IEEE/ EG Symposium on Volume and Point-Based Graphics (2008)

H.- C. Hege, D. Laidlaw, R. Pajarola, O. Staadt (Editors) 81
L3 L3
Layers for Effective Volume Rendering
S. Raman, O. Mishchenko, and R. Crawfis
Department of Computer Science, The Ohio State University

Abstract

A multi-layer volume rendering framework is presented. The final image is obtained by compositing a number of

renderings, each being represented as a separate layer. This layer-centric framework provides a rich set of 2D

operators and interactions, allowing both greater freedom and a more intuitive 2D-based user interaction. We ex-

tend the concept of compositing which is traditionally thought of as pertaining to the Porter and Duff compositing

operators to a more general and flexible set of functions. In addition to developing new functional compositing

operators, the user can control each individual layer’s attributes, such as the opacity. They can also easily add or

remove a layer from the composition set, change their order in the composition, and export and import the layers

in a format readily utilized in a 2D paint package. This broad space of composition functions allows for a wide

variety of effects and we present several in the context of volume rendering, including two-level volume rendering,

masking, and magnification. We also discuss the integration of a 3D volume rendering engine with our 2.5D layer

compositing engine.

Categories and Subject Descriptors (according to ACM CCS): 1.3.3 [Computer Graphics]: Graphics Systems
1. Introduction a layer to safely experiment with different manipulations or
Volume rendering has proven to aid in the exploration and processing of an image.
understanding of large volumes. While substantial research In this paper, we formalize our concept of layers to the
on transfer functions, volume segmentation, feature detec- field of volume rendering. We will present several basic ex-
tion and rendering integrals has led to impressive results, amples of processes applied to layers for effective visualiza-
very little research has gone into user interfaces for volume tion, as well as some more advanced examples that would
rendering. This paper builds on the previous research on seg- be difficult to achieve directly in a volume renderer. By al-
menting and rendering volumes and examines a new system lowing layers to be duplicated and processed, a rich set of
architecture that allows the power and ease of use found in effects can be achieved without the cost of redundant vol-
typical 2D paint applications applied to volume rendering. ume rendering. Additionally, we will present several tech-

We segment the workflow process of visualization into niques that mimic the r.esults obtaine.d in recent researcl_l re-
two distinct phases. First, traditional volume rendering ap- ports, but aghleved using a much simpler Z-SD paradigm.
plied to small regions of interest are rendered. Then, similar These technlql}es are not meant to replace previous work on
to a sort-last scheme for parallel rendering, we apply a com- volume rende}mg, but rather supplement them. We show ex-
positing phase to the resulting renderings. We expose this amp}es ?esultlng from our own 3.D volume renderer, but th.e
compositing phase and provide a rich set of tools and opera- appl.lcat.lon of layers can be applied to other systems and vi-
tions to allow unique and effective visualizations that would sualization as a whole.
be difficult in a traditional volume rendering setting. We
adopt the concep.t (?f layer in a paint pe'lckage, such as Pho- 2. Related Work
toshop [Ado]. Digital artists and technical illustrators have
leveraged the power of the layer concept to quickly provide There are many well known metaphors for visualization
compositions, to remove or highlight parts of an image, to system architectures, from dataflows to spreadsheets. The
limit the application of a filter or image adjustment and a Application Programming Environment, or [Dye90], sys-
variety of additional affects. Often a user will use a copy of tem and the initial Application Visualization System (AVS)
(© The Eurographics Association 2008.
delivered by
— EUROGRAPHICS

www.eg.org

DIGITAL LIBRARY

http://www.eg.org
http://diglib.eg.org

82 S. Raman, O. Mishchenko, and R. Crawfis / Layers for Effective Volume Rendering

[UTFK*89], combined a dataflow system with a visual pro-
gramming language. Using a rich set of pre-built data filters
and data mappers, the end-user could rapidly construct visu-
alization applications using a computer assisted visual pro-
gramming system. Even though AVS was intended as a tool
for application developers to build turn-key applications for
the developer’s specific application area, it was adopted by
the end-users and used directly for their applications. This
was in part due to the clean separation of the visualization
process into filters and mappers, the ease of use of the vi-
sual programming metaphor and the flexibility to extend the
system with user developed modules. This was truly the first
visualization system for the masses.

