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Abstract

Computer graphics is an extremely exciting field for two reasons. On the one hand,

there is a healthy injection of pragmatism coming from the visual effects industry

that want robust algorithms that work so they can produce results at an increasingly

frantic pace. On the other hand, they must always try to push the envelope and

achieve the impossible to wow their audiences in the next blockbuster, which means

that the industry has not succumb to conservatism, and there is plenty of room to

try out new and crazy ideas if there is a chance that it will pan into something

useful.

Water simulation has been in visual effects for decades, however it still remains

extremely challenging because of its high computational cost and difficult art-

directability. The work in this thesis tries to address some of these difficulties.

Specifically, we make the following three novel contributions to the state-of-the-art

in water simulation for visual effects.

First, we develop the first algorithm that can convert any sequence of closed

surfaces in time into a moving triangle mesh. State-of-the-art methods at the time

could only handle surfaces with fixed connectivity, but we are the first to be able to

handle surfaces that merge and split apart. This is important for water simulation

practitioners, because it allows them to convert splashy water surfaces extracted

from particles or simulated using grid-based level sets into triangle meshes that can

be either textured and enhanced with extra surface dynamics as a post-process.

We also apply our algorithm to other phenomena that merge and split apart, such

as morphs and noisy reconstructions of human performances.

Second, we formulate a surface-based energy that measures the deviation of a

water surface from a physically valid state. Such discrepancies arise when there is a

mismatch in the degrees of freedom between the water surface and the underlying

physics solver. This commonly happens when practitioners use a moving triangle

mesh with a grid-based physics solver, or when high-resolution grid-based surfaces

are combined with low-resolution physics. Following the direction of steepest

descent on our surface-based energy, we can either smooth these artifacts or turn

them into high-resolution waves by interpreting the energy as a physical potential.

Third, we extend state-of-the-art techniques in non-reflecting boundaries to
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handle spatially and time-varying background flows. This allows a novel new

workflow where practitioners can re-simulate part of an existing simulation, such

as removing a solid obstacle, adding a new splash or locally changing the resolution.

Such changes can easily lead to new waves in the re-simulated region that would

reflect off of the new simulation boundary, effectively ruining the illusion of a

seamless simulation boundary between the existing and new simulations. Our

non-reflecting boundaries makes sure that such waves are absorbed.
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Chapter 1

Introduction

Visual effects has long been a staple in the advertisement and entertainment in-

dustries, essential to achieving physically plausible yet artistically directable ani-

mations. The use of simulated fluids for such purposes is already a rather mature

enterprise and most effects can be achieved through use of general purpose algo-

rithms and a lots of laborious work by an army of skilled artists to polish the output

of said algorithms. However, audiences are always looking to the next blockbuster

for ever more impressive computer-generated imagery and budgets keep spiralling

upwards.

Simply scaling up the resolution is seldom a solution because one quickly

exceeds computational budgets due to the super-volumetric space and time com-

plexity of commonly-used simulation algorithms. Although many parts of these

algorithms are embarrassingly parallel and thus benefit fromMoore’s law, there are

many indicators that this exponential explosion in computational power is coming

to an end. Even in the best case where Moore’s law carries on indefinitely, the

quality that can be achieved by simply turning the resolution knob also has a point

of diminishing returns. Setting aside the issue of limited computation time, there

are also serious issues inherit in the traditional and somewhat laborious work-

flow of continuously tweaking initial conditions and waiting for and inspecting the

simulation result, chiefly in terms of costly artist time.

As existing techniques have matured, the focus in research has broadened

considerably and attention has shifted away from more traditional techniques and

data structures like finite differences and adaptive grids that could equally be

applied in computation fluid dynamics, to more computer graphics specific ideas,

such as alternative data structures [Wojtan et al. 2009; Brochu et al. 2010; Da et al.

2014] and integration methods [Elcott et al. 2007; Mullen et al. 2009; De Witt

et al. 2012; Ando et al. 2015; Da et al. 2016], art-direction [McNamara et al. 2004;

Raveendran et al. 2012; Pan et al. 2013], re-using existing simulation data [Treuille

1
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et al. 2006; Nielsen and Bridson 2011; Raveendran et al. 2014], and reproducing

specific natural phenomena [Tessendorf 2004; Kim et al. 2010; Zhu et al. 2015;

Chern et al. 2016] and various physically-inspired approximations [Goktekin et al.

2004; Kim et al. 2009; Thürey et al. 2010].

The work presented in this thesis intends to contribute to this general trend

in simulation techniques for liquids with methods that empower artists with new

possibilities, more efficient algorithms and more control. In the next few sections

we motivate several avenues for such improvements as well as briefly summarize

our proposed solutions and contributions to the field of computer graphics.

1.1 Tracking liquid surface waves

Figure 1.1: Our tracking algo-

rithm applied to a liquid simu-

lation. We applied the image of

The Great Wave off Kanagawa at

the last frame and propagated it

backwards to the first frame.

An essential part of any liquid simulation al-

gorithms is a representation of the liquid in-

terface. Traditionally, practitioners have pre-

ferred methods that do not explicitly maintain

the points on the liquid surface such as particles

[Zhu and Bridson 2005] or level sets [Osher and

Fedkiw 2003] (see Section 2.10.2) because such

representations automatically handle splitting

and merging events such as when droplets

pinch off or a wave overturns. Unfortunately,

these methods do not come equipped with a

natural surface parameterization, which pre-

vents surface-based enhancement techniques

like texturing or surface-based dynamics use-

ful for enriching the simulation results in post-

production.

Conversely, moving triangle meshes explicitly maintain the surface, which al-

lows easy and efficient implementation of surface-based algorithms at the cost that

splitting and merging events now have to be handled explicitly. Perhaps owing

to this difficulty, robust algorithms for moving triangle meshes only appeared re-

cently, and have not yet been widely adopted. Naturally, there is a great deal of

inertia associated with existing particle and level set pipelines, and it will take

considerable time before tooling for moving triangle meshes catches up.

In Chapter 3 we help alleviate this problem. We present a fully automatic

method that converts any surface representation, including level sets and surfaces

extracted from particles, into a temporally coherent moving triangle mesh. This

allows practitioners to take advantage of all the great benefits that you get from

moving triangle meshes without replacing existing pipelines. It also allows moving
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triangle meshes, which are more susceptible to numerical problems due to collision

detection and mesh surgery, to mature and become more robust while they happily

coexist alongside the existing pipelines. The only input to our algorithm is a

sequence of input surfaces, so we are not restricted to liquid simulations. In our

examples we apply our algorithm to physics-based simulations, artistic morphs

and human performance capture data acquired from the real world. This allows

us to add displacement maps to a simulation of goo, morph a chocolate-textured

bunny into a donut and simulate surface waves on top of a level set-based liquid

simulation.

1.2 Correcting liquid surface waves

Figure 1.2: Our surface correc-

tion applied to liquid simulation

with artifacts. The articats are

turned into gravity waves, which

give the illusion of a much higher

resolution than the underlying

grid-based physics.

There are two major components in any liq-

uid simulator. First, there is a physics solver

that evolves the volumetric velocity by numer-

ically integrating the Navier-Stokes equations

forward in time. Second, is the surface tracker

which moves the interface that delineates the

boundary between the liquid and its surround-

ing environment, typically the air and various

solids. Since the velocity field is invisible, the

liquid surface is typically the only thing that is

directly observable, so it makes sense to con-

centrate computational effort here. This point

is further exasperated by the fact that the com-

putation time of algorithms for numerically in-

tegrating the velocity field scales with the liq-

uid volume, whereas for surface evolution al-

gorithms, it typically scales with surface area.

In order for the surface tracker to remain in a physically valid state at all

times, it is imperative that the degrees of freedom of the surface tracker and the

physics solver are aligned so that any change in the surface can be matched by a

corresponding force from the physics solver. This is not generally possible when

combining disparate solvers such as grid-based physics and a moving triangle mesh

for tracking the surface, nor is it possible when the surface tracker has more degrees

of freedom than the physics.

That being said, practitioners nevertheless like to use a mismatched resolution

between the surface tracker and the physics solver because it gives the appear-

ance of more detailed physics at a much more favorable algorithmic complexity

as explained above. This leads to inevitable surface artifacts, which are either
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ignored or partially alleviated with various heuristics that typically lack a physical

justification such as e.g. smoothing.

In Chapter 4 we construct a simple surface-based energy that characterizes

the degree to which the surface deviates from a physically valid state. We may

use the gradient of this energy in one of two ways. By following the direction

of steepest descent we arrive at a surface smoothing algorithm that aggressively

attacks physically inconsistent states but leaves physically valid, and thus desirable,

surface details. Interpreting the energy as a physical potential, wemay alternatively

turn surface artifacts into gravity or surface tension waves, greatly enriching the

surface motion while avoiding additional costly volumetric computation. Our

formulation is general and applies to any surface tracker. We show examples using

both moving triangle meshes and level sets.

1.3 Absorbing liquid surface waves

Figure 1.3: We add a splash to an

existing liquid simulation. Our

method ensures that the radiat-

ing waves are absorbed and do

not reflect.

It is easy to see that the traditional approach,

where the whole simulation has to be discarded

and simulated anew every time the initial con-

ditions change, can lead to a quite laborious

and wasteful workflow for the artists. Not only

can it be extremely unintuitive to predict how

small changes in fluid or solid geometries af-

fect the simulated result several seconds later,

but, as is often the case, it is also very difficult

for the artist to avoid messing up other parts

of the simulation results that they were actu-

ally happy with already. Clearly, it would be

desirable if artists could instead build up the

simulation incrementally without affecting the

parts that have already been finalized.

One possible approach that has been used

in industry is to re-simulate part of an exist-

ing simulation by setting the input simulation as a boundary condition, however,

this poses problems when waves originating in the new simulation approach the

boundary between the new and existing simulations. If no special care is taken, the

wave will reflect back into the new simulation and the illusion of a single seamless

simulation is destroyed. Naively ramping the velocity towards the input simulation

also does not work, since this effectively changes the material properties and thus

also causes spurious reflections.

What is needed is an approach that absorbs the emanating waves without
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reflection – a non-reflecting boundary. In Chapter 5 we show how to derive such a

boundary layer by extending state-of-the-art perfectly matched layers theory. We

show in several examples how our approach can be used to remove solid obstacles,

add new splashes and locally increase the resolution without re-doing the whole

simulation. As an added benefit, we also achieve healthy computational savings in

the common case where the size of the re-simulated domain is much smaller than

the input simulation.

1.4 Contributions

Themethods presented in this thesis contribute to the computer animation commu-

nity in several ways. In this section we summarize themost important contributions

and defer mention of more detailed and technical contributions to Chapters 3 to 5.

• Previous authors have proposed algorithms that track a rigid or a deforming

surface through time. We provide the first fully automatic algorithm that

can track surfaces that merge or split apart. Using our algorithm we can

convert any surface representation, such as level sets or surfaces derived

from particles, to a temporally coherent moving triangle mesh. This allows

us to texture human performance data containing topological noise and add

displacements to simulated blobs of goo, among other things.

• Many authors have proposed surface-based dynamics to enrich existing volu-

metric liquid simulations with extra surface details. Unfortunately, the waves

were usually driven by some measure of curvature simply because there was

no other natural events to seed waves in the usual wave equation. This usu-

ally lead to very noisy results with the entire surface quickly becoming one

big noisy patch with no clear traveling waves. As an alternative, we propose

to explicitly detect topological events such as merging and splitting, and seed

waves exactly where these events occur. This leads to far less noisy and thus

more meaningful and visually satisfying results.

• While many authors have employed a separate decoupled resolution for their

surface tracker with various remedies to combat the resulting artifacts, we

are first to address the artifacts from first principles in a physically-based

manner that can be employed at any scale and not just for e.g. surface

tension-dominant simulations. The fact that we formulate the error as a

surface-based energy allows us to derive both smoothing and force-based

algorithms to reduce or eliminate the surface artifacts in a way that is both

theoretically and practically superior to previous heuristic methods. The

algorithms are also efficient because their computational cost only scales

with surface area as opposed to the volumetric simulation they sit on top of.
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• We show how a simple derivation of a perturbation relative to an existing

fluid simulation can be used to construct the first method for non-reflecting

boundaries based on the state-of-the-art theory of perfectly matched layers

that supports spatially and time-varying background flows. This enables

artists to efficiently re-simulate part of an existing fluid simulation without

spurious wave reflections at the simulation boundary, something which was

not possible with previous approaches based on perfectly matched layers and

only possible without non-reflecting boundaries by using impractically large

domains. We show examples of removing solid obstacles, adding a splash

and locally increasing the resolution (and thus add more visual detail) as a

post-process.

1.5 Publications

As part of the work towards this thesis several scientific articles were published.

Our work on tracking time-varying surfaces without any priors about the topology

was published as:

M. Bojsen-Hansen, H. Li, and C. Wojtan. 2012. Tracking Surfaces with

Evolving Topology. In ACM Transactions on Graphics (SIGGRAPH) 31.4,

53:1–53:10.

Our work about correcting liquid surfaces was published as:

M. Bojsen-Hansen and C. Wojtan. 2013. Liquid Surface Tracking with

Error Compensation. In ACM Transactions on Graphics (SIGGRAPH)

32.4, 68:1–68:10.

Finally, our work on absorbing liquid surface waves with applications to liquid

re-simulation was published as:

M. Bojsen-Hansen and C. Wojtan. 2016. Generalized Non-Reflecting

Boundaries for Fluid Re-Simulation. In ACM Transactions on Graphics

(SIGGRAPH) 35.4.

1.6 Outline

The remainder of this thesis is structured as follows. In Chapter 2 I briefly review

background material prerequisite for understanding the following chapters. This

chapter may be skipped by people already very familiar with fluid simulation in

computer graphics. In Chapter 3 we describe our algorithm for tracking time-

varying surfaces without any priors on the topology. In Chapter 4 we describe our

novel technique for correcting errors in liquid surfaces due to resolutionmismatches
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by either smoothing the errors or turning them intowaves. In Chapter 5 we describe

how to formulate the dynamics of a perturbation of the Navier-Stokes equations

and how to damp this perturbation to zero so we can re-simulate parts of an

existing simulation without wave reflections at the boundary. Finally, in Chapter 6

we summarize and conclude the thesis with a brief overview of the research that

has been done concurrent to the work described in this thesis.



Chapter 2

Background

In this chapter we briefly summarize the most important background knowledge

needed to read the rest of this thesis. The point is to collect, in one place, relevant

information otherwise scattered throughout the scientific literature. The exposition

is notmeant to be exhaustive or in-depth, rather we try to get the main point across

and leave references for the readers who would like to know more.

2.1 Descent methods

Many problems in computer graphics can be formulated as finding the minimizer

of some function that measures the error or deviation from some ideal state. The

problems in this thesis are no exception. In Chapter 3 we non-rigidly align one

shape with another while minimizing the amount of deformation, and in Chapter 4

we minimize the deviation of a liquid surface from the set of physically valid states.

In this section we will briefly review the minimization algorithms employed in this

thesis. We refer to the materials that served as inspiration for this section for a

more in-depth exposition [Madsen et al. 2004; Pighin and Lewis 2007].

Abstractly, a minimization problem is the task of finding the global minimizer

x† ∈ Rn of a certain problem-specific function F : Rn→ R

x† = argmin
x∈Rn

F(x). (2.1)

Finding the global minimizer as in Equation (2.1) is generally intractable for non-

convex F, so we often settle for a local minimizer x? ∈ Rn

F(x?)≤ F(x) for ‖x? − x‖< δ (2.2)

for some suitable δ > 0.

The literature on minimization algorithms is extensive and also an active area

of research. New application-specific methods that exploit the specific properties

8



CHAPTER 2. BACKGROUND 9

of F come out all the time. In the following, however, we will focus on a fairly

general class of minimization algorithms called descent methods.

Descent methods follow a very simple iterative pattern. You start with an

initial guess x0 and then proceed to repeat the following steps repeatedly until

convergence, which is determined by |F(xn+1)− F(xn)| < ε for some stopping

criterion ε > 0.

1. Choose a descent direction, i.e. choose a ∆x such that

F(xn +α∆x)< F(xn).

for some α > 0.

2. Search for the for the best α > 0 such that

F(xn +α∆x)< F(xn +α
′∆x)

for α′ > 0 with |α−α′|< δ.

3. Update the current guess, xn+1 = xn +α∆x.

We will not delve deeper into the details of choosing α in step two since it is in

general a nontrivial problem. In the simplest case you can get away with using a

small fixed α in each iteration. We refer to the references provided at the beginning

of this section for more details on how to perform such line search. In the next

sections we will look at three common ways of choosing ∆x in step one.

2.1.1 Gradient descent

The simplest method of choosing∆x arises from a first-order Taylor approximation

of F(x+∆x) around the current guess x.

F(x+∆x) = F(x) + F′(x)∆x+O
�

‖∆x‖2�

= F(x) + cosθ




F′(x)




‖∆x‖+O
�

‖∆x‖2�

where F′(x) is the Jabobian at x and θ is the angle between F′(x) and ∆x. We see

that for sufficiently small ‖∆x‖ the fastest way of decreasing F as a function of ∆x

is to set

∆x= −F′(x) (2.3)

because then cosθ = cosπ = −1. Using the descent direction in Equation (2.3) is

called gradient descent or steepest decent and is the method we use to reduce our

energy functional in Chapter 4. Since it is based on a first-order approximation of

F it converges linearly, which may or may not be fast enough depending on the

application or the particular function under consideration.
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2.1.2 Newton’s method

It is possible to do better than linear convergence if we bump our approximation

of F(x+∆x) to second-order

F(x+∆x) = F(x) + F′(x)∆x+
1
2
(∆x)TF′′(x)∆x+O

�

‖∆x‖3�.

where F′′ is the Hessian. Now, let

F̂(∆x)
def
= F(x) + F′(x)∆x+

1
2
(∆x)TF′′(x)∆x

be the truncated second-order expansion of F around x and consider sufficiently

small ∆x such that F̂ ≈ F. We are looking for the ∆x that decreases F̂ the fastest.

This minimizer can be found by examining the critical points of F̂

0=
dF̂(∆x)

d∆x
= F′(x) + F′′(x)∆x

and solving for ∆x

∆x= −
�

(F′′(x)
�−1

F′(x) (2.4)

Using the descent direction in Equation (2.4) is called Newton’s method. Assuming

that the Hessian F′′ is positive definite and that we are sufficiently close to x?, New-

ton’s method converges quadratically, which may be much faster than the linear

convergence of gradient descent. The cost we pay for the improved convergence is

that we now have to invert the Hessian.

2.1.3 Gauss-Newton

One downside of Newton’s method is that we need second-order derivatives.

These can be expensive to compute and numerically problematic depending on

the smoothness of F. We can side-step this problem if F can be written as a sum of

squares

F(x) =
1
2
‖f(x)‖2 =

1
2

k
∑

i=1

fi(x)
2 (2.5)

In this case it can be shown that

F′(x) = f′(x)Tf(x) (2.6)

F′′(x) = f′(x)Tf′(x) + f(x)Tf′′(x) (2.7)

If we replace f in Equation (2.5) with its first-order Taylor expansion

f̂(∆x)
def
= f(x) + f′(x)∆x

we instead get

F′(x) = f̂′(x)T f̂(x) (2.8)

F′′(x) = f̂′(x)T f̂′(x) (2.9)
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Figure 2.1: Illustration of the wave number k, the angular frequency ω and the
amplitude |U0| of a plane wave ei(kx−ωt).

where the only difference to Equation (2.7) is that the term involving the Hessian

has dropped out. Finally, if we plug Equations (2.8) and (2.9) into Equation (2.4)

we get the Gauss-Newton step

∆x= −
�

f̂′(x)T f̂′(x)
�−1

f̂′(x)T f̂(x).

The approximation we made by using f̂ in place of f corresponds to a linearization

of f(x+∆x) about x and in general we can no longer expect quadratic convergence.

In practice, Gauss-Newton often performs much better than gradient descent and

sometimes even similarly to Newton, especially if f is not too non-linear. We apply

Gauss-Newton to our non-linear deformation energy in Chapter 3.

2.2 Plane waves

Plane waves are a useful mathematical model for describing oscillations in time

and space. They are ubiquitous throughout physics, they show up as solutions to

certain wave-like linear differential equations (cf. Section 2.3) and they are crucial

to the understanding of the perfectly matched layer technique that we will be

investigating further in Section 2.9.

In n spatial dimensions and one time dimension, a plane wave is defined as a

function

u(x, t) = U0ei(k·x−ωt) (2.10)

where k ∈ Rn is the wave vector,ω ∈ R is the angular velocity and U0 is the possibly

complex wave amplitude. The direction k/‖k‖ of k points in direction normal

to the surfaces of constant phase, and the magnitude ‖k‖ is the wavenumber and

measures how fast the wave oscillates in space. Similarly, the angular frequency

|ω| measures how fast u oscillates in time at a fixed point in space. The real part

Re{U0} of the wave amplitude measures the peek of u, and the imaginary part

Im{U0} corresponds to a phase shift. For an illustration of these quantities for

plane wave in one spatial dimension, see Figure 2.1.
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Figure 2.2: Evaluating a plane wave (for t = 0) along the contour z = x + iΣ(x).
Notice that the original solution (left) is unchanged as long as we evaluate the
plane wave along the real line (i.e. when Σ = 0), but it is exponentially decaying
(right) when Σ> 0.

Equation (2.10) has many nice properties, one of them being that it is an

analytic function of x and t. This means that we are free to perform an analytical

continuation of u from its original real domain into the complex plane. Although

Equation (2.10) is only considered to be a plane wave when x ∈ Rn and t ∈ R and

U0 is independent of x and t, it is nevertheless instructive to see what happens

when we evaluate a plane wave (in one spatial dimension for simplicity) along a

complex contour z = a+ i b with a, b ∈ R

U0ei(kz−ωt) = U0ei(k(a+bi)−ωt) = U0ei(ka−ωt)e−kb.

We observe that we get a plane wave multiplied by an exponentially decaying

or increasing function depending on the sign of b. It is worth emphasizing that

analytic continuation does not change u when evaluated at points in the original

(real) domain. We are merely extending the domain. For an illustration of this

fact, see Figure 2.2. This fact will be important when we get to the theory of

perfectly matched layers in Section 2.9.

2.3 Linear differential equations

The literature on differential equations is staggering and a myriad of different

approaches exists on how to solve them. Naturally, we will not attempt to give any

sort of comprehensive review here, but instead we will try to show a few useful

techniques to solve a certain class of equations. These will be useful later when

we try to recover velocity from vorticity in Section 2.8.1 and discuss non-reflecting

boundaries in Section 2.9. The material in this section is loosely based on the

contents of Palais [2000] and Wikipedia [2016].

In this section we will be using multi-index notation, which is straightforward

to define. Let α = (α1, · · · ,αn) be a tuple of non-negative integers (some can be
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zero) called the multi-index. We define the length of α as |α|= α1+ · · ·+αn. Also,

we define exponentiation as aα = aα1 · · · aαn .

Let u(x) : Rn → Rm be a vector-valued function of x = (x1, · · · , xn), then an

inhomogeneous system of N -th order linear partial differential equations can be

expressed

P(D)u= f (2.11)

where P(X ) =
∑

|α|≤N AαX α is a polynomial in X = (X1, · · · , Xn)with coefficientsAα
in the space of linear operators (m×m matrices) and D = ( ∂∂ x i

, · · · , ∂
∂ xn
). Since any

(system of) linear differential equation(s) can be converted into a system of first-

order equations by the introduction of new variables, we may equivalently consider

the linear function L(X ) =
∑n

i=1 AiX i and the first-order differential equation

L(D)u= f (2.12)

where we have redefined u and f to accommodate the extra variables.

