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Abstract
Interactive image deformation is an important feature of modern image processing pipelines. It is often used to create cari-
catures and animation for input images, especially photos. State-of-the-art image deformation techniques are based on trans-
forming vertices of a mesh, which is textured by the input image, using affine transformations such as translation, and scaling.
However, the resulting visual quality of the output image depends on the geometric resolution of the mesh. Performing these
transformations on the CPU often further inhibits performance and quality. This is especially problematic on mobile devices
where the limited computational power reduces the maximum achievable quality. To overcome these issue, we propose the
concept of an intermediate deformation buffer that stores deformation information at a resolution independent of the mesh res-
olution. This allows the combination of a high-resolution buffer with a low-resolution mesh for interactive preview, as well as
a high-resolution mesh to export the final image. Further, we present a fully GPU-based implementation of this concept, taking
advantage of modern OpenGL ES features, such as compute shaders.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image Generation—Line and
curve generation

1. Introduction

Image deformation or image warping, i.e., the manipulation of an
image to correct distortions or creatively apply new ones, is a fun-
damental functionality in image processing. Image deformation of-
ten relies on an deformation mesh to enable non-destructive op-
erations. Further, such a mesh offers maximum control, is simple
to use, easy to exchange and can be implemented using graphics
processing units (GPUs) [YCB05]. Such mesh-based deformation
displaces the mesh vertices and subsequently textures the deformed
mesh with the input image. In contrast to fully automatic deforma-
tion approaches, this paper focuses on mesh-based deformation on
mobile devices that enables a user to interactively deform an image
using translation and scale transformations.

Problem Statement. The implementation of interactive image de-
formation on mobile devices presents a classic time vs. quality
trade-off. On the one hand, a high resolution of the underlying de-
formation mesh is required to maximize the resulting visual quality
of the deformed image, which results in a high number of vertices
to be processed, thus increasing the geometric complexity. This is
especially important in times of ever-increasing camera resolutions
of mobile devices which demand a corresponding increase of mesh
resolutions to maintain an acceptable visual quality. On the other
hand, mobile devices only provide comparatively low computa-
tional power that limits the maximum number of vertices process-
able at interactive frame rates. In addition, power consumption is
an issue here, as excessive computations typically quickly drain a

device’s battery. As the interactivity is a hard constraint, the only
remaining adjustment option is to reduce the mesh resolution and
thus the visual quality accordingly.

Traditional approaches represent the deformation mesh using an
array of vertices. For every deformation step, the CPU performs
deformation operations on the vertex array which is subsequently
transferred to the GPU to render the mesh, thereby applying the
deformation to the input image. This approach imposes additional
performance issues, as (1) the CPU-based deformation is slow com-
pared to a GPU-based approach and (2) update latencies occur due
to the required data transfer from CPU memory to GPU memory,
depending on the geometric complexity of the mesh. Both further
reduce the maximum number of vertices (and thus, the resulting vi-
sual quality) that can be processed while maintaining an interactive
frame rate.

Contributions. To overcome the problem of limited visual qual-
ity, we propose the following novel approach: We introduce an in-
termediate deformation buffer which encodes vertex displacements
at a high resolution that is independent of the deformation mesh’s
resolution. Instead of applying deformation operations directly to
the mesh, our approach applies these to the deformation buffer.
Subsequently, a deformation mesh with equal or lower resolution
is rendered using the displacement information stored in the de-
formation buffer. This decoupling of buffer and mesh resolution
allows two modes of operation: (1) an interactive mode using a
low-resolution deformation mesh and (2) a high-quality mode us-
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ing a high-resolution mesh that can be used to export the final image
with maximum visual quality. In addition, the buffer-based encod-
ing of deformations supports persistence and exchange of deforma-
tion templates via standard image file formats.

