
Neural Mesh Reconstruction
by

Zhiqin Chen

M.Sc., Simon Fraser University, Canada, 2019
B.Sc., Shanghai Jiao Tong University, China, 2017

Thesis Submitted in Partial Fulfillment of the
Requirements for the Degree of

Doctor of Philosophy

in the
School of Computing Science
Faculty of Applied Sciences

© Zhiqin Chen 2023
SIMON FRASER UNIVERSITY

Summer 2023

Copyright in this work is held by the author. Please ensure that any reproduction
or re-use is done in accordance with the relevant national copyright legislation.

Declaration of Committee

Name: Zhiqin Chen

Degree: Doctor of Philosophy

Thesis title: Neural Mesh Reconstruction

Committee: Chair: Ali Mahdavi-Amiri
Assistant Professor, Computing Science

Hao Zhang
Supervisor
Professor, Computing Science

Yasutaka Furukawa
Committee Member
Associate Professor, Computing Science

Andrea Tagliasacchi
Examiner
Associate Professor, Computing Science

Matthias Nießner
External Examiner
Professor, Department of Computer Science
Technical University of Munich

ii

Abstract

Deep learning has revolutionized the field of 3D shape reconstruction, unlocking new pos-
sibilities and achieving superior performance compared to traditional methods. However,
despite being the dominant 3D shape representation in real-world applications, polygon
meshes have been severely underutilized as a representation for output shapes in neural 3D
reconstruction methods. One key reason is that triangle tessellations are irregular, which
poses challenges for generating them using neural networks. Therefore, it is imperative to
develop algorithms that leverage the power of deep learning while generating output shapes
in polygon mesh formats for seamless integration into real-world applications.

In this thesis, we propose several data-driven approaches to reconstruct explicit meshes
from diverse types of input data, aiming to address this challenge. Drawing inspiration from
classical data structures and algorithms in computer graphics, we develop representations
to effectively represent meshes within neural networks.

First, we introduce BSP-Net. Inspired by a classical data structure Binary Space Parti-
tioning (BSP), we represent a 3D shape as a union of convex primitives, where each convex
primitive is obtained by intersecting half-spaces. This 3-layer BSP-tree representation allows
a shape to be stored in a 3-layer multilayer perceptron (MLP) as a neural implicit, while
an exact polygon mesh can be extracted from the MLP weights by parsing the underlying
BSP-tree. BSP-Net is the first deep neural network that is able to produce compact and
watertight polygon meshes natively, and the generated meshes are capable of representing
sharp geometric features. We demonstrate its effectiveness in the task of single-view 3D
reconstruction.

Next, we introduce a series of works that reconstruct explicit meshes by storing meshes
in regular grid structures. We present Neural Marching Cubes (NMC), a data-driven algo-
rithm for reconstructing meshes from discretized implicit fields. NMC is built upon March-
ing Cubes (MC), but it learns the vertex positions and local mesh topologies from example
training meshes, thereby avoiding topological errors and achieving better reconstruction of
geometric features, especially sharp features such as edges and corners, compared to MC
and its variants. In our subsequent work, Neural Dual Contouring (NDC), we replace the
MC meshing algorithm with Dual Contouring (DC) with slight modifications, so that our

iii

algorithm can reconstruct meshes from both signed inputs, such as signed distance fields or
binary voxels, and unsigned inputs, such as unsigned distance fields or point clouds, with
high accuracy and fast inference speed in a unified framework. Furthermore, inspired by the
volume rendering algorithm in Neural Radiance Fields (NeRF), we introduce differentiable
rendering to NDC to arrive at MobileNeRF, a NeRF-based method for reconstructing ob-
jects and scenes as triangle meshes with view-dependent textures from multi-view images.
MobileNeRF is the first NeRF-based method that is able to run on mobile phones and
AR/VR platforms thanks to the explicit mesh representation, demonstrating its efficiency
and compatibility on common devices.

Keywords: 3D shape, mesh, and representation; 3D reconstruction from voxels, point
clouds, and images; machine learning

iv

Acknowledgements

I would like to express my graditude to my supervisor, Hao (Richard) Zhang, who accepted
me as his student when other professors turned me down due to my poor GPA and unim-
pressive research record. Over the past 6 years, he has given me complete autonomy to
pursue my research interests while providing invaluable support in various ways to bring
my ideas to fruition. His mentorship has been instrumental in my academic success. Thanks
to him, I had a productive, and mostly importantly, happy, graduate experience.

I am also grateful to Zili Yi for involving me in his research project, which was also the
first project I participated in the lab at SFU. It was through this experience that I learned
how real research was done. It served as a stepping stone for me to enter this field and has
a profound impact on my research career.

My sincere appreciation also goes to Kangxue Yin, with whom I have collaborated
multiple times, both as fellow students at SFU and during my internship at NVIDIA. I
have benefited greatly from his help and learned valuable skills from our collaborations.

I would like to thank Chenyang Zhu, Renjiao Yi, Rui Ma, Changqing Zou, Wallace Pinto
Lira, Akshay Gadi Patil, Luwei Yang, Xiang Xu, Manyi Li, Zeshi Yang, Fenggen Yu, Hang
Zhou, Qimin Chen, and my other friends and colleagues in the lab. They have made my
time at SFU truly wonderful.

I would also like to thank my collaborators, and supervisors and colleagues during
my internships: Daniel Cohen-Or and Hui Huang for collaborating on project LOGAN;
Siddhartha Chaudhuri, Vladimir Kim, Matthew Fisher, and Noam Aigerman from Adobe;
Sanja Fidler and Jun Gao from NVIDIA; Andrea Tagliasacchi, Thomas Funkhouser, and
Peter Hedman from Google. I enjoyed the discussions with them on research, presentation,
work, life, etc, and I have learned immensely from them.

I want to thank Yasutaka Furukawa for being my supervisory committee member, An-
drea Tagliasacchi for serving as my examiner, Matthias Nießner for serving as my external
examiner, and Ali Mahdavi-Amiri for chairing my PhD defense. I appreciate their time,
effort, and insightful comments.

Finally, I am deeply appreciative of my parents for their love and support throughout
my academic journey.

v

Table of Contents

Declaration of Committee ii

Abstract iii

Acknowledgements v

Table of Contents vi

List of Tables x

List of Figures xiii

1 Introduction 1
1.1 Motivation and Problem Statement . 1
1.2 Challenges . 3

1.2.1 Representing explicit meshes in neural networks 3
1.2.2 Learning mesh tessellations with pseudo or no ground truth 4

1.3 Contributions . 5
1.3.1 Generating compact meshes with neural networks 5
1.3.2 Data-driven iso-surfacing algorithm 6
1.3.3 Unified mesh reconstruction framework 7
1.3.4 Real-time NeRF based on textured polygon meshes 8

1.4 Thesis Organization . 8

2 Background 10
2.1 3D Representations for Neural Networks . 10

2.1.1 Deformation-based . 10
2.1.2 Set of primitives . 12
2.1.3 Constructive solid geometry . 13
2.1.4 Sketch and extrude . 13
2.1.5 Primitive detection . 14
2.1.6 Grid mesh . 14
2.1.7 Voxels . 15

vi

2.1.8 Neural implicit . 16
2.1.9 Others . 17

2.2 Reconstruction from Voxels . 19
2.2.1 Shape super-resolution . 19
2.2.2 Shape parsing . 20

2.3 Reconstruction from Point Clouds . 20
2.3.1 Explicit representation . 21
2.3.2 Implicit representation . 22

2.4 Reconstruction from Single Images . 24
2.4.1 With 3D supervision . 24
2.4.2 With 2D supervision . 25

2.5 Reconstruction from Multi-View Images . 25
2.5.1 Differentiable rendering on explicit representation 26
2.5.2 Surface rendering on implicit representation 26
2.5.3 Volume rendering on implicit representation 26

3 BSP-Net: Generating Compact Meshes via Binary Space Partitioning 28
3.1 Introduction . 28
3.2 Related work . 31
3.3 Method . 33

3.3.1 Training Stage 1 – Continuous . 35
3.3.2 Training Stage 2 – Discrete . 36
3.3.3 Algorithmic and training details . 36

3.4 Results and evaluation . 37
3.4.1 Auto-encoding 2D shapes . 37
3.4.2 Auto-encoding 3D shapes . 39
3.4.3 Single view reconstruction (SVR) . 40

3.5 Conclusions . 43

4 Neural Marching Cubes 45
4.1 Introduction . 45
4.2 Related work . 48

4.2.1 Marching Cubes (MC) and Variants 49
4.2.2 Other Isosurfacing Algorithms . 49
4.2.3 Neural Geometry Learning . 50

4.3 Neural Marching Cubes . 51
4.3.1 2D NMC: representation in a 2D square 51
4.3.2 3D NMC: representation in a 3D cube 52
4.3.3 3D NMC: tessellating a 3D cube . 54
4.3.4 Data preparation . 54

vii

4.3.5 NMC network and objective functions 59
4.4 Results and evaluation . 60
4.5 Conclusions . 70

5 Neural Dual Contouring 73
5.1 Introduction . 73
5.2 Related work . 76

5.2.1 Isosurfacing and differentiable reconstruction 77
5.2.2 Mesh reconstruction from point clouds 78
5.2.3 Dual Contouring (DC) . 79

5.3 Method . 80
5.3.1 Encoders . 81
5.3.2 Training data preparation . 83
5.3.3 Training losses . 83
5.3.4 Post-processing . 84
5.3.5 Training details . 85

5.4 Results and evaluation . 85
5.4.1 Datasets, training, and evaluation metrics 85
5.4.2 Metrics . 86
5.4.3 Reconstruction from SDF . 87
5.4.4 Reconstruction from UDF . 93
5.4.5 Reconstruction from binary voxels 93
5.4.6 Reconstruction from point clouds . 95
5.4.7 Reconstruction from noisy real scans 97

5.5 Conclusions . 102

6 MobileNeRF: Exploiting the Polygon Rasterization Pipeline for Effi-
cient Neural Field Rendering on Mobile Architectures 108
6.1 Introduction . 108
6.2 Related work . 110
6.3 Method . 112

6.3.1 Continuous training (Training Stage 1) 113
6.3.2 Binarized training (Training Stage 2) 115
6.3.3 Discretization (Training Stage 3) . 115
6.3.4 Anti-aliasing . 116
6.3.5 Rendering . 117
6.3.6 Quadrature details . 118
6.3.7 Initial meshes . 118
6.3.8 Network and Training details . 119

6.4 Results and evaluation . 120

viii

6.4.1 Comparisons . 121
6.4.2 Ablation studies . 123
6.4.3 Scene editing . 126

6.5 Conclusions . 128

7 Conclusion and Future Work 132
7.1 Conclusion . 132
7.2 Future Work . 133

Bibliography 134

ix

List of Tables

Table 3.1 Surface reconstruction quality and comparison for 3D shape au-
toencoding. Best results are marked in bold. 38

Table 3.2 Segmentation: comparison in per-label IoU. 38
Table 3.3 Single view reconstruction – comparison to the state of the art.

Atlas25 denotes AtlasNet with 25 square patches, while Atlas0 uses a
single spherical patch. Subscripts to OccNet and IM-NET show sam-
pling resolution. For fair comparisons, we use resolution 323 so that
OccNet and IM-NET output meshes with comparable number of ver-
tices and faces. 41

Table 3.4 Low-poly analysis – the dataset-averaged metrics in single view
reconstruction. We highlight the number of vertices #V and triangles
#F in the predicted meshes. 41

Table 4.1 Quantitative comparison results on ABC test set with SDF input. . . 62
Table 4.2 Quantitative comparison on organic FAUST shapes with SDF input. . 62
Table 4.3 Quantitative comparisons on ABC test set with binary voxel input. . 65
Table 4.4 Quantitative comparison results on Thingi10K with SDF input. . . . 66
Table 4.5 Quantitative comparisons on Thingi10K with binary voxel input. . . . 67
Table 4.6 Quantitative comparison on ABC test set with noisy SDF input. . . . 68
Table 4.7 Comparison of different smoothness terms on the ABC test set. The un-

derlined superscripts show rankings of the quantitative performances,
where the overall best performing row is highlighted in bold. 69

Table 5.1 Comparing various aspects of NMC vs. NDC. 77
Table 5.2 Quantitative evaluation on ABC with SDF (signed or unsigned) in-

puts at two resolutions, evaluated on the test set split, using mesh
quality metrics, output complexity, and inference times. 87

Table 5.3 Quantitative results on Thingi10K with SDF input. 89
Table 5.4 Quantitative results on FAUST with SDF input. 89
Table 5.5 Quantitative results on ABC test set with binary voxel input. . . . 93
Table 5.6 Quantitative results on ABC test set with point cloud input. (+n)

indicates that the method additionally requires point normals as input. 97

x

Table 5.7 Comparing reconstruction results of UNDC (output grid size at 643)
and Poisson on point cloud inputs from ABC test set, with varying
point counts and noise levels to test the robustness of our method. . 102

Table 5.8 Statistics on non-manifold and boundary edges produced by NDC and
UNDC. The methods are tested on ABC test set with 643 output
resolution. Non-manifold-3 denotes non-manifold edges with 3 adja-
cent faces, and Non-manifold-4 denotes those with 4 adjacent faces.
Boundary-1 refers to boundary edges, defined as edges with only one
adjacent face. 103

Table 5.9 Quantitative comparison results on ABC test set with SDF and UDF
grid input. 105

Table 5.10 Quantitative comparison results on Thingi10K with SDF and UDF grid
input. 105

Table 5.11 Quantitative comparison results on FAUST with SDF and UDF grid
input. 105

Table 5.12 Quantitative comparison results on ABC test set with binary occpuancy
grid input. 106

Table 5.13 Quantitative comparison results on Thingi10K with binary occpuancy
grid input. 106

Table 5.14 Quantitative comparison results on FAUST with binary occpuancy grid
input. 106

Table 5.15 Quantitative results on ABC test set with point cloud input. (+n)
indicates that the method additionally requires point normals as input.
UNDC @ 643 means that the output grid size of UNDC is 643. 107

Table 5.16 Quantitative results on Thingi10K with point cloud input. (+n) indi-
cates that the method additionally requires point normals as input.
UNDC @ 643 means that the output grid size of UNDC is 643. 107

Table 5.17 Quantitative results on FAUST with point cloud input. (+n) indicates
that the method additionally requires point normals as input. UNDC
@ 643 means that the output grid size of UNDC is 643. 107

Table 6.1 Hardware specs – of the devices used in our rendering experiments.
The power is the max GPU power for discrete NVIDIA cards, and the
combined max CPU and GPU power for integrated GPUs. 122

xi

Table 6.2 Rendering speed – on various devices in frames per second (FPS).
The devices are on battery, except for the gaming laptop and the desk-
top which are plugged in, indicated with a . The mobile devices (first
four rows) have almost identical rendering speed when plugged in. With
the notation M

N we indicate that M out of N testing scenes failed to
run due to out-of-memory errors. 122

Table 6.3 Resources – memory and disk storage (MB). 122
Table 6.4 Quantitative Analysis – For NeRF [167] and NeRF++ [295], we

dash entries where the original papers did not report quantitative per-
formance. For SNeRG, while one could extend the method to include
the unbounded design from [11], implementing this is far from trivial.
Our method can be easily adapted to work across all modalities. . . 123

Table 6.5 Polygon count – Average number of vertices and triangles produced,
and their percentage compared to all available vertices/triangles in the
initial mesh. 123

Table 6.6 Ablation – rendering quality. 124
Table 6.7 Ablation – rendering speed/memory. 124
Table 6.8 PSNR↑ on Synthetic 360◦ scenes. 129
Table 6.9 SSIM↑ on Synthetic 360◦ scenes. 129
Table 6.10 LPIPS↓ on Synthetic 360◦ scenes. 129
Table 6.11 Rendering speed in frames per second (FPS), and GPU memory

and disk storage in MB, on Synthetic 360◦ scenes. 129
Table 6.12 PSNR↑ on Forward-facing scenes. 130
Table 6.13 SSIM↑ on Forward-facing scenes. 130
Table 6.14 LPIPS↓ on Forward-facing scenes. 130
Table 6.15 Rendering speed in frames per second (FPS), and GPU memory

and disk storage in MB, on Forward-facing scenes. 130
Table 6.16 PSNR↑ on Unbounded 360◦ scenes. 131
Table 6.17 SSIM↑ on Unbounded 360◦ scenes. 131
Table 6.18 LPIPS↓ on Unbounded 360◦ scenes. 131
Table 6.19 Rendering speed in frames per second (FPS), and GPU memory

and disk storage in MB, on Unbounded 360◦ scenes. 131

xii

List of Figures

Figure 3.1 (a) 3D shape auto-encoding by BSP-Net quickly reconstructs a com-
pact, i.e., low-poly, mesh, which can be easily textured. The mesh
edges reproduce sharp details in the input (e.g., edges of the legs),
yet still approximate smooth geometry (e.g., circular table-top). (b)
State-of-the-art methods regress an indicator function, which needs
to be iso-surfaced, resulting in over-tessellated meshes which only
approximate sharp details with smooth surfaces. 29

Figure 3.2 An illustration of “neural” BSP-tree. 29
Figure 3.3 The network corresponding to Figure 3.2. 31
Figure 3.4 Evaluation in 2D – auto-encoder trained on the synthetic 2D

dataset. We show auto-encoding results and highlight mistakes made
in Stage 1 with red circles, which are resolved in Stage 2. We further
show the effect of enabling the (optional) overlap loss. Notice that
in the visualization we use different (possibly repeating) colors to
indicate different convexes. 35

Figure 3.5 Examples of L2 output – a few convexes from the first shape in
Figure 3.4, and the planes to construct them. Note how many planes
are unused. 36

Figure 3.6 Segmentation and correspondence – semantics implied from
autoencoding by BSP-Net. Colors shown here are the result of a
manual grouping of learned convexes. The color assignment was per-
formed on a few shapes: once a convex is colored in one shape, we can
propagate the color to the other shapes by using the learnt convex id. 38

Figure 3.7 Segmentation and reconstruction / Qualitative. 39
Figure 3.8 Single-view 3D reconstruction – comparison to AtlasNet [86],

IM-NET [38], and OccNet [163]. Middle column shows mesh tessel-
lations of the reconstruction; last column shows the edge sampling
used in the ECD metric. 42

xiii

Figure 3.9 Structured SVR by BSP-Net reconstructs each shape with corre-
sponding convexes. Convexes belonging to the same semantic parts
are manually grouped and assigned the same color, resulting in se-
mantic part correspondence. 43

Figure 4.1 Our Neural Marching Cubes (NMC) is trained to reconstruct the
zero-isosurface of an implicit field, while preserving geometric fea-
tures such as sharp edges and smooth curves. We compare NMC (d),
and a simplified version (e), to the best-known MC variants (a-b),
as well as a trilinear interpolant (c), none of which could reconstruct
the features. The inputs to all methods are the same: a uniform grid
of signed distances sampled from the ground truth (f). 46

Figure 4.2 Tessellation design (b) and parameterization (c) for NMC in 2D, in
contrast to classical MC (a). Four new (face) vertices are added in-
side each square (c), each associated to a corner vertex (solid/hollow
circle with +/- sign to indicate outside/inside), with matching color.
Meshing information is encoded by a vector with a “boolean part"
revealing topology and a “float part” storing all vertex positions; see
Section 4.3.1 for more details. 47

Figure 4.3 Per-cube parameterization for our NMC in 3D, with 12 edge vertices
(vei), 6 × 4 = 24 new face vertices (vfk

j), along with 8 new interior
vertices (vc

j), as shown in (a). Vertices with the same color correspond
to the same cube vertex, as shown in (b), where the grey lines in (a-b)
are for ease of visualization only. The vector representation for local
mesh topology (the boolean part) and vertex positions (the float
part) is given in (c), where the number of floats needed to represent
a vertex depends on the degrees of freedom, e.g., one for an edge
vertex, two for a face vertex, and three for an interior vertex. . . . 53

Figure 4.4 The 3D cube tessellations of Marching Cubes 33 [40] and [156]. Note
that they both present 31 cases, since Case 12.3 is equivalent to Case
12.2 and Case 14 is equivalent to Case 11, with respect to rotational
and mirroring symmetries. In (b), we also add our extended topo-
logical cases to [156], indicated with a *, to form a simplified version
of our NMC tessellations, denoted as NMC-lite. 55

Figure 4.5 Our cube tessellations and face tessellations for all the 37 unique
topological cases considered by NMC, where vertices with the same
color correspond. Note Case 0 in the top-right corner which indexes
the case where all signs on the cube vertices are the same. 56

xiv

Figure 4.6 Example tessellation steps for our NMC designs. The face tessella-
tions in the first column follow Figure 4.2, therefore they are consid-
ered as “given”, and we only need to add new structures inside the
cube. 57

Figure 4.7 Our preprocessing step to prepare the training mesh data for NMC.
After determining the topological case for the cube, we optimize the
vertex positions to approximate the original mesh. The initial face
vertices are mid-points or trisection points, while the initial interior
vertices in the cube are averages of connected edge vertices and face
vertices. 57

Figure 4.8 Output meshes when our network is trained with vs. without the
smoothness term when the inputs are binary voxel/occupancy grids. 60

Figure 4.9 Results of reconstructing 3D meshes from SDF grid inputs at 643

resolution. The shapes in the first two rows are from the ABC test
set, and the last two rows from Thingi10K. 61

Figure 4.10 Reconstruction results on a brain model (in Thingi10K) with smooth
features by MC33 and NMC, from SDF inputs. NMC preserves the
surface details (especially around the valley areas) better. 62

Figure 4.11 Results of reconstructing 3D mesh shapes from SDF inputs as the
input grid resolutions vary. The holes in the MC33 results are due to
incorrectly predicted topological cases. NMC consistently outforms
MC33 at all input resolutions, up to 1283, but with a “diminishing
margin". 64

Figure 4.12 Results of reconstructing 3D meshes from binary voxel/occupancy
inputs at 643 resolution. The shapes in the first two rows are from
the ABC test set, and the last two rows from Thingi10K. 65

Figure 4.13 Comparing NMC with MC33 and Deep Marching Cubes (DMC)
[139] on feature preservation. 66

Figure 4.14 Results of reconstructing 3D meshes from a noisy SDF grid input at
643 resolution. 68

Figure 4.15 Visual comparisons of different smoothness terms on ABC test set
with binary voxel input at 643 resolution. 69

Figure 4.16 NMC may produce artifacts when the input is oriented at an “un-
usual” angle relative to the training shapes. From left to right: recon-
structions of a cube that is axis-aligned, then rotated by 1

14π, 2
14π,

and 3
14π. 71

Figure 4.17 NMC cannot account for certain topological cases (deemed “invalid”),
e.g., multiple intersections along an edge as highlighted in red (c).
The reconstruction failure in (b) is due to similar invalid cases in 3D. 71

xv

Figure 5.1 Neural dual contouring (NDC) is a unified data-driven approach that
learns to reconstruct meshes (bottom) from a variety of inputs (top):
signed or unsigned distance fields, binary voxels, non-oriented point
clouds, and noisy raw scans. Trained on CAD models, NDC general-
izes to a broad range of shape types: CAD models with sharp edges,
organic shapes, open surfaces for cloths, scans of indoor scenes, and
even the non-orientable Mobiüs strip. 74

Figure 5.2 Dual Contouring (DC) vs. Marching Cubes (MC) – visualized
in 2D on different inputs that were sampled from the same underly-
ing shape, DC (top) reconstructs a sharp feature (as an intersection
between faces, in the top-right cell), while MC (bottom) does not. . 74

Figure 5.3 Neural dual contouring (NDC) 75
Figure 5.4 Unsigned neural dual contouring (UNDC) 75
Figure 5.5 Training data preparation with data augmentation – The

ground truth meshes computed using classical DC (a) can be noisy.
With proper augmentation for the training data (see bottom), our
NDC network can be trained to output meshes with better tessella-
tion quality (b). 81

Figure 5.6 The architecture of our point cloud processing network for UNDC. 82
Figure 5.7 Post-processing UNDC outputs – The post-processing step can

close small holes by adding quad faces. 85
Figure 5.8 Mesh reconstruction results from SDF grid inputs at a relatively

low resolution of 643. The shapes in the first three columns are from
ABC test set, and the last column from Thingi10K. Zoom in to
see various surface artifacts and artifacts near edges on NMC-lite*
and NMC* results, broken meshes from MC33 (red arrows), and
non-manifold edges from NDC and UNDC (green arrows). Pay spe-
cial attention to the thin sheets (blue arrows) reconstructed by the
sign-agnostic UNDC, which correspond to parts of the ground truth
shape that are thinner than one voxel. In contrast, none of the other
methods (a-e) could even recover any of these thin parts. 88

Figure 5.9 Mesh reconstruction results from SDF grid inputs at 1283 resolution
on the FAUST dataset; see insets to compare triangle quality. . . 89

Figure 5.10 Qualitative results of mesh reconstruction from UDF inputs at 1283

resolution on two cloth shapes from the MGN dataset. Note the
open surfaces reconstructed by our sign-agnostic method UNDC. . 90

xvi

Figure 5.11 Some plots of surface quality (via % of Inaccurate Normals) and tri-
angle quality (via % of Small Angles), on ABC test set with 643

SDF input. NDC and UNDC consistently outperform other isosur-
facing methods. 90

Figure 5.12 Mesh reconstruction results from binary voxel (occupancy) inputs
at 643 resolution. Zoom in to see some surface artifacts by NMC-lite*
and NMC*, marked with blue arrows. The shapes in the first column
are from ABC test set, and the last three columns from Thingi10K. 94

Figure 5.13 Pre-trained ConvONet vs. ConvONet with our local backbone. . . . 96
Figure 5.14 Results of reconstructing 3D meshes from point cloud inputs of

4,096 points. Please zoom in to observe the surface details. The
shapes in the first two columns are from ABC test set, and the
last three columns from Thingi10K. 98

Figure 5.15 Qualitative comparison between ConvONet, Poisson, and UNDC
on reconstructing rooms in Matterport3D from raw scan data,
where some walls and roofs are removed for better visualization.
Colored arrows bring attention to regions where Poisson should be
contrasted against UNDC. Red arrows: “bubble” artifacts caused
by the water-tightness prior to Poisson; purple arrows: objects or
parts incorrectly trimmed; blue arrows: poor reconstruction of thin
surfaces. Green arrow in the bottom row points out an instance of
better preservation of surface details by Poisson (the strip patterns
are not noise or reconstruction artifacts); the flip side of this, how-
ever, is surface noise, as seen over Poisson reconstruction in the first
row. 100

Figure 5.16 Qualitative comparison between Poisson and UNDC on mesh recon-
struction from point clouds with density or noise variations across
the same shape, from its left to its right, as shown. The input point
clouds in the first three rows have decreasing point density from left
to right, while the inputs in the last three rows have increasing noise.
UNDC@643 and UNDC@1283 produce output grid sizes of 643 and
1283, respectively. 101

Figure 5.17 The edge artifacts and the cause. The quad faces are colored dif-
ferently to show that the artifacts are not caused by random quad
splitting. 103

Figure 6.1 Teaser – We present a NeRF that can run on a variety of common
devices at interactive frame rates. 109

xvii

Figure 6.2 Overview (rendering) – We represent the scene as a triangle mesh
textured by deep features. We first rasterize the mesh to a deferred
rendering buffer. For each visible fragment, we execute a neural de-
ferred shader that converts the feature and view direction to the
corresponding output pixel color. 111

Figure 6.3 Overview (train) – We initialize the mesh as a regular grid, and
use MLPs to represent features and opacity for any point on the
mesh. For each ray, we compute its intersection points on the mesh,
and alpha-composite the colors of those points to obtain the out-
put color. In a later training stage, we enforce binary opacity, and
perform super-sampling on features for anti-aliasing. 112

Figure 6.4 Configurations of polygonal meshes – The meshes employed for
the different types of scenes. We sketch the distribution of camera
poses in training views. 116

Figure 6.5 Quadrature points – are obtained by (a) identifying cells that
intersect the ray; (b) pruning cells that do not contain geometry;
and, (c) computing explicit intersections with the mesh. 116

Figure 6.6 Qualitative Results – Comparisons to the state-of-the-art and
ablation studies. With a solid line we denote zoom-ins of the rendered
(800×800) image, while with a dashed line we move the camera to
zoom-in onto the same detail. 120

Figure 6.7 Comparison between images rendered in Python and in a web browser. Image

pixel value range is 0-255. Zoom in for details. 121
Figure 6.8 Shading mesh – not textured. The mesh corresponds to the bicycle

(see Figure 6.1). We manually removed the background mesh to bet-
ter show the geometry of the object. Zoom-in to see more details. In
the bottom, we also show the rendered images of our method. Note
how the coarse mesh is able to represent detailed structures such as
the spokes of the wheels and the wires around the handles, thanks
to high-resolution textures with transparencies. 125

Figure 6.9 Limitations – (a) the monitor/table are hollow, because the re-
flections are modelled as real objects behind the monitor and below
the table. (b) our method generates scattered small fragments in
the semi-transparent parts. (c) the camera is too close to the scene
and details in the grass cannot be represented at the chosen texture
resolution. 126

Figure 6.10 Scene editing – (a) four objects learned from the synthetic scenes
are added into an unbounded scene. (b) a branch of the ficus is bent.
(c) the horns are removed. 127

xviii

Chapter 1

Introduction

1.1 Motivation and Problem Statement

Deep learning has been a game changer in computer science. During the past decade, deep
learning methods have evolved from experimental tools in research labs into real life appli-
cations such as those in autonomous driving, recommendation systems, object and action
recognition, machine translation, speech recognition, generative AI for content creation, and
many others. These deep learning methods have profound impact in our lives. One recent
example is AI-generated art achieved by large text-to-image models, such as Stable Diffu-
sion [206], which have made creating art accessible to general public and have changed the
workflow of many artists. Another prominent example is AI chatbots, such as ChatGPT
[183], which are powerful productivity tools that can help people with various tasks ranging
from summarizing and drafting documents to coding and debugging.

The success of these deep learning models can be attributed, in part, to their well-
established data representations. For instance, images are represented as 2D arrays of pixels,
where convolutional neural networks (CNN) have been developed to process and generate
them; texts are represented as sequences of words, where sequence models such as recurrent
neural networks (RNN) and Transformers [246] can be applied. These representations have
been widely accepted in both academia and industry. Therefore, both the software (neural
network architectures and algorithms) and the hardware (AI chips and Tensor Processing
Units) have been designed and optimized to handle these types of data, accelerating the
adoption of deep learning methods in real life.

However, there is no standard data representation for 3D shapes in deep learning mod-
els. Various representations have been proposed for neural networks to generate 3D outputs,
such as point clouds, voxels, and neural implicit. Point clouds have been a popular repre-
sentation as the input to neural networks [195, 196, 256], but they may not be a desirable
representation as the output, since sparse point clouds cannot be used in realistic rendering,
and dense point clouds have high space and computational complexity to be generated by
neural networks. Voxels also have the issue of high complexity, even when adaptive spatial

1

structures such as octrees are used [43, 92, 236]. Neural implicit representation [38, 163, 185]
was designed to provide a compact way to represent 3D shapes as continuous implicit fields
stored in neural networks. It guarantees to produce watertight shapes with manifold sur-
faces, which is ideal for rendering. And unlike point clouds and voxels where the neural
networks have to generate the whole output shape in a single forwarding pass, models with
the neural implicit representation can naturally break a shape into small mini-batches for
training and inference, making the representation highly scalable. The various advantages of
neural implicit make it quicky become the most adopted representation in 3D reconstruction
and generative models.

Unfortunately, these popular representations are not suitable for most real-world ap-
plications, as polygon meshes are the dominant 3D representation in the industry. Their
dominance is reflected in two aspects. First, polygon meshes are the standard representa-
tion used by artists to create 3D models. The entire 3D content creation pipeline revolves
around polygon meshes, from modeling to texturing (UV mapping) to animation (rigging).
Second, polygon meshes are the only 3D representation that GPUs (Graphics Processing
Units) accept and render. Modern GPUs have been specifically designed and have gone
through heavy optimizations to perform a single type of rendering: on polygons. Thus, even
in the case when 3D models are initially created using other methods, such as 3D sculpting
or particle simulation, they still need to be converted into meshes for rendering purposes.

Despite the dominance of polygon meshes in real-world applications, they are rarely used
as a representation for output shapes in neural networks. The primary reason is that polygon
meshes are essentially a special kind of graphs, with arbitrary numbers of vertices and faces
that need to be connected in specific ways to form manifold surfaces. In contrast, neural
networks are typically constrained to generate fixed-length outputs in a single forwarding
pass. As a result, treating meshes as graphs requires the networks to be recurrent and to
generate vertices and faces one-by-one. This is neither efficient nor practical, as networks
tend to overfit and/or underfit when no inductive bias is present.

Indeed, neural networks do not have to produce meshes natively; they can simply convert
their output representations into polygon meshes whenever necessary. However, this raises
two issues. First, there needs to be algorithms that reconstruct polygon meshes from other
representations. Classic model-driven mesh reconstruction algorithms were built on heuristic
assumptions that may not always hold in real-world scenarios, resulting in a range of issues
and reduced reconstruction quality. It is expected that data-driven mesh reconstruction
algorithms that can learn from shapes in the real world should outperform their traditional
counterparts and exhibit improved generalizability, but this ironically leads us back to the
question of how to generate meshes with neural networks. Second, mesh reconstruction is
a post-processing step applied to the outputs of the neural networks, which is detached
from the training phase of these deep learning models. As a result, the networks have no
control over the quality and the compactness of the final reconstructed mesh, leading to

2

quantization errors and excessive vertices and triangles in the output mesh. In contrast,
producing meshes natively allows the neural networks to be aware of the errors in the final
output mesh so that they can be compensated during training, thereby achieving superior
quality with fewer mesh elements.

Therefore, deep learning models that produce polygon meshes are not only desirable
models in real applications, but also powerful tools for converting other 3D representations
into usable formats. Today, creating 3D content still requires significant professional knowl-
edge, and only individuals who have undergone extensive training and practice are capable
of modeling 3D shapes and scenes in specialized software. We are in urgent need for deep
learning-powered mesh creation tools that can enhance the robustness and user-friendliness
of 3D modeling, making it accessible to a broader audience.