2.3.1 The wave equation

The definitions in the previous section may seem a bit abstract, so before we move

on we will give an example. Consider the two-dimensional wave equation

∂ 2u
∂ t2
− c2

�

∂ 2u
∂ x2

+
∂ 2u
∂ y2

�

= 0.

It can be expressed as in Equation (2.11) by defining X = (t, x , y) so that

P(D) =
∑

|α|≤2

AαX α

= A(2,0,0)D
(2,0,0) +A(0,2,0)D

(0,2,0) +A(0,0,2)D
(0,0,2)

=
∂ 2

∂ t2
− c2

�

∂ 2

∂ x2
+
∂ 2

∂ y2

�

where A(2,0,0) = 1 and A(0,2,0) = A(0,0,2) = −c2. Alternatively, we can express

the wave equation as in Equation (2.12) by letting u = [u,v]T where u can be

interpreted as pressure and v as velocity and

L(D) =

�

∂
∂ t −c2∇·
−∇ ∂

∂ t

�

or even more explicitly with u= [u, v, w]T

L(D) =







1 0 0

0 1 0

0 0 1







∂

∂ t
+







0 −c2 0

−1 0 0

0 0 0







∂

∂ x
+







0 0 −c2

0 0 0

−1 0 0







∂

∂ y
.
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2.3.2 Green’s functions

One way of solving an equation like Equation (2.11) is to find a right inverse to

P(D) such that

P(D)G(x,x′) = δ(x′ − x).

where δ is the n-dimensional Dirac delta function. Such a right-inverse G(x,x′) is
called a Green’s function to the linear differential operator P(D). Given G we can

obtain a new expression for the right-hand side of Equation (2.11)

f(x) =

∫

δ(x′ − x)f(x′)dx′

=

∫

P(D)G(x,x′)f(x′)dx′

= P(D)

∫

G(x,x′)f(x′)dx′

(2.13)

where the last equality follows from the fact that P(D) does not depend on the

integration variable x′ and can thus be pulled outside the integral. Substituting

Equation (2.13) into Equation (2.11) we get

P(D)u(x) = P(D)

∫

G(x,x′)f(x′)dx′

which suggests that

u(x) =

∫

G(x,x′)f(x′)dx′

Finding a Green’s function for a given linear differential operator is in gen-

eral a non-trivial task and we will not explain how to do it here. Instead,

we will give (without proof) the Green’s function to one of the most frequently

occuring operators in computer graphics, the three-dimensional scalar Laplacian

∇2 := ∂ 2

∂ x2 + ∂ 2

∂ y2 + ∂ 2

∂ z2 . It is given by

G(x,x′) = −
1

4π
1

|x− x′|
. (2.14)

The Laplacian appears in a myriad of important equations, such as the heat equa-

tion, the wave equation and, perhaps the most frequently occurring equation in

computer graphics, the Poisson equation

∇2u(x) = f (x) (2.15)

Using the Green’s function in Equation (2.14) one possible way of solving Equa-

tion (2.15) is thus given by the integral

u(x) = −
1

4π

∫

R3

f (x′)
|x− x′|

dx′ (2.16)
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which is the so-called free space (vanishing boundaries at infinity) solution to

the three-dimensional (because we used the three-dimensional Green’s function)

Poisson equation in Equation (2.15).

2.3.3 Fourier methods

In this section we will look at how the Fourier transform can be used to solve linear

differential equations. Recall that the spatial Fourier transform of the function

f(x, t) : Rn×R≥0→ Rm that takes the spatial variable x= (x1, · · · , xn) to the wave

vector k= (k1, · · · , kn) is defined

ef(k, t) = (2π)−n/2

∫

Rn

f(x, t)e−ik·x dx (2.17)

Similarly, the inverse transform is defined

f(x, t) = (2π)−n/2

∫

Rn

ef(k, t)eik·x dk (2.18)

Consider the homogeneous linear evolution equation

∂ u
∂ t
+ P(D)u= 0 (2.19)

where u(x, t) : Rn ×R≥0 → Rm is a time-dependent vector-valued function. This

is still of the form in Equation (2.11), only we have made the time-dependence

explicit by separating out the time variable t. If we assume that that P(D) has
constant coefficients, we can apply Equation (2.17) to both sides of Equation (2.19)

and obtain
∂ eu
∂ t
+ P(ik)eu= 0 (2.20)

In the frequency domain Equation (2.20) is now an ordinary differential equation,

which we can solve analytically

eu(k, t) =fu0(k)e
−t P(ik) (2.21)

withfu0(k) being some initial condition. To obtain a solution u(x, t) in the original

domain, all that remains is to plug Equation (2.21) into the inverse Fourier transform

in Equation (2.18)

u(x, t) = (2π)−n/2

∫

Rn

fu0(k)e
−t P(ik)eik·x dk

= (2π)−n/2

∫

Rn

fu0(k)e
i
�

(k·x)Im−
P(ik)

i t
�

dk

= (2π)−n/2

∫

Rn

fu0(k)e
i((k·x)Im−ωt) dk

(2.22)
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where Im is the m-dimensional identity matrix and we have defined the dispersion

relation ω(k)
def
= P(ik)

i .

If u is m-dimensional then ω will be an m×m (complex) matrix. If we eigen-

decompose this matrix we get ω = QΩQ−1 where Q is the matrix of eigenvectors

and Ω= diag (ω1, · · · ,ωm) is the diagonal matrix of eigenvalues. Using a few facts

about matrix exponentials we further see that

e−iωt = e−iQΩQ−1 t = Qe−iΩtQ−1 = Qdiag
�

e−iω1 t , · · · , e−iωm t
�

Q−1

If we assume that P(D) is a skew-adjoint differential operator then P(ik) is anti-
Hermitian and ω Hermitian, which means that it eigendecomposes as ω = UΩU?

with unitary U and real Ω. This suggests that Equation (2.22) is a superposition of

plane waves.

2.3.4 Numerical methods

Given a linear differential equation like Equation (2.11) it is also always possible to

approximate it numerically. This is done by replacing all derivatives with algebraic

expressions and solving the resulting linear system of algebraic equations. Stan-

dard methods include finite differences (FD), the Finite Element Method (FEM)

and boundary elements. Fluid simulation practitioners have historically favored

finite difference methods, so we give a quick summary in this section for complete-

ness.

Let u(x , y) be a two-dimensional scalar function and consider the first-order

Taylor expansion

u(x +∆x , y) = u(x , y) +
∂ u(x , y)
∂ x

∆x +O
�

∆x2
�

.

This equation can be rearranged to give an expression for the partial derivative

with respect to x

∂ u(x , y)
∂ x

=
u(x +∆x , y)− u(x , y)

∆x
+O

�

∆x2
�

.

If we truncate the second-order terms in this equation, we arrive at a first-order

approximation to ∂ u/∂ x . Such an approximation is called a forward difference

or forward Euler in the case where x is the time variable. It is possible to make a

second-order approximation

∂ u(x , y)
∂ x

=
u(x +∆x , y)− u(x −∆x , y)

2∆x
+O

�

∆x3
�

which is called a central difference. By iterating these kinds of finite difference

approximations it is possible to obtain expressions for higher derivatives. Finally,

lets see an example of how to build a finite difference approximation to the two-

dimensional Poisson equation from Equation (2.15). Let us assume that u and f



CHAPTER 2. BACKGROUND 17

have been discretized unto a two-dimensional grid with equal spacing ∆x in each

dimension. Let ui, j = u(i∆x , j∆x), then the equation for cell (i, j) is

−4ui, j + ui+1, j + ui−1, j + ui, j+1 + ui, j−1

∆x2
= fi, j

which can be assembled into a system of linear equations

1
∆x2





























...

· · · 1 1 −4 1 1 · · ·

...

























































...

ui+1, j

ui−1, j

ui, j

ui, j+1

ui, j−1
...





























=





























...

fi, j

...





























(2.23)

or more compactly as

Au= f

This linear system can be inverted to find a solution. In the case of a discretized

Poisson equation in Equation (2.23), A is a sparse symmetric negative definite

matrix and can be inverted very efficiently using either a direct solver based on

Cholesky decomposition or, for larger problems, using an iterative solver such as

conjugate gradients [Shewchuk 1994]. See Botsch et al. [2005] for a survey of

linear system solvers for geometry processing.

2.4 Local description of velocity

Given a time-dependent velocity field u(x, t) we may look at how it behaves locally

by considering a first-order Taylor approximation around a point x

u(x+∆x, t) = u(x, t) +∇u(x, t)∆x+O
�

‖∆x‖2�

We may further split ∇u into its symmetric and anti-symmetric parts

u(x+∆x, t)≈ u(x, t) +∇u(x, t)∆x

= u(x, t) +
1
2
(∇u+∇uT)∆x+

1
2
(∇u−∇uT)∆x

Letting ε = 1
2 (∇u + ∇uT) be the symmetric part and ω = 1

2 (∇u − ∇uT) the
anti-symmetric part, we may simplify further

u(x+∆x, t)≈ u(x, t) + (ε +ω)∆x.

The infinitesimal strain tensor ε measures the local deformation of u while the

infinitesimal rotation tensorωmeasures the local rotation. In slightly non-standard
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notation, let ξ=∇×u be the vorticity (not to be confused with the angular velocity

ω). It is easy to verify that

2ω∆x= 2ω×∆x= ξ×∆x

so vorticity equals twice the local angular velocity. We go into more detail on

vorticity in Section 2.8.

2.5 Reynold’s transport theorem

In the next section we will derive the equations of motion for a continuum. In

doing so we will be making heavy use of Reynold’s transport theorem. Let Ω(t)
be an arbitrary non-zero region of space that is being advected by a velocity field

u(x, t). The time derivative of a quantity φ(x, t) integrated over Ω(t) is then given

by
d
dt

∫

Ω(t)

φ(x, t)dV =

∫

Ω(t)

�

∂ φ

∂ t
+∇ · (φu)

�

dV (2.24)

where dV denotes the volume element.

2.6 Continuum mechanics

Given a non-zero and arbitrary region of space Ω(t) we get its mass by integrating

density ρ(x, t) over the volume M =
∫

Ω(t)ρ dV . A basic law of physics is the law

of conservation of mass. Using Reynold’s transport Theorem we get

0=
d
dt

M =
d
dt

∫

Ω(t)

ρ dV =

∫

Ω(t)

�

∂ ρ

∂ t
+∇ · (ρu)

�

dV

The only function that integrates to zero for arbitrary Ω(t) is zero itself, so we may

remove the integral
∂ ρ

∂ t
+∇ · (ρu) = 0 (2.25)

which is called the continuity equation.

From Newton’s second law we know that the change in momentum of Ω(t) is
equal to the net forces acting onΩ(t). These forces include contact forces acting on
the surface of Ω(t) and body forces such as gravity that act at every point in Ω(t).
The forces acting on the surface of Ω(t) are called tractions T(x) and are given by

T(x) = σ(x) · n̂ where σ is a second-order tensor called Cauchy’s stress tensor and

n̂ is the surface normal to the surface ∂Ω(t) of Ω(t). Tractions have units of force

per unit area. Body forces are given by the force density f(x) = ρ(x)g(x) where g

is acceleration per unit volume. Force density has units of force per unit volume.

d
dt

∫

Ω(t)

ρudV =

∫

∂Ω(t)

σ · n̂dS +

∫

Ω(t)

fdV (2.26)
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where ∂Ω(t) is the boundary of Ω(t) and n̂ is the outward pointing normal to

∂Ω(t). Then we apply Reynold’s Transport Theorem to the left-hand side

d
dt

∫

Ω(t)

ρudV =

∫

Ω(t)

�

∂ (ρu)
∂ t

+∇ · (ρu⊗ u)
�

dV

=

∫

Ω(t)

�

∂ u
∂ t
ρ +

∂ ρ

∂ t
u
�

dV +

∫

Ω(t)

�

∇ · (ρu)u+ (u · ∇u)ρ
�

dV

=

∫

Ω(t)
���

���
��:0�

∂ ρ

∂ t
+∇ · (ρu)

�

udV +

∫

Ω(t)
���

���
��:

Du
Dt�

∂ u
∂ t
+ (u · ∇)u

�

ρ dV

=

∫

Ω(t)

ρ
Du
Dt

dV

where the first cancellation comes from Equation (2.25) and D/Dt is the material

derivative. Inserting this result back into Equation (2.26) and converting the surface

integral to a volume integral through the divergence theorem we get
∫

Ω(t)

ρ
Du
Dt

dV =

∫

Ω(t)

(∇ ·σ+ f)dV

Finally, we again note that since Ω(t) was arbitrary the integrands much be equal

and we arrive at Cauchy’s momentum equation

ρ
Du
Dt
=∇ ·σ+ f. (2.27)

2.7 Fluid dynamics

The equations of motion for a viscous fluid are called the Navier-Stokes equations.

We will derive these equations from Equations (2.25) and (2.27) in the following,

but before we do so we will make a further simplifying assumption. The fluids

of interest in computer graphics, such as smoke and liquids at speed far below

the speed of sound do not change their volumes easily, so it convenient to make

an assumption of incompressible flow. Incompressible flow is any flow that keeps

volumes constant, i.e. dV/dt = 0. It follows from Reynold’s Transport theorem

that

0=
dV
dt
=

d
dt

∫

Ω(t)

1dV =

∫

Ω(t)

�

�
�
�7

0
∂ 1
∂ t
+∇ · u

�

dV

which, following similar reasoning as used in the previous section, implies that

∇ · u= 0 (2.28)
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which is called the incompressibility constraint and is the first equation in the

incompressible Navier-Stokes equations. Equation (2.28) is equivalent to assuming

that density is advected passively with the flow, i.e. Dρ/Dt = 0, which is easily

seen from Equation (2.25).

To derive the other equation of incompressible Navier-Stokes, we need to specify

a material model (also called a constitutive model). First, we will split the stress

tensor into two parts

σ = −pδ+τ (2.29)

where δ is the identity tensor. We will use the pressure p to enforce the incom-

pressibility constraint and the viscous stress tensor τ to model viscosity. We will

use a linear stress-strain relation for τ

τ= 2µε +λ tr (ε)δ.

The dynamic viscosity coefficient µ controls the resistance to shearing and the

bulk viscosity coefficient λ controls viscosity due to compression and dilation. The

infinitesimal strain tensor ε = 1
2 (∇u+∇uT) is as we saw in Section 2.4. Intuitively,

the trace tr (ε)measures the local volume change, which is zero for incompressible

flow, i.e. tr (ε) = ∇ · u = 0, so it is customary to set λ = 0. If we further assume

that µ is constant in space and plug σ into Equation (2.27) we obtain

ρ
Du
Dt
+∇p−µ∇2u= f

which is the momentum equation of Navier-Stokes. If we further expand the ma-

terial derivative D/Dt , divide through by ρ (recalling that f= ρg) and define the

kinematic viscosity ν= µ/ρ we get

∂ u
∂ t
+ (u · ∇)u+

1
ρ
∇p− ν∇2u= g. (2.30)

which is the form most commonly seen in computer graphics literature.

Equations (2.28) and (2.30) together form the incompressible Navier-Stokes

equations. However, we still need to relate the pressure in the momentum equation

to the incompressibility constraint, which we will do in the next section.

2.7.1 Pressure

The pressure appearing in the momentum equation (Equation (2.30)) is somewhat

strange in the case of incompressible flow. The pressure itself is not a physical

quantity, but the gradient of pressure ∇p is a force. In Chapter 4 we will be using

the pressure gradient to define an energy that measures deviations of a liquid

surface from the set of physically valid states, so it makes sense to spend a little

time here to try and understand pressure.
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First, lets derive an expression for pressure. We will assume the incompress-

ibility constraint ∇ · u = 0 and see what we get. By taking the divergence of the

momentum equation we get

∇ ·
1
ρ
∇p =∇ ·

�

− ∂ u/∂ t − (u · ∇)u+ ν∇2u+ g.
�

(2.31)

If we now use the incompressibility assumption so (assuming derivatives commute)

∇ ·
�

∂ u
∂ t

�

= ∂
∂ t (∇ · u) = 0 we obtain

∇ ·
1
ρ
∇p =∇ ·

�

− (u · ∇)u+ ν∇2u+ g
�

(2.32)

which is a (variable coefficient) Poisson equation.

We will now show that the pressure in Equation (2.32) enforces the incom-

pressibility constraint. Without assuming ∇ · u = 0 we substitute the expression

for pressure in Equation (2.32) into Equation (2.31) to obtain (after commuting

derivatives)
∂

∂ t
(∇ · u) = 0

If we integrate this equation in time we get

∇ · u= g(x)

which is independent of time. If we now assume that the initial divergence is

zero this implies that g(x) = 0 for all time. This shows that the pressure in Equa-

tion (2.32) does indeed imply that incompressibility is enforced. In Appendix A

we show how Equation (2.32) can be solved numerically using methods from Sec-

tion 2.3 and be used to enforce the incompressibility constraint.

What we have shown is section is that any divergence-free velocity field in-

duces a pressure through the incompressible Navier-Stokes equations and that this

pressure ensures that the accelerations in Navier-Stokes are divergence-free guar-

anteeing that the velocity field remains divergence-free for all time. See Gresho

and Sani [1987] for a more detailed discussion.

2.7.2 Helmholtz-Hodge Decomposition Theorem

Another way of looking at pressure is as a projection onto the set of divergence-free

vector fields through the Helmholtz-Hodge decomposition.

If we let Ω be a subset of R3 with smooth boundary ∂Ω then the Helmholtz-

Hodge decomposition theorem states that any smooth vector field u : Ω→ R3 can

be decomposed uniquely as

u=∇φ +∇×Ψ + γ (2.33)
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where φ : Ω → R is a scalar field, Ψ : Ω → R3 is a divergence-free1 vector field

(meaning ∇ · Ψ = 0) and γ : Ω→ R3 is a harmonic vector-valued field (meaning

∇ · γ= 0 and ∇× γ= 0) [Cantarella et al. 2002].

To extract the divergence-free part of u, let us take the divergence on both sides

of Equation (2.33)

∇ · u=∇ ·∇φ =∇2φ

which gives us a Poisson equation for φ.

We can now define a projection operator P(u) = u−∇φ, which extracts the

divergence-free part. Clearly, ∇ · P(u) = 0 and P(P(u)) = P(u) so P is a proper

projection. Notice that these steps correspond exactly to the steps we took in

Section 2.7.1 with pressure taking the place of φ and the momentum equation

taking the place of u.

Alternatively, we can take the curl of Equation (2.33) and get

∇× u=∇×∇×Ψ

=∇����:
0

(∇ ·Ψ)−∇2Ψ

= −∇2Ψ

(2.34)

where the second equality follows from a vector calculus identity and the third

equality from the fact that ∇ · Ψ = 0 in the decomposition. Notice that Equa-

tion (2.34) is a vector-Poisson equation for Ψ.

For Ω with simple topology, where we may assume that γ = 0, we can again

define a projection operator P(u) = ∇× Ψ to recover the divergence-free part of

u. Even when Ω has non-trivial topology, γ is often small for the kinds of vector

fields that arise from fluid flows [Tong et al. 2003]. This means that in many fluid

simulation papers in computer graphics (e.g. Ando et al. [2015]) the authors apply

this method even when Ω has non-trivial topology.

2.7.3 Boundary conditions

So far we have only talked about what happens in the interior of the fluid and

have carefully avoided any mention of boundaries. In this section we will answer

which kinds of boundaries exists between a fluid and its surrounding environment,

and what happens at these boundaries. This gives us a chance to talk about two

important concept, namely surface tension and free surfaces.

In the following we will denote by ∂Ω the boundary of the fluid. There are two

different kinds of boundaries to consider. First, there are solid-fluid boundaries

∂ΩS where the fluid is in contact with a rigid solid. Second, there are fluid-fluid

1Divergence-free velocity fields are also sometimes called solenoidal vector fields.
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boundaries ∂ΩF where two fluids are in contact. The two kinds of boundaries

together form the whole boundary of the fluid ∂Ω= ∂ΩS ∪ ∂ΩF.

For the purposes of this thesis we will be assuming that when multiple fluids

interact, that the density of one of the fluids is significantly higher than the density

of the other fluids. For instance, this is the case of water and air that have a density

ratio of about one thousand. Under this assumption we may neglect the influence

of the lighter fluids on the motion of the heavier fluid. This approximation is

called the free surface approximation2 and is prevalent in computer graphics, since

it allows us to model only a single fluid with significant computational savings as

a result.

Even when we assume that fluid-fluid interfaces are free surfaces, there is

another effect that becomes important at such interfaces at small length scales and

that is surface tension. Surface tension is a cohesive force resulting from the fact

that fluid particles prefer to stick together with other fluid particles from the same

fluid. Surface tensions causes a fluid to tend towards reducing its surface area,

which causes extra tension at the surface.

We will not dwell too much on topic, but as was the case when we derived the

equations of motion for the interior of a continuum in Section 2.6, what happens at

the boundary is also given by a force balance. In this case the net force on the area

element of the surface should be balanced which eventually leads to the following

boundary condition (see Subramanian [2015] and Bridson [2008] for more details)

for the stress

(σ1 −σ2)n̂= 2Hγn̂ on ∂ΩF

where σ1 and σ2 are the stresses for the two fluids that form the interface, n̂ is

the surface normal to the interface and H is the mean curvature of the interface

(we will see how to compute this in Section 2.10). Surface tension is denoted by γ

and has units of force per unit length. For the interface between water and air at

room temperature it is approximately γ= 0.073 newton per meter. Recalling from

Equation (2.29) that the stress was defined as σ = −pδ+τ, this means that for an

inviscid fluid with no viscosity (i.e. τ= 0) we have

(p1 − p2) = 2Hγ on ∂ΩF

since pressure only works in the normal direction (it was defined as a diagonal

stress tensor). Under the free surface approximation we may simplify this further.

We could for instance set p2 to be the ambient air pressure. In fact, since pressure

is only ever evaluated as a gradient, constant offsets do not matter and we may

equivalently set p2 = 0 so (defining p := p1)

p = 2Hγ on ∂ΩF

2Technically, a free surface is a surface subject to constant normal stress and zero shear stress. This
prevents effects like the wind creating waves in the ocean, which is a shear effect.
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Finally, in case we are mainly interested in large scales (e.g. if we are modelling

the ocean) we may neglect surface tension completely, which gives us

p = 0 on ∂ΩF

At solid-fluid boundaries we certainly do not want fluid to flow into or out of

the solid. This leads to the following boundary condition

u · n̂= usolid · n̂ on ∂ΩS.

where where usolid is the velocity of the solid and n̂ is the normal vector to solid

obstacle. This boundary condition is called free-slip, since the fluid is unrestricted

in its movement tangentially to the solid. This is the correct boundary condition

for an inviscid fluid. For a viscous fluid it turns out that the correct boundary

condition is

u= usolid on ∂ΩS.

This boundary condition is called no-slip, since it forces the fluid to have the same

velocity as the solid at the boundary. Nevertheless, it is common for practioners

to use the free-slip boundary condition even for viscous fluids, since the no-slip

boundary condition, although accurate in the limit, is too inaccurate for the kinds

of coarse grids used in computer graphics.

2.7.4 Conservation form

In Chapter 5 we will be using an alternative but equivalent version of Navier-

Stokes for convenience. This form of Navier-Stokes is called conservation form and

emphasizes the fact that quantities like momentum and mass are conserved.

∂ q
∂ t
+∇ · F(q) = f (2.35)

q=

�

1

u

�

, F(q) =

�

u

u⊗ u− 1
ρσ

�

(2.36)

Here, u denotes the usual three-dimensional velocity and σ is Cauchy’s strain

tensor as defined in Equation (2.29). Notice that we include both the momentum

equation and the incompressibility constraint into one equation.