Other visualization systems have mimicked and extended
AVS [AT95] [YAK95] [PJ95]. IBM Visualization Data Ex-
plorer enhances the data flow execution by minimizing re-
dundant computations. The SciRun system allows for rapid
prototyping of applications as is evident in their recent Pow-
erApps [Pow]. Recently, VisTrails [BCS*05] [CFS*06] pro-
vides a systematic tracking of the workflow evolution evi-
dent in a complex visualization task. By tracking the history
or provenance of a visualization session, it allows the user to
experiment with possible paths and manipulate the version
tree. Compared to other systems, such an approach frees the
user from the need for memorizing the changes that led to a
particular visualization.

Other unique metaphors for visualization have been few
and far between. A spreadsheet approach was developed
by Levoy [Lev94] and later extended by Jankun-Kelly and
Ma [JKMOO]. Levoy uses images and user controls as the
values in the cells of the spreadsheet. A general purpose pro-
gramming language allows complex manipulations with the
data. Jankun-Kelly and Ma project the high dimensional vi-
sualization parameter space to two-dimensional spreadsheet,
and also allow spreadsheet manipulations, such as rotations
and translations, bringing additional flexibility to processing
the data stored in the spreadsheet.

The specification of transfer functions using genetic al-
gorithms were explored by Marks et al. [MAB*97]. With
their design galleries approach, the tedious task of tweak-
ing input parameters is done automatically by the system.
The system varies the input parameter vector allowing the
user to select from a collection of generated results. The sys-
tem changes the parameter values in a way to make the out-
put well-distributed. The Image Graphs [Ma99] methodol-
ogy translates the process of data exploration into a graph
representation, where each node of the graph consists of an
image and the parameters used to produce it. This gives the
user a clear representation of the dependencies between the
parameter values and the visualization results. Semantic lay-
ers [RB07] use basic image compositing to produce the final
image, though the major contribution is the linguistic spec-
ification of the mappings of volumetric attributes to visual

styles. Attributes and styles are represented as fuzzy sets,
and the mappings are calculated with fuzzy logic.

Our framework exploits the dataflow metaphor. However,
we concentrate on the use of layers within the framework.
The concept of layers can be seamlessly integrated into all
the systems described above as a back-end system.

3. Our Approach

In this section we shall first look at the layers and then at the
architecture of the system.

3.1. Layers

The layer concept is central to our framework. By using the
term layer, we refer to a 2D container for storing an image,
on which a number of operations are defined. The intuition
for using layers come from the fact that 2D image manipula-
tion is often easier than working with 3D volumes. A number
of tasks for volume exploration are performed by processing
the layers instead of applying volume rendering techniques.

User interaction with the system combines traditional
tasks, but also allows for a rich set of manipulations. Hence,
we use the term layer-centric to describe the framework.
Manipulations include applying a number of operators (pro-
grammable shaders) to an individual layer, as well as speci-
fying the order layers are combined. From the user point of
view, the way layers are manipulated in our system is sim-
ilar to the layers’ manipulation in Adobe Photoshop. Users
can create, delete, change the properties (for example, color
and opacity), enable or disable the layer, as well as process
the layers with the tools our system provides. The system
provides a rich set of predefined shaders, including shaders
for NPR [ERO0O] and focus+context techniques [BGKGOS5]
[WZMKO5].

T
.
Contains 1
or more layers
Layers
|M|lwialA||Shadar. terial prop] |r 1 |

| Material B ||Srlader; material properties|-t— | Drawable 2 |

|Malnria|n ”Snaaen material pronerties| | Drawable N |

Each material assigned
to a drawable

Each drawable assigned
to O or more layers

Figure 1: System Architecture

(© The Eurographics Association 2008.

S. Raman, O. Mishchenko, and R. Crawfis / Layers for Effective Volume Rendering

3.2. System Architecture

The central component responsible for the display of the fi-
nal image is a view. A view is associated with a compositing
camera and a viewport. A layer may be composited multiple
times with different materials. A view also con-tains a list of
layers. Each layer contains a list of drawables, which are the
entities that should be rendered.