To overcome the performance issues of CPU-based imple-
mentations, our technique is designed to fully utilize GPUs to
apply deformation operations. The approach supports standard
application functionalities, such as undo/redo, deformation op-
eration parametrization, as well as import/export of deforma-
tions. We prototypically implemented our approach based on
OpenGL ES [Sim15] for demonstration and evaluation purposes.
To summarize, this paper presents the following contributions: (1) a
novel image deformations concept based on an intermediate defor-
mation buffer that decouples buffer and mesh resolutions; and (2)
a fully GPU-based realization of this concept that performs faster
than traditional CPU-based implementations.

2. Related Work

This section covers related and previous work in GPU-based im-
age deformation. Beside global deformations described by Barr
[Bar84], free-form deformation introduced by Sederberg and Parry
[SP86] is one of the first deformation approaches. This popular
technique has been extended and adapted in numerous ways. The
concept is to deform a separate deformation object and compute the
new coordinates of the affected object (e.g., a deformation mesh)
based on the local coordinates of the deformed object. They used
a lattice structure composed of tricubic Bezier patches as defor-
mation object. Further, Akleman [Akl97] used a series of lines as
control structure to construct his deformation template. The ap-
proach was inspired by a transformation technique introduced by
Beier and Neely [BN92] denoted as feature-based image metamor-
phosis. It utilizes one or more simple line shapes to effectively
warp or deform pixel locations based on a technique called field
morphing. Although the final transformation is in many ways dif-
ferent from a deformation, the underlying feature-based transfor-
mation algorithm shares similarities with deformation algorithms.
Later, Akleman et al. [APL00] presented a new deformation tool
for making extreme deformations based on simplistic complexes.
It is based on implicit free-form deformations (IFFD) proposed by
Crespin [Cre99]. Instead of simple lines, Akleman used deforma-
tion primitives like triangles, which enable a more flexible defor-
mation control. Based on IFFD, a set of these deformation primi-
tives can be applied to the underlying geometry, each affecting only
a certain part of the target object. All the above deformation tech-
niques rely on some kind of control structure that is aligned to the
target object. A deformation of one or more of these control objects
causes a deformation of the target object. Our technique does not
feature control structures, but instead enables the user to manipu-
late the image directly using touch gestures.

The implementations of most of the discussed work do not used
GPUs or focus on desktop consumer graphics hardware and do not
account for the limitation of mobile devices. Our work is mainly
influenced by the concept of camera textures [SBGS06]. The au-
thors use an image-based representation of deformations applied in
3D camera space. We extend this idea by focusing on manipulating
this representation interactively and applying it to a 2D deformation

mesh. In [CS07], a sophisticated overview for mesh deformation
utilizing programmable shaders in 3D is presented. The authors dis-
tinguish between procedurally defined deformations and deforma-
tion textures. With respect to this, our approach can be considered
hybrid: it uses a combination of procedural and image-based de-
formation operations modifying a deformation texture that is used
for deformation rendering. Further, in [MF12a,MF12b], a real-time
deformation approach using the transform feedback mechanism of
GPUs is presented and applied to physically-based deformation
models. We consider the concepts of this work as a possible im-
plementation approach and adapt it to GPU-based processing for
mobile devices.

As alternative to deformations created using a combination of
scaling and translation operations, GPU-based implementations of
cage-based and spline-based methods [SF98] are relevant to our
work. In [LYNH14], a GPU-accelerated image deformation tech-
nique based on splines is presented. The authors propose a parallel
implementation using CUDA. Instead of using proprietary APIs,
we focus on using the standardized and open OpenGL ES API.
Meng et al. present an approach for multi-cage image deformation
on the GPU [MZDP11] that enables the deformation of specific
regions-of-interest while keeping local details. We incorporate a
similar feature by enabling a user to define masks which can control
the amount of applied deformations.

3. Conceptual Overview

This section describes a general conceptual overview and major
components of the presented image deformation concept. This con-
cept can be implemented in various ways based on OpenGL (ES)
and the OpenGL (ES) Shading Language as well as modern Di-
rect3D APIs, not limited to embedded systems. A variant based on
OpenGL ES is discussed in Section 4.