In this thesis, we tackle neural mesh reconstruction specifically, where 3D polygon
meshes are reconstructed from given inputs by utilizing neural networks that learn priors
from training shapes. We propose several representations that draw inspiration from clas-
sical data structures and algorithms in computer graphics, to effectively represent meshes
within neural networks. And by developing a series of deep learning methods that recon-
struct meshes from voxels, point clouds, single images, and multi-view images, we aim to
advance the research in mesh-based representation learning, improve the robustness and
performance of mesh reconstruction methods, and ultimately, make 3D content creation
accessible to everyone.

1.2 Challenges

The major challenge and the focus of this thesis is how explicit meshes can be represented in
neural networks. An accompanying challenge is that the original tessellations in the training
meshes are usually not the desirable ground truth for the output meshes and cannot be used
for direct supervision. Consequently, networks have to be trained to learn mesh tessellations
using either pseudo ground truth or no ground truth.

1.2.1 Representing explicit meshes in neural networks

It goes without saying that representing explicit meshes in neural networks is a challenging
task. There were attempts [50, 174] that treat a mesh as a graph and generate vertices and
faces sequentially, which led to overcomplex network design, poor output quality, and over-
fitting. A considerable amount of works adopt deformation-based approaches that deform
a sphere [249, 115, 152, 31, 299, 171, 292], a set of cuboids [74, 73], or a set of 2D square
patches [86, 260, 8] into the target shape. But they are either limited to a fixed topology or
having noticeable artifacts such as seams between patches.

Some works aim at shape abstraction, e.g., representing a shape with a sparse set of
boxes [239] or superquadrics [187]. Their generated meshes are usually of poor quality

3

due to their simple primitive types. Using convex primitives to construct shapes has the
potential to significantly improve shape quality and compactness. Yet, representing general
and compact convex primitives with neural networks is highly non-trivial. To tackle this,
we draw inspiration from a classical spatial data structure in computer graphics, Binary
Space Partitioning (BSP), to devise BSP-Net [36], a network that learns to represent a 3D
shape using a set of convex primitives obtained from a BSP-tree built on a set of planes.

Some other works represent meshes in regular grid structures [139, 71], so that convo-
lutional operations can be applied in their networks for efficient learning. However, their
algorithms are unable to generate surface details due to the limited representation ability
of their mesh tessellations, which are naïvely adopted from classic methods such as March-
ing Cubes [157]. Therefore, we not only enhance the mesh tessellations in classic methods,
allowing Marching Cubes [157] to reconstruct sharp geometric features and Dual Contour-
ing [110] to reconstruct thin sheets and non-orientable surfaces, but also parameterize the
tessellations in both algorithms, enabling them to be coupled with deep neural networks for
accurate mesh reconstruction from various input types, resulting in Neural Marching Cubes
(NMC) [39] and Neural Dual Contouring (NDC) [35]. Moreover, in MobileNeRF [33], we
show that textures with transparencies can be used for representing geometric details on
coarse meshes, which is especially beneficial in scene reconstruction tasks with differentiable
rendering.

1.2.2 Learning mesh tessellations with pseudo or no ground truth

Mesh tessellations can be highly ambiguous, in the sense that the exact same geometry
can have limitless possible tessellations. As a consequence, the original tessellations in the
ground truth meshes may not be optimal or even representative. On the other hand, the
ground truth tessellations used for training must be compatible with neural networks. In
other words, the tessellations are only useful when the networks can generate them.

To learn mesh tessellations without ground truth, grid-based mesh reconstruction meth-
ods [139] typically sample points on the predicted mesh and the ground truth mesh, and
minimize points-to-points or points-to-mesh distances, thereby learning the optimal tessel-
lations by minimizing the mesh reconstruction error. However, this training strategy is not
suitable for reconstructing highly detailed shapes, as it requires sampling dense point clouds
to capture the details on those shapes, and computing distances between dense point clouds
is prohibitively expensive. Therefore, in NMC and NDC where our focus is to reconstruct
geometric details, we develop pseudo ground truth tessellations by performing a re-meshing
on training meshes, to convert the meshes into the formats that our networks can generate,
so that the training can be done efficiently in a fully supervised manner. In MobileNeRF
where no ground truth is available, we simply adopt a fixed grid topology. We rely on dif-
ferentiable rendering to adjust the mesh vertices to approximate the shape, and rely on the
opacity in mesh textures to change the mesh topology.

4

To generate more compact meshes, regular grid structures cannot be relied on since
they intrinsically generate dense and uniformly-distributed mesh elements. The networks
will need to learn to tessellate shapes adaptively, with more polygons on detailed regions and
fewer on featureless regions. Thus, in BSP-Net, we represent an explicit Constructive Solid
Geometry (CSG) tree with a neural implicit representation. By training the neural network
to learn implicit functions, no explicit mesh tessellation is required during training, and the
network learns to allocate primitives adaptively and automatically. When an explicit mesh
is needed, we parse the underlying CSG-tree to produce mesh tessellations.

1.3 Contributions

In this thesis, we introduce several deep learning algorithms that reconstruct meshes from
various input sources, including voxels, point clouds, single images, and multi-view images.
Specifically, We propose the first deep generative network that directly outputs compact
and watertight polygon meshes with arbitrary topology, the first data-driven iso-surfacing
algorithm that is able to recover sharp geometric features from discretized implicit fields,
the first unified and generalizable mesh reconstruction framework that can accommodate
multiple input types, and the first NeRF-based novel-view synthesis method that leverages
meshes as its representation for fast rendering on mobile devices.

1.3.1 Generating compact meshes with neural networks

Following the introduction of the neural implicit representation by DeepSDF [185], OccNet
[163], and our IM-Net [38], there has been a surge in adopting neural implicit in various
applications. However, despite being a compact representation, neural implicit does not
produce compact meshes, as it requires an iso-surfacing step to extract the meshes from
the fields. Coincidentally, during the development of BAE-Net [37] where our original goal
was to apply neural implicit in unsupervised shape co-segmentation, we observed that a
shallow MultiLayer Perceptron (MLP) exhibited a certain tree structure akin to a classical
BSP-tree, suggesting a potential way to represent polygon meshes in MLPs.

Therefore, with the aim of generating compact meshes, we present BSP-Net, a shape
decoder neural network based on a neural BSP-tree to decode a latent code into a 3D shape
and output polygon meshes natively. BSP-Net is essentially a neural implicit representation,
with an MLP to classify whether a given query 3D point is inside or outside the output
shape. However, its MLP architecture is reformulated so that the first layer of the neural
network explicitly represents multiple planes that fit the surfaces of a 3D shape. Each plane
implies a Binary Space Partition, and the output 3D shape is composed by combining the
half-spaces from the binary space partitions. This composition is performed explicitly in the
second and third layers of the MLP via binarized network weights, where the second layer
groups planes into convex parts, and the third layer groups convex parts into the output

5

3D shape. Therefore, at inference time, the BSP-tree can be explicitly constructed from the
network weights, and an explicit polygon mesh can be extracted by parsing the BSP-tree
using classic CSG.

We adopt an encoder-decoder setting to first encode the input into a global shape latent
code, and then use BSP-Net to decode it into a polygon mesh. In principle, this framework
can reconstruct meshes from all types of inputs as long as they can be encoded into a shape
latent code, although we only explore voxel and single image inputs in our experiments. We
also demonstrate the strengths of BSP-Net through extensive testing on shape segmentation
and part correspondence. Our contributions are summarized as follows.

• BSP-Net is the first deep generative network to directly output compact and water-
tight polygon meshes with arbitrary topology and structure variety.

• BSP-Net is also the first deep generative network that can reconstruct and recover
sharp geometric features.

• The learned BSP-tree enables us to infer both shape segmentation and part corre-
spondence in an unsupervised manner.

1.3.2 Data-driven iso-surfacing algorithm

We then seek to extend the capabilities of another classic algorithm in computer graphics,
Marching Cubes (MC), through deep learning techniques. Due to their model-driven design,
classical MC and its variants are unable to reconstruct geometric features that reveal coher-
ence or dependencies between nearby cubes, such as sharp edges. To boost the performance
of MC algorithms, we introduce Neural Marching Cubes (NMC), a data-driven approach
for extracting a triangle mesh from a discretized implicit field. In NMC, we re-cast MC
from a deep learning perspective, by designing tessellation templates more apt at preserv-
ing geometric features, and learning the vertex positions and mesh topologies from training
meshes, to account for contextual information from nearby cubes. We develop a compact
per-cube parameterization to represent the output triangle mesh, while being compatible
with neural processing, so that a simple 3D convolutional network can be employed for the
training. In addition, our network learns local features with limited receptive fields, hence
it generalizes well to new shapes and new datasets.

We evaluate our NMC approach by extensive comparisons to all well-known MC variants.
In particular, we demonstrate the ability of our network to recover sharp features such as
edges and corners, and also reconstruct local mesh topologies more accurately than previous
approaches. Our contributions are summarized as follows.

• NMC is the first data-driven iso-surfacing algorithm and it is also the first iso-surfacing
algorithm able to recover sharp features without requiring additional inputs other than
a uniform grid of implicit field values.

6

• NMC can more faithfully reconstruct local mesh topologies near thin shape structures
and closeby surface sheets.

• NMC can be trained to reconstruct clean meshes from noisy inputs by adjusting the
training data, thus offering a useful tool for extracting 3D shapes from those shape
representations designed for neural networks.

1.3.3 Unified mesh reconstruction framework

Following NMC, we introduce Neural Dual Contouring (NDC), a unified data-driven ap-
proach that learns to reconstruct meshes from a variety of inputs, including signed or un-
signed distance fields, binary voxels, non-oriented point clouds, and noisy raw scans. NDC
generalizes to a broad range of shape types, including CAD models with sharp edges, organic
shapes, open surfaces for cloths, scans of indoor scenes, and even non-orientable surfaces.

NDC is based on Dual Contouring (DC). Like traditional DC, it produces exactly one
vertex per grid cell and one quad for each grid edge intersection, a natural and efficient
structure for reproducing sharp features. However, rather than computing vertex locations
and edge crossings with hand-crafted functions that depend directly on difficult-to-obtain
surface gradients, NDC uses a neural network to predict them. As a result, NDC can be
trained to produce meshes from all kinds of input types as long as they can be converted
into a grid structure, and it can produce open surfaces in cases where the input represents
a sheet or partial surface.

We show in the experiments that NDC not only has strong generalizability to new
shapes and new datasets, but also provides better surface reconstruction accuracy, feature
preservation, output complexity, triangle quality, and inference time, compared to previous
learned and traditional methods. Our contributions are summarized as follows.

• NDC is the first data-driven approach to mesh reconstruction based on Dual Con-
touring. It eliminates the need for gradients in the input as in classical DC, and it
accounts for local contextual information from nearby cubes.

• NDC is a unified learning model that is applicable to a larger variety of inputs than pre-
vious meshing methods. The allowed inputs include signed/unsigned distance fields,
binary voxels, and un-oriented point clouds.

• Compared to the previous data-driven iso-surfacing algorithm NMC, NDC has a sig-
nificant reduction in representational complexity, which translates to across-the-board
gains, in terms of simplicity of the network architecture, reduction in network capacity,
training and inference times, and more.

• UNDC (unsigned NDC), the sign-agnostic version of NDC, can produce open, even
non-orientable, output surfaces. It can recover thin structures thinner than one voxel
in the input grid, which no other iso-surfacing algorithms can reconstruct.

7

1.3.4 Real-time NeRF based on textured polygon meshes

Neural Radiance Fields (NeRF) [167] have demonstrated amazing ability to synthesize im-
ages of 3D scenes from novel views when trained on input multi-view images. However,
they are typically slow and incompatible with common devices due to their specialized vol-
umetric rendering algorithms. To build fast and compatible NeRF models, we introduce
MobileNeRF, a NeRF that can run on a variety of common mobile devices in real time. In
MobileNeRF, the NeRF is represented by a set of textured polygons, where the polygons
roughly follow the surface of the scene, and the texture atlas stores opacity and feature
vectors. To render an image, we utilize the classic polygon rasterization pipeline with Z-
buffering to produce a feature vector for each pixel and pass it to a lightweight MLP running
in a GLSL fragment shader to produce the view-dependent output color. This rendering
pipeline takes full advantage of the parallelism provided by z-buffers and fragment shaders
in modern graphics hardware, and thus is much faster than the prior state-of-the-art. More-
over, it requires only a standard polygon rendering pipeline, which is implemented and
accelerated on virtually every computing platform, and thus it runs on mobile phones and
other devices previously unable to support NeRF visualization at interactive rates.

Our contributions are summarized as follows.

• MobileNeRF is 10× faster than the prior state-of-the-art (SNeRG [97]), with the same
output quality.

• MobileNeRF consumes less GPU memory by storing surface textures instead of vol-
umetric textures, enabling it to run on integrated GPUs with limited memory and
power.

• MobileNeRF runs on a web browser and is compatible with all devices we have tested.
It is also the first NeRF-based method that is able to run on mobile phones and
AR/VR platforms.

• MobileNeRF allows real-time manipulation of the reconstructed objects/scenes, as
they are simple triangle meshes.

1.4 Thesis Organization

The thesis is organized as follows. In Chapter 2, we will discuss various 3D representations
used in neural networks and review deep-learning mesh reconstruction methods. In Chap-
ter 3, we will introduce BSP-Net for generating compact meshes with neural networks via
binary space partitioning. In Chapter 4, we will introduce Neural Marching Cubes (NMC)
for reconstructing meshes from implicit fields by learning from example training meshes.
In Chapter 5, we will introduce Neural Dual Contouring (NDC), a unified data-driven ap-
proach that can reconstruct meshes from all common input types. In Chapter 6, we will

8

introduce MobileNeRF for efficient neural field rendering on mobile architectures by repre-
senting NeRF in textured polygon meshes. In Chapter 7, we will provide conclusions and
discuss future works.

Related publications This thesis includes previously published material. The following
is a list of the papers and their corresponding chapters:

• Chapter 2 appeared in the paper “A Review of Deep Learning-Powered Mesh Recon-
struction Methods”. Zhiqin Chen. ArXiv preprint arXiv:2303.02879, 2023.

• Chapter 3 appeared in the paper “BSP-Net: Generating compact meshes via binary
space partitioning”. Zhiqin Chen, Andrea Tagliasacchi, and Hao Zhang. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
45–54, 2020.

• Chapter 4 appeared in the paper “Neural Marching Cubes”. Zhiqin Chen and Hao
Zhang. ACM Transactions on Graphics (Special Issue of SIGGRAPH Asia), 40(6),
2021.

• Chapter 5 appeared in the paper “Neural Dual Contouring”. Zhiqin Chen, Andrea
Tagliasacchi, Thomas Funkhouser, and Hao Zhang. ACM Transactions on Graphics
(Special Issue of SIGGRAPH), 41(4), 2022.

• Chapter 6 appeared in the paper “MobileNeRF: Exploiting the polygon rasterization
pipeline for efficient neural field rendering on mobile architectures”. Zhiqin Chen,
Thomas Funkhouser, Peter Hedman, and Andrea Tagliasacchi. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023.

9

Chapter 2

Background

In this chapter, we provide background and works related to this thesis. First, we describe
various 3D representations used in neural 3D reconstruction and generative models in Sec-
tion 2.1, to give an overview of how neural networks can output 3D meshes. Then we provide
a comprehensive review of deep-learning mesh reconstruction methods categorized by their
input, specifically, mesh reconstruction from voxels in Section 2.2, from point clouds in
Section 2.3, from single images in Section 2.4, and from multi-view images in Section 2.5.

2.1 3D Representations for Neural Networks

The foundation for any algorithm is the data representation. Unfortunately, there is no
such unified representation for 3D models. In fact, researchers have proposed a wide range
of representations for 3D generative tasks.

In this section, we focus on representations that are essentially triangle meshes, therefore
point clouds, although being a very popular representation, will not be discussed. We also
consider representations that can be easily converted into triangle meshes, such as CSG
(Constructive Solid Geometry) trees, parametric surfaces, voxels, and neural implicit.

2.1.1 Deformation-based

Deforming a single template mesh to create shapes of different poses has been widely used
for face [58] and human body [124, 18, 190] shape reconstruction. However, due to the
availability of a single template mesh, this representation is not suitable for reconstructing
general 3D objects.

Extending the idea of deforming a single shape, one can first retrieve a most suitable
template for the target object, and then deform the template, to achieve optimal perfor-
mance. The methods usually process the inputs with neural networks to either classify
which template is most suitable, such as BCNet [105] and Multi-Garment Net (MGN) [17];
or embed the input into a deformation-aware latent space to retrieve the nearest-neighbor
template, such as 3D Deformation Network (3DN) [255], Deformation-Aware 3D Model Em-

10

bedding and Retrieval [242], and ShapeFlow [106]. Then, a deformation network is applied
to deform the template into the target shape.

The above representations all assume high-quality shape templates are given, and they
are most used for highly specialized reconstruction tasks. For general shape reconstruction
tasks, especially when reconstructing 3D shapes with only 2D image supervision, a primitive
shape could be used as the initial shape, and it can be deformed to approximate the target
shape. The most commonly used primitive is a simple sphere. Representative works that are
trained with ground truth 3D supervision include AtlasNet (sphere version) [86], Pixel2Mesh
[249], Pixel2Mesh++ [258], Neural mesh flow [90], and [184]. It may not be the most popular
representation for models trained with 3D supervision, but it indeed has been the dominant
representation in models trained with only 2D image supervision, such as N3MR (Neural
3d Mesh Renderer) [115], Soft Rasterizer [152], DIB-R [31], DIB-R++ [32], Image GANs
meet Differentiable Rendering [299], UNICORN [171], NeRS [292], and [98, 191, 138]. There
are multiple ways to perform deformation on the sphere: it can be an MLP (MultiLayer
perceptron) that takes a 3D point on the sphere surface and outputs its deformed coordinates
[86, 184, 171, 292]; or using graph convolutional networks on the sphere meshes to predict
vertex positions [249, 258]; or using a CNN decoder to predict a displacement map on the
sphere [191]; the majority of the methods simply use an MLP to predict the offsets of all
vertices in the template mesh, outputting a V × 3 vector where V is the number of vertices
in the template. Some works on 3D reconstruction with 2D supervision adopt a better
initialization than a simple sphere. CMR [111] initializes the template shape as the convex
hull of the mean keypoint locations obtained after running SFM (structure from motion)
on the annotated keypoints. [113] initializes the template shape using the visual hull of the
annotated object masks on the training images. [81] initializes the template shape using a
very simple but manually designed mesh. Note that for these works, the template meshes
are optimizable during training.

One can also consider deforming a uniform 2D grid as deforming one primitive, with the
primitive being a square. Therefore, many works that predict depth images from a single
image can be put into this representation category, e.g., “Unsupervised learning of probably
symmetric deformable 3d objects from images in the wild” [269]. Similarly, there are models
that predict geometry images [87], such as SurfNet [226].

Deforming a single primitive shape limits the topology and the representation ability
of the reconstructed shapes, therefore a natural solution is to fit multiple primitive shapes.
However, this representation is mostly used when direct 3D supervision is available. Repre-
sentative works include AtlasNet (patch version) [86], where an output shape is represented
as a collection of square meshes, each deformed via an independent MLP. Photometric Mesh
Optimization [141] adopts the 25-patch version of AtlasNet to reconstruct an object mesh
from multi-view images. Follow-up works fit square meshes into local patches of a shape
to perform mesh reconstruction from point clouds, such as Deep geometric prior [260] and

11

Meshlet priors [8]. The square patches in AtlasNet lead to many issues, including overlap-
ping patches, self-intersections, and conspicuous artifacts on the surface. SDM-NET [74] has
output shapes made of deformed unit cube meshes; it addresses the above issues via strong
part-wise 3D supervision. Another work [228] applies a deformable parametric template
composed of Coons patches [47] to generate manifold and piecewise-smooth shapes made
of parametric surfaces.

2.1.2 Set of primitives

A shape can also be approximated by a set of primitive meshes, where the network only
needs to predict the parameters for each primitive, in contrast to utilizing deformation
networks as those deformation-based representations. A commonly used primitive type is
bounding boxes or boxes that approximate the shape, such as those in Im2struct [180]
and VP [239]. Boxes are easy to define: the network only needs to predict the size, the
translation, the rotation, and the existence probability of each primitive box. An explicit
mesh can also be easily obtained by a union of the box meshes.

Follow-up works such as SQ [187] and Hierarchical SQ [186] use superquadrics instead
of boxes for the primitives. Superquadrics [10] are a parametric family of surfaces that
can be used to describe cubes, cylinders, spheres, octahedra, ellipsoids, and other simple
primitives, with just two shape parameters. Therefore, using superquadrics can improve the
representation ability to better approximate the target shape. To generate superquadrics,
the network needs to predict the shape parameters, the size, the translation, the rotation,
and the existence probability of each superquadric primitive. Meshes also can be easily
obtained from superquadrics.

Convex primitives proposed in CvxNet [57] and our work BSP-Net [36] are more compact
than superquadrics, and also more flexible as their primitive can model any convex shape.
Unlike boxes or superquadrics, convex primitives cannot be described by a few parameters.
Therefore, the methods require intricate neural network design: the network first predicts
a set of planes or half-spaces, and then the network intersects selected half-spaces to form
convex primitives, and finally the convex primitives are united to form the output shape.
Polygonal meshes can be directly extracted from the tree structure.

To make the primitives more flexible, Neural Star Domain [116] represents each primitive
as a star domain. One can consider a star domain as a “height” function defined on the
surface of a unit sphere, therefore a star domain can be approximately represented as the
coefficients of spherical harmonics. So to generate those primitives, the network needs to
predict a few spherical harmonics coefficients for each primitive, plus the translation vector.
Meshes can be extracted by deforming a unit-sphere template mesh with respect to the
“height” function.

12

2.1.3 Constructive solid geometry

Constructive Solid Geometry (CSG) is a common representation for CAD (computer-aided
design) models, where primitive shapes such as polyhedrons, ellipsoids, and cylinders are
merged via boolean operators such as union, intersection, and difference. CSG representation
is a compact representation that is able to preserve sharp and smooth geometric features.

When ground truth CSG-trees are available, a network can be trained with fully-
supervised learning to produce a sequence of operations and their operands, where the
sequence is equivalent to a CSG-tree. A representative work is CSGNet [218].

Yet when ground truth is unavailable, learning to represent a shape as a CSG-tree with
neural networks is a very challenging task, because CSG trees include selecting suitable
primitives and performing CSG operations. Both steps are discrete and non-differentiable.
Our work BSP-Net [36] from the previous section could also be considered as using CSG
representation, since it intersects half-spaces to form convex shapes and then unions convex
shapes to form the output shape. BSP-Net first learns a continuous approximation of the
CSG-tree, and then discretizes it to obtain a real CSG-tree. However, BSP-Net only adopts
planes (half-spaces) as primitives, therefore it only approximates piece-wise planar shapes.
A follow-up work CAPRI-Net [289] relaxed the primitive types to axis-aligned quadratic
surfaces, therefore it is able to represent curved smooth surfaces with a single primitive.
In addition, CAPRI-Net also introduced a differentiable difference operator. The predicted
quadratic surface primitives are first selected and intersected to form convex shapes; then
the convex shapes are unioned to form two potentially concave shapes; finally the difference
between the two concave shapes forms the output shape.

While CAPRI-Net uses quadratic surfaces as primitives, other works use primitive
shapes as primitives. UCSG-Net [112] predicts parameters of boxes and spheres and uses
them as primitives. Similarly CSG-Stump [202] predicts boxes, spheres, cylinders and cones.
While UCSG-Net has several CSG layers where each layer supports multiple types of CSG
operations; CSG-Stump only has three layers with fixed ordering (complement-intersection-
union), similar to CAPRI-Net (intersection-union-difference).

2.1.4 Sketch and extrude

“Sketch and extrude” is also a CSG representation. However, different from the repre-
sentation described in the previous section where primitive 3D shapes are used for CSG
operations, this representation takes an approach more similar to the workflow of creating
CAD models, by repeatedly sketching a 2D profile and then extruding that profile into a 3D
body. DeepCAD [267] is a pioneer in generating CAD models with such a representation,
by applying a Transformer network [246] to predict the command sequences for creating the
output shape. Follow-up work [126] reconstructs CAD shapes from rounded voxel models;
it represents profiles as 2D occupancy images. Point2Cyl [241] reconstructs CAD shapes

13

from point clouds; it represents profiles as 2D neural implicit. Point2Cyl is also considered
a representative work in “primitive detection”, since it first segments the point cloud into
patches, and then reconstructs extrusion cylinders from those patches.

The works mentioned above all apply supervised training with ground truth command
sequences. ExtrudeNet [203] can learn such sequences unsupervisedly. It uses closed cubic
Bezier curves as profiles and proposed a differentiable sketch-to-SDF module and a dif-
ferentiable extrusion module to construct 3D parts. Those 3D parts are combined using
CSG-Stump [202] to form the output shape.

2.1.5 Primitive detection

In previous primitive-based representations, the output shapes are usually generated by a
shape decoder from a global shape latent code, therefore they are leaning toward generative
models. The representation in this section does not have a shape latent space. It is more
like an object detection model in computer vision, where the primitive types and param-
eters are directly predicted from global and local shape features by the neural networks.
Therefore, this representation is usually for reconstructing CAD models of mechanical parts.
Specifically, SPFN [135], CPFN [129], ParSeNet [219], HPNet [279], and Point2Cyl [241]
all reconstruct parametric surfaces from point clouds. They first use a neural network to
extract per-point features from the input point cloud, and then apply a clustering module
to segment the point cloud into patches belonging to different primitives, and finally clas-
sify the primitive type and regress the primitive parameters for each patch. SPFN [135]
and CPFN [129] can reconstruct planes, spheres, cylinders, and cones; ParSeNet [219] and
HPNet [279] in addition can reconstruct open and closed B-spline patches. ComplexGen
[88] adopts a more structured representation, boundary representation (B-Rep), to recover
corners, curves (line, circle, B-spline, ellipse) and patches (plane, cylinder, torus, B-spline,
cone, sphere) simultaneously along with their mutual topology constraints. Point2Cyl [241]
utilizes a “sketch and extrude” representation.

2.1.6 Grid mesh

Inspired by classic iso-surfacing algorithms such as Marching Cubes (MC) [157], Dual Con-
touring (DC) [110], and Marching Tetrahedra (MT) [60], which operate on a regular grid
structure, several methods have been proposed to also generate a regular grid of parame-
ters, so that surfaces can be extracted cell by cell. Compared to other representations, the
advantage of this representation is that a 3D convolutional neural network (CNN) can be
applied to produce the grid outputs, and CNNs have been thoroughly studied and heavily
optimized to be very efficient and effective, compared to the network architectures (usually
MLPs or graph convolutions) used in other representations.

One earliest work on this representation is Deep Marching Cubes (DMC) [139]. DMC
has an encoder-decoder structure, where the encoder encodes the inputs into shape latent

14

codes, and the decoder is a 3D CNN to generate a grid of inside-outside signs and a grid of
vertex positions. An explicit triangle mesh can be extracted by applying MC algorithm on
the predicted sign grid to determine the topology, i.e., mesh tessellation, in each cell, and the
positions of the mesh vertices are given by the predicted grid of vertex positions. Our work,
Neural Marching Cubes (NMC) [39], has a similar idea in spirit, but it targets iso-surfacing
tasks such as mesh reconstruction from grids of signed distances or occupancies. NMC
has “local” backbone networks (fully convolutional without bottleneck layer) with small
receptive fields for better generalizability, and it has enriched the MC cube tessellation
cases to better reconstruct detailed geometry such as sharp features.

Our follow-up work, Neural Dual Contouring (NDC) [35], adopts DC, a much simpler
algorithm compared to MC, as the meshing algorithm. NDC has very simple methods:
a “local” network generates a grid of signs or intersection flags, another “local” network
generates a grid of interior vertex positions, and finally DC is applied to connect the gener-
ated vertices to form mesh surfaces. NDC can take any input that can be converted into a
grid structure, such as grids of signed or unsigned distances, binary occupancies, and point
clouds.

DEFTET [71] also predicts a grid structure - a tetrahedron grid. The method predicts
the occupancy for each tetrahedron, and the offset for each vertex relative to their initial
positions in the regular tetrahedron grid. The output of DEFTET is a tetrahedral mesh,
which is one of the dominant representations for volumetric solids in graphics, and it can
be directly used in simulation. Note that DEFTET predicts the occupancy for each tetra-
hedron, unlike DMC, NMC, and NDC which predict signs on grid vertices. DMTET [222]
also uses a tetrahedron grid, but it predicts the signed distance on each grid vertex, so it
requires a differentiable iso-surfacing step (differentiable marching tetrahedra). Follow-up
work Nvdiffrec [173] combines DMTET and differentiable rendering to reconstruct meshes
from multi-view images.

Adaptive O-CNN [254] produces a polygon soup, where the polygons do not connect
to form a surface. It uses an octree-like network structure that subdivides nodes according
to the expected complexity of surface details. Each leaf node predicts the parameters of a
plane, which generates a polygon in that cell.

2.1.7 Voxels

Similar to “Grid mesh” where grid structures are used to store local mesh properties, it is in
fact easier for the neural networks to directly predict a grid of voxels carrying implicit field
values, such as signed distances or occupancies, and then apply meshing or iso-surfacing
algorithms to extract the mesh. Occupancy or signed distance grids have been very popular
representations, and the reason is similar to that of “Grid mesh”, that a mature technique,
convolutional neural networks (CNN), can be applied to produce the grid outputs. Due to
the popularity and wide usage of voxels, there are thousands of publications that adopt this

15

representation. Therefore, this section will only cover a few representative works to explain
the various use cases.

The simplest way to generate voxels is to use a 3D CNN network to predict a 3D grid of
occupancies. A representative work is 3D-R2N2 [43], which has a simple network structure:
an encoder-decoder structure where a 2D CNN encoder encodes the input image into a
latent code, and a 3D CNN decoder decodes the latent code into a voxel grid. To take
multiple images from different views as input, 3D-R2N2 utilizes Long Short-Term Memory
(LSTM) [99] to aggregate the sequence of latent codes before feeding them to the shape
decoder.

Note that 3D-R2N2 has a bottleneck in the network architecture to produce a global
latent code that is not capable of representing detailed shape geometries and is unlikely to
generalize to inputs dissimilar to those in the training set. Some works that adopt voxels use
a local network or U-Net [207] to take into account local features, such as DECOR-GAN
[34] and GenRe [298].

However, voxel grids are of O(N3) space complexity. It is hard to generate a voxel
grid of sufficiently high resolution due to hardware memory constraints. Therefore, octree
representation which adaptively subdivides voxels has been applied in many works, such as
HSP (Hierarchical Surface Prediction) [92], 3D-CFCN [25], OctNetFusion [205], OGN [236],
and Dual OCNN[253].

Finally, predicting grids of signed distances rather than occupancies can better model
smooth surfaces, as signed distances contain more information about the surface than binary
occupancies. Example works include 3D-EPN [51] and Deep level sets [165].

2.1.8 Neural implicit

Neural implicit representation is an extremely popular representation nowadays. It was
proposed in CVPR 2019 by three concurrent works IM-Net [38], OccNet [163], and DeepSDF
[185]. Since then there has been an explosion of neural implicit papers. This section will
only list a few representative works. We refer the readers to the survey “Neural Fields in
Visual Computing and Beyond” [275] for more related works.

Neural implicit representation is essentially an MLP (MultiLayer perceptron) that takes
a point’s coordinates as input and outputs the inside-outside sign [38, 163] or signed distance
[185] of that input point. The MLP itself represents the implicit function of a 3D shape.
To generate different output shapes based on the input, the MLP can be conditioned via
concatenating a shape latent code with the input point coordinates before feeding the
point to the MLP [38, 185], or modulating the MLP network weights using the latent
code [163, 227]. The main difference between neural implicit and voxels is that voxels need
3D CNNs to directly predict a grid of implicit field values, therefore it outputs the entire
shape with one network forward pass, whereas neural implicit processes each single input
point individually with the same MLP. To output the entire shape, a grid of points need

16

to be sampled in space and the MLP needs to run on each of the points to produce a
grid of implicit field values. Marching Cubes (MC) [157] is usually applied to the grid to
extract an explicit mesh. Theoretically, neural implicit can represent shapes with infinitely
fine resolution without increasing the model (MLP) size, in contrast to voxels which have
an O(N3) space complexity, therefore neural implicit has been considered as a compact
representation.

Structured Implicit Functions [78] propose to use scaled axis-aligned anisotropic 3D
Gaussians (i.e., a set of Gaussian balls) to represent the implicit field, instead of an MLP. It
can speed up training and inference of neural implicit and has been adopted in follow-ups
that have global shape latent codes.

However, global shape latent codes cannot represent detailed shape geometries and they
often lead to overfitting on a specific dataset or category of shapes, therefore methods have
been proposed to include local features to condition the MLP so that the network can have
better accuracy on local details and generalize better. PIFu [210], PIFuHD [211], DISN
[276], and D2IM-Net [136] employ local features from 2D image encoders for single-view 3D
reconstruction tasks. LIG [107], ConvONet (Convolutional occupancy networks) [193], SA-
ConvONet [235], POCO [21], and IF-Nets [41] employ local features extracted from point
clouds or voxels to perform object or scene reconstructions.

Differentiable rendering has also been developed for neural implicit. [153], DVR [179],
IDR [283], and DIST [150] can reconstruct objects from multi-view images; they assume
the object mask is given for each input image, and each ray intersects the surface at most
once (only one intersection point per ray for the gradient to propagate). NeuS [250], HF-
NeuS [63], UNISURF [182], VolSDF [282], and [7] also reconstruct objects or scenes from
multi-view images. However, they are based on the ray marching volume rendering formula
of NeRF [167]. They do not need object masks, and they sample numerous points along
each ray to perform volume rendering.