Each drawable has a material associated with it. The ma-
terial contains attributes needed to render the drawable, for
example, color and opacity and a GLSL shader program. The
shader provides the implementation of the functionality for
the material. All the entities in the hierarchy support one-to-
many or many-to-one relationships.

Multiple layers can be rendered with the same drawable
or one layer may render multiple drawables. If a layer con-
tains zero drawables, we refer to it as a null layer. Null layers
are generated using shaders which have access to the texture
resources in the system. Each layer generates a texture, al-
lowing null layers to either create new texture resources or
process another layer’s texture. The hierarchy of the major
components is shown in the Figure 1.

Our system includes transfer function interface with a
number of pre-loaded transfer functions. There is also an ed-
itor for creating, editing, compiling and linking shader pro-
grams. Compiling and linking are done on the fly. The user
also controls creation and manipulation of regions of interest
(which are three-dimensional boxes), materials and layers.

We employ the layer-based metaphor for the architecture
of our visualization system. From the implementation point
of view, our framework can be described as a dataflow. How-
ever, the difference from other dataflow systems is that we
don’t explicitly specify the dataflow nor present it to the user.
Ease of use of our framework comes from providing a list
of tracked assets and a rich set of user interfaces to build
and edit each of the main components: drawables, materials,
shaders, layers, and views. Additional assets, such as tex-
tures, shared numerical controls and cameras are maintained
and tracked by the system for use as shader variables or ma-
nipulator controls. Figure 2 presents a screenshot of our sys-
tem, showing the shader editor, material edit, 1D transfer-
function editor and the layer editor.

The hierarchy of the entities shown in Figure 1 makes it
convenient to make the system event based. Whenever any
entity changes, the changes are propagated upwards to the
entities that are above in the hierarchy, finally leading to the
rendering of the view, if necessary. For example, if a material
property is changed, it fires an event to all the drawables that
share that material. All of these drawables fire events to their
parent layers. These layers in turn, fire events to the view and
the view fires an event to invalidate the screen. For detailed
explanation of the system architecture we refer the reader to
the Tech Report [MRCOS].

(© The Eurographics Association 2008.

Figure 2: User Interface Screenshot

4. Application of Layers

In this section, we describe some of the applications of the
layer based volume rendering. We simulate several recent
research contributions using simple 2D operators. While not
as general as the 3D contributions, they achieve similar re-
sults with lower computational complexity and often a sim-
pler and more intuitive user interface. There are a number
of properties that layers provide that are useful to list here
before presenting the actual applications. Keeping in mind
these properties not only provide better understanding, but
also may lead to new ideas of how to use the layers for vol-
ume rendering.

EaviEas

Dn L L v

Figure 3: The relationships between layers, drawables and
views

We specify the relationships between layers, views and
drawables in the following way. Let V be the set of views, L
the set of layers and D the set of drawables. We define the
function space F as the set of all functions or operators that
map a set of drawables to a layer, i.e. f: D" — L. Likewise,
we define the function space G as the set of all functions that
map a set of layers to a view, i.e. g: L" — V/, as shown in Fig-
ure 3. Layer manipulation is specified by the compositing
shaders (functions). Each layer is an entity to which func-
tions are applied. We can also define the function space Lp
as the set of all functions that map L" to L. The composi-
tion of functions f and g, where f and g belong to Lp, is

83

84 S. Raman, O. Mishchenko, and R. Crawfis / Layers for Effective Volume Rendering

denoted as fog = f(g); This operator is not commutative,

ie. f(g) # g(f)-

A simple set of layer manipulations is the set of image
processing algorithms, such as blurring and desaturation.
Geometric transformations, such as image warping and dis-
tortion, can also be achieved.

4.1. Basic Layer Manipulation

Layers can be seen as a control for interactivity. This is
achieved by keeping the set of active layers small. While
navigating in a huge dataset, only a low resolution layer may
be turned on, providing interactive speed of exploration. In-
teractivity is especially important for effective volume nav-
igation. By performing volume manipulations, such as rota-
tions, the user often gets a better understanding of the vol-
ume. This is due to receiving necessary depth cues, as well
as the fact that the human visual system is especially good at
detecting movement. When the user zooms in on a selected
region of interest, a layer with higher resolution is turned on,
providing the necessary level of detail.