To see why Equation (2.35) is called conservation form, let f= 0, integrate both

sides over a fixed volume Ω and apply the divergence theorem to obtain

∂

∂ t

∫

Ω

qdV +

∫

∂Ω

F(q) · n̂dA= 0

where n̂ is the outwards pointing normal vector to ∂Ω. This says that the change

of q in time inside Ω is purely due to the flux F(q) through ∂Ω. Since Ω is arbitrary
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this implies that q is (locally) conserved. Note, this is only true in the interior of the

fluid and separate zero-flux boundary conditions have to be applied to ensure that

the equations form a closed system so that the quantities are conserved globally.

2.8 Vorticity

In Chapter 4 we will be deriving a surface-based energy whose minimum is attained

when the water surface is physically valid. When we interpret this energy as

a physical potential, we obtain equations of motion that are strikingly similar

to equations of motion for vortex sheet, which are two-dimensional surfaces of

concentrated vorticity. In Section 2.8.3 we will have a look at the vortex sheet

equations, but before that let us try to understand vorticity a bit better.

In Section 2.4 we saw the definition of vorticity as the curl of velocity

ξ=∇× u

We also saw that it is proportional to the (local) angular velocity ω of the velocity.

Notice that vorticity (and angular velocity) is a vector whose direction defines the

axis of local rotation and whose magnitude specifies the speed of the rotation.

Another way of looking at this, is through the concept of circulation. If C is a

closed curve sitting in a velocity field u in R3 then the circulation Γ around C is

defined to be

Γ :=

∫

C

u · dl

If C = ∂ S is the boundary of a surface S, then it follows from Stokes’ theorem that

Γ =

∫

C

u · dl=

∫

S

∇× u · dS=

∫

S

ξ · dS

which suggests that vorticity is circulation per unit area around an infinitesimal

loop. Conversely, the flux of vorticity through S is the circulation.

From Section 2.7 we know that divergence-free velocity fields correspond to

incompressible fluid flow. Therefore, one might equivalently choose to work with

vorticity instead of velocity, which practitioners actually do as we will see in Sec-

tions 2.8.2 and 2.8.3. The question is, why would you? One of the main reasons is

that while velocity is non-zero almost everywhere (at least for any interesting mo-

tion) vorticity can be far more concentrated. This makes sense once you consider

that vorticity is a spatial derivative of velocity, which means constant or slowly

varying regions of velocity correspond to (almost) zero vorticity. As we shall see in

Section 2.8.1, it is also instructive to think of electromagnetism where the current

through a wire (vorticity) can generate a whole magnetic (velocity) field. This
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has led to models for (zero-dimensional) vortex particles [Selle et al. 2005], (one-

dimensional) vortex filaments [Angelidis and Neyret 2005] and (two-dimensional)

vortex sheets [Kim et al. 2009; Pfaff et al. 2012] as we will see in Section 2.8.3.

2.8.1 Velocity from vorticity

In Chapter 4 we will be deriving a surface-based energy to reduce the deviation of

a liquid surface from a physically valid state. We interpret the negative gradient

(the direction of steepest descent) of this energy as the (local) angular velocity ω.

Eventually, we have to turn these local rotations into motion of the surface. Luckily,

we saw in Section 2.4 that ω is proportional to the vorticity ξ = ∇× u of some

velocity field u. This allows us to leverage existing techniques for turning vorticity

into velocity in which we may then move the surface.

One way of relating vorticity to velocity is through Equation (2.34) which gives

us a vector-Poisson equation for the so-called stream function Ψ

∇2Ψ = −ξ. (2.37)

This equation can be solved subject to ∇·Ψ = 0 using methods from Section 2.3.4.

The velocity can then be recovered by noticing that

−ξ= −∇× u=∇2Ψ = −∇×∇×Ψ +∇����:
0

(∇ ·Ψ)

which suggests that u=∇×Ψ.
Since Equation (2.37) is a vector-Poisson equation, it can also be solved using

Green’s functions (cf. Section 2.3.2). Concretely, we can apply the Green’s function

for the three-dimensional Laplacian for each of the three dimensions independently.

According to Equation (2.16) we have

u=∇×Ψ =∇×



−
1

4π

∫

R3

−ξ(x′)
‖x− x′‖

dx′





=
1

4π

∫

R3

‖x− x′‖∇× ξ(x′)−∇‖x− x′‖× ξ(x′)
‖x− x′‖2 dx′

= −
1

4π

∫

R3

(x− x′)

‖x− x′‖3 × ξ(x′)dx′

(2.38)

where the curl (∇×) is taken with respect to x so that ∇× ξ(x′) = 0. In the

derivation we have additionally used the quotient rule and the identity∇‖x− x′‖=
(x− x′)/‖x− x′‖ . Equation (2.38) is called the Biot-Savart law.

Since Equation (2.38) is singular (shoots to infinity) when evaluated where ξ

is non-zero, it is common (this is also what we do) to instead use the regularized
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version [Pfaff et al. 2012]

u= −
1

4π

∫

R3

(x− x′)
�

‖x− x′‖2 + ε2
�

3
2

× ξ(x′)dx′

where ε > 0 is a regularization parameter that effectively controls the minimal

size of the vortices.

2.8.2 Vorticity-velocity form

Previously, in Section 2.7, we derived the equations of motion for an incompressible

Newtonian fluid, the incompressible Navier-Stokes equations. These equations

describe the time evolution of velocity. As a gently warm-up to the next section on

vortex sheets (Section 2.8.3), we will look at the equations of motion for vorticity.

As we discussed in the beginning of Section 2.8, working with vorticity is just as

valid as working with velocity when considering incompressible fluids. Recall that

vorticity is defined as ξ = ∇× u. The equations of motion can be obtained by

taking the curl of the momentum equation (Equation (2.30)), which gets us

∂ ξ

∂ t
+ (u · ∇)ξ+ (ξ · ∇)u− ν∇2ξ=∇× f. (2.39)

The first thing we notice about Equation (2.39) is that the term involving the

gradient of pressure has dropped out because the curl of a gradient is zero by

vector calculus identity. This has the benefit that we no longer have to solve for the

unknown pressure p, however, since velocity still appears in the equation, we have

effectively traded solving a scalar Poisson equation for the pressure p for solving a

vector Poisson equation for the vector potential Ψ. Nevertheless, this may still pay

off when vorticity is sparse as we will see in the next section. Other than this fact,

Equation (2.39) closely resembles the momentum equation, except for the addition

of the new vortex stretching term (ξ · ∇)ω.

2.8.3 Vortex sheets

In this next section we will see the equations of motion for a vortex sheet, which is

simply the concentration of vorticity on a two-dimensional surface M embedded

in three-dimensional space R3. We will also see that these equations bear striking

similarity to our surface-based dynamics in Chapter 4.

Physically, a vortex sheet arises when there is a discontinuity in the tangential

velocity of two contacting inviscid immiscible fluids with densities ρ1 and ρ2

and constant surface tension γ. Letting (u2 − u1) be the (tangential) velocity

discontinuity between the two fluids and n̂ be the unit normal to M pointing into

the exterior fluid labeled 2, we can define the vortex strength of the sheet M as

ζ
def
= n̂× (u2 − u1)
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Note that this suggests that ζ is tangential to M . The equations of motion are

obtained as in Wu [1995] or Pozrikidis [2000] and are given by

Dζ

Dt
− (ζ · ∇)u+ ζP(∇) · u= 2An̂× (a− g) +

4γ
ρ1 +ρ2

n̂×∇H (2.40)

where A = ρ1−ρ2
ρ1+ρ2

is the Atwood ratio, P = I3 − n̂⊗ n̂ is the tangential projection

operator, I3 is the 3-by-3 identity matrix and a = 1
2

�Du1
Dt +

Du2
Dt

�

is the average of

the accelerations on each side of the sheet. Compare this to our surface correction

forces in Section 4.4, reproduced in the same notation as Equation (2.40) for

convenience
Dζ

Dt
= 2n̂× (−∇p) + 4γn̂×∇H

where we have set β = 2 as discussed in Section 4.4. The primary difference

to Equation (2.40) is that (a− g) has been replaced with the negative pressure

gradient −∇p. Also, the vortex stretching − (ζ · ∇)u and dilation ζP(∇) · u terms

have been neglected.

Since a vortex sheet is simply the concentration of vorticity, we can compute

the velocity induced by the vortex sheet in a similar manner to how we computed

the velocity from vorticity in Section 2.8.1. In Chapter 4 we use the Biot-Savart law

to recover velocity from the rotational velocities and accelerations in our surface

correction algorithm.

2.9 Perfectly Matched Layers

In this section we will describe the theory of perfectly matched layers, which is a

technique to absorb radiating waves without reflections. Unfortunately, the theory

has gotten a bit of a reputation in computer graphics of being difficult to under-

stand. In part, this is true because most of the theory of perfectly matched layers

is found in the computational physics literature and is concerned with Maxwell’s

equations, not Navier-Stokes. Even the parts of the literature concerned with

Navier-Stokes mostly deal with the simpler linearized Euler equations, which are

less useful in computer graphics. In this section we try to dispel the myth that

the theory of perfectly matched layers is somehow hard to understand and pro-

vide some background on the theory readily accessible to computer graphics re-

searchers. The material covered in this section is going to be based loosely on the

notes Johnson [2010a] and Johnson [2010b].

2.9.1 Introduction

When solving differential equations numerically by a volumetric discretization as

in Section 2.3.4, it becomes necessary to truncate the domain at the grid boundary.

Such truncation should be done in a way that does not introduce artifacts into
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the solution. For differential equations that support traveling waves such as the

wave equation (cf. Section 2.3.1) or Navier-Stokes, the solutions usually decay too

slowly in space and time for it to be practical to wait for "natural" decay and

impose Dirichlet or Neumann boundary conditions. The presence of oscillations

in the solution also means that any real coordinate transformations that maps an

infinite domain to a finite one will lead to solutions in the transformed domain

that oscillate infinitely fast as we approach the grid boundary and we simply run

out of resolution.

In response to this problem Berenger [1994] developed the Perfectly Matched

Layer (PML) technique. Instead of using a real coordinate transformation, the

PML technique works by extending the solution into the complex plane where an

oscillating solution is turned into an exponentially decaying one. The ordinary

solution is used everywhere except a small layer close to the grid boundary (cf.

Figure 2.3) where the solution is evaluated in the complex plane. It is possible

to achieve an exponentially decaying solution in this layer without perturbing the

original solution evaluated at real coordinates (cf. Section 2.2), which means that

the layer is indeed perfectly matched. It does not matter which boundary condition

(Dirichlet or Neumann) is used at the grid boundary. By the time a traveling wave

reaches the grid boundary, it will already be exponentially small and so will any

unwanted wave reflection off of the grid boundary as a result.

2.9.2 Problem

Assume that we are given some wave-like differential equation of spatial variable

x ∈ R3 and time variable t ∈ R with solution u(x, t) in infinite space. Assume

that we are only interested in the solution in some region near the origin x = 0.

We would like to truncate the domain outside the region of interest in a way that

absorbs all the radiating waves. We are going to use the perfectly matched layers

technique to accomplish this.

One of the key assumptions we are going to make is that u(x, t) can be written

as a superposition of plane waves

u(x, t) =

∫

Rn

fu0(k)e
i(k·x−ωt) dk . (2.41)

or, in other words, that it comes from an inverse spatio-temporal Fourier transform.

In Section 2.3.3 we saw that the kind of differential equations that admit solutions

of the form in Equation (2.41) are linear differential equations of the form

∂ u
∂ t
= P(D)u

where P(D) is skew-adjoint and has constant coefficients. Examples of such equa-

tions include the scalar wave equation from Section 2.3.1, Maxwell’s equations
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from electromagnetism, Schrödiger’s equation from quantum mechanics, elastic

vibrations and many more [Johnson 2010b]. We will discuss the applicability to

the incompressible Navier-Stokes in Section 2.9.5.

It is not actually necessary to assume that u is a superposition of plane waves

everywhere. It is enough to assume this to be the case far from the region of interest

(that is, for sufficiently large or small x) where we are going to apply the perfectly

matched layer technique.

With the assumptions out of the way, we are ready to apply the perfectly

matched layer technique to our problem. The technique proceeds in three steps.

1. Perform an analytically continuation of the solution u into the complex plane.

To be able to do this u must be analytic, however we have already assumed

that u is a superposition of (analytic) plane waves and a superposition of an-

alytic functions is certainly analytic. Notice that the analytically continued

solution u satisfies the same differential equation. This means that the solu-

tion is unchanged when evaluated at real coordinates. When it is evaluated

along a complex contour, it becomes exponentially damped.

2. Since it is inconvenient to work directly with complex coordinates, we will

express the complex coordinates as a function of real coordinates. This

function will have an imaginary component inside the perfectly matched

layer. We then perform a coordinate transformation to express the differential

equation in real coordinates. More about this in Section 2.9.3.

3. Inside the perfectly matched layer (far from the region of interest near the

origin), we now truncate the domain. At this point the solution is already

exponentially small and the choice of boundary condition (Dirichlet or Neu-

mann) to apply at the truncated boundary does not matter.

2.9.3 Coordinate transformation

As described in the previous section, it is a bit inconvenient to work directly with

complex coordinates. In this section we will show how to express the complex

coordinates as a function of real coordinates. We will also show how to perform

a coordinate transformation to express a differential equation in these real coordi-

nates.

The simplest complex coordinates we can choose are bx(x) = x + iΣ(x) for
some real function Σ that is positive inside the perfectly matched layer and zero

everywhere else. Plugging these coordinates into a plane wave (as we did in

Section 2.2), we get

U0ei(kbx−ωt) = U0ei(kx−ωt)e−kΣ(x).
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σx>0

σy>0

σx>0
σy>0

σx=0
σy=0

Figure 2.3: Illustration of perfectly matched layers applied to a two-dimensional
problem. In the region of interest in the middle, the damping functions σx = σy =
0 and the solution is unperturbed. Close to the boundary we let σx > 0 or σy > 0
so the solution becomes exponentially damped. Notice that in the corners, both
damping functions are positive.

Clearly this is damping if and only if kΣ > 0, however the amount of damping

now depends on k, so higher spatial frequencies will be damped faster than lower

frequencies. It would be better if the damping was somehow independent of

frequency. We can achieve this by instead using the functions

bx(x) = x +
i
ω

∫ x

σx(x
′)dx ′

by(y) = y +
i
ω

∫ y

σy(y
′)dy ′

bz(z) = z +
i
ω

∫ z

σz(z
′)dz′

(2.42)

where we define the functions σx , σy and σz that are positive inside the perfectly

matched layer and zero everywhere else. Plugging these coordinates into a plane

wave, we get

U0ei(kbx−ωt) = U0ei(kx−ωt)e−
k
ω

∫ x
σx (x ′)dx ′ .

That is, the plane wave is exponentially damped if and only if

k
ω

∫ x

σx(x
′)dx ′ > 0

which is true as long as the phase velocity w/k is positive (is travelling to the right)

and is in the positive half-plane, or has negative phase velocity (is travelling to the

left) and is in the negative half-plane.

In order to apply to apply the coordinate transformation to a differential equa-

tion, we need to figure out how the partial derivatives transform. By the chain rule
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we have

dx=







∂
∂ x
∂
∂ y
∂
∂ z






=







∂ bx
∂ x

∂ bx
∂ y

∂ bx
∂ z

∂ by
∂ x

∂ by
∂ y

∂ by
∂ z

∂ bz
∂ x

∂ bz
∂ y

∂ bz
∂ z







−1





∂
∂ bx
∂
∂ by
∂
∂ bz






=
�

dbx
dx

�−1

dbx

where dbx/dx is the Jacobian matrix. This gives







∂
∂ x
∂
∂ y
∂
∂ z






=









1
1+ i

ωσx (x)
0 0

0 1
1+ i

ωσy (y)
0

0 0 1
1+ i

ωσz(z)















∂
∂ bx
∂
∂ by
∂
∂ bz






. (2.43)

All that remains is to substitute Equation (2.43) into the differential equation

under consideration to complete the coordinate transform. Note, the presence

of the angular frequency ω in Equation (2.42) means that we have to make this

substitution in frequency domain as opposed to time domain. We will see an

example of this in Section 2.9.4.

2.9.4 The wave equation

In this section we will show how to apply perfectly matched layers to the wave

equation from Section 2.3.1. In one spatial dimension the wave equation (assuming

that c = 1 for simplicity) is given by

∂ u
∂ t
=
∂ v
∂ x

∂ v
∂ t
=
∂ u
∂ x

(2.44)

Applying the Fourier transform to the time derivative and the complex coordinate

transformation from Equation (2.43) to Equation (2.44), we obtain

−iωeu=
�

1+
i
ω
σx

�−1 ∂ ev
∂ x

−iωev =
�

1+
i
ω
σx

�−1 ∂ eu
∂ x

which after multiplying both equations by
�

1+ i
ωσx

�

and converting back to time

domain results in

∂ u
∂ t
+σxu=

∂ v
∂ x

∂ v
∂ t
+σx v =

∂ u
∂ x

We note that the only difference to Equation (2.44) is the addition of an exponential

damping term in both equations. In two spatial dimensions things get a bit more
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interesting. Here, the wave equation looks as follows.

∂ u
∂ t
=
∂ v
∂ x
+
∂ w
∂ z

∂ v
∂ t
=
∂ u
∂ x

∂ w
∂ t
=
∂ u
∂ y

We again apply the Fourier transform and complex coordinate transformation to

obtain

−iωeu=
�

1+
i
ω
σx

�−1 ∂ ev
∂ x
+
�

1+
i
ω
σy

�−1 ∂ ew
∂ y

−iωev =
�

1+
i
ω
σx

�−1 ∂ eu
∂ x

−iωew=
�

1+
i
ω
σy

�−1 ∂ eu
∂ y

(2.45)

This time we cannot eliminate the terms involving i/ω so easily. However, if we

heuristically define two new variables u1, u2 such that u = u1 + u2 and split the

first equation into two as follows

∂ u1

∂ t
=
∂ v
∂ x

∂ u2

∂ t
=
∂ w
∂ y

∂ v
∂ t
=
∂ u
∂ x
=
∂ u1

∂ x
+
∂ u2

∂ x
∂ w
∂ t
=
∂ u
∂ y
=
∂ u1

∂ y
+
∂ u2

∂ y

we can proceed exactly as in the one-dimensional case and obtain

∂ u1

∂ t
+σxu1 =

∂ v
∂ x

∂ u2

∂ t
+σyu2 =

∂ w
∂ y

∂ v
∂ t
+σx v =

∂ u1

∂ x
+
∂ u2

∂ x
∂ w
∂ t
+σy w=

∂ u1

∂ y
+
∂ u2

∂ y

The procedure we just outlined is called the split PML for obvious reasons. It is also

possible to derive an unsplit PML. First multiply the first equation in Equation (2.45)

by
�

1+ i
ωσx

��

1+ i
ωσy

�

, the second equation by
�

1+ i
ωσx

�

and the third equation
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by
�

1+ i
ωσy

�

. We get

−iωeu+
�

σx +σy

�

eu+
i
ω
σxσyeu=

�

1+
i
ω
σy

�

∂ ev
∂ x
+
�

1+
i
ω
σx

�

∂ ew
∂ y

−iωev +σxev =
∂ eu
∂ x

−iωew+σy ew=
∂ eu
∂ y

The last two equations are trivial to convert back into time domain. The terms in

the first equation that involve i/ω factors correspond to time integration in time

domain. Collecting all these terms, we obtain

− iωeu+
�

σx +σy

�

eu=
∂ ev
∂ x
+
∂ ew
∂ z
+

i
ω

�

σxσyeu+σy
∂ ev
∂ x
+σx

∂ ew
∂ y

�

(2.46)

The trick is to introduce the new variable ψ and the auxiliary equation

−iω eψ= σxσyeu+σy
∂ ev
∂ x
+σx

∂ ew
∂ y

which we substitute into Equation (2.46). After converting back into time domain,

we end up with the final set of equations

∂ u
∂ t
+
�

σx +σy

�

u=
∂ v
∂ x
+
∂ w
∂ z
+ψ

∂ v
∂ t
+σx v =

∂ u
∂ x

∂ w
∂ t
+σy w=

∂ u
∂ y

∂ψ

∂ t
= σxσyu+σy

∂ v
∂ x
+σx

∂ w
∂ y

In this case we ended up with the same number of variables and equations for both

the split and the unsplit PMLs, however, in general the unsplit PML requires more

auxiliary variables and equations than the split method. Therefore, we elect to use

the split PML in Chapter 5.

2.9.5 Incompressible Navier-Stokes

In this section we briefly discuss the validity of applying the perfectly matched

layers technique to the incompressible Navier-Stokes equations from Section 2.7.

We reproduce the momentum equation for convenience

∂ u
∂ t
+ (u · ∇)u+

1
ρ
∇p− ν∇2u= g.

If we ignore the non-linear advection term (u · ∇)u for a moment and assume that

the external accelerations are conservative (that is, g = ∇φ for some scalar field
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φ) the equation does indeed become linear and it can be expressed in the form

∂ u/∂ t = P(D)u as in Section 2.3.3. To be constant coefficient, however, we must

additionally restrict ρ and ν to be constants.

One way to include the advection term and still have a linear equation is to

replace it with a term of the form (u · ∇)u for some spatially varying u(x). This

is what is usually done when time-stepping, where we fix u to be the value un of

u at the beginning of the time step. However, this linearization still has spatially-

varying coefficients. Strictly speaking, we have to assume that u is constant, or at

least slowly varying, for the theory to be applicable.

Although the assumptions we have made in this section might seem severe, we

emphasize that they must only hold inside the perfectly matched layer (far from

the region of interest). We also emphasize that previous work [Hu et al. 2008;

Söderström and Museth 2009] violate exactly the same assumptions as we do. The

important point is that the perfectly matched layer technique works remarkably

well despite this fact.

2.10 Moving surfaces

Each method proposed in this thesis relies on some form of surface representation

for a moving surface embedded in three-dimensional space. Moreover, several of

the works directly contribute to the state-of-the-art of these surface-based algo-

rithms. For example, in Chapter 3 we show how to establish temporally coherent

point-to-point correspondences for incoherent surfaces, and in Chapter 4 we show

how to correct errors in liquid surfaces. In this section we give a brief introduction

to two of the most popular representations for moving surfaces in computer graph-

ics, representations we will be making heavy use of in this thesis, namely triangle

meshes and level sets.

Regardless of which surface representation we choose, there is a basic set of

operations that it needs to support for the applications presented later in this

thesis. We will go over these in the following. For full generality, we will do

this in the smooth setting. There, a dynamic surface can viewed as the image

f (M) = { f (x) | x ∈ M} of a map f : M → R3 from a smooth manifold M into R3.

• The surface normal n̂ will be useful countless times in this thesis, for instance

to compute the surface energy in Chapter 4. We will also need to compute

the mean curvature H, which appears in the expression for surface tension

used in Chapter 4. In the smooth setting both quantities are easily computed

through the formula

∆ f = 2Hn̂
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where ∆ is the Laplace-Beltrami operator (essentially the usual Laplacian

confined to the surface), H : M → R is mean curvature and n̂ : M → S2 is

the (unit) surface normal (also called the Gauss map) [Crane et al. 2013].

• We will also need to store quantities on the surface. In the smooth setting

this is formulated as fields over M , that is, an assignment of some arbitrary

quantity ψ to each position on the surface. As an example, a scalar field can

be defined as a map ψ : M → R.

• Next, we want to be able to express an integral over the surface. This again

shows up when we define our surface energy in Chapter 4. Letting dA denote

the area element, the surface integral of the quantity ψ is
∫

M

ψdA .