3.1. Overview of Rendering Pipeline

Figure 1 (next page) shows an simplified overview of our deforma-
tion concept. Independent of the actual implementation, it uses the
following data components:

Input Image: An image or photograph represented by a 2D tex-
ture object that is uploaded to video memory only once during
the complete deformation process.

Deformation Buffer: Similar to a 2D gridded mesh, this buffer
stores deformation vectors that encode the displacement w.r.t. a
normalized image space. These vectors can be interpolated lin-
early during fetching.

Deformation Mesh: To deform the input image based on the de-
formation buffer, a 2D triangulated grid mesh with texture coor-
dinates is required to drive the deformation, i.e., color interpo-
lation. Its vertices are displaced using the deformation vectors
stored in the deformation buffer.

Deformed Image: As the result of the deformation application
stage, this image is presented to the user for visual feedback of a
particular deformation operation.
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Figure 1: Conceptual overview of interactive GPU-based rendering technique for image deformation. It shows the data flow (green lines)
between the data components (green) manipulated by operations (red).

(a) Original image. (b) Translate only. (c) Scale only.

Figure 2: Exemplary application of translation (b) and scaling de-
formation operators (c) to an input image (a).

3.2. Deformation Buffer Operations

The system supports several procedural deformation operations
that modify the deformation buffer in different ways. The gen-
eral parametrization for these operations includes a deformation
radius r ∈ [0,1] ⊂ R, a deformation strength factor s ∈ R+

0 , and
the deformation origin o ∈ NDC := [−1,1]2 ⊂ R2 corresponding
to the location of the touch gesture. A Hermite interpolation func-
tion H(a0,a1,x)→ [0,1]⊂R with the edges a0 and a1 (a0 < a1) is
used to smooth transitions between deformed and undeformed ar-
eas. Figure 2 shows the supported deformation operations transla-
tion and scale. An additional repair operation is supported as well.
The operations are performed by modifying each deformation vec-
tor~v separately as follows: The impact p ∈ [0,1]⊂R for all opera-
tions is computed as p = s · (1−H(0,r,‖~v−o‖)) and subsequently
used in each of the following deformation operations:

Translation: Move the vertex along the normalized input direction
~d ∈ NDC, ‖~d‖= 1:
~v′ :=~v+ p · ~d (Figure 2b).

Scale: Move the vertex further away from the origin:
~v′ :=~v+ p · (~v−o) (Figure 2c).

Repair: Restore the vertex to its original, undeformed position~v0:
~v′ := (1− p) ·~v+ p ·~v0

Further, possible high-level deformation operations include inter-
polation between two deformation textures as well as undo and
redo. Interpolation is performed by vector-wise linear interpolation,
while undo or redo replaces the deformation buffer contents using
transfer operations supported by the rendering hardware.

(a) Initial. (b) Translation. (c) Rotation.

Figure 3: Exemplary scaling effect using symmetric deformation
settings with different reference coordinate systems: (a) standard
reference system, (b) translated, and (c) translated and rotated ref-
erence system.

Symmetric Deformation Operations. To support more advanced
deformation editing, e.g., for face deformations, symmetric oper-
ations are supported by mirroring the deformation origin with re-
spect to the particular axes of a reference coordinate system repre-
sented by an orthonormal basis. Thus, a user can choose which axes
should be used for symmetric deformations, i.e., horizontal and/or
vertical symmetry, respectively. Figure 3 shows a comparison of
scaling deformation operation using a single axis symmetry, each
with a different reference coordinate system. The reference coordi-
nate system can be adjusted using touch gestures. Initially, it is set
to the screen center with zero rotation angle.

Constraining Deformation Operations. The impact of the defor-
mation operations described above can be controlled using global
and local constraints. The axis lock constraint supports the user in
controlling the global application of deformation operations by lim-
iting them to a single axis of the reference coordinate system. The
remaining axis is locked, i.e., the values stored in the deformation
buffers are not modified with respect to this axis.