Layers are a way to provide the context to the user. Con-
text and regions of interest may be rendered to separate lay-
ers and thus processed separately. Such a divide and conquer
approach helps to focus on a single layer. This is achieved by
turning off the context layers while manipulating the layer
in focus. Bringing up the context is done by turning on the
inactive layers. On the other hand, in some cases operators
that provide focus + context functionality may be applied to
a single layer.

Layers can be reused. Computationally expensive volume
rendering can be avoided in some cases by reusing an al-
ready rendered image. When reusing several layers, the over-
all system performance benefits significantly. The user con-
trols layer reuse. S/he does this by specifying the layer as a
parameter to the shaders. For example, same rendered image
can be used by two different shaders.

In the next section we provide more concrete examples of
applications we have explored with our framework to pro-
vide an effective visualization.

4.2. Two Level Volume Rendering

Two level volume rendering [HMBGO1] [HBHO3] is an ef-
fective technique in volume rendering, combining a number
of transfer functions and/or rendering types in the final im-
age. Different transfer functions and/or rendering modes are
better suited for different types of materials in a dataset. In a
medical dataset, for example, bones may be rendered with a
MIP, while skin and blood vessels with DVR, or vice versa,
depending on the user preferences and the particular appli-
cation. We achieve results similar to the ones of the two level
approach by rendering each of the different styles in a sepa-
rate layer and then compositing them into a final image.

B

A M A2 7 VXY 2/

B B1 R

Figure 4: Top: Two Level Volume Rendering with layers.
Bottom Left: The path of a ray through the volume is divided
into segments, corresponding to the different materials in the
dataset. Bottom Right: original Two Level Volume Rendering
of the same dataset.

The example is shown in Figure 4. Two different trans-
fer functions are used to render the foot dataset. On the top
left, DVR is used to create a flat-looking representation of
the foot; it is rendered to the first layer and given opacity 0.4
and to the third layer with opacity 0.1. The top center image
is a DVR rendering of the bones; it is rendered to the second
layer with opacity 0.5. In the top right is the resulting com-
posited image. The second layer is "sandwiched" between
the first layer and the third one. This example shows also
layer reuse - the same image is rendered once and then used
with two different opacities.

According to the notation introduced above, there are two
functions, DVR1 and DVR2 that map D to L. The composit-
ing function maps the resulting two layers to V. This is a
rather simple example, using only one drawable and two lay-
ers. In the bottom right, we present the original two level
volume rendering.

The approach described above provides results that
slightly differ from the results obtained with the original
two level volume rendering. In two level volume render-
ing, when the ray traverses through the volume, the type of
local rendering is selected depending on the type of mate-
rial encountered in the dataset. The accumulated color and
opacity for all ray segments are then composited to pro-
duce the final result. Our approach differs in the order in
which the segments are composited. In two level volume
rendering, the order of compositing corresponds to the or-
der in which the ray encounters the materials. With our ap-
proach, all the segments corresponding to the same material
in the dataset are composited separately. Then these inter-
mediate results are composited to produce the final image.
This is illustrated by the scheme at the bottom left of Fig-
ure 4. Given two kinds of materials in the dataset, denoted
as A and B, the compositing for two level volume rendering
gives I = A1*B1*A2*B2*A3; while with our approach I =

(© The Eurographics Association 2008.

S. Raman, O. Mishchenko, and R. Crawfis / Layers for Effective Volume Rendering

A1*A2*A3*B1*B2. Compositing is not commutative, thus
in general the results are different, though for some specific
cases they may be the same.

4.3. 2D Magnification

Lenses are useful when text or images needs magnification.
In volume rendering, 2D lens have been around for about
a decade. It is probably the best and simplest example of a
focus + context technique. Zooming in a specified region of
interest gives the user the necessary detail for exploration,
while the region outside the lens keeps the context necessary
for volume navigation. This area has received much attention
[BSP*93] [ZHTO2]. Bier et al. [BSP97] came up with a user
interface that could employ Magic lens filter to modify the
presentation of an object. Viega et al. [VCWP96] came up
with flat lenses and volumetric lenses. Recently, Wang et al.
[WZMKO5] developed a framework that provides a variety
of GPU-accelerated volumetric lenses.

