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Abstract: We introduce a noise-resistant algorithm for reconstructing a watertight surface from point cloud data.
It forms a Delaunay tetrahedralization, then uses a variant of spectral graph partitioning to decide whether each
tetrahedron is inside or outside the original object. The reconstructed surface triangulation is the set of triangular
faces where inside and outside tetrahedra meet. Because the spectral partitioner makes local decisions based on
a global view of the model, it can ignore outliers, patch holes and undersampled regions, and surmount ambiguity
due to measurement errors. Our algorithm can optionally produce a manifold surface. We present empirical
evidence that our implementation is substantially more robust than several closely related surface reconstruction
programs.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computing Methodologies]: Computer Graph-
ics Computational Geometry and Object Modeling

1. Introduction
Laser range finders record the geometry of real-world three-
dimensional objects in the form of point coordinates sam-
pled from their surfaces, plus auxiliary information such
as the laser’s position. Surface reconstruction algorithms
recreate geometric models from these data, expressed in
a form more useful for applications such as rendering or
simulation—for example, as a surface triangulation or as
splines. Laser range finders are imperfect devices that in-
variably introduce at least two kinds of errors into the data
they record: measurement errors (random or systematic) in
the point coordinates, and outliers, which are spurious points
far from the true surface. Furthermore, objects often have
regions that are not accessible to scanning and so remain
undersampled or unsampled. The point cloud in Figure 1
(bottom center) suffers from all the above.

When these problems are severe, data arise for which no
algorithm can construct an accurate, consistent, watertight
model of an object’s surface solely by examining local re-
gions of a point cloud independently. A successful algorithm
must take a global view.

Figure 1: A watertight manifold surface triangulation re-
constructed by our eigencrust algorithm; a photograph of
the source object; the point cloud input to the algorithm,
with 4,000 artificial random outliers; and the sorted com-
ponents of the two eigenvectors used for the reconstruction.
2,008,414 input points; 12,926,063 tetrahedra; 3,605,096
output triangles; genus 14 (source object has genus 1); 437
minutes reconstruction time, including 13.5 minutes to tetra-
hedralize the point cloud, and 157 minutes and 265 minutes
to compute the first and second eigenvectors, respectively.
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Our innovation is to introduce the techniques of spectral
partitioning and normalized cuts into surface reconstruction.
These techniques are used heavily for tasks such as image
segmentation and parallel sparse matrix arithmetic, where
partitioning decisions based on a global view of an image
or a matrix can outperform local optimization algorithms.
Although the global optimization step makes our algorithm
slower than many competitors, it reconstructs many models
that other methods cannot.

The general technique we use to produce a surface from
a point cloud is well known: compute the Delaunay tetrahe-
dralization of the points, then label each tetrahedron inside
or outside. (Recent advances in Delaunay software make it
possible to tetrahedralize sets of tens of millions of points.)
The output is a triangulated surface, composed of every tri-
angular face where an inside tetrahedron meets an outside
tetrahedron. This procedure guarantees that the output sur-
face is watertight—it bounds a volume, and there is no route
from the inside to the outside of the volume that does not
pass through the surface. Watertight surfaces are important
for applications such as rapid prototyping and volume mesh
generation for finite element methods.

Our contribution is an algorithm for labeling the tetrahe-
dra that is substantially more robust than previous methods.
We call the surface it produces the eigencrust. The eigen-
crust algorithm creates a graph that represents the tetrahedra.
A spectral partitioner slices it into two subgraphs, an inside
subgraph and an outside subgraph. Because the spectral par-
titioner has a global view of the point set, it is effective at
identifying the triangular faces that are most likely to lie at
the interface between an object and the space around it.

2. Related work
There has been much work on reconstructing surfaces from
point clouds. The idea of labeling each Delaunay tetrahe-
dron inside or outside, then extracting a surface using the
labels, appears in an early paper of Boissonat [Boi84], and
is also harnessed in the Tight Cocone algorithm of Dey
and Goswami [DG03] and in the Powercrust algorithm of
Amenta, Choi, and Kolluri [ACK01] (with cells of a power
diagram replacing tetrahedra). In this paper, we compare
implementations of the Tight Cocone and Powercrust algo-
rithms with our eigencrust software.