2.1.9 Others

Connect given vertices. This representation can only be used for reconstructing a mesh
from a point cloud, because it only connects given vertices from the point cloud. The meth-
ods can be classified by whether it infers the inside-outside regions of the shape and thus
generates a closed mesh. Most methods do not generate a closed mesh. [149] generates a
collection of triangles by proposing candidate triangles, classifying the candidate triangles
with a neural network to determine which triangles should exist in the output mesh, and
repeating this process. PointTriNet [220] has a classification network to classify whether a
given candidate triangle should exist in the output mesh, and a proposal network to suggest
likely neighbor triangles for a given existing triangle. [197] first estimates local neighbor-
hoods around each point, and then perform a 2D projection of these neighborhoods so that
a 2D Delaunay triangulation is computed to provide candidate triangles, and finally those

17

candidate triangles are aggregated to maximize the manifoldness of the reconstructed mesh.
Delaunay triangulation based surface reconstruction methods can guarantee to generate a
closed mesh because they first perform 3D Delaunay triangulation on the input points to
obtain a tessellation of the 3D space with tetrahedrons, and then classify which tetrahedrons
are inside the shape and which are outside. After the inside-outside labels are assigned, a
surface can be reconstructed by extracting triangle faces between tetrahedrons of differ-
ent labels. DeepDT [158] uses a graph neural network on the dual graph of the Delaunay
triangulation to predict the label of each tetrahedron.

Generate and connect vertices. This representation first generates a set of mesh
vertices with a neural network, and then selectively connects those vertices to form mesh
faces with another neural network. The representation can directly generate a 3D mesh as an
indexed face set, however, it is rarely used due to its extremely high complexity. Scan2Mesh
[50] uses a point cloud generator (MLP) to generate a set of points. Then it constructs a
fully connected graph on these points, and uses a graph neural network to predict which
mesh edges should exist in the output mesh. Finally, it considers all possible triangle faces
that can be formed from the predicted edges, constructs a dual graph on the faces, and
uses a graph neural network to predict which mesh faces should exist in the output mesh.
Due to the construction of a complete graph on the predicted points and the subsequent
graph neural networks, this method can only predict a limited number of vertices (100 in
the experiments). PolyGen [174] first generates mesh vertices sequentially from lowest to
highest on the vertical axis. The continuous vertex positions are quantized to form discrete
bins for likelihood calculation. The next vertex is generated by a vertex Transformer, which
takes the current sequence of vertex positions as input, and outputs a distribution over
discretized vertex positions. Then it generates polygon faces, also sequentially from lowest
to highest on vertex indices. The next face is generated by a face Transformer, which takes
the generated vertices and the current sequence of face indices as input, and outputs a
distribution over vertex indices.

Sequence of edits. “Modeling 3D Shapes by Reinforcement Learning” [142] models
3D shapes with a sequence of editing operations. The method contains two neural networks,
a Prim-Agent that approximates the shape using primitives, and a Mesh-Agent that edits
the mesh to create detailed geometry. Given a depth image as shape reference and a set of
pre-defined primitives, the Prim-Agent predicts a sequence of actions on primitives (drag
primitive corner points or delete primitive) to approximate the target shape. Then the edge
loops are added to the output primitives to subdivide each primitive into segments for
finer editing control. Finally, the Mesh-Agent takes as input the shape reference and the
primitive-based representation, and predicts actions on edge loops (drag edge loop corner
points) to create detailed geometry.

18

2.2 Reconstruction from Voxels

In this section, we review works that reconstruct shapes from a grid of occupancies or signed
distances. Based on the motivations, we divide the collection of works into two categories:
shape super-resolution and shape parsing, where shape super-resolution reconstructs a more
detailed and visually pleasing shape from the input voxels, and shape parsing decomposes
the input voxels into primitives and CSG sequences for reverse engineering a CAD shape.

2.2.1 Shape super-resolution

Shape super-resolution strives to recover and even enhance geometric features from voxel
inputs. Methods such as OccNet [163] and IM-Net [38] can convert input voxels into neural
implicit representation, which can be sampled at arbitrarily high resolution. Although one
can argue that the outputs of those methods indeed have higher resolution compared to
the input voxels, they do not properly recover shape details; in fact, the reconstructed
outputs often lose details presented in the input voxels, due to the usage of a global shape
latent code. Therefore, works that perform voxel super-resolution mostly adopt local neural
networks which take into account both local and global shape features.

Our works, Neural Marching Cubes (NMC) [39] and Neural Dual Contouring (NDC)
[35], are data-driven iso-surfacing algorithms. They reconstruct meshes from input voxels
and they are able to recover geometric features such as sharp corners and edges. They adopt
and modify the mesh tessellations in classic iso-surfacing algorithms Marching Cubes (MC)
[157] and Dual Contouring (DC) [110], and use neural networks to predict the tessellation
case and the vertex positions in each voxel to directly output a polygonal mesh. Their neural
network backbones have limited receptive fields, meaning that they can only infer geometric
features from local regions and they do not have access to global shape information. Thus,
the methods focus more on the mesh reconstruction side than the shape super-resolution
side.

Similarly, methods such as Convolutional occupancy networks (ConvONet) [193] and
“Implicit Functions in feature space” (IF-Nets) [41] can reconstruct shapes as neural implicit
from input voxels. ConvONet adopts convolutional encoders to process the input voxels,
and predict either a 3D grid of deep features (grid setting) or three 2D grids of deep features
on three orthogonal planes (tri-plane setting). Then for each query point, the deep features
are retrieved from the grid or the planes via trilinear or bilinear interpolation, and the deep
features are concatenated with the query point coordinates to be fed into an MLP to predict
the inside/outside status of the query point. IF-Nets also adopts convolutional encoders to
compute multi-scale 3D grids encoding global and local features. Note that the backbone
networks in these works are sufficiently large to produce global shape features, yet they
also utilize local features. They are adept at recovering geometric features from reasonably

19

dense input voxels. However, they do not perform well on coarse inputs, since they only
recover details and do not create more details on the coarse shape.

Therefore, methods have been proposed to generate new details on the coarse shape,
mostly with the help of a local patch discriminator[82] (PatchGAN[104]). DECOR-GAN [34]
performs shape detailization and is able to refine a coarse shape into a variety of detailed
shapes with different styles. DECOR-GAN utilizes a 3D CNN generator for upsampling
coarse voxels and a 3D PatchGAN discriminator to enforce local patches of the generated
shape to be similar to those in the training detailed shapes. DMTET [222] also applies a 3D
PatchGAN discriminator on the signed distance field computed from the predicted mesh to
improve the local details.

Another approach to generating new details on the coarse shape is to retrieve high-
resolution local patches from a database and combine them into a new shape with respect
to the structure and context of the input coarse voxels. RetrievalFuse [224] creates a shared
embedding space between coarse voxel chunks and a database of high-quality voxel chunks
from indoor scene data. For a given coarse voxel input, multiple approximate reconstructions
are created with retrieved chunks from the database, and the reconstructed scenes are then
fused together with an attention-based blending to produce the final reconstruction.

2.2.2 Shape parsing

Parsing an input voxel grid into primitives and a sequence of operations requires specific
output representations, namely, “set of primitives” (Section 2.1.2), “constructive solid ge-
ometry” (Section 2.1.3), and “sketch and extrude” (Section 2.1.4). One can refer to those
sections for related works. Note that most methods in those sections use global shape latent
codes, meaning that the methods can convert any input (point clouds, voxels, images, etc)
into parsed shapes, as long as the input can be encoded into global latent codes.

2.3 Reconstruction from Point Clouds

In this section, we review works that reconstruct objects and scenes from point clouds,
with or without point normals. We divide the methods into two categories: one based on
explicit representations, and the other on implicit representations. Methods with explicit
representations can directly output a mesh, but it usually does not guarantee the surface
quality, for example, they may not be watertight and may contain no-manifoldness and
self-intersections. Methods with implicit representations do guarantee to produce a water-
tight, manifold mesh without self-intersections, but they require an iso-surfacing algorithm
to extract the mesh from the implicit field. Methods with state-of-the-art reconstruction
accuracy are mostly using implicit representations.

Note that a significant amount of works in 3D deep learning use a global shape la-
tent code to encode the shape, such as ShapeFlow [106], AtlasNet [86], OccNet [163],

20

DeepSDF[185], Structured Implicit Functions [78], OctField [233], CSG-Stump [202], and
DeepCAD [267]. As mentioned in previous sections, global shape latent codes cannot rep-
resent detailed shape geometries and they often lead to overfitting on a specific dataset or
category of shapes. Therefore, in this section, we will only discuss works that take local
features into account.

2.3.1 Explicit representation

Given a clean and mostly uniform point cloud, a straightforward solution to reconstruct
a mesh is to create triangles from the given points. Example classic algorithms include
Delaunay triangulation based surface reconstruction methods and ball-pivoting [15]. Various
methods employ deep learning to improve the performance of such approaches. They are
detailed in Section 2.1.9.

If the shape is a single object and has simple topology, it is possible to deform a coarse
initial mesh to fit the point cloud in order to reconstruct a mesh. Point2Mesh [94] obtains
the initial mesh as the convex hull of the input point cloud, and then deforms the initial
mesh to shrink-wrap the point cloud.

For more complex shapes, one could split the input point cloud into overlapping patches,
and fit each patch with a deformable 2D square surface. Deep Geometric Prior [260] and
Meshlet Priors [8] took inspiration from AtlasNet [86], to overfit each local patch from the
input point cloud with a neural network (MLP) deforming a square patch. The resulting set
of overfitted local patches can be further sampled and reconstructed to produce a manifold
mesh.

The unsigned version (UNDC) in our work Neural Dual Contouring [35] discretizes the
space into a 3D grid, and from the input point cloud it predicts for each grid edge whether
the edge will be intersected by the output mesh or not. It also predicts an interior vertex for
each grid cell, so that if an edge is predicted to have intersected by the mesh, a quad face
will be created to connect the four vertices of the four adjacent cells of that edge. Therefore,
UNDC can directly reconstruct a quad mesh from input points without the need for point
normals.

Methods introduced in Section 2.1.5 “primitive detection” can produce a more structured
output: a collection of primitives represented as parametric surfaces. Those methods first
use a neural network to extract per-point features from the input point clouds, and then
apply a clustering module to segment the point cloud into patches belonging to different
primitives, and finally classify the primitive type and regress the primitive parameters for
each patch.

Some methods in Section 2.1.3 “Constructive Solid Geometry” and Section 2.1.4 “Sketch
and extrude” can reconstruct structured representations (CSG-trees) from point clouds, such
as CAPRI-Net [289] and Point2Cyl [241].

21

2.3.2 Implicit representation

The majority of the deep learning methods adopt implicit representations for shape re-
construction from point clouds. However, the boundary between the two representations
“voxels” and “neural implicit” has become blurry since a great number of works use 3D
CNNs to predict a grid structure and then use interpolation techniques to obtain the fea-
tures of continuous query points, which will be used to regress the implicit field values of
the query points.

Overfit a single shape. “Sign Agnostic Learning” (SAL) [5], “Implicit Geometric
Regularization” (IGR) [85], and “SAL with Derivatives” (SALD) [6] all overfit an MLP
representing neural implicit from a point cloud without normals. SAL [5] only assumes
the input point cloud is sufficiently dense to produce a good unsigned distance field. It
proposed an unsigned similarity function and a geometric network initialization to learn a
neural signed distance field from the unsigned distance field. IGR [85] proposed different
training objectives and regularization terms to supervise the learned implicit field. SALD
[6] improved SAL [5] by including regularizations on the derivatives of the predicted signed
distance field. SIREN [227] improves the representation capability of MLPs by using periodic
activation functions in MLPs. It can quickly overfit a neural implicit from an oriented point
cloud.

Divide space into local cube patches. “Local Implicit Grid” (LIG) [107] and “Deep
Local Shapes” (DeepLS) [26] both pointed out that global shape latent codes in early neu-
ral implicit methods are not generalizable, therefore they divide the space into a grid of
overlapping cube patches, and fit an MLP for each patch. The MLP is pre-trained on a
collection of shape patches to learn a low dimensional latent space of plausible (or “real”)
shape patches. During inference, the MLP is fixed, but a latent code is optimized indepen-
dently for each patch of the input point cloud to match the MLP’s isosurface to the input
points in that patch. They both require point normals to help this optimization. Finally,
the reconstructed patches are stitched together to give the reconstructed shape or scene.
SAIL-S3 [300] has the same idea but it can reconstruct a shape from point clouds without
normals, by adopting Sign Agnostic Learning [5].

3D CNN then local neural implicit. ConvONet [193] and IF-Nets [41] are also
covered in Section 2.2.1 for voxel super-resolution. They can also reconstruct shapes from
point clouds without normals. ConvONet [193] first uses a point cloud encoder to process
the input points, and the per-point features are pooled into grids to be processed by CNNs
for further feature extraction. IF-Nets [41] discretizes input points into a 3D grid and then
adopts CNN encoders to compute multi-scale 3D feature grids. SA-ConvONet [235] is a
follow-up of SAL [5] and ConvONet [193] to apply sign agnostic learning proposed in SAL
as a post-processing step to improve the reconstruction quality of ConvONet. GIFS [284]
does not predict the inside/outside status of each query point, but rather predicts whether

22

two query points are separated by any surface. The concept is similar to Unsigned Neural
Dual Contouring (UNDC) [35], but UNDC’s meshing is based on Dual Contouring [110],
and this work on a modified version of Marching Cubes [157]. It can represent general shapes
including non-watertight shapes and shapes with multi-layer surfaces.

Point cloud encoder then local neural implicit. Points2Surf [62] is purely based on
point cloud encoders without any CNN. For a query point in space, it adopts one PointNet
[195] to encode points sampled at the neighborhood of the query point into a local feature
code, and another PointNet to encode the points sampled at the entire input point cloud
into a global feature code. The decoder takes both features to predict the signed distance
of the query point. POCO [21] proposed to use point cloud convolutions and compute
latent vectors at each input point. Then for each query point, it performs a learning-based
interpolation on nearest neighbors in input points to retrieve a weighted-averaged feature
vector, and the feature vector is processed by an MLP to predict the occupancy of the query
point.

Implicit field defined by points. These methods use points (either input points or
predicted points) and their properties (such as normals) to directly compute the implicit
field value of any query point, similar to classic Radial Basis Function (RBF) surface re-
construction methods. The inference from these points to an implicit field does not involve
any deep learning or neural networks. Therefore, the backbone networks that produce these
points are the trainable parts in those methods, and they possess learned priors from the
training datasets. Neural Splines [261] is a kernel method for surface reconstruction based
on kernels arising from infinitely-wide shallow ReLU networks. It can reconstruct an implicit
field from a set of points and their normals and it does not involve any neural networks.
A follow-up work “Neural Kernel Fields” (NKF) [259] proposed to replace the fixed point
properties (normals) with a learned feature vector, so as to have data-dependent kernels.
“Shape As Points” (SAP) [192] proposed a differentiable point-to-mesh layer using a differ-
entiable formulation of Poisson Surface Reconstruction (PSR) [117, 118], so that a shape
can be represented as a set of points with normals. “Deep Implicit Moving Least-Squares”
(Deep IMLS) [151] takes a sparse and un-oriented point cloud as input, and uses a U-Net-like
O-CNN autoencoder [251] to predict an octree structure where each octree node contains
a fixed number of predicted points with normals. Those predicted points with normals are
then used to construct an implicit field by implicit moving least-squares (IMLS) surface
formulation [123].

Octrees. The O(N3) space complexity of regular 3D grids makes methods based on
regular grids hard to scale up. Therefore, some methods have been proposed to include
adaptive spatial structures such as octrees in the neural networks to improve both efficiency
and quality. AdaConv [240] proposed multiscale convolutional kernels that can be applied
to adaptive grids as generated with octrees. Dual OCNN [253] designed graph convolutions

23

over the dual graph of octree nodes. Both methods build the octree from the input point
cloud and process the input using the proposed convolutional kernels.

2.4 Reconstruction from Single Images

Methods that reconstruct a shape from a single image can be divided into two categories
based on the supervision they receive during training. One category is trained with ground
truth 3D shapes as supervision. The methods in this category are typically trained on
ShapeNet [28]. Another category is trained with only single-view images as supervision.
Single-view images mean that there is only one image for each object for training, in contrast
to multi-view images where each object has multiple images from different viewpoints. The
methods in this category typically train on image datasets of birds, cars, horses, and faces,
with shapes of sphere or disk topology.

2.4.1 With 3D supervision

Similar to Section 2.3, a significant amount of works in 3D deep learning use a global shape
latent code to encode the shape, such as SurfNet [226], 3D-R2N2 [43], OGN [236], HSP
[92], ShapeHD [265], AtlasNet [86], Im2Struct [180], Matryoshka Networks [204], Skeleton-
Net [234], IM-Net [38], OccNet [163], Deep Level Sets [165], Deep Meta Functionals [146],
topology-modifying AtlasNet [184], Pix2Vox [274], PQ-NET [268], BSP-Net [36], Cvxnet
[57], LDIF [77], Neural Template [102], AutoSDF [168]. Global shape latent codes cannot
represent detailed shape geometries, and they often lead to learning shape recognition rather
than shape reconstruction, as pointed out by “What do single-view 3d reconstruction net-
works learn?” [237] in 2019. That is, an encoder-decoder structured neural network with a
global shape latent code is likely to simply memorize the shapes in the training set during
training, and “retrieve” a shape from the memory bank as output during testing. Therefore,
in the following, we will only discuss works that take local features into account.

Pixel2Mesh [249] progressively deforms and subdivides a sphere mesh via graph convolu-
tional networks. It extracts image features with a CNN, and then pools image features into
the vertices of the mesh to enrich the vertex features, so that the graph convolutional net-
works can learn local-feature-aware deformations. Geometric Granularity Aware Pixel2Mesh
[223] is a follow-up that can edit the topology of the mesh by utilizing an error estimator
network to identify faces to prone or repair.

GenRe [298] uses a 2D CNN to predict a depth map from the input image, projects the
depth map into a partial spherical map, inpaints the spherical map, projects the complete
spherical map and the previous depth map into voxels, and finally processes the voxels by
a voxel refinement network to produce the final output. The method shows strong general-
izability that it can reconstruct objects from categories not seen during training.

24

Front2Back [281] first predicts depth, normal, and silhouette maps from the input image.
It then detects global reflective symmetries from these maps, and reflects the front depth
and normal maps to create partial back depth and normal maps. The partial back depth
and normal maps are fed into a network to predict the complete back depth and normal
maps. Finally, a 3D mesh can be reconstructed from the Front&back normal and depth
maps using Screened Poisson [118].

DISN [276] and PIFu [210] are the two pioneers to first incorporate local features from
the input image for single-view 3D reconstruction with neural implicit representation. They
learn image feature maps with a CNN, and use the projected location for each 3D query
point on the 2D image to extract local features from the image feature maps. The local
features are used by MLPs to produce the signed distance or occupancy of the query point.
PIFuHD [211] is a follow-up of PIFu that consists of a coarse PIFu network and a fine
PIFu network, focusing on global geometry and local details, respectively. Ladybird [278]
exploits shape symmetric to predict the signed distance of a query 3D point by using both
the query point and its mirrored point with respect to the symmetry plane to extract local
features from the image feature maps. D2IM-Net [136] trains the network to learn a detail
disentangled reconstruction consisting of a 3D implicit field representing the coarse 3D
shape, and two 2D displacement maps capturing the front and back details of the object.

2.4.2 With 2D supervision

Methods often employ a global shape latent code for this task since the task is very difficult
and the methods must learn category-specific priors. Most methods adopt a spherical mesh
as the template and deform it into the target shape, often with textures. This representation
and some related works are covered in Section 2.1.1. Methods that use neural implicit
representation for this task often require ground-truth camera pose for each image and
multi-view images of the same object. Table 1 in “Share With Thy Neighbors: Single-View
Reconstruction by Cross-Instance Consistency” (UNICORN) [171] and Table 1 in “2D GANs
Meet Unsupervised Single-view 3D Reconstruction” (GANSVR) [147] are great summaries
of recent works on this topic. We recommend interested readers to take a look.

2.5 Reconstruction from Multi-View Images

Only a few works follow the path of single image reconstruction methods in Section 2.4
to learn priors from a collection of training shapes. They can aggregate the global shape
latent codes from multiple input images using recurrent neural networks as in 3D-R2N2
[43], aggregate spatial features decoded from global shape latent codes as in Pix2Vox [274],
aggregate image features from multiple input images as in Pixel2Mesh++ [258], or aggregate
image features from multiple input images and 3D embeddings of spatial locations using a
Transformer as in EVolT [248].

25

Most methods are overfitting a single shape or scene with respect to the multiple input
images using methods based on the differentiable rendering algorithms on meshes or neural
implicit, or based on the ray marching volume rendering formula of NeRF [167].

2.5.1 Differentiable rendering on explicit representation

Only a few methods adopt explicit mesh representations. NeRS [292], Differentiable Stere-
opsis (DS) [80], and Neural Deferred Shading (NDS) [263] deform a sphere mesh into the
target shape. DEFTET [71], Nvdiffrec [173], and our work MobileNeRF [33] use the “grid
mesh” representation. Following differentiable mesh rendering algorithms such as Soft Ras-
terizer [152], for each pixel, the methods record all or the first k intersected points between
the mesh and the ray from the pixel, and aggregate the colors via alpha-compositing dur-
ing training. DS and DEFTET assume the texture colors are diffuse-only, while NDS and
MobileNeRF use MLP neural shader to capture view-dependent effects, and NeRS and
Nvdiffrec recover spatially-varying materials and environment map lighting from the input
images.

2.5.2 Surface rendering on implicit representation

Most methods in this section have a differentiable rendering formula that assumes the object
segmentation mask is given for each input image, and each ray intersects the surface at most
once (only one intersection point per ray for the gradient to propagate).

SDFDiff [108], DVR [179], and IDR [283] are pioneers that propose different formulations
of differentiable rendering on implicit surfaces, while SDFDiff [108] uses regular grid SDF
and others use neural implicit. To model colors, SDFDiff assumes the target shape does not
have textures and it does not predict textures for the reconstructed shape; DVR adopts
Texture fields [181], using an MLP to predict the RGB color of each surface point, thus it
cannot model view-dependent effects; IDR uses an MLP to approximate the bidirectional
reflectance distribution function (BRDF) of each surface point.

Neural Lumigraph Rendering (NLR) [119] shows that the extracted mesh can be com-
bined with unstructured lumigraph rendering [23] to achieve real-time rendering. MVSDF
[294] leverages stereo matching and feature consistency to optimize the implicit surface
representation. RegSDF [293] uses reconstructed point clouds from the input images to su-
pervise and regularize the learning of the neural field. Reparameterization SDF renderer
[9] presents a method to compute correct gradients with respect to network parameters in
neural SDF renderers.

2.5.3 Volume rendering on implicit representation

The methods in this section adopt a NeRF-style ray marching volume rendering algorithm.
For each pixel, the camera shoots a ray crossing it. A number of points are sampled along

26

the ray. Each sampled point carries density (“opacity”) and radiance (view-dependent RGB
color), predicted by an MLP. The final pixel color is the accumulated radiance of all the
sampled points with respect to their density, similar to alpha-compositing. Those methods
usually do not need object segmentation masks, and they somehow represent the point
density with well-defined neural implicit fields, so that the surface of the shape can be
extracted via iso-surfacing.

UNISURF [182], NeuS [250], and VolSDF [282] are pioneers that propose different for-
mulations of volume rendering on implicit surfaces.

“Neural RGB-D Surface Reconstruction” [7] proposes to incorporate depth measure-
ments into the optimization of a NeRF model. NeuralWarp [52] proposes to add a direct
photo-consistency term across the different views during optimization to ensure the cor-
rectness of the implicit geometry. ManhattanSDF [89] incorporates planer constraints to
regularize the geometry in floor and wall regions. Geo-Neus [67] explicitly performs multi-
view geometry optimization by leveraging the sparse geometry from structure from motion
(SFM) and photometric consistency in multi-view stereo. “Neural 3D Reconstruction in
the Wild” [231] follows NeuS [250] and “NeRF in the Wild” (NeRF-W) [161] to recon-
struct scenes from Internet photo collections in the presence of varying illumination. SNeS
[103] targets 3D reconstruction of partly-symmetric objects, by applying a soft symme-
try constraint to the 3D geometry and material properties. SparseNeuS [155] targets 3D
reconstruction from sparse images by learning generalizable priors across scenes by intro-
ducing geometry encoding volumes for generic surface prediction. MonoSDF [291] utilizes
the depth and normal maps predicted by pretrained general-purpose monocular estimator
networks for 2D images to improve reconstruction quality and optimization time. HF-NeuS
[63] proposes to decompose the SDF into a base function and a displacement function with
a coarse-to-fine strategy to gradually increase the high-frequency details.

27

Chapter 3

BSP-Net: Generating Compact
Meshes via Binary Space
Partitioning

3.1 Introduction

Recently, there has been an increasing interest in representation learning and generative
modeling for 3D shapes. Up to now, deep neural networks for shape analysis and syn-
thesis have been developed mainly for voxel grids [79, 92, 264, 272], point clouds [1, 195,
196, 286, 287], and implicit functions [38, 78, 109, 163, 276]. As the dominant 3D shape
representation for modeling, display, and animation, polygonal meshes have not figured
prominently amid these developments. One of the main reasons is that the non-uniformity
and irregularity of triangle tessellations do not naturally support conventional convolution
and pooling operations [93]. However, compared to voxels and point clouds, meshes can
provide a more seamless and coherent surface representation; they are more controllable,
easier to manipulate, and are more compact, attaining higher visual quality using fewer
primitives; see Figure 3.1.

For visualization purposes, the generated voxels, point clouds, and implicits are typi-
cally converted into meshes in post-processing, e.g., via iso-surface extraction by Marching
Cubes [157]. Few deep networks can generate polygonal meshes directly, and such methods
are limited to genus-zero meshes [91, 159, 249], piece-wise genus-zero [74] meshes, meshes
sharing the same connectivity [72, 232], or meshes with very low number of vertices [50].
Patch-based approaches can generate results which cover a 3D shape with planar poly-
gons [254] or curved [86] mesh patches, but their visual quality is often tampered by visible
seams, incoherent patch connections, and rough surface appearance. It is difficult to texture
or manipulate such mesh outputs.

In this paper, we develop a generative neural network which outputs polygonal meshes
natively. Specifically, parameters or weights that are learned by the network can predict
multiple planes which fit the surfaces of a 3D shape, resulting in a compact and watertight

28

Figure 3.1: (a) 3D shape auto-encoding by BSP-Net quickly reconstructs a compact, i.e.,
low-poly, mesh, which can be easily textured. The mesh edges reproduce sharp details in
the input (e.g., edges of the legs), yet still approximate smooth geometry (e.g., circular
table-top). (b) State-of-the-art methods regress an indicator function, which needs to be
iso-surfaced, resulting in over-tessellated meshes which only approximate sharp details with
smooth surfaces.

Figure 3.2: An illustration of “neural” BSP-tree.

polygonal mesh; see Figure 3.1. We name our network BSP-Net, since each facet is associated
with a binary space partitioning (BSP), and the shape is composed by combining these
partitions.

BSP-Net learns an implicit field: given n point coordinates and a shape feature vector
as input, the network outputs values indicating whether the points are inside or outside the
shape. The construction of this implicit function is illustrated in Figure 3.2, and consists of
three steps: 1⃝ a collection of plane equations implies a collection of p binary partitions of

29

space; see Figure 3.2-top; 2⃝ an operator Tp×c groups these partitions to create a collection
of c convex shape primitives/parts; 3⃝ finally, the part collection is merged to produce the
implicit field of the output shape.

Figure 3.3 shows the network architecture of BSP-Net corresponding to these three
steps: 1⃝ given the feature code, an MLP produces in layer L0 a matrix Pp×4 of canonical
parameters that define the implicit equations of p planes: ax + by + cz + d = 0; these
implicit functions are evaluated on a collection of n point coordinates xn×4 in layer L1; 2⃝

the operator Tp×c is a binary matrix that enforces a selective neuron feed from L1 to the
next network layer L2, forming convex parts; 3⃝ finally, layer L3 assembles the parts into a
shape via either sum or min-pooling.

At inference time, we feed the input to the network to obtain components of the BSP-
tree, i.e., leaf nodes (planes P) and connections (binary weights T). We then apply classic
Constructive Solid Geometry (CSG) to extract the explicit polygonal surfaces of the shapes.
The mesh is typically compact, formed by a subset of the p planes directly from the net-
work, leading to a significant speed-up over the previous networks during inference, and
without the need for expensive iso-surfacing – current inference time is about 0.5 seconds
per generated mesh. Furthermore, meshes generated by the network are guaranteed to be
watertight, possibly with sharp features, in contrast to smooth shapes produced by previous
implicit decoders [38, 109, 163].

BSP-Net is trainable and characterized by interpretable network parameters defining the
hyper-planes and their formation into the reconstructed surface. Importantly, the network
training is self-supervised as no ground truth convex shape decompositions are needed.
BSP-Net is trained to reconstruct all shapes from the training set using the same set of
convexes constructed in layer L2 of the network. As a result, our network provides a natural
correspondence between all the shapes at the level of the convexes. BSP-Net does not
yet learn semantic parts. Grouping of the convexes into semantic parts can be obtained
manually, or learned otherwise as semantic shape segmentation is a well-studied problem.
Such a grouping only need to be done on each convex once to propagate the semantic
understanding to all shapes containing the same semantic parts.

Contributions

• BSP-Net is the first deep generative network which directly outputs compact and
watertight polygonal meshes with arbitrary topology and structure variety.

• The learned BSP-tree allows us to infer both shape segmentation and part correspon-
dence.

• By adjusting the encoder of our network, BSP-Net can also be adapted for shape
auto-encoding and single-view 3D reconstruction (SVR).

30

Figure 3.3: The network corresponding to Figure 3.2.

• To the best of our knowledge, BSP-Net is among the first to achieve structured SVR,
reconstructing a segmented 3D shape from a single unstructured object image.

• Last but not the least, our network is also the first which can reconstruct and recover
sharp geometric features.

Through extensive experiments on shape auto-encoding, segmentation, part correspondence,
and single-view reconstruction, we demonstrate state-of-the-art performances by BSP-Net.
Comparisons are made to leading methods on shape decomposition and 3D reconstruction,
using conventional distortion metrics, visual similarity, as well as a new metric assessing the
capacity of a model in representing sharp features. In particular, we highlight the favorable
fidelity-complexity trade-off exhibited by our network.

3.2 Related work

Large shape collections such as ShapeNet [28] and PartNet [170] have spurred the develop-
ment of learning techniques for 3D data processing. In this section, we cover representative
approaches based on the underlying shape representation learned, with a focus on generative
models.

Grid models Early approaches generalized 2D convolutions to 3D [43, 79, 139, 264, 265],
and employed volumetric grids to represent shapes in terms of coarse occupancy functions,
where a voxel evaluates to zero if it is outside and one otherwise. Unfortunately, these

31

methods are typically limited to low resolutions of at most 643 due to the cubic growth
in memory requirements. To generate finer results, differentiable marching cubes opera-
tions have been proposed [157], as well as hierarchical strategies [92, 205, 236, 251, 254]
that alleviate the curse of dimensionality affecting dense volumetric grids. Another alter-
native is to use multi-view images [140, 229] and geometry images [225, 226], which allow
standard 2D convolution, but such methods are only suitable on the encoder side of a net-
work architecture, while we focus on decoders. Finally, recent methods that perform sparse
convolutions [84] on voxel grids are similarly limited to encoders.

Surface models As much of the semantics of 3D models is captured by their surface,
the boundary between inside/outside space, a variety of methods have been proposed to
represent shape surfaces in a differentiable way. Amongst these we find a category of tech-
niques pioneered by PointNet [195] that express surfaces as point clouds [1, 65, 70, 195,
196, 280, 287], and techniques pioneered by AtlasNet [86] that adopt a 2D-to-3D mapping
process [260, 226, 249, 280]. An interesting alternative is to consider mesh generation as
the process of estimating vertices and their connectivity [50], but these methods do not
guarantee watertight results, and hardly scale beyond a hundred vertices.

Implicit models A very recent trend has been the modeling of shapes as a learnable
indicator function [38, 109, 163], rather than a sampling of it, as in the case of voxel
methods. The resulting networks treat reconstruction as a classification problem, and are
universal approximators [100] whose reconstruction precision is proportional to the network
complexity. However, at inference time, generating a 3D model still requires the execution
of an expensive iso-surfacing operation whose performance scales cubically in the desired
resolution. In contrast, our network directly outputs a low-poly approximation of the shape
surface.

Shape decomposition BSP-Net generates meshes using a part-based approach, hence
techniques that learn shape decompositions are of particular relevance. There are methods
that decompose shapes as oriented boxes [239, 180], axis aligned gaussians [78], super-
quadrics [187], or a union of indicator functions, in BAE-NET [37]. The architecture of
our network draws inspiration from BAE-NET, which is designed to segment a shape by
reconstructing its parts in different branches of the network. For each shape part, BAE-
NET learns an implicit field by means of a binary classifier. In contrast, BSP-Net explicitly
learns a tree structure built on plane subdivisions for bottom-up part assembly.

Another similar work is CvxNet [57], which decomposes shapes as a collection of convex
primitives. However, BSP-Net differs from CvxNet in several significant ways: 1⃝ we target
low-poly reconstruction with sharp features, while they target smooth reconstruction; 2⃝

their network always outputs K convexes, while the “right” number of primitives is learnt

32

automatically in our method; 3⃝ our optimization routine is completely different from theirs,
as their compositional tree structure is hard-coded.

Structured models There have been recent works on learning structured 3D models,
in particular, linear [305] or hierarchical [134, 304, 169, 180] organization of part bounding
boxes. While some methods learn part geometries separately [134, 169], others jointly em-
bed/encode structure and geometry [271, 74]. What is common about all of these methods
is that they are supervised, and were trained on shape collections with part segmentations
and labels. In contrast, BSP-Net is unsupervised. On the other hand, our network is not
designed to infer shape semantics; it is trained to learn convex decompositions. To the best
of our knowledge, there is only one prior work, Im2Struct [180], which infers part structures
from a single-view image. However, this work only produces a box arrangement; it does not
reconstruct a structured shape like BSP-Net.

Binary and capsule networks The discrete optimization for the tree structures in BSP-
Net bears some resemblance to binary [101] and XNOR [198] neural networks. However,
only one layer of BSP-Net employs binary weights, and our training method differs, as we
use a continuous relaxation of the weights in early training. Further, as our network can
be thought of as a simplified scene graph, it holds striking similarities to the principles
of capsule networks [209], where low-level capsules (hyperplanes) are aggregated in higher
(convexes) and higher (shapes) capsule representations. Nonetheless, while [209] addresses
discriminative tasks (encoder), we focus on generative tasks (decoder).

