS

Figure 23.1: PDFs of comparison scores for the evaluated FRSs. The estimated
threshold for an FMR of 0.1% is depicted by τ.
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Figure 23.2: Susceptibility of the evaluated FRSs to morphing attacks
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M O R P H I N G AT TA C K D E T E C T I O N P E R F O R M A N C E
A S S E S S M E N T

Different combinations of the features described in Chapter 16 and
Chapter 18 are evaluated on the database described in Chapter 21. Due
to the large number of possible configurations regarding databases,
morphing algorithms, post-processings, feature extractors and classi-
fiers, the experiments are systematically designed, in order to reduce
the number of results to a comparable set, without lowering the signif-
icance of the evaluation. In experiment 1 the influence of a database
shift is investigated. In experiment 2 suitable combinations of feature
extractors and classifiers for the single image and differential scenario
are determined. In experiment 3 these combinations are evaluated
with respect to different post-processing scenarios. In experiment 4
the performance of a fusion of the algorithms selected in experiment 2
is analysed.

24.1 experiment 1 - database shift

In most evaluations of machine learning algorithms a database is
divided into a training- and a test-set. This procedure was followed in
the initial publications regarding MAD, for example in [135] and [137].
However, this methodology of evaluation bears the risk, that the
database may contain properties simplifying the classification, which
cannot be expected from realistic data. This danger is aggravated by
the fact, that, due to the lack of morphing databases, the second class
(the morphing attacks) has to be generated individually. If only one
morphing algorithm is used in the database, it is likely that the MAD
algorithm will overfit to artefacts specific to that particular morphing
algorithm. The general influence of database shifts to the performance
of MAD algorithms was prior proven in [136].

24.1.1 Experimental Setup

In order to allow for a quantitative statement about the influence of a
change of database or morphing algorithm on the results of the MAD
evaluation, the most successful algorithms determined in [137] on a
single database and morphing algorithm are compared to the results
obtained on the database described in Part V.

The database used in [137] is based on the facial images of FRGC,
which were manually filtered for passport format images. In [137],
texture, gradient bases and keypoint image descriptors in different
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Training Test Feature
(

Cells
Filtersize

)

Database Morphing
Algorithm

Database Morphing
Algorithm

LBP BSIF

1× 1
3× 3

4× 4
3× 3

1× 1
9× 9

4× 4
9× 9

1× 1
3× 3

4× 4
3× 3

1× 1
9× 9

4× 4
9× 9

FRGC-Train OpenCV FRGC-Test OpenCV 5.1% 5.2% 13.7% 11.9% 2.9% 3.5% 16.5% 10.9%

FRGC OpenCV FERET OpenCV 24.4% 22.4% 32.9% 27.3% 25.6% 20.1% 27.8% 27.1%

FRGC OpenCV FERET FaceMorpher 21.6% 17.7% 28.1% 25.7% 20.1% 16.3% 29.7% 28.2%

FRGC OpenCV FERET FaceFusion 32.5% 24.4% 32.8% 31.0% 31.1% 26.2% 34.1% 30.3%

FRGC OpenCV FERET UBO Morpher 27.0% 21.4% 29.2% 28.6% 27.3% 24.1% 32.9% 29.4%

Table 24.1: Performance difference introduced by evaluating on different
databases and morphing algorithms for S-MAD algorithms

configurations are combined with an SVM with RBF kernel for single
image and differential scenarios. Texture-based feature extractors have
been found to achieve the highest performance, therefore the compari-
son below is limited to those. The presented percentage values are
D-EERs. As no further findings are to be expected from a comparison
over different operating points, the analysis of further operating points,
e.g. BPCER-10 or BPCER-20, will be omitted in this experiment.

24.1.2 Evaluation

In Table 24.1 the comparison of the single image algorithms is shown.
The first row of results shows the error rates obtained in [137], where
the MAD algorithms are trained on one subset of the FRGC (FRGC-
Train) and tested on another subset (FRGC-Test). The successive error
rates are determined on the database described in Part V. If training
and evaluation is performed on databases with different characteris-
tics, a significant increase in the error rate, up to four times higher
depending on the feature extractor, can be observed. This empha-
sizes the importance of independent databases for a robust evaluation.
Furthermore, it can be observed that morphs generated by some al-
gorithms are more difficult to detect than others. For example, the
morphs generated by FaceFusion consistently produce higher error
rates than those generated by OpenCV and FaceMorpher. The higher
quality morphs, which are automatically post-processed, thus signifi-
cantly reducing the number of artefacts, are more difficult to detect
by the tested MAD algorithms. It is noticeable, that despite the fact
that training is done exclusively on morphs created by OpenCV, the
morphs created by FaceMorpher are easier to detect than morphs
created by OpenCV. This leads to the conclusion that the origin of the
morphs has an influence on how successful they can be detected, but
the training itself is not influenced by the origin of the morphs.

For the differential scenario similar effects can be observed as for
the single image scenario. The corresponding error values are listed
in Table 24.2. First, it can be observed that training and evaluation on
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Training Test Feature
(

Cells
Filtersize

)

Database Morphing
Algorithm

Database Morphing
Algorithm

LBP BSIF

1× 1
3× 3

4× 4
3× 3

1× 1
9× 9

4× 4
9× 9

1× 1
3× 3

4× 4
3× 3

1× 1
9× 9

4× 4
9× 9

FRGC-Train OpenCV FRGC-Test OpenCV 3.9% 3.9% 7.3% 7.4% 4.4% 4.7% 9.3% 9.8%

FRGC OpenCV FERET OpenCV 21.9% 28.8% 37.5% 38.7% 15.4% 18.1% 20.0% 20.1%

FRGC OpenCV FERET FaceMorpher 18.6% 25.5% 35.9% 38.2% 14.1% 15.3% 19.8% 20.3%

FRGC OpenCV FERET FaceFusion 23.9% 30.7% 39.2% 40.2% 18.4% 19.3% 21.6% 22.6%

FRGC OpenCV FERET UBO Morpher 21.7% 29.3% 37.3% 39.8% 17.4% 18.1% 21.7% 21.7%

Table 24.2: Performance difference introduced by evaluating on different
databases and morphing algorithms for differential MAD algo-
rithms

entirely independent datasets yields significantly higher error values
than training and testing on disjoint subsets of a single database.
Furthermore, the observation made in the single image scenario, that
morphs with lower quality (e.g. generated by FaceMorpher) are more
likely to be detected than those with higher quality (e.g. generated by
FaceFusion), can also be confirmed for the differential scenario.

24.1.3 Discussion

In a real world operation of a MAD system, no assumptions about the
images’ origin or eventual applied morphing algorithms can be made.
Thus, the general statement can be formulated, that, regardless of the
scenario, evaluation should be performed on datasets as independent
as possible, in order to obtain results predicting the impact ot be
expected in real operation. The image source (for both, bona fide or
morphed images) has an major impact on the evaluation. Depending
on the algorithm, the difference in D-EER between the usage of images
from the same or different sources can exceed 20 percentage points.
A further factor is the quality of the morphs to be detected. If the
morphs were generated by an algorithm capable of producing high
quality morphs, the morphs are more difficult to detect than morphs
generated by less sophisticated morphing algorithms. However, the
differences in D-EER for the tested algorithms are only in the range
of lower one-digit percentage points. Nevertheless, MAD algorithms
should be tested primarily on high-quality morphs, since it is likely
that an attacker will produce the highest possible morph in a real
scenario, and furthermore, since high-quality morphs represent the
higher obstacle, it can be assumed that if an algorithm succeeds in
detecting high-quality morphs, lower-quality morphs will also be
detected. In contrast, the origin of the morphs used for training is less
relevant. The tested MAD algorithms have been found to generalise
well across different morphing algorithms, meaning the effect of the
quality of the morphs to be tested has a higher impact on the evalu-
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ation than the fact whether the algorithms used for training were
generated by the same morphing algorithm.

24.2 experiment 2 - general suitability

In Chapter 16 different feature extractors are introduced, describing
different image properties. In addition hypotheses are formulated,
explaining why the extracted features should be suitable for the de-
tection of morphed facial images. This experiment will investigate, to
what extent the different features in combination with the classifiers
described in Section 18.4 are in principle suitable to detect morphed
facial images in a basic scenario.

24.2.1 Experimental Setup

The features described in Chapter 16 combined with the classifiers
described in Section 18.4 are tested in both, the single image and
the differential scenario, on the non post-processed images of the
databases described in Part V. The experimental setup applies the
conclusions drawn in Section 24.1. Training is performed on one of
the two database, evaluation is performed on the other and vice versa.
For training, the morphs generated by either OpenCV or FaceMorpher
are used separately; evaluation is performed on the morphs generated
by FaceFusion or UBO Morpher, as they are more difficult to detect.

24.2.2 Evaluation

Due to the large number of possible MAD algorithms, the algorithms
are examined separately by category of the applied feature extractor.
In the initial phase, only the D-EER is analysed. A summary of the
best performing MAD algorithms, with an analysis of the operating
points BPCER-10 and BPCER-20, is given in Section 24.2.3.

texture descriptors In this paragraph, the morphing detec-
tion capabilities of texture descriptors in different configurations, as
described in Section 16.1, are analysed.

The D-EERs of the respective algorithms in a single image scenario
are listed in Table 24.3. In the following tables only the database
used for training is indicated, the evaluation was performed on the
respective other database. In general it can be stated, that, across
all algorithms, morphs are more difficult to detect for FERET than
for FRGC. Furthermore, it can be observed that SVM and gradient
boosting based algorithms tend to provide a better detection per-
formance compared to algorithms based on AdaBoost or Random
Forest. Regardless of the applied feature type, algorithms dividing
images into cells prior to feature extraction usually achieve a higher
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Classifier
Training Test Feature

(
Cells

Filtersize

)

Database Morphing
Algorithm

Morphing
Algorithm

LBP BSIF

1× 1
3× 3

4× 4
3× 3

1× 1
9× 9

4× 4
9× 9

1× 1
3× 3

4× 4
3× 3

1× 1
9× 9

4× 4
9× 9

SVM

FERET
FaceMorpher FaceFusion 27.86% 22.00% 24.41% 19.38% 25.08% 19.51% 16.76% 14.33%

UBO Morpher 20.65% 16.55% 22.53% 17.72% 19.88% 14.48% 15.04% 12.54%

OpenCV FaceFusion 24.99% 19.69% 22.10% 20.49% 21.73% 17.81% 16.09% 15.96%

UBO Morpher 19.51% 15.87% 20.99% 18.06% 19.14% 13.84% 15.16% 13.34%

FRGC
FaceMorpher FaceFusion 32.91% 31.01% 35.19% 30.51% 32.41% 31.65% 33.16% 30.76%

UBO Morpher 28.23% 26.71% 34.81% 30.38% 27.97% 26.71% 29.87% 28.99%

OpenCV FaceFusion 31.14% 26.20% 34.05% 30.25% 32.53% 24.43% 32.78% 31.01%

UBO Morpher 27.34% 24.05% 32.91% 29.37% 26.96% 21.39% 29.24% 28.61%

Random
Forest

FERET
FaceMorpher FaceFusion 30.54% 31.53% 32.73% 30.72% 24.59% 31.06% 20.15% 28.47%

UBO Morpher 19.69% 24.81% 30.94% 23.91% 24.62% 21.14% 30.76% 24.41%

OpenCV FaceFusion 28.38% 26.38% 27.33% 31.99% 29.86% 23.98% 18.67% 30.76%

UBO Morpher 23.14% 19.48% 25.15% 28.91% 20.34% 17.41% 28.38% 26.13%

FRGC
FaceMorpher FaceFusion 32.41% 34.94% 38.99% 41.90% 35.70% 38.73% 41.27% 38.86%

UBO Morpher 30.00% 28.61% 41.01% 38.35% 32.78% 25.57% 37.09% 39.75%

OpenCV FaceFusion 31.90% 31.14% 38.35% 36.46% 41.01% 34.68% 36.20% 37.97%

UBO Morpher 31.14% 32.66% 37.72% 33.29% 33.29% 26.33% 30.51% 33.04%

AdaBoost

FERET
FaceMorpher FaceFusion 24.99% 22.62% 32.82% 25.73% 29.18% 24.93% 23.91% 26.47%