A recent advance is the Robust Cocone algorithm of Dey
and Goswami [DG04], a Delaunay-based reconstruction al-
gorithm that is provably robust against small coordinate er-
rors. Their algorithm is not robust against undersampling
or outliers, and in fact is easily defeated by undersampling.
We observe that a variant of our spectral algorithm could be
used to help the Robust Cocone algorithm to label tetrahe-
dra when the sample set is not dense enough for the Robust
Cocone’s original labeling algorithm to succeed. Unfortu-
nately, we did not have sufficient time to obtain a Robust
Cocone implementation for comparison in this paper.

Another branch of surface reconstruction algorithms are
those that define a function over space whose zero set is a
surface, which can be triangulated by techniques such as
marching cubes [LC87]. These algorithms vary widely in
how they compute the function. Hoppe, DeRose, Duchamp,
McDonald, and Stuetzle [HDD∗92] provide one of the ear-
liest algorithms, which locally estimates the signed distance
function induced by the “true” surface being sampled. Bit-
tar, Tsingos, and Gascuel [BTG95] use the medial axis of the
point set to improve the speed of zero-set methods and their
ability to reconstruct topologically complex objects. Cur-
less and Levoy [CL96] developed an algorithm that is par-
ticularly effective for laser range data comprising billions
of point samples, like the statue of David reconstructed by
the Digital Michelangelo Project [LPC∗00]. A zero-set ap-
proach by Carr et al. [CBC∗01] adapts the radial basis func-
tion-fitting algorithm of Turk and O’Brien [TO99] to sur-
face reconstruction. Ohtake, Belyaev, Alexa, Turk, and Sei-
del [OBA∗03] use a partition-of-unity method with a fast
hierarchical evaluation scheme to compute surfaces for data
sets with over a million points.

Closely related to the zero-set approaches are the level-set
algorithms of Whitaker [Whi98] and Zhao, Osher, and Fed-
kiw [ZOF01]. Other important reconstruction algorithms are
the mesh zippering algorithm of Turk and Levoy [TL94],
Bernadini et al.’s [BMR∗99] ball-pivoting algorithm, and
Kobbelt, Botsch, Schwanecke, and Seidel’s [KBSS01] meth-
od for extracting surfaces from volumetric data, which in-
cludes effective methods of extracting sharp corners that are
often missed by marching cubes.

Different branches of algorithms have different advan-
tages. The main advantages of the Delaunay algorithms are
the effortlessness with which they obtain watertight surfaces;
the ease with which they adapt the density of the triangles
to match the density of the points (unlike marching cubes),
for models whose point density varies greatly from region
to region; and the theoretical apparatus that makes it pos-
sible to prove the correctness of some of these reconstruc-
tion algorithms on well-sampled smooth surfaces [ABK98,
AB99, AK00, ACDL02]. Here, we show that spectral parti-
tioning can help make these methods robust for surfaces that
are noisy or not sufficiently well-sampled for the theoretical
guarantees to apply.

Spectral methods for partitioning graphs were introduced
by Hall [Hal70] and Fiedler [Fie73] and popularized by
Pothen, Simon, and Liou [PSL90]. They are used for tasks
such as image segmentation, circuit layout, document clus-
tering, and sparse matrix arithmetic on parallel computers.
The goal of graph partitioning is to cut a graph into two sub-
graphs, each roughly half the size of the original graph, so
that the total weight of the cut edges is small (each edge is
assigned a numerical weight). There are many ways to for-
mulate the graph partitioning problem, which differ in how
they trade off the weight of the cut against the balance be-
tween the two subgraphs. Most graph partitioning formula-
tions are NP-hard, so practical partitioning algorithms (in-
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cluding spectral methods) are heuristics that try to find an
approximate solution.

One of the most effective formulations of spectral par-
titioning is the normalized cuts criterion of Shi and Ma-
lik [SM00], which is particularly effective at trading off sub-
graph balance against cut weight. We make a simple modifi-
cation to the Shi–Malik algorithm (closely related to a tech-
nique of Yu and Shi [YS01]) that greatly improves our sur-
face reconstruction algorithm’s speed and the quality of the
surfaces it produces.

3. Spectral Surface Reconstruction
We assume the reader is familiar with the notions of De-
launay triangulations and Voronoi diagrams in three dimen-
sions, and with the geometric duality that maps each Delau-
nay tetrahedron to a Voronoi vertex and each Delaunay face
to a Voronoi edge. See Fortune [For92] for an introduction.

The eigencrust algorithm begins with a set S of sample
points in space. Let S+ be the set S augmented with eight
bounding box vertices, the corners of a large cube that en-
closes the sample points. (The width of the cube should be
much greater than the diameter of S, so that no sample point
lies near any side of the cube). Let T be the Delaunay tetra-
hedralization of S+. Let Q be the Voronoi diagram of S+

(and the geometric dual of T ). For each tetrahedron t in the
tetrahedralization T , there is a dual vertex v of the Voronoi
diagram Q, and v is the center of the sphere that circum-
scribes t.

