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Abstract
We present ISOSLIDER, a system for interactive exploration of isosurfaces of a scalar field. Our algorithm focuses
on fast update of isosurfaces for interactive display as a user makes small changes to the isovalue of the desired
surface. We exploit the coherence of this update. Larger changes are supported as well. The update to the isosur-
face is made at a correct level of detail so that not too many operations need be performed nor too many triangles
need be rendered. ISOSLIDER does not need to retain the entire volume in the main memory and stores most data
out of core. The central idea of the ISOSLIDER algorithm is to determine salient isovalues where surface topology
changes and pre-encode these changes so as to facilitate fast updates to the triangulation.
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1. Introduction

Spatial distribution of scalar data like ‘bone density’, ‘wind
speed’ and ‘fluid pressure’ often needs to be visualized in
medical and scientific applications (Figure 8(a)). Many such
applications involve knowledge discovery, in which scien-
tists explore a large field looking for “interesting” charac-
teristics. Two common ways of visualizing these fields are
direct volume rendering 4 and isosurface computation 12, 15.
Direct volume rendering produces a color at each pixel that
is the composition of the scalar values at points intersected
by a ray through that pixel. Isosurface visualization requires
computation and display of all points (i.e., surfaces in a
three-dimensional field) in the data with a given scalar value.

One common modus operandi for data exploration is to
continuously vary the desired isovalue, generate the result-
ing isosurface and see how the surface changes as it slides
from value to value. Our algorithm addresses the need for
such isosurface exploration and is designed to take full ad-
vantage of the resulting coherence. In addition, our algo-
rithm works well with large data sizes by allowing most of
the data to reside on the disk at the exploration time. Its fo-
cus is on interactive isosurface update so that the scientist
may easily maintain the context as the isovalue changes.

Formally, a volumetric scalar field is represented by the
set of tuples <(Si, pi)>, i = 0..N, such that Si is the scalar

value at point pi ∈ <3. The points pi are usually selected to
lie on a grid (structured or unstructured). Adjacent points on
the grid are connected to form a cell. We sometimes denote
Si as S(pi) to be explicit. Furthermore, S(p) at points p
not in the tuple set are computed from cell’s Sis (usually by
tri-linear interpolation). Isosurface of a field, ψλ, at scalar
value λ is the set of all points p, such that S(p) = λ. Variants
of the Marching Cubes algorithm 15 are commonly used to
compute ψλ.

The Marching Cubes algorithm finds the overall surface
by processing every cell in the input. The computation per
cell is O(1). Recent isosurface algorithms reduce the num-
ber of cells considered by predicting the active cells: the
cells, which actually contain the desired isovalue. The search
for active cells takes one of three forms: spatial search 10,
range search 3 or surface growth 1. Spatial search techniques
subdivide space and hierarchically eliminate partitions that
do not contain an active cell. Range search methods asso-
ciate each cell with the range of values it contains. These
then search for the ranges that contain the desired isovalue.
Surface growing methods start with some active cell(s) and
find other active cells by tracking surface adjacencies. Range
based methods are the most general and can handle unstruc-
tured cells, even if they do not directly benefit from spatial
coherence of computations. Our algorithm is range based,
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appropriately modified to exploit spatial coherence. While
the framework of our algorithm can trade off time and disk
requirements, in our current implementation we have cho-
sen to favor fast computation over disk requirement. Also,
we currently handle uniform (voxel) grid input only. While
one may handle curvilinear and unstructured grids by con-
verting them to a uniform grid 11 first, our algorithm can be
easily extended to directly handle such data.

The main idea of our algorithm is to realize that small
changes in isovalues require small changes to active cells.
By simply pre-computing these changes and storing them
out-of-core we can find the active cells quickly. Note that
the isovalues at which a topological change happens are all
in Si (In case of trilinear interpolation, topology changes can
occur inside a cell as well, but are directly handled by the
render-time algorithm). Hence, in principle, we merely need
to store <Si, pi> sorted by their values Si. Every time we
slide past an isovalue, Si, the cells adjacent to pi are inacti-
vated or activated or sometimes simply re-triangulated. We
augment this simple scheme to allow efficient sliding of iso-
surfaces across small as well as large values. In addition, we
incorporate multi-resolution isosurface construction into our
scheme. Our in-memory data structure also allows re-use of
most topological information from frame to frame. Only in-
terpolations of values need be computed afresh.