3.3 Method

We seek a deep representation of geometry that is simultaneously trainable and inter-
pretable. We achieve this task by devising a network architecture that provides a differ-
entiable Binary Space Partitioning tree (BSP-tree) representation1 [217, 68]. This represen-
tation is easily trainable as it encodes geometry via implicit functions, and interpretable since
its outputs are a collection of convex polytopes. While we generally target 3D geometry, we
employ 2D examples to explain the technique without loss of generality.

We achieve our goal via a network containing three main modules, which act on feature
vectors extracted by an encoder corresponding to the type of input data (e.g. the features
produced by ResNet for images or 3D CNN for voxels). In more details, a first layer that
extracts hyperplanes conditional on the input data, a second layer that groups hyperplanes
in the form of half-spaces to create parts (convexes), and a third layer assembles parts
together to reconstruct the overall object; see Figure 3.3.

1While typical BSP-trees are binary, we focus on n-ary trees, with the “B” in BSP referring to binary
space partitioning, not the tree structure.

33

Layer 1: hyperplane extraction Given a feature vector f , we apply a multi-layer
perceptron P to obtain plane parameters Pp×4, where p is the number of planes – i.e.
P = Pω(f). For any point x = (x, y, z, 1), the product D = xP T is a vector of signed
distances to each plane – the ith distance is negative if x is inside, and positive if it is
outside, the ith plane, with respect to the plane normal.

Layer 2: hyperplane grouping To group hyperplanes into geometric primitives we
employ a binary matrix Tp×c. Via a max-pooling operation we aggregate input planes to
form a set of c convex primitives:

C∗
j (x) = max

i
(DiTij)

< 0 inside

> 0 outside.
(3.1)

Note that during training the gradients would flow through only one (max) of the planes.
Hence, to ease training, we employ a version that replaces max with summation:

C+
j (x) =

∑
i

relu(Di)Tij

= 0 inside

> 0 outside.
(3.2)

Layer 3: shape assembly This layer groups convexes to create a possibly non-convex
output shape via min-pooling:

S∗(x) = min
j

(C+
j (x))

= 0 inside

> 0 outside.
(3.3)

Note that the use of C+ in the expression above is intentional. We avoid using C∗ due to
the lack of a memory efficient implementation of the operator in TensorFlow 1.

Again, to facilitate learning, we distribute gradients to all convexes by resorting to a
(weighted) summation:

S+(x)=

∑
j

Wj

[
1 − C+

j (x)
]

[0,1]


[0,1]

= 1 ≈ in

[0, 1) ≈ out,
(3.4)

where Wc×1 is a weight vector, and [·][0,1] performs clipping. During training we will enforce
W≈1. Note that the inside/outside status here is only approximate. For example, when
W=1, and all C+

j =0.5, one is outside of all convexes, but inside their composition.

Two-stage training Losses evaluated on (3.4) will be approximate, but have better gra-
dient than (3.3). Hence, we develope a two-stage training scheme where: 1⃝ in the continuous
phase, we try to keep all weights continuous and compute an approximate solution via S+(x)

34

Figure 3.4: Evaluation in 2D – auto-encoder trained on the synthetic 2D dataset. We
show auto-encoding results and highlight mistakes made in Stage 1 with red circles, which
are resolved in Stage 2. We further show the effect of enabling the (optional) overlap loss.
Notice that in the visualization we use different (possibly repeating) colors to indicate
different convexes.

– this would generate an approximate result as can be observed in Figure 3.4 (b); 2⃝ in the
next discrete phase, we quantize the weights and use a perfect union to generate accurate
results by fine-tuning on S∗(x) – this creates a much finer reconstruction as illustrated
in Figure 3.4 (c,d).

Our two-stage training strategy is inspired by classical optimization, where smooth
relaxation of integer problems is widely accepted, and mathematically principled.

3.3.1 Training Stage 1 – Continuous

We initialize T and W with random zero-mean Gaussian noise having σ =0.02, and optimize
the network via:

arg min
ω,T,W

L+
rec + L+

T + L+
W. (3.5)

Given query points x, our network is trained to match S(x) to the ground truth indicator
function, denoted by F(x|G), in a least-squares sense:

L+
rec = Ex∼G

[
(S+(x) − F(x|G))2

]
, (3.6)

where x∼G indicates a sampling that is specific to the training shape G – including random
samples in the unit box as well as samples near the boundary ∂G; see [38]. An edge between
plane i and convex j is represented by Tij=1, and the entry is zero otherwise. We perform
a continuous relaxation of a graph adjacency matrix T, where we require its values to be
bounded in the [0, 1] range:

L+
T =

∑
t∈T

max(−t, 0) +
∑
t∈T

max(t − 1, 0). (3.7)

35

Figure 3.5: Examples of L2 output – a few convexes from the first shape in Figure 3.4,
and the planes to construct them. Note how many planes are unused.

Note that this is more effective than using a sigmoid activation, as its gradients do not
vanish. Further, we would like W to be close to 1 so that the merge operation is a sum:

L+
W =

∑
j

|Wj − 1|. (3.8)

However, we remind the reader that we initialize with W ≈0 to avoid vanishing gradients
in early training.

3.3.2 Training Stage 2 – Discrete

In the second stage, we first quantize T by picking a threshold λ = 0.01 and assign t=(t>λ)?1:0.
Experimentally, we found the values learnt for T to be small, which led to our choice of a
small threshold value. With the quantized T, we fine-tune the network by:

arg min
ω

L∗
recon + L∗

overlap, (3.9)

where we ensure that the shape is well reconstructed via:

L∗
recon = Ex∼G [F(x|G) · max(S∗(x), 0)] (3.10)

+Ex∼G [(1 − F(x|G)) · (1 − min(S∗(x), 1))] . (3.11)

The above loss function pulls S∗(x) towards 0 if x should be inside the shape; it pushes
S∗(x) beyond 1 otherwise. Optionally, we can also discourage overlaps between the convexes.
We first compute a mask M such that M(x, j)=1 if x is in convex j and x is contained in
more than one convex, and then evaluate:

L∗
overlap = −Ex∼G

[
Ej

[
M(x, j)C+

j (x)
]]

. (3.12)

3.3.3 Algorithmic and training details

In our 2D experiments, we use p=256 planes and c=64 convexes. We use a simple 2D convo-
lutional encoder where each layer downsamples the image by half, and doubles the number

36

of feature channels. We use the centers of all pixels as samples. In our 3D experiments,
we use p=4, 096 planes and c=256 convexes. The encoder for voxels is a 3D CNN encoder
where each layer downsamples the grid by half, and doubles the number of feature chan-
nels. It takes a volume of size 643 as input. The encoder for images is ResNet-18 without
pooling layers that receives images of size 1282 as input. All encoders produce feature codes
|f |=256. The dense network Pω has widths {512, 1024, 2048, 4p} where the last layer outputs
the plane parameters.

When training the auto-encoder for 3D shapes, we adopt the progressive training from [38],
on points sampled from grids that are increasingly denser (163, 323, 643). Note that the hi-
erarchical training is not necessary for convergence, but results in an ≈ 3× speedup in
convergence. In Stage 1, we train the network on 163 grids for 8 million iterations with
batch size 36, then 323 for 8 million iterations with batch size 36, then 643 for 8 million
iterations with batch size 12. In Stage 2, we train the network on 643 grids for 8 million
iterations with batch size 12.

For single-view reconstruction, we also adopt the training scheme in [38], i.e., train
an auto-encoder first, then only train the image encoder of the SVR model to predict
latent codes instead of directly predicting the output shapes. We train the image encoder
for 1,000 epochs with batch size 64. We run our experiments on a workstation with an
Nvidia GeForce RTX 2080 Ti GPU. When training the auto-encoder (one model on the 13
ShapeNet categories), Stage 1 takes about ≈3 days and Stage 2 takes ≈2 days; training the
image-encoder requires ≈1 day.

3.4 Results and evaluation

We study the behavior of BSP-Net on a synthetic 2D shape dataset (Section 3.4.1), and eval-
uate our auto-encoder (Section 3.4.2), as well as single view reconstruction (Section 3.4.3)
compared to other state-of-the-art methods.

3.4.1 Auto-encoding 2D shapes

To illustrate how our network works, we created a synthetic 2D dataset. We place a diamond,
a cross, and a hollow diamond with varying sizes over 64×64 images; see Figure 3.4(a). The
order of the three shapes is sorted so that the diamond is always on the left and the hollow
diamond is always on the right – this is to mimic the structure of shape datasets such as
ShapeNet [28]. After training Stage 1, our network has already achieved a good approximate
S+ reconstruction, however, by inspecting S∗, the output of our inference, we can see there
are several imperfections. After the fine-tuning in Stage 2, our network achieves near perfect
reconstructions. Finally, the use of overlap losses significantly improves the compactness of
representation, reducing the number of convexes per part; see Figure 3.4(d).

37

Figure 3.6: Segmentation and correspondence – semantics implied from autoencoding
by BSP-Net. Colors shown here are the result of a manual grouping of learned convexes.
The color assignment was performed on a few shapes: once a convex is colored in one shape,
we can propagate the color to the other shapes by using the learnt convex id.

CD NC LFD
VP [239] 2.259 0.683 6132.74
SQ [187] 1.656 0.719 5451.44
BAE [37] 1.592 0.777 4587.34
Ours 0.447 0.858 2019.26
Ours + L∗

overlap 0.448 0.858 2030.35

Table 3.1: Surface reconstruction quality and comparison for 3D shape autoencoding.
Best results are marked in bold.

plane car chair lamp table mean
VP [239] 37.6 41.9 64.7 62.2 62.1 56.9
SQ [187] 48.9 49.5 65.6 68.3 77.7 66.2
BAE [37] 40.6 46.9 72.3 41.6 68.2 59.8
Ours 74.2 69.5 80.9 52.3 90.3 79.3
Ours + L∗

overlap 74.5 69.7 82.1 53.4 90.3 79.8
BAE* [37] 75.4 73.5 85.2 73.9 86.4 81.8

Table 3.2: Segmentation: comparison in per-label IoU.

38

Figure 3.7: Segmentation and reconstruction / Qualitative.

Figure 3.5 visualizes the planes used to construct the individual convexes – we visualize
planes i in convex j so that Tij=1 and P 2

i1 + P 2
i2 + P 2

i3>ε for a small threshold ε (to
ignore planes with near-zero gradients). Note how BSP-Net creates a natural semantic
correspondence across inferred convexes. For example, the hollow diamond in Figure 3.4(d)
is always made of the same four convexes in the same relative positions – this is mainly due
to the static structure in T : different shapes need to share the same set of convexes and
their associated hyper-planes.

3.4.2 Auto-encoding 3D shapes

For 3D shape autoencoding, we compare BSP-Net to a few other shape decomposition
networks: Volumetric Primitives (VP) [239], Super Quadrics (SQ) [187], and Branched Auto
Encoders (BAE) [37]. Note that for the segmentation task, we also evaluate on BAE*, the
version of BAE that uses the values of the predicted implicit function, and not just the
classification boundaries – please note that the surface reconstructed by BAE and BAE*
are identical.

Since all these methods target shape decomposition tasks, we train single class networks,
and evaluate segmentation as well as reconstruction performance. We use the ShapeNet
(Part) Dataset [285], and focus on five classes: airplane, car, chair, lamp and table. For the

39

car class, since none of the networks separates surfaces (as we perform volumetric modeling),
we reduce the parts from (wheel, body, hood, roof) → (wheel, body); and analogously for
lamps (base, pole, lampshade, canopy) → (base, pole, lampshade) and tables (top, leg,
support) → (top, leg).

As quantitative metrics for reconstruction tasks, we report symmetric Chamfer Distance
(CD, scaled by ×1000) and Normal Consistency (NC) computed on 4k surface sampled
points. We also report the Light Field Distance (LFD) [30] – the best-known visual simi-
larity metric from computer graphics. For segmentation tasks, we report the typical mean
per-label Intersection Over Union (IOU).

Segmentation Table 3.2 shows the per category segmentation results. As we have ground
truth part labels for the point clouds in the dataset, after training each network, we obtain
the part label for each primitive/convex by voting: for each point we identify the nearest
primitive to it, and then the point will cast a vote for that primitive on the corresponding
part label. Afterwards, for each primitive, we assign to it the part label that has the highest
number of votes. We use 20% of the dataset for assigning part labels, and we use all the
shapes for testing. At test time, for each point in the point cloud, we find its nearest primi-
tive, and assign the part label of the primitive to the point. In the comparison to BAE, we
employ their one-shot training scheme [37, Sec.3.1]. Note that BAE-NET* is specialized to
the segmentation task, while our work mostly targets part-based reconstruction; as such,
the IoU performance in Table 3.2 is an upper bound of segmentation performance.

Figure 3.6 shows semantic segmentation and part correspondence implied by BSP-Net
autoencoding, showing how individual parts (left/right arm/leg, etc.) are matched. In our
method, all shapes are corresponded at the primitive (convexes) level. To reveal shape
semantics, we manually group convexes belonging to the same semantic part and assign
them the same color. Note that the color assignment is done on each convex once, and
propagated to all the shapes.

Reconstruction comparison BSP-Net achieves significantly better reconstruction qual-
ity, while maintaining high segmentation accuracy; see Table 3.1 and Figure 3.7, where we
color each primitive based on its inferred part label. BAE-NET was designed for segmenta-
tion, thus produces poor-quality part-based 3D reconstructions. Note how BSP-Net is able
to represent complex parts such as legs of swivel chairs in Figure 3.7, while none of the
other methods can.

3.4.3 Single view reconstruction (SVR)

We compare our method with AtlasNet [86], IM-NET [38] and OccNet [163] on the task of
single view reconstruction. We report quantitative results in Table 3.3 and Table 3.4, and
qualitative results in Figure 3.8. We use the 13 categories in ShapeNet [28] that have more

40

Chamfer Distance (CD) Edge Chamfer Distance (ECD) Light Field Distance (LFD)
Atlas0 Atlas25 OccNet32 IM-NET32 Ours Atlas0 Atlas25 OccNet32 IM-NET32 Ours Atlas0 Atlas25 OccNet32 IM-NET32 Ours

airplane 0.587 0.440 1.534 2.211 0.759 0.396 0.575 1.494 0.815 0.487 5129.36 4680.37 7760.42 7581.13 4496.91
bench 1.086 0.888 3.220 1.933 1.226 0.658 0.857 2.131 1.400 0.475 4387.28 4220.10 4922.89 4281.18 3380.46
cabinet 1.231 1.173 1.099 1.902 1.188 3.676 2.821 10.804 9.521 0.435 1369.90 1558.45 1187.08 1347.97 989.12
car 0.799 0.688 0.870 1.390 0.841 1.385 1.279 8.428 6.085 0.702 1870.42 1754.87 1790.00 1932.78 1694.81
chair 1.629 1.258 1.484 1.783 1.340 1.440 1.951 4.262 3.545 0.872 3993.94 3625.23 3354.00 3473.62 2961.20
display 1.516 1.285 2.171 2.370 1.856 2.267 2.911 6.059 5.509 0.697 2940.36 3004.44 2565.07 3232.06 2533.86
lamp 3.858 3.248 12.528 6.387 3.480 2.458 2.690 8.510 4.308 2.144 7566.25 7162.20 8038.98 6958.52 6726.92
speaker 2.328 1.957 2.662 3.120 2.616 9.199 5.324 11.271 9.889 1.075 2054.18 2075.69 2393.50 1955.40 1748.26
rifle 1.001 0.715 2.015 2.052 0.888 0.288 0.318 1.463 1.882 0.231 6162.03 6124.89 6615.20 6070.86 4741.70
couch 1.471 1.233 1.246 2.344 1.645 2.253 3.817 10.179 8.531 0.869 2387.09 2343.11 1956.26 2184.28 1880.21
table 1.996 1.376 3.734 2.778 1.643 1.122 1.716 3.900 3.097 0.515 3598.59 3286.05 3371.20 3347.12 2627.82
phone 1.048 0.975 1.183 2.268 1.383 10.459 11.585 16.021 14.684 1.477 1817.61 1816.22 1995.98 1964.46 1555.47
vessel 1.179 0.966 1.691 2.385 1.585 0.782 0.889 12.375 3.253 0.588 4551.17 4430.04 5066.99 4494.14 3931.73
mean 1.487 1.170 2.538 2.361 1.432 1.866 2.069 6.245 4.617 0.743 3644.91 3436.14 3795.23 3700.22 2939.15

Table 3.3: Single view reconstruction – comparison to the state of the art. Atlas25 de-
notes AtlasNet with 25 square patches, while Atlas0 uses a single spherical patch. Subscripts
to OccNet and IM-NET show sampling resolution. For fair comparisons, we use resolution
323 so that OccNet and IM-NET output meshes with comparable number of vertices and
faces.

CD ECD LFD #V #F
Atlas0 1.487 1.866 3644.91 7446 14888
Atlas25 1.170 2.069 3436.14 2500 4050
OccNet32 2.538 6.245 3795.23 1511 3017
OccNet64 1.950 6.654 3254.55 6756 13508
OccNet128 1.945 6.766 3224.33 27270 54538
IM-NET32 2.361 4.617 3700.22 1204 2404
IM-NET64 1.467 4.426 2940.56 5007 10009
IM-NET128 1.387 1.971 2810.47 20504 41005
IM-NET256 1.371 2.273 2804.77 82965 165929
Ours 1.432 0.743 2939.15 1191 1913

Table 3.4: Low-poly analysis – the dataset-averaged metrics in single view reconstruc-
tion. We highlight the number of vertices #V and triangles #F in the predicted meshes.

than 1,000 shapes each, and the rendered views from 3D-R2N2 [43]. We train one model
on all categories, using 80% of the shapes for training and 20% for testing, in a similar
fashion to AtlasNet [86]. For other methods, we download the pre-trained models released
by the authors. Since the pre-trained OccNet [163] model has a different train-test split
than others, we evaluate it on the intersection of the test splits.

Edge Chamfer Distance (ECD) To measure the capacity of a model to represent sharp
features, we introduce a new metric. We first compute an “edge sampling” of the surface
by generating 16k points S={si} uniformly distributed on the surface of a model, and then
compute sharpness as: σ(si) = minj∈Nε(si) |ni · nj |, where Nε(s) extracts the indices of the
samples in S within distance ε from s, and n is the surface normal of a sample. We set ε=0.01,
and generate our edge sampling by retaining points such that σ(si)<0.1; see Figure 3.8.

41

Figure 3.8: Single-view 3D reconstruction – comparison to AtlasNet [86], IM-NET [38],
and OccNet [163]. Middle column shows mesh tessellations of the reconstruction; last column
shows the edge sampling used in the ECD metric.

42

Figure 3.9: Structured SVR by BSP-Net reconstructs each shape with corresponding
convexes. Convexes belonging to the same semantic parts are manually grouped and assigned
the same color, resulting in semantic part correspondence.

Given two shapes, the ECD between them is nothing but the Chamfer Distance between
the corresponding edge samplings.

Analysis Our method achieves comparable performance to the state-of-the-art in terms of
Chamfer Distance. As for visual quality, our method also outperforms most other methods,
which is reflected by the superior results in terms of Light Field Distance. Similarly to
Figure 3.6, we manually color each convex to show part correspondences in Figure 3.9. We
visualize the triangulations of the output meshes in Figure 3.8: our method outputs meshes
with a smaller number of polygons than state-of-the-art methods. Note that these methods
cannot generate low-poly meshes, and their vertices are always distributed quasi-uniformly.

Finally, note that our method is the only one amongst those tested capable of represent-
ing sharp edges – this can be observed quantitatively in terms of Edge Chamfer Distance,
where BSP-Net performs much better. Note that AtlasNet could also generate edges in
theory, but the shape is not watertight and the edges are irregular, as it can be seen in the
zoom-ins of Figure 3.8. We also analyze these metrics aggregated on the entire testing set
in Table 3.4. In this final analysis, we also include OccNet128 and IM-NET256, which are
the original resolutions used by the authors. Note the average number of polygons inferred
by our method is 655 (recall #polygons ≤ #triangles in polygonal meshes).

3.5 Conclusions

We introduce BSP-Net, an unsupervised method which can generate compact and struc-
tured polygonal meshes in the form of convex decomposition. Our network learns a BSP-tree
built on the same set of planes, and in turn, the same set of convexes, to minimize a re-
construction loss for the training shapes. These planes and convexes are defined by weights
learned by the network. Compared to state-of-the-art methods, meshes generated by BSP-

43

Net exhibit superior visual quality, in particular, sharp geometric details, when comparable
number of primitives are employed.

The main limitation of BSP-Net is that it can only decompose a shape as a union
of convexes. Concave shapes, e.g., a teacup or ring, have to be decomposed into many
small convex pieces, which is unnatural and leads to wasting of a considerable amount of
representation budget (planes and convexes). A better way to represent such shapes is to do
a difference operation rather than union. How to generalize BSP-Net to express a variety
of CSG operations is an interesting direction for future work.

Current training times for BSP-Net are quite significant: 6 days for 4, 096 planes and
256 convexes for the SVR task trained across all categories; inference is fast however. While
most shapes only need a small number of planes to represent, we cannot reduce the total
number of planes as they are needed to well represent a large set of shapes. It would be
ideal if the network can adapt the primitive count based on the complexity of the input
shapes; this may call for an architectural change to the network.

While its applicability to RGBD data could leverage the auto-decoder ideas explored
by [109], the generalization of our method beyond curated datasets [28], and the ability to
train from only RGB images are of critical importance.

44

Chapter 4

Neural Marching Cubes

4.1 Introduction

The Marching Cubes (MC) algorithm [157] is the most prominent method for isosurface
extraction, and has been widely adopted in scientific visualization, shape reconstruction, and
by the recent emerging approaches for learning neural implicit representations [38, 163, 109].
MC takes as input a uniform grid of values representing a discretized implicit field, and
extracts a triangle mesh representing the zero-isosurface of the field. The classical MC
determines the local mesh topology and tessellation in each cube of the grid by examining
the signs at the eight cube corners and referring to a predefined look-up table indexed by
the sign configurations. If the isosurface intersects a cube edge, a new mesh vertex is added
to that edge with its position computed via linear interpolation.

With its popularity and wide adoption, MC has seen notable improvements over the
years. Marching Cubes 33 [40] is one of the first works to assume that the implicit field in
each cube follows trilinear interpolation with respect to the cube vertices, and the ensu-
ing meshing algorithm aims for topological correctness under the trilinearity assumption.
This increases the number of unique cases of mesh tessellations from 15 (in the original
MC [157]) to 33, hence the name. The algorithm itself requires many tests to determine
which topological case a cube belongs to, and the process can be error-prone. As a result,
many patch-ups and improvements have been made to MC 33 [133, 156, 64, 49]. Still, the
trilinearity assumption, which has persisted, can lead to poor estimates of the true implicit
field in general, and especially near sharp features of a shape, as shown in Figure 4.1.

Indeed, while MC has been employed for decades, its inability to recover sharp features,
arguably its most long-standing issue, has not been fully resolved. Earlier tessellation tem-
plates [157, 273, 40] were quite coarse and designed for reconstructing soft and smooth
objects. Even with a refined tessellation to possibly represent sharp features in later follow-
ups, e.g., [156], there is insufficient information in isolated cubes to disambiguate between
soft patches and sharp edges, and this issue is worsened when the inputs are binary occu-
pancies instead of signed distances. In general, a shape edge is not a “point-wise” feature,

45

Figure 4.1: Our Neural Marching Cubes (NMC) is trained to reconstruct the zero-isosurface
of an implicit field, while preserving geometric features such as sharp edges and smooth
curves. We compare NMC (d), and a simplified version (e), to the best-known MC variants
(a-b), as well as a trilinear interpolant (c), none of which could reconstruct the features.
The inputs to all methods are the same: a uniform grid of signed distances sampled from
the ground truth (f).

but a geometry property that reveals coherence or dependencies over neighboring cubes.
Hence, edge prediction should account for that context, yet classical MC algorithms have
not used such neighbor information.

In this paper, we introduce Neural Marching Cubes (NMC), a data-driven approach
for isosurfacing from a discretized occupancy or signed distance field (SDF). The main
premise of our work is that there is sufficient predictability in the vertex positions and local
mesh topologies of “nice” mesh tessellations under the MC setting, in particular, when
they reflect persistent features, such as sharp edges, over neighboring cubes. Hence, a well-
designed learning approach would be more effective than handcrafting all the templates
and making heuristic decisions such as trilinear interpolation. To this end, we re-design the
tessellation templates so that they are more apt at preserving geometric features including
sharp edges and corners, and develop a neural network to learn the vertex positions and
mesh topologies from a set of training meshes, so as to account for contextual information
from nearby cubes.

To realize NMC, we must address several immediate challenges. First, we need a per-cube
parameterization that is compatible with neural processing, so that the output mesh can be
predicted by a network. Such a representation must contain all the information required to
perform our modified MC algorithm, including mesh topology and vertex positions in each
cell, while minimizing redundancy for efficient network training. Second, our reconfigured
mesh tessellation templates must be refined, complete in the sense of avoiding ambiguities

46

Figure 4.2: Tessellation design (b) and parameterization (c) for NMC in 2D, in contrast to
classical MC (a). Four new (face) vertices are added inside each square (c), each associated to
a corner vertex (solid/hollow circle with +/- sign to indicate outside/inside), with matching
color. Meshing information is encoded by a vector with a “boolean part" revealing topology
and a “float part” storing all vertex positions; see Section 4.3.1 for more details.

47

and covering all topological varieties, and be consistent with our defined representation.
Last but not least, we must obtain quality training meshes resembling ideal outputs of
NMC automatically from a collection of 3D shapes. These ground truth meshes should
use the designed tessellation templates in each cube, and be stored in the aforementioned
representation.

Figure 4.2 illustrates our tessellation design and per-cube representation in the 2D case.
In contrast to classical MC, we add new vertices to each cube, leading to more refined
tessellations that can better represent geometric features. By carefully designing the repre-
sentation (see Section 4.3), all topological cases that are applicable to our design, including
all cases in MC 33, as well as all vertex positions, can be compactly encoded in a vector
form for neural processing. Also, by associating the added vertices to their respective corner
vertices, the new tessellations can all be obtained naturally and efficiently by following a
few design guidelines.

With the above representation, our network for NMC is simply a 3D variant of ResNet [95]
which inputs implicit field values. The network is trained with ground-truth meshes to set
up both the topological and geometric losses, which operate respectively on the binary and
float parts of the 3D version (see Figure 4.3) of the per-cube vector representation shown in
Figure 4.2(c). By limiting its receptive field, our network learns local features, rather than
from the entire shape, so that it generalizes well to new shapes and new datasets. Finally,
we devise an optimization-based approach (see Section 4.3.4) to obtain the ground truth
output meshes from raw 3D shapes based on our representation and tessellation design.

We evaluate NMC by qualitative and quantitative comparisons, in terms of reconstruc-
tion quality and feature preservation, to well-known MC variants, on both signed distance
and binary voxel inputs. We show that our method is the first MC-based approach that
is able to recover sharp features without requiring additional inputs other than a uniform
grid of implicit field values. In addition, our network can more faithfully reconstruct local
mesh topologies near thin shape structures and closeby surface sheets. We also provide a
simplified version of NMC, which adopts the same mesh tessellation templates as [156], to
study the fidelity-complexity trade-off. We finally show that our model can be trained to
reconstruct clean meshes from noisy inputs by adjusting the training data, thus offering a
useful tool for extracting 3D shapes from those shape representations designed for neural
networks.

4.2 Related work

Our work is inspired by and closely related to Marching Cubes [157] and its several vari-
ants. For completeness, we also discuss other algorithms for isosurfacing and emphasize the
strengths of our NMC approach. Also relevant are recent works from the rapidly advancing
field of neural geometry learning.

48

4.2.1 Marching Cubes (MC) and Variants

The original MC algorithm [157] was proposed to reconstruct 3D structures from medi-
cal scan images, while a concurrent work [273] developed similar ideas for reconstructing
soft objects. However, these methods did not guarantee surface consistency due to am-
biguities of the tessellations in each cube; they may generate holes when tessellations in
adjacent cells produce different corner connections on the common face [61]. Asymptotic
Decider [178] addressed the issue by assuming the implicit field within each face follows
bilinear interpolation with respect to the four face vertices, and proposed a solution to pro-
duce topologically correct tessellations under the bilinearity assumption. Several follow-up
works [162, 40, 176] further assumed the implicit field within each cube follows trilinear
interpolation with respect to the eight cube vertices. Specifically, [40] was the first work to
enumerate all possible topological cases with respect to the trilinear interpolant in the cube,
and proposed Marching Cubes 33, which contains 33 unique cases under cube rotational
and inversion symmetries (inverting all vertex signs), or 31 cases under rotation, mirroring,
and inversion; see Figure 4.4(a). In comparison, the original MC algorithm had 15 and 14
cases, respectively.

While correctly enumerating all the topological cases does resolve ambiguities of the
tessellations, the many tests required to identify specific topologies present a computational
challenge. Lewiner et al. [133] provided an efficient implementation of MC 33 by utilizing an
extended look-up table, but left some unresolved issues [64] which were tackled by follow-up
work [49]. Van Gelder and Wilhelms [244] pointed out that to avoid non-manifold edges,
the triangles in the tessellation templates should not lie in the face of a cube, as in MC 33,
and this issue was addressed in later improvements [44, 156]. Specifically, [156] introduced
additional vertices on cube faces and interiors, but still followed the trilinearity assumption
to place vertices, leading to poor estimates of surface features; see Figure 4.1. To extract
sharp features from volume data, prior works typically required additional information, such
as the positions and normals of the intersection points between cube edges and the shape, for
vertex placement [121]. A key point of NMC is that feature recovery is a learnable problem
from training meshes. Once trained, our network can accurately predict sharp features and
local mesh topologies without any additional input.

4.2.2 Other Isosurfacing Algorithms

Classic isosurfacing algorithms such as dual contouring [110] could preserve sharp features,
but it requires the gradients of the intersection points on the edges of the grid cells, which
could complicate the input setup. Dual contouring could also produce non-manifold edges,
which is an issue addressed later by [213]. In dual marching cubes [214], the implicit function
is required as input and queried during reconstruction. There have also been other extensions
to dual contouring [59, 216], including works [245, 296] which employ adaptive subdivision

49

for simplification and efficient isosurfacing. Like dual contouring, all these methods require
additional inputs such as the gradient information or the function of the underlying implicit
field. By learning from training data, NMC can better preserve geometric features given only
a uniform grid of sampled scalar values as input.

Marching Tetrahedra (MT) [60] is another variant of MC: it splits each cube into tetra-
hedra to produce tessellations therein. The tessellation cases for MT are simpler than thoses
of MC, but they were also not designed to recover sharp features. Finally, in a recent work
called Analytic Marching [131], rather than taking a signed distance field to mesh, the in-
put is implemented as a trained multi-layer perceptron (MLP) with rectified linear units
(ReLU). The meshing is then performed by a marching over “analytic cells”, which corre-
spond to linear regions resulting from a partitioning by the MLP. Overall, none of the above
isosurfacing algorithms learn mesh tessellations from training data.

4.2.3 Neural Geometry Learning

With rapid advances in geometric deep learning, different neural representations have been
proposed for 3D shapes. Voxels [43, 264, 92], point clouds [1, 65], and implicit models
[38, 163, 109] are among the most popular. But they all require a post processing step
to extract a mesh. Deformable meshes/patches [86, 249, 255] can directly output well-
tessellated meshes, but they rely heavily on the input mesh templates and are unable to
alter their topologies. There are only a handful of works [36, 74, 57, 50] that could output
polygonal meshes directly. In contrast, our method takes a discretized implicit field as input
and directly outputs a triangle mesh, and therefore could act as the post processing step
for many of the above representations.

NMC follows a recent trend in applying machine learning to classical low-level geometry
processing tasks including mesh denoising [252], shape transform [286], point cloud upsam-
pling [290], skeletonization [143], and subdivision [148], among many others. In particular,
in neural subdivision, Liu et al. [148] proposed a graph neural network to perform geometry-
aware subdivision on triangle meshes. It recursively subdivides an input mesh by applying
classic loop subdivision, while the positions of the newly added vertices are predicted by a
neural network conditioned on local geometry.

In terms of combining machine learning and MC, two notable works, Deep Marching
Cubes (DMC) [139] and MeshSDF [201], both aim to make MC differentiable. Specifically,
DMC learns a differentiable approximation of MC by predicting probabilistic occupancies
and vertex displacements, while MeshSDF adopts a continuous model of how signed distance
function perturbations locally impact surface geometry to obtain a differentiable surface pa-
rameterization. Another work, DefTet[71], shares a similar spirit as DMC, as it reconstructs
tetrahedral meshes by predicting occupancies in an initial tetrahedral grid, and deforming
the vertices to approximate the output shape.

50

Our work differs from DMC and MeshSDF in several major ways. First, our goals are
different. The goal of DMC and MeshSDF is to directly obtain an explicit mesh repre-
sentation from discrete raw inputs, e.g., point clouds, voxels, or images, in an end-to-end
trainable manner, while NMC builds a framework to make MC learnable from training
meshes. The input to NMC is a discrete implicit field of distances or occupancies obtained
by any model, neurally or not. Second, the focus of DMC and MeshSDF is the end-to-end
differentiability, while our focus is on designing and training a refined neural MC model
to better reconstruct geometry and topology, in particular sharp features, unlike any other
previous MC variant or differential extension. Case in point, DMC only adopted 8 out of
the 15 mesh tessellation templates from the original MC [157] that have singly connected
topologies, falling far short of [156] and NMC in terms of topological granularity. Last but
not the least, DMC and MeshSDF rely on global features to predict the output shapes, not
aiming to generalize to other shape categories not present in the training set. In contrast,
our network employs a limited receptive field for each cube, leading to a more robust and
general isosurfacing algorithm.

