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Abstract 

Even on the latest workstations ray tracing is still a very time-consuming algo­
rithm. This paper makes a thorough analysis of previous attempts to accelerate ray 
tracing by means of parallelization with general purpose processors and by means of 
designing special purpose processors. Since much work has been done concurrently 
by many researchers, only the most important milestones are mentioned. The con­
clusions drawn are quite different from those in many other papers. 

1 Introduction 

Ray tracing is now a well established image synthesis technique and has produced some 
of the most realistic images to date. Glassner's book [15] gives a very good introduction 
into the subject. Even though many software acceleration techniques have been devised 
[3] and fast graphics workstations are now widely available, ray tracing is still too slow 
for many applications. 

This paper makes a thorough analysis of previous attempts to accelerate ray tracing 
by means of parallelization with general purpose processors and by means of designing 
special purpose processors. It is an attempt to create a profound basis for promising future 
research work. 

The next section encourages further work by exemplifying the many benefits of ray 
tracing. Section 3 illustrates its huge computational expense and section 4 presents a 
long list of characterization criteria. The two following sections carefully analyze previous 
papers on hardware acceleration techniques for ray tracing. Finally conclusions are drawn 
and a prospect of our further research work is given. 

2 Advantages of Ray Tracing 

Following is a list of the most important advantages of ray tracing, especially in comparison 
to standard scan conversion algorithms: 

L Apart from global diffuse illumination - this is approximated either by an ambient 
term or by stochastically sampling the environment - the ray tracing algorithm 
solves the global illumination problem. 
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2, The scene may comprise all kinds of objects for which 

lit) an intersection with a ray and 

$ an object normal vector at the intersection point 

is computable. A few important examples are: 

• polygons, 

lit) parametric surfaces (Bezier/B-spline/Steiner patches, ' .. ), 

It quadrics (spheres, ellipsoids, cylinders, cones, hyperboloids, paraboloids), 

• algebraic surfaces, 

• procedurally defined surfaces (surfaces of revolution, sweep surfaces, CSG ob­
jects, ... ), 

• fractals, etc. 

There is no need to approximate everything with polygons. This means smaller 
model databases with more accurate scene descriptions. 

3. Hidden surface removal, shadows, reflections, and transparencies are in inherent part 
of the ray tracing algorithm, No extra calculations are necessary, 

4, Perspective transformation and clipping calculations are not necessary, Again these 
problems are automatically solved by the overall ray tracing idea, 

5, Penetrating objects can easily be handled, There is no need for intersection calcu­
lations between objects, 

6. Shades need only be computed for visible object points, 

7. Distributed ray tracing [9] is able to render a whole range of fuzzy phenomena, 
such as gloss (blurred or hazy reflections), translucency (blurred transpa.rency), 
penumbras, depth of field, and motion blur, 

8. The usefulness of the hemi-cube algorithm [8] for computing form fadors is limited 
due to aliasing artifacts caused by uniform sampling, Wallace et. al. [45] propose a 
ray tracing algorithm as a robust approach to perform the numerical integration of 
the form factor equation, 

3 Computational Expense 

The major reason why ray tracing is not much more widespread is its huge computational 
expense, Here is a typical example: 

500 x 500 pixels ---+ 250.000 pixels 
4 primary rays per pixel ---+ l.000.000 primary rays 
Average ray tree consists of 10 rays ---+ 10.000.000 rays 
Small scene comprises 2000 objects ---+ 20.000,000.000 ray-object intersection tests 
Exploitation of acceleration techniques ---+ LOOO.OOO,OOO ray-object or ray-extent 

intersection tests 
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One can easily change the numbers chosen above and come to a different solution, but we 
think it is a reasonable assumption that the overall number of intersection calculations, 
that have to be done, is at least at the order of one billion. 

Thus real-time ray tracing with "reasonable" machines seems impossible for the fore­
seeable future. 

4 Criteria 

Ray tracing as understood in this paper was invented by Whitted in 1980 [49]. Since that 
year hundreds of researchers have tried to diversify and to accelerate this powerful but 
slow algorithm - the latest cross-indexed guide to the ray-tracing literature [40] mentions 
more than 500 papers. 