In addition to these global constraint methods, we further support
local deformation constraints by encoding a respective deformation
weight within the deformation buffer. These constraints can com-
prise the following two options: a user selection mask defines areas
that should remain fixed or areas that should be deformed instead.
The user brushes regions in the deformation buffer by adding or
removing mask regions. Subsequently, these are used the control
the drop-off of the deformation operations. Further, border fixation
avoids the introduction of imaging artifacts during interactive de-
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(a) Original. (b) No fixation. (c) With fixation.

Figure 4: Impact of deformation weights for border fixation when
applying a scaling deformation with a negative factor (c). The bor-
der vertices of the an unformed deformation mesh (a) are scaled
inwards (b) without taking the deformation weights into account.

formation by fixing the border vertices to avoid the application of
deformation operators. Figure 4 shows an applied scaling deforma-
tion without (4b) and with (4c) border fixation.

3.3. Template-Based Deformation

To this extent, the application of deformation operations results in
smooth vertex displacement due to the described parametrization,
as well as the limitations of touch interfaces (also known as fat fin-
ger problem). Although tablet devices with pen support can reduce
this problem, deformations exhibiting sharp corners, acute angle, or
deformation shapes supporting fine detail cannot be achieved using
the parametrization provided so far. Therefore, the presented ap-
proach can be extended to support user-defined shapes that can be
easily created and managed using standard raster drawing software
such as GIMP or Photoshop and incorporated into the system.

Deformation templates are represented using 2D textures con-
taining deformation buffer contents (explicit templates) or gray-
scale values (implicit templates). For implicit templates, the use of
binary masks yield hard edges in the deformation results. In case
this is not desired, one can apply implicit templates based on dis-
tance fields [Gre07] (Figure 5), which support both, hard edges and
smooth drop-offs. The required distance-fields can be computed in
a pre-processing step on the CPU or GPU, e.g., using jump flood-
ing [RT06] or the parallel bending algorithm [CTMT10].

An implicit template is applied by changing the operation impact
p introduced in Section 3.2 based on a value q ∈ [0,1] ⊂ R sam-
pled from the template image and a user-controllable smoothness
factor u ∈ (0,1] ⊂ R. The sampling coordinates cq ∈ [0,1]2 ⊂ R2

are computed as cq := ~v−o
r ·
√

2 · 0.5 + 0.5. Multiplication with√
2 is required to extend the possible sampling space to include

the template’s corners. The operation impact is then computed as
p := s ·H(0,u,q).

4. Real-Time Implementation

This section covers details of the GPU-based implementation. We
prototypically implemented the concept described in the previous
section based on an Android application using Java (JDK 7) and
OpenGL ES 3.1 [Lee15] in combination with the OpenGL ES
Shading Language 3.1 [Sim15].

(a) Triangular template (u = 0.0). (b) Star template (u = 0.75).

Figure 5: Examples of deformation templates (shown in insets).

4.1. Overview of Implementation Variants

The deformation data must be stored in a way that supports fast
write access from shaders in order to implement GPU-based de-
formation operations. OpenGL ES provides two means of storing
data in GPU memory: textures (specialized data stores for images,
writable via rendering to a framebuffer object or image store oper-
ations) and buffers (general purpose data stores, writable via trans-
form feedback or shader storage buffer objects). Based on these
two storage options, the general concept can be implemented in
three different variations on modern graphics hardware, each of
them comprising major or minor drawbacks:

Render-to-Texture: The deformation data is stored in a texture
and modified by attaching it to a framebuffer object before ren-
dering to it. Since feedback loops are explicitly forbidden by the
OpenGL ES specification [Lee15, p. 223-225], two textures are
actually required which are used alternately for reading and writ-
ing (ping-pong rendering).

Transform Feedback: The deformation data is stored in a buffer
and modified using transform feedback [MF12b]. Similar to the
render-to-texture approach, two buffers are required as undefined
behavior may occur when a transform feedback buffer is used
simultaneously for other operations [Lee15, p. 285f], i.e., raster-
ization in this case.