The goal is to label each tetrahedron—or equivalently,
each Voronoi vertex—inside or outside. The eigencrust al-
gorithm labels the Voronoi vertices in two stages. Each stage
forms a graph and partitions it.

In the first stage, our algorithm labels a subset of the
Voronoi vertices called the poles, following Amenta and
Bern [AB99]. We form a graph G, called the pole graph,
whose nodes represent the poles. See Figure 2 for a two-
dimensional example. The edges of G are assigned numer-
ical weights that reflect the likelihood that certain pairs of
poles are on the same side of the unknown surface that we
wish to reconstruct.

The graph G is represented by a pole matrix L. We par-
tition the poles of G by finding the eigenvector x that corre-
sponds to the smallest eigenvalue of a generalized eigensys-
tem Lx = λDx, and using that eigenvector to cut the graph
into two pieces, the inside and outside subgraphs. Thus we
label each pole inside or outside.

In the second stage, we form another graph H whose
nodes represent the Voronoi vertices that are not poles, and
partition H to label all the Voronoi vertices (equivalently,
the tetrahedra) that were not labeled in the first stage. The
goal of the second stage is different from the goal of the
first: the non-poles are somewhat ambiguous—most of them
could arguably be either inside or outside—so the partitioner

Figure 2: Top: the Delaunay triangulation (solid) and
Voronoi diagram (dotted) of a set of points sampled from a
closed curve. Gray Voronoi vertices are poles; white Voronoi
vertices are not. Note that three-dimensional examples have
many more non-pole Voronoi vertices than two-dimensional
examples. Center: the negatively weighted edges of the pole
graph G, before the bounding box triangles are collapsed
into a single supernode. Light gray triangles are the duals
of poles labeled inside by the first stage of spectral partition-
ing. The dark gray triangle does not dualize to a pole; it is
labeled inside by the second partitioning stage. Bottom: the
positively weighted edges of G.

tries to assign them labels that produce a relatively smooth
surface with low genus.

Now all the Voronoi vertices have labels, so all the tetra-
hedra of T have labels. The eigencrust is a surface triangula-
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tion consisting of every triangular face of T where an inside
tetrahedron meets an outside tetrahedron. If the points in S
are sampled densely enough from a simple closed surface,
then the eigencrust approximates the surface well.

If all the tetrahedra adjoining a sample point are labeled
outside (or all are inside), the point does not appear in the
reconstructed surface triangulation. In Section 4, we see that
this effect provides our algorithm with effective and auto-
matic outlier removal. No other effort to identify outliers is
required.

Why are the Voronoi vertices labeled in two separate
stages? Because the non-poles are ambiguous, they tend to
“glue” the inside and outside tetrahedra together. If they are
included in the first partitioning stage, the graph partitioner
is much less successful at choosing the right labels, and runs
more slowly too. A two-stage procedure produces notably
better and faster results.

We have chosen the graphs’ edge weights (by trial and
error) so the algorithm tries to emulate the provably correct
Cocone algorithm of Amenta et al. [ACDL02] when there is
neither noise nor outliers, and the sampling requirements of
the Cocone algorithm are met. Our algorithm usually returns
significantly different results only under conditions where
the Cocone algorithm has no guarantee of success.

Our algorithm includes three optional steps. After the first
partitioning stage, we can identify some tetrahedra that may
be mislabeled due to noise, and remove their labels (so they
are assigned new labels during the second stage). This step
improves the resilience of our algorithm to measurement er-
rors. After the second partitioning stage, we can convert the
surface to a manifold (if it is not one already) by relabeling
some inside tetrahedra outside. After the final surface recov-
ery step, we can smooth the surface to make it more useful
for rendering and simulation.

3.1. The Pole Graph
Imagine that we form a graph whose nodes represent the ver-
tices of the Voronoi diagram Q (and their dual tetrahedra in
T ), and whose edges are the edges of Q (omitting the edges
that are infinite rays). Suppose we then assign appropriate
weights to the edges, and partition the graph into inside and
outside subgraphs.