In the following a check list to help characterizing these 500 ray tracing techniques 
and to aid designing new ray tracing systems is given. The list is divided into four parts: 
different levels of parallelism, use of coherence, hardware considerations, and finally other 
characterization criteria. 

4.1 Different Levels of Parallelism 

Parallel execution of the ray tracing algorithm can be performed at different levels. The 
following list is roughly sorted in order of increasing granularity: 

Coordinate leveL Three dimensional vector operations can be executed in parallel with 
respect to the x, y, and z coordinates. These operations occupy a major part of the 
ray tracing algorithm. 

Pixel leveL Different processors can shade different pixel areas at the same time. This 
means a partitioning of the image space. 

Ray leveL Since different rays are not dependent upon each other, they can be traced 
concurrently. Pixel level parallelism is the same as ray level parallelism for eye rays. 

Subpatch leveL Several chips have been developed to calculate the intersection of a ray 
with a spline patch. All of them use a divide and conquer strategy: they recursively 
subdivide a patch into four subpatches and intersect the ray with the subpatch 
bounding boxes until a termination criterion is met. The processing of the four 
subpatches could be done parallely. 

Object level. Many ray tracing acceleration techniques use octree or hierarchical extent 
schemes to subdivide the object space. If the subspaces are distributed among the 
processors, the ray-object intersection calculations can be performed independently. 

Tree leveL In constructive solid geometry (CSG) objects can be represented as binary 
trees, where the leaves represent primary objects and the internal nodes set opera­
tions (union, intersection, difference). Usually every tree node is represented by one 
processor so that the whole tree can be evaluated in a systolic fashion: one tree level 
after the other. 

Task leveL The shading of a pixel involves the following tasks [14J: 

«I intersection calculations of rays with objects, 
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• address calculations and database searches, and 

• accumulation of contributions from primary/secondary rays to obtain the final 
pixel color. 

Provided that many rays are traced at the same time, all these tasks can be executed 
parallely. 

Frame level. For animation sequences, different frames can be computed at the same 
time. 

Many variations and extensions of these eight parallelism types are thinkable. 

4.2 Use of Coherence 

Sutherland et. al. [42] define the term coherence as the extent to which the environment 
or the picture of it is locally constant. The proper use of coherence can vastly increase the 
speed of many graphics algorithms. The following kinds of coherence have been identified 
in numerous ray tracing papers: 

Object coherence. Local neighborhoods of space tend to be occupied by the same ob­
ject, and distinct objects are likely to be disjoint in this space. This property can 
be exploited by partitioning the object space and testing only those objects for 
intersection, that approximately lie along the rays' paths. 

Area or image coherence is the property that adjacent pixels on a display device are 
often covered by the same visible object. 

Ray coherence. Rays whose origins and directions are almost equal are likely to inter­
sect with the same objects in the environment. 

Temporal or frame coherence is the property that consecutive frames of an animation 
sequence tend to be very similar, despite small changes in objects and viewpoint. 
The ray tracer can significantly reduce the processing time for one frame by reusing 
the results of the previous frame. 

Data coherence. This term was introduced in [16J. It is related to the term locality of 
reference in virtual-memory management systems and means that most database 
references account for only a small subset of the objects. This property can be 
exploited by using fast data caches. 

4.3 Hardware Considerations 

Load balancing. An acceleration of factor n can only be achieved if all n processors have 
the same work load to perform. The equal distribution of the load can be achieved 
statically before the actual tracing of rays starts or dynamically during the ray 
tracing calculations. 

COll1H"mnication overhead. Every execution of n subproblems, especially when per­
formed asynchronously, needs some management overhead to distribute the sub­
problems, to communicate between the PEs, and to collect the subresults. This 
overhead should be as small as possible. In addition, deadlocks have to be properly 
prevented. 
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Configurability. The machine should be configurable with respect to the number of pro­
cessors (hardware components) so that each customer can make his or her optimal 
cost/performance choice. 