UBO Morpher 22.28% 19.41% 31.25% 25.39% 25.49% 24.28% 23.05% 25.02%

OpenCV FaceFusion 24.87% 19.48% 30.11% 25.67% 22.87% 23.64% 24.59% 23.76%

UBO Morpher 22.59% 17.75% 29.83% 24.25% 22.99% 21.63% 23.88% 21.94%

FRGC
FaceMorpher FaceFusion 32.78% 32.78% 35.95% 33.80% 38.73% 34.56% 35.06% 31.65%

UBO Morpher 29.49% 28.48% 35.44% 33.42% 32.03% 29.11% 32.78% 29.87%

OpenCV FaceFusion 33.04% 30.63% 36.20% 37.34% 30.51% 30.13% 34.30% 33.16%

UBO Morpher 29.24% 28.99% 34.05% 34.94% 27.72% 27.34% 32.66% 29.75%

Gradient
Boosting

FERET
FaceMorpher FaceFusion 22.87% 22.03% 26.10% 27.06% 29.92% 25.18% 23.45% 24.01%

UBO Morpher 19.91% 18.15% 24.68% 23.82% 24.93% 22.25% 22.40% 21.73%

OpenCV FaceFusion 22.22% 21.14% 27.30% 25.30% 25.76% 22.43% 23.45% 24.04%

UBO Morpher 19.32% 17.97% 26.19% 23.91% 22.53% 20.34% 21.60% 22.28%

FRGC
FaceMorpher FaceFusion 34.56% 33.42% 34.30% 34.18% 37.85% 36.96% 35.32% 30.63%

UBO Morpher 29.87% 30.00% 33.54% 33.54% 31.65% 31.77% 33.29% 30.00%

OpenCV FaceFusion 32.53% 29.49% 35.32% 36.58% 35.57% 31.52% 33.92% 32.53%

UBO Morpher 29.11% 27.85% 35.70% 35.06% 29.11% 26.58% 32.28% 32.03%

Table 24.3: Detection performance (D-EER) of texture descriptors with differ-
ent configurations in single image scenario
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performance. Furthermore, the algorithms can generally achieve better
individual performance using a larger filter size, but, in particular
with the morphs of the FERET database, a smaller filter size results
in more robust results. When comparing the two feature types, it is
noticeable that BSIF tends to perform better than LBP, however, in
particular LBP with 4× 4 cells and a filter size of 3× 3 stands out
due to its consistent performance, especially on the morphs of the
FERET database, most other algorithms are struggling to detect. Re-
garding the choice of training data, no significant difference between
the morphs created by FaceMorpher or OpenCV can be found. The
difference in the evaluation of the separately trained algorithms is
marginal and not uniform. However, there is a clear trend in terms
of the choice of data to be evaluated. Morphs created by FaceFusion
are generally more difficult to detect than morphs created by the UBO
Morpher.

The best performing algorithm is BSIF with 4× 4 cells and a filter
size of 9× 9 in combination with an SVM, achieving an average D-EER
of 14% on FRGC and 30% on FERET, as well as LBP with 4× 4 cells
and a filter size of 3× 3 in combination with an SVM, achieving an
average D-EER of 18.5% on FRGC and 27% on FERET.

The D-EERs of the texture descriptor based algorithms in a differ-
ential scenario are listed in Table 24.4. In contrast to the single image
scenario, the morphs of the FERET database are usually easier to de-
tect than those of the FRGC database. This effect is due to the fact, that
the TLC images of the FRGC contain a much higher variance in illumi-
nation and sharpness. Furthermore, it can be observed that depending
on the database and the used feature extractor, the choice of the op-
timal classifier varies, however, the applied random forest classifier
is not suitable and rarely achieves D-EERs below 30%. Independent
of the feature type, smaller filter sizes achieve better performances in
easier scenarios, but larger filter sizes prove to be more robust across
all scenarios. Cell subdivision prior to feature extraction can improve
the detection performance. As for the single-image scenario it can be
observed that morphs generated by FaceFusion are more difficult to
detect than morphs generated by UBO Morpher. The choice of morphs
used for training may influence the evaluation results, however, no
definite scheme can be observed.

Many of the tested algorithms reach D-EERs around 30%, rendering
texture descriptors more suitable for creating single image algorithms.
Thus it can be concluded that the information relevant to MAD is
contained in the discrete values of the features of the references and
not in the difference to the TLC considered in the differential scenario.
The best performing algorithm is LBP with a cell division into 4× 4
cells and a filter size of 3× 3, achieving an average D-EER of 26.2%
on FRGC and 23.4% on FERET. Even though larger filters are more
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Classifier
Training Test Feature

(
Cells

Filtersize

)

Database Morphing
Algorithm

Morphing
Algorithm

LBP BSIF

1× 1
3× 3

4× 4
3× 3

1× 1
9× 9

4× 4
9× 9

1× 1
3× 3

4× 4
3× 3

1× 1
9× 9

4× 4
9× 9

SVM

FERET
FaceMorpher FaceFusion 48.17% 46.32% 43.08% 36.06% 49.31% 46.72% 38.89% 30.91%

UBO Morpher 48.10% 47.40% 42.00% 34.58% 51.12% 48.78% 38.43% 29.55%

OpenCV FaceFusion 44.99% 43.76% 41.33% 35.41% 46.93% 43.39% 37.04% 29.40%

UBO Morpher 44.84% 44.81% 40.52% 33.78% 48.32% 45.36% 36.73% 27.83%

FRGC
FaceMorpher FaceFusion 33.04% 37.72% 42.53% 39.75% 24.94% 23.16% 22.28% 21.77%

UBO Morpher 30.38% 35.44% 41.77% 40.63% 21.65% 20.76% 22.41% 21.77%

OpenCV FaceFusion 23.92% 30.76% 39.24% 40.25% 18.48% 19.37% 21.65% 22.66%

UBO Morpher 21.77% 29.37% 37.34% 39.87% 17.47% 18.10% 21.77% 21.77%

Random
Forest

FERET
FaceMorpher FaceFusion 45.12% 44.53% 35.47% 46.50% 36.12% 54.24% 41.54% 38.15%

UBO Morpher 39.97% 40.83% 32.82% 44.01% 34.85% 50.66% 38.21% 38.06%

OpenCV FaceFusion 60.46% 51.06% 34.05% 36.09% 55.56% 37.04% 28.84% 46.53%

UBO Morpher 57.38% 47.18% 31.80% 32.91% 55.90% 39.23% 47.80% 45.79%

FRGC
FaceMorpher FaceFusion 21.01% 37.97% 39.11% 41.65% 21.01% 40.00% 36.46% 30.76%

UBO Morpher 37.47% 36.08% 41.65% 43.42% 29.75% 35.44% 36.20% 32.03%

OpenCV FaceFusion 26.71% 23.92% 28.35% 46.08% 20.76% 35.82% 27.09% 32.03%

UBO Morpher 22.15% 25.70% 26.46% 47.47% 32.66% 36.96% 27.47% 33.67%

AdaBoost

FERET
FaceMorpher FaceFusion 32.57% 27.92% 38.74% 34.30% 31.46% 28.78% 33.19% 31.74%

UBO Morpher 29.12% 24.56% 36.70% 34.02% 30.11% 29.55% 31.71% 32.63%

OpenCV FaceFusion 33.25% 27.33% 36.15% 35.04% 33.87% 30.54% 31.86% 30.76%

UBO Morpher 30.76% 25.08% 35.84% 33.90% 34.45% 29.89% 31.09% 30.02%

FRGC
FaceMorpher FaceFusion 21.14% 24.30% 31.01% 29.75% 26.08% 27.72% 27.34% 30.76%

UBO Morpher 17.72% 19.62% 29.75% 29.87% 22.03% 25.32% 26.71% 30.25%

OpenCV FaceFusion 19.87% 22.41% 32.53% 34.81% 23.80% 23.29% 30.00% 31.52%

UBO Morpher 17.09% 19.11% 32.28% 33.92% 20.25% 22.91% 26.96% 30.00%

Gradient
Boosting

FERET
FaceMorpher FaceFusion 45.02% 31.62% 36.83% 38.15% 39.04% 36.15% 30.94% 31.74%

UBO Morpher 42.13% 28.66% 35.56% 37.87% 38.64% 34.67% 30.45% 30.94%

OpenCV FaceFusion 33.96% 31.31% 36.02% 36.52% 36.24% 31.16% 29.61% 31.77%

UBO Morpher 32.30% 28.20% 34.98% 36.18% 35.25% 31.56% 28.60% 29.58%

FRGC
FaceMorpher FaceFusion 20.63% 25.32% 26.84% 29.49% 27.47% 25.70% 27.34% 31.01%

UBO Morpher 18.35% 22.15% 24.81% 28.99% 22.66% 24.05% 24.94% 30.89%

OpenCV FaceFusion 17.85% 18.23% 26.58% 32.15% 20.89% 20.89% 26.08% 29.87%

UBO Morpher 17.22% 17.34% 24.94% 31.65% 18.61% 20.51% 25.32% 28.35%

Table 24.4: Detection performance (D-EER) of texture descriptors with differ-
ent configurations in differential scenario
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robust, the errors of this algorithm are consistently lower than the
error values of the other algorithms.

gradient based descriptors In this paragraph, the morph-
ing detection capabilities of gradient based descriptors in different
configurations, as described in Section 16.2, are analysed.

The D-EERs of the respective algorithms in a single image scenario
are listed in Table 24.5. For the HOG based algorithms, cell subdivision
was omitted, since HOG subdivides the image to be analysed into cells
during feature extraction. Mean of gradient based approaches do not
achieve a detection performance below 30% D-EER, thus the suitability
of these algorithms for S-MAD algorithms can be excluded. A closer
examination of the gradient images and a more refined extraction of
the contained information may yield different results. For example, the
HOG based algorithms demonstrate the general suitability of gradient
based features for MAD. In particular, when combined with an SVM,
average EERs of 14% for FRGC and 22.1% for FERET can be achieved.
As with the previous single image algorithms, the detection of FRGC
morphs and the detection of morphs created by the UBO Morpher
results in a lower error range. The choice of morphs used for training
has almost no influence on the result.

The D-EERs of the respective algorithms in a differential scenario
are listed in Table 24.6. Similar to the single image scenario, the mean
of gradient based MAD algorithms are barely able to detect morphs.
Regardless of whether a cell division is applied or not, usually only D-
EER above 30% are obtained. HOG based MAD, however, exhibits an
acceptable detection performance even in the differential scenario. In
combination with an SVM, an average D-EERs of 25.9% for FRGC and
17.4% for FERET can be achieved, confirming, as with other differential
algorithms, that, in the differential scenario, FERET morphs are easier
to detect than FRGC morphs.