Compute Shader: The deformation data is stored in the same
manner as for the transform feedback approach; however, a
single buffer suffices, as compute shaders in combination with
shader storage buffer objects allow the direct manipulation of the
buffer content. However, this implementation requires OpenGL
ES 3.1 which is available only on a limited number of devices.

Our experiments show that the buffer storage option is superior for
two reasons: (1) not all mobile devices support 32-bit floating point
textures; however, less than 32 bits of precision results in artifacts
during application, as shown in Figure 6 (next page); and (2) the
data must be transferable to main memory to support undo/redo
and import/export functionality, which we were unable to accom-
plish for 32-bit floating point textures on any device due to texture
read-back limitation of the OpenGL ES API. Given the availabil-
ity of OpenGL ES 3.1, we prefer the compute shader implementa-
tion (described below) over transform feedback due to the reduced
memory consumption.
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(a) 32 bit precision. (b) 16 bit precision. (c) 8 bit precision.

Figure 6: Artifacts occurring for lower precisions (b), (c) compared
to full 32 bit precision (a). Red dots indicate the vertex positions.

4.2. Deformation Buffer Implementation

This section covers details of the deformation buffer representation
and its initialization, as well as import/export and undo/redo func-
tionalities.

Deformation Buffer Representation. The deformation buffer is
a linearized representation of the deformation grid, consisting of
two-component vectors with 32 bit precision which directly store
the deformed vertex positions. In addition to the buffer, a texture is
used to represent the user selection mask since it allows sampling at
arbitrary positions using bilinear interpolation. Prior to performing
deformation operations, the deformation buffer is required to be ini-
tialized once. The initialization is performed procedurally by com-
puting the initial, undeformed position for each vertex in the grid.
This process is implemented using buffer mapping [Lee15, p. 53-
57] and subsequently generating the vertex data into the mapped
buffer on the CPU. Alternatively, an existing deformation template
can be imported as described below. In addition, the user selection
mask texture is initialized to 1.

Data Persistence and Storage. Several operations can require the
transfer of deformation data between video and main memory. Us-
ing buffer mapping, this task can be accomplished by mapping the
deformation buffer into main memory and then copying data from
or to the mapped buffer [Lee15, p. 53-57]. Subsequently, the copied
data can be used for undo/redo and import/export functionality. The
first is implemented by keeping a stack of copies in main memory,
creating a new entry each time an input gestures is completed. If
large buffer resolutions or stack sizes are used, it may be required
to swap older entries out to disk to reduce memory consumption.

5 6 7 8 9

20 21 22 23 24

15 16 17 18 19

10 11 12 13 14

5 6 7 8 9

0 1 2 3 4

(a) Stride = 1.

5 6 7 8 9

20 21 22 23 24

15 16 17 18 19

10 11 12 13 14

5 6 7 8 9

0 1 2 3 4

(b) Stride = 2.
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(c) Stride = 4.

Figure 7: Different mesh resolutions can be achieved using index
buffers with different row and column strides based on the same
vertex buffer.

1 #version 310 es
2 precision mediump float;
3 layout(local_size_x = 64, local_size_y = 1) in;
4
5 uniform vec2 u_Position;
6 uniform vec2 u_Direction;
7 uniform float u_AspectRatio;
8 uniform float u_Radius;
9 uniform float u_Strength;

10
11 // Vertex positions
12 layout(std430, binding = 0) buffer Positions {
13 vec2 positions[];
14 };
15
16 void translate(inout vec2 vertex) {
17 // test for circle of influence
18 float dist = distance(vertex / vec2(1.0, u_AspectRatio),

u_Position / vec2(1.0, u_AspectRatio));
19 if (dist < u_Radius) {
20 // compute offset
21 float drop = smoothstep(0.0, u_Radius, dist);
22 vec2 offset = u_Direction * u_Strength * drop;
23 // apply offset
24 vertex += offset;
25 }
26 }
27
28 void main(void) {
29 // check invocation range
30 int index = int(gl_GlobalInvocationID.x);
31 if (index >= positions.length())
32 return;
33
34 // translate vertex
35 translate(positions[index]);
36 }

Listing 1: Exemplary GLSL ES code of a compute shader program
for the translation deformation operation. Features such as symme-
try, constraints, deformation templates, and optimizations are omit-
ted for brevity.