Special purpose hardware. The use of special purpose hardware often results in better 
performance. General purpose processors on the other hand are usually cheaper 
and freely programmable. This latter property is important to support the further 
development of new algorithms. 

Accuracy. In terms of accuracy floating point arithmetic is preferable to fixed point 
arithmetic. If fixed point arithmetic is used, the input data has to be properly 
scaled in order to avoid register overflows and underflows. 

Software environment. The successful use of any hardware architecture requires a 
good method for programming the system. The efficient support by device drivers 
and (existing standard or custom) compilers is essentiaL 

Programmibility. Quite often special architectures could support more applications 
than formerlyintended if they were just slightly more flexible. The lesson one should 
learn from this is to make even special purpose hardware as much programmable as 
possible. 

I/O speed .. Many authors report I/O as the major bottleneck of their architecture. Re­
duced I/O speed limits the usefulness of any hardware system. 

Regularity. The use of iteration to form arrays of identical cells simplifies the design 
and testing of VLSI circuits. 

4.4 Further Characterization Criteria 

The different kinds of parallelism, coherence and hardware features provide already a good 
taxonomy for examining ray tracing machines. Nevertheless there are still many design 
decisions that can only be characterized by the following list of criteria: 

Size of model database. Does the machine support arbitrary large model databases? 

Primitive types. A flexible ray tracing machine shouldn't force the application pro­
grammer to model the scene with just one type of primitives. 

Acceleration. Vvhat order of acceleration can be achieved in comparison to a single 
processor machine? Is it possible to perform interactive or even near real-time ray 
tracing? 

Antialiasing. Ray tracing is inherently a discrete technique because it only traces a 
finite number of rays. This causes aliasing problems because the infinitely thin rays 
determine the color of pixel areas. This means that the ray tracing algorithm must 
comprise some sort of antialiasing in order to be useful for different scenes. Therefore 
any good ray tracing machine must support antialising. 

Speed/quality tradeoff. Since it seems impossible to have real time ray tracing in the 
foreseeable future, a ray tracing machine should provide the possibility to trade off 
speed for quality, i.e. the machine should be able to compute a quick and diTty as 
well as a slow and good image. This can easily be done by tracing varying numbers 
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Figure 1: Static subdivision 

of rays to varying ray tree depths. The possibility to perform adaptive refinement 
ray tracing should also be provided. 

Flexibility. The hardware should have the flexibility to support different ray tracing 
techniques. Especially illumination modeling is still a very active research area. 

5 Parallelization with General Purpose Processors 

5.1 In'lage Space Subdivision 

The main idea behind image space subdivision strategies [31, 10, 36, 35, 50] is to divide 
the image plane into a number of distinct regions and to distribute these regions among 
the 11 processing elements (PEs). Each PE then independently computes the whole ray 
tree for all the primary rays going through the pixels of its region(s). Two major problems 
have to be solved: The work load must be distributed evenly among the PEs and each 
PE has to have access to the whole model database. 

Load balancing 

The balancing of work loads can be achieved statically or dynamically. Static load balanc­
ing means that the image plane regions are determined and distributed in a pre-process. 
Several choices are possible: 

A Divide the image plane into n equal sized regions. 

B Give each PE each n-th scanJine to compute. 

C Each PE is given each fo-th pixel horizonta11y and vertically. 

D Let the host computer (or the PEs) perform coarse resolution ray tracing (e.g. ev­
ery 8th pixel horizontally and vertically) in a pre-processing step. The work load 
for these pixels is recorded. Assuming that neighboring pixels will have a similar 
loa.d a.ssociated with them, a good static load balancing can be achieved by recur­
sive binary subdivision of the image plane -- a region is subdivided such that both 
subregions have the same work load associated with them. 

If only load balancing is taken into consideration, A will be the worst and either B, C, 
or D be the best choice, because the load will hardly ever be distributed evenly over the 
image plane. Unfortunately the preprocessing step in D is very time consuming and C 
makes very poor use of coherence. 
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Dynamic load balancing may be achieved as proposed by Orcutt [31]. At the beginning 
each PE gets a group of pixels and starts computing its intensities/colors. Whenever a PE 
has finished, it sends the pixel colors to the image collector and gets a new pixel group 
from the coordinate server. 