4.3 Neural Marching Cubes

We detail our representation for performing Neural Marching Cubes (NMC). We first in-
troduce in a 2D example how the local topologies and tessellations in a square can be
represented with a fixed-length code of binary values and float numbers; see Figure 4.2.
Then we expand the representation into the 3D cube for NMC, as shown in Figure 4.3.
We show how to design the mesh tessellations with respect to our representation and how
our training data could be generated from raw meshes. Finally, we describe the network
architecture and objective functions we designed to train NMC.

4.3.1 2D NMC: representation in a 2D square

We follow the common assumption in MC that if the two vertices of an edge in a cube (or
a square) have different signs, there will be one and only one intersection point between
the edge and the underlying zero-isosurface. As a result, all the situations in a square can
be enumerated as in Figure 4.2(a). However, the tessellation templates in the classic MC
algorithms are unable to represent geometric features such as sharp edges by design, hence
they must be re-designed. Simply adding one vertex on each generated edge (black line) of
the original templates could already solve the issue. But since we want a neural network to
fully predict the meshing in each square, including the added vertices, we need to design
a representation with a fixed format to store all the necessary information, so that the
representation could be directly parsed into an output mesh, while being compatible with
neural processing and training.

51

First, we add four face vertices (vf
1 ∼ vf

4) on the face, each associated with one corner
vertex (v1 ∼ v4), as shown in Figure 4.2(c) left. With the added vertices, new tessellations
that can better preserve geometric features can be easily derived; see Figure 4.2(b).

Next, we design a fixed-length vector to fully encode the output mesh (edges) in each
square; see Figure 4.2(c). The vector is split into a boolean or binary part to describe the
topological cases, and a float part to store floating point numbers as vertex positions.

When the signs of the four corner vertices are given, there is only one ambiguity case,
when both ends of a diagonal line are with the same signs but the ends of an edge are
with different signs; see top-right corner of Figure 4.2(b). This ambiguity can be resolved
by adding a face sign which is positive if the connected vertices are positive, and vice versa.
Hence, the boolean part has 5 values storing the signs: one face sign and four signs for
the corner vertices. On the other hand, we need to store all vertex positions in the float
part, whether the vertices are being used or not. Since each edge vertex only has one degree
of freedom, four edge vertices take 4 floats to store. Adding the 8 numbers for the 2D
coordinates of the four face vertices, in total we have 12 numbers in the float part.

However, note that the representation for each square is not the same as the represen-
tation we use to predict the entire 2D shape, because of the redundancy: an edge vertex
is shared by two adjacent squares, and a corner vertex is shared by four. Therefore, when
representing the squares of an entire shape, we only need to store the sign of one corner
vertex (v1) and the face sign in the boolean part, and two edge vertices (ve1 ,ve4) and all
four face vertices in the float part, leading to 2d and 10d vectors, respectively. Afterwards,
a 2D Convolutional Neural network (CNN) could be applied to take as input an M × N

array of implicit field values, and output an M × N × 12 array that is parsed into a 2D
mesh.

4.3.2 3D NMC: representation in a 3D cube

As shown in Figure 4.3, we design the NMC representation for a 3D cube in a similar manner
as its 2D counterpart shown in Figure 4.2. In addition to the edge vertices (ve1 ∼ ve12), we
keep the four added face vertices for each of the six faces of the cube. We also add eight
interior vertices (vc

1 ∼ vc
8) in the cube, each affiliated with one corner vertex (v1 ∼ v8)

of the cube. Details on how to properly tessellate the cube with these new vertices will be
discussed in Section 4.3.3. In this section, we focus on how to represent the topological cases
and the positions of the added vertices, using a boolean and a float part respectively, as
shown in Figure 4.3(c).

For the boolean part, we require at least eight signs at the corner vertices of the cube
and six face signs to describe or index the local mesh topology in each cube. However, these
are not sufficient to resolve all ambiguities. As already observed in MC 33 [40], when there
are two connected components with the same sign on the surface of a cube, the two could be
connected with a tunnel inside the cube. The real situations could be far more complicated

52

Figure 4.3: Per-cube parameterization for our NMC in 3D, with 12 edge vertices (vei),
6 × 4 = 24 new face vertices (vfk

j), along with 8 new interior vertices (vc
j), as shown in (a).

Vertices with the same color correspond to the same cube vertex, as shown in (b), where
the grey lines in (a-b) are for ease of visualization only. The vector representation for local
mesh topology (the boolean part) and vertex positions (the float part) is given in (c), where
the number of floats needed to represent a vertex depends on the degrees of freedom, e.g.,
one for an edge vertex, two for a face vertex, and three for an interior vertex.

than that. There could be more than two connected components on the surface of the cube,
and there could be more than one tunnel to connect the two components. To simplify the
situation, we draw inspiration from the topological cases in MC 33, which are shown in
Figure 4.4(a). Note that all the 33 cases have either zero or one tunnel, if there are exactly
two connected components with the same sign. Therefore, we assume that in the case of
two connected components, there could be one tunnel connecting the components, or none
at all. In other cases with just one or more than two connected components, we assume
zero tunnel. With such a simplifying assumption, we only need to add one binary value to
indicate whether a tunnel exists, leading to a total of 15 binary values in the boolean part.

For the float part, we need to store 44 added vertices: 12 edge vertices, 6 × 4 = 24 face
vertices, and 8 interior vertices, as shown in Figure 4.3(a-b). Since each edge vertex only
has one degree of freedom, 12 edge vertices would only need 12 floats to store. Each face
vertex has two degrees of freedom, therefore 24 face vertices take 48 floats to store. Plus
the 24 floats for the 3D coordinates of the 8 interior vertices, in total we have 84 numbers
in the float part.

However, similar to the 2D cases, the representation for each cube is not the same as the
representation we use to predict the entire 3D shape, because of the redundancy: a corner
vertex is shared by eight cubes, an edge vertex is shared by four, and a face vertex is shared
by two. Therefore, when representing the cubes of an entire shape, we only need to store 5
values in the boolean part (the sign of v1, f1, f3, f5; and the tunnel flag), and 51 values in
the float part (3 edge vertices on edges e1, e4, e9; 12 face vertices on faces f1, f3, f5; and all
8 interior vertices). Afterwards, a 3D CNN can be applied to take as input an M × N × P

array of implicit field values, and output an M × N × P × 56 array that could be parsed
into a 3D mesh.

53

4.3.3 3D NMC: tessellating a 3D cube

In this section, we elaborate how we tessellate the cube with respect to each topological
case. To facilitate the tessellation design, we developed a graphical user interface for inter-
active modelling, and employed the interface to design and render all the cases as shown in
Figures 4.4 and 4.5.

Generally, the tessellation design needs to comply with several basic principles. First, the
resulting mesh should contain only triangles. Second, the mesh should completely separate
vertices with different signs, i.e., any path inside the cube that connects two vertices of
different signs must intersect with the mesh. Third, there should be no non-manifold edges
or vertices. Specific to our method, there is a fourth principle to follow: we are only allowed
to use the vertices present in our cube representation as described in Section 4.3.2.

However, the very first step we need to take before designing the tessellations, is to
enumerate how many unique topological cases there are. In our cube representation, we
have 15 binary values to describe the cases, therefore we have a total of 215 = 32, 768 cases.
Yet, if we consider the presence of rotational symmetries, mirroring symmetries, inversion
symmetries (inverting all vertex and face signs in a cube), and remove all invalid cases with
respect to the tunnel flag, we have a total of 37 unique cases.

We can directly use the face tessellations in Figure 4.2 to tessellate the six faces of a
cube, as shown in Figure 4.5(b). Afterwards, we follow several guidelines to create a mesh
inside the cube: a) If there is a tunnel, then the tunnel must contain the small center cube
made by the eight interior vertices; b) if there is no tunnel, then connect all available face
vertices to their corresponding interior vertices; c) avoid long triangles. See Figure 4.6 for
several examples.

The completed tessellations of our method can be found in Figure 4.5(a). The tessellation
design allows much freedom and does not necessarily have to follow our guidelines. For
example, we could simply take the tessellations in [156] into our framework, as show in
Figure 4.4(b). Since this tessellation design employs fewer vertices and triangles, we coin
our Neural Marching Cubes using this specific tessellation design as NMC-lite. Note that in
both cases, the training data will be prepared and the network will be trained with respect
to their own tessellation designs.

4.3.4 Data preparation

We now introduce data preparation for NMC, i.e., the preprocessing step to convert a
raw mesh into a form compatible with our cube representation in Figure 4.3 for neural
processing; it is an M × N × P × 5 array for the boolean part and an M × N × P × 51 array
for the float part, when the input grid is M × N × P . We divide a raw 3D mesh into small
cubes to process each separately, as in MC. For each cube, we first determine its topological
case. Then we put the corresponding tessellation template inside that cube, and optimize

54

Figure 4.4: The 3D cube tessellations of Marching Cubes 33 [40] and [156]. Note that they
both present 31 cases, since Case 12.3 is equivalent to Case 12.2 and Case 14 is equivalent
to Case 11, with respect to rotational and mirroring symmetries. In (b), we also add our
extended topological cases to [156], indicated with a *, to form a simplified version of our
NMC tessellations, denoted as NMC-lite.

55

Figure 4.5: Our cube tessellations and face tessellations for all the 37 unique topological
cases considered by NMC, where vertices with the same color correspond. Note Case 0 in
the top-right corner which indexes the case where all signs on the cube vertices are the
same.

56

Figure 4.6: Example tessellation steps for our NMC designs. The face tessellations in the
first column follow Figure 4.2, therefore they are considered as “given”, and we only need
to add new structures inside the cube.

Figure 4.7: Our preprocessing step to prepare the training mesh data for NMC. After deter-
mining the topological case for the cube, we optimize the vertex positions to approximate
the original mesh. The initial face vertices are mid-points or trisection points, while the
initial interior vertices in the cube are averages of connected edge vertices and face vertices.

57

the vertices of the tessellation template to minimize the Chamfer Distance with respect to
the original mesh. An overview is given in Figure 4.7.

To determine the topological case in a cube, we compute a 9 × 9 × 9 grid of signed
distances inside the cube, so that each face contains 9×9 signed distances. We then check the
connectivities between the vertices through the SDF grid, where adjacent grid points with
the same sign are considered connected, to determine the case for each of the six faces. After
the face cases are determined, we only need to test whether there is a tunnel to determine
the cube case, which can be done by checking the number of connected components inside
the cube. Note that in several situations, the cube cannot be represented with our templates,
e.g., when there are two or more intersections on a cube edge, or when there are complex
structures inside the cube that are unaccounted for.

We perform tests to validate whether an edge/face/cube can be represented using our
templates by checking the number of connected components, which are compared against
the templates in Figure 4.2 (for faces in the 2D case) or Figure 4.5 (for cubes in 3D).
The edges/faces/cubes that do not have matching numbers are deemed to be invalid. For
example, if the end vertices (grid points) of an edge are with different signs, then the 9 grid
points on the edge should contain exactly two connected components, one positive and one
negative. In a 3D cube, say Case 6.1.1, there are three connected components, one positive
and two negatives, while in Case 6.1.2, there are two connected components because of the
tunnel.

The removal of invalid edges/faces/cubes from the training meshes is critical to NMC
and this is accomplished by a masking process. Specifically, we generate masks during data
preparation to indicate valid values in our representation with 1’s and invalid or irrelevant
values with 0’s, where invalidity implies that the edge/face/cube cannot be represented by
our designed tessellation templates, and a value stored in our representation is irrelevant
if it does not affect the output mesh (e.g., the face sign in an unambiguous face, or the
tunnel flag in a cube that cannot form a tunnel). For shape s, we denote the input array
as Is ∈ RM×N×P , the array of the boolean part as Bs ∈ {0, 1}M×N×P ×5, and the array of
the float part as Fs ∈ [0, 1]M×N×P ×51. Therefore, the mask of Bs is MBs ∈ {0, 1}M×N×P ×5

and the mask of Fs is MFs ∈ {0, 1}M×N×P ×51.
After the topological case is settled, we put the corresponding tessellation template inside

the cube and optimize its vertices to approximate the original mesh. However, since adjacent
cubes share edges and faces, we first determine the positions of all edge vertices, then all
face vertices, and finally all interior vertices, to avoid repeated computations. Note that
only the edge vertices do not require optimization since we can find them by checking the
intersection points between the cube edges and the original mesh. Take the interior vertices
for example – while the face vertices can be optimized in a similar way, we densely sample
points on the mesh inside the cube to obtain a point cloud P . Denote the vertices, edges,
and triangles in the tessellation template as V , E, and T , respectively. Denote the point-

58

triangle Euclidean distance as D(p, t), and the point-point Euclidean distance as d(v1, v2),
we have the objective function

Ltotal = LP →T + LT →P + γLreg, with (4.1)

LP →T = 1
|P |

∑
p∈P

min
t∈T

D(p, t), (4.2)

LT →P = 1
|T |

∑
t∈T

min
p∈P

D(p, t), (4.3)

Lreg = 1
|V |

∑
v1∈V

min
{v1,v2}∈E

d(v1, v2), (4.4)

where LP →T is the point-to-triangle distance, LT →P the triangle-to-point distance, and Lreg

a regularization term to keep the surface as “tight” as possible by minimizing edge lengths,
and γ is set to 0.1.

Note that it is possible to use the above objective function to train the network directly,
instead of using a mean squared error loss as we will describe in the next section. However,
to ensure the quality of the generated mesh, we usually sample a very dense point cloud to
peform the optimization. The computational time and memory cost make it intractable to
train the network directly with the optimization objectives.

4.3.5 NMC network and objective functions

The input to our network is an array of implicit field values Is, and the ground truth outputs
contain a boolean array Bs and a float array Fs. The masks MBs and MFs indicate which
values in Bs and Fs are valid. Since they are all 3D arrays (with feature channels), we
could directly apply 3D convolutional neural networks for the task. Specifically, we use a
3D variant of ResNet [95] as our backbone network, with receptive fields of size 73.

For the objective functions, we use a binary cross entropy (BCE) loss for the boolean
part and a mean squared error (MSE) loss for the float part. Denote the outputs of our
network as Ds = fB(Is) and Hs = fF (Is) for the boolean part and float part, respectively,
and denote the entire shape dataset as S. Let all multiplications in the following equations
be element-wise products, then we have

Lbool = Es∼S || − MBs(Bs log(Ds) + (1 − Bs) log(1 − Ds))||1, (4.5)

Lfloat = Es∼S ||MFs(Fs − Hs)||22. (4.6)

We could directly sum Lbool and Lfloat with a weighting parameter to obtain the final
objective function. However, our experiments showed that it is tedious to find an appropriate
weight for the two terms. Therefore, we choose to use two distinct networks to predict Ds

59

Figure 4.8: Output meshes when our network is trained with vs. without the smoothness
term when the inputs are binary voxel/occupancy grids.

and Hs separately, so that one network is trained with Lbool and another with Lfloat without
any interference.

However, the above settings are not sufficient for binary voxel inputs, due to considerable
ambiguities of the possible shapes represented by the input voxels. Therefore, we use the
aforementioned settings for SDF grid inputs, and make a few adjustments when the inputs
are binary voxels. Specifically, we enlarge the receptive fields of our backbone network from
73 to 153 to reduce ambiguity, and add a smoothness term to the loss function on the float
part,

L∗
float = Lfloat + γLsmooth, with

Lsmooth = Es∼S
∑

(u,v)∈Es

||1(|F u
s − F v

s | < σ) · (Hu
s − Hv

s)||22, (4.7)

where Es denotes the set of all edges (u, v) in the ground truth (GT) output mesh for shape
s, F u

s ∈ R3 is the coordinates of vertex u in the GT mesh, and Hu
s ∈ R3 is the coordinates of

u in the predicted mesh. Note that the mesh tessellations of the GT mesh and the predicted
mesh are the same since the tessellations are determined solely by the boolean part, and
we use the GT boolean part when training the float part. In addition, 1(·) in the equation
converts true/false into 1/0, respectively, and the parameters σ = 0.0002 and γ = 10 are
fixed throughout our experiments.

Overall, the smoothness term encourages the output surfaces to align with the coordi-
nate axes, with the underlying assumption that the GT surfaces generally share the same
characteristic. We show the impact of Lsmooth in Figure 4.8 and explain this choice by
experimenting with different smoothness terms in the experiments.

4.4 Results and evaluation

In this section, we show results and evaluate NMC both qualitatively and quantitatively,
on both SDF and binary voxel inputs. We compare NMC to well-known MC variants, and
demonstrate its generalizability and the ability to handle noisy input.

60

Figure 4.9: Results of reconstructing 3D meshes from SDF grid inputs at 643 resolution.
The shapes in the first two rows are from the ABC test set, and the last two rows from
Thingi10K.

Datasets. For our experiments, we mainly work with the first chunk of the ABC dataset [122],
which consists of triangle meshes of CAD shapes. Such CAD shapes are characterized by
their rich geometric features (e.g., sharp edges, corners, smooth curves, etc.) and topological
varieties. We split the set into 80% training (4,280 shapes) and 20% testing (1,071 shapes).
During data preparation, we obtain triangle meshes over 323 and 643 grids to train our
network. Evaluation is conducted on the testing set. Later, to assess the generalizability
of NMC, we also test (not train) the same network on the Thingi10K dataset [302], which
contains a variety of 3D-printing models.

Evaluation metrics. To perform quantitative evaluation, we sample 100K points S =
{si} uniformly distributed over the surface of a shape, and then use Chamfer Distance
(CD) and F-score (F1) to evaluate the overall quality of a reconstructed mesh, and Normal
Consistency (NC) to evaluate the quality of its surface normals.

Inspired by BSP-Net [36], we employ Edge Chamfer Distance (ECD) and Edge F-score
(EF1) to evaluate the preservation of sharp edges. We use the same “sharpness” definition
in BSP-Net as σ(si) = minj∈Nε(si) |ni · nj |, where Nε(s) extracts the indices of the points in
S within distance ε from s, and ni is the surface normal at point si. We compute an “edge
sampling” of the surface by retaining points for which σ(si)<0.2. Given two shapes, the
ECD and EF1 between them are simply the CD and F1 between the corresponding edge
samples. We also count the number of generated vertices (#V) and triangles (#T) to reveal
the fidelity-complexity trade-off.

61

1283 resolution CD(×105)↓ F1↑ NC↑ ECD(×102)↓ EF1↑ #V #T
MC33 4.143 0.870 0.972 4.063 0.193 22,048.41 44,107.11
643 resolution CD(×105)↓ F1↑ NC↑ ECD(×102)↓ EF1↑ #V #T
MC33 4.850 0.788 0.950 5.736 0.105 5,472.51 10,953.67
Lopes2003 4.803 0.798 0.958 6.841 0.100 21,979.95 43,892.05
Trilinear 4.733 0.803 0.960 7.275 0.098 - -
NMC-lite 4.341 0.877 0.975 0.382 0.759 22,710.56 43,876.87
NMC 4.323 0.877 0.975 0.390 0.758 42,766.54 85,543.83
323 resolution CD(×104)↓ F1↑ NC↑ ECD(×102)↓ EF1↑ #V #T
MC33 5.239 0.570 0.900 5.504 0.048 1,297.38 2,595.47
Lopes2003 5.343 0.577 0.911 6.213 0.047 5,215.12 10,397.68
Trilinear 5.161 0.585 0.915 7.217 0.045 - -
NMC-lite 3.922 0.823 0.950 0.532 0.631 5,464.48 10,389.43
NMC 3.919 0.824 0.949 0.598 0.634 9,728.20 19,460.09

Table 4.1: Quantitative comparison results on ABC test set with SDF input.

Figure 4.10: Reconstruction results on a brain model (in Thingi10K) with smooth features
by MC33 and NMC, from SDF inputs. NMC preserves the surface details (especially around
the valley areas) better.

1283 resolution CD(×105)↓ F1↑ NC↑ ECD(×102)↓ EF1↑ #V #T
MC33 4.533 0.985 0.984 0.892 0.383 12,551.21 25,076.50
Lopes2003 4.487 0.985 0.986 0.858 0.409 50,649.41 100,417.26
NMC-lite 3.696 0.992 0.987 0.559 0.628 50,205.72 100,401.08
NMC 3.706 0.992 0.987 0.625 0.628 83,023.47 166,036.10

Table 4.2: Quantitative comparison on organic FAUST shapes with SDF input.

62

Mesh extraction from SDF grids. We first compare the two versions of our method,
NMC and NMC-lite, with the two best-known MC variants to date, Marching Cubes 33
[133] (MC33) and [156] (Lopes2003), on the task of mesh extraction from grids of SDF
values. Quantitative comparison results are reported in Table 4.1, with two choices of input
resolutions: 643 and 323, on the ABC test set. The results show that, with the same SDF
inputs, our method outperforms MC33 and Lopes2003 on all the quantitative measures
considered.

We also add a row (top row in Table 4.1) for MC33 with the input resolution upscaled
to 1283. As we can see, even with 8× the amount of input information as NMC and NMC-
lite, MC33 underperforms on all measures except for CD. In terms of edge preservation,
our method is superior. This is also verified by the visual results in Figure 4.11, comparing
MC33 on 1283 input and NMC on 643 input.

Figure 4.9 shows qualitative comparisons between the various methods, on sample inputs
from the ABC test set and Thingi10K. We can observe that NMC, and to a lesser extent,
NMC-lite, are the only methods that can recover sharp edges and corners, while the smooth
curves are also well preserved. In fact, our method can reconstruct both sharp and soft edges
well, as demonstrated in the last row. Furthermore, examples in the first row and the third
row (at a smaller scale) exhibit thin structures in a shape, which causes both MC33 and
Lobes2003 to produce incorrect local topologies, due to the trilinear interpolant assumption.
On the other hand, our method infers the correct topological cases — the ambiguous Case
10.1.1 (see Figure 4.5), resulting in more faithful reconstructions.

In Figure 4.1(c), we show the isosurface of a trilinear interpolant, and in Table 4.1,
we report quantitative results associated with trilinear interpolation. The “ground truth”
trilinear interpolant could be considered as the upper bound of all methods that follow the
trilinearity assumption. Therefore, our method outperforming the trilinear interpolant fur-
ther proves that NMC is fundamentally superior at feature-preserving isosurface extraction.

Organic shapes. In Figure 4.10, we show that when the ground truth shape has smooth
undulations, our method is still able to reconstruct the surface details better than MC33.
For a more comprehensive test on organic shapes, we compare the various methods on 100
meshes of human body shapes from the FAUST dataset [19]. The quantitative results in
Table 4.2 show that NMC and its variant can learn to predict both smooth and sharp
features well, outperforming both MC33 and Lopes2003. Augmenting the training set with
more organic shapes should further improve performance on such inputs, since our method
is data-driven.

Varying input grid resolutions. In Figure 4.11, we show how MC33 and NMC perform
as the input SDF resolutions vary from 83 to 1283, where we recall that our network was
trained on meshes obtained at 323 and 643 resolutions. It is clear that our method can easily

63

Figure 4.11: Results of reconstructing 3D mesh shapes from SDF inputs as the input grid
resolutions vary. The holes in the MC33 results are due to incorrectly predicted topological
cases. NMC consistently outforms MC33 at all input resolutions, up to 1283, but with a
“diminishing margin".

adapt to higher-resolution inputs, but degrades in reconstruction quality at the lower end.
This is expected since as the cube size grows relative to the shape, the geometric varieties
inside the cubes would surpass the set of topological cases covered by NMC. Nevertheless,
NMC appears to consistently outperform MC33 at all resolutions, up to at least 1283. As the
resolution continues to grow however, the difference between NMC and MC33 will diminish
since the topological cases per cube would be much simplified.

Mesh extraction from binary voxels. When the inputs are binary voxels instead of
signed distances, the isosurface extraction task becomes significantly more difficult, since
voxel occupancies possess considerably less information. Not only are the point-to-surface
distances lost in the occupancies, but the signs could also be inaccurate: a point outside
the shape in the SDF grid may become “inside” in the voxel grid. One can observe a
quality drop from the visual results shown in Figure 4.12. Even our method cannot always
produce faithful reconstructions due to the ambiguities, e.g., the rod in the first row could
be rectangular or circular, and the edges in the second row could be smooth or sharp - both
would yield identical voxel grids. However, our learning-based approach is able to narrow
down the possible geometries and topologies by observing local neighborhoods. As shown
by the quantitative results in Table 4.3, our method outperforms other MC variants and
the trilinear interpolant on all measures, except for NC, by a substantial margin.

64

Figure 4.12: Results of reconstructing 3D meshes from binary voxel/occupancy inputs at
643 resolution. The shapes in the first two rows are from the ABC test set, and the last two
rows from Thingi10K.

643 resolution CD(×105)↓ F1↑ NC↑ ECD(×102)↓ EF1↑ #V #T
MC33 26.860 0.085 0.921 11.196 0.018 5,826.08 11,655.52
Lopes2003 26.829 0.084 0.921 14.601 0.017 23,302.73 46,608.90
Trilinear 26.826 0.084 0.921 14.866 0.017 - -
NMC-lite 9.302 0.443 0.930 0.559 0.365 22,185.94 42,915.64
NMC 9.341 0.438 0.931 0.528 0.356 42,043.03 84,087.85
323 resolution CD(×104)↓ F1↑ NC↑ ECD(×102)↓ EF1↑ #V #T
MC33 9.636 0.036 0.882 11.764 0.018 1,532.70 3,065.30
Lopes2003 9.632 0.036 0.883 14.723 0.017 6,130.84 12,261.58
Trilinear 9.641 0.035 0.884 14.820 0.017 - -
NMC-lite 5.909 0.237 0.871 0.901 0.112 5,236.79 9,975.67
NMC 6.029 0.232 0.871 0.910 0.109 9,469.84 18,933.65

Table 4.3: Quantitative comparisons on ABC test set with binary voxel input.

65

643 resolution CD(×105)↓ F1↑ NC↑ ECD(×102)↓ EF1↑ #V #T
MC33 3.195 0.795 0.945 3.763 0.099 5,517.51 11,044.35
Lopes2003 3.084 0.805 0.953 4.567 0.087 22,224.23 44,135.98
Trilinear 3.076 0.811 0.956 5.211 0.084 - -
NMC-lite 2.470 0.893 0.972 0.330 0.722 22,991.80 44,109.17
NMC 2.477 0.893 0.972 0.312 0.722 40,951.73 81,910.41
323 resolution CD(×104)↓ F1↑ NC↑ ECD(×102)↓ EF1↑ #V #T
MC33 10.519 0.540 0.882 4.046 0.040 1,284.98 2,569.73
Lopes2003 10.473 0.547 0.893 4.596 0.038 5,163.28 10,281.15
Trilinear 10.431 0.555 0.897 5.180 0.037 - -
NMC-lite 8.425 0.807 0.935 0.600 0.542 5,423.92 10,263.13
NMC 8.454 0.808 0.933 0.596 0.539 9,161.94 18,327.88

Table 4.4: Quantitative comparison results on Thingi10K with SDF input.

Figure 4.13: Comparing NMC with MC33 and Deep Marching Cubes (DMC) [139] on feature
preservation.

Generalizability. To demonstrate generalizability of our networks, which were trained on
ABC, we test them on the first 2,000 valid shapes from Thingi10K, using exactly the same
network weights as those in the previous experiments. Tables 4.4 and 4.5 show quantitative
comparison results on SDF and binary voxel inputs, respectively. Some qualitative results
are given in Figures 4.9 and 4.12. We can observe a similar performance boost over the other
methods in comparison. Note however that in Table 4.5, our method does not significantly
outperform other methods at the 323 input voxel resolution. This may be due to NMC being
overfit to the ABC training set, since the shape resolution (323) is getting close to the size
of the receptive field of our voxel processing network (153).

Comparison to DMC In Figure 4.13, we compare NMC with DMC [139] on feature-
preserving mesh reconstruction. Since the network architecture of DMC is not designed to
perform general isosurface extraction, we train their network to overfit on a single input
shape with 65,536 uniformly sampled points as supervision. As we can see, even with such
an overfitting, DMC is still unable to recover sharp features, which is mainly due to its
adoption of only few classical MC tessellations representing simple topologies. Related to
this, while DMC is trained to minimize point-to-triangle distances, it does not provide the
tessellations to support sharp edges. As a result, the reconstructed geometry near edges is
“bulging” in order to minimize distances to the training points.

66

643 resolution CD(×105)↓ F1↑ NC↑ ECD(×102)↓ EF1↑ #V #T
MC33 25.538 0.069 0.907 7.411 0.017 5,939.62 11,881.67
Lopes2003 25.526 0.068 0.908 11.948 0.015 23,757.44 47,517.48
Trilinear 25.510 0.068 0.909 12.598 0.015 - -
NMC-lite 6.055 0.495 0.923 0.606 0.328 22,540.88 43,272.05
NMC 6.108 0.493 0.923 0.602 0.314 40,430.06 80,861.75
323 resolution CD(×104)↓ F1↑ NC↑ ECD(×102)↓ EF1↑ #V #T
MC33 9.247 0.028 0.865 8.632 0.017 1,553.93 3,107.50
Lopes2003 9.246 0.028 0.867 12.344 0.015 6,215.99 12,431.69
Trilinear 9.256 0.028 0.867 12.709 0.015 - -
NMC-lite 9.998 0.258 0.852 0.946 0.096 5,261.82 9,971.62
NMC 10.177 0.256 0.852 0.957 0.093 9,043.78 18,083.90

Table 4.5: Quantitative comparisons on Thingi10K with binary voxel input.

Input and output complexities. When making comparisons, the input resolutions to
all methods are identical, but the output complexities do vary, as shown in Tables 4.1-4.5,
in terms of the average triangle and vertex counts. With the same tessellation templates,
hence comparable output complexities, NMC-lite outperforms Lopes2003 on all fronts, both
quantitatively and qualitatively, offering clear evidence for the effectiveness of our data-
driven approach for isosurfacing. The new tessellation templates designed for NMC are
more refined, resulting in higher triangle counts, but also improved reconstruction quality,
as shown in Figures 4.9 and 4.12.

NMC vs NMC-lite. Quantitatively, the performances of NMC and NMC-lite are quite
similar, proving the robustness of our representation design. However, the visual quality of
NMC results tends to be better than that of NMC-lite, at the expense of almost doubling
the triangle counts. Thus, if a lower output complexity is desired, one may choose NMC-lite
over NMC. But since NMC-lite employs simpler tessellation templates, it may not be able to
recover specific fine shape features, such as the thin structures in the examples from the first
and third rows of Figure 4.9, where the cubes with Case 3.2 were not well reconstructed.
Also, we have observed that the triangle quality resulting from NMC is generally better
than that from NMC-lite (e.g., see Figure 4.1), since the NMC tessellation templates were
designed to better avoid thin/sliver triangles.

Training and testing times. Network training takes about 3 days on one Nvidia RTX
2080 Ti GPU for SDF processing and 2 days for binary voxel inputs. We tested inference
time on the entire ABC test set with 643 inputs: the average is 0.006 second per shape for
MC33 (implemented in scikit-image [243]), and 0.762 second for NMC (with 0.719s spent
on network forwarding in PyTorch [188] and 0.042s for meshing in Cython [12]). Note that
currently, our network is still quite crude, as we prioritize accuracy over speed. Possible
speed-up could be achieved via neural architecture search and network pruning.

67

643 resolution CD(×105)↓ F1↑ NC↑ ECD(×102)↓ EF1↑

MC33 16.611 0.710 0.942 3.360 0.100
Lopes2003 16.545 0.714 0.947 3.692 0.093
NMC (trained on clean data) 15.340 0.769 0.941 0.574 0.502
NMC (trained on noisy data) 15.627 0.802 0.951 0.359 0.640

Table 4.6: Quantitative comparison on ABC test set with noisy SDF input.

Figure 4.14: Results of reconstructing 3D meshes from a noisy SDF grid input at 643

resolution.

Noisy inputs. Finally, we show that NMC can also learn to extract clean meshes from
noisy grid inputs when the network is trained on such data, such as those generated by
current neural implicit models [38, 109, 163]. To test this capability, we run a state-of-the-
art neural implicit model, SIREN [227], on the ABC dataset to fit each shape, but with
only 4,096 training points per shape. The sparsity of the training points makes the output
implicit fields necessarily noisy, as can be observed from Figures 4.14(a-b).

In our previous experiments, we trained NMC on clean data from ABC and assumed
that the testing inputs were also clean. A model trained this way may fail when the input
is noisy, as shown in Figure 4.14(c). To remedy this, we divide the noisy inputs into 80%
training and 20% testing as before, and use the noisy inputs to train the NMC model from
scratch. The re-trained NMC improves significantly on inputs from the noisy test set, as
shown in Figure 4.14, demonstrating that our method can adapt to different inputs (such
as voxels and noisy data), if trained on them.

Table 4.6 shows a quantitative comparison involving NMC trained on clean vs. noisy
data. We note that Chamfer Distance (CD) is rather sensitive to outliers, e.g., SIREN may
generate blobs in the empty region that are far away from the shape, which can impact
CD heavily. In comparison, F1 is a more robust quality measure to outliers, as discussed in
[237].

Comparison of different smoothness terms Due to considerable ambiguities in pos-
sible shapes represented by binary voxels, we need an extra smoothness term to regularize
the generated surfaces. We reuse notations from Section 4.3.5 for Es, F u

s , and Hu
s , and

1(·). Further, let F uv
s = F v

s − F u
s , Huv

s = Hv
s − Hu

s , [F u
s]x be the x coordinate of F u

s , and
[F uv

s]yz =
√

[F uv
s]2y + [F uv

s]2z. We have experimented with the following settings:

68

Figure 4.15: Visual comparisons of different smoothness terms on ABC test set with binary
voxel input at 643 resolution.

643 resolution CD(×105)↓ F1↑ NC↑ ECD(×102)↓ EF1↑

Eq. (8) 49.355 10.445 30.932 50.633 40.328
Eq. (9), γ = 100 29.329 30.435 30.932 40.615 30.353
Eq. (10), γ = 100 69.539 30.435 20.933 30.612 50.320
Eq. (11), γ = 100 59.518 50.434 10.934 20.562 60.313
Eq. (12), γ=10 39.341 20.438 50.931 10.528 20.356
Eq. (12), γ = 100 19.327 60.427 60.923 60.669 10.359

Table 4.7: Comparison of different smoothness terms on the ABC test set. The underlined
superscripts show rankings of the quantitative performances, where the overall best per-
forming row is highlighted in bold.