1.1. Previous Work

Span-space computation of Livnat et al.14 achieved O(
√

N)
search time for active cells. The interval-tree based search
of Cignoni et al.3 reduced that further to O(logN), which
was extended for out-of-core searches by Chiang et al.2. In-
terval tree has an optimal worst case complexity for range
search but is not well suited for sequential out-of-core ac-
cess of successive intervals. While it is possible to augment
the interval tree with ‘next-in-sequence’ links, we have opted
for a simpler data structure based on skip-lists 17 that works
well for isosurface sliding. The idea of using such local up-
dates has been applied before. Giles and Haimes7 maintained
two lists: minlist, sorted by the minimum values of each cell
and maxlist, sorted by the maximum value of each cell. If
the isovalue is changed by a small value from λ0 to λ1, all
intervals beginning in the range [λ0-λ1] are added as po-
tential active cells. The list is then purged of inactive cells.
The performance for large changes in λ is O(N). Shen and
Johnson19 improve the average performance by transforming
the maxlist into sweeping list by adding a flag for each entry
marking whether the minimum value of the corresponding
cell is less than the current isovalue. The worst case perfor-
mance remains O(N + K), K being the size of the resulting
triangulation 19. Our algorithm performs work independent
of N and is proportional only to δK, the change in triangu-
lation at each frame for small changes in isovalue. For large
changes in the isovalue, the total work is still O(logN + K)

on average. The main advantage of our work is its out-of-
core operation.

One problem with the Marching Cubes algorithm is that
it generates a large number of polygons, up to five per cell.
For large volumes, especially voxel grids, this is usually too
many. Ramachandran et al.20 present a non-interactive view-
dependent algorithm for isosurface extraction on a cluster of
machines. Dynamic simplification 9, 5 of isosurfaces is too
slow to be interactive, however, and direct cell simplifica-
tion schemes are popular 10, 18. Most focus on using hierar-
chically larger cells composed of input cells when the re-
sulting interpolation error is small. Some allow controlled
simplification of topology 6. Most are able to produce dras-
tic simplification at high error allowance. Gregorski et al.8,
in particular, reports near interactive performance by enforc-
ing a limit on the number of operations performed per frame.
Their algorithm is designed for view-dependent updates to a
given isosurface. Isosurface updates are slower, unless the
error threshold is turned very high. Our algorithm performs
conservative and static simplification only. The resulting tri-
angles can be further simplified in a view-dependent fashion,
but that is not currently done in our system.

2. ISOSLIDER algorithm

The main steps of isosurface visualization are as follows:

1. Find the active cells
2. Find the active edges for each cell
3. Classify each cell and compute the adjacencies of result-

ing triangles
4. Find the vertices on the active edges (location and nor-

mal)
5. Send the resulting triangles to the graphics card

A note about Step 5: it must be performed every frame
that the isovalue changes. As the resulting isosurface slides,
the vertex positions change. One might consider performing
interpolations on the graphics card. However, many appli-
cations require the surface to be on the CPU for geometric
analysis. We have chosen to perform the interpolations on
the CPU. Note that for small changes in λ, most cells remain
either active or inactive during the slide. Furthermore, the
same edges of the active cells usually remain active imply-
ing that the cell maintains the same classification and uses
the same triangle adjacencies. We exploit coherence at all
these levels.

To find the active cells (Step 1), we preprocess the data.
Consider a cell, C, with points pC

j , j = 1..k, sorted by their
scalar values, i.e., SC

j < SC
j+1. Recall that C is active only

for isovalues SC
1 ≤ λ ≤ SC

k . Thus, as we slide the isosur-
face from λ1 to λ2, cell C becomes active or inactive when
we cross SC

1 or SC
k . We could then recompute the triangula-

tion for those cells that change their status. Note also that
the topology of triangles generated by C changes only at
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λ = SC
j , j = 1..k. If we maintain a sorted list of all scalar val-

ues in the field, S j, j = 1..N, we know that the topology of
some cell changes each time λ crosses an S j . If we store this
information, we obtain an algorithm that does not need to
touch any cell that does not undergo a change in its triangu-
lation. We nominally store the following information block
B j with each S j in our sorted list:

1. p j
2. E+: the list of indices of the edges that become active
3. E−: the list of indices of the edges that become inactive
4. S+: the list of scalar values S(pl) for each point pl such

that edge p j pl ∈ E+

5. S−: the list of scalar values for edges in E−

For high quality shading, we also retain the normals at p j
and all pl . This naive approach replicates each input point
for each adjacent edge. This can be avoided at the cost of
additional disk I/O by using a point layout similar to that
used by Gregorski et al.8.