For data exchange, the copied data can be encoded in a suitable
exchange format that supports 32 bit floating point values, such as
TIFF or OpenEXR and shared with other users subsequently.

4.3. Compute Shader Execution

The specific deformation operations are implemented using com-
pute shader programs. We use separate programs for each operation
to reduce code complexity. As at most, one user input event is pro-
cessed per frame, this separation does not result in additional pro-
gram switches during rendering that might degrade performance.
To clarify the implementation of deformation operations, Listing 1
shows a compute shader program for the translation deformation
operation. The operation parameters are passed to the shader pro-
gram using uniform variables, i.e., the program must be executed
once for every input event. The deformation buffer can be directly
modified when bound as shader storage buffer object.

4.4. Application of Image Deformation

After a deformation operation is applied to the deformation buffer,
the actual image deformation is performed subsequently by render-
ing a uniform grid mesh (deformation mesh) using the deformation
buffer as vertex buffer and texturing the mesh with the input image.
To support grid resolutions m other that the deformation buffer res-
olution n, indexed rendering (Figure 7) is used with index buffers

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

101



J. O. Vollmer, M. Trapp & J. Döllner / Interactive GPU-based Image Deformation for Mobile Devices

129 257 513 1025 2049
Apply 3.72 4.72 6.06 11.88 26.67
Translate 10.95 10.95 10.95 10.90 11.20

0

10

20

30

40

50

60

70

80

Ru
nt
im

e	
[m

s]

Grid	Resolution

(a) Varying grid resolution.
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(b) Varying buffer resolution.

Figure 8: Runtime in milliseconds of the translate and apply operations of our GPU-based approaches on the HTC Nexus 9 device with
respect to varying grid sizes and a constant buffer size of 2049 (a), as well as varying buffer sizes and a constant grid size of 129 (b).

having different row and column strides. This implies, that the num-
ber of buffer subdivisions n− 1 must be an integer multiple of the
number of grid subdivisions m−1. To maximize the number of grid
resolutions that can be combined with a specific buffer resolution,
we use values calculated as 2k + 1 with k ∈ N+. Rendering com-
plexity and memory consumption of the index buffer is reduced by
using a single triangle strip to represent the entire grid. The texture
coordinates required to sample the input image are computed as:

x =
vI mod n

n−1
and y =

⌊ vI
n
⌋

n−1

based on the vertex ID vI supplied by OpenGL to the vertex shader
and corresponding to the vertex index specified in the index buffer
[Lee15, p. 274], as well as the deformation buffer size n∈N+, thus
no additional memory is required.

5. Results and Discussion

This section discusses the presented real-time image deformation
techniques by means of a performance evaluation and comparison,
by stating conceptual and technical limitations, and future work.

5.1. Performance Evaluation

We evaluated the performance of two prototypical implementations
for a common mobile image deformation application: (1) the pre-
sented GPU-based approaches using compute shaders and (2) a tra-
ditional CPU-based approach, all considering different deformation
buffer and deformation grid resolutions.

Test Setup. The performance measurements are conducted on the
three devices with different CPU/GPU combinations listed in Ta-
ble 1 and running Android 5.1 with support for OpenGL ES 3.1,
according to their specifications. The OnePlus Two and Samsung
Galaxy S5 Neo devices failed to produce valid time measurements
using OpenGL query objects [Lee15], despite advertising the sup-
port of the EXT_disjoint_timer_query extension, thus detailed per-
operation timings are only provided for the HTC Nexus 9 device.
For each setting, a sequence of N = 1410 touch events is gener-
ated at a rate of 60 Hz and sent to the application while measuring
the total runtime t required to process the entire sequence using

Table 1: Devices used for the performance evaluation.