• Finally, we would like to be able to move the surface in an external velocity

field v(x). This shows up in Chapters 3 to 5. In the smooth setting, this is

most easily expressed as a differential equation

∂ f
∂ t
= v

2.10.1 Triangle meshes

A triangle mesh is a triplet T = (V, E, F) of vertices i ∈ V , edges i j ∈ E and faces

i jk ∈ F . These sets can be realized trivially as arrays, though more advanced data

structures such as the corner table [Rossignac et al. 2001] or the half-edge data

structure [Mäntylä 1987] can be employed to achieve more efficient mesh traversal

and updates.

To properly represent a surface embedded in three-dimensional space we need

to associate three-dimensional coordinates xi to each vertex. Having done so, we

can express the surface normal and mean curvature through the Laplace-Beltrami

operator applied to the coordinates xi by the formula (∆x)i = 2Hn̂ as in the smooth

case. In the discrete setting the Laplace-Beltrami operator ∆ evaluated at a vertex

i ∈ V is given by [Crane et al. 2013]

(∆ψ)i =
1
2

∑

j∈N (i)

�

cotα j + cotβ j

��

ψ j −ψ j

�

where N (i) is the one-ring neighborhood of vertex i and α j and β j are the angles

across from the edge i j. if the surface is flat we have H = 0 and we do not get

a normal. In that case it may be better to average the normals of the incident

triangles to get a normal at vertex i.
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Given an arbitrary quantity ψi jk discretized per-triangle, the surface integral

is given by
∑

i jk∈T

ψi jkAi jk

where Ai jk denotes the area of the given face. Similarly, for a quantity ψi dis-

cretized per-vertex, the surface integral is given by

∑

i∈V

ψiAi

where Ai denotes the area of the dual cell face or Voronoi region.

Moving a triangle mesh in an external velocity field v(x, t) boils down to solving

an ordinary differential equation

dx
dt
= v(x, t). (2.47)

Equation (2.47) can be discretized for each mesh vertex xi at each discrete time t

with simple forward Euler
xn+1

i − xn
i

∆t
= v(x, t)

as described in Section 2.3.4 or with higher order methods such as fourth-order

Runge-Kutta methods [Wojtan et al. 2011].

Naively moving each mesh vertex using this procedure works well if the velocity

is simple (e.g. if it corresponds to rigid motion) or for small amounts of time,

however, if the deformation is more severe it becomes necessary to dynamically

improve the mesh by e.g. inserting new triangle when existing ones become too

stretched, We explain how to achieve this in more detail in Section 3.4.1.

Another complication arises in applications that dictate that surfaces merge

or split apart. This happens frequently in physical applications such as liquid

simulation. In such cases special care must be taken to detect when such topology

changes happen and to merge or split the mesh when necessary. Such methods

(see Section 3.2 for an overview) usually involve some form of collision detection

and mesh surgery. A particularly simple method [Wojtan et al. 2009] that we

utilize several times in this thesis compares the triangle mesh to its signed distance

function and replaces the mesh with the signed distance reconstruction wherever

the two disagree locally. We describe this algorithm in more detail in Section 3.4.3.

2.10.2 The level set method

In the level set method [Osher and Fedkiw 2003] a surface is implicitly defined as

the zero level set {x | φ(x) = 0} of its signed distance function φ : R3 → R. That

is, |φ| is the distance to the surface with φ < 0 on the inside and φ > 0 on the

outside by convention.
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In a naive implementation φ is sampled on a dense volumetric grid with corre-

sponding volumetric computational and space complexity as a consequence. Mod-

ern implementations, such as OpenVDB [Museth 2013], store only a narrow band

of voxels around the zero set, which reduces the computational and memory re-

quirements to be proportional to the surface area. This makes makes level sets

competitive with triangle meshes.

The normal to the surface is computed as n̂= ∇φ/‖∇φ‖ . Since φ is a signed

distance function it changes with a rate of one unit per unit perpendicular to

the surface (i.e. in the gradient direction), which means that ‖∇φ‖ = 1 so the

expression for the normal can be simplified considerably to n̂ = ∇φ. The mean

curvature H is easily computed through the formula

2H =∇ · n̂=∇ ·
∇φ
‖∇φ‖

=∇ ·∇φ =∇2φ

Notice that this mimics the smooth setting.

Let ψ be the value that we are interested in storing "on" the level set. Because

the surface is defined implicitly and sampled on a grid, it is not possible to store ψ

directly on the surface as was the case with triangle meshes. Instead, we store ψ

on all grid points near the surface. For this to make sense, we need to ensure that

the (volumetric) gradient of ψ is zero in the direction normal to the surface (if ψ

was only defined on the surface there could surely not be a gradient in the normal

direction)

n̂ · ∇ψ= 0

We can achieve this by solving the extrapolation equation until steady state (that

is, until ∂ψ/∂ t = 0)
∂ψ

∂ t
+ n̂ · ∇ψ= 0.

A surface integral over a level set is most easily accomplished by integrating

over the whole volume against a smoothed delta function δε. We will use

δε(φ) =

¨

1
2ε

�

1+ cos πφε
�

if − ε ≤ φ ≤ ε
0 otherwise

If we now assume that the level set (and its associated quantities) have been dis-

cretized onto a gridwith uniform grid spacing∆x and that xi jk = (i∆x , j∆x , k∆x),
then the surface integral of ψ is given by

∑

xi jk

ψ(xi jk)δε(φ(xi jk))(∆x)3
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Moving a surface in the level set can be formulated by applying the chain rule

to dφ/dt and noticing the dependence on Equation (2.47)

dφ(x, t)
dt

=
∂ φ

∂ t
dt
dt
+
∂ φ

∂ x
dx
dt
+
∂ φ

∂ y
dy
dt
+
∂ φ

∂ z
dz
dt

=
∂ φ

∂ t
+∇φ ·

dx
dt

=
∂ φ

∂ t
+∇φ · u

=
Dφ
Dt

(2.48)

where D/Dt := ∂ /∂ t + (u · ∇) is the material derivative.



Chapter 3

Tracking Surfaces with Evolving

Topology

We present a method for recovering a temporally coherent, deforming triangle

mesh with arbitrarily changing topology from an incoherent sequence of static

closed surfaces. We solve this problem using the surface geometry alone, without

any prior information like surface templates or velocity fields. Our system com-

bines a proven strategy for triangle mesh improvement, a robust multi-resolution

non-rigid registration routine, and a reliable technique for changing surface mesh

topology. We also introduce a novel topological constraint enforcement algorithm

to ensure that the output and input always have similar topology. We apply our

technique to a series of diverse input data from video reconstructions, physics sim-

ulations, and artistic morphs. The structured output of our algorithm allows us to

efficiently track information like colors and displacement maps, recover velocity

information, and solve PDEs on the mesh as a post process.

3.1 Introduction

Robust computational representations of deforming surfaces are considered indis-

pensable within many scientific and industrial fields. Medical scientists deduce

clues about the human body from the level sets of time-varying voxel data, physi-

cists extract geometric information from simulations and acquisitions of fluid in-

terfaces, and computer graphics professionals generate animations and capture

performances in order to entertain audiences. As tools that generate time-evolving

surfaces become increasingly commonplace, it is essential that we, as computer

graphics researchers, provide better tools for the analysis and computational pro-

cessing of these forms of animated geometry.

One particular class of evolving surfaces, namely surfaces that change topology

through time, is particularly difficult to deal with. Because these surfaces are

40
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Figure 3.1: Our method recovers a sequence of high-quality, temporally coherent
triangle meshes from any sequence of closed surfaces with arbitrarily changing
topology. We reliably extract correspondences from a level set and track textures
backwards through a fluid simulation.

able to bend, split apart, reconnect themselves, and disappear through time, it is

impossible to make any convenient assumptions about their shape and connectivity.

For this reason, implicit surfaces such as contoured voxel data and metaballs, are

extremely popular for representing such time-evolving surfaces. Unfortunately,

these implicit surfaces are poorly suited for many important geometric tasks, such

as mapping how surface points at one particular time correspond to surface points

sometime later.

In this paper, we provide a general, robust method for tracking correspondence

information through time for an arbitrary sequence of closed input surfaces. We

do not require any context clues such as velocity information or shape priors, and

we allow the surfaces to change topology through time. We solve this problem by

combining a robust non-rigid registration algorithm, a reliable method for com-

puting topology changes in triangle meshes, and a mesh-improvement routine for

guaranteeing numerical accuracy and stability. The output of our method is a

series of temporally coherent triangle meshes, as well as an event list that tracks

how surface vertices correspond through time.

We apply our method to data sets generated by different methods, such as

physics simulations using two separate surfacing algorithms, morphing surfaces
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generated by implicit surfaces, and performance capture data reconstructed from

videos. We show that we can reliably extract correspondence information that was

absent from the original geometry, and we utilize this information to significantly

enhance the input data. Using our algorithm, we are able to preserve important

surface features, apply textures and displacement maps, simulate partial differen-

tial equations on the surface, and even propagate visual information backwards

in time. When applied to dynamic shape reconstruction problems, we are able to

reliably track the input without making any assumptions about how the data was

generated. One can argue that this template-free tracking is an important tool for

scientific experiments where it is essential to remove bias from the tools used for

information discovery. The contributions of our work are as follows:

• We provide the first comprehensive framework for tracking a series of closed

surfaces where topology can change.

• Our algorithm is able to greatly enhance existing datasets with valuable

temporal correspondence information. Some examples include displacement

mapping of fluid simulations and texture mapping of level set morphs.

• We introduce a novel topology-aware wave simulation algorithm for enhanc-

ing the appearance of existing liquid simulations while significantly reducing

the noise present in similar approaches.

• Because our method robustly extracts surface information from input data

alone, we provide a reliable way to automatically track markerless perfor-

mance capture data without the need for a template.

3.2 Related Work

Our work is closest to a recent publication of Stam and Schmidt [2011]. They

showed that, by examining the input parameters for an implicit surface algorithm,

one can derive the surface velocity to create motion blur and more coherent surface

animations. By integrating surface velocity through time, they presented a method

to approximate point-to-point correspondences which can be used to track texture

information. This inspirational work introduced some exciting applications for

tracking correspondences through complicated deformations, and we believe that

it brought the community a significant step closer to solving the general problem

of tracking a topology-evolving surface. Our method is different from theirs in a

number of ways. Firstly, we wish to solve the more general problem of tracking an

arbitrary input surface sequence, so we do not assume that we know the parameters

behind the surface dynamics. Secondly, their correspondence information is only

as accurate as their velocity integration, so it is prone to numerical drift. Our



CHAPTER 3. TRACKING SURFACES WITH EVOLVING TOPOLOGY 43

method uses a nonlinear shape matching optimization to minimize this drift, and

the difference is particularly apparent in the presence of large rotations.

To the best of our knowledge, our method is the first to provide a solution to the

problem of registration combined with topology change. For the remainder of this

section, we divide the work most related to ours into two camps: those related to

deformable shape matching and registration, and those related to surface evolution

with topology changes.

Deformable Shape Matching and Registration. The field of dynamic geome-

try processing is actively involved with the problem of extracting correspondences

between inconsistent time-varying meshes [Chang et al. 2010]. Dense and accu-

rate correspondences are critical for temporal shape analysis and surface tracking,

making applications such as marker-free human performance capture and shape

reconstruction from streams of incomplete 3D data possible. We will focus our

discussion on methods that take sequences of meshes or point clouds as input.

Most methods that establish full surface correspondences through time rely

on an existing template model or construct it in a separate step. With a fixed

topology and known geometric state, template models are popular because they

simplify the problem of reconstructing geometry and motion. The techniques

introduced in [Mitra et al. 2007; Süßmuth et al. 2008] aggregate scan sequences

into a 4D space-time surface to build a more complete template. In addition to

being limited to fairly small deformations, both methods do not allow the input

data to change topology. The statistical framework introduced by Wand et al.

[2007] and later improved in [Wand et al. 2009] estimates a globally consistent

template model with a fixed topology. While also being restricted to slowly-varying

surface deformations, their methods can identify topology variations in the scans.

On the other hand, the framework presented in [Li et al. 2009] does use a rough

approximation of a template as a prior, preventing wrong topology computations,

but focuses on handling deformations that are significantly larger than previous

methods using a robust non-rigid registration algorithm. While highly disruptive

motions are explicitly treated in the system of Tevs et al. [2012], largely incomplete

acquisitions can still damage the template extraction.

Although correspondences are desirable for many geometric analysis and ma-

nipulation purposes, a few state-of-the-art reconstruction methods skip the require-

ment of extracting a template model but aim at simply filling incomplete capture

data. The technique presented in [Sharf et al. 2008] is able to produce a watertight

surface sequence from extremely noisy input scans using a volumetric incompress-

ible flow prior but suffers from significant flickering in the reconstruction. In the

context of fluid capture, Wang et al. [2009] demonstrated a framework to fill holes

in partially captured liquid surfaces using a physically guided model. Their method
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Figure 3.2: Our framework allows us to synthesize high-frequency details using a
separate wave simulation (right) on top of a lower resolution pre-simulated fluid
surface (left).

achieves time-coherent reconstructions of dynamic surfaces but is restricted to fluid

simulations since frame-to-frame correspondences are guided by a simulated ve-

locity field. Recently, Li et al. [2012] demonstrated a shape completion framework

for temporally coherent hole filling of incomplete and flickering-affected scans of

human performances. Their methodmakes minimal assumptions about the surface

deformation by establishing correspondences within a small time window and thus

avoids the more difficult problem of extracting globally consistent correspondences

through time.

Conversely, our method is able to establish full correspondences across time-

series of input meshes and is not limited to a fixed topology like template-based

methods. Our technique is grounded on a general purpose non-rigid registration

algorithm similar to [Li et al. 2009; Li et al. 2012] and can therefore be applied

widely, ranging from fluid surface dynamics, human body performances, and arbi-

trary shape morphings.

Surface Evolution with Topology Changes. Several methods exist for tracking

topology-changing surfaces through time with the aid of prescribed motions or

velocity fields. Level set methods [Osher and Fedkiw 2003] and particle level set

methods [Enright et al. 2002] are popular techniques for representing a dynamic

implicit surface. These methods consider the zero level set of a voxelized signed

distance function, and they integrate velocity information in order to move the

function. This integration displaces the zero set of the function, resulting in a

moving surface. Müller [2009] used a strategy of repeatedly re-sampling an evolv-

ing Lagrangian triangle mesh in order to provide fast surface tracking for fluid

surfaces. Semi-Lagrangian contouring [Bargteil, Goktekin, et al. 2006] also uti-

lizes Lagrangian information in the form of extracted surface geometry in order

to improve surface tracking. These methods can be used to propagate surface
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Figure 3.3: A morphing example where surface textures are tracked. Unlike
existing techniques, our method does not exhibit ghosting artifacts.

information through time, but they cannot reliably track surface correspondences

over large deformations without diffusion because of their strategy of continual re-

sampling. Similar to our method, Dinh et al. [Dinh et al. 2005] also tracks texture

information on a topology-changing surface. Their method requires the solution of

a PDE over space-time, which limits its application to low resolution surfaces over

a short amount of time. Our method treats each time step independently, so it is

able to handle highly detailed input.

The surface evolvers most similar to ours are mesh-based surface tracking

methods [Du et al. 2006; Wojtan et al. 2010; Brochu et al. 2010]. The idea

behind these techniques is to evolve a triangle mesh according to a velocity field,

which allows for better preservation of geometric features and correspondence

information than an implicit surface. These mesh-based methods go hand-in-hand

with robust numerical methods for changing mesh topology [Brochu and Bridson

2009; Wojtan et al. 2009; Campen and Kobbelt 2010; Zaharescu et al. 2007; Pons

and Boissonnat 2007]. Within our framework, we use a method similar to Wojtan

et al. [2009] for changing mesh topology, because of its speed and versatility

(Further details are explained in Section 3.4.3).

While each of these works on surface evolution certainly helped inspire ours,

we would like to remind the reader that our method solves a significantly different

problem of tracking without any velocity information. In this light, we do not

perceive our method as a competitor to existing fluid simulation techniques, but

as a powerful enhancement tool — it allows a user to convert the output from any

simulation type into a temporally coherent deforming mesh sequence. Our tracked

surfaces are a great improvement over implicit surfaces in the information they

provide, the details they preserve, and the useful applications that they aid.
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3.3 Problem Statement

This paper is concerned with the problem of taking a series of closed surfaces

through time as input, and then replacing these surfaces with a sequence of tem-

porally coherent deforming triangle mesh. We wish to allow these input surfaces

to have arbitrary shapes and topology, and these shapes and topology are allowed

to change significantly from one surface to the next. Because such data can come

from a range of diverse sources in practice, we cannot assume any specific domain

knowledge, nor can we assume that we are given additional information such as

velocity fields. While surface tracking and registration is a widely studied problem,

we are unaware of any tracking methods that are both robust to large deforma-

tions and arbitrarily complicated topology changes while retaining correspondence

information. This is unfortunate, because frequent topology changes result from

many common sources such as fluid dynamics, morphing, and erroneous scanned

data.

To adequately solve this problem, we must define what it means for two shapes

to correspond in the presence of topology changes and find the most appropriate

mapping between consecutive pairs of input surfaces. This correspondence in-

formation should gracefully propagate through changes in surface topology. We

require our method to handle arbitrarily large plastic deformations through time

while keeping the computation tractable.

3.4 Method

Our algorithm consists of several interwoven operations: mesh improvement (Sec-

tion 3.4.1), non-rigid alignment (Section 3.4.2), and topological change (Sec-

tion 3.4.3). The mesh improvement operation ensures that our output mesh M

retains high-quality triangles while only minimally re-sampling geometry. The

non-rigid alignment step ensures that M actually conforms to the desired shapes

through time, and the topology change step ensures that the topology of M con-

forms to that of the desired input shapes {Sn}Nn=1 in each frame. We show that

these three operations alone are enough to generate smoothly deforming meshes

with high-quality geometry. However, in order to utilize these deforming meshes

to their full extent, we also record correspondence information along the way

(Section 3.4.4). Finally, we explain how to use the recorded correspondence infor-

mation to efficiently propagate information forwards and backwards through time

as a post-process (Section 3.4.6).
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Figure 3.4: Our method can turn a temporally incoherent mesh sequence (up-
per left) into a coherent one (upper right). We use this tracked mesh to add
displacement maps as a post-process without having to re-simulate any physics.

3.4.1 Mesh Improvement

A detailed surface mesh with well-shaped triangles is essential for a wide variety

of beneficial computations. In addition to enhancing numerical stability in our

non-rigid registration solver (Section 3.4.2) as well as the geometric intersection

code in our topology change routine (Section 3.4.3), a triangle mesh free from

degeneracies is necessary for such basic operations as interpolation, ray tracing,

and collision detection. As we explain later in Section 3.5, the guaranteed mesh

quality from our algorithm allows us to densely sample complex textures, generate

displacement maps which are less prone to self-intersections, and solve partial

differential equations on a deforming mesh using a finite element method.

In our framework, we follow the mesh improvement procedures outlined in the

survey by Wojtan et al. [2011]. When edges become too long, we split them in half

by adding a new vertex at the midpoint. When edges become too short, or when

triangle interior angles or dihedral angles become too small, we perform an edge

collapse by replacing an edge with a single vertex. Although we did not implement

them in our framework, edge flips are also another excellent mesh re-sampling

operation.

When improving a dynamically-deforming mesh, the main challenge is to find

the right balance between high-quality triangles and excessive vertex re-sampling.

Though we are free to customize these mesh improvement parameters however we
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Forward Texture Propagation

Backward Texture Propagation

Figure 3.5: These animations show how we can use our algorithm to propagate a
texture both forwards and backwards through time. In the bottom animation, the
fluid simulation naturally splashes around as it settles into a checker texture.

like, we used similar parameters for all of the examples in this paper. We used a

minimum interior angle of 10 degrees, a minimum dihedral angle of 45 degrees,

and a maximum:minimum edge length ratio of 4:1. For a more in depth discussion

on choosing parameters for these operations, please see [Wojtan et al. 2011].

3.4.2 Non-Rigid Alignment

Our goal is to establish correspondences between a source M and a target Sn. If

we assume that the two shapes have the same topology, we can solve this problem

by warping M onto Sn while minimizing surface distances and shape distortion. In

general, this assumption does not hold, but wemay still use non-rigid registration to

align the shapes. By simultaneously maximizing geometric similarity and rigidity,

surface regions onM that are compatible with those on Sn will be aligned, providing

dense correspondences within these regions.

We adapt the state-of-the-art bi-resolution registration framework by Li et al.

[2009] for non-rigid alignment. Their method is split into two parts to maximize

robustness and efficiency: a non-linear optimization that takes care of coarse

alignment, and a linearized optimization that aligns fine-scale details. We describe

these parts in the following two sections.

Coarse Non-Linear Alignment. Li et al. [2009]’s non-rigid iterative closest point

algorithm alternates between estimating correspondences from M to Sn, and non-

rigid deformation of M that allows correspondences to slide along Sn. Rigidity of

the deformation model is relaxed whenever convergence is detected to avoid local

minima.

Deformation is achieved using a coarse deformation graph that is constructed

by uniformly sub-sampling M such that the distance between deformation graph
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Figure 3.6: Our mesh is augmented with a deformation graph for robust coarse-
level non-rigid registration. We use geodesic distances to construct the graph in
order to avoid edge connections between surfaces close in Euclidean space but far
along geodesics.

nodes is four times larger than the average edge length of M. Instead of computing

displacements for each vertex of M, we solve for an affine transformation (Ai ,bi)
for each graph node. The graph node transformations are transferred to the

remaining vertices via linear blend skinning. Letting N (i) denote the k = 4

graph nodes nearest to xi , we describe the motion of xi by a linear combination

of the computed graph node transformations. Each j ∈ N (i) is weighted as

wi j = (1− d(xi ,x j)/dmax)2 and normalized such that
∑

j∈N (i) wi j = 1. Here, d(·, ·)
denotes geodesic distance and dmax is the distance to the (k + 1)th nearest graph

node. The choice of using geodesic distances was made to ensure that a vertex is

not influenced by graph nodes that are close in Euclidean distance but far along

geodesics. This is important, e.g. in case of a breaking wave whose tip might be

close to the surface in Euclidean but not geodesic distance. Instead of using the

same connectivity as the original triangle mesh, a graph edge is formed whenever

there exists a vertex in M influenced by two graph nodes.

When estimating correspondences, the original formulation matches vertices

on M with the closest point on Sn. We instead choose to project a vertex xi onto

Sn in the direction of the surface normal to obtain ci . We have found that this

heuristic is significantly better at picking correspondences during large non-rigid

deformations, especially where surfaces spread out into thin sheets. To avoid

inconsistent alignments, we prune correspondences where the surface normals at

xi and ci are more than 60 degrees apart, or where ci is more than three times

further from xi than the closest point on Sn.

To solve for the affine transformation, we minimize an energy functional that

consists of a fitting and some regularization terms. The fitting energy measures
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how far M is from Sn according to the correspondences found above.

Efit =
∑

i∈V

(αpoint‖xi − ci‖2 +αplane〈ni ,xi − ci〉2)

Here, V is the set of deformation graph nodes, ci denotes the point on Sn mapped

from xi and ni denotes the surface normal at ci . The parameters αpoint and αplane

determine the relative importance of the corresponding point-to-point and point-

to-plane energy terms. We use αpoint = 0.1 and αplane = 1 in all our examples. The

larger weight for the point-to-plane term allows the correspondences to slide along

Sn when solving for the deformation, leveraging the coupling between correspon-

dence and deformation optimization.