Note that the main drawback of this approach is that large
change in λ requires several blocks to be read from the disk
resulting in slow isosurface update even if the blocks are
stored contiguously on the disk. We solve this problem by
using a skip list of blocks.

2.1. Skip-list

Block B j provides all changes to the active list when the
isovalue changes from a value λ1 ∈ [S j−1,S j] to λ2 ∈
[S j,S j+1]. In general, if the isovalue λ1 ∈ [Sm−1,Sm] goes
to λ2 ∈ [Sn,Sn+1], all blocks Bm..Bn are required. Unfortu-
nately, this larger isovalue change could require O(N) work
in reading and applying the blocks. If the maximum number
of active edges involved is K = E(λ1) + E(λ2), we would
like to limit the work performed to more like O(K). Us-
ing a skip-list approach 17, we can reduce the actual work
to O(logN +K).

In the skip-list structure, the original list of blocks Bi be-
comes level 0, or B0

i . Each successive level BL of the skip
list contains fewer scalar values, and thus fewer blocks (Fig-
ure 1). All the edge changes from the associated lower-level
blocks are consolidated into a single pair of E+ and E− lists
for the higher-level block. As part of this consolidation, re-
dundant edges are eliminated. These redundant edges were
both activated and deactivated within the span of the higher-
level block, so they represent unnecessary work.

We build level L from level L−1 as follows. We traverse
level L− 1, consolidating E+ and E− lists as we proceed,
removing redundant edges. When the number of redundant
edges as a ratio of the number of active edges, k, at the cur-
rent isovalue becomes greater than a user-specified thresh-
old, these consolidated lists become a single block at level
L. Each block BL

i contains the starting scalar value as well as
the consolidated edges lists and their associated data. This

level-by-level streaming approach allows us to generate a
new level from the previous one when the data is stored out
of core memory. Because each block at level L is associated
with at least two blocks at level L−1, there can be no more
than O(logN) levels.

Now let us reconsider the algorithm for changing an iso-
value from λ1 to λ2. We start at block B0

m−1 and wish to
reach block B0

n. Rather than reading and applying all the in-
dividual blocks on level 0 from m−1 to n, we take any avail-
able opportunities along the way to step up to a higher level,
walking as far as possible at the higher levels to avoid redun-
dant work. When we can walk no further at a higher level
without passing λ2, we step back down to a lower level. This
is similar to the standard skip list algorithm, except we can
start from some arbitrary position in the 0-level list. The to-
tal work performed is reduced by this algorithm to O(logN)
walking up and down the lists plus O(K) time traversing the
levels.

S1

SaS1

Sb SdScSaS2

Sd

S1 Sd

Level 0

Level 2

Level 1

Figure 1: Skip List

Asymptotically, the skip list described above has O(logn)
levels and the search time for an isovalue is O(logN). An
edge can appear at most twice at any level. Thus a naive
counting bounds the total space by O(N logN), given that
there are O(logN) levels in the skip list. However, not all
edges appear on levels above zero. In fact, by our construc-
tion, atleast fraction k of the edges of a level do not appear
in the level above, for a user specified constant k. Thus the
total space requirement is only N

k = O(N).

Even this space requirement can be reduced by simple
compression. In particular, the normals for the vertices can
be quantized to 16 bits. The data for each vertex adjacent
along the edges in E+ and E− can be predictively encoded.
In case of voxel data, for example, we store 10 bits for nor-
mal and 10 bits for isovalue residuals for each edge. The
edge itself is identified by a three bit number. The vertex’s
ID takes 32 bits, isovalue another 32 and normal 16. This
totals to 6E + 10N bytes, for N vertices and E edges, less
that 400 megabytes for a 2563 model at the lowest level and
about a gigabyte for the entire skip list.