69

L
(1)
smooth = 0 (No smoothness term). (4.8)

L
(2)
smooth = Es∼S

∑
(u,v)∈Es

∥∥ F uv
s − Huv

s

∥∥2
2. (4.9)

L
(3)
smooth = Es∼S

∑
(u,v)∈Es

(
Lx

y + Lx
z + Ly

x + Ly
z + Lz

x + Lz
y

)
,

where Lx
y =

(
[Huv

s]x ·
∣∣[F uv

s]y
∣∣ − [F uv

s]x ·
∣∣[Huv

s]y
∣∣)2

.

(4.10)

L
(4)
smooth = Es∼S

∑
(u,v)∈Es

(
Lx

yz + Ly
xz + Lz

xy

)
,

where Lx
yz =

(
[Huv

s]x · [F uv
s]yz − [F uv

s]x · [Huv
s]yz

)2
.

(4.11)

L
(5)
smooth = Es∼S

∑
(u,v)∈Es

∥∥ 1(|F uv
s | < σ) · Huv

s

∥∥2
2. (4.12)

The smoothness term L
(2)
smooth in Eq. (4.9) minimizes the differences between the edge

gradients on the predicted mesh and those on the GT. L
(3)
smooth and L

(4)
smooth try to preserve

the absolute angles of the edges. In an ideal situation, [Huv]x/|[Huv]y| = [F uv]x/|[F uv]y|,
therefore [Huv]x · |[F uv]y| − [F uv]x · |[Huv]y| = 0. Eq. (4.10) minimizes the squared error of
such terms. Eq. (4.11) is a variant of Eq. (4.10), while Eq. (4.12) is equivalent to Eq. (4.7)
in Section 4.3.5.

The performances of the different smoothness terms are shown in Table 4.7 and exhibited
visually in Figure 4.15. Based on the visual results and overall quantitative performances,
we have adopted L

(5)
smooth in our work, with γ = 10 and σ = 0.0002.

4.5 Conclusions

In this paper, we show for the first time that the mesh reconstruction quality by Marching
Cubes (MC), one of the most classical algorithms in computer graphics, can be significantly
boosted by machine learning. In Neural Marching Cubes (NMC), we introduce the first MC-
based approach capable of recovering sharp geometric features without requiring additional
inputs, such as normal information. Trained on automatically generated “ground-truth”
meshes, our method shows superior performance in preserving various geometric features
such as sharp/soft edges, corners, thin structures, etc., compared to other isosurfacing algo-
rithms that take uniform grids of signed distances or binary occupancies as inputs. We also
designed an efficient parameterization to represent a triangle mesh, compatible with neural

70

Figure 4.16: NMC may produce artifacts when the input is oriented at an “unusual” angle
relative to the training shapes. From left to right: reconstructions of a cube that is axis-
aligned, then rotated by 1

14π, 2
14π, and 3

14π.

Figure 4.17: NMC cannot account for certain topological cases (deemed “invalid”), e.g.,
multiple intersections along an edge as highlighted in red (c). The reconstruction failure in
(b) is due to similar invalid cases in 3D.

71

processing, so that our NMC network can directly output the meshes without postprocess-
ing.

The main limitation of our method in terms of isosurfacing is its sensitivity to rotation,
as shown in Figure 4.16. This is mainly due to the dataset we train the network on, as
the shapes in the ABC dataset are mostly aligned with the coordinate axes. This data
characteristic also motivated our definition of the smoothness term in Eq. (4.7). Performing
random rotation augmentation on the training data is a viable solution, but would require
longer training time and larger networks to fit. Second, as we follow the common assumption
in MC that if the two vertices of a cube edge have different signs, then there is one and
only one intersection point, several topological cases (as shown in Figure 4.17) cannot be
represented. Adding more intersection points should cover most of such cases, and the
numbers and the positions of the edge vertices can be learned from data.

Another limitation is that we do not have a built-in mechanism to avoid self-intersections
in the output meshes. When testing on 643 SDF inputs from ABC, 32.7% of the meshes
produced by NMC contain self-intersections, but they involve only 0.0086% of the triangles,
which translate to about 7.39 triangles or around two separate intersections, per shape.
For NMC-lite, the corresponding numbers are 29.6%, 0.0078%, and 3.40, respectively. Most
of the intersections happen in cases where the structure in a cube cannot be represented
by our tessellation templates, such as those in Figure 4.17(b). Last but not the least, our
current model does not allow the learning of an arbitrary tessellation style, e.g., meshes
whose triangles are all close to being equilaterals. The challenge is on how to prepare the
proper training meshes to work under our designed templates.

Our proposed representation is not constrained to isosurfacing. It is a general shape
representation that can be adopted to other tasks such as shape upsampling and generation,
pointing to a worthy direction for future work. On the other hand, even when the input is a
uniform grid, the output mesh does not have to be uniform. A simple plane only requires a
few triangles to model, but a curved surface needs more. Therefore, learning to adaptively
allocate vertices and triangles according to feature complexity could yield more efficient
algorithms and control the explosion of triangle counts in MC, as reported in BSP-NET
[36].

72

Chapter 5

Neural Dual Contouring

5.1 Introduction

Polygonal mesh reconstruction from discrete inputs such as point clouds and voxel grids
has been one of the most classical and well-studied problems in computer graphics [54,
14]. Current solutions to the problem are predominantly model-driven, often relying on
assumptions such as those related to shape characteristics (e.g., watertightness, zero genus,
etc.), surface interpolants (e.g., trilinearity), sampling conditions, surface normals, and other
reconstruction priors. It is only recently that a few data-driven meshing methods have
emerged. However, they have mostly focused on learning point set triangulations [197, 220,
149]. One exception is Neural Marching Cubes (NMC) [39], a learning-based Marching
Cubes (MC) approach for mesh reconstruction from a voxel grid of signed distances or binary
occupancies. In comparison to the original MC algorithm [157] and its best-known variant,
MC33 [40], NMC uses tessellation templates with more adaptive mesh topologies and learns
local shape priors from training meshes. As a result, NMC generalizes well to a broader range
of shape types and excels at preserving sharp features, two long-standing issues in existing
MC work. On the other hand, the NMC tessellation templates are necessarily more complex
than those of MC and MC33. As a result, NMC typically outputs 4-8 times the number of
triangles and incurs 100× or more compute time to reconstruct a mesh.

In this paper, we introduce Neural Dual Contouring (NDC), a new data-driven approach
to mesh reconstruction based on dual contouring (DC) [110]. The key motivation for build-
ing our learning framework upon DC rather than MC is that it provides a more natural
and more efficient means of reproducing sharp features. As shown in Figure 5.2, NDC only
needs to predict one mesh vertex per grid cell (i.e., a cube) and one quad for each cell edge
intersected by the underlying surface. In contrast, NMC requires 23 edge, face, and interior
vertices per grid cell [39, Fig.5].

A traditional drawback of the classical DC, as compared to MC, is that it requires
gradients (i.e., surface normals) as input to compute a suitable vertex location within each
cell. Our data-driven approach does not have this drawback. NDC employs a neural network

73

Figure 5.1: Neural dual contouring (NDC) is a unified data-driven approach that learns to
reconstruct meshes (bottom) from a variety of inputs (top): signed or unsigned distance
fields, binary voxels, non-oriented point clouds, and noisy raw scans. Trained on CAD
models, NDC generalizes to a broad range of shape types: CAD models with sharp edges,
organic shapes, open surfaces for cloths, scans of indoor scenes, and even the non-orientable
Mobiüs strip.

Figure 5.2: Dual Contouring (DC) vs. Marching Cubes (MC) – visualized in 2D on
different inputs that were sampled from the same underlying shape, DC (top) reconstructs
a sharp feature (as an intersection between faces, in the top-right cell), while MC (bottom)
does not.

74

Figure 5.3: Neural dual contouring (NDC)

Figure 5.4: Unsigned neural dual contouring (UNDC)

trained on example 3D surface data to predict the vertex locations (Figure 5.3). Our neural
network learns to compute whatever gradients and/or contexts that are useful to reproduce
the training surfaces, and thus can operate on a voxel grid without gradients as input.

Another key feature of DC is that its meshing only requires knowing whether a cell
edge is intersected by the output surface or not [137]. We can thus train our network to
predict an intersection or crossing flag per edge, in addition to vertex locations, without
accounting for signs at cell corners (Figure 5.4). We refer to this version of our network as
unsigned NDC, or UNDC for short. With the sign-agnostic UNDC, we can forgo both the
input requirement on signed distances and the output requirement that the resulting mesh
is closed and watertight, as for MC and its variants.

Our learning model is built with 3D convolution neural networks (CNNs) separately
trained for vertex prediction and the prediction of cell corner signs (NDC) or edge crossings
(UNDC)1. Our network training is supervised with an L2 reconstruction loss against pseudo
ground-truth vertices computed by DC and binary cross entropy loss for sign/crossing pre-

1Note that in the rest of the paper, we use the term NDC to refer to both our overall dual contouring based
learning framework and the specific network that reconstructs meshes based on sign prediction (Figure 5.3).
On the other hand, the term UNDC is used exclusively to denote the sign-agnostic version of our method
(Figure 5.4).

75

dictions. As in NMC, our CNNs are designed with limited receptive fields to ensure gener-
alizability.

We train our NDC networks on a CAD dataset, ABC [122], and we test them on ABC and
four other datasets to assess generalizability: 1) Thingi10K [302], a dataset of 3D-printing
models, 2) FAUST [19], a dataset of human body shapes, 3) MGN [17], a dataset of clothes
as open surfaces, and 4) Matterport3D [27], a collection of scenes with noisy RGB-D depth
images. Quantitative and qualitative evaluations on isosurfacing using voxel data as input
suggest that NDC clearly outperforms MC33 and several variants of NMC in terms of mesh
reconstruction quality, feature preservation, triangle quality, and inference time, when using
signed (distances or binary voxels) grids as inputs. At the same time, NDC produces 4-8
times fewer mesh elements using 3-20 times less inference time, compared to NMC. Further
experiments with point cloud inputs suggest that UNDC outperforms both classical non-
learning based methods, such as Ball Pivoting [15], Screened Poisson reconstruction [118],
and recent reconstructive neural networks such as SIREN [227], Local Implicit Grids [107],
and Convolutional Occupancy Networks [193]. Qualitative and quantitative results show
significant improvements for NDC in terms of reconstruction quality, feature preservation,
and inference time. Our main contributions can be summarized as follows:

• We propose the first data-driven approach to mesh reconstruction based on dual con-
touring. Unlike classical DC, which optimizes vertex locations within the confines of
individual cells using a handcrafted Quadratic Error Function (QEF) [76], NDC predicts
vertex locations using a learned function, which eliminates the need for gradients in the
input and accounts for local contextual information inherent in the training data.

• A unified learning model that is applicable to a larger variety of inputs than previous
meshing methods. As shown in Figure 5.1, the allowed inputs include signed/unsigned
distance fields, binary voxels, and un-oriented point clouds.

• A significant, 23:1, reduction in representational complexity by NDC over NMC trans-
lates to across-the-board gains, in terms of simplicity of the network architecture, as well
as reduction in network capacity, training and inference times, and more; see Table 5.1
for a summary.

• A sign-agnostic network, UNDC, that can produce open, even non-orientable, output
surfaces; see Figure 5.1.

5.2 Related work

The literature on mesh reconstruction is extensive and so we refer to several surveys for
full coverage [54, 14]. In this section, we focus on techniques for isosurfacing (i.e., mesh
extraction from discrete volume data) and surface reconstruction from point cloud data,
with a focus on the recent data-driven approaches most closely related to our work. Then in

76

NMC NDC
Output 5 (bool) + 51 (float) per cube 1 (bool) + 3 (float) per cube
Network 3D ResNet 6-layer 3D CNN

Tessellation Manually designed, ≤ 1 vertex per cell; ≤ 1 quad
37 unique cases per cube per edge; see Figure 5.3

Output vertex count ≈ 8× MC ≈ MC
Output triangle count ≈ 8× MC ≈ MC

Data preparation

Sample dense point cloud Sample only vertex
in each cube; minimize signs, intersection points

chamfer distance via back and normals; then apply
propagation; complex Dual Contouring; Fast
and time-consuming and easy to compute.

Implementation
Need to consider all Could be a nice

cube tessellation cases; undergraduate
difficult to implement assignment

Regularization
Need a complex No regularization

regularization term term needed
for voxel input

Trainging time (On ABC training set) (Same setting)
4 days per network < 12 hours per network

Inference speed (643 SDF input) (Same setting)
> 1 second per shape 30+ shapes per second

Inherent issues Self-intersections, thin Non-manifold
triangles with small angles edges and vertices

Table 5.1: Comparing various aspects of NMC vs. NDC.

Section 5.2.3, we formally define dual contouring (DC), establish notations used throughout
the paper, and compare DC to marching cubes.

5.2.1 Isosurfacing and differentiable reconstruction

The marching cubes (MC) approach for isosurfacing from discrete signed distances was
first proposed concurrently by [157] and [273]. Since then, many variants have followed,
including the best-known MC33 [40], which correctly enumerated all possible topological
cases for mesh tessellations, based on the trilinear interpolation assumption. Indeed, most
of the MC follow-ups made the same assumption and are unable to recover sharp features.
This issue was resolved by neural marching cubes (NMC) [39], which combines deep learning
with MC for the first time, building on the premise that feature recovery can be learned
from training meshes.

Our work is inspired by NMC. In NDC, we combine deep learning with dual contouring
(DC) [110] to bring key advantages of classical DC over MC into a learned mesh reconstruc-

77

tion model, without requiring any additional inputs (e.g. gradients). In addition to improved
efficiency and reconstruction quality (see Section 5.4), our method also represents the first
unified mesh reconstruction framework that can take on all the input types shown in Fig-
ure 5.1. To the best of our knowledge, no previous methods were designed to reconstruct
meshes from unsigned distance fields.

Several recent works, including deep marching cubes (DMC) [139], MeshSDF [201], and
Deformable Tetrahedral Meshes (DefTet) [71], propose differentiable mesh reconstruction
schemes. While both these methods and NDC bring deep learning to mesh reconstruction,
their focuses and strengths are quite different. DMC, MeshSDF, and DefTet all target
end-to-end differentiability, while offering limited capabilities to reconstruct geometric and
topological details. They also encode global features for their predictions, which can hinder
both scalability, reconstruction quality (as downsampling is necessary during training), and
generalizability. In contrast, our work focuses on learning a refined meshing model applicable
to a variety of inputs. We target fine-grained quality criteria related to feature preservation
and surface quality. Our learning model is also local, hence highly scalable and generalizable
to diverse shape types and classes.

5.2.2 Mesh reconstruction from point clouds

Many methods have been proposed for surface mesh estimation from unorganized points.
Following the taxonomy in [14], previous works can be characterized based on the underlying
priors, e.g., smoothness [118], visibility [48], dense sampling [2], primitives [215], and learning
from data [260]. Among the methods based on data priors, some compose surfaces explicitly
from patches extracted from examples [69, 189, 221]. Others learn implicit priors, either for
entire objects [185, 163, 38, 192, 42] or for patches [8, 86, 107, 164, 193, 227, 260, 94]. Both
NMC [39] and NDC are in the latter category: they learn implicit priors for local regions.

Surface reconstruction methods also differ in whether they can work for input point
clouds without normals [5, 235], whether the output mesh interpolates the input points
via triangulation [197, 220, 149], and whether they can produce open surfaces from partial
scans, e.g., via an advancing front scheme [45, 15]. Of course, normals can be estimated in
a preprocessing step (e.g., using [20]), and open surfaces can be created from watertight
reconstructions in a postprocessing step (e.g., using SurfaceTrimmer in [118]). However,
these separate steps rely on heuristic algorithms with parameters that are difficult to tune
(e.g., size of neighborhood for normal estimation, density of points for surface trimming,
etc.). By comparison, our UNDC includes all these steps in a single learned process that
can produce open, even non-orientable, meshes directly from unoriented point cloud inputs,
with fast inference. Also, our method is non-interpolatory, hence insensitive to sampling non-
uniformity and noise (with noise augmentation in training). In Section 5.4.6, we compare
UNDC with several representative learning-based reconstruction networks [227, 193, 107]

78

whose results are most competitive to ours. Technical details about these works are described
in Section 5.4.6.

5.2.3 Dual Contouring (DC)

[110] introduced Dual Contouring to convert a Signed Distance Field Φ : R3 → R into
a polygonal mesh M = (V, F); see Figure 5.2 (top). This is achieved by discretizing the
function on a lattice G = (X , E). It first samples the Φ at the grid vertices X and determines
their signs S. Then, it finds the zero crossings VE of the Φ on the lattice edges spanning
vertices with opposite signs. Next, it computes the gradients of the Φ at those crossings,
which provide surface normals N E . Finally, it creates quadrilateral polygonal faces F that
are dual to the lattice edge crossings E . In what follows we have |X | = M × N × K lattice
vertices, |E| = (M − 1) × (N − 1) × (K − 1) × 3 lattice edges, and we index X by (m, n, k),
while we refer to edges as (i, j) ∈ E . Dual contouring assumes as input:

S ∈ B|X |, S = fS(Φ, G), (grid signs) (5.1)

VE ∈ R|E|×3, VE = fVE (Φ, G), (edge vertices) (5.2)

N E ∈ R|E|×3, N E = fN E (Φ, G), (edge normals) (5.3)

where, analogously to marching cubes [157], S are the signs of Φ on the lattice vertices,
that is fS : sign(Φ(X)), fVE computes the zero-crossings of Φ along the lattice edges,
and fN E : ∇Φ(VE) are the gradients of Φ measured at VE . Given these quantities, dual
contouring generates a polygonal mesh, consisting of quad faces and corresponding vertices:

F ∈ B|E|, F = fF (S), (5.4)

V ∈ R|X |×3, V = fV(VE , N E), (5.5)

where, with a slight abuse of notations, we use the same nomenclature fF for a polygonal
face (i.e. tuple of vertex indices) and the Boolean value that determines whether the face
should be created.

Dual faces F are created only whenever lattice edges connect lattice vertices of opposite
signs S:

fF : xor(Si, Sj), (i, j) ∈ E . (5.6)

Vertices are created by triangulating, a-la [76], the planar constraints defined on the edges
of each voxel in the lattice:

fV : arg min
x

∑
e∈Gmnk

(N E
e · (x − VE

e))2, (5.7)

79

where Gmnk refers to the voxel rooted at Xmnk, and e iterates the 12 edges of the voxel.

Comparison to MC DC has the drawback that it assumes the availability of the func-
tion’s gradients N E . This perhaps justifies why it has not been as popular as MC, which
only requires signs (5.1) and zero-crossings (5.2). Nonetheless, the mesh creation mechanism
of dual contouring is significantly simpler than the one in MC, where the former involves
simple Boolean operations, while the latter involves enumerating all possible combinations
and employing look-up tables that define the corresponding topology. Further, note that MC
tends to discard high frequency information (i.e. sharp corners), DC is capable of preserving
such details to a much better extent.

5.3 Method

In this paper, we introduce a learning framework, neural dual contouring (NDC), that
achieves the simplicity and sharp features of DC without requiring function gradients in
the input. Given any common input representation I (e.g. point cloud, signed or unsigned
distance functions, or voxelized grids), NDC can be formalized by a simple generalization
of Equations (5.1, 5.4, 5.5). In particular, we introduce two different techniques, illustrated
with a 2D example in Figure 5.3 and Figure 5.4, and detailed in what follows.

The first, and default, variant of our method, which reconstructs meshes based on sign
prediction, is simply referred to as NDC. It can be algebraically formalized as:

NDC(I) =


S = fS(I, G; θ),

V = fV(I, G; θ),

F = xor(Si, Sj).

(5.8)

The logic controlling whether a face should be generated is identical to classical DC, while
vertices and signs are predicted by neural networks (with trainable parameters θ) that
receive as input I. At the same time, the input requirements of NDC are closer to the ones
of MC and NMC: we do not require the availability of normals as in classical DC since
we do not perform explicit optimizations for vertex locations using (5.7). Instead, vertex
positions are predicted with a network trained from examples.

The second variant, named UNDC , with U denoting “unsigned”, is similar to NDC, but
it directly predicts the existence of dual faces F rather than resorting to sign prediction:

UNDC(I) =

V = fV(I, G; θ),

F = fF (I, G; θ).
(5.9)

The key advantage of this variant is that it can produce surface crossings without having to
rely upon differences of inside/outside signs at grid cell vertices. This feature allows UNDC

80

Figure 5.5: Training data preparation with data augmentation – The ground truth
meshes computed using classical DC (a) can be noisy. With proper augmentation for the
training data (see bottom), our NDC network can be trained to output meshes with better
tessellation quality (b).

to operate on unsigned distance fields or non-oriented point clouds (we employ the prefix
U to indicate this variant’s ability to operate on unsigned inputs). It also allows UNDC to
produce mesh faces, likely in the form of thin sheets, in regions where the underlying object
parts are thinner than one voxel. Clearly, such thin parts are not representable by differences
of grid vertex signs, and as a result, methods including MC, NMC, as well as NDC, would
not be able to reconstruct them at all; see Figure 5.8 in Section 5.4. Additionally, UNDC can
produce open surfaces with boundaries directly for input data representing partial surfaces.
These advantages are in contrast to other methods like MC and variants that guarantee
their outputs to be watertight and can represent only solid objects without thin features.

5.3.1 Encoders

Let us now consider the design of fV , fS , and fF for different types of input I: 1⃝ signed/unsigned
distance functions, 2⃝ voxelized occupancy, and 3⃝ point clouds.

Distance Function Inputs When a Signed Distance Function (SDF) Φ is provided as
input, our model fV first samples the function Φ at the grid vertices X into a floating point
tensor of shape |X |. We then use a 3D CNN to process this tensor; the 3D CNN has 6 layers,
with the first 3 layers having kernel size 33 and the last 3 layers having kernel size 13, an
overall receptive field of 73. We employ hidden layers with 64 channels to make the network
computationally efficient (i.e. 37 fps) as it has few network weights (i.e. 1MB). Leaky ReLU

81

Figure 5.6: The architecture of our point cloud processing network for UNDC.

activation functions are employed everywhere except at the output layer where sigmoids are
used. Note that when NDC operates on SDFs, fS is extremely efficient as it just requires
the computation of a sign at lattice locations similarly to classical dual contouring. Finally,
the architecture of fF for the UNDC model is the same as fV in the NDC model.

Voxelized Occupancy Inputs For this class of inputs, we use a network with almost the
same architecture as for SDF input, but with a small modification to enlarge the receptive
field to 153 (i.e. employ 7 rather than three 33 convolutional layers). Our rationale is that
voxelized occupancies are heavily quantized, and a larger receptive field would allow the
network to develop stronger priors to cope with the larger degree of ambiguity in the data.

Point Cloud Inputs For point cloud inputs, we devise a local point cloud encoder net-
work divided into two parts: 1⃝ point cloud processing and 2⃝ regular grid processing. The
former is implemented as a dense PointNet++ [196], while grid processing has three 33

convolution layers and three 13 convolution layers, hence of a similar architecture to the one
used for inputs represented as grids. The network architecture is shown in Figure 5.6. The
local PointNet in Figure 5.6 is similar to the set abstraction layer in PointNet++, with the
number of local clusters being the same to the number of input points. For each point pi in
the input point cloud, we find a local cluster with K points, and then apply PointNet [195]
using relative coordinates of those K points with respect to pi. In PointNet++, the local
cluster is found by setting a radius r, so that any points whose distances to pi are smaller
than r will be selected into the cluster. This may bring issues such as setting appropriate r

values and handling situations when a cluster has too many or too few points. Therefore,
we use a simpler approach to avoid the issues. We find the K nearest neighbors (K = 8
in our experiments) of pi to form the cluster, by using a KD-tree for efficient computation.
Afterwards, we concatenate the relative coordinates of each point with its features, apply
two fully-connected layers with leaky ReLU activation, and use max-pooling to aggregate
the features of all K points into the feature of pi. The residual block in Figure 5.6 is a
standard residual block [95] for fully connected layers. The “Pooling into grid” module in
Figure 5.6 is essentially a local PointNet as described above. The difference is that it uses
the centers of the cells in the grid as query points to find the local clusters in the input

82

point cloud via KNN. Since obtaining the features for all cell centers in a 3D gird is very
expensive (O(N3)), we only compute features for the cells that are close to the input point
cloud, i.e., the cells that are within 3 units (manhattan distance) to the closest point in the
point cloud, assuming the size of each cell is 1 unit. All hidden layers in our network has
128 channels. We use the same loss functions as UNDC for training the networks.

5.3.2 Training data preparation

To obtain the training data, we place random 3D mesh objects in the grid G to compute
signs, intersection points, and corresponding ground truth normals2, and then apply classical
DC to obtain the ground truth vertex predictions. However, this process can result in aliased
normals, which can lead to poorly positioned vertices after the optimization in (5.7); see
Figure 5.5-(left).

While this situation might seem problematic at first, we make the same observation
made by [130] in this setting. In particular, the use of an L2 reconstruction loss, coupled
with data augmentation, leads to a zero-mean distribution in the vertex positions predicted
by our model; see Figure 5.5-(b). To achieve this zero-mean distribution of optimization
residuals, we augment the training data by rotation (by π/2 around the Euclidean axes),
mirroring, and (global) sign inversion. Note this augmentation is not done within a mini-
batch, but rather, we rely on stochastic gradient descent for aggregating data towards a
zero-mean residual configuration progressively over the course of training.

5.3.3 Training losses

Given ground truth data, note that all the sub-networks within the NDC and UNDC models
can be trained separately, leading to a simpler training setup where no hyper-parameter
tuning between losses becomes necessary. Note that we leverage our input data to only
supervise the prediction made by the networks in a narrow-band around the input surface,
with binary masks MS , MV that evaluate to one if we are within the narrow-band, and
zero otherwise. This is because surfaces should only be created in the proximity of either
changes in the sign of Φ, in occupancy for voxelized inputs, or proximity of the input points
for point cloud inputs. We start with a simple L2 reconstruction loss of pseudo ground-truth
vertices (i.e. as computed by dual contouring):

LV(θ) = E(I,MV ,Vgt)∼D
∑

m,n,k

[
∥MV ⊙ (fV(I, G; θ) − Vgt)∥2

2

]
,

2Note that these intersection points and normals were utilized to create the pseudo-ground truth at
training time; they are not used at test time.

83

where ⊙ is the Hadamard product on G. For NDC , we supervise the prediction of signs via
Binary Cross Entropy (BCE):

LS(θ) = E(I,MS ,Sgt)∼D
∑

m,n,k

[MS ⊙ BCE (fS(I, G; θ), Sgt)] .

Finally, for UNDC the loss LF (θ) is analogous to LS(θ), and hence we do not repeat its
definition.

The definitions of MS , MV , and MF are as follows. We assume the size of each cell is
1 unit.

MV - NDC For a grid cell, if its corner vertices have different signs in the ground truth
SDF, we set its corresponding entry in MV to 1. The other entries in MV are left 0. The
definition applies for all kinds of inputs.

MV - UNDC For a grid cell, if any of its edges intersects the ground truth shape, we
set its corresponding entry in MV to 1. The other entries in MV are left 0. The definition
applies for all kinds of inputs.

SDF grid input - MS - NDC NDC directly use the signs of the input as S, therefore
it does not need MS .

SDF and UDF grid input - MF - UNDC For an edge in a grid cell, if both of its
end vertices have signed distances less than 1, we set its corresponding entry in MF to 1.
The other entries in MF are left 0.

Binary voxel input - MS - NDC For an occupied grid cell, if it is adjacent to an
unoccupied cell (in its 33 local neighborhood), we set the corresponding entries for all its 8
vertices to 1. The other entries in MS are left 0.

Binary voxel input - MF - UNDC For an edge in a grid cell, if all of its four adjacent
cells are occupied, we set its corresponding entry in MF to 1. The other entries in MF are
left 0.

Point cloud input - MF - UNDC In the point cloud networks, we only compute
features for the cells that are close to the input point cloud, i.e., the cells that are within
3 units (manhattan distance) to the closest point in the point cloud. Therefore, the corre-
sponding edges stored in those cells are set to 1 in MF . The other entries in MF are left
0.

5.3.4 Post-processing

When UNDC is operating on sparse or noisy point clouds, the function fF (I, G; θ) that
predicts grid edge crossings can make mistakes, leading to small holes in the output mesh.
Empirically, the holes are typically small and isolated (see Table 5.8), and so we can use
a simple post-processing step to close them. We employ our tensor representation of the
mesh F ∈ B|E| to determine boundary edges from M, and we flip Boolean entries in F that
would result in three/four edges to change their boundary state; see Figure 5.7. These post-

84

Figure 5.7: Post-processing UNDC outputs – The post-processing step can close small
holes by adding quad faces.

processing steps are executed on the GPU, resulting in a negligible impact on the overall
inference time.

5.3.5 Training details

Each network is trained for 400 epochs (for SDF/voxel inputs) or 250 epochs (for point
cloud inputs) with a batch size of 1 (shape). We use Adam optimizer [120] with a learning
rate of 0.0001, beta1= 0.9 and beta2= 0.999 for optimization. The learning rate is halved
every 100 epochs.

5.4 Results and evaluation

We ran a series of experiments with NDC and UNDC to evaluate their performance in
comparison to previous methods for a variety of input types, including SDFs, unsigned
distance fields (UDF), binary voxel grids, point clouds, and depth image scans.

5.4.1 Datasets, training, and evaluation metrics

In all of our experiments, we train NDC and UNDC on the ABC dataset [122] following
the protocols in NMC [39]. The ABC dataset consists of watertight triangle meshes of CAD
shapes, which are characterized by their rich geometric features including both sharp edges
and smooth curves, as well as their topological varieties. We only use the first chunk of
ABC dataset for our experiments. We split the set into 80% training (4,280 shapes) and
20% testing (1,071 shapes). During the data preparation, we obtain meshes over 323 and
643 grids to train our network. We evaluate the methods on the test set of ABC.

Generalization To assess generalization capabilities of the methods, we evaluate on four
other datasets, also following the experimental settings as in NMC [39]. The additional
test sets include 2,000 shapes from Thingi10K dataset [302], a dataset of 3D-printing
models; 100 shapes of human bodies from FAUST dataset [19], a dataset of organic shapes;

85

several shapes in MGN [17], a dataset of clothes with open surfaces; and several rooms
from Matterport3D [27], a dataset containing scans of indoor scenes acquired with depth
cameras. In all cases, we evaluate NDC and UNDC after training on the ABC training set
without any fine-tuning.

5.4.2 Metrics

We evaluate surface reconstructions quantitatively by sampling 100K points uniformly dis-
tributed over the surface of the ground truth shape and the predicted shape, and then
computing a suite of metrics that evaluate different aspects of the reconstruction. The
metrics are divided into five groups.

Reconstruction accuracy We use Chamfer Distance (CD) and F-score (F1) to evaluate
the overall quality of a reconstructed mesh. The metrics are good at capturing significant
mistakes such as missing parts, but may not be informative for evaluating the visual quality.
Therefore, we introduce other metrics to evaluate sharp feature preservation and surface
quality.

Sharp feature preservation We follow NMC [39] and use Edge Chamfer Distance
(ECD) and Edge F-score (EF1) to evaluate the preservation of sharp edges. For a given
shape, points are sampled near sharp edges and corners to form a set of edge samples. The
ECD and EF1 between two shapes are simply the CD and F1 between their edge samples.

Surface quality As in many other papers, we use Normal Consistency (NC) to evaluate
the quality of the surface normals. However, NC is similar to CD and F1 in that it mainly
captures significant mistakes and neglects small mistakes which contribute significantly to
visual artifacts. Therefore, we break down NC to show the percentage of inaccurate normals
(% Inaccurate Normals, or %IN) according to a threshold. To compute %IN, for each point
sampled from shape A, we find its closest point in the points sampled from shape B, and
then compute their angle. If the angle is larger than the threshold, the point from A is
labeled as having an inaccurate normal. %IN (gt) is the percentage of points sampled from
the ground truth shape that have inaccurate normals. %IN (pred) can be obtained similarly
on points from the predicted shape.3 Another aspect of mesh quality is the number of small
angles in the reconstructed triangles. Therefore, we also report the percentage of small
angles that are smaller than a threshold, as % Small Angles, or %SA.

3Note that these two metrics are the surface normal counterparts of the two terms assembling the sym-
metric Chamfer Distance.

86

643 CD↓ F1↑ NC↑ ECD↓ EF1↑ #V #T Inference
SDF input (×105) (×102) time

NMC 4.365 0.878 0.976 0.340 0.766 42,767 85,544 1.148s
NMC-lite 4.356 0.878 0.975 0.338 0.767 21,933 43,877 1.135s
DC-est 4.673 0.827 0.958 3.810 0.167 5,459 10,969 0.421s
MC33 4.873 0.788 0.950 5.759 0.103 5,473 10,954 0.005s
NMC* 4.400 0.874 0.972 0.409 0.715 42,767 85,544 0.158s
NMC-lite* 4.386 0.875 0.973 0.416 0.725 21,933 43,877 0.153s
NDC 4.463 0.867 0.970 0.338 0.745 5,459 10,969 0.027s
UNDC 0.930 0.873 0.974 0.328 0.746 5,584 11,295 0.051s
UNDC (UDF) 0.960 0.868 0.971 0.379 0.735 5,692 11,420 0.053s

1283 CD↓ F1↑ NC↑ ECD↓ EF1↑ #V #T Inference
SDF input (×105) (×102) time

NMC 4.129 0.882 0.979 0.204 0.806 175,926 351,867 8.991s
NMC-lite 4.117 0.882 0.979 0.231 0.808 88,419 176,853 8.984s
DC-est 4.132 0.879 0.977 2.215 0.266 22,088 44,213 1.765s
MC33 4.144 0.870 0.972 4.247 0.193 22,048 44,107 0.030s
NMC* 4.116 0.882 0.978 0.257 0.779 175,926 351,867 1.126s
NMC-lite* 4.114 0.882 0.979 0.283 0.785 88,419 176,853 1.112s
NDC 4.131 0.881 0.978 0.214 0.802 22,088 44,213 0.207s
UNDC 0.789 0.890 0.983 0.149 0.813 22,578 45,411 0.410s
UNDC (UDF) 0.792 0.889 0.983 0.227 0.810 22,874 45,715 0.409s

Table 5.2: Quantitative evaluation on ABC with SDF (signed or unsigned) inputs at two
resolutions, evaluated on the test set split, using mesh quality metrics, output complexity,
and inference times.