Device CPU GPU

HTC Nexus 9 NVIDIA Tegra K1 (Denver)

OnePlus Two Qualcomm
Snapdragon 810

Qualcomm
Adreno 330

Samsung
Galaxy S5 Neo

Samsung
Exynos 7580

ARM Mali-T720

the System.nanoTime()function. The theoretical lower bound
for t is N

60 Hz = 23.5s, though results shown in Figure 9 (next
page) suggest an actual minimum runtime of approx. 24 s, as this
number is measured repeatedly across all devices, hence we con-
sider this the optimum. We evaluate the total runtime measure-
ments based on the application’s event processing rate R := N

t ,
whereby we consider an event processing rate of R ≥ 30Hz, i.e.,
a total runtime of t = N

30 Hz = 47s interactive. In addition, the
EXT_disjoint_timer_query extension is used to measure the run-
time of individual GPU operations, if applicable (see above) with
an interactive time-to-frame of ≤ 33.3ms. Note that the individual
operation runtime is not bound by the input event rate and that op-
erations not directly related to deformation, such as displaying on
screen, are unaccounted for.

Performance Results. Figure 8a shows the results of the perfor-
mance measurements for individual deformation operations of the
proposed technique with respect to size of the deformation grid
and a constant deformation buffer size of 2049×2049 on the HTC
Nexus 9 device. As expected, the runtime of the apply operation
increases with the grid size, while the runtime of the translate op-
eration does not depend on the grid size. Both techniques remain
interactive up to a grid resolution of 1025×1025. The runtime with
respect to the deformation buffer size and a constant deformation
grid size of 129× 129 in Figure 8b confirm these findings with an
interactive time-to-frame up to a buffer resolution of 2049×2049.
Table 2 (next page) shows the memory consumption of the defor-
mation buffer and grid for a subset of these sizes, calculated as
described in Section 5.2.
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(b) Varying grid resolution (buffer: 2049).
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(c) Varying buffer resolution (grid: 129).

Figure 9: Total time in milliseconds required to process the entire input event sequence with increasing grid resolutions for constant buffer
resolutions of 1025 (a) and 2049 (b), as well as increasing buffer resolutions for a constant grid resolution of 129 (c).

Table 2: Memory consumption in megabytes of the deformation
and index buffer of various sizes.

Buffer Size

257 513 1025 1537 2049 3073 4097

Deformation 0.5 2.0 8.0 18.0 32.0 72.0 128.1
Index 0.5 2.0 8.0 18.0 32.0 72.0 128.0

Performance Comparison. Figure 10 shows the results of the per-
formance comparison for a CPU-based implementation (written in
Java) in terms of the total time required to process the sequence
of generated events on different devices. Using the CPU-based ap-
proach, the time complexity is O(m2) for the grid resolution m as
expected on all devices with the HTC Nexus 9 being capable of pro-
cessing all incoming events at optimum rate up to a grid resolution
of 93×93, while the other two devices fail to do so from a grid res-
olution of 65×65 and 93×93, respectively. At grid resolutions of
193× 193 and 257× 257, none of the devices provides interactive
editing with event processing rates as low as 4.3 Hz.

33 65 93 129 193 257
HTC	Nexus	9 24.0 24.0 24.0 25.9 57.3 98.6
OnePlus	2 24.0 54.9 79.4 96.7 165.8 295.0
S.	G.	S5	Neo 24.0 24.0 48.0 83.8 186.2 330.4
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Figure 10: Total time in seconds required to process the entire input
event sequence using a traditional CPU-based approach.