At the higher levels, the algorithm degenerates to simply
keeping the list of active cells for each chosen isovalue be-
cause of the lack in coherence, in a way similar to Bajaj et
al.1. For application where large jumps in the isovalue are
not required, the higher levels of the skip list need not even
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be precomputed and computed online when necessary. We
usually only precompute 4-5 levels and leave the rest un-
generated, which may be computed in a lazy fashion.

2.2. Level of Detail

Since the naive Marching Cubes algorithm often produces
too many triangles, we reduce this geometric complexity for
better interactive performance. Our goal in this algorithm is
to maintain the topological structure of the isosurface with
minimal error in the position of triangle vertices. We cur-
rently do not perform view-dependent simplification 8 or vis-
ibility culling 13. Our main criterion is to replace groups of
small triangles by larger ones, if the resulting error is small.
We perform this simplification by merging cells into larger
cells. For example, in Figure 2 cells C00..C03 of level zero
have been merged to form cell C10 of level one, their ances-
tor. The neighboring cells C04..C07 are not merged in this
example. We ensure that the triangulation at the common
boundary AC matches as explained below.

A group of cells is ‘mergeable’ if the common edges may
be deleted subject to topological constraints. An edge pi p j
may be deleted if both values S(pi) and S(p j) may be re-
liably interpolated from the remaining points of the parent
(ancestor) cell after merger. In Figure 3, after edge deletions,
active edge AB may be replaced by edge AC and HI may be
replaced by GI. If linear interpolation of ac and gi does not
differ much from the edges formed by the sub cells, cell C10
may be used. We ensure this by restricting the difference
between the deleted isovalues and the isovalue interpolated
along each retained edge crossing the sample. For exam-
ple in Figure 3, edge HB may be used if (I(S(H),S(B))−
S(E)) < ∆ for a small ∆, where I denotes linear interpola-
tion. If all edges of a cell (HB,DF,AC,AG,GI and CI in this
case) are usable, the cell is usable. The topological correct-
ness is guaranteed by the following restrictions on merger of
edges AB and BC:

1. Only one of AB and BC may be active at a time, i.e.,
values S(A),S(B), and S(C) monotonically increase or
decrease. Since the merged edge may not have two in-
tersections with the isosurface, so must not the original
edges.

2. An active edge may not be deleted.

Let us assume that the cell is a cube. In three dimensions
an active edge must activate four cells adjacent to it as shown
for edge AB in Figure 4. If one of the adjacent cells is already
active, its topology changes. For multi-resolution cubes the
adjacency is not as simple. As demonstrated in two dimen-
sions in Figure 2, cells C00..C03 merge to form cell C10,
whereas cells C04..C07 remain. Edge AB has adjacent cell
C00 inactive. Technically, edges AB and AC are both parts of
active cells, but to avoid replication we use only the smallest
edge as the active edge, AB in this case. This also prevents
cracks because cell C10 is forced to use the edge AB to com-
pute its vertex. Note that adjacent edges AB and BC cannot

A
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C04

C06

C07
C10

C05 C01

C03

C02

C00

Figure 2: Cell Merging

both be active if cell C10 is used. Consequently, when AB
becomes active, we must infer from AB (and the other active
edges) the active cells: C10 in this case as opposed to C00. To
enable this inference we keep a flag for all potentially active
ancestors of an active child cell.
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Figure 3: Simplified isosurface
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Figure 4: An edge activates adjacent cells

1. An active edge marks all its adjacent cells active. In the
example in Figure 2, AB is active due to cell C07 but
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marks C07 as well as C00. C00 is marked erroneously in
this case.

2. If a cell is marked erroneously, it must be the child of an
appropriately active cell. In the example in Figure 5, that
active ancestor is the large cell C. The erroneously active
child is either in the middle of its ancestor’s edge as is
cell C03 in Figure 5(a) or at the corner of the edge as is
cell C00 in Figure 5(b).

3. In the first case, C03 may not have any other edges marked
active, a clear indication that the edge AB needs to be
contributed to an ancestor.

4. In the second case, C00 may have enough edges of the an-
cestor (two in 2D, three in 3D) active to be confused for a
real Marching Cubes case. However, even if we ‘assign’
edges AB and AD to cell C00 and triangulate it, the final
result is correct. This happens because the edges contain-
ing AB and AD, AB′ and AD′, respectively of cell C will
not be marked active as C00 never reports it to C. That is
still correct as there is no Marching Cubes case where the
mis-assigned edges AB′ and AD′ are used for any other
triangle of C.