Triangle & vertex counts We count the number of vertices (#V) and triangles (#T)
in the output shape to reveal the fidelity-complexity trade-off. Note that while our method
generates quad faces, we always randomly split each quad into two triangles for evaluations
and visualizations.

Inference time We report inference times (seconds per shape) for the methods tested
on the ABC test set. Timings are collected on the same machine with one NVIDIA GTX
1080ti GPU.

5.4.3 Reconstruction from SDF

We first test NDC and UNDC on mesh reconstruction from grids of signed distances, and
compare them to Marching Cubes 33 (MC33) (an improved version of MC to guarantee
topological correctness in each cube [40, 133]), classical DC with estimated normals (DC-
est), and two versions of Neural Marching Cubes (NMC and NMC-lite) [39].

DC-est takes the same SDF input as our method, obtains gradient values at grid points
by local differentiation over the SDF, and runs the classical DC [110] as described in Fig-
ure 5.2 by estimating the intersection points and their gradients via linear interpolation.
Since NMC and NMC-lite use large networks to ensure the quality of the output meshes,

87

Figure 5.8: Mesh reconstruction results from SDF grid inputs at a relatively low resolution
of 643. The shapes in the first three columns are from ABC test set, and the last column
from Thingi10K. Zoom in to see various surface artifacts and artifacts near edges on NMC-
lite* and NMC* results, broken meshes from MC33 (red arrows), and non-manifold edges
from NDC and UNDC (green arrows). Pay special attention to the thin sheets (blue arrows)
reconstructed by the sign-agnostic UNDC, which correspond to parts of the ground truth
shape that are thinner than one voxel. In contrast, none of the other methods (a-e) could
even recover any of these thin parts.

88

Figure 5.9: Mesh reconstruction results from SDF grid inputs at 1283 resolution on the
FAUST dataset; see insets to compare triangle quality.

1283 CD↓ F1↑ ECD↓ EF1↑ #V #T % IN % SA
SDF input (×105) (×102) > 5◦ < 10◦

MC33 2.421 0.890 2.657 0.197 22,324 44,656 19.08 2.43
NMC* 2.613 0.902 0.269 0.760 169,211 338,427 20.99 0.77
NMC-lite* 2.651 0.902 0.254 0.772 89,260 178,527 17.04 1.74
NDC 2.300 0.901 0.215 0.792 22,295 44,631 12.52 0.24
UNDC 0.757 0.904 0.189 0.795 22,478 45,043 12.66 0.29
UNDC (UDF) 0.748 0.903 0.222 0.785 22,784 45,395 13.19 0.28

Table 5.3: Quantitative results on Thingi10K with SDF input.

1283 CD↓ F1↑ ECD↓ EF1↑ #V #T % IN % SA
SDF input (×105) (×102) > 5◦ < 10◦

MC33 0.453 0.985 0.086 0.387 12,551 25,076 34.28 4.23
NMC* 0.385 0.990 0.146 0.552 83,024 166,038 44.58 1.18
NMC-lite* 0.381 0.991 0.119 0.567 50,207 100,404 38.33 2.63
NDC 0.397 0.989 0.044 0.530 12,538 25,100 38.38 0.11
UNDC 0.362 0.992 0.038 0.574 12,609 25,258 37.38 0.16
UNDC (UDF) 0.365 0.991 0.045 0.549 12,682 25,293 38.72 0.21

Table 5.4: Quantitative results on FAUST with SDF input.

89

Figure 5.10: Qualitative results of mesh reconstruction from UDF inputs at 1283 resolution
on two cloth shapes from the MGN dataset. Note the open surfaces reconstructed by our
sign-agnostic method UNDC.

Figure 5.11: Some plots of surface quality (via % of Inaccurate Normals) and triangle
quality (via % of Small Angles), on ABC test set with 643 SDF input. NDC and UNDC
consistently outperform other isosurfacing methods.

90

which makes the inference significantly slower, we replace the large backbone networks in
them with our 6-layer CNN to obtain NMC* and NMC-lite*, in order to have a fair
comparison on reconstruction quality with respect to the inference time. In addition, we
include the results of UNDC when the input is a grid of unsigned distances as UNDC
(UDF). Since there is no method to reconstruct meshes from grids of unsigned distances
to our knowledge, we do not compare it with other methods.

We show visual results in Figure 5.8. We report the quantitative results on the ABC
test set in Table 5.2. To make the paper compact, we reduce the sizes of the tables by
removing some less representative metrics. The full tables can be found at the end of this
chapter: results for the ABC test set are in Table 5.9, Thingi10K in Table 5.10, and FAUST
in Table 5.11.

Reconstruction accuracy NDC and UNDC consistently outperform model-driven MC33
and DC-est in terms of CD and F1. Clearly, normal estimation is not expected to be accu-
rate, especially near sharp features. The results of DC-est are similar to or slightly better
than those of MC33, as shown in Figure 5.8 and Table 5.2.

Although the network size has been significantly reduced in NMC* and NMC-lite*, they
usually have slightly better results than NDC, since, given the same input resolution, March-
ing Cubes methods are able to reconstruct more inner structures inside each cube with their
abundant tessellation templates, while NDC cannot due to its simple tessellation design.
However, NMC and NMC-lite are significantly worse than UNDC in CD, even with their
original large networks, due to the fact that UNDC can reconstruct thin structures which
NMC methods and NDC cannot. Visual results in Figure 5.8 show some examples. Note in
the first and the third columns (blue arrows), some thin structures are not reconstructed
by any methods other than UNDC. In the fourth column and in Figure 5.9 , we show that
even on smooth shapes, NDC and UNDC can preserve more details, such as the crevices,
compared to MC33. However, in the second column (green arrows), we show failure cases
from NDC and UNDC, where the walls of the tube are merged together with non-manifold
edges, as a result of their simpler tessellations in each cube – this problem does not occur
in NMC*.

Sharp features As shown in Tables 5.2, 5.3, and 5.4, NDC and UNDC consistently out-
perform MC33, DC-est, NMC*, and NMC-lite*, in ECD and EF1, for feature preservation.
The only exception is the EF1 in Table 5.4, which may be due to NDC’s tessellation being
too simple to handle the fine structures of human shapes, e.g., the fingers.

Normal quality Since the compared methods generally have similar point-wise recon-
struction accuracies, the quality of the generated surfaces in terms of visual appearance can
be a better differentiator. We consistently observe that after switching to smaller networks,

91

NMC* and NMC-lite* tend to generate noisy surfaces even over flat regions, as shown in Fig-
ure 5.8 (c-d). We use %IN (IN = inaccurate normals) as a means to quantify the quality of
surface normals, which correlate with surface quality. Figure 5.11 shows the %IN-threshold
curves on the ABC test set, where the normal errors of NDC and UNDC are noticeably
less than those from other methods for small threshold values, which is consistent with our
visual observation that NMC* and NMC-lite* outputs exhibit more surface artifacts.

Triangle quality In Figure 5.11, we show %SA-threshold (SA = small angles) curves for
various methods on the ABC test set, showing that NDC outperforms the others in triangle
quality, with UNDC coming close. A visual comparison can be found in Figure 5.9.

Triangle and vertex count The #V and #T in Table 5.2 show that the vertex and
triangle numbers of NDC and UNDC are very similar to those of MC33. NMC and NMC-lite
produce more vertices and triangles due to their complex cube tessellation templates.

Inference time With no deep networks involved, MC33 is undoubtedly the fastest, as
shown by the inference times in Table 5.2. With our light network design, NDC and UNDC
are next in line in terms of speed. Since NDC does not need sign predictions, it is half the
size of and twice as fast as UNDC, running in real time on an NVIDIA GTX 1080ti GPU.
With the newer RTX 3090 being twice as fast as GTX 1080ti, we expect UNDC to also run
in real time on a higher-end GPU. In comparison, the original NMC and NMC-lite require
more than a second to test on an input grid of 643. Even after we replace their networks with
our light designs, NMC* and NMC-lite* are still 2-4 times slower than UNDC and NDC,
due to their more complex cube tessellations. Finally, the inference time for classical DC is
far from optimal as we employed our own implementation of DC-est with an unoptimized
QEF solver.

Robustness to translation and rotation We highly encourage the readers to watch
the video https://youtu.be/HwKMpeKgYcc where we test the methods on a shape while
moving and rotating the shape inside the sampling grid. It clearly shows that NDC and
UNDC are the most robust compared to others.

Varying input grid resolutions We report quantitative results obtained by the various
methods on 643 and 1283 input resolutions in Table 5.2. When increasing the input resolu-
tion, the gap of reconstruction accuracy diminishes, as reflected by CD and F1. But NMC*
and NMC-lite* will always produce significantly more vertices and triangles, and take more
time to process a shape.

Generalizability To show the generalizability of our method, we show the quantitative
results on Thingi10K and FAUST in Table 5.3 and 5.4, respectively. Visual results can be

92

https://youtu.be/HwKMpeKgYcc

643 CD↓ F1↑ NC↑ ECD↓ EF1↑ #V #T Inference
Voxel input (×105) (×102) time

MC33 26.862 0.085 0.921 11.342 0.018 5,826 11,656 0.005s
NMC* 9.452 0.422 0.927 0.698 0.346 42,045 84,089 0.156s
NMC-lite* 9.428 0.420 0.927 0.604 0.356 21,431 42,862 0.154s
NDC 9.387 0.428 0.930 0.567 0.360 5,345 10,726 0.055s
UNDC 9.139 0.428 0.931 0.564 0.359 5,365 10,772 0.055s

Table 5.5: Quantitative results on ABC test set with binary voxel input.

found in Figure 5.8 and 5.9. All data-driven methods are only trained on the ABC training
set. These results are consistent with our analysis above. Specifically, in terms of surface
quality, we show %IN (pred) with error greater than 5◦ in Table 5.3 to show that NMC*
and NMC-lite* have more surface artifacts. However, on organic shapes from FAUST, MC33
outperforms deep learning methods, as shown by %IN (pred) in Table 5.4. It makes sense,
because Marching Cubes was originally designed to reconstruct smooth shapes, and none
of the deep learning methods are trained on smooth shapes. We also report %SA with
angles less than 10◦ in Table 5.3 and Table 5.4 for Thingi10K and FAUST, to show that
our method produces fewer small-angle triangles.

5.4.4 Reconstruction from UDF

As shown in the last rows of Table 5.2, 5.3, and 5.4, the results on UDF are similar to those
on SDF, but are usually worse due to the lack of signs. Still, UNDC is able to recover the
shapes reasonably well by just observing the changes of unsigned distances in nearby cells.
The visual results on UDF are very similar to the results on SDF when tested on the three
datasets in the previous experiment. Therefore, we show the results of reconstructing clothes
with open surfaces in MGN dataset [17] from grids of unsigned distances in Figure 5.10.
Note that in our experiments with UDF, we do not compare with prior works, since, to the
best of our knowledge, UNDC is the only method that can reconstruct meshes from UDF.

5.4.5 Reconstruction from binary voxels

Reconstructing meshes from binary voxels is clearly more challenging than from SDF grids.
Learning from data is absolutely necessary in this scenario if one wishes to produce plausible
outputs, as reflected in Table 5.5, where MC33 is significantly worse than all others in
all metrics, except for vertex and triangle count. The results on Thingi10K and FAUST,
and on 1283 inputs are at the end of this chapter: the results for the ABC test set are
in Table 5.12, Thingi10K in Table 5.13, and FAUST in Table 5.14. They show the same
pattern as Table 5.5 and demonstrate the generalizability of our method. We show visual
results in Figure 5.12. Many observations in Section 5.4.3 still apply here: our method is
significantly faster than NMC* and NMC-lite* (Inference time), produces significantly less

93

Figure 5.12: Mesh reconstruction results from binary voxel (occupancy) inputs at 643

resolution. Zoom in to see some surface artifacts by NMC-lite* and NMC*, marked with
blue arrows. The shapes in the first column are from ABC test set, and the last three
columns from Thingi10K.

94

vertices and triangles (#V, #T), has better normal quality (NC), and can better preserve
sharp edges and corners (ECD, EF1). Moreover, since binary voxels are more challenging
than SDF grids, NMC* and NMC-lite* are underfitting, with reconstruction accuracy worse
than NDC and UNDC, as reflected by CD and F1.

5.4.6 Reconstruction from point clouds

We test UNDC on the task of reconstructing meshes from point clouds. UNDC does not
require normals as input, while most other methods do, making direct comparisons difficult
to perform. To give competing methods a slight advantage, we provide normals to meth-
ods that require them, and re-iterate that our method does not leverage this additional
information.

Baselines We compare against five methods, including classical Ball-pivoting [15] and
screened Poisson [118]) surface reconstruction, as well as three deep learning methods like
SIREN [227], Local Implicit Grids (LIG) [107], and Convolutional Occupancy Networks
(ConvONet) [193]. The latter is the only method that does not require point normals, and
we test its two variations proposed in the original paper: ConvONet-3plane which uses the
3-plane (xy, yz, xz) setting, and ConvONet-grid that uses the 3D grid setting. Note that we
compare with SIREN rather than SAL [5] since SIREN is built upon SAL and has shown
better performance in their paper.

Ball-pivoting [15] and Screened Poisson surface reconstruction (Poisson) [118]. These
are classic methods for reconstructing meshes from point clouds, and they require point
normals as part of the input. Ball-pivoting does not create new vertices - it only connects
the existing vertices into consistently oriented triangles. Poisson constructs an implicit field
according to the points and normals, then extract the surface with an octree structure. In
our experiments, we use the implementation in Open3D [301] for these two methods, and
use a maximum depth of 8 for the octrees in Poisson.

SIREN [227] is a method that overfits an neural implicit function to a given shape,
therefore it takes much longer to process a shape than all other methods, since each time
it needs to train a neural network from scratch. It requires point normals as part of the
input. In our experiments, we use the official code released by the authors. We find that
after training SIREN, there is a 10% possibility that the output shape is covered by a shell,
which cannot be easily removed since it is close to the actual shape and connected to it in
many pieces. Therefore, for those shapes we have to re-train the network for several times.
Nonetheless, we report the inference time in the tables assuming all shapes are successfully
trained in the first go.

Local implicit grid (LIG) [107] is a method that first divides the input point cloud
into small overlapping blocks, and then reconstruct the part in each block by optimizing
a neural implicit field, and finally put the implicit fields together to reconstruct the entire

95

Figure 5.13: Pre-trained ConvONet vs. ConvONet with our local backbone.

shape. It requires point normals as part of the input. In our experiments, we use the official
code released by the authors. The authors have released pre-trained network weights on
ShapeNet [28], therefore we denote this method with pre-trained weights as LIG (P). We
also train this method on ABC training net for a fair comparison, denoted as LIG. We use
3203 output resolution for both models.

Convolutional occupancy networks (ConvONet) [193] is a method to reconstruct an
implicit field from point clouds. It does not require point normals as input, therefore is
the only method that takes the exact same input as our method. In our experiments, we
use the official code released by the authors. The authors have introduced many network
configurations in their paper, and we choose two representative ones in our experiments. In
ConvONet 3plane, we use the 3-plane (xy, yz, xz) setting with the resolution of each plane
1282. In ConvONet grid, we use the 3D grid setting with the grid resolution 643. We train
both networks on ABC training net for a fair comparison. We also use the network weights
released by the authors, pre-trained on synthetic scenes with objects from ShapeNet [28],
denoted as ConvONet (P). We use 2563 output resolution for all three models.

It is worth noting that unfortunately, all the networks in ConvONet are non-local, that
is, their receptive fields need to cover the entire shape in order to properly decide which side
is inside and which side is outside in the output implicit field. We tried to directly apply our
backbone network in ConvONet, denoted as ConvONet*, but as expected, the training
has failed. This is because our network is local, and ConvONet cannot decide inside/outside
for a local patch, therefore generates many artifacts in the featureless regions, as shown in
Figure 5.13. Note also that the pre-trained ConvONet tends to turn single-face walls into
thin volumetric plates in Figure 5.13.

We test all methods with 4,096 input points. The output grid size of UNDC is 643. We
train all data-driven methods on the ABC training set for a fair comparison. We illustrate
these results in Figure 5.14. Quantitative results on the ABC test set are provided in Ta-
ble 5.6, while results on Thingi10K and FAUST, which reveal a similar pattern and trend,

96

point cloud CD↓ F1↑ NC↑ ECD↓ EF1↑ #V #T Inference
(4,096) (×105) (×102) time

Ball-pivoting (+n) 3.080 0.791 0.944 0.556 0.269 4,096 7,439 1.292s
Poisson (+n) 4.705 0.727 0.939 4.138 0.067 11,241 22,496 1.476s
SIREN (+n) 1.340 0.814 0.969 2.636 0.152 97,219 194,543 168.595s
LIG (+n) 3.413 0.721 0.947 11.868 0.022 149,860 299,166 66.866s
ConvONet 3plane 18.073 0.536 0.935 4.113 0.105 75,342 150,689 2.692s
ConvONet grid 8.844 0.488 0.939 9.701 0.036 74,171 148,337 2.404s
UNDC 0.893 0.873 0.974 0.289 0.757 5,578 11,261 0.194s

Table 5.6: Quantitative results on ABC test set with point cloud input. (+n) indicates
that the method additionally requires point normals as input.

can be found at the end of this chapter: results for the ABC test set are in Table 5.15,
Thingi10K in Table 5.16, and FAUST in Table 5.17.

Analysis As shown in Table 5.6, UNDC outperforms all other methods in all recon-
struction quality metrics. SIREN has the closest results to ours in terms of reconstruction
accuracy, but it has to be trained for, i.e., “overfit to”, each input shape. ConvONet, whose
networks are not local, does not generalize well even within the ABC dataset. LIG is local
and therefore expected to generalize better. However, its algorithm only considers the space
around the input points and ignores the empty space. As a result, LIG generates many arti-
facts in the empty space, which are called “back-faces” in their paper, and a post-processing
step is required to remove them. The post-processing step is not perfect, as shown in the
first and fourth columns in Figure 5.14. UNDC and Ball-pivoting are the only two methods
that directly output a mesh without iso-surface extraction, therefore they have the least
numbers of vertices and triangles, and are the only two methods that can generate sharp
features, as shown by ECD and EF1 in Table 5.6. As for inference time, UNDC is the fastest
and significantly faster than all other methods compared, even the classical Ball-pivoting
and Poisson.

5.4.7 Reconstruction from noisy real scans

We test UNDC on reconstructing meshes from raw scan data in Matterport3D [27]. The
raw scan data contains depth images and camera parameters – we convert them into noisy
point clouds as the input to our network. Since the point clouds represent large scenes, we
first crop the scene into overlapping patches, and then run our network to obtain grids of
edge intersection flags and vertex locations. Finally, we put together the predicted grids
to form a large grid of the scene, and then run the meshing algorithm in Figure 5.4 to
obtain the output mesh. Our network is larger than that of the previous experiment to
accommodate for point cloud noise. Specifically, we replace the three 33 conv3d layers in
Figure 5.6 with 8 residual blocks [95]. We train the network on the same ABC training

97

Figure 5.14: Results of reconstructing 3D meshes from point cloud inputs of 4,096 points.
Please zoom in to observe the surface details. The shapes in the first two columns are from
ABC test set, and the last three columns from Thingi10K.

98

set but with heavy data augmentation (random scaling and translation, in addition to the
augmentations mentioned in the paper). During training, we also augment the input point
clouds with Gaussian noise (σ = 0.5, assuming each cell of the output grid is a unit cube)
to simulate the real noise from scan data.

Baselines We compare UNDC with ConvONet, since it does not require ground truth
point normals and is designed to reconstruct large scenes. We use the pre-trained weights
provided by the authors for synthetic scenes with objects from ShapeNet [28], denoted as
ConvONet (P). Additionally, we compare to Poisson with estimated point normals. We show
visual comparisons in Figure 5.15. Note that different from the experiments in most other
works on deep learning scene reconstruction, which test their methods on sampled points
from the “ground truth” meshes, we test on raw scan data, which is a more realistic setting.
We do not report quantitative results since the “ground truth” meshes provided with the
dataset were reconstructed by Poisson, one of the methods we are comparing against.

Analysis ConvONet is seen to significantly underperform compared to Poisson and UNDC,
especially falling short in terms of surface quality and detail preservation. Therefore, we
mainly compare UNDC with Poisson. Generally, UNDC produces less surface noise, which
is especially obvious in the first row of Figure 5.15. The improvements are also observable
in the other two rows, but they are less obvious due to the zoom-out to reveal the entire
scenes. Since UNDC is trained on data with noise augmentation, it learns, to some extent,
to remove noise.

Also, UNDC only reconstructs what is given in the input point cloud. In contrast, Pois-
son creates an implicit field of the scene, which could potentially inpaint the missing regions.
However, such inpainting is not always desirable, and Poisson needs to trim the output mesh
to remove surfaces that are generated in empty regions using a post-process (SurfaceTrim-
mer) that depends on careful tuning of parameters. If the trimming density threshold is too
small, it may leave “bubble” artifacts as indicated by red arrows in Figure 5.15. If it is too
large, it may accidentally trim the objects, as indicated by purple arrows in Figure 5.15. At
the default setting shown, UNDC tends to produce more holes in the output, but avoids
creating bubble artifacts, see the last row of Figure 5.15.

While water-tightness can be beneficial as a prior, it can lead to poor reconstruction of
thin surfaces; this can be observed from the blue arrows in Figure 5.15. One thing worth
special attention is the bottom-most red arrow in the last row of Figure 5.15. The umbrella
surface is thinner than a voxel. However, Poisson forces inside-outside by creating a bubble
on top of the umbrella, so that the bottom of the bubble can form the surface of the
umbrella. This creates an odd boundary after trimming.

99

Figure 5.15: Qualitative comparison between ConvONet, Poisson, and UNDC on recon-
structing rooms in Matterport3D from raw scan data, where some walls and roofs are
removed for better visualization. Colored arrows bring attention to regions where Poisson
should be contrasted against UNDC. Red arrows: “bubble” artifacts caused by the water-
tightness prior to Poisson; purple arrows: objects or parts incorrectly trimmed; blue arrows:
poor reconstruction of thin surfaces. Green arrow in the bottom row points out an instance
of better preservation of surface details by Poisson (the strip patterns are not noise or re-
construction artifacts); the flip side of this, however, is surface noise, as seen over Poisson
reconstruction in the first row.

100

Figure 5.16: Qualitative comparison between Poisson and UNDC on mesh reconstruction
from point clouds with density or noise variations across the same shape, from its left to
its right, as shown. The input point clouds in the first three rows have decreasing point
density from left to right, while the inputs in the last three rows have increasing noise.
UNDC@643 and UNDC@1283 produce output grid sizes of 643 and 1283, respectively.

101

Number of Gaussian CD↓ (×105) F1↑ NC↑
input points noise levels Poisson UNDC Poisson UNDC Poisson UNDC

1,024 None 34.872 2.510 0.248 0.806 0.799 0.944
2,048 None 16.406 1.226 0.387 0.850 0.847 0.962
4,096 None 8.653 0.987 0.539 0.867 0.879 0.970
4,096 σ = 0.2 9.814 1.179 0.480 0.840 0.863 0.962
4,096 σ = 0.5 14.017 2.061 0.331 0.717 0.821 0.935

16,384 σ = 0.2 5.286 0.936 0.636 0.866 0.889 0.971
16,384 σ = 0.5 8.738 1.236 0.444 0.813 0.840 0.955
65,536 σ = 0.2 2.299 0.905 0.741 0.872 0.930 0.973
65,536 σ = 0.5 4.567 1.079 0.552 0.836 0.880 0.962

Table 5.7: Comparing reconstruction results of UNDC (output grid size at 643) and
Poisson on point cloud inputs from ABC test set, with varying point counts and noise
levels to test the robustness of our method.

Robustness to varying point density and noise We use synthetic data to study the
robustness of UNDC on point clouds with varying density and noise. We train our network
with point clouds whose point counts were randomly selected between 2,048 and 32,768,
where each point cloud is augmented with Gaussian noise whose σ is randomly sampled
from [0, 0.5]. We then evaluate the trained network on point clouds of varying density and
noise, and compare it to Poisson reconstruction with estimated point normals.

Some quantitative results are shown in Table 5.7, where UNDC evidently outperforms
Poisson. In Figure 5.16, we show visual results where the point density or noise varies within
each input point cloud. Note that UNDC at 1283 output resolution tends to produce worse
results than at 643 output resolution. This is because relatively, point sparsity and noise
level are both more significant at higher-resolution grids, due to the smaller cell sizes.

5.5 Conclusions

We introduce neural dual contouring, a new data-driven approach to mesh reconstruction
based on dual contouring. The volumetric version of our approach, NDC, takes the same
input as MC and NMC, and it can better preserve sharp features while using approximately
the same number of vertices and triangles as classical MC, which is 3-7 times reduction
compared to NMC. The surface version of our approach, UNDC, is sign agnostic; it is
therefore able to reconstruct open surfaces and thin structures from unsigned distance fields
or unoriented point clouds. Both NDC and UNDC are designed as local networks using
limited receptive fields, thus can generalize well to new datasets. Extensive experiments
demonstrate the superior performance of our approach on multiple datasets over state-of-
the-art methods, whether learned (e.g., NMC, SIREN, LIG, ConvONet) or traditional (e.g.,
MC33, Poisson, Ball-Pivoting).

102

Input 643 SDF 643 SDF 643 SDF 4, 096 points 4, 096 points
Method NDC UNDC UNDC UNDC UNDC
Post-processing No No Yes No Yes
Non-manifold-3 0.0 (0.000%) 125.3 (1.116%) 135.4 (1.206%) 139.4 (1.242%) 168.0 (1.496%)
Non-manifold-4 20.1 (0.183%) 31.2 (0.278%) 31.7 (0.282%) 28.8 (0.257%) 30.4 (0.271%)
Boundary-1 0.0 (0.000%) 56.7 (0.505%) 29.6 (0.264%) 116.4 (1.037%) 41.1 (0.366%)

Table 5.8: Statistics on non-manifold and boundary edges produced by NDC and UNDC.
The methods are tested on ABC test set with 643 output resolution. Non-manifold-3 denotes
non-manifold edges with 3 adjacent faces, and Non-manifold-4 denotes those with 4 adjacent
faces. Boundary-1 refers to boundary edges, defined as edges with only one adjacent face.

Figure 5.17: The edge artifacts and the cause. The quad faces are colored differently to show
that the artifacts are not caused by random quad splitting.

Limitations One limitation of our approach is that it can produce non-manifold meshes.
Specifically, since DC and its descendants produce only one vertex per grid cell, they may
create meshes with vertices and edges shared by multiple surface patches in cases where
MC would output multiple disconnected components within one cell; see the second column
of Figure 5.8 where the green arrows indicate non-manifold edges created by NDC and
UNDC. These cases happen fairly rarely (see statistics in Table 5.8) and are easily detected
and fixed by splitting vertices/edges or “tunnelling" through them, using the techniques
described in [177] or [213], for manifold dual contouring.

However, UNDC can also produce open surfaces (with edges connected to one face)
or non-manifold fins (where edges are shared by three faces). Creating open surfaces is
generally good, as it allows reconstruction of thin features and partial inputs (e.g., note
the thin sheets indicated by the blue arrows in the row of UNDC results in Figure 5.8
better approximate the ground truth). However, boundaries and fins may cause problems
for downstream tasks that assume manifoldness as a pre-condition. Hence, UNDC may not
be the best meshing solution for all applications.

Another limitation is that the output of NDC is not completely invariant to orientation.
Although NDC is empirically less sensitive to rotations than NMC, we still see that NDC
occasionally generates coherence artifacts on sharp edges as an object rotates. One example
is shown in Figure 5.17 (a). The artifact occurs when one or more vertices of the cube have

103

SDF values very close to 0. It cannot be easily avoided since it is due to the continuity of
neural networks. See the illustration in Figure 5.17 (b). When the SDF value of the vertex
gradually moves from positive (outside) to negative (inside), the input to the network (the
SDF values) changes smoothly, but the output needs to change in a discontinuous way in
order to produce the ground truth. Since most neural networks are continuous, the output
of the network will be continuous. Therefore the network will generate artifacts when such
transitions occur.

Future works Besides fixing the issues above, it would be interesting to incorporate
the NDC framework into an end-to-end system for recovering surfaces from neural repre-
sentations inferred from multiple images, possibly using Neural Radiance Fields [167]. Or,
UNDC could potentially be used with differentiable rendering to reconstruct one-sided sur-
faces from a sparse set of images acquired from cameras inside a scene. These and other
NDC extensions are promising topics for future work.

104

643 resolution CD↓ F1↑ NC↑ ECD↓ EF1↑ #V #T Inference % inaccurate normals (gt) % inaccurate normals (pred) % small angles
SDF grid input (×105) (×102) time > 80◦ > 30◦ > 5◦ > 80◦ > 30◦ > 5◦ < 10◦ < 20◦ < 30◦

NMC 4.365 0.878 0.976 0.340 0.766 42,767 85,544 1.148s 2.15 3.79 12.11 1.28 2.50 10.71 0.74 2.09 4.94
NMC-lite 4.356 0.878 0.975 0.338 0.767 21,933 43,877 1.135s 2.16 3.78 11.61 1.33 2.56 10.31 1.51 3.64 6.74
DC-est 4.673 0.827 0.958 3.810 0.167 5,459 10,969 0.421s 1.68 9.32 30.17 0.64 6.62 27.12 2.29 6.08 15.24
MC33 4.873 0.788 0.950 5.759 0.103 5,473 10,954 0.005s 1.05 13.48 31.50 0.40 9.72 27.03 1.95 4.09 6.53
NMC* 4.400 0.874 0.972 0.409 0.715 42,767 85,544 0.158s 2.01 4.39 22.03 1.17 2.98 20.68 0.57 1.81 4.63
NMC-lite* 4.386 0.875 0.973 0.416 0.725 21,933 43,877 0.153s 2.05 4.32 18.92 1.23 2.97 17.56 1.35 3.44 6.34
NDC 4.463 0.867 0.970 0.338 0.745 5,459 10,969 0.027s 2.45 4.66 16.20 1.48 3.52 15.03 0.33 0.76 4.16
UNDC 0.930 0.873 0.974 0.328 0.746 5,584 11,295 0.051s 1.65 3.71 15.75 1.52 3.69 15.61 0.44 0.93 4.41
UNDC (UDF) 0.960 0.868 0.971 0.379 0.735 5,692 11,420 0.053s 1.80 3.93 16.10 1.70 4.08 16.21 0.36 0.89 4.21

1283 resolution CD↓ F1↑ NC↑ ECD↓ EF1↑ #V #T Inference % inaccurate normals (gt) % inaccurate normals (pred) % small angles
SDF grid input (×105) (×102) time > 80◦ > 30◦ > 5◦ > 80◦ > 30◦ > 5◦ < 10◦ < 20◦ < 30◦

NMC 4.129 0.882 0.979 0.204 0.806 175,926 351,867 8.991s 2.10 2.98 8.25 1.26 1.82 6.97 0.72 1.84 4.17
NMC-lite 4.117 0.882 0.979 0.231 0.808 88,419 176,853 8.984s 2.12 2.97 7.76 1.28 1.84 6.53 1.46 3.35 5.99
DC-est 4.132 0.879 0.977 2.215 0.266 22,088 44,213 1.765s 1.40 5.10 17.11 0.34 2.85 14.54 1.62 4.36 13.10
MC33 4.144 0.870 0.972 4.247 0.193 22,048 44,107 0.030s 0.88 7.81 18.73 0.18 4.95 15.42 1.75 3.63 5.77
NMC* 4.116 0.882 0.978 0.257 0.779 175,926 351,867 1.126s 1.90 3.22 15.25 1.14 2.00 13.99 0.60 1.68 4.01
NMC-lite* 4.114 0.882 0.979 0.283 0.785 88,419 176,853 1.112s 1.91 3.15 12.60 1.18 1.97 11.35 1.37 3.26 5.77
NDC 4.131 0.881 0.978 0.214 0.802 22,088 44,213 0.207s 2.20 3.11 9.62 1.31 1.99 8.43 0.23 0.49 3.49
UNDC 0.789 0.890 0.983 0.149 0.813 22,578 45,411 0.410s 1.32 2.06 8.90 1.30 2.04 8.77 0.34 0.65 3.74
UNDC (UDF) 0.792 0.889 0.983 0.227 0.810 22,874 45,715 0.409s 1.36 2.11 8.93 1.31 2.09 8.88 0.23 0.55 3.51

Table 5.9: Quantitative comparison results on ABC test set with SDF and UDF grid input.