In our system we use a 2D lens. The zooming effect
is achieved by distorting the texture representing the layer.
Computationally this allows us to get magnification at al-
most no cost, since we do not need to re-render the draw-
ables within the layer. Typically, a 2D lens would be applied
to the final image. We apply the lens either to a single layer
or to a user specified set of layers. Applying the zooming
operator to a single layer and not to the final composited
image, gives a number of interesting results. First, keeping
the context non-zoomed can be useful. An example is shown
in Figure 5. The kidney and the ribs are rendered to differ-
ent layers. The kidneys are focused and magnified, while the
ribs are not distorted. We allow for multiple lenses, as shown
in Figure 5, where both kidneys are magnified.

Figure 5: 2D magnification. Lenses applied to both kidneys.
Occluding ribs are rendered in a separate layer and are not
distorted.

There are two ways to achieve 3D magnification; one way
is to change the field of view and the other is to traverse
through the volume, moving the camera closer to the region
of interest. Moving the camera changes the occlusion or ray
integration. When such changes are not desirable, 2D lens
may be a better choice.

(© The Eurographics Association 2008.

4.4. Masking

Masking is a technique used to remove occlusion from a spe-
cific area of interest. Given a number of input layers, a mask-
ing operator selects and/or blends them according to some
specified criteria, such as the opacity. Consider the torso
dataset in Figure 9. Keeping the skin visible while trying
to explore the skeleton and inner structures, results in a clut-
tered image. We would like to get an image with the skeleton
and other inner structures visible, but only selectively make
the skin visible. This can be achieved in the following fash-
ion.

First, skin and skeleton are rendered into two separate lay-
ers. The skeleton is rendered to a bottom layer and the skin to
the top one. A masking operator makes a part of a top layer
transparent, which in turn makes the previous layer visible.
An example of this type of masking is shown in Figure 9.
The image has two layers composited and the lens makes the
enclosed area in the outer layer transparent, thereby display-
ing the previous layer. Second, any type of 2D texture could

Figure 6: Different masking styles.

be used as a mask by having a threshold on the opacity val-
ues. This approach is used to get the results in Figure 9. The
image with skin is rendered on top of the skeleton image.
The masking operator checks the opacity value in the skele-
ton image, and if it is higher than the threshold, blends the
skeleton image with the skin layer. Otherwise, only skin is
rendered. The user specifies the blending level; in this case,
the final image was generated with blending set to 0.8.

There are other flavours of masking functionality that our
framework provides. Correa et al. [CSC06] came up with a
technique for interactive manipulation of volumetric models
like deformation or cuts. We simulate volumetric cuts using
a 2D cut operator. We show the result in Figure 9(e). In Fig-
ure 6 we show different styles of masking available to the
user. Notice that there may be more than one location to ap-
ply a masking operator to as well as it is possible to apply
the operator to different layers.

85

86 S. Raman, O. Mishchenko, and R. Crawfis / Layers for Effective Volume Rendering

‘B
j

Figure 7: Right: drop shadow. It is Gaussian blurred.

4.5. Drop Shadows

Shadows greatly improve the perception of depth in an im-
age. Figure 7 shows a compositing operation that produces a
drop shadow. The volume is rendered to a layer and a copy of
the layer is made. The shadow operator processes the layer
and colors the parts with non-zero opacity and shadow color
(e.g. black). A blur operator blurs the shadow, and a shift
operator moves the shadow. Finally, the volume rendering
and the shadow renderings are composited to get the result
shown in the figure on the right. This example illustrates an
important concept of layer reuse. We could render the vol-
ume twice with a different transfer function to achieve the
same result; however, our layer approach is superior in terms
of computational cost.

Figure 8: Left: Gaussian blur. Center: Desaturation. Right:
Hatch pattern.