(a) (b)

C01

C00 C03

C02

A B

C13

C11 C12

C01

C00 C03

C02 C13

C11 C12

A B

D

CC

C07 C07
B'

D'

Figure 5: Parent Location from Children of Cell C

Thus we are able to precisely recognize the case when a
child cell is mis-activated and must now look for its proper
active ancestor. To enable such a search for the ancestor, we
simply ensure that an ancestor is activated before any chil-
dren: the highest level edges in E+ are added first.

The above algorithm ensures that the surface has C0 con-
tinuity along the edges of the voxels. To ensure hole-free
merging of adjacent voxels along their common faces, we
need to modify the triangulation of a higher level cell shar-
ing face boundaries with lower level cells (Figure 6). For
every such cell, we use the following steps:

1. For each face of the higher level cell (C in Figure 6), com-
pute the relevant adjacent lower level cells (D1, D2 and
D3). Also compute the intersecting points, namely, P1, P2
and P3.

2. The edge AB is replaced by edges AP1, P1P2, P2P3 and

P3B. Unlike Shekhar et al.18, we do not translate the
smaller edges towards the larger edge, but instead reverse
the process. This ensures consistent triangulation in the
smaller cells. Note that the resulting edge still satisfies
the initial error threshold criteria.

3. Each edge of the triangulation of the higher level cell is
now replaced by a union of one or more smaller (C0 con-
tinuous) edges. We retriangulate each of the original tri-
angles to obtain the new triangulation (Figure 7).
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Figure 6: Edge positions on the common face boundary of
neighbors in different levels of the LOD hierarchy
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Figure 7: Retriangulating the original triangle XYZ to get
the new triangles

The above process ensures that the resulting surface is wa-
tertight with no holes.

3. Implementation

We have implemented a version of our algorithm on a 1.6
GHz Linux PC with an NVIDIA GeForce3 capable graph-
ics card. Our current implementation of non-uniform cells is
incomplete and we report results only on uniform voxel data.

Vertex arrays (http://www.nvidia.com) are an ef-
ficient tool to display triangles. We use this representation,
which requires:
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• V : a contiguous list of all vertices used in the triangles and
• T : a contiguous list of all triangles, each triangle specified

by three indices into V .

We recompute V every frame the isosurface changes but
reuse most of T . In order to reuse the indices of T , it is
important to update V coherently. We also retain the active
edges and cells in the main memory from frame to frame.
We assume the triangle, edge and cell information fit in the
main memory. (For very large datasets that do not allow that,
it is possible to use the ‘metacell’ scheme of Chiang et al.2

to process a subset of the data at a time.)

3.1. Precomputation

The precomputation step sorts (using external memory sort-
ing) the input scalar values and constructs the skip list in a
bottom-up traversal, level by level. First, it computes the er-
ror of each hierarchically constructed cell from its children’s
value. We use an error bound of 1% of the total range of iso-
values. Any active edge with larger error is not merged. The
sorted tuples <Si, pi>, are next traversed as follows. At each
step of level zero, we consider all edges connected to the cor-
responding point pi. We find the edges connected to pi that
become active and those that become inactive when cross-
ing the isovalue from below it to above it. The new edges
are tested in the order of their size. The largest edge usable
is added to E+. If an added edge causes a new topological
constraint violation in any adjacent cell, that cell is subdi-
vided. Deleted edges are added to E−. Each deleted edge is
next tested for topological constraints. If the edge was con-
straining an adjacent cell, that cell is retested for merger. All
information of the affected edges is collected and appended
to the end of the file. Merge and Split records are stored as
the ID of the edge and the count of how many times it may
merges or splits. For example, if an edge AB merges to its
grandparent, we store its ID and the count 2.

3.2. In-core data structure

We maintain the following data structures at the rendering
time:

• An Edge information array (E), which maintains the infor-
mation related to each active edge. Specifically, we store
the vertex coordinates (V1), isovalue (S1) at the starting
point of the edge, the normal values at the two end-points
of the edge (N1 and N2), the gradient in the vertex coordi-
nates ∂V = V2−V1

S2−S1
. In order to expedite the computation

of the unit normal at run-time, we also maintain a value
m = 2sin2(α/2), where α is the angle between N1 and
N2. For the interpolating parameter value t, the norm of
the normal is given as 1√

1−2mt(1−t)
, for small 2mt(1− t).