It can be summarised, that out of the category of tested gradient
based descriptors, only HOG is applicable for the creation of MAD
algorithms, whereas it is applicable for both, the single image and the
differential scenario.

keypoint descriptors In this paragraph, the morphing detec-
tion capabilities of keypoint descriptors in different configurations, as
described in Section 16.3, are analysed. In contrast to the evaluation
of the previous feature extractors, the table of results are not split
according the scenario (single image or differential), but according
cell division. Without cell division the feature extraction defined in
Section 16.3 returns a scalar value, which can be directly applied for
decision making. Thus, in this case, no training database is required.
If, however, a cell division is applied prior to the feature extraction, a
feature vector is obtained, requiring a subsequent classification.
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Classifier
Training Test Feature (Cells)

Database Morphing
Algorithm

Morphing
Algorithm

Mean of Gradients HOG

1× 1 4× 4 1× 1

SVM

FERET
FaceMorpher FaceFusion 47.06% 36.83% 14.73%

UBO Morpher 43.73% 33.99% 13.25%

OpenCV FaceFusion 47.06% 37.72% 14.48%

UBO Morpher 45.24% 34.88% 13.78%

FRGC
FaceMorpher FaceFusion 47.47% 42.78% 24.05%

UBO Morpher 46.71% 41.01% 19.75%

OpenCV FaceFusion 47.09% 43.80% 23.92%

UBO Morpher 45.82% 40.76% 20.63%

Random
Forest

FERET
FaceMorpher FaceFusion 56.98% 38.92% 28.54%

UBO Morpher 51.16% 33.96% 28.38%

OpenCV FaceFusion 56.02% 38.92% 24.87%

UBO Morpher 51.34% 35.07% 24.84%

FRGC
FaceMorpher FaceFusion 45.57% 43.04% 42.28%

UBO Morpher 45.57% 39.11% 38.99%

OpenCV FaceFusion 52.03% 42.28% 32.53%

UBO Morpher 46.96% 34.94% 30.76%

AdaBoost

FERET
FaceMorpher FaceFusion 43.05% 38.71% 21.48%

UBO Morpher 48.44% 38.64% 20.59%

OpenCV FaceFusion 47.64% 39.45% 25.15%

UBO Morpher 45.24% 37.66% 24.35%

FRGC
FaceMorpher FaceFusion 45.95% 43.67% 29.49%

UBO Morpher 45.82% 41.27% 27.34%

OpenCV FaceFusion 47.72% 42.28% 32.41%

UBO Morpher 47.85% 40.63% 27.97%

Gradient
Boosting

FERET
FaceMorpher FaceFusion 51.77% 40.80% 25.76%

UBO Morpher 49.86% 37.38% 27.12%

OpenCV FaceFusion 49.80% 40.55% 25.08%

UBO Morpher 49.28% 38.46% 25.76%

FRGC
FaceMorpher FaceFusion 46.71% 41.77% 29.87%

UBO Morpher 45.06% 39.24% 27.09%

OpenCV FaceFusion 48.86% 43.80% 32.15%

UBO Morpher 47.97% 42.41% 30.13%

Table 24.5: Detection performance (D-EER) of gradient based descriptors
with different configurations in single image scenario
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Classifier
Training Test Feature (Cells)

Database Morphing
Algorithm

Morphing
Algorithm

Mean of Gradients HOG

1× 1 4× 4 1× 1

SVM

FERET
FaceMorpher FaceFusion 47.61% 48.01% 27.52%

UBO Morpher 46.32% 46.50% 25.24%

OpenCV FaceFusion 47.61% 48.17% 26.41%

UBO Morpher 46.63% 47.24% 24.31%

FRGC
FaceMorpher FaceFusion 37.85% 34.81% 19.37%

UBO Morpher 36.46% 29.37% 15.70%

OpenCV FaceFusion 37.72% 34.18% 18.73%

UBO Morpher 35.19% 28.86% 15.70%

Random
Forest

FERET
FaceMorpher FaceFusion 46.87% 42.77% 35.04%

UBO Morpher 46.16% 39.72% 33.68%

OpenCV FaceFusion 47.18% 41.88% 34.36%

UBO Morpher 44.19% 38.98% 32.60%

FRGC
FaceMorpher FaceFusion 42.66% 46.20% 22.91%

UBO Morpher 43.42% 41.14% 23.92%

OpenCV FaceFusion 45.95% 48.10% 27.59%

UBO Morpher 43.67% 40.25% 27.72%

AdaBoost

FERET
FaceMorpher FaceFusion 46.10% 43.30% 27.43%

UBO Morpher 48.32% 39.23% 28.63%

OpenCV FaceFusion 47.12% 43.61% 26.41%

UBO Morpher 45.70% 39.94% 26.32%

FRGC
FaceMorpher FaceFusion 32.41% 37.85% 30.13%

UBO Morpher 25.95% 28.73% 28.61%

OpenCV FaceFusion 56.96% 39.49% 31.39%

UBO Morpher 55.19% 31.39% 28.10%

Gradient
Boosting

FERET
FaceMorpher FaceFusion 47.24% 46.47% 30.35%

UBO Morpher 45.86% 45.02% 30.60%

OpenCV FaceFusion 47.40% 45.92% 29.18%

UBO Morpher 45.82% 43.48% 29.77%

FRGC
FaceMorpher FaceFusion 38.35% 34.05% 30.38%

UBO Morpher 36.96% 30.51% 28.73%

OpenCV FaceFusion 37.85% 35.95% 28.23%

UBO Morpher 36.71% 28.99% 25.32%

Table 24.6: Detection performance (D-EER) of gradient based descriptors
with different configurations in differential scenario
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Test Feature (no cell division)

Database Morphing
Algorithm

Single Image Differential

SIFT SURF SIFT SURF

FERT FaceFusion 40.51% 39.24% 36.84% 33.92%

UBO Morpher 36.84% 38.86% 34.68% 31.90%

FRGC FaceFusion 32.11% 32.70% 39.94% 38.03%

UBO Morpher 25.89% 27.21% 35.38% 35.81%

Table 24.7: Detection performance (D-EER) of keypoint descriptors with dif-
ferent configurations in single image and differential scenario
without cell division

The D-EERs of keypoint descriptor based algorithms without cell
division are listed in Table 24.7. Due to the fact, that the number
of possible combinations is greatly reduced by the lack of training
parameters, the evaluation of the results is shortened. It can be seen
that in both scenarios the keypoint extractors without cell division
reach D-EERs above the 30%, which is why they are basically not
suitable for creating MAD algorithms.

The D-EERs of keypoint descriptor based algorithms with cell di-
vision into 4× 4 cells are listed in Table 24.8. In the case of SIFT and
SURF with cell division, the evaluation has more parameters than
the evaluation without cell division, as the extracted feature vectors
are to be classified, resulting in multiple combination options. The
single image algorithms tend to achieve slightly better results than
the differential algorithms, although D-EERs below 30% are rarely
achieved. Therefore, these applied keypoint algorithms can generally
be considered unsuitable for MAD. A more sophisticated method for
extracting keypoint characteristics might have a higher potential and
should be considered in future work.

landmark descriptors In this paragraph, the morphing detec-
tion capabilities of two different landmark descriptors, as described in
Section 16.4, are analysed.

The basic idea behind the use of landmarks for MAD is to detect the
distortion of the face induced by the morphing process on the basis
of the offset of the facial landmarks. For this concept the comparison
to a TLC is mandatory, which is why only the differential scenario is
considered in the evaluation. Table 24.9 shows the determined D-EERs
for the examined MAD algorithms. The feature extraction is, as men-
tioned in Section 16.4, based on the concept described in [24]. To the
author’s knowledge, the only difference to the recommended proce-
dure is the omission of an automatic hyperparameter optimisation of
the employed classifiers (in [24] only an SVM with RBF kernel was
used). Still, the determined error rates considerably deviate from the
nearly optimal detection rates stated in [24]. Regardless of the choice
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Classifier
Training Test Feature (4× 4 Cells)

Database Morphing
Algorithm

Morphing
Algorithm

Single Image Differential

SIFT SURF SIFT SURF

SVM

FERET
FaceMorpher FaceFusion 31.65% 34.70% 48.20% 47.46%

UBO Morpher 25.58% 31.59% 47.43% 45.95%

OpenCV FaceFusion 31.03% 31.59% 49.37% 46.75%

UBO Morpher 26.78% 29.92% 48.04% 45.89%

FRGC
FaceMorpher FaceFusion 37.59% 40.25% 44.30% 44.56%

UBO Morpher 36.58% 38.48% 44.30% 43.04%

OpenCV FaceFusion 38.10% 40.63% 45.44% 45.57%

UBO Morpher 36.58% 37.59% 45.82% 44.81%

Random
Forest

FERET
FaceMorpher FaceFusion 34.24% 37.66% 42.31% 43.88%

UBO Morpher 37.78% 34.61% 36.98% 42.00%

OpenCV FaceFusion 41.14% 41.73% 50.54% 52.63%

UBO Morpher 35.72% 35.25% 46.13% 52.97%

FRGC
FaceMorpher FaceFusion 46.20% 41.39% 49.11% 44.68%

UBO Morpher 42.03% 36.96% 50.00% 40.63%

OpenCV FaceFusion 38.86% 42.66% 40.38% 46.33%

UBO Morpher 41.90% 37.34% 39.62% 40.38%

AdaBoost

FERET
FaceMorpher FaceFusion 29.31% 32.33% 38.61% 43.51%

UBO Morpher 34.98% 27.92% 33.41% 39.60%

OpenCV FaceFusion 31.96% 33.13% 37.01% 46.47%

UBO Morpher 27.09% 32.76% 41.63% 43.08%

FRGC
FaceMorpher FaceFusion 41.01% 38.86% 32.91% 39.75%

UBO Morpher 37.85% 37.22% 29.87% 36.08%

OpenCV FaceFusion 50.63% 40.38% 44.30% 28.99%

UBO Morpher 42.41% 38.61% 41.27% 49.37%

Gradient
Boosting

FERET
FaceMorpher FaceFusion 33.13% 35.62% 39.38% 44.50%

UBO Morpher 28.04% 33.34% 35.07% 44.07%

OpenCV FaceFusion 35.22% 36.70% 42.25% 44.68%

UBO Morpher 29.86% 33.37% 41.11% 43.91%

FRGC
FaceMorpher FaceFusion 41.39% 40.25% 43.16% 40.51%

UBO Morpher 38.48% 37.22% 40.25% 36.96%

OpenCV FaceFusion 40.63% 39.75% 43.92% 37.97%

UBO Morpher 38.10% 37.85% 42.03% 36.20%

Table 24.8: Detection performance (D-EER) of keypoint descriptors with dif-
ferent configurations in single image and differential scenario
with cell division
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Classifier Training Test Feature

Database Morphing
Algorithm

Morphing
Algorithm

Dlib WING

SVM

FERET
FaceMorpher FaceFusion 43.81% 43.94%

UBO Morpher 42.92% 43.79%

OpenCV FaceFusion 45.51% 43.17%

UBO Morpher 45.14% 42.84%

FRGC
FaceMorpher FaceFusion 39.85% 40.63%

UBO Morpher 42.13% 41.01%

OpenCV FaceFusion 38.20% 40.89%

UBO Morpher 38.83% 41.90%

Random
Forest

FERET
FaceMorpher FaceFusion 40.20% 36.92%

UBO Morpher 37.40% 35.84%

OpenCV FaceFusion 36.10% 40.74%

UBO Morpher 35.64% 38.61%

FRGC
FaceMorpher FaceFusion 34.90% 43.29%

UBO Morpher 35.41% 44.81%

OpenCV FaceFusion 33.88% 43.54%

UBO Morpher 33.38% 45.44%

AdaBoost

FERET
FaceMorpher FaceFusion 46.78% 44.47%

UBO Morpher 44.96% 43.85%

OpenCV FaceFusion 45.11% 43.61%

UBO Morpher 45.29% 43.88%

FRGC
FaceMorpher FaceFusion 42.64% 38.48%

UBO Morpher 44.92% 36.96%

OpenCV FaceFusion 44.16% 38.86%

UBO Morpher 44.04% 38.61%

Gradient
Boosting

FERET
FaceMorpher FaceFusion 43.01% 44.96%

UBO Morpher 42.30% 43.94%

OpenCV FaceFusion 43.04% 44.93%

UBO Morpher 42.58% 42.71%

FRGC
FaceMorpher FaceFusion 38.07% 38.48%

UBO Morpher 40.74% 38.73%

OpenCV FaceFusion 40.10% 38.86%

UBO Morpher 40.48% 36.58%

Table 24.9: Detection performance (D-EER) of landmark descriptors with
different configurations in differential scenario
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Database Training Test Feature

Morphing
Algorithm

Morphing
Algorithm PRNU-1 PRNU-2 SPN

FERET
FaceMorpher FaceFusion 39.58% 47.54% 42.13%

UBO Morpher 36.93% 46.40% 33.68%

OpenCV FaceFusion - - 42.93%

UBO Morpher - - 33.56%

FRGC
FaceMorpher FaceFusion 31.98% 42.37% 59.24%

UBO Morpher 27.10% 38.73% 51.14%

OpenCV FaceFusion - - 59.75%

UBO Morpher - - 44.94%

Table 24.10: Detection performance (D-EER) of image noise pattern with
different configurations in single image scenario

of classifier and landmark extractor, no D-EER below 33% can be
obtained. This discrepancy in detection results is presumably due to
the higher realism and resulting variance of the TLC images available
in the used database. This assumption is supported by the fact that
the D-EERs on the morphs of FRGC are higher than on the morph
of FERET. Consequently, the investigated landmark based algorithms
can be considered as not suitable for MAD in realistic scenarios.

image noise pattern In this paragraph, the morphing detec-
tion capabilities of two different image noise pattern extractors, as
described in Section 16.5, are analysed.