A second term maximizes the rigidity of the affine transformation, thus min-

imizing distortion and scaling. This is accomplished by measuring how far Ai is

from a true rotation matrix. Letting ai1,ai2,ai3 be the columns of Ai , we obtain

Erigid =
∑

i∈V

(〈ai1,ai2〉2 + 〈ai1,ai3〉2 + 〈ai2,ai3〉2

+ (1− ‖ai1‖)2 + (1− ‖ai2‖)2 + (1− ‖ai3‖)2)

A final term ensures smoothness between edge connected nodes.

Esmooth =
∑

i∈V

∑

j∈N (i)

‖Ai(x j − xi) + xi + bi − (x j + b j)‖2

The total energy Etotal = αfitEfit+αreg(Erigid+0.1Esmooth) is minimized using a standard

Gauss-Newton solver based on Cholesky decomposition. We alternate between cor-

respondence estimation and surface deformation until convergence, and gradually

relax the regularization by dividing αreg by 10. For each Sn we initialize the

optimization with αfit = 0.1 and αreg = 1000.

Fine-Scale Linear Alignment. While the coarse level optimization makes sure

that large deformations between M and Sn are recovered, a second warping step

uses a more efficient (but rotation-sensitive) linear mesh deformation technique to

capture high-frequency geometric details in Sn. For each vertex of M, we trace an

undirected ray in the normal direction and find the closest intersection point ci on

Sn.

The optimization uses a point-to-point fitting term Efit =
∑

i∈V ‖xi − ci‖2 and

solves for the displacement of each vertex by minimizing the difference between

adjacent vertex displacements using Ereg =
∑

(i, j)∈E |di − d j |2.
To avoid self intersections, we prune correspondences that are further than a

threshold σ = 0.1 given a scene bounding box diagonal of 1. Finally, we synthesize

fine-scale details from the target on the pre-aligned mesh by minimizing Etot =
Efit+ Ereg using an efficient conjugate gradient solver. Despite the robustness of the
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proposed non-rigid registration approach, we do not guarantee that every target

surface region will have a corresponding source point. Such cases require a change

in topology.

3.4.3 Topological Change

This paper considers a more general class of input deformations than most previous

methods — we aim to track surfaces that are not only highly deformable, but that

may change topology arbitrarily through time. For example, we allow new surface

components to appear from nowhere in the middle of an animation, and we expect

that entirely disparate surface regions may suddenly merge together. In order to

accurately track such extreme behavior in the input data, we build new tools to

constrain the topology of our mesh to that of an arbitrary closed input surface.

We base our topology changemethod on that ofWojtan et al. [2009] with subdi-

vision stitching [Wojtan et al. 2010] as explained in their SIGGRAPH course [Wojtan

et al. 2011]. The method takes as input a triangle mesh M and voxelizes its signed

distance function φM onto a volumetric grid. A cubic cell in the volumetric grid

is classified as topologically complex if the intersection of M with the cell is more

complex than what can be represented by a marching cubes reconstruction of φM

inside the cell. Topologically complex cells are candidates for re-sampling, and

triangles of M inside such cells will be replaced by marching cubes triangles recon-

structed from φM. This strategy forces M to change such that its topology matches

that of φM, effectively making sure that M changes topology in the event that it

intersects itself. See Wojtan et al. [2011] for a detailed exposition.

We chose to use this method primarily because of its flexibility and robustness.

We would like the surface to change topology not only when the mesh intersects

itself, but also whenever the input geometry happens to change its own topology.

Furthermore, because this method is independent of surface velocity, it adds an-

other layer of robustness to our algorithm; in the event that our registration routine

produces inaccurate displacement information, the topology algorithm will correct

the final shape by drawing new surface geometry directly from Sn.

To do this, we generalize the idea of Wojtan et al.; instead of constraining the

topology of the input mesh to match that of its own signed distance function, we

constrain the input mesh to match the topology of any voxelized implicit surface.

We simply voxelize an arbitrary implicit surface Θ, and replace the signed distance

function φM in the original with our new function Θ. The algorithm then com-

pares the topology of the mesh M to the topology of Θ, and replaces M’s triangles

with triangles from the extracted isosurface of Θ wherever M and Θ have a dif-

ferent local topology. We can refer to this generalized topology change routine as

ConstrainTopology(M,Θ). Using this terminology, the original algorithm of Wojtan
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et al. can be executed by calling ConstrainTopology(M,φM).
Within our deformation framework, we use this generalized topology change

algorithm in two ways: first to ensure that the deforming mesh changes topology

if it intersects itself, and second, to ensure that the deforming mesh has the same

topology as the target input data. These actions can be computed by calling

ConstrainTopology(M,φM) and ConstrainTopology(M,φSn
), respectively, where Sn

is the target mesh from the input data. We will specify the exact order in which to

call these functions in section Section 3.4.5.

3.4.4 Recording Correspondence Information

Throughout the computation of our deforming mesh M, we want to track how its

correspondences evolve through time. The previously mentioned mesh modifica-

tion routines can cause significant changes in correspondence information, and we

must track how these changes occur.

The mesh deformation algorithm described in Section 3.4.2 is Lagrangian in

nature, so it moves individual vertices to their new locations at each frame in the

animation sequence. Consequently, the vast majority of vertex locations in our

mesh at a given frame number correspond exactly to the location of that same

vertex at earlier and later frame numbers. For these vertices, information about

their corresponding position at different points in the sequence is implicit; vertex i

in frame number n− 1 corresponds exactly with i in frame n.

The only vertices which do not have this trivial correspondence with vertices

in different frames are the few vertices which were created or destroyed due to

re-sampling. Within our framework, the only way to create new vertices is via

topological change (Section 3.4.3) or edge and triangle subdivision (Section 3.4.1).

The only way for us to destroy vertices is via topological change (Section 3.4.3)

or edge collapse (Section 3.4.1). Note that some other potential mesh improve-

ment procedures like mesh fairing [Jiao 2007; Brochu and Bridson 2009; Stam and

Schmidt 2011] improve triangle quality at the expense of re-sampling correspon-

dence information by diffusing it along the surface. For this reason, we did not use

such fairing procedures in Section 3.4.1.

For each transition between two frames, we track these re-sampling events

(edge subdivision, triangle subdivision, edge collapse, topology change) in what we

call an event list. The event list stores detailed information about each re-sampling

event, and it is sorted by the order in which the re-sampling events took place.

Each event in the list records information of the form (Vin,Vout, f (Vin), b(Vout)),
where Vin is a set of the input vertices, Vout is a set of the output vertices, f (Vin)
is a function that assigns information to Vout as a function of Vin, in case we want

to propagate information forwards. Similarly, b(Vout) is a function that assigns
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information to Vin as a function of Vout, in case we want to propagate information

backwards.

When we subdivide an edge (i, j) between two vertices i, j, a new vertex k

is created on the line connecting i and j. In this case, the event list records

({i, j}, {i, j, k}, k 7→ (i,α, j, 1− α),;), where α denotes the barycentric coordinate

of k. Notice that we omit the trivial correspondences i 7→ (i, 1) and j 7→ ( j, 1).
Similarly, whenwe subdivide a triangle (i, j, k) by adding a new vertex l somewhere

inside the triangle, we record ({i, j, k}, {i, j, k, l}, l 7→ (i,αi , j,α j , k,αk),;). As

before, αi ,α j ,αk denote barycentric coordinates. Finally, when we collapse an

edge (i, j) and replace the two endpoints i, j by a new vertex k at the barycenter

of i and j, we record ({i, j}, {k}, k 7→ (i, 0.5, j, 0.5), {i 7→ (k, 1), j 7→ (k, 1)}).
When a topological change occurs, surfaces can split wide open and entire

patches of new geometry can be created. For each patch of new geometry after

the topology change, we propagate information from the vertices on the boundary

of the patch inward, using a breadth-first graph marching algorithm (similar to Yu

et al. [2012]). Though several propagation strategies are valid at this point (during

the marching algorithm, each new vertex could simply copy information from

its nearest neighbor, it could distribute information evenly throughout the patch,

e.g. by solving an elliptic PDE, etc.), we chose a strategy of each vertex taking the

average of the information from its visited neighbors during the breadth-firstmarch.

For each new vertex that is created, our event list records the list of boundary

vertices, the new vertex, and the linear combination of boundary vertices that

results from this marching and averaging. There is no backward correspondence

assignment for these vertices.

Lastly, vertices can be deleted in a topological merge. We treat such operations

the same way that we treat new vertices that result from a topology change, but

in reverse: before the patch of vertices is destroyed, we march inward from the

boundary of the patch of deleted vertices and propagate information using the same

averaged vertex scheme. For each vertex that is deleted, our event list records the

list of boundary vertices, the new vertex, a null forward operation, and the linear

combination of boundary vertices that results from the marching and averaging

operation.

3.4.5 Summary of the Tracking Algorithm

We review the steps of our tracking method in Algorithm 3.1. Our method begins

by initializing a triangle mesh M to the first frame of the input mesh sequence

{Sn}Nn=1. We then immediately call our mesh improvement routine (Section 3.4.1)

to ensure that M consists of high-quality geometry. Next, we enter the main loop

of our algorithm, which visits each of the input meshes Sn in turn. In each iteration
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Algorithm 3.1 Pseudocode for our topology changing surface tracker.
1: Mesh M= LoadTargetMesh(S1)
2: ImproveMesh(M)
3: for frame n= 2→ N do
4: LoadTargetMesh(Sn)
5: CoarseNonRigidAlignment(M, Sn)
6: FineLinearAlignment(M, Sn)
7: ImproveMesh(M)
8: φM← CalculateSignedDistance(M)
9: ConstrainTopology(M,φM)
10: φSn

← CalculateSignedDistance(Sn)
11: ConstrainTopology(M,φSn

)
12: ImproveMesh(M)
13: SaveEventListToDisk(n)
14: SaveMeshToDisk(M)
15: end for

we use our course non-rigid alignment routine (Section 3.4.2) to align the low-

resolution features of M as closely as possible with those of Sn. Once the coarse

alignment has terminated, we perform a fine-scale linearized alignment in order

to ensure that all of the high-resolution details of M line up with Sn. At this point

in the algorithm, we have deformed our mesh M such that it lines up with the

input data frame Sn. This deformation may cause the triangles of M to stretch and

compress arbitrarily, so we again perform a mesh improvement in order to clean

up the overly deformed elements.

Next, we must account for the fact that M may have self-intersections. We

execute the basic topology change algorithm in Section 3.4.3 by first computing a

voxelized signed distance function near the surface of M and then ensuring that

M has the same topology as the zero isosurface of this function. This step mainly

cleans up any large self-intersections in the mesh by merging surface patches

together. Next, we execute a topology change algorithm again, but this time we

constrain M to match the topology of Sn. This step ensures that we split apart any

surfaces in M which stretches over gaps in Sn, as well as merge any separate regions

of M that are actually merged in Sn. The extra topology constraint additionally

acts as a fail-safe by re-sampling parts of M in the rare event that the alignment

algorithm was unable to find correspondences for all of M.

At this point in the algorithm, our mesh M can consist of triangles with ar-

bitrarily poor aspect ratios, because the topological sewing algorithm only cares

about the connectivity of the mesh and not the condition of the individual mesh

elements. We therefore call our mesh improvement routine once again to ensure

that the mesh is fit for another round of tracking. Note that throughout this entire

algorithm, we document any re-sampling operations that occur (potentially in lines
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2, 7, 9, 11, and 12 of Algorithm 3.1) and add them to our event list (Section 3.4.4).

In the final two steps of this loop, we save our event list and the mesh M itself to

disk. We then start the loop again with the next frame of animation Sn+1.

3.4.6 Propagating Information as a Post-Process

After we have finished tracking the input geometry (after all of the steps in Sec-

tion 3.4.5 have run until completion), we have a series of temporally coherent

animation frames of a mesh M that deforms and changes topology. Furthermore,

we also have a per-frame event list that describes exactly how correspondences

propagate throughout the animation. We can use this list to pass information like

surface texture and surface velocity from one frame to the next. To pass informa-

tion forward in time, we run through the event list in the order that each event

took place, and, using the notation from section Section 3.4.4, we pass information

to re-sampled vertices using the function f (Vin). Similarly, we pass information

backwards in time by running backwards through the event list and using b(Vout).

3.5 Applications

Having detailed our method for obtaining a temporally coherent parameterization

of an arbitrary sequence of closed manifold meshes (Section 3.4), we shift our focus

to applications. We show how we can apply our method to track a broad range

of different incoherent surfaces and how we can exploit extracted correspondence

information to significantly enhance the meshes in a variety of different ways.

Displacement Maps. Displacement maps provide an efficient way of adding ge-

ometric detail to an animation as a post-process, avoiding costly re-simulation or

geometry acquisition. We recover a temporally coherent mesh sequence from a

physically-based Eulerian viscoelastic simulation [Goktekin et al. 2004] with a pe-

riodically re-sampling surface tracker similar to [Müller 2009] (Figure 3.4). Our

method faithfully conforms to the target shape in every frame with minimal re-

sampling.

To showcase our temporally coherent parameterization and high mesh quality,

we apply two different displacement maps to the mesh sequence. We represent

a displacement map as a per-vertex scalar designating the normal direction dis-

placement of each vertex. Using our data structure (Section 3.4.6), we propagate

displacements applied in the first frame to all later frames. Compared to track-

ing, propagation is almost instantaneous, taking only a few seconds for the entire

animation. Swapping in a different displacement map is thus fast and effortless.
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Raw input meshes from [Li et al. 2012]

Forward tracking (resampled vertices in green)

Reconstruction results of [Tevs et al. 2012]

Figure 3.7: Top: Input performance capture data has inconsistent vertices across
frames and exhibits topological variations. Middle: Ourmethod seamlessly handles
topology changes and ensures high-quality triangles. Resampled vertices from our
mesh improvement algorithm are marked in green. Bottom: The method of Tevs et
al. (visualized as a point cloud) is prohibitively expensive for long, detailed mesh
sequences and fails to capture the correct motion.
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Compare this to the state of the art without our method, where an animator instead

would have to re-run the entire simulation to change the geometry.

Color. It is often useful to texture implicit surfaces in production [Sumner et al.

2003; Wiebe and Houston 2004]. Because of the large computational costs of liquid

simulation, it is particularly convenient to add detail to a lower resolution simu-

lation as a post-process, e.g. by applying foam or deep water textures. Figure 3.5

shows a splashy liquid scene which comes from a standard Eulerian solver using

the Level Set Method [Osher and Fedkiw 2003] to track the free-surface. We track

an incoherent sequence of marching cubes reconstructions of the level sets from

the simulation.

Similar to displacement maps, we propagate colors applied in the first frame to

all later frames. Our accompanying video shows a checkerboard pattern and a lava

texture propagated through time. Further exploiting our temporal data structure,

we propagate colors applied in the last frame backwards in time to the first frame

(Figure 3.5). This technique allows us to enhance the splashy animation with an

interesting artistic expression where an image is slowly revealed as the dynamics

settle (Figure 3.1).

Wave simulation. Texture is one way of enhancing a low resolution liquid sim-

ulation, however, correct computation of light transport for effects like caustics is

easier with real geometry. Our method is not limited to static displacement maps

(mentioned above), but allows for procedural displacements as well. In particu-

lar we may improve the fidelity of the splashy liquid simulating mentioned above

(Figure 3.2) by adding a dynamic displacement map. Because our method yields

particularly high-quality surface triangles with minimal re-sampling, we are able

to use the resulting mesh to solve partial differential equations. Inspired by recent

fluid animation research [Thürey et al. 2010; Yu et al. 2012], we augment our sur-

faces with a time-varying displacement map, computed as the solution to a second

order wave equation:
∂ 2h
∂ t2

= c2∇2h. (3.1)

Here, h is wave displacement in the normal direction, ∇2 is the discrete Laplace

operator computed with cotangent weights [Botsch et al. 2010], and c is a user-

chosen wave speed. We use our event list to transfer the state variables (wave

heights h and velocities in the normal direction v) from one frame to the next, and

we integrate the system using symplectic Euler integration with several sub-cycled

time steps per input frame. One may optionally choose to add artificial damping

to the simulation for artistic reasons by multiplying h by a (1− ε) factor in each

step. No artificial damping was used in our simulations.
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Our wave simulation method is novel in that it retains tight control over wave

energy sources. We only add wave heights precisely at the locations in space-time

where topological changes occur. This stands in opposition to previous work, which

recomputes wave heights every time step based on surface geometry. The result of

this distinction is that our simulations are much less likely to introduce energy due

to numerical errors. Our simulations have a dramatically high signal-to-noise ratio

– we can clearly see interesting wave interference patterns persist throughout the

entire simulation.

Morph. Another application of our method is transferring colors through morphs

that change topology between arbitrary genera (Figure 3.3). We use a simple linear

blend between signed distance functions to create the morph, and we subsequently

obtain a coherent mesh by tracking it with our framework. We start by propagating

color backwards from the final frame, and then we use the colors which were

propagated to the first frame to obtain a base texture. In this way an artist can

see where important feature points end up on the target shape to aid in creating

a more natural morph. To obtain the morph in Figure 3.3, we additionally blend

between the two forward and backward propagated colors.

Performance Capture. Performance capture has numerous applications such as

video games and filmmaking. Due to noise and occlusion, captured data often

exhibits non-physical topology changes. Unlike previous methods, we are able

track captured data with topology changes while obtaining temporally coherent

correspondences (Figure 3.7). We apply a texture in the first frame and propagate

it forward. Regions that are unoccluded throughout the sequence are tracked

faithfully.

3.6 Evaluation

We performed an extensive series of tests to evaluate our method. We used the

viscoelastic simulation (Figure 3.4) as a testbed while we varied parameters, turned

off various parts of our code, and attempted alternative approaches. Please see our

accompanying video for visualizations of these tests.

In Figure 3.9, we show how our method compares to the naïve approach of

simply projecting the tracked mesh M onto the input Sn. Tangential drift is severe

even in the case of simple translation. Next, we compare ourmethod to one without

fine-scale registration (line 6 of Algorithm Algorithm 3.1). Since the graph-based

registration works on a coarse scale and only influences vertices in M through linear

blend weights, this modified method is unable to correctly register small features.

Such errors accumulate over time, causing a rough, lumpy surface that ignores the
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Full pipeline

Without topology constraints

Without linear deformation

Half the graph sampling distance

Figure 3.8: Comparison between our full pipeline and leaving out individual stages
of our surface tracking framework.

fine-scale details of the input. Our full algorithm clearly does not exhibit these

problems, showing why the fine-scale optimization of Section 3.4.2 is necessary.

Our tests also show that the topology constraint (Section 3.4.3, line 11 of Al-

gorithm 3.1) is essential for robust tracking. The tests in our video illustrate how

a method without this constraint is unable to cope with drastic changes in input

topology. An obvious example in the viscoelastic simulation is the sudden introduc-

tion of new components in later frames — when the topology constraint is turned

off, the non-rigid registration algorithm was unable to recognize these components

without manually creating a template. Another important feature of the topology

constraint is that it acts as a convenient failsafe. Should the registration routine

fail to fully conform to the target shape, the topology constraint fills in regions
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Figure 3.9: The difference between projection (left) and our non-rigid registration
technique (right). Simple projection causes severe distortion of the surface, while
our registration reliably provides accurate correspondences.

of mismatched geometry. As a result, our full algorithm is quite robust to poor

parameter choices for the alignment, and poor alignment only leads to additional

re-sampling (as opposed to an unrecoverable failure).

Within a given frame, time complexity of our method is dominated by coarse

non-rigid alignment (Section 3.4.2, line 5 of Algorithm 3.1). Sampling density

of the deformation graph is the most critical parameter to the time complexity

of the non-rigid alignment, since it dictates the number of variables in the non-

linear optimization problem. Sensitivity of our algorithm to different sampling

densities is examined in the supplementary video. In addition to the density used in

Figure 3.4, we also ran the algorithm with both half- and quarter-sampling density.

The video shows that reduced sampling densities lead to increased re-sampling, but

the result remains similar to our high-quality tracking. Conveniently, this allows

use of a lowered sampling density to get a fast approximation of the algorithm’s

output before committing to solving with a high sampling density.

Another way to reduce the time complexity of our method is to use sparser

input. We experimented with five, ten and twenty-five times sparser input than

the results shown in Figure 3.4. As seen in the video, our method is robust to sparse

input and produces reasonable correspondences, even for the example where we

use only sixteen out of the original 400 frames in the input for tracking.

The memory complexity of our algorithm is similarly dominated by the non-

rigid alignment. However, because we only do pairwise alignment, memory con-

sumption is independent of the length of the sequence of input data. In other

words the space complexity scales with the number of vertices in M.

We have gathered statistics for all of our application examples. We summarize

these results in Table 3.1. All measurements were performed on a standard PC with

an Intel i7-2600K processor and 16 GB of memory. We note that our implementation

has not been optimized for performance and is mostly sequential.
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ViscElast Splash Morph PerfCap

Vertices 60k-300k 280k-380k 77k-96k 214k-369k
Frames 400 500 100 111
Frame time 45-153s 105-220s 17-21s 150-174s
Coarse reg. 87-93% 81-89% 67-73% 70-73%
Fine reg. 3-8% 11-18% 19-23% 24-27%

Table 3.1: Summary of statistics for our topology changing surface tracker. Time
spent on mesh improvement and topology changes is negligible compared to align-
ment and is omitted in the table. Timings exclude file I/O operations.

Figure 3.10: Stam and Schmidt introduced this shape as a benchmark for evaluating
the accuracy of an implicit surface tracking algorithm. After one complete rotation,
our algorithm’s output (right) is virtually identical to the analytical solution (left).

Comparison to other methods. As detailed in Section 3.2, the method of Stam

and Schmidt [2011] is significantly different from ours. While this is an admittedly

biased comparison, we show how our method performs with their example of three

blended blobs rotating about the origin (see Figure Figure 3.10). Our algorithm

explicitly solves for the globally most rigid deformation, so we obtain practically

perfect tracking whereas Stam et al. show slight tangential drift and color diffusion.

We imagine their problem would be exacerbated with larger time steps, while ours

remains accurate.

3.7 Discussion

Since our tracking approach is sequential and does not rely on higher level de-

formation priors, we do not guarantee drift free tracking. For purposes such as

tracking extended performance capture recordings, dynamic body shape statistics

and elastic deformation models could be incorporated to prevent accumulations of

tracking errors. More generally one could exploit the temporal mesh sequence by

combining the result of forwards and backwards tracking [Kim, Liu, Llamas, and
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Rossignac 2007; Kagaya et al. 2011]. Nevertheless, none of our examples, including

the performance capture example, exhibited any noticeable drift when propagating

the texture from the first frame to the end despite the drastic topology variations

and large deformations in the input data. Therefore, we did not further investigate

these temporal schemes.

Our temporally coherent meshes retain high-quality elements and low-valence

vertices, even in the presence of highly non-rigid deformations and topology

changes, as can be seen in our supplementary video. Our bound on triangle

and dihedral angles in particular make sure that high-valence vertices and skinny

triangles are avoided. Since we do not currently implement edge flips, we re-

sample vertices more often than we would otherwise, especially when the surface

is compressing or stretching. As our results show, this does not turn our to be a big

problem in practice, however, we would like to implement edge flips in the future.

Our method is meant to find surface correspondences through arbitrary de-

formations while remaining faithful to the input motion. When given a severely

stretched deformation as input, an exactly tracked set of surface correspondences

will inevitably exhibit severe stretching as well. In situations such as this, a mini-

mally distorted mapping through time is actually incorrect behavior as far as our

algorithm is concerned. Our strategy of matching geometry while minimizing tan-

gential drift unavoidably causes distortion when propagating visual data such as

texture, as can be seen in e.g. Figure 3.5. Our method does, however, allow the user

to relax the energy term that punishes tangential drift, thereby giving some control

over distortion. If specific requirements are sought, such as maximal conformality

of textures, one would have to tailor our method for that particular use-case. We

view this as an interesting direction for future work. Texture synthesis [Bargteil,

Sin, et al. 2006; Kwatra et al. 2007] is but one possible solution to the challenging

problem of texture stretching.