Storage of model database 

1£ there is enough local memory available than each PE can store a copy of the whole 
database. This is the easiest solution and the obvious choice if e.g. the PEs are worksta­
tions. 

1£ the computer under consideration is a multiprocessor machine with a large number 
of processors, then the database cannot be duplicated n times because usually the local 
memory modules are of limited capacity. The alternative approach here is to store the 
model database once in global shared memory and to organize the local memories as ca,ches 
in order to alleviate the access bottleneck problem. Green and Paddon [16, 17, 18, 19] 
made a thorough analysis of how to efficiently organize main and cache memories. They 
propose to arrange the processor system into a tree structure with the controller processor 
placed at its root. This distributes the root fanout over the whole tree. 

Distributed memory is out of question here because each PE has to have regular access 
to each part of the database. This would cause a huge interprocessor communication 
overhead and could easily end in a deadlock situation. 

Overall characterization of image space subdivision architectures 

+ High flexibility 

Nothing was said about how the PEs trace the rays through their pixels and how 
the shading calculations look like. Any existing and future software technique for 
ray tracing is easily supported. 

+ Near linear speedup 

Since no communication between PEs is necessary, a near linear speedup is possible. 

± Large databases 
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There seems to be no efficient solution for extremely large databases. Image space 
suLdivision is best suited for MIMD architectures with relatively few but powerful 
processors with large aulOunts of memory. 

± Coherence 

The architecture doesn't directly exploit any form of coherence - especially not 
object coherence - but the software running on the PEs has every possibility to do 
so. 

+ Special purpose hardware 

There is a lot of potentiality to support the PEs with special purpose hardware. 
A few examples are: intersection calculations [34, 44, 5, 39L 3D vector operations 
[47,50], and octree traversal [1]. 

+ Interactive ray tracing 

Interactive ray tracing - one frame in less than one minute even for complex scenes 
- is possible in the foreseeable future. 

5.2 Object Space Subdivision and Hierarchical Trees 

Since Whitted's paper was published in 1980 [49], numerous software acceleration tech­
niques have been devised [3]. These techniques can be roughly classified according to the 
data structure they use: uniform 3D grids of voxels, octrees, BSP trees, and hierarchical 
trees of extents. Many attempts have been made to map these acceleration data struc­
tures onto a suitable multi-processor topology. The general idea is to distribute the objects 
among the PEs. Each PE then computes intersections of rays with only a small subset of 
the scene objects. Propagation of rays through object space is achieved by interprocessor 
communication. These data driven architectures can only be successful if a good load 
balancing strategy is found and the number of ray messages is minimized. 

Nonuniform static subdivision 

Kobayashi et. at [27] use an adaptive division graph based on octrees to partition the 3D 
object space. Each PE stores all objects of one octree leaf voxel in its local memory. The 
PEs also store information about location and associated PE addresses of all neighboring 
voxels. A hypercube (binary n-cube) network is used to propagate the ray message packets. 

Hierarchical tree of extents (HTE) 

HTEs can be used to speed up ray tracing. The scene objects are first represented as a 
hierarchy of bounding volumes. Intersection testing is done by a depth-first traversal of 
the tree, pruning a branch whenever a bounding volume is missed entirely. 