The objective of image noise pattern analysis is to detect a change
in the image induced by the morphing process based on the noise
pattern. Thus, a comparison of the suspected morph to a TLC image
is not reasonable, hence only the single image scenario is considered.
The D-EERs of the examined algorithms are given in Table 24.10.
The two PRNU based approaches described in Section 16.5.1 require
no previous training. In order to enable a direct comparison with
the SPN based approach, the resulting D-EER of the PRNU based
algorithms are listed in a row with the SPN based algorithm trained
on morphs generated by FaceMorpher. To avoid repeating the values,
the corresponding fields in the row for morphs generated by OpenCV
have been left blank. The choice of the classifier used for training
the SPN based algorithm was limited to an SVM with RBF kernel, as
proposed in [171].

Both, [132] and [171] reported promising detection performances for
image noise pattern based MAD algorithms. However, these cannot
be reproduced on the realistic data set applied for this evaluation,
meaning that none of the applied algorithms is capable of achieving
a D-EER lower than 27%, for most constellations the error rates are
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higher than 40%. Thus, image noise pattern based features may be
considered unsuitable for detecting MAD algorithms.

deep features In this paragraph, the morphing detection ca-
pabilities of three different deep feature extractors, as described in
Section 16.6, are analysed.

The D-EERs of the respective algorithms in a single image scenario
are listed in Table 24.11. It is noticeable, that, compared to the MAD
algorithms investigated so far, the difference in D-EER between FERET
and FRGC is considerably lower. The difference in the detection per-
formance of morphs created with FaceFusion and the UBO Morpher
is marginal. It can be concluded, that the extracted features are ab-
stracting from the image source, leading to a higher robustness of the
resulting MAD algorithms. It can be observed that ArcFace and Eye-
dea feature based MAD algorithms exhibit higher performance than
FaceNet based algorithms, with best results achieved in combination
with an SVM. However, even those algorithms are not able to achieve
D-EERs less than 25%, therefore the application of the tested deep
features for S-MAD is not recommended.

The D-EERs of the respective algorithms in a differential scenario
are listed in Table 24.12. It can be observed that, in contrast to the
single image scenario, a greater difference between the detection
performance of morphs from FERET and FRGC occurs. Despite the
robust feature extraction, the greater variance of the TLC images
of FRGC significantly reduces the detection performance. Morphs
generated by the UBO Morpher tend to be better detectable than
morphs generated by FaceFusion, no clear pattern emerges from the
differences in D-EER in dependence of the choice of morphs used for
training. In the differential scenario, the ArcFace feature-based MAD
algorithms stand out due to their low D-EER, in combination with
an SVM, average D-EERs of 2.7% for FRGC and 6.7% for FERET are
achieved, representing the lowest error rates of this experiment. With
7.7% average D-EER for FRGC and 16.9% average D-EER for FERET,
the Eyedea features in combination with an SVM can be considered
suitable as well.

It can be summarized that deep features are particularly suitable
for the implementation of differential MAD algorithms. In particular
ArcFace and Eyedea features in combination with an SVM with RBF
kernel achieve promising D-EERs.

24.2.3 Discussion

The MAD algorithms that have been shown to perform best on non
post-processed images are listed in the following tables, divided ac-
cording to single image and differential scenario. In addition to the
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Classifier Training Test Feature

Database Morphing
Algorithm

Morphing
Algorithm

FaceNet ArcFace Eyedea

SVM

FERET
FaceMorpher FaceFusion 32.82% 29.71% 26.35%

UBO Morpher 33.71% 29.83% 27.64%

OpenCV FaceFusion 31.80% 24.84% 24.96%

UBO Morpher 32.76% 24.87% 25.55%

FRGC
FaceMorpher FaceFusion 33.67% 28.23% 27.59%

UBO Morpher 33.67% 26.46% 30.25%

OpenCV FaceFusion 35.06% 26.84% 27.09%

UBO Morpher 35.32% 25.82% 26.96%

Random
Forest

FERET
FaceMorpher FaceFusion 46.29% 39.38% 31.80%

UBO Morpher 46.59% 40.37% 32.88%

OpenCV FaceFusion 35.56% 39.78% 30.94%

UBO Morpher 36.86% 36.86% 31.34%

FRGC
FaceMorpher FaceFusion 47.09% 42.66% 35.70%

UBO Morpher 49.62% 38.35% 34.81%

OpenCV FaceFusion 33.16% 36.33% 31.01%

UBO Morpher 28.73% 37.22% 32.66%

AdaBoost

FERET
FaceMorpher FaceFusion 37.50% 34.45% 29.43%

UBO Morpher 37.78% 35.50% 30.54%

OpenCV FaceFusion 35.99% 31.71% 27.92%

UBO Morpher 36.80% 31.77% 28.72%

FRGC
FaceMorpher FaceFusion 37.09% 37.09% 30.25%

UBO Morpher 36.71% 36.46% 31.90%

OpenCV FaceFusion 36.71% 36.71% 33.54%

UBO Morpher 36.96% 34.68% 31.90%

Gradient
Boosting

FERET
FaceMorpher FaceFusion 34.14% 34.73% 31.28%

UBO Morpher 35.38% 35.65% 31.65%

OpenCV FaceFusion 32.27% 34.14% 30.45%

UBO Morpher 35.16% 33.47% 30.42%

FRGC
FaceMorpher FaceFusion 36.08% 36.58% 32.78%

UBO Morpher 36.71% 34.94% 32.41%

OpenCV FaceFusion 35.82% 36.20% 32.53%

UBO Morpher 35.32% 35.19% 30.13%

Table 24.11: Detection performance (D-EER) of deep features in single image
scenario
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Classifier Training Test Feature

Database Morphing
Algorithm

Morphing
Algorithm

FaceNet ArcFace Eyedea

SVM

FERET
FaceMorpher FaceFusion 26.32% 7.17% 16.27%

UBO Morpher 25.24% 6.65% 17.23%

OpenCV FaceFusion 26.84% 6.80% 16.39%

UBO Morpher 24.90% 6.31% 16.83%

FRGC
FaceMorpher FaceFusion 14.43% 2.71% 7.34%

UBO Morpher 13.67% 2.58% 8.35%

OpenCV FaceFusion 14.05% 2.71% 7.34%

UBO Morpher 13.16% 2.71% 7.59%

Random
Forest

FERET
FaceMorpher FaceFusion 30.63% 15.61% 40.15%

UBO Morpher 30.57% 14.96% 42.16%

OpenCV FaceFusion 24.10% 25.94% 37.07%

UBO Morpher 25.58% 25.26% 38.40%

FRGC
FaceMorpher FaceFusion 19.49% 5.41% 11.27%

UBO Morpher 20.00% 7.09% 11.52%

OpenCV FaceFusion 13.67% 6.57% 17.34%

UBO Morpher 13.42% 5.03% 18.48%

AdaBoost

FERET
FaceMorpher FaceFusion 32.23% 20.37% 28.44%

UBO Morpher 32.36% 20.28% 29.40%

OpenCV FaceFusion 31.12% 20.31% 27.40%

UBO Morpher 30.57% 21.08% 28.41%

FRGC
FaceMorpher FaceFusion 19.87% 10.70% 19.11%

UBO Morpher 18.23% 9.66% 17.09%

OpenCV FaceFusion 21.27% 10.82% 20.89%

UBO Morpher 19.24% 10.95% 18.86%

Gradient
Boosting

FERET
FaceMorpher FaceFusion 31.46% 19.10% 28.97%

UBO Morpher 31.49% 18.24% 30.94%

OpenCV FaceFusion 30.97% 18.18% 28.26%

UBO Morpher 30.66% 17.56% 29.86%

FRGC
FaceMorpher FaceFusion 17.59% 8.89% 22.78%

UBO Morpher 17.34% 9.66% 21.14%

OpenCV FaceFusion 16.96% 8.51% 23.67%

UBO Morpher 16.58% 8.12% 21.27%

Table 24.12: Detection performance (D-EER) of deep features in differential
scenario
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Training Test EER

Database Morphing
Algorithm

Morphing
Algorithm

LBP
4× 4
3× 3

BSIF
4× 4
9× 9

HOG

SVM SVM SVM

FERET
FaceMorpher FaceFusion 22.00% 14.33% 14.73%

UBO Morpher 16.55% 12.54% 13.25%

OpenCV FaceFusion 19.69% 15.96% 14.48%

UBO Morpher 15.87% 13.34% 13.78%

FRGC
FaceMorpher FaceFusion 31.01% 30.76% 24.05%

UBO Morpher 26.71% 28.99% 19.75%

OpenCV FaceFusion 26.20% 31.01% 23.92%

UBO Morpher 24.05% 28.61% 20.63%

Table 24.13: Detection performance (D-EER) of selected features in the single
image scenario

previously analysed D-EER, the more security-concerned operating
points BPCER-10 and BPCER-20 are considered.

single image algorithms The D-EERs of the best single image
algorithms are listed in Table 24.13, the corresponding BPCER-10 and
BPCER-20 are given in Table 24.14 and 24.15 respectively. Among the
best performing single image algorithms only those using an SVM
with RBF kernel for classification can be found.

In general, it can be observed that the morphs of FERET are much
more difficult to detect than the morphs of FRGC. HOG is the most
robust algorithm, meaning the D-EER is consistently below 25%, re-
gardless of the database and morphing algorithm. Even in the security-
concerned BPCER-20 scenario, 70% of the bona fide comparisons are
accepted for FRGC and almost half for FERET. Across all single image
algorithms, it can also be observed that the error rates for detecting
morphs of the FaceFusion morphing algorithm are higher than those
for detecting the UBO Morpher morphs.

The corresponding DET plots are shown in Figure 24.1. In order
to enable an organised visualisation, only DET curves for algorithms
trained on OpenCV are depicted. It can be observed, that the algorithm
with the lowest D-EER performs best over all other operating points.
Only in the evaluation of morphs generated by the UBO Morpher
providers on the FRGC database there are overlaps between BSIF and
HOG.

differential algorithms The D-EERs of the best performing
differential algorithms are listed in Table 24.16, the corresponding
BPCER-10 and BPCER-20 are given in Table 24.17 and 24.18 respec-
tively.
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Training Test BPCER-10

Database Morphing
Algorithm

Morphing
Algorithm

LBP
4× 4
3× 3

BSIF
4× 4
9× 9

HOG

SVM SVM SVM

FERET
FaceMorpher FaceFusion 41.34% 20.20% 21.38%

UBO Morpher 25.30% 14.19% 17.50%

OpenCV FaceFusion 35.46% 20.44% 20.84%

UBO Morpher 21.96% 17.29% 18.74%

FRGC
FaceMorpher FaceFusion 52.91% 62.53% 42.91%

UBO Morpher 44.68% 61.27% 33.80%

OpenCV FaceFusion 49.11% 62.91% 41.01%

UBO Morpher 41.14% 58.23% 31.52%

Table 24.14: Detection performance (BPCER.10) of selected features in the
single image scenario

Training Test BPCER-20

Database Morphing
Algorithm

Morphing
Algorithm

LBP
4× 4
3× 3

BSIF
4× 4
9× 9

HOG

SVM SVM SVM

FERET
FaceMorpher FaceFusion 52.17% 28.33% 31.48%

UBO Morpher 37.85% 23.32% 25.66%

OpenCV FaceFusion 45.62% 33.00% 31.48%

UBO Morpher 34.67% 27.60% 26.51%

FRGC
FaceMorpher FaceFusion 69.11% 79.24% 56.20%

UBO Morpher 55.70% 72.66% 46.71%

OpenCV FaceFusion 66.08% 75.44% 54.81%

UBO Morpher 55.95% 70.89% 41.27%

Table 24.15: Detection performance (BPCER-20) of selected features in the
single image scenario
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(a) DET-plot of selected single image
algorithms on morphs generated
by FaceFusion on FERET
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(c) DET-plot of selected single image
algorithms on morphs generated
by FaceFusion on FRGC
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(d) DET-plot of selected single image
algorithms on morphs generated
by UBO Morpher on FRGC

Figure 24.1: DET-plots of selected single image algorithms

Most MAD algorithms based on handcrafted features, for example
texture or gradients, achieve better results in the single image scenario
than in the differential scenario. This is caused by the fact, that the
probe images used for comparison contain such a high variance, that
the additional information available does not contribute to a stabil-
isation of the detection. This also provides an explanation, why the
results obtained on FERET on a differential scenario are usually better
than those obtained on FRGC, since the probe images contained in
the FRGC exhibit a significantly higher variance than those of FERET.
For the evaluation of more security-conscious operating points, it
should be noted that if an algorithm achieves a D-EER lower than the
required APCER, the corresponding BPCER will also drop below the
D-EER. Consequently, especially for the ArcFace based algorithm, the
BPCER-10 and BPCER-20 for the evaluation of the FERET data are
significantly reduced.