Unfortunately, this choice leads to poor results. The main
difficulty is that the Delaunay tetrahedralization T invari-
ably includes flat tetrahedra that lie along the surface we
are trying to recover, as Figure 3(a) illustrates. These tetra-
hedra are not eliminated by sampling a surface extremely
finely; they are a natural occurrence in Delaunay tetrahe-
dralizations. Many of them could be labeled inside or out-
side equally well. They cause trouble because they can form
strong links with both the tetrahedra inside an object and the
tetrahedra outside an object, and thus prevent a graph parti-
tioner from finding an effective cut between the inside and
outside tetrahedra.

vu
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Figure 3: (a) No matter how finely a surface is sampled,
tetrahedra can appear whose circumscribing spheres are
centered on or near the surface being recovered. (b) The
Voronoi cell c of a sample point s. The poles of s—the
Voronoi vertices u and v—typically lie on opposite sides of
the surface being recovered, especially if the cell is long and
thin.

To solve this problem, Amenta and Bern [AB99] iden-
tify special Voronoi vertices called poles. Poles are Voronoi
vertices that are likely to lie near the medial axis of the sur-
face being recovered. The Voronoi vertices whose duals are
the troublesome flat tetrahedra are rarely poles, because the
problem tetrahedra lie near the object surface, not near the
medial axis.

Each sample point s in S can have two poles. Let c be the
Voronoi cell of s in Q (i.e. the region of space composed of
all points that are as close or closer to s than to any other
sample point in S+). See Figure 3(b) for an example. The
Voronoi cell c is a convex polyhedron whose vertices are
Voronoi vertices. It is easy to compute the vertices of c,
because they are the centers of the circumscribing spheres
of the tetrahedra in T that have s for a vertex.

Let u be the vertex of c furthest from s; u is called a pole
of s. Let v be the vertex of c furthest from s for which the
angle ∠usv exceeds 90◦; v is also called a pole of s. Fig-
ure 3(b) illustrates the two poles of a typical sample point.
The eight bounding box vertices in S+ are not considered to
have poles. Let V be the set of all the poles of all the samples
in S.

Amenta and Bern show that in the absence of noise, the
tetrahedra that are the duals of the poles are likely to extend
well into the interior or exterior of the object whose surface
is being recovered. The tetrahedra whose duals are not poles
often lie entirely near the surface, as Figure 3(a) shows, so it
is ambiguous whether they are inside or outside the object.

The eigencrust algorithm identifies the set V of all poles,
then constructs a sparse pole graph G = (V,E). The set E of
edges is defined as follows. For each sample s with poles u
and v, (u,v) is an edge in E. For each pair of samples s, s′

such that (s, s′) is an edge of the Delaunay tetrahedralization
T , let u and v be the poles of s, and let u′ and v′ be the poles
of s′; then the edges (u,u′), (u,v′), (v,u′), and (v,v′) are
all edges of E. Every pole is the dual of a tetrahedron, so
tetrahedra that adjoin each other are often linked together in
G, whereas tetrahedra that are not close to each other are not
linked.
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Figure 4: (a) Small angles of intersection between circum-
scribing spheres may indicate that two tetrahedra are on op-
posite sides of the surface being recovered. (b) Large angles
of intersection usually indicate that two tetrahedra are on
the same side of the surface.

We assign edge weights in a heuristic manner based on
several observations of Amenta and Kolluri [AK00]. If S
is sampled sufficiently densely from a smooth surface, the
Voronoi cells are long and thin, and the longest dimension of
each cell is oriented roughly perpendicular to the surface, as
Figure 3(b) depicts. Of course, point sets that arise in prac-
tice are often not sampled densely enough, but if a sample s
has a long, thin Voronoi cell c, the likelihood is high that its
poles u and v are on opposite sides of the surface. Therefore,
we assign the edge (u,v) a negative weight, to indicate that
if one of u or v is labeled inside, the other should probably
be labeled outside.

Let tu and tv be the tetrahedra in T whose duals are u and
v. Let Cu and Cv be the circumscribing spheres of tu and tv.
The spheres Cu and Cv intersect at an angle φ. Amenta and
Kolluri show that if φ is small, as illustrated in Figure 4(a),
then c is quite long and thin, and the likelihood is high that
tu and tv lie on opposite sides of the surface. If φ is close to
180◦, then c is relatively round, and it is unsafe to conclude
that tu and tv lie on opposite sides. We assign (u,v) a weight
of wu,v = −e4+4 cos φ, so that wu,v is most negative when φ is
closest to zero.