4.6. Blur and Desaturation

Keeping the amount of visual information presented to the
user limited is crucial for effective volume exploration. Too
many details can distract the user from the features he/she is
interested in. One effective way of dealing with the problem
is defocusing or desaturating the context, keeping high-level
detail and/or colors only in the region of focus. Another op-
tion is to use a masking pattern, such as hatch pattern. Ex-
amples of these approaches are shown in Figure 8. This is
an example of layer reuse. Instead of utilizing two transfer
functions and re-rendering the volume twice, by processing
alayer or a set of layers we can achieve the desired effect. (in
the above example a single layer keeps both the context and
the region of interest). This example along with the previous
one illustrate the flexibility of layers: if necessary, multiple

layers can be used to achieve the desired result; however, for
some applications a relatively simple operator and only one
layer are enough.

4.7. Creating Scientific Illustrations

One interesting application that our framework is suit-able
for is creating scientific illustrations. An example is shown
in Figure 9(g). To make this image, we used two features
of our framework: exporting and importing the layers. Grid
texture was loaded in a separate layer and the head rendered
on top of it with opacity set to 0.8. The resulting image was
exported to Photoshop, where the labels were added.

Texture import can be useful for loading any kind of ruler
or some other background. This is a common practice in dig-
ital art, where the background may be a hand-drawn sketch
to use as a template. It will not be used in the final compo-
sition, but provides a valuable reference. Likewise, during
a volume rendering session, it may be useful to display an
image of a reference model, allowing the user to determine
the settings and shaders to best match the reference point of
view and feature highlights.

5. Implementation

Our system is implemented in C# and OpenGL, with the use
of the Tao framework [Tao] that provides OpenGL bindings
for C#. Shader programs are written in GLSL. We used 3D
texture-based volume rendering with back to front composit-
ing for the attached volume renderer.

The system is event based. Any change in any of the en-
tities in the architecture hierarchy forces the events to fire
and propagate through the hierarchy. The components that
are registered to receive a particular type of event perform
the necessary actions to update their state upon receiving the
corresponding event. This keeps the number of state changes
minimal. For example, if the user changes a transfer function
for one specific region of interest, only events corresponding
to this change are fired. This finally leads to re-rendering
of the specified region of interest. No other components are
updated and unnecessary redraws are not performed.

While performance was not a concern when designing the
system, we achieve a number of performance benefits. Elim-
inating unnecessary redraws as described above can bring
significant performance improvements. This is especially
noticeable with multiple ROIs and layers where the user is
manipulating a transfer function or other material proper-
ties. Other performance advantages come directly from the
layer properties and the way layers are utilized for particular
tasks. As mentioned previously, we can control interactiv-
ity by turning off some expensive volume renderings while
volume exploration. This is most applicable whenever there
is a camera change event that makes all the layers invalid.
Also, reuse of layers, as we saw in section 4, helps us avoid
redundant volume renderings.

(© The Eurographics Association 2008.

S. Raman, O. Mishchenko, and R. Crawfis / Layers for Effective Volume Rendering

In Table 1 we show performance results for the volume
rendering of engine dataset. We were using Dual Core In-
tel 3GHz 2GB RAM machine with Geforce 7900GTX video
card with 512 MB of on-board memory. When only one re-
gion of interest is used for rendering, any modification of a
transfer function or material enforces the whole dataset to be
rendered. The first row in the table shows the result of using a
shader with four lights, 4 Light DVR. It has 40 lines of code
and is compiled into more than 300 instructions. We can es-
timate that with ~ 300 slices and ~ 400 x 400 ROI size, ap-
proximately 48 million fragments should be processed, each
with more than 300 instructions. The measured results are
slightly above 5 frames per second. A much higher frame
rate (>60) is achieved with a short and simple shader, DVR.

As indicated above, during volume exploration the user
may be interested only in adjusting parameters for certain
parts of the dataset. In Figure 9(h) only the highlighted ROI
is updated when the user modifies its transfer function. A
DVR shader is used for the ROI. 4 Light DVR shader is used
for the rest of the dataset (second ROI). The two ROIs are
rendered to separate layers. The small size of the first re-
gion of interest (= 75 x 150 with ~ 50 slices) leads to pro-
cessing of approximately 562500 fragments. Then the two
layers are blended, resulting in processing of 1024 x 1024
fragments. The difference in number of fragments processed
in the above two cases explains the difference in numbers
for rows 1 and 3 in Table 1. Notice that in case of viewpoint
changes, still the whole dataset has to be re-rendered.