The corresponding DET plots are shown in Figure 24.2. The massive
performance advantage of the ArcFace based MAD algorithm over the
other MAD algorithms is clearly visible in these examples. Regardless
of the scenario and operating point, it achieves the lowest error rates.
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Training Test EER

Database Morphing
Algorithm

Morphing
Algorithm

LBP
4× 4
3× 3

HOG ArcFace Eyedea

AdaBoost SVM SVM SVM

FERET
FaceMorpher FaceFusion 27.92% 27.52% 7.17% 16.27%

UBO Morpher 24.56% 25.24% 6.65% 17.23%

OpenCV FaceFusion 27.33% 26.41% 6.80% 16.39%

UBO Morpher 25.08% 24.31% 6.31% 16.83%

FRGC
FaceMorpher FaceFusion 24.30% 19.37% 2.71% 7.34%

UBO Morpher 19.62% 15.70% 2.58% 8.35%

OpenCV FaceFusion 22.41% 18.73% 2.71% 7.34%

UBO Morpher 19.11% 15.70% 2.71% 7.59%

Table 24.16: Detection performance (D-EER) of selected features in the differ-
ential scenario

Training Test BPCER-10

Database Morphing
Algorithm

Morphing
Algorithm

LBP
4× 4
3× 3

HOG ArcFace Eyedea

AdaBoost SVM SVM SVM

FERET
FaceMorpher FaceFusion 57.54% 57.11% 4.59% 24.99%

UBO Morpher 50.17% 51.84% 4.29% 26.30%

OpenCV FaceFusion 54.26% 55.08% 4.02% 23.96%

UBO Morpher 51.93% 50.08% 3.68% 24.20%

FRGC
FaceMorpher FaceFusion 54.43% 28.35% 1.16% 5.70%

UBO Morpher 41.14% 23.29% 1.16% 7.34%

OpenCV FaceFusion 40.38% 30.38% 0.90% 5.32%

UBO Morpher 31.90% 22.28% 0.90% 6.71%

Table 24.17: Detection performance (BPCER-10) of selected features in the
differential scenario
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Training Test BPCER-20

Database Morphing
Algorithm

Morphing
Algorithm

LBP
4× 4
3× 3

HOG ArcFace Eyedea

AdaBoost SVM SVM SVM

FERET
FaceMorpher FaceFusion 74.55% 73.92% 10.83% 38.91%

UBO Morpher 66.67% 68.30% 9.19% 39.52%

OpenCV FaceFusion 68.52% 72.52% 8.82% 37.22%

UBO Morpher 68.24% 66.33% 8.28% 37.58%

FRGC
FaceMorpher FaceFusion 70.25% 40.89% 1.80% 9.87%

UBO Morpher 59.49% 34.56% 1.80% 11.27%

OpenCV FaceFusion 56.08% 43.29% 1.68% 9.11%

UBO Morpher 51.01% 36.84% 1.42% 10.63%

Table 24.18: Detection performance (BPCER-20) of selected features in the
differential scenario

In particular considering the graphs of the FERET database, it should
be noted that already at an APCER of 20% almost no BPCER is
measurable. This behaviour can be interpreted in a way, that the
system can be configured such that when deployed in a FRS the FNMR
of the overall system would not increase, but 80% of the morphs could
be recognized.

24.3 experiment 3 - post-processing

The selection of suitable feature extractors and classifiers in Section
24.2 is carried out on a database with realistic variance regarding
the acquisition parameters of the images, for example pose and il-
lumination. However, in a real scenario, passport photographs may
be processed differently prior to being included in the passport. The
impact of different post-processing steps on the detection performance
of the MAD algorithms has already been shown, for example, for
print and scan [134]. In this experiment the influence of three differ-
ent post-processing chains on the detection performance of the MAD
algorithms determined in Section 24.2 will be investigated.

24.3.1 Experimental Setup

The three scenarios considered in this thesis and the associated post-
processing chains are described in Section 21.3. The MAD algorithms
for the single image and differential scenario, as determined in Section
24.2, are tested and evaluated with respect to their generalisation
capability against these post-processing chains. For this purpose, the
algorithms are trained on non post-processing images, morphs created
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(a) DET-plot of selected differential al-
gorithms on morphs generated by
FaceFusion on FERET
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(c) DET-plot of selected differential al-
gorithms on morphs generated by
FaceFusion on FRGC
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(d) DET-plot of selected differential al-
gorithms on morphs generated by
UBO Morpher on FRGC

Figure 24.2: DET-plots of selected differential algorithms

by OpenCV and FaceMorpher are used. The evaluation on morphs
created by FaceFusion and UBO Morpher is reported in the following.

24.3.2 Evaluation

The evaluation is divided into the three post-processing scenarios RS,
JP and PS. Per scenario the D-EER is reported, and a visualisation
of the performance over all operating points is given as DET-plot.
In order to achieve a comparability to the previous DET-plots, the
performance of algorithms trained on morphs generated by OpenCV
are depicted.

resized The post-processing in the RS scenario corresponds to the
digital image transmission in the passport application. The image has
been resized to a size that complies with the minimum resolution
requirements for passport photos, as described in Section 20.1.3.

The error rates of the selected S-MAD algorithms are listed as D-EER
in Table 24.19. Resizing to half the image size has almost no effect on
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Database
Morphing Algorithm Algorithm/Classifier

Training Test

LBP
4× 4
3× 3

BSIF
4× 4
9× 9

HOG

SVM SVM SVM

FRGC
FaceMorpher FaceFusion 23.17% 14.36% 14.79%

UBO Morpher 16.86% 12.76% 13.16%

OpenCV FaceFusion 20.71% 15.50% 14.45%

UBO Morpher 15.29% 13.41% 14.02%

FERET
FaceMorpher FaceFusion 31.52% 30.76% 23.92%

UBO Morpher 26.84% 29.11% 19.87%

OpenCV FaceFusion 25.44% 31.39% 24.05%

UBO Morpher 23.42% 28.48% 20.63%

Table 24.19: Detection performance (D-EER) of selected S-MAD algorithms
on images post-processed according RS

the performance of all three algorithms, the D-EERs only change in
the second decimal place.

The corresponding DET plots are depicted in Figure 24.3. It can
be observed, that post-processing according the RS scenario has no
effect on the evaluation of further operating points. Thus, it can be
concluded, that the selected S-MAD algorithms are able to generalize
very well in case of a resizing of the image to a size permitted for
passport images, meaning, no performance decrease of the algorithms
is to be expected.

The D-EERs for the differential scenario are listed in Table 24.20.
Again, it can be observed, that post-processing according the RS
scenario barely influences the detection performance of the selected
MAD systems. In cases of particularly low D-EER, e.g. ArcFace on
morphs of the FERET database generated by FaceFusion, the influence
on the detection performance tends to be slightly higher than in cases
of higher baseline D-EER.

The corresponding DET-plots are depicted in Figure 24.4. It can be
observed here that the detection performance over all operating points
is not influenced by the applied post-processing. Consequently, the
selected differential MAD algorithms can also be considered robust
against post-processing according RS.

jpeg2000 The post-processing in the following scenario corresponds
to a face image, digitally transferred to the application office and stored
into the passport. The images resized to half the size are subsequently
compressed with JPEG2000 to 15kb, resulting in a loss of sharpness
and high-frequency information. As described in Section 21.3 this
post-processing is abbreviated as JP.
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(a) DET-plot of selected single im-
age algorithms on morphs gener-
ated by FaceFusion on FERET post-
processed according RS.
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(b) DET-plot of selected single image
algorithms on morphs generated
by UBO Morpher on FERET post-
processed according RS. 1
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(c) DET-plot of selected single im-
age algorithms on morphs gener-
ated by FaceFusion on FRGC post-
processed according RS.
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(d) DET-plot of selected single image
algorithms on morphs generated
by UBO Morpher on FRGC post-
processed according RS.g

Figure 24.3: DET-plots of selected single image algorithms post-processed
according RS

The error rates of the selected S-MAD algorithms on image post-
processed according JP are listed as D-EER in Table 24.19. The loss of
information caused by the JP process has a significant impact on the
detection performance of the LBP based MAD algorithm. Regardless
of the scenario, no D-EER below 39% is obtained, whereas the error
rates for the morphs of the FERET database, which are harder to
detect, with almost 50% D-EER are close to a random guess. The BSIF
based MAD algorithm, also processing texture information, shows a
significantly higher robustness regarding JP post-processing, with an
increase of roughly 4 percent points D-EER for FRGC. It is noticeable
that the D-EERs for FERET, which was already significantly higher on
the non post-processed images, hardly changes for the post-processed
images. This leads to the conclusion that the features employed for
classification of FERET by the BSIF based algorithm are not affected
by JPEG2000 compression. The different behaviour of the LBP and
BSIF based algorithms can be attributed to the fact, that the LBP
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Database
Morphing Algorithm Algorithm/Classifier

Training Test

LBP
4× 4
3× 3

HOG ArcFace Eyedea

AdaBoost SVM SVM SVM

FRGC
FaceMorpher FaceFusion 28.04% 27.40% 7.20% 16.24%

UBO Morpher 24.25% 25.08% 6.71% 17.07%

OpenCV FaceFusion 27.43% 26.41% 6.77% 16.33%

UBO Morpher 25.05% 24.25% 6.37% 17.01%

FERET
FaceMorpher FaceFusion 24.56% 18.35% 2.84% 7.47%

UBO Morpher 21.27% 15.06% 2.84% 8.35%

OpenCV FaceFusion 21.39% 18.61% 2.96% 7.22%

UBO Morpher 18.86% 15.44% 2.58% 7.72%

Table 24.20: Detection performance (D-EER) of selected differential MAD
algorithms on images post-processed according RS

Database
Morphing Algorithm Algorithm/Classifier

Training Test

LBP
4× 4
3× 3

BSIF
4× 4
9× 9

HOG

SVM SVM SVM

FRGC
FaceMorpher FaceFusion 41.14% 18.06% 19.41%

UBO Morpher 40.22% 16.33% 19.11%

OpenCV FaceFusion 40.71% 18.18% 20.18%

UBO Morpher 39.82% 16.83% 19.32%

FERET
FaceMorpher FaceFusion 49.24% 31.14% 28.23%

UBO Morpher 48.86% 30.51% 27.34%

OpenCV FaceFusion 43.42% 30.76% 31.90%

UBO Morpher 43.16% 29.75% 31.01%

Table 24.21: Detection performance (D-EER) of selected S-MAD algorithms
on images post-processed according JP
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(a) DET-plot of selected differential
algorithms on morphs generated
by FaceFusion on FERET post-
processed according RS.
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(b) DET-plot of selected differential
algorithms on morphs generated
by UBO Morpher on FERET post-
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(c) DET-plot of selected differential
algorithms on morphs generated
by FaceFusion on FRGC post-
processed according RS
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(d) DET-plot of selected differential
algorithms on morphs generated
by UBO Morpher on FRGC post-
processed according RS

Figure 24.4: DET-plots of selected differential algorithms post-processed ac-
cording RS

based algorithm applies smaller filters. This means, that mainly high-
frequency information is processed, which is particularly influenced
by the lossy compression of JPEG2000. The HOG based algorithm,
which, for FERET images, provides a significantly better performance
on non post-processed images than the BSIF based algorithm, is more
affected by the compression, causing a close of the gap between the
D-EERs and the BSIF based algorithm.