We assign positive weights to the other edges in E. These
weights are the glue that hold proximal tetrahedra together
and ensure that G is likely to be cut only near the original
surface, where the glue is weakest. Let (u,v) be an edge
of E that is not assigned a negative weight—thus, there is a
Delaunay edge (s, s′) for which u is a pole of s and v is a
pole of s′, but there is no sample point s′′ whose poles are u
and v. Again, let tu and tv be the tetrahedra that are dual to
u and v, and let Cu and Cv be their circumscribing spheres,
which intersect at an angle φ. We assign (u,v) a weight of
wu,v = e4−4 cos φ. Amenta and Kolluri show that if φ is close
to 180◦, as illustrated in Figure 4(b), then u and v are likely
to lie on the same side of the surface, so we use a large,
positive edge weight. If φ is close to 0◦, we choose a small
edge weight, so that u and v are not strongly glued together.

It may occur that the spheres Cu and Cv do not intersect at
all, in which case we remove the edge (u,v) from E.

We could partition the graph G directly, but we know a
priori that certain tetrahedra must be labeled outside, and it
is advantageous to fix their labels prior to the partitioning
step. Let O be the set of poles whose dual tetrahedra are
known to be outside the object being reconstructed. We take
advantage of this information by forming a new graph G′

that is similar to G, but the poles in O are collapsed into a
single supernode z. If u and u′ are poles in O, and (u,u′) is
an edge of G, the edge is eliminated (not present in G′). If v
is a pole in G that is not in O, then in the new graph G′, the
edge (z,v) has weight wz,v = ∑u∈O wu,v. Collapsing outside
poles into a single supernode makes the spectral partitioner
faster and more accurate.

What poles does O contain? There are several types of
tetrahedra that can be labeled outside prior to the partitioning
step.

• Any tetrahedron with a vertex of the cubical bounding box
must be outside.

• If the point samples were acquired by a laser range finder,
the tetrahedra that lie between the laser source and any
sample point it recorded must be outside. Of course, there
may be measurement errors in the positions of the sample
points and the laser source, so we recommend only label-
ing those tetrahedra that the laser penetrated more deeply
than some tolerance depth, multiple times.

• For particularly difficult reconstructions, a user may vi-
sually identify specific points in space that are outside
the object. The tetrahedra containing these points are la-
beled outside. Collapsing just one such tetrahedron into
the outside supernode can change the labeling of many
other tetrahedra, so this is occasionally a practical option.
(No example in this paper takes advantage of this possi-
bility.)

Optionally, the algorithm may create an inside supernode
as well, with a large negative weight connecting the outside
and inside supernodes. This is particularly useful for recon-
structing one-sided building facades or other sets of sample
points that do not represent closed volumes. For this pur-
pose, the tetrahedra adjoining the front face of the bound-
ing box are labeled outside, and the tetrahedra adjoining the
back face are inside.

3.2. Spectral Partitioning
From the modified pole graph G′, we construct a pole matrix
L. (L is often called the Laplacian matrix, but our use of neg-
ative weights makes that name a misnomer.) L is sparse and
symmetric, and has one row and one column for each node of
the graph G′. For each edge (vi,v j) of G′ with weight wvi,v j ,
the pole matrix L has the components Li j = L ji = −wvi,v j .
(Positive, “attractive” weights become negative matrix com-
ponents, and negative, “repulsive” weights become positive
matrix components.) The diagonal components of L are the
row sums Lii = ∑ j 6=i |Li j|. The remaining components of L
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Figure 5: Watertight skeleton surface, and the sorted com-
ponents of the eigenvectors computed during the two par-
titioning stages. The points are densely sampled from a
smooth surface, so the eigenvectors are polarized. 327,323
input points; 2,334,597 tetrahedra; 654,596 output trian-
gles; genus zero; 12.3 minutes reconstruction time, includ-
ing 2.8 minutes for the tetrahedralization, and 5.1 minutes
and 4.2 minutes for the eigenvectors.

(the off-diagonal components not represented by an edge of
G′) are zero. If G′ is connected (which is always true in our
application) and includes at least one edge with a negative
weight, L is guaranteed to be positive definite.

The spectral analysis of a Laplacian matrix or pole ma-
trix can be intuitively understood by analogy to the vibra-
tional behavior of a system of masses and springs. Imagine
that each node of G′ represents a mass located in space, and
that each edge represents a spring connecting two masses.
Positive edge weights imply attractive forces, and negative
edge weights imply repulsive forces. The eigensystem of
L represents the transverse modes of vibration of the mass-
and-spring system. The lowest-frequency modes give clues
as to where the graph can be cut most effectively: the inside
masses are usually found vibrating out of phase with the out-
side masses.