Because ourmethod is based on shapematching, we are unable to track surfaces

invariant under our energy functions; a surface with no significant geometric

features (like a rotating sphere) will not be tracked accurately. However, it would

be easy to augment our method with additional priors such as velocity information

in order to handle such featureless cases.

The biggest limitation of our method is the fact that we are currently limited

to closed manifold surfaces due to the algorithm we use for performing topology

changes. This method assumes that for any arbitrary point in space we must

unambiguously decide whether it is inside or outside the surface.
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3.8 Conclusion

We have presented a novel approach that takes a sequence of arbitrary closed

surfaces and produces as output a temporally coherent sequence of meshes aug-

mented with vertex correspondences. The output of our algorithm is useful for a

variety of applications such as (dynamic) displacement maps, texture propagation,

template-free tracking and morphs. We have also demonstrated the robustness of

the method to parameters as well as input. In the future we would like to ex-

tend the method to handle non-closed surfaces, as well as explore problem-specific

applications of our general-purpose framework.



Chapter 4

Liquid Surface Tracking with Error

Compensation

Our work concerns the combination of an Eulerian liquid simulation with a high-

resolution surface tracker (e.g. the level setmethod or a Lagrangian trianglemesh).

The naive application of a high-resolution surface tracker to a low-resolution ve-

locity field can produce many visually disturbing physical and topological artifacts

that limit their use in practice. We address these problems by defining an error

function which compares the current state of the surface tracker to the set of physi-

cally valid surface states. By reducing this error with a gradient descent technique,

we introduce a novel physics-based surface fairing method. Similarly, by treating

this error function as a potential energy, we derive a new surface correction force

that mimics the vortex sheet equations. We demonstrate our results with both level

set and mesh-based surface trackers.

4.1 Detailed surface tracking

This paper addresses the problem of tracking a liquid surface in an Eulerian fluid

simulation. Within the field of computer graphics, Eulerian fluid simulation has

become commonplace, with standard methods relying on a rectilinear grid or

tetrahedral mesh for solving the Navier-Stokes equations [Bridson 2008]. The

problem becomes significantly more complicated when we wish to simulate a free

surface, such as when animating liquid. Correct treatment of this free surface

requires special boundary conditions as well as some additional computational

machinery called a surface tracker, such as the level set method [Osher and Fedkiw

2003] or a moving triangle mesh [Wojtan et al. 2011].

When animating a free surface, almost all of the visual detail is directly depen-

dent on this surface tracker, because the surface is often the only visible part of the

resulting fluid simulation. In order to make a simulation as detailed and visually

64
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(a) Original simulation (b) Smoothed

(c) Our smoothing (d) Our dynamics

Figure 4.1: Our method permits high-resolution tracking of a low-resolution fluid
simulation, without any visual or topological artifacts. The original simulation (a)
exhibits sharp details and low-resolution banding artifacts. Smoothing the surface
tracker (b) hides the artifacts but corrodes important surface features. We propose
a smoothing technique (c) that preserves sharp details while selectively removing
surface tracking artifacts, and a force generation method (d) that removes visual
artifacts with strategically placed surface waves. Our algorithms are general and
apply to both level sets as well as mesh-based surface tracking techniques.
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Figure 4.2: If the surface tracker (orange) is much more detailed than the simula-
tion grid (black squares), then the simulation can only work with a rough approxi-
mation of the surface (blue). The mismatch between the orange and blue surfaces
can create visual artifacts like permanent surface kinks and floating droplets.

rich as possible, we must add detail to the surface tracker. The computational cost

of solving the Navier-Stokes equations scales with the volume of the simulation.

Therefore, adding details to the surface by simply increasing the number of com-

putational elements quickly becomes intractable. The problem can be somewhat

alleviated by speeding up computational bottlenecks like the pressure projection

step [Lentine et al. 2010; McAdams et al. 2010], but ultimately the volumetric

complexity remains an obstacle. On the other hand, the costs of surface tracking

only scales with the surface area, so the immediate temptation here is to increase

the resolution of the surface tracker while keeping the fluid simulation resolution

fixed. This strategy of only increasing the surface resolution has produced some

beautiful results in the past [Goktekin et al. 2004; Bargteil, Goktekin, et al. 2006;

Heo and Ko 2010; Kim et al. 2009; Wojtan et al. 2009], but it introduces visual

and topological errors that limit its usefulness with extremely detailed surfaces

(Figure 4.2).

To see where these errors come from, we consider the relationship between the

surface tracker and the fluid simulation. While the surface tracker certainly acts

as the source of visual detail, it is also responsible for communicating the location

of the free surface to the fluid simulation. The fluid simulation then converts the

shape of this free surface into Dirichlet boundary conditions for a Poisson equation.

After solving this Poisson equation, the fluid simulation then adds pressure forces

to ensure that any subtle variations near the free surface are accounted for in a

manner consistent with the Navier-Stokes equations. However, a problem occurs

if we lose information when conveying the free surface shape from the surface

tracker to the fluid simulation; if the surface tracker is significantly more detailed

than the fluid simulation, then there is no way to adequately encode all of the

subtleties of the free surface into the boundary conditions. As a result of these

mismatched levels of detail, the fluid simulation cannot recognize highly detailed



CHAPTER 4. LIQUID SURFACE TRACKING WITH ERROR COMPENSATION 67

surface features, and it cannot supply the necessary high-resolution pressure forces.

Consequently, high resolution surface structures will clearly violate natural fluid

motion, because they ignore the pressure term of the Navier-Stokes equations —

the fluid simulation simply does not have enough degrees of freedom to prevent

unphysical states in the surface tracker.

Previous methods have either ignored these errors, applied surface smooth-

ing, or added additional detail to the fluid simulation in order to address these

problems. While surface smoothing eventually removes unphysical high-resolution

details, it also removes important physically valid motions, and it has no physical

basis (or is based on unphysically strong and over-damped surface tension). Re-

fining the fluid simulation detail near the surface is certainly a valid strategy, but

perfectly matching the resolution of a detailed surface tracker often comes with

significant extra implementation effort and computational overhead.

Our paper presents a fundamentally different approach for reconciling the

difference between a high resolution surface tracker and a low resolution velocity

field. We first propose a novel error metric that identifies and quantifies any

unphysical surface behaviors by contrasting the current state of the surface tracker

with the set of physically valid surface states. Once we have this information,

we can use the gradient of this error function in a couple of different ways. We

first introduce a novel physics-based surface fairing method that quickly removes

surface artifacts while preserving physically-valid surface details. Next, we derive

a novel surface correction force that removes artifacts with strategically placed

gravity and surface tensionwaves. We show that this approach convenientlymimics

the vortex sheet form of the Navier-Stokes equations while seamlessly integrating

into an Eulerian simulation.

The contributions of our paper are as follows:

• Theoretical insight into the problem of coupling a high resolution surface

tracker to a low resolution fluid simulation.

• A novel error metric for quantifying the physical validity of a fluid surface

tracker.

• A surface fairing algorithm for fluid-like surfaces that clearly out-performs

standard smoothing techniques.

• A surface correction force that removes high-resolution artifacts while pre-

serving physically-valid details.

• Applications to both level set and mesh-based surface trackers.
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4.2 Previous Work

Our algorithm concerns the combination of an Eulerian discretization of the Navier-

Stokes equations with free-surface boundary conditions. The book by Bridson

[2008] provides an excellent overview of the common fluid simulation methods in

the field of computer animation. In order to simulate a free surface (for example,

at the boundary of a liquid), Dirichlet boundary conditions must be enforced by

specifying an exact value for the fluid pressure. First order boundary conditions

simply set the pressure at the center of a boundary cell, but this strategy leads to

aliasing artifacts due to the assumption that the fluid boundary precisely lines up

with the simulation grid. Significantly higher accuracy can be achieved by using

second order “ghost fluid” boundary conditions [Enright et al. 2003], which use

linear extrapolation to set the surface pressure.

Several methods exist for representing and tracking a moving liquid surface.

The most common Eulerian surface tracking method for fluid simulation is the

level set method [Osher and Fedkiw 2003], which maintains a signed distance

function and implicitly represents the surface wherever the function is equal to

zero. The volume of fluid method [Hirt and Nichols 1981] also uses an Eulerian

strategy to track the surface; by explicitly tracking the amount of fluid in each cell,

the boundary can be observed by locating fractionally-filled fluid cells. Lagrangian

surface tracking methods use particles or meshes [Wojtan et al. 2011] to explicitly

represent the surface. Whereas topology changes are implicit for Eulerian surface

tracking routines, they must be carefully computed for Lagrangian mesh-based

methods [Brochu and Bridson 2009; Wojtan et al. 2009]. Hybrid surface tracking

techniques, like the particle level set method [Enright et al. 2002] attempt to

combine the merits of both Lagrangian and Eulerian surface tracking techniques.

High resolution surface, low resolution grid. As mentioned above, many re-

searchers seek to extract additional richness from a simulation by significantly

increasing the amount of detail in the surface tracker while fixing the resolution

of the underlying fluid simulation. Goktekin et al. [2004] used a high-resolution

particle level set to track a low-resolution viscoelastic fluid simulator. Similarly,

Wojtan and Turk [2008] andWojtan et al. [2009] used a Lagrangian mesh to retain

detail at a much higher resolution than a viscoelastic simulation. Bargteil, Gok-

tekin, et al. [2006] used an octree and Heo and Ko [2010] used a pseudo-spectral

method to maximize the resolution of an Eulerian surface tracker for a fixed fluid

simulation.

The main drawback with intentionally mismatching the surface and simulator

resolutions is that the surface tracker tends to retain details that are invisible to

the simulation [Brochu et al. 2010]. This is less of a problem for a viscoelastic mo-
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tion, because unphysically-retained surface features may resemble rigid and elastic

behavior. Eulerian surface representations, particularly with semi-Lagrangian ad-

vection, will naturally lose detail over time; so an overly-detailed tracker can help

make up for this loss in detail, although they will preserve visual artifacts if they

are too successful. See Figure 4.5 for an example of these visual artifacts.

Removing artifacts. One strategy for eliminating the artifacts caused by a high-

resolution surface tracker is to adaptively increase the fluid simulation resolution

near the boundary. Losasso et al. [2004], Hong and Kim [2005] and Kim, Liu,

Llamas, Jiao, et al. [2007] used an octree to adapt a fluid simulation to a high-

resolution level set. Brochu et al. [2010] introduced a simulator based on an

adaptive Voronoi diagram in order to match the resolution of a high resolution

mesh surface. The general strategy of adding detail to the fluid simulation will

naturally remove artifacts due to mismatched resolutions, but it can be computa-

tionally expensive and handling spatial adaptivity may introduce further simulation

artifacts.

Instead of adapting the fluid simulation to the surface tracker, several methods

try to make the high-resolution surface conform to the low-resolution physics. Wo-

jtan and Turk [2008], and Kim et al. [2009] attempt to remove high-frequency vi-

sual artifacts using smoothing algorithms, while Yu and Turk [2010] use anisotropic

smoothing kernels to bias the loss of surface detail. Williams [2008] and Thürey

et al. [2010] attempt to make up for volume-loss artifacts with bi-Laplacian smooth-

ing. While such smoothing approaches may be effective in small doses, they will

destroy many interesting surface details when applied with too much enthusiasm,

and they do not produce physically correct surface motions. Smoothing in this

manner is related to over-damped surface tension, which may be appropriate for

small-scale viscous flows but is inaccurate for inviscid liquid phenomena.

In an attempt to make up for the lack of detailed surface motions when com-

bining a low-resolution simulation and a detailed surface, Thürey et al. [2010],

Bojsen-Hansen [2011] and Yu et al. [2012] propose using high-resolution dynamic

surface waves. These methods mask high resolution surface artifacts with rip-

pling motions, but they are based on inappropriate restrictions such as shallow

water, height-field, and constant wave speed assumptions. These restrictions also

require that the surface tracker must be homeomorphic to a low-resolution simu-

lation boundary in order to function properly, while our method naturally removes

topological inconsistencies with Rayleigh-Taylor-like instabilities. The method of

Wojtan et al. [2010] removes topological inconsistencies in the surface tracker by

re-sampling the surface, but it does not address the problem of removing surface

noise.
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Figure 4.3: This instructive example inserts a high-resolution cut in the surface of
a low-resolution simulation. The cut is smaller than a grid cell, so the original fluid
simulation (top left) ignores it. Smoothing the surface tracker (top right) leads
to extreme loss of volume and surface details. Our smoothing algorithm (bottom
left) quickly fills in the gap, and our dynamics algorithm (bottom right) converts
the artifact into fluid energy.

Vortex methods. Our method results in equations that resemble the vortex sheet

equations. Several researchers have used vortex particle methods [Selle et al.

2005; Park and Kim 2005; Pfaff et al. 2009; Kim et al. 2012] and vortex sheet

methods [Pfaff et al. 2012; Brochu et al. 2012] to add details and generate turbulence

in fluid simulations, though these methods do not directly address the difficulties

of simulating high-resolution motion with a free-surface. The method of Kim

et al. [2009] uses a high-resolution surface tracker coupled with the vortex sheet

equations to drive a low-resolution vorticity confinement force. This strategy serves

to add interesting low-resolution turbulence to the simulation, but it also enhances

high-resolution surface noise. Our method only adds turbulence in areas that

exhibit unphysical behavior and uses it to remove surface noise artifacts.

4.3 Method

As mentioned in Section 4.1, our main source of unphysical behavior is the conver-

sion from the detailed surface tracker into pressure boundary conditions. We first

aim to quantify these errors.

4.3.1 In the absence of Surface Tension

We observe that, in an analytical solution to the Navier-Stokes equations in the

absence of surface tension, the pressure at the free surface is equal to that of the
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surrounding air. Following standard practices for simulating liquids, we assume

that the air pressure is a constant zero along the interface [Bridson 2008]. Next,

we note that the zero level set of pressure perfectly coincides with the location of

the free surface. Because the gradient of a function is always orthogonal to its level

sets, we infer that the pressure gradient should be perpendicular to the free surface.

Accounting for the fact that the pressure is positive inside the liquid, we can further

state that the pressure gradient must be anti-parallel to the surface normal in order

for a flow to be consistent with the Navier-Stokes equations (Figure 4.4a). We use

this information to define an energy function:

E0 =

∫

∂Ω

n · ∇p dA (4.1)

where n is the surface normal at a point on the surface,∇p is the pressure gradient,

dA is the area of a surface tracking element, and ∂Ω is the entire free surface

according to the high resolution surface tracker. Intuitively, the energy isminimized

when the free surface is physically valid (when the normal is anti-parallel with the

pressure gradient). We evaluate the surface normal from the surface tracker and

the pressure gradient from the fluid simulation, so any deviation from theminimum

energy state encodes an unphysical disagreement between the surface tracker and

the fluid simulation.

We propose to reduce this error by following the direction of steepest descent

of the energy function. The energy gradient is the derivative of Equation (4.1)

with respect to its free variables. In our case, the surface tracker is overly-detailed

and under-constrained, so we will only adjust the control variables of the sur-

face tracker. We approximate divergence-free motion by constraining our surface

tracker adjustments to be local rotations; thus, our degrees of freedom are the

orientations of the surface tracker normals n.

Taking the partial derivative of Equation (4.1) with respect to n, the direction

of steepest descent for surface normal is:

−
∂ E0

∂ n
= −∇p dA. (4.2)

However, the normals must remain unit length, so we reformulate the energy

gradient as a local rotation and arrive at the equation:

n× (−
∂ E0

∂ n
) =∇p× ndA, (4.3)

which encodes the area-weighted rotational velocity and axis of rotation as a vector

magnitude and direction respectively. This equation tells us that we should rotate

the normal away from the pressure gradient, with a strength proportional to the

magnitude of the pressure force, if we wish to decrease the surface error.
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(a) without surface tension (b) with surface tension

Figure 4.4: A schematic of the simulated liquid (blue) and its level sets of constant
pressure (white lines). The surface normal n is perpendicular to the fluid sur-
face, while the pressure gradient ∇p is perpendicular to the surfaces of constant
pressure. In the presence of surface tension, the tangential component of ∇p is
proportional to the gradient of mean curvature.

4.3.2 Including Surface Tension

For large scale flows, surface tension forces are practically negligible, and the above

analysis is sufficient. For smaller scale flows, however, we must incorporate effects

due to surface tension.

In the presence of surface tension, the pressure at the free surface is p = σH,

where σ is the surface tension coefficient and H is the mean curvature of the free

surface at that point. This pressure can vary along the surface, so the pressure

gradient will have a tangential component (Figure 4.4b). As a result, we can no

longer assume that the pressure gradient is normal to the free surface. However,

the tangential variation of the pressure is fully defined by our free surface boundary

conditions, so the tangential component of the pressure gradient is equal to the

gradient of the surface pressure: ∇ptangent = σ∇H. We decompose the pressure

gradient into normal and tangential parts and solve for the normal component:

∇pnormal =∇p−σ∇H (4.4)

Using the same reasoning as in the previous section, the normal component of this

pressure gradient should be anti-parallel to the surface normal in a fully resolved

fluid simulation. Our surface tracker is more detailed than the fluid simulation

and the surface normals will vary, so we introduce the following energy function:

EST =

∫

∂Ω

n · (∇p−σ∇H) dA (4.5)

which is again minimized when the surface tracker represents a physically valid

configuration. We compute the partial derivative of Equation (4.5) with respect to

the surface normals:

−
∂ EST

∂ n
= (−∇p+ 2σ∇H) dA (4.6)
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This derivative is slightly more complicated, because H depends on n, as explained

in the Appendix. We then encode the result as a rotation

n× (−
∂ EST

∂ n
) =∇p× n dA+ 2σn×∇HdA (4.7)

The first term of this update rule is identical to the case without surface tension.

The second term indicates that we should rotate the surface normal towards the

direction of increasing curvature if we want surface tension to smooth out the

surface.

As before, we evaluate the pressure gradient from the fluid simulation and we

evaluate the normals from the surface tracker. We are left with a choice of whether

to evaluate the mean curvature H using the fluid simulation or the surface tracker.

We first note that small values of H will be computed correctly regardless of where

we evaluate it, because low curvatures are easily represented on low-resolution

fluid grids. However, large values of H cannot be accurately computed on the low-

resolution simulation grid and will be clamped to some maximum value related

to its Nyquist limit. As a result, high-resolution surface tension motions will be

ignored if we compute H using the low resolution fluid simulation. On the other

hand, computing H from the surface tracker will allow high-resolution motions,

but it will not necessarily give us the same value of ∇pnormal. However, the second

term of Equation (4.7) will always act to reduce the surface curvature, so we can

be confident that it will at least move in the right direction until H is reduced and

its computation becomes consistent with the fluid simulation. For this reason, we

choose to evaluate H on the surface tracker.

4.4 Applications

Now that we have defined error functions and their gradients, we propose a few

different strategies for reducing unphysical behaviors in the surface tracker.

4.4.1 Physics-based surface fairing

Our first application uses the above analysis to derive a gradient-descent technique

for reducing unphysical behavior. The gradients derived in the previous section

are weighted by area, so we first divide the equation by the area of the surface

element to get a local rotational motion. Then, by assigning local rotations to each

point on the surface, we present a physically-based surface fairing rule for fluid

simulations:

ω= α(∇p× n+ 2σn×∇H) (4.8)

where ω represents the angular velocity at a point on the surface tracker and

α is a user-tunable smoothing parameter. In our implementation, we convert



CHAPTER 4. LIQUID SURFACE TRACKING WITH ERROR COMPENSATION 74

Figure 4.5: The original simulation (top left) cannot remove high resolution noise.
After many iterations, Laplacian smoothing (top right) slowly diffuses errors across
the surface. Our smoothing method (bottom left) immediately targets and flattens
artifacts, and our dynamics algorithm (bottom right) converts artifacts into waves.

this rotational velocity ω into a local high-resolution velocity field using a finite-

kernel approximation to the Biot-Savart law. We provide implementation details

in Section 4.5.

When applied steadily throughout the progress of the fluid simulation, this

procedure has the remarkable effect that it filters the surface at a rate proportional

to the magnitude of the pressure gradient — nearly static liquid surfaces are

quickly smoothed out while ballistic motions are left untouched (Figure 4.8). Note

that this update has no effect if the surface tracker is the same resolution as the

fluid simulation; in this case, the normal component of the pressure gradient will

precisely line up with the surface normal and the effect of our update rule will

disappear. This procedure only acts to correct errors due to a mis-match between

the surface tracker and the boundary conditions of the fluid simulation, and the

effect smoothly fades away as the fluid simulation accuracy increases.

4.4.2 Fluid simulation on the surface tracker

Another option is to utilize Equation (4.5) as a physical potential energy. We derive

surface forces from the gradient of this energy and factor out the per-element

area to get an equation for angular acceleration. The result is essentially the time
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derivative of our surface fairing algorithm:

ω̇= β(∇p× n+ 2σn×∇H) (4.9)

where ω̇ is the angular acceleration at some point on the surface tracker, and

β is a user-tunable parameter analogous to a spring constant or squared wave

speed. Instead of simply smoothing out errors in the surface tracker, this approach

transforms surface artifacts into water waves (Figure 4.5).

We note that our error correction forces are remarkably similar to the buoyancy

and surface tension terms of the vortex sheet equations [Pozrikidis 2000], hinting

that a good choice for our tuning parameter β is a value of twice the Atwood ratio:

β ≈ 2(ρliquid −ρair)/(ρliquid +ρair) = 2

The main differences between our method and previous vortex sheet discretiza-

tions [Kim et al. 2009; Pfaff et al. 2012; Brochu et al. 2012] are that we omit the

Boussinesq approximation, and we use a low-resolution pressure gradient from

the fluid simulation instead of the total acceleration of the surface. By tying the

low-resolution simulation into our dynamics, our surface tracker is guaranteed

to oscillate about a low-resolution surface representation. In contrast, a high-

resolution vortex sheet discretization may easily drift from the simulation and

become arbitrarily complicated. The derivation of our method also indicates that

the vortex stretching and dilation terms of the vortex sheet equations are unrelated

to the reduction of surface tracking errors; omitting these terms will only affect

wave propagation speeds.

Because Equation (4.9) is based on the inadequacy of a low-resolution pressure

gradient, the resulting dynamics are allowed to gracefully interact with an Eulerian

fluid simulation without double-counting forces. As the resolution of the fluid

simulation increases relative to that of the surface tracker, the effect of these

additional fluid dynamics diminishes, until they disappear when the resolutions

are equal. We found this approach to be an effective strategy for adding high-

resolution dynamics to a low-resolution fluid simulation without requiring much

computational overhead. Again our implementation uses an approximation to the

Biot-Savart law to convert our angular acceleration into a velocity field, with details

given in Section 4.5.

4.5 Implementation Details

In our fluid simulation implementation, we use a regular MAC grid fluid simulation

with second order ghost fluid boundary conditions at the free surface [Bridson

2008]. We use the liquid-biased filter of Kim et al. [2009] to represent thin liquid

features on the coarse fluid grid. We convert the rotational velocities in Section 4.4
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Figure 4.6: The technique in Section 4.4.2 can create detailed surface tension
dynamics of a cube (top) and a bunny (bottom), even with a low simulation
resolution.

into a velocity field using using the Biot-Savart Law with a finite kernel size, as

in [Pfaff et al. 2012]. Because any size kernel will create a local rotation and

will thus reduce the errors in the surface tracker, the kernel size is irrelevant

when considering error minimization. Larger kernel sizes simply allow for lower-

frequency surface rotations, which may have visual importance depending on

the application. Both the first-order smoothing (Section 4.4.1) and second-order

dynamics (Section 4.4.2) are integrated with a symplectic Euler method.