The corresponding DET-plots are shown in Figure 24.5. It can be
observed that the DET-plot for the LBP based algorithm is consistently
far to the upper right edge of the plot. Regardless of the constellation,
no meaningful classification can be expected from this algorithm. For
the HOG and the BSIF based algorithm, it should be noted, that the
DET plots are shifted uniformly to the upper right corner, meaning
that all operating points are affected more or less equally by the
post-processing.
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(c) DET-plot of selected single im-
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ated by FaceFusion on FRGC post-
processed according JP
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(d) DET-plot of selected single image
algorithms on morphs generated
by UBO Morpher on FRGC post-
processed according JP

Figure 24.5: DET-plots of selected single image algorithms post-processed
according JP

The error rates of the selected differential MAD algorithms on image
post-processed according JP are listed as D-EER in Table 24.19. In the
differential scenario the LBP based algorithm is significantly influ-
enced by the applied post-processing, but considerably less than in
the single image scenario. However, no D-EER below 30% is obtained
on the post-processed images. It should be noted that, in contrast to
the previous behaviour in the differential scenario, the detection of
morphs of the FERET database is harder compared to those of the
FRGC. A similar effect is observed for the HOG based MAD algo-
rithm. The performance degradation, caused by the post-processing,
on images of the FERET database is significantly higher, resulting in
a reduction of the performance difference in the detection of both
databases to one percentage point D-EER. The performance of the
deep features based MAD algorithms is nearly not affected by the
post-processing, emphasising the robustness of the applied feature
extraction against compression of the analysed images.
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Database
Morphing Algorithm Algorithm/Classifier

Training Test

LBP
4× 4
3× 3

HOG ArcFace Eyedea

AdaBoost SVM SVM SVM

FRGC
FaceMorpher FaceFusion 33.59% 26.59% 7.30% 16.24%

UBO Morpher 33.07% 26.04% 6.65% 17.29%

OpenCV FaceFusion 32.60% 26.16% 6.68% 16.27%

UBO Morpher 32.08% 25.92% 6.18% 16.61%

FERET
FaceMorpher FaceFusion 39.75% 22.03% 2.96% 7.59%

UBO Morpher 38.23% 21.52% 3.09% 8.23%

OpenCV FaceFusion 36.08% 24.68% 2.71% 7.34%

UBO Morpher 35.95% 23.42% 2.71% 7.59%

Table 24.22: Detection performance (D-EER) of selected differential MAD
algorithms on images post-processed according JP

The corresponding DET-plots are shown in Figure 24.6. It can be
observed, that the DET plots of the LBP and the HOG based algorithm
are shifted linearly over all operating points. As indicated by the
D-EER, the plots of the LBP based algorithm are impacted more than
those of the HOG based algorithm. The DET-plots of the deep feature
based algorithms are almost unaffected, indicating robustness across
all operating points.

print/scan - jpeg2000 The last post-processing scenario investi-
gated, namely Print/Scan - JPEG2000, abbreviated PS, is intended to
reflect the scenario of an analogous delivered passport image stored in
the passport. Thus, the post-processing corresponds to the quality that
can be expected, e.g. from German passports at the passport check.
The difference to the previous scenario is that the passport image is
printed and scanned with 300dpi prior to resizing and compression,
resulting in a further reduction of the contained information. Details
about the process are provided in Section 21.3.

The error rates of the selected S-MAD algorithms on image post-
processed according PS are listed as D-EER in Table 24.23. Compared
to JP the error rates of the LBP based algorithm do not change signifi-
cantly. However, since the LBP algorithm already performs in many
situations close to a random guess, this behaviour could be expected.
The BSIF based algorithm, on the other hand, is massively influenced
by the further post-processing step. Compared to the performance
on images post-processed with JP, the performance degradation for
images of the FRGC database is doubled. Furthermore, the D-EERs
determined on the FERET database, which are barely influenced by
JP post-processing, increase by 10 percentage points. For FRGC, the
HOG based algorithm is as nearly as performant as for the JP post-



176 morphing attack detection performance assessment

1

0.1 1 5 20 400.1

1

5

20

40

APCER (%)

BP
C

ER
(%

)

LBP
HOG

ArcFace
Eyedea
D-EER

BPCER-20
BPCER-10

(a) DET-plot of selected differential
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by FaceFusion on FERET post-
processed according JP
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(c) DET-plot of selected differential
algorithms on morphs generated
by FaceFusion on FRGC post-
processed according JP
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(d) DET-plot of selected differential
algorithms on morphs generated
by UBO Morpher on FRGC post-
processed according JP

Figure 24.6: DET-plots of selected differential algorithms post-processed ac-
cording JP

processing, for FERET, however, the impact increases. In contrast to
the other evaluation scenarios, the morphing algorithm utilised for the
generation of the Morphs gains in importance, resulting in a difference
of up to 15 percent points D-EER. However, as these scenarios are at
D-EERs above 30% this effect can be neglected for the evaluation.

The corresponding DET-plots are depicted in Figure 24.7. In particu-
lar in Figure 24.7a, the strong post-processing induced performance
degradation across all algorithms is evident. The HOG based algo-
rithm returns poorer results than a random guess, which is why the
plot is out of scale and no longer displayed. From the poor overall
performance of the algorithms it can be concluded that the exam-
ined single image algorithms are not suitable for MAD of images
post-processed according PS.

The error rates of the selected differential MAD algorithms on image
post-processed according PS are listed as D-EER in Table 24.24. The
performance of the LBP based algorithm is decreased compared to the
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Database
Morphing Algorithm Algorithm/Classifier

Training Test

LBP
4× 4
3× 3

BSIF
4× 4
9× 9

HOG

SVM SVM SVM

FRGC
FaceMorpher FaceFusion 39.35% 26.66% 20.86%

UBO Morpher 37.13% 23.42% 19.97%

OpenCV FaceFusion 36.67% 25.92% 20.55%

UBO Morpher 35.65% 23.82% 19.29%

FERET
FaceMorpher FaceFusion 56.96% 40.25% 34.05%

UBO Morpher 53.16% 35.44% 36.58%

OpenCV FaceFusion 48.23% 41.14% 53.42%

UBO Morpher 47.85% 36.20% 37.72%

Table 24.23: Detection performance (D-EER) of selected S-MAD algorithms
on images post-processed according PS

Database
Morphing Algorithm Algorithm/Classifier

Training Test

LBP
4× 4
3× 3

HOG ArcFace Eyedea

AdaBoost SVM SVM SVM

FRGC
FaceMorpher FaceFusion 40.09% 30.14% 7.76% 16.89%

UBO Morpher 40.46% 29.58% 7.05% 17.60%

OpenCV FaceFusion 38.21% 29.52% 7.20% 16.83%

UBO Morpher 37.13% 28.72% 6.71% 17.32%

FERET
FaceMorpher FaceFusion 39.37% 42.28% 1.29% 8.35%

UBO Morpher 43.54% 33.92% 3.22% 9.75%

OpenCV FaceFusion 38.35% 53.29% 1.42% 7.59%

UBO Morpher 41.14% 34.05% 3.09% 8.61%

Table 24.24: Detection performance (D-EER) of selected differential MAD
algorithms on images post-processed according PS
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(c) DET-plot of selected single im-
age algorithms on morphs gener-
ated by FaceFusion on FRGC post-
processed according PS
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Figure 24.7: DET-plots of selected single on images post-processed according
PS

JP post-processing, resulting in D-EERs above 40%. This leads to the
conclusion, that most relevant texture information is lost due to the
PS post-processing. The performance of the HOG based algorithm is
also impacted significantly. Whereas a D-EER of roughly 30% can still
be achieved on the images of the FRGC database, the D-EER of the
evaluation on the FRGC are partly above 50%. All the more remarkable
is the fact, that the deep features based algorithms deliver consistently
good detection rates despite the striking PS post-processing. In most
constellations the change in D-EER is below one percent point, partially
the performance is even increased.

The corresponding DET-plots are shown in Figure 24.8. As for the
single image scenario, the plot of the HOG based algorithm is not
displayed in Figure 24.8a, as the error exceeds the scale. In addition,
in all other constellations, the plots of the hand crafted features are
in the upper right corner, indicating that these algorithms are not
suitable for MAD on images post-processed according to PS. The
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(c) DET-plot of selected differential
algorithms on morphs generated
by FaceFusion on FRGC post-
processed according PS
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Figure 24.8: DET-plots of selected differential algorithms on images post-
processed according PS

deep features based algorithms show a consistent DET curve, allowing
the algorithms to be used in a wide range of operating points. It is
noticeable, that the performance of ArcFace on morphs generated
by FaceFusion within the FERET database is improved by the post-
processing. It can be assumed that the post-processing enhances the
distinguishability of the extracted features, but as the functioning of
the DNN is not comprehensible, no explicit conclusion can be drawn.

24.3.3 Discussion

The resizing of the images has no influence on the detection perfor-
mance of the examined MAD algorithms. The selected algorithms
can therefore be considered independent of the image size in the
range of allowed sizes for passport images. This is due to the fact,
that only less high-frequency information is lost by resizing. Since
especially the algorithms based on hand crafted feature extractors
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are trained on down-scaled image sections, the influence of resizing
is minimized. Regarding the post-processings reducing more infor-
mation, different behaviour of the algorithms can be observed. For
example, the LBP based algorithms cannot reliably separate morphs
and bona fide images after JP post-processing. The performance of
the HOG based S-MAD algorithm, for example, is reduced by the
JP post-processing on images of the FERET database, but is hardly
affected by the PS post-processing. The HOG based differential MAD
algorithm, on the other hand, gets progressively weaker the more
destructive the post-processing is.

In general it can be observed, that hand crafted features perform well
in the single image scenario on non post-processed images, however,
post-processing (especially PS) usually reduces the performance to
such an extent, that they can no longer be applied for MAD.

Among the examined algorithms, only the deep feature based ones
demonstrate a constant performance over all operating points and
post-processings. This can be attributed to the fact, that those feature
extractors have been trained to operate in a robust FRSs. In this case,
the features of the face should be extracted independently from other
image properties. Thus, influences like artefacts added by compression
or printing and scanning are isolated. The outstanding performance
of the ArcFace based algorithm can be attributed to the modified loss
function used during the training of the ArcFace feature extractor. As
described in Section 16.6.2 it implements a margin penalty in order to
increase inter-class discrepancy and intra-class compactness.

24.4 experiment 4 - algorithm fusion

In [135] it was shown that a score level fusion of different MAD
algorithms may improve performance and robustness of the resulting
algorithm. In this experiment we investigate if this observation is
applicable to the algorithms determined in Section 24.2.

24.4.1 Experimental Setup

The selected algorithms allow for an enormous number of combina-
tions for the implementation of a score level fusion. The experimental
setup aims to reduce these combinations to a reasonable number. For
the single image and the differential scenario all possible combina-
tions of two of the algorithms selected in Section 24.2 are created. The
weights of the fusion are determined on non post-processed images,
a grid search is performed with an accuracy of 5%, in order to ob-
tain the optimal weights. Subsequently, the gain in robustness and
performance on images post-processed according to JP and PS is eval-
uated. The RS scenario is deliberately excluded, since it was shown
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Database Post-Processing
Algorithms

LBP
4× 4
3× 3

LBP
4× 4
3× 3

BSIF
4× 4
9× 9

BSIF
4× 4
9× 9

HOG HOG

Weight 10/90 10/90 0/100

FERET
NPP 24.94% 23.42% 23.92%

JP 31.51% 32.53% 31.90%

PS 42.03% 50.25% 53.41%

Weight 40/60 35/65 35/65

FRGC
NPP 12.63% 12.51% 11.62%

JP 24.50% 20.62% 17.41%

PS 26.78% 20.25% 19.51%

Table 24.25: Detection performance (D-EER) and robustness of fused single
image algorithms

in Section 24.3 that it has no significant influence on the detection
performance of the algorithms.

As it has already been shown, that the images used for training only
take a subordinate role, the training of the algorithms is limited to
the morphs created with OpenCV. The evaluation is carried out on
morphs created with FaceFusion, as it has been demonstrated that
these are the most difficult to detect, thus representing the upper limit
for the expected error rate.