We take advantage of this observation by finding the
eigenvector x associated with the smallest eigenvalue λ of
the generalized eigensystem Lx = λDx, where D is a diago-
nal matrix whose diagonal is identical to that of L. Because
L is sparse, we compute the eigenvector x using the iterative
Lanczos algorithm [Lan50, PSL90]. Each component of the
eigenvector x corresponds to one column of L, and therefore
to one node of G′, to one pole of Q, and to one tetrahedron
of T . (The exception is the component of x that corresponds
to the supernode z.)

Figure 5 shows a reconstruction of a skeletal hand and the
eigenvectors computed during the two partitioning stages.
The components of the eigenvectors are sorted in increasing
order. When our method is applied to noise-free point sets
that are densely sampled from smooth surfaces, we find that
the eigenvector x is relatively polarized: most of its compo-
nents are clearly negative or clearly positive, with few com-
ponents near zero. However, noisy models produce more
ambiguous labels—see Figures 1, 6, and 8. One of the com-
ponents of x corresponds to the outside supernode z. Sup-
pose this component is positive; then the nodes of G′ whose
components are positive are labeled outside, and the nodes
whose components are negative are labeled inside. (If z is
negative, reverse that component’s labeling.)

This procedure differs from the usual formulation of nor-
malized cuts [SM00] in one critical way. The standard nor-
malized cuts algorithm does not use negative weights, so its
Laplacian matrix L is positive indefinite—it has one eigen-
value of zero, with an associated eigenvector whose compo-
nents are all 1. Therefore, the standard formulation uses the
eigenvector associated with the second-smallest eigenvalue
(called the Fiedler vector) to dictate the partition. Our pole
graph has negative weights, our pole matrix is positive def-
inite, and we use the eigenvector associated with the small-
est eigenvalue to dictate the partition. Because the negative
weights encode information about tetrahedra that are likely
to be on opposite sides of a surface, we find that this formula-
tion reconstructs better surfaces, and permits us to calculate
the eigenvector much more quickly than normalized cuts in
their standard form.

The Lanczos algorithm is an iterative solver which typi-
cally takes about O(

√
n) iterations to converge, where n is

the number of nodes in G′. (L is an n × n matrix.) The
convergence rate also depends on the distribution of eigen-
values of the generalized eigensystem, in a manner that is
not simple to characterize and is not related to the condition
number. The most expensive operation in a Lanczos itera-
tion is matrix-vector multiplication, which takes O(n) time
because L is sparse.

For undersampled and noisy models, the O(n
√

n) running
time is justified. Because spectral partitioning searches for
a cut that is “good” from a global point of view, it elegantly
patches regions that are undersampled or not sampled at all
(see Figure 6). Measurement errors may muddy up the edge
weights, but a good deal of noise must accumulate globally
before the reconstruction is harmed (see Section 4). There
are many faster surface reconstruction algorithms, and they
are often preferable for clean models. But most algorithms
are fooled by undersampling, outliers, and noise, and many
leave holes in the reconstructed surface or make serious er-
rors in deciding how to patch holes.

3.3. Correcting Questionable Poles
An optional step, strongly recommended for noisy models,
removes labels whose accuracy is questionable, so that some
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Figure 6: Left: the eigencrust reconstruction of the Stanford Bunny data (raw, unsmoothed point samples with natural noise but
no outliers) patches two unsampled holes in the bottom of the bunny. The eigenvectors are less polarized than the eigenvectors in
Figure 5, reflecting the labeling ambiguities due to measurement errors. Also illustrated is the bunny after Laplacian smoothing,
described in Section 3.6. 362,272 input points; 2,283,480 tetrahedra; 679,360 output triangles; genus zero; 19.1 minutes
reconstruction time, of which 17.5 minutes is spent computing the eigenvectors. Right: the eigencrust patches a large unsampled
region of a model of a hand.

poles will be relabeled during the second step. Most poles
lie near the medial axis of the original object, and dualize to
tetrahedra that extend deeply into the object’s interior. How-
ever, random measurement errors in the sample point coordi-
nates can create spurious poles that are closer to the surface
than the medial axis. Fortunately, a spurious pole is usually
easy to recognize: it dualizes to a small tetrahedron that is
entirely near the object surface.

Laser range finders typically sample points on a square
grid. Using the three-dimensional coordinates of those sam-
ples, we compute a grid spacing ` equal to the median length
of the diagonals of the grid squares. Any labeled tetrahe-
dron whose longest edge is less than 4` is suspicious, so we
remove its label. The grid resolution is typically small com-
pared to the object’s features, so poles near the medial axis
are unaffected.