Engine with 1 ROI, 4 Lights Shader 5.3 fps
Engine with 1 ROI, DVR Shader 63.0 fps
Engine with 2 ROIs, DVR and 4 Lights

Shader, only ROI for DVR is updated 62.1 fps

Table 1: Performance results for Engine dataset. When the
user is updating parameters for part of the dataset, there is
no need to re-render the other parts (row 3). This provides
better performance.

6. Conclusion

We have presented a layer-based volume rendering system.
The ease of use and flexibility of layers allow the user to
perform a variety of volume exploration tasks. In our future
research work, we plan to automate the process of layer ma-
nipulation. With the current implementation of the system,
the user is given full control over layer manipulation, in-
cluding layer creation. This, however, implies that the user
should carefully consider how to select layers and operators
for a particular task. Often this is a tedious and trial-and-
error process. Thus our goal is to make the process of trans-
lating the problem into layers automated or semi-automated.
For example, the user may be suggested to select a number
of volume exploration scenarios when loading datasets into
the system.

(© The Eurographics Association 2008.

References
[Ado]

[AT95] ABRAM G., TREINISH L.: An extended data-flow
architecture for data analysis and visualization. In VIS
'95: Proceedings of the 6th conference on Visualization
’95 (Washington, DC, USA, 1995), IEEE Computer Soci-
ety, p. 263.

[BCS*05] BavoIL L., CALLAHAN S. P., SCHEIDEGGER
C.E., Vo H. T., CROSSNO P. J., S1LVA C. T., FREIRE
J.: Vistrails: Enabling interactive multiple-view visualiza-
tions. vis 00 (2005), 18.

[BGKGO05] BRUCKNER S., GRIMM S., KANITSAR A.,
GROLLER M. E.: Illustrative context-preserving volume
rendering, May 2005.

[BSP*93] BIER E. A., STONE M. C., PIER K., BUX-
TON W., DEROSE T. D.: Toolglass and magic lenses:
the see-through interface. In SIGGRAPH ’'93: Proceed-
ings of the 20th annual conference on Computer graphics
and interactive techniques (New York, NY, USA, 1993),
ACM, pp. 73-80.

[BSP97] BIER E., STONE M., PIER K.: Enhanced illus-
tration using magic lens filters. IEEE Comput. Graph.
Appl. 17, 6 (1997), 62-70.

[CFS*06] CALLAHAN S. P., FREIRE J., SANTOS E.,
SCHEIDEGGER C. E., SiLva C. T., Vo H. T.: Vis-
trails: visualization meets data management. In SIGMOD
"06: Proceedings of the 2006 ACM SIGMOD interna-
tional conference on Management of data (New York, NY,
USA, 2006), ACM, pp. 745-747.

[CSC06] CORREA C., SILVER D., CHEN M.: Feature
aligned volume manipulation for illustration and visual-
ization. IEEE Transactions on Visualization and Com-
puter Graphics 12,5 (2006), 1069-1076.

[Dye90] DYER D. S.: Visualization: A dataflow toolkit for
visualization. IEEE Comput. Graph. Appl. 10, 4 (1990),
60-69.

[EROO] EBERT D., RHEINGANS P.: Volume illustration:
non-photorealistic rendering of volume models. In VIS
’00: Proceedings of the conference on Visualization '00
(Los Alamitos, CA, USA, 2000), IEEE Computer Society
Press, pp. 195-202.

[HBHO3] HADWIGER M., BERGER C., HAUSER H.:
High-quality two-level volume rendering of segmented
data sets on consumer graphics hardware. In VIS '03:
Proceedings of the 14th IEEE Visualization 2003 (VIS’03)
(Washington, DC, USA, 2003), IEEE Computer Society,
p. 40.

[HMBGO1] HAUSER H., MRrRoz L., BiscHI G. I,
GROLLER M. E.: Two-level volume rendering. [/EEE
Transactions on Visualization and Computer Graphics 7,
3(2001), 242-252.