24.4.2 Evaluation

The evaluation is split into two tables, single image and differential
scenario. Table 24.25 shows the fusion results for the single image
scenario. In the header of the table the pairs of the fused MAD algo-
rithms are listed. For each database the fusion weights determined
on the non post-processed data are stated. It should be noted that
the weights determined on FRGC assign more equal importance to
both algorithms than those of FERET. In this case, the HOG based
algorithm is preferred, the BSIF based algorithm outweighs the LBP
based one. Due to this imbalance, the fusion does not show a great
influence on robustness, resulting in a significant performance degra-
dation on post-processed images, as observed for single algorithms.
The results obtained on FRGC show an improvement of performance
on non post-processed images caused by the fusion. The algorithm
based on HOG is the best single algorithm in this constellation and
achieves a D-EER of 14.48%. A fusion with the BSIF based algorithm
can reduce the D-EER to 11.62%. For post-processed images with PS,
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Database Post-
Processing

Algorithms

LBP
4× 4
3× 3

LBP
4× 4
3× 3

LBP
4× 4
3× 3

HOG HOG ArcFace

HOG ArcFace Eyedea ArcFace Eyedea Eyedea

Weight 90/10 10/90 35/65 0/100 5/95 100/0

FERET
NPP 15.94% 1.93% 5.95% 2.70% 6.84% 2.70%

JP 24.94% 2.58% 7.22% 2.71% 5.70% 2.71%

PS 51.65% 15.18% 7.47% 1.42% 9.49% 1.42%

Weight 95/5 75/25 65/35 5/95 5/95 95/5

FRGC
NPP 22.13% 5.47% 13.34% 6.67% 16.15% 6.80%

JP 29.80% 5.90% 15.04% 6.65% 16.02% 6.74%

PS 34.95% 7.26% 16.43% 7.17% 16.89% 7.33%

Table 24.26: Detection performance (D-EER) and robustness of fused differ-
ential algorithms

however, the synergy resulting from the fusion is reduced, the single
algorithm reaches a D-EER of 20.55%, the fusion algorithm 19.51%.

The results for the fusion of the differential algorithms are given
in Table 24.26. The choice of weights indicates a clear trend towards
deep feature based algorithms, with the ArcFace based algorithm
being preferred to the Eyedea based one. On the FERET database
the only combination capable of achieving a better result on the non
post-processed data than the single ArcFace based algorithm is a 10%
fusion with the LBP based algorithm. The D-EER can be reduced from
2.7% to 1.93%. However, if the fused algorithm is evaluated on post-
processed images with PS, the D-EER increases to 15.15%, whereas
the D-EER of the single ArcFace based algorithm remains at a low
value of 1.42%. The weights determined on the FRGC show a slightly
lower preference for the ArcFace based algorithm. In this case, a fusion
with the LBP or HOG based algorithm, as well as a fusion with the
Eyedea based algorithm, allow for a slight improvement of the D-EER
on the non post-processed images. However, for most fusions, the
D-EER on post-process images falls below that of the simple ArcFace
based algorithm. An exception is the 5% fusion with the HOG based
algorithm, which shows a minimal better performance than the single
algorithm over all scenarios.

24.4.3 Discussion

Generally it can be stated, that a fusion can lead to a performance
improvement of the individual algorithms on non post-processed
images. However, this performance gain is usually not observable for
evaluation on post-process images. In most cases the best individual
algorithms achieve better results than the fusion. In addition, no
scheme that applies to both databases can be identified for any fusion.
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Thus, for the investigated MAD algorithms, a score level fusion is
not considered useful. In the single image scenario the HOG based
algorithm dominates, in the differential scenario the ArcFace based
algorithm.
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The evaluation can be divided into two chapters: the evaluation of
the vulnerability of existing FRS and the evaluation of the detection
performance of MAD systems.

In the initial step, the threat potential of the created database is de-
termined. For this purpose, in Chapter 23 the performance of two com-
mercial (ArcFace and COTS), as well as two open source (FaceNet and
ArcFace) FRSs is determined on the bona fide images of the database.
Afterwards, the number of falsely accepted attacks is measured. The
vulnerability of the systems is reported by means of MMPMR and
RMMR. It can be observed that FRS, which obtain a higher generalisa-
tion capability and thus achieve a higher performance on bona fide
data, are more vulnerable to morphs than FRS with a lower recognition
performance on bona fide images.

The second step is to evaluate the detection performance of the MAD
algorithms described in Chapter 16 and Chapter 18. Due to the large
number of possible combinations, an all-encompassing evaluation
is not feasible. Thus, four experiments are performed in order to
determine suitable and robust MAD algorithms.

In the first experiment, the influence of unknown morphing algo-
rithms and data sources is analysed. For this purpose, the detection
performance on known morphing algorithms and data sources is com-
pared to the detection performance on unknown data sources and
morphing algorithms. It can be seen that changing the data source has
a serious influence, whereas changing the morphing algorithm does
not generally lead to a deterioration of the detection performance.
However, it can be observed, that morphed images with higher quality
(e.g. generated by FaceFusion or the UBO Morpher) are harder to
detect than those with a lower qualtiy (e.g. generated by the OpenCV
based algorithm or FaceMorpher).

In the second experiment, the best combinations of feature extractor
and classifier in differential and single image scenarios are examined
in a broad analysis on the non post-processed images. It is shown that
in the single image scenario, SVM based algorithms generally provide
the best detection performance. Furthermore, it can be observed that
the morphs of the FERET database are more difficult to detect than
those of the FRGC. The best feature extractors in the single image
scenario are LBP with a patch size of 3× 3 and a cell division into 4× 4
cells, BSIF with a filter size of 9× 9 and a cell division into 4× 4 cells,
and HOG. In the differential scenario it is shown that the morph of the
FRGC is more difficult to detect than that of the FERET. Furthermore,
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the deep feature based algorithms provide by far the best results, led
by the ArcFace feature extractor in combination with an SVM.

In the third experiment, the influence of different post-processings,
expected during the processing of the passport photographs, are exam-
ined. For this purpose, the algorithms recognised as best performing
in experiment 2 are evaluated on post-processed images according to
the scheme described in Section 21.3. It turns out that the resizing of
the images has no noticeable impact on the detection performance of
the MAD algorithms. However, the remaining post-processings (JP
and PS) significantly reduce the detection performance, in particu-
lar for algorithms utilizing hand-crafted features. The deep features
based algorithms exhibit a constant detection performance across all
post-processings.

The last experiment investigates whether a score level fusion of
different MAD systems might lead to an improvement of the over-
all system. For this purpose the optimal weights for a fusion of two
algorithms are determined for the algorithms determined as best per-
forming in experiment 2. It can be observed, that on non post-process
images a fusion might result in an improvement of the detection per-
formance. On post-process images, however, the performance of the
non-fused algorithms is superior. Thus, it can be generally concluded
that a fusion might be particularly detrimental to the robustness of
the algorithms and does not provide an additional benefit in the con-
stellations tested. Finally, it can be stated that in the single image
scenario HOG based algorithms show the best performance and in
the differential scenario ArfFace based algorithms.
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S U M M A RY O F R E S U LT S

In the scope of this thesis, morphing attacks are thoroughly investi-
gated and various algorithms are tested for their suitability as MAD
systems. In this chapter, the findings gathered in the previous chapters
are summarised in answers to the research questions defined in Sec-
tion 3.2. Finally, in order to strengthen the validity of the evaluations,
the results obtained on the database described in Part V are compared
with those obtained on the independent databases of the SOTAMD
and NIST FRVT MORPH projects described in Section 3.1.1 and 3.1.3
respectively.

26.1 rq1 : evaluation metrics

Which metrics are applicable for the evaluation of the vulnerabil-
ity of FRSs and MAD algorithms?

In the context of the analysis of morphing attacks, metrics are
needed for two types of evaluations, to describe the vulnerability of
FRS and to describe the detection performance of MAD algorithms.
To evaluate the vulnerability of FRSs, the baseline performance can
be determined using the FMR and FNMR defined in ISO/IEC JTC1
SC37 and described in Section 7.3. The vulnerability of the FRS itself
can be reported either independently of the baseline performance in
form of MMPMR, or as a function of the baseline performance in
form of RMMR. Both metrics are defined in Section 11.2.1. To evaluate
the detection performance of the MAD algorithms, the APCER and
BPCER defined in ISO/IEC 30107-3 and described in Section 11.2.3
can be used.

26.2 rq2 : system vulnerability

Under which circumstances is a system vulnerable to morphing
attacks?

The vulnerability of biometric systems can be determined on a theoreti-
cal level, as described in Section 11.2.2. This procedure can be applied
to any system, but due to the fact that it is based on assumptions
about the distribution of the comparison scores, the real vulnerability
of the systems may differ. In Chapter 23, the vulnerability of various
FRSs is empirically determined using a realistic database and reported
by means of MMPMR and RMMR. From the obtained resuslts it can
be concluded that FRS showing a high baseline performance are more
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vulnerable to morphing attacks. The quality of the morphs used for the
attack is of subordinate importance. The quality of the TLCs contained
in the database, on the other hand, has a great effect not only on the
scores obtained with the morphs, but also on the baseline performance
of the FRS.

26.3 rq3 : influence of unknown data sources

Does the consideration of images from unknown data sources
influence the evaluations results of MAD algorithms?

In the first experiment in Section 24.1 the influence of unknown
data sources on the detection performance of two conventional MAD
algorithms, namely LBP and BSIF in combination with an SVM, is
investigated. It can be observed that the error rates in the detection of
morphed images more than doubles if tested on data from a different
database than the training data. It can be concluded that the algo-
rithms tend to overfit for database-specific features, which emphasises
the need for cross-database evaluations. A change of the morphing
algorithms used to create the training data does not necessarily lead to
a deterioration of the detection performance of the MAD algorithms.
The quality of the morphs used for testing, however, has a higher
impact on the detection performance of the MAD algorithms. As a
consequence, the morphs created with more complex morphing algo-
rithms, e.g. FaceFusion and UBO Morpher, are usually more difficult
to detect.

26.4 rq4 : detection of morphed images

To what extent can morphed face images be reliable detected by
automated algorithms?

MAD algorithms can be constructed according to two distinct schemes
depending on the scenario, which are described in Section 11.1. If only
the image to be analysed is available, the information contained in the
image can be evaluated by S-MAD algorithms. If a TLC is available
in addition to the potential morph, the additional information of the
further image can be evaluated by differential MAD algorithms. The
feature extractors investigated in this thesis are described in Chap-
ter 16. In addition, the use of each feature extractor is motivated. Six
different types of feature extractors are considered, namely texture
descriptors, gradient based descriptors, keypoint descriptors, land-
mark descriptors, image noise pattern and deep features. These are
tested in combination with four different classifiers: SVM, Random
Forest, AdaBoost, Gradient Boosting. In the single image scenario,
morphs can be detected by HOG in combination with an SVM with a
D-EER between 13.25% and 24.05%, depending on the database and
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the morphing algorithm used to create training and test data. The
detection performance in the differential scenario for ArcFace features
in combination with an SVM ranges from 2.71% to 7.17% D-EER.

26.5 rq5 : influence of operational scenarios

Which operational scenarios influence the detection of morphed
face images?

Various post-processings expected to be applied to the passport image
during the passport creation process are described in Section 21.3,
namely NPP, resized, JP2 and PS. In experiment 3, in Section 24.3,
the effect of these post-processings on the detection performance of
the MAD algorithms identified as best performing in experiment 2
is investigated. It is shown that post-processing of images after RS
has no discernible effect on the detection performance of the algo-
rithms. In the single image scenario, the detection performance for
HOG with SVM is from 13.16% to 24.05% D-EER and from 2.58% to
7.20% for ArcFace features with SVM in the differential scenario. The
post-processing according to JP2 significantly influences the detection
performance of the single image algorithms, thus increasing the D-EER
to from 19.32% to 31.90%. It should be noted that constellations which
previously showed a higher D-EER usually show a higher D-EER after
post-processing as well. In the differential scenario, no change can
be observed for the ArcFace based algorithm. It achieves error rates
of 2.71% to 7.30% D-EER. Other differential algorithms, especially
those not based on deep features, are partly significantly influenced
by the post-processing. The post-processing after PS again reduces
the detection performance of the single image algorithms. Thus error
rates of 19.29% to 53.42% are achieved. In the differential scenario the
ArcFace based algorithm shows a high robustness and achieves error
rates of 1.29% to 7.76% D-EER.

26.6 rq6 : information fusion

Can information fusion be used to improve the MAD perfor-
mance and robustness of the individual algorithms?