We find that this step consistently leads to more accu-
rate labeling of noisy models. It is unnecessary for smooth,
noise-free models.

3.4. Labeling the Remaining Tetrahedra
The first partitioning stage labels each tetrahedron whose
dual Voronoi vertex is a pole, and labels some of the other
tetrahedra too (such as those touching the bounding box).
Many tetrahedra with more ambiguous identities remain un-
labeled. To label them, we construct and partition a second
graph H. The goal of the second partitioning stage is to la-
bel the ambiguous tetrahedra in a manner that produces a
relatively smooth surface of low genus.

The graph H has two supernodes, representing all the
tetrahedra that were labeled inside and outside, respectively,
during the first stage. H also has one node for each unlabeled
tetrahedron. If two unlabeled tetrahedra share a triangular
face, they are connected by an edge of H. If an unlabeled
tetrahedron shares a face with a labeled tetrahedron, the for-
mer is connected by an edge to one of the supernodes.

We have tried a variety of ways of assigning weights to
the edges of H. We obtained our best results (surfaces with
the fewest handles) by choosing each weight to be the “as-
pect ratio” of the corresponding triangular face, defined as

the face’s longest edge length divided by its shortest edge
length. These weights encourage the use of “nicely shaped”
triangles in the final surface, and discourage the appearance
of “skinny” triangles (whose large edge weights resist cut-
ting).

H has just one negative edge weight: an edge connect-
ing the inside and outside supernodes, whose weight is the
negation of the sum of all the other edge weights adjoining
the supernodes. The negative edge ensures that the supern-
odes are assigned opposite signs in the eigenvector.

We partition H as described in Section 3.2. A tetrahedron
is labeled inside if the corresponding value in the eigenvector
has the same sign as the inside supernode, and vice versa.

As an alternative to this stage, the first partitioning stage
can label power cells of the poles instead of labeling Delau-
nay tetrahedra—in other words, we replace the Powercrust’s
pole labeling algorithm [ACK01] with our spectral pole la-
beling algorithm. In the Powercrust algorithm, every power
cell is the dual of a pole, so there is nothing left to label after
the first partitioning stage.

Figure 7 shows that the eigencrust is poor at capturing
sharp corners, and the Powercrust algorithm is much better,
but the hybrid algorithm is even more effective. Spectral
partitioning labels power cells better than the original Pow-
ercrust. The hybrid spectral Powercrust algorithm shares the
Powercrust’s advantage of recovering sharp corners well, but
it also shares its disadvantage of increasing the number of
vertices many-fold. The number of vertices in each model is
4,100, 52,078, and 51,069, respectively.

3.5. Constructing Manifolds
An optional heuristic step searches for local topological ir-
regularities that prevent the reconstructed surface from being
a manifold, and makes the surface a manifold by relabeling
selected tetrahedra from inside to outside.

These irregularities come in two types. First, consider any
edge e of the Delaunay tetrahedralization T . The tetrahedra
that have e for an edge form a ring around e. If the recon-
structed surface is a manifold, there are three possibilities:
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Eigencrust Powercrust Hybrid

Figure 7: Reconstructions of a mechanical part by three
algorithms. The eigencrust algorithm uses both eigenvec-
tors, whereas the hybrid (spectral Powercrust) algorithm
uses only the first.

the tetrahedra in the ring are all outside, they are all inside,
or the ring can be divided into a contiguous strand of inside
tetrahedra and a contiguous strand of outside tetrahedra. If
the ring of tetrahedra around e do not follow any of these
patterns—if there are two or more contiguous strands of in-
side tetrahedra in the ring—then we fix the irregularities by
relabeling some of the tetrahedra from inside to outside so
that only one contiguous strand of inside tetrahedra survives.
The surviving strand is chosen so that it contains the inside
tetrahedron that was assigned the largest absolute eigenvec-
tor component during the second partitioning stage.

The second type of irregularity involves any point sample
s in S. If the reconstructed surface is a manifold, then the
tetrahedra that have s for a vertex are either all outside, all
inside, or divided into one face-connected block of outside
tetrahedra and one face-connected block of inside tetrahedra.
A topological irregularity at s may take the form of two in-
side tetrahedra that have s for a vertex, but are not connected
to each other through a path of face-connected inside tetrahe-
dra all having s for a vertex. In this case, the inside tetrahedra
adjoining s can be divided into two or more face-connected
components. Only one of these inside components survives;
we relabel the others outside. The surviving component is
the one that contains a pole of s. (In the unlikely case that
there are two such components, choose one arbitrarily.)