Both Salmon and Goldsmith [37] as well as Schers()l1 and Caspary [38, 6] propose 
similar systems for a parallel implementation of these tree-tracing methods. The general 
idea is to divide the HTE into an upper tree and a set of lower trees. Each PE stores a 
copy of the upper tree while each of the lower trees is randomly sent to only one of the 
PEs. This allocation scheme builds the basis for dynamic load balancing. Any free PE 
can shoot a ray into the scene by starting its upper tree searching process. vVhen a leaf of 
the upper tree is reached, a ray message is sent to the corresponding lower tree PE which 
then continues with the lower tree traversal. 
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2~D static subdivision 

Another possibility is to use only two dimensions for the subdivision process such that the 
three dimensional scene bounding 1-,0X 15 p3.rtitioned into a number of parallel columns. 
Each PE is responsible for one column. To achieve a good static load balancing, Kobayashi 
et. al. [28, 26] suggest distribution schemes similar to those in Fig. 1 A and C. Other 
researchers prefer to use a sub-sampling preprocessing phase in order to have a rough 
work estimate for a regular grid of columns. This grid is then subdivided similar to Fig. 
1D either by recursive binary subdivision [4, 32, 33] or by means of a graph partitioning 
scheme (22]. 

Regular 3D grid of voxels 

Caubet et. al. [7] suggest to subdivide the object space into a regular grid of 10 x 10 x 10 
metavoxels. Each metavoxel processor further subdivides its subspace into 100 x 100 x 
100 = 1.000.000 voxels. The major advantage of the VOXAR architecture is that ray 
tracing is reduced to incremental integer calculations but the machine suffers from insuf­
ficient load balancing, severe aliasing artifacts, expensive interprocessor communication, 
and large storage problems. 

Dynamic load balancing 

Some early papers [11, 30] discuss dynamic scheduling performed at run time. Whenever 
there is a load imbalance between neighboring PEs, objects are locally redistributed by 
sliding subspace boundaries. The overhead to detect and rebalance work load differences 
inevitably degrades the performance of the system. 

Communication overhead 

The biggest problem with object space subdivision methods is the huge communication 
overhead caused by passing rays between PEs. Here is an example of what information a 
ray message structure typically at least contains: 

bytes 
ray ongm 3 x float 12 
ray direction 3 x float 12 
ray length 1 x float 4 
ray color 3 x byte 3 
ray depth 1 x byte 1 
pointer t.o object 1 x address 4 

E = 36 

If we consider again our exampJe from section :3 (10.000.000 rays) and a machine with 
tens, hundreds, or even thousands of processors, we come to the conclusion that the sum 
of all ray messages lies in the range of Giga bytes, possibJy even Tera bytes. 

Overall characterization of object space subdivision architectures 

+ Spatial coherence 

Object space partitioning systems efficiently exploit spacial coherence by performing 
intersection tests only for those objects that approximately lie along the rays' paths. 
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Figure 3: Hypercube message routing 

+ Large databases 

Because the objects are distributed among the PEs, even very large model databases 
can be handled. 

COInmunication overhead 

As outlined above, these architectures cause a huge interprocessor communication 
overhead. The more PEs contribute, the larger is the overhead. 

Internal fragnlentation 

Objects intersected by voxel boundaries end up in more than one voxel. This po­
tentially requires a ray to be intersected with the same object more than once. 
Arnaldi's mailbox technique [2] to prevent this cannot be applied here, because it 
requires each object to be stored exactly once. The more PEs are involved, the finer 
is the subdivision and the larger becomes the internal fragmentation problem. 

Deadlocks 

If any PE can send messages to any other PE, then there is a high possibility of 
deadlocks. To prevent this, Green [18J proposes a costly handshake protocol. 

± Hypercube message routing 

Because _the hypercube combines many advantageous characteristics (2n nodes, 
n2n - 1 links, dimension = diameter = degree = 17" simple message routing, high 
fault tolerance) most researchers prefer it to other interconnection topologies. Nev­
ertheless a message may have to pass up to n - 1 PEs before it finally reaches the 
destination PE, thus ray message sending is slow. 

Speedup 

Due to the communication and fragmentation problems, the achievable speedup is 
only sublinear. 

± Special purpose hardware 

l\'Iost object space subdivision systems reported are intended for a large number of 
PEs. It \-vould be very costly to support every PE e.g. with intersection hardv,;are. 
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Software 

In comparison to image space subdivision systems, the software to run on these 
systems is more determined by the hardware, i.e., existing software may have to be 
completely redesigned. 