ADOBE: Photoshop. http://www.adobe.com.

87

88 S. Raman, O. Mishchenko, and R. Crawfis / Layers for Effective Volume Rendering

Figure 9: Top Row: (a) skeleton and (b) skin rendered to separate layers. (c)The result of applying masking operator to (b) and
(a). (d) Without masking, image is cluttered. Bottom Row: (e) Volumetric cut. (f) Masking with lens. (g) Scientific lllustration
made with our system. (h) When the user is working only with the ROI that is highlighted orange, volume rendering for the rest
of the dataset is not necessary. (only layers compositing is performed)

[JKMOO] JANKUN-KELLY T. J., MA K.-L.: A spread-
sheet interface for visualization exploration. In VIS
’00: Proceedings of the conference on Visualization 00
(Los Alamitos, CA, USA, 2000), IEEE Computer Society
Press, pp. 69-76.

[Lev94] LEvVOY M.: Spreadsheets for images. In SIG-
GRAPH ’94: Proceedings of the 21st annual conference
on Computer graphics and interactive techniques (New
York, NY, USA, 1994), ACM, pp. 139-146.

[Ma99] MA K.-L.: Image graphs—a novel approach to
visual data exploration. In VIS '99: Proceedings of the
conference on Visualization *99 (Los Alamitos, CA, USA,
1999), IEEE Computer Society Press, pp. 81-88.

[MAB*97] MARKS J., ANDALMAN B., BEARDSLEY
P. A., FREEMAN W., GIBSON S., HODGINS J., KANG
T., MIRTICH B., PFISTER H., RUML W., RyaLL K.,
SEIMS J., SHIEBER S.: Design galleries: a general
approach to setting parameters for computer graphics
and animation. In SIGGRAPH ’97: Proceedings of the
24th annual conference on Computer graphics and in-
teractive techniques (New York, NY, USA, 1997), ACM
Press/Addison-Wesley Publishing Co., pp. 389-400.

[MRCO08] MISHCHENKO O., RAMAN S., CRAWFIS R.:
Distributed Visualization Framework Architecture. Tech.
rep., The Ohio State University, 2008.

[PJ95] PARKER S. G., JOHNSON C. R.: Scirun: a scien-
tific programming environment for computational steer-
ing. In Supercomputing ’95: Proceedings of the 1995
ACM/IEEE conference on Supercomputing (CDROM)
(New York, NY, USA, 1995), ACM, p. 52.

[Pow] POWERAPPS:. www.software.sci.utah.edu/scirun.html.

[RBO7] RAUTEK P., BRUCKNER S.: Semantic layers for
illustrative volume rendering. IEEE Transactions on Vi-
sualization and Computer Graphics 13, 6 (2007), 1336—
1343. Member-Eduard Groller.

[Tao] TAoO:. http://www.taoframework.com.

[UTFK*89] UpsoN C., THOMAS FAULHABER 1J.,
KAMINS D., LAIDLAW D. H., SCHLEGEL D., VROOM
J., GurwiTZ R., VAN DAM A.: The application
visualization system: A computational environment for
scientific visualization. IEEE Comput. Graph. Appl. 9, 4
(1989), 30-42.

[VCWP96] VIEGA J., CONWAY M. J., WILLIAMS G.,
PAUSCH R.: 3d magic lenses. In UIST '96: Proceedings
of the 9th annual ACM symposium on User interface soft-
ware and technology (New York, NY, USA, 1996), ACM,
pp- 51-58.

[WZMKO05] WANG L., ZHAO Y., MUELLER K., KAUF-
MAN A.: The magic volume lens: An interactive fo-
cus+context technique for volume rendering. vis 00
(2005), 47.

[YAK95] YOUNG M., ARGIRO D., KUBICA S.: Cantata:
visual programming environment for the khoros system.
SIGGRAPH Comput. Graph. 29, 2 (1995), 22-24.

[ZHTO02] ZHou J., HINZ M., TONNIES K. D.: Focal
region-guided feature-based volume rendering. 3dpvt 0
(2002), 87.

(© The Eurographics Association 2008.