Our GPU-based approach achieves the optimum rate on the
HTC Nexus 9 and OnePlus Two devices for grid resolutions up to
513×513 using a constant deformation buffer resolution of 1025×
1025 and at an interactive processing rate for a grid resolution
matching this buffer resolution, while the Samsung Galaxy S5 Neo
does not achieve the optimum rate for any of the tested resolu-
tions and remains interactive up to a grid resolution of 257×
257, as shown in Figure 9a. For a constant buffer resolution of
2049× 2049, none of the devices was capable of processing the
input events at optimum rate, while the HTC Nexus 9 and OnePlus
Two devices achieved an interactive rate up to a grid resolution of
1025× 1025 and 513× 513, respectively, as shown in Figure 9b.
Using a constant grid resolution of 129× 129 and varying buffer
resolutions, our approach can process deformation buffers up to
1537×1537 at optimum rate on the HTC Nexus 9 and OnePlus Two
devices and up to 2049× 2049 interactively, while the Samsung
Galaxy S5 Neo achieves nearly optimum rate at a buffer resolution
of 513×513 and interactive rates up to 1025×1025 (Figure 9c).

Performance Discussion. The presented GPU-based deformation
technique provides superior deformation precision at interactive
processing rates by means of higher resolution grids, resulting in
a better output quality compared to the traditional CPU-based ap-
proach. The performance figures confirm our assumption that the
decoupling of mesh and buffer resolutions results in improved vi-
sual quality, as higher buffer resolutions are achievable. Since the
runtime performances for deformation and application operations
are independent of each other, the runtime of any combination of
deformation buffer and grid sizes can be obtained by adding their
individual runtimes. This can be used to achieve an interactive edit-
ing mode using a high-resolution deformation buffer in combina-
tion with a low-resolution grid for preview, followed by an export
step using a high-resolution grid in combination with the same de-
formation buffer, thus maximizing the visual quality of the final
image. However, these runtimes depend on the specific device’s
GPU and the differences suggest a varying suitability for compute
shader intensive operations amongst currently available GPUs, ei-
ther due to their hardware architecture or possibly driver implemen-
tation status.
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5.2. Limitations and Future Work

Both of our presented approaches and the traditional CPU-based
technique are limited by the amount of memory M required:

M = b ·n2 ·2 ·4B︸ ︷︷ ︸
Vertices

+
(
(m−1)2 ·2+(m−1) ·2

)
·4B︸ ︷︷ ︸

Indices

Here, b denotes the number of deformation buffers required, n de-
notes the buffer resolution, and m denotes the grid resolution. The
above equation assumes two components for the vertex position
with four bytes each, as well as four bytes per index. Each of
the three approaches imposes different constraints on these vari-
ables CPU (m = n, b = 1), transform feedback (m ≤ n, b = 2),
and compute shader (m ≤ n, b = 1). Thus, the transform feedback
technique exhibits a higher memory consumption compared to the
CPU-based technique, while the compute shader approach has an
equal memory consumption if using grid resolutions matching the
buffer resolution. Besides counterbalancing the limitations stated
above (e.g., by packing float values into multiple buffers with 8 bit
precision), the presented approach has potential for further future
research. We plan to implement more deformation operations (e.g.,
swirl or liquify) and the support for more advanced puppet image
warping [Jac13], as well as automatic tessellation and subdivision
of deformed mesh primitives for increased control in fine details.
Furthermore, we strive towards an automatic mapping of rigged
face-meshes (generated by approaches similar to [UPG∗14]) onto
deformation buffers, to easily control facial deformation and enable
deformation presets accordingly.

6. Conclusions

In this paper, we presented a novel concept for interactive image de-
formation based on a deformation buffer storing deformation data
independent of the grid used for rendering. The presented perfor-
mance evaluation confirmed our expectation, that the decoupling
of buffer and mesh resolutions increases the maximum achievable
resolution by using a low-resolution mesh during interactive edit-
ing and a high-resolution mesh during the final export for maxi-
mum quality. Additionally, our fully GPU-based implementation
overcomes performance limitations of traditional CPU-based tech-
niques, further increasing the maximum resolution.
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