Once a pressure field has been computed in the fluid simulation, we compute

its gradient and extrapolate both quantities past the free surface using the usual

constant extrapolation in the normal direction. Subsequently, we use tri-linear

interpolation when evaluating either quantity at points on the free surface. In

some of our smoothing experiments, we found it useful to re-scale the pressure

gradient by the difference between the extrapolated pressure evaluated at the

interface and the outside air pressure instead of directly using the low-resolution

pressure gradient. This adjustment has no effect in most cases near the fluid
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Figure 4.7: When the surface of a liquid (blue) contacts a solid obstacle (orange),
the two normals should be anti-parallel.

surface, but it causes bubbles and air pockets deep below the liquid surface to

smooth out more quickly.

4.5.1 Solid boundaries

Our high resolution surface tracker can cause kinks and bubbles along solid bound-

aries as well as along the free surface. When the surface pushes up against a solid

obstacle, its surface normal should be anti-parallel that of the boundary (Fig-

ure 4.7). Using similar reasoning to Section 4.3, we arrive at the following update

rule:

nsurface × (−
∂ Eboundary

∂ n
) = nboundary × nsurfacedA (4.10)

We can also multiply the strength of this motion by the fluid pressure if we wish to

create more drastic behaviors in high pressure regions. However, we declined this

option in order to reduce sources of potential instability.

In practice, we switch from the free surface update rules in Section 4.4 to the

solid boundary update rule for each point on the surface tracker that is within a

given distance of the boundary. In this paper, we use a distance of three times the

size of the minimum resolvable detail in the surface tracker.

We create a special case along corners where the low-resolution free surface

borders a solid boundary, because we do not want a small change in position to

result in a drastic change in motion. To remove the potential for such discontinuous

gradients in the corners, we only allow rotations about an axis parallel to the

boundary normal. We further add a small amount of Laplacian smoothing at the

corners to compensate for errors that we ignore with this restriction.

We have tested our methods on both high resolution level set surface trackers

as well as Lagrangian triangle mesh surface trackers. While the overall principles

for integrating our error correction mechanism are independent of the tracker, we

discuss some specific implementation details below.
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Figure 4.8: Our mesh-based smoothing method (left) preserves details in low-
pressure regions, unlike mean curvature flow (right).

4.5.2 Level set surface tracker

We use the sparse level set implementation OpenVDB [Museth 2013] with an adap-

tive WENO5 scheme for level set advection, because it minimizes artificial diffusion

artifacts. We used a narrow band the size of one fluid cell, and we evaluate the

surface normal by taking the gradient of the signed distance function using central

differencing. We compute free surface boundary conditions by down-sampling the

level set function onto the fluid grid and then performing the ghost fluid method

on the low-resolution distance function. We typically set the level set resolution

four to eight times higher than that of the fluid simulation.

We compute our energy gradients (Equation (4.8) and Equation (4.9)) on a

high-resolution sparse grid, and we use a smeared delta function with a radius of

1.5 level set cells to confine them to the surface, similar to Kim et al. [2009]. We

then use a Biot-Savart kernel with a diameter of five level set grid cells to convert

local rotations into detailed velocities, and we store the resulting velocities on a

grid co-located with the level set samples. We up-sample the low-resolution fluid

velocity field and add it to this high resolution velocity field in order to advect

the level set. For computing dynamics, we also store, extrapolate, and advect the

angular velocities on a grid co-located with the level set.

4.5.3 Mesh surface tracker

We use a Lagrangian triangle mesh surface tracker with a voxelization-based

method for computing topology changes, as in Wojtan et al. [2010]. We create

a low-resolution signed distance function from the triangle mesh as part of the
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topology-changing procedure, which we use for the ghost fluid method. We keep

the topology change grid at the same resolution as the fluid simulation, and we

maintain an average mesh resolution 4 to 5 times higher than that of the simulation

grid.

We evaluate our energy gradients at the centroid of each triangle face using

the geometric normal of each triangle. We follow Pfaff et al. [Pfaff et al. 2012] to

compute a regularized Biot-Savart kernel with a diameter of four fluid simulation

grid cells, and we store the resulting velocities on the mesh vertices. We also store

and transport angular velocities by converting them to circulations on triangle

faces, in the way of Stock et al. [2008]. We advect the mesh through the low-

resolution velocity field of the fluid simulation with a fourth order Runge-Kutta

method, and we advect the mesh through the high-resolution mesh velocity field

using an Euler method.

4.5.4 Stability

We use symplectic Euler time integration for our surface fairing and dynamics

algorithms, so we inherit the expected stability criteria. For instance, this means

that our gravity waves should obey a standard CFL condition and that the surface

tension time step should shrink with the spatial resolution to the power of 1.5.

Although we are currently unable to provide a formula for the stability of our

smoothing algorithm, we believe it has similar stability behavior to other volume-

preserving fairing algorithms like bi-Laplacian smoothing.

Nevertheless, we noticed the level set implementation was remarkably stable in

practice. In particular, we were able to take much larger time steps with our surface

tension dynamics than with standard ghost fluid-based surface tension. Addition-

ally, while excessively large correction forces caused high frequency oscillations,

the method is able to recover quickly from short periods of instability.

Our mesh-based implementation is a bit more delicate to instabilities. While a

grid-based level set has a guaranteed minimum distance between any two samples,

centroids on a triangle mesh can be arbitrarily close together when folded into a

thin sheet. The regularizer in the Biot-Savart kernel mentioned above helps to limit

large velocities for close particles, and we also found it convenient to artificially

limit the size of the error gradients by multiplying by a constant slightly less than

one. For large α and β parameters, we used sub-cycling to integrate the surface

tracker through several small time steps in between large fluid simulation time

steps.
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4.6 Results

We generated several didactic animations to illustrate the behavior of our method,

which can be seen in the accompanying video. For illustrative purposes, these

examples were computed with an exaggerated low resolution of 323 for the fluid

simulation and 2563 for the level set surface tracker. One obvious benefit of

our method is that it can selectively remove high-resolution surface noise from a

low-resolution simulation (Figure 4.5). The method also addresses the important

problem of removing topological noise, such as high-resolution cavities and droplets.

Figure 4.3 shows how a thin slot can persist in a fluid simulation as long as the

gap is smaller than the width of a fluid cell. Simply smoothing the surface could

eventually fix the problem, but not before first removing details from the entire

simulation. In contrast, our method specifically targets the unphysical topological

structure and rectifies it using either smoothing or splashes.

We found it difficult to directly compare our method with a Laplacian smooth-

ing approach, because the methods behave quite differently and their parameters

are not analogous. Qualitatively, we noticed that Laplacian smoothing erodes

high curvature regions first and progressively smoothes away larger bumps over

time, removing both surface artifacts and surface details without prejudice. Our

smoothing method instead selectively erodes artifacts and ignores physically plau-

sible surface features. In addition, our method has a convenient upper limit to

the amount of surface smoothing: upon convergence it simply forces the surface

tracker to exactly conform to the low-resolution fluid boundary conditions. The

limit behavior of Laplacian smoothing, on the other hand, has nothing to do with

natural fluid motion.

Figure 4.6 shows how our method can be used to supplement surface tension

dynamics with a level set surface tracker. By computing surface tension waves on

the surface tracker instead of the fluid grid, we were able to create surprisingly

stable dynamics with good volume conservation properties.

Figure 4.8 shows how our surface fairing algorithm removes artifacts from a

mesh-based surface tracker. The fluid simulation and all simple mesh operations

(including our smoothing algorithm) were implemented in parallel, while our

topology change code is a serial implementation. Consequently, the topology

changes were the most computationally expensive part of this simulation, and the

fluid pressure solve was the second most expensive. Our algorithm has negligible

overhead for our mesh-based implementation. While our smoothing algorithm

successfully removes artifacts from mesh-based simulations, the topology change

algorithm of [Wojtan et al. 2010] conflicts with the subtle ripples generated by

our wave dynamics algorithm. This is because it identifies high-resolution surface

concavities as topological mistakes that must be re-sampled. In the future, we wish
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Figure 4.9: The original simulation (top) is enhanced by our wave dynamics (bot-
tom). Notice how the detailed motion creates numerous topological artifacts holes
and crevices in the right side of the original simulation while exhibiting unnatural
jagged edges on the left. Our method cleanly removes these topological artifacts
while significantly enhancing the liquid motions.
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to modify this topology change algorithm or switch to a different one (e.g. [Brochu

and Bridson 2009]).

Figure 4.1 shows a highly detailed object interacting with a fluid simulation.

Using a high resolution level set without any smoothing successfully preserves the

dragon’s detailed surface features, but it also preserves many unphysical gashes

and interpolation artifacts in the fluid surface. We found it impossible to remove

these visual artifacts with Laplacian smoothing unless we also smoothed out the

surface details of the dragon. In contrast, our method perfectly preserves the

dragon’s surface features while it is falling and only smooths them out when they

splash around in areas of high pressure. By adding our error-reducing surface

waves, we introduce highly detailed surface ripples and Kelvin-Helmholz instabil-

ities while still avoiding unphysical artifacts. Similarly, the original simulation in

Figure 4.9 exhibits several thin sheets and subsequent surface artifacts. As seen

in our accompanying video, our method preserves details better than traditional

smoothing while simultaneously removing unsightly errors and greatly enhancing

the motion.

The most computationally expensive part of each of our level set simulations

was the surface advection. The detail in our surface dynamics tends to create a

more complicated velocity field, which slows down the conditionally-stable adap-

tive WENO advection. Biot-Savart calculation was not the bottleneck in our sim-

ulations, but it was a significant expense. This is because the velocity has to be

evaluated at all cells in the high-resolution narrow band, instead of exactly on

the surface. Our employment of relatively small kernel sizes disables lower fre-

quency surface rotations, but it allows for reasonably efficient surface updates.

These simulations were dominated by the surface tracker, and our method’s com-

plexity increases with surface tracker resolution. Consequently, the level set sim-

ulations augmented with our method took about 2.5 longer to simulate than an

analogous high-resolution level set without any high-resolution dynamics (though

sub-stepping makes our simulation proportionally slower). We believe this com-

putational overhead is acceptable for our goals of removing surface artifacts while

adding convincing dynamic details.

Detailed information about our simulations is listed in Table 4.1. Most of our

simulations were run on a standard desktop computer with 8-cores and 64GB of

RAM, while the Dragon (LS) and 4-way (LS) simulations were run on a 64-core

server with 256GB of RAM.

4.7 Discussion

Our method solves the problem of removing high-frequency artifacts from a liq-

uid surface tracker by identifying inconsistencies and explicitly removing them.
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Sim Tracker Base Smth Wave

Dragon (LS) 1283 5123 71 200 201
4-way (LS) 1283 5123 103 217 220
4-way (LS) 1283 10243 594 — ?3260
4-way (Mesh) 963 4803 106 106 —
Armadillo (Mesh) 963 3603 74 85 —
Cube (LS) 643 643 50 — 6
Bunny (LS) 1283 1283 — — 98

Table 4.1: Summary of timings (in minutes) for our error compensation algorithm.
“Sim” and “Tracker” indicate the simulation and effective surface tracker resolution,
respectively. “Base” indicates the high resolution surface tracker with no additional
dynamics, “Smth” indicates our smoothing algorithm, and “Wave” corresponds
to our wave dynamics. Dashes indicate simulations that were not run. A star
indicates that four time steps were used per frame to ensure stability. Effective
mesh resolution is based on the ratio between the average mesh edge length and
the width of the computational domain. Timings exclude file I/O operations.

Minimizing all unphysical surface behaviors in one step will not only remove all

visual artifacts, but it will also reduce the effective resolution of the surface tracker

to exactly match that of the fluid simulation. By spreading out this minimization

process over time, we introduce a physics-based smoothing process. Similarly, by

using the errors as a potential energy, we gain surface wave behaviors that specif-

ically remove artifacts. Our method aggressively removes high-frequency surface

noise wherever the pressure gradient is large, and it only gradually removes them

in regions where the internal fluid forces are smaller. Intuitively, this means that

our method will preserve surface details and thin sheets while splashing around in

the air, but it will quickly remove noise from standing water. Our wave dynamics

will physically over-compensate for sudden changes in the pressure gradient during

collisions, which tends to add even more detail to splashes and thin sheets.

The tuning parameter α in our surface fairing intuitively controls howmuch we

will allow the surface to diverge from the low-resolution simulation. Large values

ensure consistency between surface and simulation but prohibit details that fall

below the simulation grid, such as thin sheets, from developing. Smoothing with

too small of an α value may not remove artifacts quickly enough for a high-quality

simulation. We set α= 20 in all of our examples.

As mentioned in Section 4.4.2, the vortex sheet equations give us a useful guide

for tuning the β parameter. We found that using this setting of β = 2 usually

creates extremely subtle waves that only fill in the gaps of the low-resolution fluid

simulation. On the other hand, we are free to artistically tune high-frequency

details because our method is not restricted to faithfully reproduce any physical

equation. We found that increasing β effectively boosts the sub-grid wave speed,

leading to the creation of convincing (though technically unphysical) rolling mo-
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tions as waves crash down. We used a value of β = 2 or β = 6 in all dynamics

examples.

Our method is directly guided by the pressure gradient of a fluid simulation.

On one hand, this constraint limits the guiding force field to a low resolution. On

the other hand, simplified pressure gradients enhance the stability of rotational

motion (see the Boussinesq approximation, for example), and our second-order

dynamics allow for interesting turbulent motions even with a constant pressure

gradient. In addition, allowing our method to be guided by a full fluid simulation

causes many of the difficulties in handling solid boundaries to disappear.

We implemented our method in both level set and mesh surface tracking frame-

works, and each of these discretizations has its own drawbacks. The level set

method is quite robust, but it smooths out desirable details and currently requires

a narrow band of at least one fluid cell in thickness to perform the liquid-biased

filter. The mesh tracker uses less memory but is more delicate — samples can

come very close together during fold-overs and thin sheet formation, re-sampling

the surface is more involved (we use edge subdivisions and collapses as described

in [Wojtan et al. 2011]), and robust and efficient handling of topological changes

is still an open problem.

One inconsistency between our method and the underlying fluid simulation is

that our local rotations enforce incompressibility for both air and water phases,

while the fluid simulation ignores conservation of the air’s volume. The large scale

fluid simulation will freely allow large air pockets to collapse beneath the weight

of the liquid, but our surface tracker dynamics preserve the volume of air bubbles

smaller than a fluid cell. These air bubbles still experience buoyancy forces though,

which cause them to rise up and break through the fluid surface. We found this

behavior quite beautiful for the sub-grid fluid dynamics (Section 4.4.2), but the

motion may be undesirable when performing surface smoothing (Section 4.4.1).

We should be able to quickly detect and remove such small bubbles if the behavior

is objectionable.

The memory complexity of standard grid-based fluid simulation techniques

is proportional to the volume of the simulation, while our algorithm scales only

with the surface area. As a result, we were able to achieve very high resolution

simulations on a single computer without experiencing memory problems. With

our dynamic wave method, we were also able to increase the apparent resolution

of a simulation by factors of 43 or 83 while only requiring a constant factor more

computation from the surface tracker. Nevertheless, we would like to further speed

up these operations. The stability of the method may be improved by replacing

the explicit Euler integration scheme with an implicit one. We may also be able to

speed up or sidestep Biot-Savart summations by reformulating our energy gradient

in terms of different control variables.
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Additionally, we would like to investigate boundary handling in more detail.

We are open to new strategies for handling fluid cells that exhibit both free-surface

and solid boundary conditions, and we plan to experiment with higher resolution

solid boundaries in the future.

Appendix: Energy gradient

We wish to compute the partial derivative of the following energy with respect to

n:

EST =

∫

∂Ω

n · ∇p dA−σn · ∇H dA

The first term is identical to Equation (4.1), and the gradient is computed analo-

gously. The second term is a bit more complicated because H is a function of n

— specifically, the mean curvature is equal to the divergence of the normal field.

In the following derivation, 〈·, ·〉 notation denotes the inner product, and we use

the fact that 〈 f ,∇ · g〉 = −〈∇ f , g〉 from integration by parts on a closed manifold

domain:
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Chapter 5

Generalized Non-reflecting

Boundaries for Fluid Re-simulation

When aiming to seamlessly integrate a fluid simulation into a larger scenario

(like an open ocean), careful attention must be paid to boundary conditions. In

particular, onemust implement special “non-reflecting” boundary conditions, which

dissipate out-going waves as they exit the simulation. Unfortunately, the state of

the art in non-reflecting boundary conditions (perfectly-matched layers, or PMLs)

only permits trivially simple inflow/outflow conditions, so there is no reliable way

to integrate a fluid simulation into a more complicated environment like a stormy

ocean or a turbulent river.

This paper introduces the first method for combining non-reflecting bound-

ary conditions based on PMLs with inflow/outflow boundary conditions that vary

arbitrarily throughout space and time. Our algorithm is a generalization of state-

of-the-art mean-flow boundary conditions in the computational fluid dynamics lit-

erature, and it allows for seamless integration of a fluid simulation into much more

complicated environments. Our method also opens the door for previously-unseen

post-process effects like retroactively changing the location of solid obstacles, and

locally increasing the visual detail of a pre-existing simulation.

5.1 Introduction

Fluid simulations are indispensable for adding realism to large dynamic environ-

ments like open oceans. However, careful attention must be paid to boundary

conditions if we wish to seamlessly integrate a fluid simulation into a larger sce-

nario. Instead of making waves spuriously reflect off of invisible walls at the

boundary of the simulation domain, we want outgoing waves to quietly dissipate

as they exit the simulation; we refer to this desirable behavior as “non-reflecting”

boundary conditions.

86
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Figure 5.1: Given an input fluid simulation (top left), our algorithm can make
local changes retroactively and seamlessly re-integrate them into the original fluid
simulation. Here, we locally edit solid geometry (top right), add a cow splash
(bottom left), or re-simulate a specific region at a higher resolution (bottom right).
Please see our video.

The state of the art in non-reflecting boundary conditions is known as perfectly-

matched layers or PMLs [Berenger 1994; Söderström et al. 2010]. At a high level,

PMLs work by linearizing the equations of motion, performing a Fourier transform

to identify outgoing waves, and exponentially damping the outgoing waves in a

thin layer near the boundary of the simulation. Unfortunately, the state of the art

in PMLs only permits trivially simple inflow/outflow conditions, like a stationary

pool of water or a constantly translating stream (a steady-state mean flow). The

state of the art leaves us with no reliable method for integrating a fluid simulation

into a non-trivial (i.e., visually interesting) environment like a stormy ocean or a

turbulent river.

In this paper, we generalize the state-of-the-art in non-reflecting boundary

conditions and present several novel applications. Our contributions are as follows:
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• The first PML method with spatially and temporally varying inflow/outflow

boundary conditions

• The first derivation of the equations of motion of a perturbation relative to

an existing fluid simulation

• The ability to add, remove, and adjust solid boundary obstacles retroactively

in a fluid simulation

• The ability to locally re-simulate a fluid animation at a higher resolution

(with more visual detail) as a post-process

5.2 Previous Work

The literature on fluid simulation for computer animation is vast. This discussion

will focus primarily on our target problem of developing boundary conditions for

fluid simulations, and on our target application of editing liquid simulations and

efficiently re-simulating simulations.

Boundary conditions for fluid simulations. The problem of non-reflecting bound-

ary conditions originated in computational physics. Berenger [1994] proposed the

first method based on perfectly matched layers (PMLs) for the purpose of absorb-

ing electromagnetic waves. PMLs were applied to computational fluid dynamics

by Hu et al. [1996], starting with a linearized version of the Euler equations. Re-

searchers subsequently applied PMLs to the non-linear Euler equations [Hu 2006]

and Navier-Stokes equations [Hagstrom et al. 2005; Hu et al. 2008].

Hu [2001] and Bécache et al. [2003] showed that PMLs are only guaranteed to

properly damp perturbations when the group and phase velocities are in consistent

directions. While this disagreement between group and phase velocities never

manifests for linear wave equations in a static reference frame, it becomes possible

in the presence of a moving background flow, or with more complicated wave

dispersion relationships. Their proposed solution to this problem is to apply a

coordinate transformation thatmathematically guarantees consistency of the group

and phase velocities for all wave numbers.

Hu et al. [2008] showed how to create steady state mean flow PML boundary

conditions for the Navier-Stokes equations. We generalize their work by allowing

mean flows which can vary in time—an essential requirement for realistic computer

graphics applications.

Within the field of computer graphics, several researchers proposed simple open

boundary conditions for single-phase flows [Stam 1999; Fedkiw et al. 2001], but the

wave reflection problem persisted for liquid simulations until the preliminary work
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of Söderström and Museth [2009] and their thorough follow-up work [Söderström

et al. 2010] introduced PMLs for computer animation.

Nielsen and Bridson [2011] re-simulated the surface layer of a low resolution

liquid at a higher resolution, using the low resolution simulation as a boundary

condition. These guide shapes serve a similar purpose to our time-varying non-

reflecting boundary conditions, especially whenwe inherit our boundary conditions

from a lower-resolution simulation. However, their method is not based on PMLs

and cannot prevent spurious boundary reflections.

Editing liquid simulations. Our non-reflecting boundary conditions allow a new

method for locally editing a fluid animation. While editing a physics simulation

is still a challenging problem, researchers in this area have developed several

powerful editing techniques already.

Guiding methods [McNamara et al. 2004; Shi and Yu 2005; Thürey et al. 2006]

allow more direct control than manipulating initial conditions, which may alleviate

the need for going through a large number of iterations. Designing appropriate

keyframes can be quite laborious, however, especially if the end result must look

physically plausible.

Bhat et al. [2004] present a synthesis approach that allows editing of videos of

flows exhibiting roughly stationary dynamics such as waterfalls and rivers. Pighin

et al. [2004] go in a different direction and parameterize an Eulerian fluid simu-

lation using advected radial basis functions. Simple edits may then be performed

by manipulating flow streamlines. More recently, Pan et al. [2013] developed an

interactive sketch-based approach to editing FLIP simulations. User edits are lo-

calized in space and time by encoding the edits as deformation fields that are then

back-advected and applied with a smooth falloff. The final result is obtained by a

guided offline simulation.

Raveendran et al. [2014] introduce a data-driven method for instantly gener-

ating new liquid simulations as an interpolation of the inputs using space-time

blending. It does not allow arbitrary user edits, however.

Efficient re-simulation. Subspace methods provide a way of significantly re-

ducing the degrees of freedom of the system by leveraging previous simulation

data. Recently, Kim and Delaney [2013] addressed the inability of these meth-

ods to reproduce the input simulations with a cubature approach. This allowed

parameters such as buoyancy, vorticity confinement, and timesteps to be varied

and re-simulated efficiently. As with all model reduction methods, continuously

changing boundary conditions such as moving solid obstacles or liquid surfaces

remain a challenge.
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To the best of our knowledge, Srinivasan and Malkawi [2007] provide the only

existing method for automatic, localized fluid re-simulation. Their application is

indoor airflow visualization for augmented reality. In a pre-computation step,

airflow is simulated for a limited number of room topologies (placement and

number of openings) using an Eulerian simulator. For each change in boundary

condition (e.g. adding a window) the user extracts a small number of bounding

boxes containing the most significantly changed grid nodes. These bounding boxes

are the only areas re-simulated at runtime. Since bounding boxes are determined

by running a full simulation, pre-computation time is quite significant, and also

suffers from combinatorial explosion as the number of rooms is increased.