We use the Taylor’s expansion to evaluate the norm, thus
avoiding the expensive square-root operation.

• An array of list of indices (I) forming the triangles. These

indices represent the vertex indices which form each tri-
angle. The marching cubes algorithm can generate up to
five triangles for each active voxel. We maintain five dif-
ferent lists, list i for triangles of voxels with i triangles.
The triangles of each cell are stored contiguously in its
corresponding list. As a cell undergoes a change in the
number of its triangles, this contiguous set is deleted from
the old list and transferred to another if needed. This buck-
eting by triangle set cardinality allows effective memory
management. All triangle sets in list i are the same size
and a hole created by a deleted set can be easily filled by
another set.

• An array of vertex Values (V). Each entry in this array
corresponds to the interpolated vertex value from the Edge
array E.

• An array of unit length Normals (N). Each entry in this ar-
ray corresponds to the normal value at the corresponding
location in the Vertices Array V.

• Hash tables, HE and HC, for the active edges and the ac-
tive Cells respectively. HE stores a tuple <gid, id>, where
gid is the identifier (ID) for the edge, and id is its location
in E. gid is formed from the edge’s location, direction,
and its level in the Level-of-Detail hierarchy. HC stores
for each voxel, the tuple <vid, Start Address, list_number,
case_number>. Here vid is the identifier of the voxel
which is formed from its position in space and its level
in the LOD hierarchy. list_number refers to the number of
triangles the voxel has at that instant, Start Address refers
to its starting index in I, and case_number refers to the
case number of the Marching Cubes table used for this
particular voxel. We use a hash function from the family
of hash functions H = {ha,b|a,b ∈ Zp}, with a 6= 0. ha,b
is defined as ha,b(x) = g ( fa,b(x)), where g : Zp → N ,
given by g(x) =x mod n, and fa,b(x) = (ax + b) mod p.
Here p is a large prime number (greater than the largest
entry being hashed to the table), and n is the size of the
hash table. The size of the hash table is chosen to be
twice the average number of edges expected to be active
(O(N

2
3 )), where N is the total number of sampled points in

the data set. This family of hash functions is proven to be
strongly 2-universal 16, thereby reducing the probability
of collisions. We stress that such a hash function is neces-
sary for attaining real-time rates with our algorithm (Ex-
pected O(1) search time). We maintain open chain hash-
ing, i.e. all the entries colliding at one specific location of
the hash table are linked together in a link-list.

3.3. Sliding

As the user slides the isovalue, two kinds of updates are re-
quired: change of the active edge list and computation of the
interpolated vertex and normal coordinates.

Once the active edge list is fixed, only the arrays V and N
need to be changed. A specific entry Vi is changed by ∇Vi =
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∂S * ∂Vi (stored in E). Similarly, the normal is interpolated
from N̂1 and N̂2, and scaled by its length to normalize it.

If the active edge list changes, these additions and dele-
tions are stored in lists Add and Delete respectively. We pro-
cess the Delete list before accessing the Add list to avoid
fragmentation in the various arrays. Each entry of the Delete
list contains an edge ID, which is then hashed (using HE) to
the Edge information array (E), and deleted from both lists.
The IDs of cells adjacent to the edge is hashed to obtain their
indices in HC. The case mask of each cell is changed. Also,
the Start_Address and list_number fields of the cell become
stale. The corresponding entries in I are deleted, fragmenting
these arrays temporarily. Next, the Add list is processed, and
a new entry is inserted for this edge into HE and E (thereby
filling up the holes created by the deletions). Again, HC is
modified, and the corresponding case masks are updated. In
case the number of additions is smaller than the number of
deletions, E and I are compacted. We fill the holes by trans-
ferring entries from the end of the list into them. When an
edge entry is moved, its cells are re-accessed and their af-
fected triangle’s indices are modified to the edge’s new loca-
tion.

Once the topology has been changed, the vertex and nor-
mal lists are regenerated from E. Finally, V, N and I are sent
to the graphics pipeline.