6 Special Purpose Hardware for Ray Tracing 

\Ve consider the following eight approaches to accelerate ray tracing with dedicated graph­
ics hardware as promising. 

Raycasting Machine 

The famous Ray Casting Maschine by Kedem and Ellis [23, 25, 24, 12, 13] classifies a 
grid of parallel lines against a CSG object. It mainly consists of bit serial processors 
that lTlirror the CSG tree. The primitive classification processors (PCs) at the leaves of 
the tree concurrently compute the intersection of a line with the primitive solids. The 
classification-combine processors (CCs) at the internal nodes of the tree compute the set 
operations on streams of internal segments. The results come out of the root processor. 

Unfortunately, the Raycasting .t\1achine is of limited use for many graphics applica­
tions. Currently, the CSG objects are restricted to boolean combinations of linear and 
quadric halfspaces. This means that even many relatively simple objects (e.g. machine 
parts) can only be roughly approximated with this form of ray casting. Moreover, the 
machine only solves the visible surface problem because only parallel eye rays are traced. 
Consequently there are no shadows, no reflections, and there is no perspective view of 
the scene. Theoretically light rays for light sources at infinity could be traced in a second 
pass, but matching of eye ray intersection points and light ray intersection points would 
require additional calculations. 

Ray-Patch Intersections 

Pulleyblank and Kapenga [34] developed a VLSI chip for ray tracing bicubic patches in 
Bezier form. To find the intersection of a patch with a ray, the patch is broken into four 
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Figure 5: Ray-Triangle Intersection [44] 

subpatches, each of whose bounding boxes are computed and tested for an intersection 
with the rayo If the ray hits the bounding box of a subpatch and the termination conditions 
o.re not met, i.eo the patch is not smaller than a specified accuracy requirement and the 

mum level of subdivision has not been reached, the subpatch is placed on a stack 
to be processed further. Because of the large number of additions the implementation is 
only bit serial but parallel in x, y and z. 

Bouatouch eL al. [5] made a similar design to the one described above but gave more 
implementation details . 

. Schneider [39J extended the idea of ray tracing splines to the more general rational 
B·spline patches because non-rational splines cannot precisely define conic sections. He 
performed subdivision with a modified OSLO algorithm. 

Ray-Triangle Intersections 

Voorhies and Kirk [44] reported an efficient algorithm to determine if a line segment 
and a triangle intersecL The algorithm is predominately based on binary subdivision and 
simple comparisons and therefore extremely favourable for VLSI implementation. The 
intersection of the line segment with the triangle plane is found by recursively subdividing 
the line until the midpoint has distance zero from the planeo 

Next the triangle vertices and the intersection point are projected to 2D by simply 
dropping the coordinate, whose absolute value in the plane normal is largesL A preliminary 
point-in-triangle test is performed by projecting the triangle vertices and the intersection 
point onto one of the remaining two axes. Only if the intersection point's projection lies 
within the extent of two triangle edges can the intersection point lie within the triangle. 
The actual triangle edge locations that project onto the same point as the intersection 
point are found by binary recursive subdivision along the chosen axiso Finally the same 
procedure (extent test and binary subdivision) is performed with these two edge locations 
and the intersection point, but this time aJong the second axis (see Fig 5). 

Given the (u,v) coordinates of the triangle vertices ((0,0), (0,1), (1,0)), the last three 
binary subdivision processes may additionally compute the (u,v) coordinates of the edge 
locations and the intersection point. This solution to the inverse texture mapping problem 
could easily be extended to arbitrary (u,v) coordinates for the triangle vertices, which 
would be more useful if, as is mostly the case, triangles serve only as approximations for 
more complex surfaces. 

88 



The only problem seems to be the determination of the distances of the initial line 
endpoints from the triangle plane, which means evaluating the plane equation in floating 
point arithmetic. Besides the algorithm needs two line endpoints as input instead of a 
starting point and a direction, which is the usual definition of a ray. 