It is also possible to have two or more face-connected
components of outside tetrahedra (and just one component
of inside tetrahedra). Let W and X be two of them. We com-
pute the shortest face-connected path from W to X , where
the length of a path is defined to be the sum of the absolute

eigenvector components of the inside tetrahedra on the path.
The tetrahedra on the shortest path are relabeled outside.

These operations are repeated until no irregularity re-
mains. The final surface is guaranteed to be a manifold.
One can imagine that for a pathological model this proce-
dure might whittle down the object to a few tetrahedra, but
in practice it rarely takes an unjustifiably large bite out of an
object.

3.6. Smoothing
Triangulated surfaces extracted from noisy models are
bumpy. The final optional step is to use standard Lapla-
cian smoothing [Her76] to remove the artifacts created by
measurement errors in laser range finding, and to make the
model more amenable to rendering and simulation. Lapla-
cian smoothing visits each vertex in the triangulation in turn,
and moves it to the centroid of its neighboring vertices.
We performed five iterations of smoothing on the smoothed
bunny and dragon in Figures 6 and 8.

4. Results
Our implementation uses our own Delaunay tetrahedraliza-
tion software, and TRLAN, an implementation of the Lanc-
zos algorithm by Kesheng Wu and Horst Simon of the Na-
tional Energy Research Scientific Computing Center.

Figure 8 illustrates the performance of the spectral algo-
rithm on the Stanford Dragon. The raw data exhibit random
measurement errors and include natural outliers. Spectral
reconstruction yields a watertight manifold surface, and re-
moves all the outliers.

Figure 9 shows how several algorithms degrade as ran-
domly generated outliers are added to the input data. Even
1,200 random outliers have no influence on the eigencrust
except to affect how a hole at the base of the hand is patched.
The Tight Cocone and Powercrust algorithms are incapaci-
tated by relatively few outliers, although they correctly re-
construct models without outliers.

The fourth row of Figure 9 shows the degradation of sev-
eral algorithms as increasing amounts of random Gaussian
noise are added to the point coordinates of the Stanford
Bunny, which already includes measurement errors. The
expression under each reconstruction is the variance of the
Gaussian distribution used to produce additional noise in
each coordinate, expressed in terms of the grid spacing `

defined in Section 3.3. The eigencrust remains a genus zero
manifold when the added noise has variance 2`, but begins
to disintegrate as the measurement errors become notably
larger than the resolution of the range data. With added noise
of variance `, the Powercrust algorithm succeeds, but with
variance 2` the structure is full of holes. (It is a watertight
surface, but what it bounds is Swiss cheese.) The Tight Co-
cone algorithm can only cope with noise of less than 0.8`

variance.

Figure 10 illustrates the three algorithms on a set of points
densely sampled from the smooth splines of the Utah Teapot.
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Figure 8: Eigencrust reconstruction of the Stanford Dragon
model from raw data. The point cloud (upper left) has many
outliers, which are automatically omitted from the spectrally
recovered surface. 1,769,513 input points; 11,660,147 tetra-
hedra; 2,599,114 surface triangles; genus 1; 197 minutes
reconstruction time.

The difficulties here are more subtle. The teapot’s spout pen-
etrates the body deeply enough to create an ambiguity that
neither the Powercrust nor Tight Cocone algorithm solves
correctly. The spectral reconstruction algorithm treats the
interior spout sample points as outliers, and correctly omits
them from the eigencrust.

The spectral algorithm is not infallible. It occasionally
creates unwanted handles—thirteen on the angel. The global
eigenvector computation is slow. Tetrahedron-labeling algo-
rithms do not reconstruct sharp corners well—observe how
the teapot adjoins its spout. This problem can sometimes
be overcome by labeling power cells rather than tetrahedra,
at the cost of much larger model complexity. Either way,
however, spectral surface reconstruction is remarkably ro-
bust against noise, outliers, and undersampling.
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reconstructions here exhibit serious failures.
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Figure 10: Reconstructions from 253,859 points sampled on the Utah Teapot. The spout’s splines penetrate into the body of
the teapot, causing difficulties for both the Powercrust and Tight Cocone algorithms. A cutaway view shows that Powercrust
mislabels as outside a cluster of power cells where the spout enters the body. The spectral algorithm correctly identifies the
same poles as inside.
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