4. Results

We have tested our algorithm on a variety of models. In Ta-
ble 1, we report the several features of the five major mod-
els we used. The number of distinct isovalues in a dataset is
an indication of how often we have to compute the change
in topology (Figure 9) and store the changes. The Boston
Teapot is a 8-bit quantized data set, while the BluntFin (Fig-
ure 8(b)), CT Head Scan and the Spherical Shell models are
16-bit quantized data sets, and hence the distinct isovalue set
spans almost the entire range, symbolizing greater changes
when these values are crossed. The RADMRI dataset has
32-bit floating point values at the voxel end points. This
provides for a wider range of values for a given resolution
model.

The average number of active edges refers to the voxel
edges intersected by the isosurface. Our run-time memory
consumption is proportional to the number of intersecting
voxels (around 40V bytes, where V is the number of inter-
secting voxels), and not the whole model. This coupled with
the level-of-detail aids in rendering high resolution models
at near real-time frame rates.

In Table 2, we give timings and the storage requirements
for the preprocessing algorithm. During pre-processing, we
store the edge ids for all the changes. In Table 3, we show the
time taken when the user makes a big change in the isovalue
to be rendered. For very small changes, we can change the
isosurface in less than a millisecond, without affecting the

Model Resolution Distinct Avg. No. of

isovalues Active Edges

RADMRI 69x261x69 904,216 176,104

BluntFin 256x256x256 54,268 402,918

Spherical Shell 256x256x256 33,743 176,504

Boston Teapot 256x256x256 236 320,382

CT Head Scan 512x512x252 259 803,113

Table 1: Details of the models used for experimentation

Model Error Pre-process Avg. Change in no. Disk

(%) Time(min.) of active edges Storage(MB)

RADMRI 0.1 2.9 27,435 21

BluntFin 0.2 5.1 72,196 320

Spherical Shell 0.2 4.5 65,234 300

Boston Teapot 0.7 16.4 85,556 281

CT Head Scan 0.8 44.6 203,139 800

Table 2: Details of the preprocessing algorithm

frame rates. For appreciable changes, we take around 0.1 -
0.27 seconds for changes as large as 1-10% of the total range
of isovalues. The average increase in the number of updates
reduces as the step size increases, as some of the redundant
changes cancel each other. For small changes in the isovalue,
we obtain rendering rates of 10-20 frames per second, which
drops to around 5-6 frames a second in case of large changes.
For small changes, the frame rate is still mostly dominated
by the triangle rendering performance of our machine (1.6
GHz PC with GeForce3 graphics card running Linux). Dur-
ing run-time, only a small percentage of time (around 0.04
seconds per frame) is spent in interpolating the vertex and
normal values (and normalizing them).

5. Conclusion

We have developed an out-of-core coherent algorithm for
fast isosurface extraction. The target application is one in
which small changes to isovalues are made to try to discover
and study the topological changes near some isovalues. The
algorithm achieves efficiency by ensuring that most infor-
mation unchanged from the previous extraction is not even
accessed. In our experience this algorithm provides a faster
alternative to ones that recompute the isosurface by starting
at the top of a hierarchy (like the interval tree).

Part of this fast performance comes at the cost of replicat-

c© The Eurographics Association 2003.

265



Chhugani et al / ISOSLIDER

Model Change in Average Updates Update

isovalue (%) per frame Time (sec)

RADMRI 0.1 3,500 0.008

RADMRI 1 29,316 0.07

RADMRI 5 88,481 0.21

RADMRI 10 116,296 0.27

BluntFin 1 64,185 0.14

BluntFin 2 80,068 0.2

BluntFin 5 76,877 0.19

BluntFin 10 71,453 0.17

Table 3: Run-time behavior of our algorithm

ing each piece of data with all its adjacent data. While disk
space is cheap, this still incurs a four to six fold increase
over the original data. We are investigating smooth tradeoffs
in replicating only some data and exploiting disk-cache co-
herence to fetch neighboring data.
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Figure 8: (a) A RADMRI isosurface (b) A Bluntfin isosurface

Figure 9: Red marks the places where the isosurface changes in topology after a small change to the isovalue for (a) A RADMRI
isosurface and (b) Boston Teapot isosurface

Figure 10: Change in the number of triangles as the error threshold changes
(a) No error: 740,249 triangles (b) 0.3% error: 645,153 triangles (c) 0.8% error: 536,856 triangles (d) 1.5% error: 80,197
triangles
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