3D P Processor 

The 3DP [47] is a parallel architecture that operates on length-3 vectors. Its execution 
unit consists of three arithmetic-logic units (ALUs) and three floating-point units (FPUs) 
operating in parallel and is further supported by two crossbar switches. Since 3D vector 
operations dominate the intersection and lighting calculations of ray tracers, they could 
be efficiently computed on the 3DP: cross product (v = VI XV2), dot product (v = VI o V2), 

sum/difference (v = VI ± V2), scaling (v = a· VI)' etc. Unfortunately, there is no square 
root unit to aid computing normalized vectors. 

CORDIC Processor 

CORDIC is an acronym for COrdinate Rotation DIgital Computer. It can be used for 
rotating a planar vector V as well as computing its length and phase in different coordinate 
systems m [43, 46]. Since the CORDIC method is an iterative algorithm based on shift 
and add operations only, it is extremely suitable for VLSI implementation. Kocsis and 
Bohme [29] report many 3D graphics applications for CORDIC processors, including 
computations for 

point-line and point-plane distances, 
the angle between two vectors (scalar product), 
point inclusion problems for convex polygons, 
ray-plane intersections, 
ray-quadric surface intersections, 
ray-bicubic surface intersections, and 
intensity calculations. 

Octree Traversal 

Agate et. al. [1] developed the HERO algorithm for rapid traversal of octree data struc­
tures. The algorithm generates the addresses of child voxels in the order they are pene­
trated by the ray. Since explicit ray-voxel intersection calculations are avoided, only simple 
arithmetic and logic operations are required. Both software and hardware implementations 
are discussed. 

IteIll Buffer 

The item buffer [48] speeds up ray tracing for eye rays. A z-buffer algorithm is executed to 
record the identity of the closest object for all item buffer pixels. Ray tracing a primary 
ray may then reduce to a simple buffer lookup. This algorithm can be supported by 
scan-conversion and z-buffer hardware. 

The light buffer [20], though similar in concept to the item buffer, is more diffi.cult to 
support because it requires general list handling facilities. 
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Area Sampling Machine 

The most complex ray tracing machine known to us is the Area Sampling Machine (ASM) 
proposed by Sung [41]. Instead of point sampling the environment by tracing single rays, 
the ASI'l/l performs area sampling by parallely tracing bundles of rays bounded by a 
viewing frustrum. This is performed by up to 85 Area Samplers (ASs), each of which is a 
simple z-buffer style rendering pipeline. The scene database is stored once and periodically 
broadcasted to all ASs. The ASM is a pure visibility determination machine; the actual 
shading is performed in software on the host computer. 

7 Conclusions and Future Work 

Even though the basic ray tracing idea is quite simple, the actual software implementation 
of a ray tracer usually is quite a complex project. Due to different scene description and 
lighting models as well as different intersection, acceleration, and sampling techniques, 
numerous quite different ray tracers exist nowadays. Pickingjust one ray tracing algorithm 
for hardware implementation would mean ignoring all others and therefore restricting its 

of applications. But even then a whole VLSI ray tracing machine would be too 
complex. 

\"'hat could and should be supported with special purpose hardware is that part of 
the algorithm, that is common in all ray tracers and occupies most of the computing time: 
the actual tracing of rays, i.e., finding the first intersection point of a ray with all scene 
objects. VLSI hardware therefore is particularly efficient and desirable for intersection 
calculations. To be really useful for unburdening general purpose processors, four items 
of information have to be computed: 

'> the existence of an intersection point, and if so for non-shadow rays additionally 

• the coordinates of the intersection point, 

,. the normalized object normal vector at the intersection point, and finally 

• the (u,v )-parameters of the intersection point to solve the inverse texture mapping 
problem. 

Concerning parallelization, image space subdivision architectures are clearly prefer­
able to object space subdivision architectures because of their greater flexibility and 
smaller comml1l1ication overhead. Object space subdivision should additionally be done 
within each PE, but in software. 

Our future work will be especially aimed at image space subdivision architectures with 
relatively few but powerful PEs. Currently a parallel implementation based on a pool of 
workstations is under way. Since RAl"1 becomes cheaper and cheaper, we don't see any 
real problem to store the full model database in each PE memory. 
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