In experiment 4, in Section 24.4, the algorithms determined to be
best performing in experiment 2 are merged at the score level to
evaluate a possible improvement of the overall system performance.
The weights for the fusion are determined exclusively on the images of
the NPP scenarios. In general, the weights for optimal overall system
performance vary depending on the database used. Furthermore, in
some constellations a fusion does not provide any advantage, thus
the optimal weights for one of the two algorithms to be fused is
set to 100%, for example in the single image scenario for the fusion
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of HOG and BSIF, and in the differential scenario for the fusion of
ArcFace with HOG or Eyedea. Furthermore, it can be observed that in
most constellations the non-fused algorithms are superior to the fused
algorithms in terms of robustness against post-processing. Thus, it can
be stated that a fusion of the algorithms in the tested constellations
does not provide an additional value.
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VA L I D AT I O N O F R E S U LT S

When creating the database described in Part V, care was taken to
use as many morphing algorithms and post-processings as possible in
order to guarantee a high reliability of the results. However, despite
all these measures, there are still certain connections between training
and test database. For example, both databases have been normalized
according to the same scheme and the post-processing steps are iden-
tical (for the same scenario). In order to check the results obtained in
Chapter 24 for undetected database-dependent errors, part of the high-
performance algorithms were tested on the independent databases of
the SOTAMD project described in Section 3.1.1 and the NIST FRVT
MORPH project described in Section 3.1.3. In the following, the tests
performed are described and the obtained results are presented.

27.1 sotamd

The test database of the SOTAMD project was created in a coopera-
tion of the University of Applied Sciences Darmstadt, University
of Bologna, University of Twente and NTNU. Each institution has
acquired a face database, created morphs with different morph factors
and post-processed images (including manual post-processing). On
the resulting database of 10960 bona fides and 37000 morphs (per
factor) MAD algorithms adapted to the test framework can be tested
against digital, as well as printed and scanned images and evaluated
according to different data subsets (e.g. only male or female).

A comparison of the D-EER determined in this thesis with the per-
formance determined on the SOTAMD data is given in Table 27.1.
The comparison is conducted in the digital and print-scan scenarios.
The D-EERs given for this thesis are determined on the FRGC and
averaged across all morphing algorithms. Please note that only one al-
gorithm, the PRNU based, has been tested in the single image scenario
so far. The configuration corresponds to PRNU-1 described in Section
16.5.1. In the differential scenario, LBP were previously tested with a
patch size of 9× 9 and a cell partitioning of 4× 4, BSIF with a filter
size of 3× 3 with 8 bits and without cell division, dlib landmarks, and
ArcFace feature were tested in combination with an SVM. Except for
the LBP algorithm, the implementation and functionality is identical
to the description in Section 16, allowing a direct comparison of these
algorithms. When comparing the results for LBP, the configuration
differs slightly (cell division of 4× 4 in this work and 3× 3 on the
SOTAMD data).
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D-EER
Algorithm Scheme Thesis SOTAMD

Digital Print-Scan Digital Print-Scan

PRNU single image 39.44% 39.20% 44.81% 48.04%

LBP differential 33.78% 40.28% 33.47% 29.28%

BSIF differential 46.63% 53.01% 45.93% 51.36%

Landmarks differential 44.15% 43.17% 37.13% 36.17%

ArcFace differential 5.03% 5.44% 4.54% 4.62%

Table 27.1: Performance of tested algorithms compared to SOTAMD evalua-
tion

It can be observed that the D-EERs are in the same order of mag-
nitude, which indicates the reliability of the results presented in this
thesis. Of particular note is the excellent performance of the ArcFace
based algorithm, which achieves even better results on the SOTAMD
data than on the database used in this work.

27.2 nist frvt morph

The NIST FRVT MORPH is a challenge organized by NIST for a
consistent evaluation of MAD algorithms. Single and differential MAD
algorithms are tested on three different classes of morphs: Low quality
morphs (LQ), automated morph (Autom.) and high quality morphs
(HQ). A detailed description of the individual data sets can be found
in [103].

In this test environment, the algorithms submitted for the SOTAMD
evaluation were tested as well. In addition to the differential versions
of the LBP and BSIF algorithms, single image versions have been
submitted for evaluation. The filter and patch size of the differential
versions were applied.

The results of the tested algorithms are listed in Table 27.2. Within
the evaluation of the NIST FRVT MORPH, no D-EER is calculated,
but APCER and BPCER at a fixed threshold, as well as BPCER10 and
BPCER100. Since in this thesis the algorithms are evaluated indepen-
dently of the threshold, BPCER10 is most suitable for comparison.
The comparison is made with the average BPCER over all morphing
algorithms of the NPP images of the FRGC database.

It can be observed that single image algorithms consistently exhibit
a BPCER10 of close-to 100%. It is interesting that the automatically
generated morphs are more difficult to detect for the differential
algorithms than the high quality morphs. Again, the ArcFace features
based algorithm stands out in this evaluation due to its excellent
detection performance.
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Algorithm Scheme BPCER10

in Thesis In [103] Thesis LQ Autom. HQ

LBP + SVM hdalbp-006 single image 59% 99% 93% 0.99

BSIF + SVM hdabsif-004 single image 47% 98% 96% 100%

PRNU-1 hdaprnu-004 single image 53% 98% 100% 99%

LBP + SVM hdalbp-006 differential 73% 82% 95% 91%

BSIF + SVM hdabsif-004 differential 84% 60% 95% 66%

Dlib Land-
marks +
SVM

hdawl-002 differential 85% 90% 90% 84%

ArcFace Fea-
tures + SVM

hdaarcface-001 differential 2% 2% 13% 9%

Table 27.2: Performance of tested algorithms compared to NIST FRVT
MORPH evaluation
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F U T U R E W O R K

In this thesis morphing attacks and the respective MAD algorithms
are thoroughly tested and investigated. During the work on the topic,
subjects emerged which could not be covered in detail anymore, but
which offer interesting tasks for future work. The most relevant aspects
are listed and described in this chapter.

28.1 standardisation

In order to create a common basis for discussions in research, it is
beneficial to work in accordance with standardised methods. This
can be facilitated, for example, by using a uniform vocabulary [66].
By standardising metrics, it is possible to create a common basis for
the comparison of evaluations. For evaluations in biometrics there
are already various standards for different use cases, such as those
standardised in [62] and [66] and described in Section 7.3 for the
evaluation of the recognition performance of biometric systems, or
the metrics standardised in [65] and described in Section 11.2.3 for
the evaluation of the detection performance of MAD or PAD systems.
However, the metrics for assessing the vulnerability of biometric sys-
tems to morphing attacks have not yet been standardised. Although
in [65] with IAPMR, a metric for assessing the vulnerability of bio-
metric systems against presentation attacks is introduced, and with
the Relative Impostor Attack Presentation Accept Rate (RIAPAR) an
adaptation for presentation attacks of the RMMR presented in Section
11.2.1 will be included in the revision of the ISO/IEC 30107-3 standard,
but these metrics, as described in Section 11.2.1, are not directly ap-
plicable for vulnerability analysis by morphing attacks. Thus, further
standardisation work is required.

28.2 realistic databases

Another factor essential for the comparability of results is the avail-
ability of uniform databases. The offer of a uniform evaluation by the
SOTAMD project and the NIST FRVT MORPH provides a platform
for direct comparison of different algorithms. However, the databases
used for evaluation are kept confidential, thus it is not possible to
use these data for training algorithms. So far, no public databases are
available for the training of MAD algorithms. The distribution of such
databases is hampered by the licensing structures of face databases
and by the applicable data protection laws. As a consequence, in-house
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morphing databases have to be created. These databases often lack
realism, which means that evaluations on the own databases usually
yield promising results, which cannot be validated on other test data.
The creation of an open accessible morphing database could provide a
common understanding of the quality of image data, reduce effort and
promote the reproducibility of research. For this purpose, however,
the problems of licenses and data protection need to be settled.

28.3 reproducible results

In general, a reproducibility of the previously published results is
barely given. This problem is closely related to the lack of standards
for evaluation and the absence of open accessible databases. This issue
is further aggravated by the fact that some of the implementations
used in the publications are inadequately described, making a correct
reimplementation of the algorithms impossible. This leads to the prob-
lem that published results cannot be reproduced, making it difficult
to link to the work of other researchers or to compare results.

28.4 further analysis of deep features

Within the scope of this thesis it has been shown that algorithms which
evaluate deep features in the differential scenario can offer a high and
stable detection performance across different scenarios. Due to the
high complexity of the processes during the ArcFace features extrac-
tion, the underlying operations are not easy to comprehend. Through
deeper analysis of the network and training, it may be possible to
learn which information is being represented in the feature vector.
In the long run, it may be possible to create a hand-crafted feature
extractor representing the same information. This information could
also be helpful in the manual detection of morphs, in order to be able
to make robust decisions.
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APCER Proportion of attack presentations using the same
PAI species incorrectly classified as bona fide pre-
sentations in a specific scenario [65]. xix, 77, 78, 87,
166, 187, 192

Biometric Feature Numbers or labels extracted from Biometric Sam-
ples and used for comparison [66]. 3, 52

Biometric Sample Analog or digital representation of biometric char-
acteristics prior to biometric feature extraction [66].
5, 7, 8, 13, 49–52, 54, 56, 73, 75–77, 113, 123, 130, 131,
136

Biometric Verification Process of confirming a biometric claim through
biometric comparison [66]. 53

Bona Fide Presentation Interaction of the biometric capture subject and the
biometric data capture subsystem in the fashion
intended by the policy of the biometric system [65].
9, 71, 74, 75, 77, 82, 102, 105, 114, 123, 125–127,
129–131, 133–137, 149, 164, 179, 183, 191

BPCER Proportion of bona fide presentations that cause
no response at the PAD subsystem or data capture
[65]. xix, 77, 78, 87, 148, 150, 161, 164, 166, 187, 192

D-EER The error rate at the operating point at which both,
APCER and BPCER, are equal. xix, 78, 148–150, 152,
154, 157, 160, 161, 164, 166, 169, 170, 172–176, 178,
181, 182, 188, 189, 191, 192

EER The error rate at the operating point at which both,
acceptance and rejection errors, are equal. xx, 53,
54, 78, 154

FAR Proportion of verification transactions with wrong-
ful claims of identity that are incorrectly confirmed
[62]. xx, 53, 56

FMR The false match rate is the proportion of samples,
acquired from zero-effort impostor attempts, that
are falsely declared to match the compared non-self
template [62]. xx, 53, 54, 56, 72, 77, 78, 141, 142, 187
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FNMR The false non-match rate is the proportion of sam-
ples, acquired from genuine attempts, that are
falsely declared not to match the template of the
same characteristic from the same user supplying
the sample [62]. xx, 52–54, 56, 72, 74–78, 142, 168,
187

FRR Proportion of verification transactions with truthful
claims of identity that are incorrectly denied [62].
xx, 53, 56

FTA The failure-to-acquire rate is the proportion of ver-
ification or identification attempts for which the
system fails to capture or locate a sample of suffi-
cient quality [62]. xx, 52

FTC Failure of the biometric capture process to produce
a captured Biometric Sample of the biometric char-
acteristic of interest [66]. xx, 51

FTE The failure-to-enrol rate is the proportion of the
population for whom the system fails to complete
the enrolment process [62]. xx, 52

IAPMR In a full-system evaluation of a verification system,
the proportion of impostor attack presentations
using the same PAI species in which the target
reference is matched [65]. xx, 72–74, 87, 195

MAD Detection of morphed face images during an Bio-
metric Enrolment or Biometric Verification attempt.
xxi, 5, 6, 8–12, 71, 72, 76–81, 83–87, 91, 92, 100, 101,
103, 105–107, 109–111, 113–116, 119, 123, 132, 136,
137, 147–150, 152, 154, 157, 160, 161, 164, 166, 168,
170, 172–174, 176, 178–184, 187–189, 191, 192, 195

MMPMR In a full-system evaluation of a verification system,
the proportion of morphing attack presentations in
which the target reference is matched. xxi, 73–76,
87, 143, 183, 187

RIAPAR Ratio of the IAPMR to the FRR of the system. xxi
RMMR In a full-system evaluation of a verification system,

the MMPMR in relation to the TMR. xxi, 74–76, 87,
143, 183, 187, 195

TMR Proportion of verification transactions with truthful
claims of identity that are correctly confirmed. xxii,
75, 76, 142
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