5.3 Perfectly Matched Layers

In this section, we will review the concept of perfectly matched layers (PMLs). We

begin our derivation with the incompressible Navier-Stokes equations in conserva-

tion form:

∂ q
∂ t
+∇ · F(q) = 0 (5.1)

q=

�

0

u

�

(5.2)

F(q) =

�

u

u⊗ u+ 1
ρ pI

�

(5.3)

Here, u denotes the usual three-dimensional velocity, ρ is density, p is pressure,

and I is a 3 × 3 identity matrix. Notice that Equation (5.1) includes both the

momentum equation and the zero-divergence constraint. Our exposition neglects

viscosity and external forces for clarity, but they can easily be be included as in

Söderström et al. [2010].

5.3.1 Basic PMLs

In the absence of any background flow, the perfectly matched layer will aim to

exponentially damp q toward zero in a thin layer near the boundary. We apply the

split variable approach [Berenger 1994] to split q into separate vectors associated

with each spatial dimension q= q1 + q2 + q3. The equation for the time evolution

of q1 (q2 and q3 are analogous) is:

∂ q1

∂ t
+
∂ F1(q)
∂ x

= 0 (5.4)
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Figure 5.2: A simulation without (left) and with (right) perfectly matched layers
(PMLs) with time-varying inflow/outflow boundary conditions. The simulation
without PMLs exhibits interference patterns fromwave reflections. The background
flow is visualized in blue. For demonstration purposes this example does not
include visual blending.
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Our notation uses numerical subscripts to denote quantities and operators asso-

ciated with split variables, while we use x , y, z subscripts to denote a velocity

component in a particular spatial dimension. Note that we recover Equation (5.1)

when we sum the split components defined by Equation (5.4).

We convert to the frequency domain by applying a Fourier transform ∂ /∂ t →
−iω and achieve a spatial stretching in the boundary layer (following Söderström

et al. [2010]) with the transformation

∂

∂ x
→

1
1+ iσ1/ω

∂

∂ x
(5.6)

to get

− iωeq1 +
1

1+ iσ1/ω

∂àF1(q)
∂ x

= 0 (5.7)

where the tilde notation indicates a quantity in the frequency domain. Here, σ1(x)
is a spatially varying transfer function that depends only on x (not y or z). It will

be used to damp waves traveling in the x-direction by setting it to zero in the

simulation domain and ramping it up to a large positive value in the boundary

layer. We then multiply through by (1+ iσ1)/ω to get

− iωeq1 +σ1eq1 +
∂àF1(q)
∂ x

= 0 (5.8)

and finally transform back to the original domainwith the inverse Fourier transform

−iω→ ∂ /∂ t
∂ q1

∂ t
+σ1q1 +

∂ F1(q)
∂ x

= 0 (5.9)
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Figure 5.3: The background flow (left, blue) includes geometry outside of the
simulated flow (middle, green). The upper boundary of the new simulation is
indicated by the wire rectangle on the right. Nevertheless, new geometry (the
bunny) flows in through the upper boundary as the simulation progresses.

Numerically integrating this equation will exponentially damp q1 towards zero in

the boundary layer. Summing up each of the split components at the end of each

time step will recover q.

5.3.2 Background Flows

By damping to q= 0 near the boundary, Equation (5.9) implies that the simulation

is located in the middle of a perfectly static fluid. To allow for more interesting

background motions, Hu et al. [2008] damp towards a background flow q instead

of towards zero. They interpret q as the summation of the background flow q and

a perturbation flow q′:

q= q+ q′ (5.10)

where q and q are solutions to Equation (5.1). Note, however, that because the

Navier-Stokes equations are non-linear, q′ will generally not be a solution to Equa-

tion (5.1), making the problem of solving for the motion of q′ substantially more

complicated.

Hu [2006] simplifies this problem by assuming that the background flow is

already in steady state, i.e., ∂ q/∂ t = 0, which implies ∂ q′/∂ t = ∂ q/∂ t by

Equation (5.10). Thus, under the steady-state assumption, the dynamics of q′ are

just ∂ q′/∂ t +∇ · F(q) = 0. Applying the PML transformations above gives us

∂ q′1
∂ t
+σ1q′1 +

∂ F1(q)
∂ x

= 0 (5.11)

which is essentially the same as Equation (5.9), except it damps q′ to zero near the

boundaries instead of damping the entire q. Intuitively, this drives q toward the

background flow q near the boundary of the simulation domain. This represents

the state of the art in non-reflecting boundary conditions, which we will improve

upon in the next section.
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5.4 Time-varying Background Flows

While steady-state background flows are convenient for applications like the anal-

ysis of airfoils, they are extremely limiting for computer graphics applications. The

steady-state assumption is simply insufficient if we wish to have our simulation

live within a more natural environment, like an undulating ocean or a turbulent

river. In this section we explain our main contribution of achieving time-varying

background flows with perfectly matched layers.

We again divide our main simulation variable q into a background flow q

and a perturbation q′, as in Equation (5.10), but we remove the assumption that

∂ q/∂ t = 0. As a consequence, we can no longer equate ∂ q′/∂ t to ∂ q/∂ t , and

we cannot make use of the previous derivation.

However, since both q and q are solutions to the Navier-Stokes equations, we

can write
�

∂ q
∂ t
+∇ · F(q)

�

−
�

∂ q
∂ t
+∇ · F(q)

�

= 0 (5.12)

We then regroup the terms
�

∂ q
∂ t
−
∂ q
∂ t

�

+ [∇ · F(q)−∇ · F(q)] = 0 (5.13)

and redistribute the linear derivatives.

∂ [q− q]
∂ t

+∇ · [F(q)− F(q)] = 0 (5.14)

We next substitute the definition of q′ to derive the dynamics of the perturbation.

∂ q′

∂ t
+∇ · [F(q)− F(q)] = 0 (5.15)

Note that, although the resulting equation is simple, we made no assumptions in

its derivation. In particular, we made no linearizations, and q′ is not restricted to

be a solution to the Navier-Stokes equations. We then apply the same splitting and

coordinate transformations above to recover the PML-specific dynamics.

∂ q′1
∂ t
+σ1q′1 +

∂ [F1(q)− F1(q)]
∂ x

= 0 (5.16)

Integrating this equation will again damp q′1 toward zero near the boundaries,

but it will also allow q to vary arbitrarily over space and time. Intuitively, q will

continually be damped towards q, but now q is a moving target that is free to

erratically splash up and down or flow in and out of the domain.

Our derivation of Equation (5.16) is similar to the one of Hu [2006]. Hu goes on

to assume a pseudo mean flow that satisfies steady-state Navier-Stokes, however,

our application crucially depends on having a time-varying background flow, which

may not be as obviously useful for CFD applications.
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Figure 5.4: Even when the background flow (left, blue) is very lively, our algorithm
is able to produce a perfectly static pool (right, green).

5.4.1 An Addendum for Liquid Surfaces

Equation (5.16) naturally damps differences in the velocity field near the boundary,

but it will not remove differences in the liquid surface geometry. In order to drive

the entire physical state toward the time-varying background flow, we may also add

a small damping term to the free surface geometry. In the case of a level set [Osher

and Fedkiw 2006], which is what we used in all of our experiments, this can be

expressed
Dφ
Dt
+ γ

�

φ −φ
�

= 0 (5.17)

where γ is a transfer function similar to σ that ramps upward in the boundary

layer, φ is the level set function representing the geometry of the liquid surface,

φ is the level set of the background flow and D/Dt is the material derivative.

In our examples, we found that the free-surface advection combined with the

copying operation described below was accurate enough to safely set γ = 0, but

we document this concept for completeness. We did not experiment with other

surface trackers such as triangle meshes or particles.

This damping operation removes continuous deformations of the liquid surface

geometry, but it cannot change topology, like when an inflowing velocity field

brings entirely new surface geometry through the boundary. In such cases, we

must explicitly add the new geometric components to our surface tracker. We

do this by copying all liquid geometry from the background flow within a layer

with width dependent on a CFL condition (usually 3 cells) beyond the simulation

boundary, and we extrapolate the velocity from these regions as well. This way,

the liquid surface advection algorithm naturally carries new geometry components

in through the boundaries of the simulation. See Figure 5.3 for a proof of concept.

5.5 Implementation Details

We implemented our method as a set of plug-ins for Houdini [Side Effects Software

2016]. The source code for these plug-ins as well as an example Houdini scene file
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Algorithm 5.1 Pseudocode for our one time step of our algorithm.
1: while sub-cycling do
2: Compute sub-cycle time step size ∆tsub
3: Advect q′ with step size ∆tsub
4: Damp q′ with step size ∆tsub (Equation (5.18))
5: end while
6: Add Body Force
7: Pressure Projection
8: Extrapolate q
9: Advect Level Set

is included in the supplementary material.

Our implementation updates q′ by time-splitting. We analytically integrate the

middle (damping) term of Equation (5.16):

q′← q′e−σ1∆t (5.18)

The rightmost term of Equation (5.16) encodes advection, the pressure projection,

and the pressure update. Like most solvers in computer graphics, we apply time

splitting and numerically integrate each term separately. Whenever our solver

needs to evaluate an element of q, we sum up each of the split components with

q= (q′1 + q′2 + q′3) + (q1 + q2 + q3).
The order of our time splitting almost exactly follows Söderström et al. [2010],

including the advection, the pressure projection, and the addition of conserva-

tive body forces like gravity. Because the explicit advection algorithm proposed

by Söderström et al. [2010] is conditionally stable, we perform multiple sub-cycles

of the advection and damping routines with the maximum stable time step based on

the CFL condition [Bridson 2008]. We track the liquid free-surface using Houdini’s

particle level set method [Osher and Fedkiw 2006]. Pseudocode for one simulation

time step can be seen in Algorithm 5.1.

To achieve good damping performance for the PMLs, it is important to pick good

parameters. Söderström et al. [2010] performed a rather thorough experimental

study of the effect of different choices for σ(x), σmax and PML width. Although

our setting is slightly different from theirs, we found that basing our parameters

on their findings worked well in practice.

In our examples, we set each PML’s width to 8% of the simulation domain, and

we use the transfer function σ(x) = σmax(x/L)3, where x is the distance from the

end of the simulation domain, L is the width of the PML and σmax = 77. We set

the geometry blending coefficient γ to 0.

The PML’s exponential damping in the boundary layer is essential for efficiently

removing perturbations, but the change is a bit too sudden for the purpose of

compositing a new simulation into an existing one as in Figure 5.1. For this visual
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Figure 5.5: Our simulation (bottom, green) successfully reproduces the background
flow (top, blue) when there are no perturbations.

transition, we remove the PML geometry and linearly blend the surface geometry

in the outer 6− 12% of the simulation domain as a post-process.

During each time step, we fetch part of the background flow q from disk. To

make the computational complexity independent of the size of the background

simulation, we modified OpenVDB [Museth 2013] to support sparse out-of-core

grids.

5.6 Evaluation

We made a small collection of examples to show the robustness of our algorithm.

We first verify that our solver can compute the correct behavior even when the

correct motion q deviates far from the background flow q. Figure 5.4 shows that

we can recreate a completely static pool even if the background flow is very lively.

We do this by effectively deleting a falling sphere from the background flow, and

simulating the result as if the original splash never took place (q′ = −q). Note how
our resulting motion is independent of the background flow, which would not have

been possible if we assumed the perturbation q′ was small or if we linearized the

Navier-Stokes equations about q.

In the other extreme, if we do not make any perturbations at all (q′ = 0), then

our method reproduces the background flow q. Figure 5.5 shows that our method

reproduces the expected motion in the absence of perturbations, and it does not
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drift away from the original simulation.

Figure 5.3 shows how our method advects new surface geometry into the sim-

ulation when dictated by the background flow. This behavior is important for

merging simulations together, like when droplets spray into the simulation domain

from somewhere outside.

5.7 Applications

Our method can create a simulation that appears to be part of a much larger

fluid domain. Figure 5.2 (right) shows how we can use boundary conditions from

a gently sloshing pool to create a new simulation set in the middle of a larger

simulation. We first notice that ocean waves roll in and out through the domain

boundary; this behavior is impossible with previous approaches. Next, we see that

even though our simulation creates a large splash, the waves are absorbed by the

boundaries. If we do not use our PMLs Figure 5.2 (left), we see obvious wave

reflection artifacts.

Next, we can retroactively change parts of an existing simulation without re-

running the entire simulation. We begin with a complicated beach flow that was

computed previously. In the top right of Figure 5.1, we create a small simulation

domain around a solid obstacle that we wish to change, using the pre-computed

simulation in the top left of Figure 5.1 as the background flow q. We completely

remove the obstacle, locally creating a new flow. The combination of non-reflecting

boundaries and our novel time-varying background flow allow us to seamlessly

merge this simulation together with the larger one. We also perform a similar

process in the bottom left of Figure 5.1, by re-simulating a new splash into the

beach simulation as a post-process.

Our method can also retroactively increase the resolution of a portion of a

simulation, allowing users to “zoom in” as a post-process. In the bottom right of

Figure 5.1, we create a higher resolution simulation domain where we wish to add

more detail to the beach simulation. We then use a lower-resolution flow as the

q in our boundary conditions, and we run the new simulation in a small subset

of this domain at a much higher resolution. Again, our method allows the two

simulations to be seamlessly blended together at the simulation boundaries.

Although we view our method as a working prototype and have not optimized

it for performance, we list performance figures in Table 5.1. We believe that

the low-resolution examples simulate q significantly faster than q′ because q′

has substantial I/O overhead when reading the boundary conditions from the

pre-computed q. As we localize the flows at higher resolutions, however, the q′

simulations are much faster than the original q, allowing many post-processing

passes once an initial simulation is computed.
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5.8 Discussion

This work represents a significant generalization of the state of the art in non-

reflecting boundary conditions for fluid simulation. Our method opens the door

for novel post-process simulation editing and enhancement, and we presented

prototypes for retroactively editing solid geometry and increasing simulation reso-

lution.

The theory behind perfectly matched layers guarantees exponential damping of

waves in the boundary layer for linear partial differential equations. However, not

much is known about guarantees (if any exist) for non-linear equations like ours.

The method seems to work exceptionally well in practice, but further theoretical

development on this topic should be conducted. We observe that PMLs for the

Navier-Stokes equations are dramatically more efficient than the naïve approach

of damping the velocity field near the boundary, because they require a far smaller

damping region and thus less memory and overall computation time.

Hu [2001] and Bécache et al. [2003] showed that theoretical guarantees on

PMLs are only valid when the flow’s group and phase velocities are in the same

direction. We observed this problem for the scalar wave equation but never for

Navier-Stokes. We suspect this is due to the natural frequency dispersion of surface

water waves and numerical diffusion in our Navier-Stokes solver. As a result of our

observations, we found it unnecessary to implement any of the corrections in the

literature for 3D free-surface flows.

In our implementation, highly complex solid obstacles that intersected the

boundary layer would occasionally prevent perturbations from quickly damping

out. Less complex solid obstacle geometry, however, posed no difficulties (as ex-

hibited by Figure 5.1). We have yet to conclude whether this is a general theoretical

problem or one specific to our implementation.

Our current implementation assumes that the background flow q is a solution

to the Navier-Stokes equations discretized by our split-variable solver. We would

like to remove this restriction in the future by allowing q to be an arbitrary vector

field (i.e. from a different fluid solver, or even from an unphysical artist-designed

flow). We believe that this can be made possible by adding source terms to the

equation of motion and applying the appropriate PML transforms.

The fact that advection is split over three equations prevents an easy extension

to semi-Lagragianmethods and also to FLIP. This is true even for a non-split variable

approach as presented in Hu [2006]. We see it as a very fruitful avenue of future

work to investigate how our method could be reconciled with such methods.

A property of our method is that it tends to preserve artifacts present in the

input unless they are perturbed. Figure 5.5 exhibits small bumps in the input

animation due to our use of a particle level set. Similarly, the input simulation
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Example Resolution Run Time

Figure 5.3 q 100× 100× 100 25m 33s
Figure 5.3 q′ 100× 50× 100 45m 03s
Figure 5.4 q 133× 53× 33 10m 28s
Figure 5.4 q′ 133× 53× 33 21m 43s
Figure 5.5 q 50× 50× 50 6m 32s
Figure 5.5 q′ 50× 50× 50 11m 23s
Figure 5.2 (left) without PML 53× 32× 60 4m
Figure 5.2 (right) with PML 53× 32× 60 4m
Figure 5.1 (top left) q 453× 100× 307 15h
Figure 5.1 (top right) q′ 227× 67× 153 3h 47m
Figure 5.1 (bottom left) q′ 133× 107× 133 47m 17s
Figure 5.1 (bottom right) q′ 227× 67× 153 3h 30m

Table 5.1: Performance statistics for our absorbing boundaries. The background
flow and perturbation flow (the new simulation) are indicated by q and q′, respec-
tively.

in Figure 5.1 contains subtle "tendril"-like artifacts, which we suspect are caused

by the wave generation algorithm linearly blending the fluid velocity field with a

procedural vector field.

We imagine several extensions to our methods for retroactively improving a

simulation. For example, we hope to combine our approach with an adaptively

re-sizing simulation domain, allowing us to locally halt the simulation where the

perturbation flow has damped out, and to adaptively expand the simulation domain

where interesting new flows persist.



Chapter 6

Conclusion

In this thesis we have presented three novel contributions (as described in Chap-

ters 3 to 5) to the field of liquid simulation for computer graphics. In this section

we summarize these contributions and conclude the thesis by listing work relevant

to ours that was published concurrently or after the work in this thesis

In Chapter 3 we presented a novel approach that takes a sequence of arbitrary

closed surfaces and produces as output a temporally coherent sequence of meshes

augmentedwith vertex correspondences. The output of our algorithm is useful for a

variety of applications such as (dynamic) displacement maps, texture propagation,

template-free tracking and morphs. We have also demonstrated the robustness

of the method to parameters as well as input. In the future we would like to

extend the method to handle non-closed surfaces, as well as explore problem-

specific applications (e.g. tracking of biological cell data) of our general-purpose

framework.

In Chapter 4 we presented a new approach to combating the artifacts that re-

sult from using mismatched degrees of freedom between a coarse volumetric liquid

simulation and a high-resolution surface tracker. Unlike previous approaches, we

precisely characterize the artifacts with a surface-based energy that is minimized

when the surface-tracker is in physically valid state. This happens precisely when

the pressure gradient and the surface normal are anti-parallel. Reducing this en-

ergy using gradient descent, we derive both smoothing and dynamics that quickly

remove the disturbing surface artifacts or turn them into surface ripples, respec-

tively. We also show a striking similarity between our dynamics, which are derived

by interpreting our energy as a physical potential, and the vortex sheet equations.

In Chapter 5 we develop a novel method that enables a new workflow for liquid

simulation artist. Instead of having to re-simulate everything anew every time a

change is desired, they may instead perform local, incremental edits of an existing

liquid simulation without worrying about wave reflections or messing up parts of

100
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the simulation that they are already happy with. To facilitate this new workflow,

we derive the equation of motion for the perturbation of an existing simulation and

extend existing perfectly matched layer theory to damp this perturbation to zero

at the seam between the new and existing simulations. This enables us to remove

solid obstacles, add new splashes and locally increase the resolution at a fraction

of the cost of re-simulating the whole simulation anew.

6.1 Recent and concurrent work

Liquid simulation is a very active area of research in computer graphics, and it

should come as no surprise that several works related to the research presented

in this thesis were developed either concurrently to or after we initially published

our results. In this section, we mention some of the most important results that a

reader of this thesis should be aware of.

Stam and Schmidt [2011] showed how to derive the normal velocity of an

implicit surface, however, to pin down the tangential velocity they had to make

an assumption. To facilitate translational motion, Stam and Schmidt [2011] chose

the assumption that the normal at any point should be invariant in time. After

we published our mesh-tracking paper [Bojsen-Hansen et al. 2012], Fujisawa et

al. [2013] showed that this assumption makes the original algorithm sensitive to

rotations. They instead substitute an assumption of time-invariant curvature, which

improves results with rotations. More recently, Gagnon et al. [2016] presented a

completely different approach to texturing liquids using dynamically re-sampled

tracker particles with local coordinate systems and overlapping textures.

The year after we published our error compensation algorithm [Bojsen-Hansen

and Wojtan 2013], Edwards and Bridson [2014] presented a liquid simulation

method using a finite element discretization and very high-order polynomial basis

functions to practically (though, strictly speaking not theoretically) resolve all the

details an embedded triangle mesh surface tracker. Goldade et al. [2016] pub-

lished a direct follow-up to our work. They derived a more efficient version of

our smoothing algorithm by blending between the high resolution surface and a

low-pass filtered version instead of solving a partial differential equation, as we

do. This year, Da et al. [2016] published a very interesting result that shows, under

certain assumptions, that it is possible to completely do away with an underly-

ing volumetric discretization and simulate three-dimensional fluids using only a

surface triangle mesh.



Appendix A

Fluid simulation

In this appendix wewill briefly sketch the steps involved in simulating a incompress-

ible fluid using the incompressible Navier-Stokes equations (cf. Equations (2.28)

and (2.30)). We refer to Bridson [2008] for a more complete exposition.

The first step is to discretize the time derivative ∂ u/∂ t in the momentum

equation using forward Euler as described in Section 2.3.4.

un+1 = un +∆t
�

− (u · ∇)u−
1
ρ
∇p+ ν∇2u+ f

�

(A.1)

We have intentionally avoided discretizing the other terms (inside the parentheses)

for now. Equation (A.1) is a bit of a mouthful to handle in one go, so following

standard practice we are going to split each time step into a series of intermediate

steps (corresponding to each term of the momentum equation) that add up to the

full time step. Such methods are called fractional-step or time-splitting methods.

Unlike the continuous setting where everything is "solved simultaneously", we are

now have to choose in which order to solve the four terms inside the parentheses

in Equation (A.1). Regardless of the order we choose, we will be incurring an error

on the order of O(∆t), so a priori any order will do. However, some errors are

less visually disturbing than others. Below we have chosen an order that gives a

good balance between efficiency and acceptable error. An important feature of

the order that we choose is that we always finish the time step by enforcing the

incompressibility constraint such that ∇ · un = 0 at the beginning of every time

step.

In the first step we apply viscosity to the divergence-free field un

uV ← un +∆tν∇2un (A.2)

This can either be solved with explicit time integration as above or implicitly.

Either way, it works out very similar to the Poisson problem for pressure below (see

Bridson [2008] for more details). Next, we advect the post-viscosity field uV in the
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Algorithm A.1 Typical simulation loop of incompressible Navier-Stokes.
1: for frame n= 1→ N do
2: Apply viscosity to un to obtain uV

3: Advect uV in un to obtain uA

4: Add body force accelerations to uA to obtain uB

5: Solve the Poisson problem −∆t∇ · 1
ρ∇p = −∇ · uB

6: Update uB with the negative pressure gradient to obtain un+1

7: Advect the liquid surface in un+1

8: end for

divergence-free field un

uA← uV −∆t (un · ∇)uV (A.3)

This is typically solved using methods based on the method of characteristics such

as semi-Lagrangian advection [Stam 1999] or FLIP [Zhu and Bridson 2005]. Next,

we add accelerations due to body forces f such as gravity to the post-advection field

uB ← uA+∆tf. (A.4)

Finally, we need to update the velocity with the pressure gradient to enforce the

incompressibility constraint ∇ · un+1 = 0 at the end of the time step

un+1← uB −∆t
1
ρ
∇p (A.5)

According to Equation (2.32) the pressure that enforces the incompressibility con-

straint can be found by solving the Poisson problem

−∆t∇ ·
1
ρ
∇p = −∇ · uB (A.6)

This Poisson equation is typically solved as in Section 2.3.4. The final step is to

move the position of the liquid interface (assuming we are simulating a liquid)

according to the new velocities un+1. This is the topic of Section 2.10. The whole

simulation loop is summarized in Algorithm A.1.
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