643 resolution CD↓ F1↑ NC↑ ECD↓ EF1↑ #V #T % inaccurate normals (gt) % inaccurate normals (pred) % small angles
SDF grid input (×105) (×102) > 80◦ > 30◦ > 5◦ > 80◦ > 30◦ > 5◦ < 10◦ < 20◦ < 30◦

NMC 2.434 0.895 0.974 0.284 0.735 40,952 81,911 1.58 3.95 17.57 1.34 3.40 16.92 0.96 2.78 6.59
NMC-lite 2.485 0.895 0.974 0.308 0.738 22,051 44,109 1.57 3.94 16.51 1.38 3.48 15.97 1.89 4.77 9.12
MC33 3.192 0.795 0.945 3.918 0.099 5,518 11,044 0.76 14.30 37.41 0.55 11.14 33.54 2.63 5.45 8.70
NMC* 2.777 0.890 0.969 0.391 0.662 40,952 81,911 1.47 4.92 31.21 1.21 4.23 30.53 0.75 2.37 6.12
NMC-lite* 2.760 0.890 0.969 0.404 0.674 22,051 44,109 1.52 4.82 27.10 1.28 4.21 26.42 1.68 4.47 8.49
NDC 2.481 0.877 0.966 0.390 0.695 5,473 11,027 1.88 5.39 23.59 1.57 5.04 23.14 0.35 1.12 5.87
UNDC 0.899 0.878 0.967 0.369 0.693 5,529 11,175 1.62 5.00 23.52 1.57 5.17 23.56 0.41 1.24 6.08
UNDC (UDF) 0.938 0.870 0.962 0.407 0.669 5,640 11,297 1.89 5.53 24.38 1.87 5.93 24.67 0.39 1.30 5.92

1283 resolution CD↓ F1↑ NC↑ ECD↓ EF1↑ #V #T % inaccurate normals (gt) % inaccurate normals (pred) % small angles
SDF grid input (×105) (×102) > 80◦ > 30◦ > 5◦ > 80◦ > 30◦ > 5◦ < 10◦ < 20◦ < 30◦

NMC 2.340 0.902 0.980 0.170 0.805 169,210 338,426 1.48 2.65 10.90 1.29 2.28 10.46 0.92 2.50 5.76
NMC-lite 2.398 0.902 0.980 0.163 0.810 89,260 178,527 1.48 2.63 9.98 1.32 2.30 9.59 1.83 4.46 8.26
MC33 2.421 0.890 0.972 2.657 0.197 22,324 44,656 0.48 7.47 21.65 0.27 5.46 19.08 2.43 5.04 7.92
NMC* 2.613 0.902 0.978 0.269 0.760 169,211 338,427 1.34 3.00 21.42 1.15 2.57 20.99 0.77 2.25 5.50
NMC-lite* 2.651 0.902 0.979 0.254 0.772 89,260 178,527 1.37 2.94 17.49 1.20 2.54 17.04 1.74 4.35 7.91
NDC 2.300 0.901 0.979 0.215 0.792 22,295 44,631 1.53 2.81 12.88 1.36 2.50 12.52 0.24 0.75 5.07
UNDC 0.757 0.904 0.981 0.189 0.795 22,478 45,043 1.31 2.50 12.71 1.29 2.48 12.66 0.29 0.85 5.28
UNDC (UDF) 0.748 0.903 0.980 0.222 0.785 22,784 45,395 1.35 2.63 13.23 1.30 2.61 13.19 0.28 0.90 5.08

Table 5.10: Quantitative comparison results on Thingi10K with SDF and UDF grid input.

1283 resolution CD↓ F1↑ NC↑ ECD↓ EF1↑ #V #T % inaccurate normals (gt) % inaccurate normals (pred) % small angles
SDF grid input (×105) (×102) > 80◦ > 30◦ > 5◦ > 80◦ > 30◦ > 5◦ < 10◦ < 20◦ < 30◦

NMC 0.376 0.991 0.989 0.041 0.645 83,023 166,034 0.18 1.86 25.45 0.13 1.52 25.15 1.37 4.28 10.11
NMC-lite 0.374 0.991 0.989 0.038 0.639 50,207 100,402 0.17 1.83 25.36 0.14 1.57 25.16 2.63 7.22 13.91
MC33 0.453 0.985 0.984 0.086 0.387 12,551 25,076 0.33 2.97 35.52 0.15 1.73 34.28 4.23 8.83 13.92
NMC* 0.385 0.990 0.983 0.146 0.552 83,024 166,038 0.25 2.45 44.67 0.16 2.02 44.58 1.18 3.78 9.49
NMC-lite* 0.381 0.991 0.984 0.119 0.567 50,207 100,404 0.22 2.32 38.51 0.16 2.00 38.33 2.63 7.25 13.60
NDC 0.397 0.989 0.985 0.044 0.530 12,538 25,100 0.21 2.33 38.56 0.15 1.92 38.38 0.11 1.18 8.81
UNDC 0.362 0.992 0.985 0.038 0.574 12,609 25,258 0.18 2.11 37.35 0.19 2.10 37.38 0.16 1.27 8.91
UNDC (UDF) 0.365 0.991 0.984 0.045 0.549 12,682 25,293 0.21 2.25 38.57 0.25 2.37 38.72 0.21 1.47 9.14

Table 5.11: Quantitative comparison results on FAUST with SDF and UDF grid input.

105

643 resolution CD↓ F1↑ NC↑ ECD↓ EF1↑ #V #T Inference % inaccurate normals (gt) % inaccurate normals (pred) % small angles
Binary voxel input (×105) (×102) time > 80◦ > 30◦ > 5◦ > 80◦ > 30◦ > 5◦ < 10◦ < 20◦ < 30◦

NMC 9.327 0.440 0.930 0.546 0.373 42,044 84,088 0.715s 6.24 9.84 28.57 4.56 7.88 26.89 0.08 0.55 2.23
NMC-lite 9.285 0.440 0.929 0.562 0.373 21,457 42,916 0.729s 6.32 9.95 27.99 4.68 8.09 26.38 0.14 1.43 4.38
MC33 26.862 0.085 0.921 11.342 0.018 5,826 11,656 0.005s 4.51 17.42 40.09 1.47 16.07 40.27 0.00 0.00 1.21
NMC* 9.452 0.422 0.927 0.698 0.346 42,045 84,089 0.156s 6.25 10.53 33.14 4.47 8.45 31.44 0.02 0.21 1.52
NMC-lite* 9.428 0.420 0.927 0.604 0.356 21,431 42,862 0.154s 6.35 10.46 31.08 4.58 8.43 29.38 0.11 1.09 4.13
NDC 9.387 0.428 0.930 0.567 0.360 5,345 10,726 0.055s 6.14 10.11 29.21 4.39 8.00 27.25 0.21 0.38 2.52
UNDC 9.139 0.428 0.931 0.564 0.359 5,365 10,772 0.055s 6.02 9.94 29.51 4.36 7.98 27.65 0.21 0.39 2.53

1283 resolution CD↓ F1↑ NC↑ ECD↓ EF1↑ #V #T Inference % inaccurate normals (gt) % inaccurate normals (pred) % small angles
Binary voxel input (×105) (×102) time > 80◦ > 30◦ > 5◦ > 80◦ > 30◦ > 5◦ < 10◦ < 20◦ < 30◦

NMC 5.447 0.663 0.959 0.410 0.692 174,257 348,519 5.405s 3.91 5.74 22.16 2.50 4.12 20.76 0.10 0.67 2.19
NMC-lite 5.444 0.663 0.958 0.417 0.693 87,419 174,844 5.449s 3.96 5.81 21.69 2.56 4.25 20.36 0.20 1.69 4.60
MC33 9.800 0.212 0.944 11.690 0.023 22,775 45,557 0.030s 2.71 12.52 36.74 1.01 11.78 37.10 0.00 0.00 0.96
NMC* 5.465 0.659 0.956 0.652 0.664 174,255 348,515 1.129s 3.90 6.30 27.20 2.44 4.64 25.88 0.02 0.27 1.51
NMC-lite* 5.460 0.658 0.957 0.398 0.685 87,369 174,743 1.125s 3.93 6.20 25.23 2.48 4.56 23.87 0.15 1.31 4.40
NDC 5.451 0.661 0.960 0.316 0.686 21,848 43,715 0.403s 3.85 5.69 21.01 2.40 3.97 19.42 0.13 0.25 2.55
UNDC 5.458 0.661 0.961 0.315 0.682 21,877 43,757 0.404s 3.80 5.63 21.31 2.37 3.93 19.73 0.14 0.26 2.54

Table 5.12: Quantitative comparison results on ABC test set with binary occpuancy grid
input.

643 resolution CD↓ F1↑ NC↑ ECD↓ EF1↑ #V #T % inaccurate normals (gt) % inaccurate normals (pred) % small angles
Binary voxel input (×105) (×102) > 80◦ > 30◦ > 5◦ > 80◦ > 30◦ > 5◦ < 10◦ < 20◦ < 30◦

NMC 6.081 0.491 0.922 0.573 0.342 40,431 80,862 5.42 11.57 41.64 4.63 10.39 40.70 0.15 0.87 3.10
NMC-lite 6.056 0.490 0.920 0.604 0.341 21,635 43,272 5.54 11.71 40.44 4.83 10.71 39.65 0.22 1.91 5.93
MC33 25.523 0.069 0.907 7.542 0.017 5,940 11,882 3.86 21.40 52.50 1.64 20.06 52.99 0.00 0.00 2.30
NMC* 6.256 0.471 0.916 0.772 0.306 40,382 80,764 5.49 13.03 46.36 4.53 11.69 45.36 0.03 0.34 2.13
NMC-lite* 6.226 0.471 0.917 0.625 0.321 21,577 43,154 5.58 12.79 44.13 4.64 11.53 43.18 0.17 1.46 5.51
NDC 6.185 0.477 0.921 0.681 0.322 5,373 10,808 5.29 12.03 42.19 4.44 10.80 41.00 0.19 0.49 3.78
UNDC 6.070 0.478 0.923 0.651 0.321 5,401 10,855 5.08 11.78 42.52 4.36 10.76 41.50 0.20 0.51 3.81

1283 resolution CD↓ F1↑ NC↑ ECD↓ EF1↑ #V #T % inaccurate normals (gt) % inaccurate normals (pred) % small angles
Binary voxel input (×105) (×102) > 80◦ > 30◦ > 5◦ > 80◦ > 30◦ > 5◦ < 10◦ < 20◦ < 30◦

NMC 3.162 0.726 0.957 0.404 0.645 168,218 336,440 2.95 6.08 32.64 2.53 5.37 32.07 0.19 1.06 3.23
NMC-lite 3.163 0.726 0.956 0.414 0.650 88,499 177,003 2.99 6.17 31.55 2.59 5.55 31.07 0.32 2.33 6.33
MC33 8.473 0.169 0.934 7.328 0.026 23,198 46,400 1.82 15.34 48.95 1.09 15.21 49.98 0.00 0.00 2.04
NMC* 3.184 0.721 0.951 0.654 0.604 168,118 336,240 2.95 7.25 38.76 2.46 6.45 38.22 0.04 0.44 2.28
NMC-lite* 3.197 0.721 0.953 0.435 0.638 88,411 176,826 2.97 6.98 36.21 2.49 6.23 35.65 0.24 1.81 6.04
NDC 3.192 0.724 0.959 0.427 0.643 22,109 44,246 2.85 5.94 30.72 2.39 5.12 29.90 0.14 0.37 3.88
UNDC 3.205 0.724 0.960 0.369 0.639 22,157 44,318 2.74 5.83 31.13 2.34 5.09 30.35 0.14 0.37 3.84

Table 5.13: Quantitative comparison results on Thingi10K with binary occpuancy grid in-
put.

1283 resolution CD↓ F1↑ NC↑ ECD↓ EF1↑ #V #T % inaccurate normals (gt) % inaccurate normals (pred) % small angles
Binary voxel input (×105) (×102) > 80◦ > 30◦ > 5◦ > 80◦ > 30◦ > 5◦ < 10◦ < 20◦ < 30◦

NMC 0.760 0.970 0.965 0.328 0.347 82,406 164,806 0.69 5.47 70.31 0.29 4.29 70.06 0.34 2.07 6.55
NMC-lite 0.754 0.970 0.964 0.296 0.334 49,699 99,393 0.70 5.79 69.04 0.32 4.79 68.87 0.48 4.09 11.54
MC33 6.928 0.064 0.905 0.455 0.085 14,175 28,348 0.52 25.51 95.40 0.10 22.46 95.46 0.00 0.00 5.23
NMC* 0.816 0.967 0.944 0.760 0.160 82,337 164,668 1.02 9.46 79.88 0.55 8.49 80.00 0.07 0.82 4.44
NMC-lite* 0.801 0.967 0.953 0.345 0.311 49,643 99,279 0.75 8.27 75.80 0.29 7.26 75.75 0.39 3.21 10.85
NDC 0.766 0.969 0.966 0.169 0.330 12,411 24,833 0.66 5.45 67.71 0.31 4.23 67.38 0.03 0.63 8.07
UNDC 0.760 0.969 0.966 0.177 0.353 12,467 24,930 0.59 5.30 68.22 0.33 4.39 68.01 0.05 0.62 8.16

Table 5.14: Quantitative comparison results on FAUST with binary occpuancy grid input.

106

point cloud CD↓ F1↑ NC↑ ECD↓ EF1↑ #V #T Inference
(4,096) (×105) (×102) time

Ball-pivoting (+n) 3.080 0.791 0.944 0.556 0.269 4,096 7,439 1.292s
Poisson (+n) 4.705 0.727 0.939 4.138 0.067 11,241 22,496 1.476s
SIREN (+n) 1.340 0.814 0.969 2.636 0.152 97,219 194,543 168.595s
LIG (P) (+n) 4.747 0.709 0.939 10.786 0.023 148,927 297,766 61.176s
LIG (+n) 3.413 0.721 0.947 11.868 0.022 149,860 299,166 66.866s
ConvONet (P) 38.926 0.207 0.844 1.522 0.057 127,247 254,627 4.598s
ConvONet 3plane 18.073 0.536 0.935 4.113 0.105 75,342 150,689 2.692s
ConvONet grid 8.844 0.488 0.939 9.701 0.036 74,171 148,337 2.404s
UNDC @ 643 0.893 0.873 0.974 0.289 0.757 5,578 11,261 0.194s

Table 5.15: Quantitative results on ABC test set with point cloud input. (+n) indicates
that the method additionally requires point normals as input. UNDC @ 643 means that the
output grid size of UNDC is 643.

point cloud CD↓ F1↑ NC↑ ECD↓ EF1↑ #V #T
(4,096) (×105) (×102)

Ball-pivoting (+n) 2.329 0.787 0.936 0.602 0.236 4,096 7,455
Poisson (+n) 12.799 0.744 0.938 3.439 0.052 11,498 23,010
SIREN (+n) 1.419 0.834 0.962 2.059 0.144 94,797 189,637
LIG (P) (+n) 4.453 0.691 0.929 8.471 0.019 146,554 292,847
LIG (+n) 5.991 0.748 0.943 8.266 0.021 145,269 290,354
ConvONet (P) 39.822 0.209 0.826 1.306 0.051 120,475 241,068
ConvONet 3plane 18.272 0.484 0.903 3.222 0.090 74,514 149,033
ConvONet grid 6.032 0.476 0.928 8.249 0.024 73,745 147,484
UNDC @ 643 0.927 0.873 0.965 0.400 0.686 5,543 11,159

Table 5.16: Quantitative results on Thingi10K with point cloud input. (+n) indicates that
the method additionally requires point normals as input. UNDC @ 643 means that the
output grid size of UNDC is 643.

point cloud CD↓ F1↑ NC↑ ECD↓ EF1↑ #V #T
(4,096) (×105) (×102)

Ball-pivoting (+n) 0.906 0.932 0.965 0.372 0.131 4,096 7,652
Poisson (+n) 0.724 0.966 0.975 0.467 0.246 11,330 22,646
SIREN (+n) 0.697 0.951 0.986 0.211 0.504 51,215 102,443
LIG (P) (+n) 1.449 0.876 0.964 1.307 0.107 79,337 158,605
LIG (+n) 2.533 0.871 0.962 1.772 0.077 80,845 161,226
ConvONet (P) 17.334 0.312 0.849 1.244 0.027 47,716 95,424
ConvONet 3plane 23.809 0.389 0.868 1.046 0.053 46,211 92,427
ConvONet grid 3.506 0.574 0.945 4.618 0.029 41,710 83,418
UNDC @ 643 0.532 0.970 0.965 0.345 0.206 3,146 6,308
UNDC @ 1283 0.413 0.985 0.978 0.095 0.437 12,681 25,202

point cloud CD↓ F1↑ NC↑ ECD↓ EF1↑ #V #T
(16,384) (×105) (×102)

Ball-pivoting (+n) 0.545 0.977 0.977 0.144 0.316 16,384 31,767
Poisson (+n) 0.397 0.987 0.987 0.118 0.528 45,325 90,630
SIREN (+n) 0.707 0.953 0.988 0.263 0.562 51,132 102,270
LIG (P) (+n) 1.140 0.902 0.969 1.170 0.160 78,821 157,622
LIG (+n) 2.215 0.895 0.966 1.792 0.120 80,399 160,445
ConvONet (P) 20.218 0.250 0.865 1.345 0.024 51,449 102,873
ConvONet 3plane 24.682 0.390 0.869 0.985 0.048 47,922 95,851
ConvONet grid 3.563 0.568 0.947 5.474 0.029 42,218 84,433
UNDC @ 1283 0.368 0.991 0.983 0.050 0.566 12,665 25,387
UNDC @ 2563 0.353 0.993 0.989 0.020 0.767 51,043 101,733

Table 5.17: Quantitative results on FAUST with point cloud input. (+n) indicates that the
method additionally requires point normals as input. UNDC @ 643 means that the output
grid size of UNDC is 643.

107

Chapter 6

MobileNeRF: Exploiting the
Polygon Rasterization Pipeline for
Efficient Neural Field Rendering
on Mobile Architectures

6.1 Introduction

Neural Radiance Fields (NeRF) [167] have become a popular representation for novel view
synthesis of 3D scenes. They represent a scene using a multilayer perceptron (MLP) that
evaluates a 5D implicit function estimating the density and radiance emanating from any
position in any direction, which can be used in a volumetric rendering framework to produce
novel images. NeRF representations optimized to minimize multi-view color consistency
losses for a set of posed photographs have demonstrated remarkable ability to reproduce
fine image details for novel views.

One of the main impediments to wide-spread adoption of NeRF is that it requires
specialized rendering algorithms that are poor match for commonly available hardware.
Traditional NeRF implementations use a volumetric rendering algorithm that evaluates a
large MLP at hundreds of sample positions along the ray for each pixel in order to estimate
and integrate density and radiance. This rendering process is far too slow for interactive
visualization.

Recent work has addressed this issue by “baking” NeRFs into a sparse 3D voxel grid [97,
288]. For example, Hedman et al. introduced Sparse Neural Radiance Grids (SNeRG) [97],
where each active voxel contains an opacity, diffuse color, and learned feature vector. Ren-
dering an image from SNeRG is split into two phases: the first uses ray marching to accu-
mulate the precomputed diffuse colors and feature vectors along each ray, and the second
uses a light-weight MLP operating on the accumulated feature vector to produce a view-
dependent residual that is added to the accumulated diffuse color. This precomputation
and deferred rendering approach increase the rendering speed of NeRF by three orders of

108

Figure 6.1: Teaser – We present a NeRF that can run on a variety of common devices at
interactive frame rates.

magnitude. However, it still relies upon ray marching through a sparse voxel grid to pro-
duce the features for each pixel, and thus it cannot fully utilize the parallelism available
in commodity graphics processing units (GPUs). In addition, SNeRG requires a significant
amount of GPU memory to store the volumetric textures, which prohibits it from running
on common mobile devices.

In this paper, we introduce MobileNeRF, a NeRF that can run on a variety of common
mobile devices at interactive frame rates. The NeRF is represented by a set of textured
polygons, where the polygons roughly follow the surface of the scene, and the texture at-
las stores opacity and feature vectors. To render an image, we utilize the classic polygon
rasterization pipeline with Z-buffering to produce a feature vector for each pixel and pass
it to a lightweight MLP running in a GLSL fragment shader to produce the output color.
This rendering pipeline does not sample rays or sort polygons in depth order, and thus can
model only binary opacities. However, it takes full advantage of the parallelism provided by
z-buffers and fragment shaders in modern graphics hardware, and thus is 10× faster than
SNeRG with the same output quality on standard test scenes. Moreover, it requires only
a standard polygon rendering pipeline, which is implemented and accelerated on virtually
every computing platform, and thus it runs on mobile phones and other devices previously
unable to support NeRF visualization at interactive rates.

Contributions In summary, MobileNeRF:

109

• Is 10× faster than the state-of-the-art (SNeRG), with the same output quality;

• Consumes less memory by storing surface textures instead of volumetric textures,
enabling our method to run on integrated GPUs with limited memory and power;

• Runs on a web browser and is compatible with all devices we have tested, as our viewer
is an HTML webpage;

• Allows real-time manipulation of the reconstructed objects/scenes, as they are simple
triangle meshes.

6.2 Related work

Our work lies within the field of view-synthesis, which encompasses many areas of research:
light fields, image-based rendering and neural rendering. To narrow the scope, we focus on
methods that render output views in real-time.

Light fields [132] and Lumigraphs [83] store a dense grid of images, enabling real-time
rendering of high quality scenes, albeit with limited camera freedom and significant storage
overhead. Storage can be reduced by interpolating intermediate images with optical flow [16],
representing the light field as a neural network [3], or by reconstructing a Multi-Plane
Image (MPI) representation of the scene [194, 303, 166, 66, 262]. Multi-sphere images enable
larger fields of view [22, 4], but these representations still only support limited output camera
motion

Other approaches leverage explicit 3D geometry to enable more camera freedom. While
early methods applied view-dependent texturing to a 3D mesh [55, 23, 53], later meth-
ods incorporated convolutional neural networks as a post-processing step to improve qual-
ity [160, 96, 238]. Alternatively, the input geometry can be simplified into a collection of tex-
tured planes with alpha [144]. Point-based representations further increase quality by jointly
refining the scene geometry while training the post-processing network [127, 208, 125]. How-
ever, as this convolutional post-processing runs independently per output frame it often
results in a lack of 3D consistency. Furthermore, unlike our work, they require powerful
desktop GPUs and have not been demonstrated to run on a mobile device. Finally, un-
like the vast majority of the methods above, our method does not need reconstructed 3D
geometry as input.

It is also possible to extract explicit triangle meshes via differentiable inverse-rendering
[71, 173, 46]. DefTet [71] differentiably renders a tetrahedral grid with occupancy and color
at each vertex, and then compositing the interpolated values at all intersected faces along a
ray. NVDiffRec [173] combines differentiable marching tetrahedra [222] with differentiable
rasterization to perform full inverse rendering and extract triangle meshes, materials, and
lighting from images. This representation enables elaborate editing and scene relighting.
However, it incurs a significant loss in view-synthesis quality. Furthermore, while real-time

110

Figure 6.2: Overview (rendering) – We represent the scene as a triangle mesh textured
by deep features. We first rasterize the mesh to a deferred rendering buffer. For each visible
fragment, we execute a neural deferred shader that converts the feature and view direction
to the corresponding output pixel color.

rendering is possible with simple lighting, global illumination (GI) is computationally in-
feasible on mobile hardware. In contrast, our method simply caches the outgoing radiance,
which does not need expensive compute to model GI effects, and also results in higher
view-synthesis quality.

NeRF [167] represents the scene as a continuous field of opacity and view-dependent
color, and produces images with volume rendering. This representation is 3D consistent
and reaches high quality results [247, 11]. However, rendering a NeRF involves evaluating
a large neural network at multiple 3D locations per pixel, preventing real-time rendering.

Recent works have improved the training speed of NeRF. For example, by modeling
the opacity and color of entire ray segments instead of just points [145] or by subdividing
the scene and modeling each sub-region with a smaller neural network [199]. Recently,
significant speed-ups have been achieved by decoding features fetched from a 3D embedding
with a small neural network. This embedding can either be a dense voxel grid [230, 114],
a sparse voxel grid [212], a low-rank decomposition of a voxel grid [29], a point-based
representation [277], or a multi-resolution hash map [172]. These 3D embeddings can also
be used without a trained decoder, for example by directly storing diffuse colors [154] or
by encoding view-dependent colors as spherical harmonics [212]. While these approaches
drastically speed up training, they still require a large consumer GPU for rendering.

Rendering performance can further be increased by post-processing a trained NeRF. For
example, by reducing the network queries per pixel with learned sampling [175], by eval-
uating the network for larger ray segments [266], or by subdividing the scene into smaller
networks [200, 270, 199]. Alternatively, pre-computation can speed up rendering, by stor-
ing both scene opacity and a latent representation for view-dependent colors in a grid.
FastNeRF [75] uses a dense voxel grid and represents view-dependence with a global spher-
ical basis function. PlenOctrees [288] uses an octree representation, where each leaf node
stores both opacity and spherical harmonics for colors. SNeRG [97] uses a sparse grid rep-

111

Figure 6.3: Overview (train) – We initialize the mesh as a regular grid, and use MLPs
to represent features and opacity for any point on the mesh. For each ray, we compute its
intersection points on the mesh, and alpha-composite the colors of those points to obtain
the output color. In a later training stage, we enforce binary opacity, and perform super-
sampling on features for anti-aliasing.

resentation, and evaluates view-dependence as a post-process with a small neural network.
Among these real-time methods, only SNeRG has been shown to work on lower-powered
devices without access to CUDA. As our method directly targets rendering on low-powered
hardware, we primarily compare with SNeRG in our experiments.

6.3 Method

Given a collection of (calibrated) images, we seek to optimize a representation for efficient
novel-view synthesis. Our representation consists of a polygonal mesh (Figure 6.2a) whose
texture maps (Figure 6.2b) store features and opacity. At rendering time, given a camera
pose, we adopt a two-stage deferred rendering process:

• Rendering Stage 1 – we rasterize the mesh to screen space and construct a feature
image (Figure 6.2c), i.e. we create a deferred rendering buffer in GPU memory;

• Rendering Stage 2 – we convert these features into a color image via a (neural)
deferred renderer running in a fragment shader, i.e. a small MLP, which receives a
feature vector and view direction and outputs a pixel color (Figure 6.2d).

Our representation is built in three training stages, gradually moving from a classical NeRF-
like continuous representation towards a discrete one:

• Training Stage 1 (Section 6.3.1) – We train a NeRF-like model with continuous
opacity, where volume rendering quadrature points are derived from the polygonal
mesh;

• Training Stage 2 (Section 6.3.2) – We binarize the opacities, as while classi-
cal rasterization can easily discard fragments, they cannot elegantly deal with semi-
transparent fragments.

112

• Training Stage 3 (Section 6.3.3) – We extract a sparse polygonal mesh, bake
opacities and features into texture maps, and store the weights of the neural deferred
shader.

The mesh is stored as an OBJ file, the texture maps in PNGs, and the deferred shader
weights in a (small) JSON file. As we employ the standard GPU rasterization pipeline, our
real-time renderer is simply an HTML webpage.

As representing continuous signals with discrete representations can introduce aliasing,
we also detail a simple, yet computationally efficient, anti-aliasing solution based on super-
sampling (Section 6.3.4).

6.3.1 Continuous training (Training Stage 1)

As Figure 6.3 shows, our training setup consists of a polygonal mesh M=(T , V) and three
MLPs. The mesh topology T is fixed, but the vertex locations V and MLPs are optimized,
similarly to NeRF, in an auto-decoding fashion by minimizing the mean squared error
between predicted colors and ground truth colors of the pixels in the training images:

LC = Er∥C(r) − Cgt(r)∥2
2. (6.1)

where the predicted color C(.) is obtained by alpha-compositing the radiance ck along a
ray r(t)=o + td, at the (depth sorted) quadrature points K={tk}K

k=1:

C(r) =
K∑

k=1
Tkαkck, Tk =

k−1∏
l=1

(1 − αl) (6.2)

where opacity αk and the view-dependent radiance ck are given by evaluating the MLPs at
position pk=r(tk):

αk = A(pk; θA) A : R3 → [0, 1] (6.3)

fk = F(pk; θF) F : R3 → [0, 1]8 (6.4)

ck = H(fk, d; θH) H : [0, 1]8 × [−1, 1]3 → [0, 1]3 (6.5)

The small network H is our deferred neural shader, which outputs the color of each fragment
given the fragment feature and viewing direction. Finally, note that (6.2) does not perform
compositing with volumetric density [167], but rather with opacity [3, Eq.8]. For real-world
scenes, we further incorporate the distortion loss Ldist introduced by [11, Eq. 15] to suppress
floaters and background collapse.

Polygonal mesh Without loss of generality, we describe the polygonal mesh used in
Synthetic 360◦ scenes, and provide the configurations for Forward-Facing and Unbounded
360◦ scenes in Section 6.3.7. 2D illustrations can be found in Figure 6.4. We first define

113

a regular grid G of size P×P×P in the unit cube centered at the origin; see Figure 6.4a.
We instantiate V by creating one vertex per voxel, and T by creating one quadrangle (two
triangles) per grid edge connecting the vertices of the four adjacent voxels, akin to Dual
Contouring [110, 35]. We locally parameterize vertex locations with respect to the voxel
centers (and sizes), resulting in V∈[−.5, +.5]P ×P ×P ×3 free variables. During optimization,
we initialize the vertex locations to V=0, which corresponds to a regular Euclidean lattice,
and we regularize them to prevent vertices from exiting their voxels, and to promote their
return to their neutral position whenever the optimization problem is under-constrained:

LV =
∑
v∈V

(103 I(v) + 10−2) · ||v||1, (6.6)

where the indicator function I(v)≡1 whenever v is outside its corresponding voxel.

Quadrature As evaluating the MLPs of our representation is computationally expensive,
we rely on an acceleration grid to limit the cardinality |K| of quadrature points. First of all,
quadrature points are only generated for the set of voxels that intersect the ray; see Fig-
ure 6.5a: Then, like InstantNGP [172], we employ an acceleration grid G to prune voxels that
are unlikely to contain geometry; see Figure 6.5b. Finally, we compute intersections between
the ray and the faces of M that are incident to the voxel’s vertex to obtain the final set of
quadrature points; see Figure 6.5c. We use the barycentric interpolation to back-propagate
the gradients from the intersection point to the three vertices in the intersected triangle.
For further technical details on the computation of intersections, we refer the reader to
Section 6.3.6. In summary, for each input ray r:

B̃ = intersect(r, G) (6.7)

B = {b ∈ B̃ | G[b] > τG} (6.8)

K = intersect(r, {t ∈ T | t ∩ B}) (6.9)

where (a∩b)=true if a intersects b, and the acceleration grid is supervised so to upper-bound
the alpha-compositing visibility Tkαk across viewpoints during training.

Lbnd
G =

∑
k

max(��∇ [Tkαk] − G[pk], 0) (6.10)

where ��∇ [.] is the stop-gradient operator that prevents the acceleration grid from (negatively)
affecting the image reconstruction quality. This loss performs a stochastic upper-bound,
as we initialize G[∗]=0, and G[pk] receives gradients whenever Tkαk>G[pk]. Similarly to
Plenoxels [212], we additionally regularize the content of the grid by promoting its pointwise

114

sparsity (i.e. lasso), and its spatial smoothness:

Lsparse
G = ∥G∥1

1 Lsmooth
G = ∥∇G∥2

2 (6.11)

6.3.2 Binarized training (Training Stage 2)

Rendering pipelines implemented in typical hardware do not natively support semi-transparent
meshes. Rendering semi-transparent meshes requires cumbersome (per-frame) sorting so to
execute rendering in back-to-front order to guarantee correct alpha-compositing. We over-
come this issue by converting the smooth opacity αk∈[0, 1] from (6.3) to a discrete/categorical
opacity α̂k∈{0, 1}. To optimize for discrete opacities via photometric supervision we employ
a straight-through estimator [13]:

α̂k = αk + ��∇ [1(αk > 0.5) − αk] (6.12)

Please note that the gradients are transparently passed through the discretization operation
(i.e. ∇α̂ ≡ ∇α), regardless of the values of αk and the resulting α̂k∈{0, 1}. To stabilize
training, we then co-train the continuous and discrete models:

Lbin
C = Er∥Ĉ(r) − Cgt(r)∥2

2 (6.13)

Lstage2
C = 1

2Lbin
C + 1

2LC (6.14)

where Ĉ(r) is the output radiance corresponding to the discrete opacity model α̂:

Ĉ(r) =
K∑

k=1
T̂kα̂kck, T̂k =

k−1∏
l=1

(1 − α̂l) (6.15)

Once (6.14) has converged, we will apply a fine-tuning step to the weights in F and H by
minimizing Lbin

C , while fixing the weights of others.

6.3.3 Discretization (Training Stage 3)

After binarization and fine-tuning, we convert the representation into an explicit polygonal
mesh (in OBJ format). We only store quads if they are at least partially visible in the training
camera poses (i.e. non-visible quads are discarded). We then create a texture image whose
size is proportional to the number of visible quads, and for each quad we allocate a K×K

patch in the texture, similarly to Disney’s Ptex [24]. We use K=17 in our experiments, so
that the quad has a 16×16 texture with half-a-pixel boundary padding. We then iterate
over the pixels of the texture, convert the pixel coordinate to 3D coordinates, and bake the
values of the discrete opacity (i.e. (6.3) and (6.12)) and features (i.e. (6.4)) into the texture
map. We quantize the [0, 1] ranges to 8-bit integers, and store the texture into (losslessly
compressed) PNG images. Our experiments show that quantizing the [0, 1] range with 8-bit

115

Figure 6.4: Configurations of polygonal meshes – The meshes employed for the dif-
ferent types of scenes. We sketch the distribution of camera poses in training views.

Figure 6.5: Quadrature points – are obtained by (a) identifying cells that intersect the
ray; (b) pruning cells that do not contain geometry; and, (c) computing explicit intersections
with the mesh.

precision, which is not accounted for during back-propagation, does not significantly affect
rendering quality.

6.3.4 Anti-aliasing

In classic rasterization pipelines, aliasing is an issue that ought to be considered to ob-
tain high-quality rendering. While classical NeRF hallucinates smooth edges via semi-
transparent volumes, as previously discussed, semi-transparency would require per-frame
polygon sorting. We overcome this issue by employing anti-aliasing by super-sampling.
While we could simply execute (6.5) four times/pixel and average the resulting color, the
execution of the deferred neural shader H is the computational bottleneck of our technique.
We can overcome this issue by simply averaging the features, that is, averaging the input of
the deferred neural shader, rather than averaging its output. We first rasterize features (at

116

2× resolution):

F(r) =
∑

k

Tkαkfk, (6.16)

and then average sub-pixel features to produce the anti-aliased representation we feed to
our neural deferred shader:

C(r) = H (Erδ∼r[F(rδ)], Erδ∼r[dδ]) (6.17)

where Erδ∼r computes the average between the sub-pixels (i.e. four in our implementation),
and dδ is the direction of ray rδ. Note how with this change we only query H once per
output pixel. Finally, this process is analogously applied to (6.15) for discrete occupancies
α̂. These changes for anti-aliasing are applied in training stage 2 (6.14).

6.3.5 Rendering

The result of the optimization process is a textured polygonal mesh (where texture maps
store features rather than colors) and a small MLP (which converts view direction and
features to colors). Rendering this representation is done in two passes using a deferred
rendering pipeline:

1. we rasterize all faces of the textured mesh with a z-buffer to produce a 2M×2N feature
image with 12 channels per pixel, comprising 8 channels of learned features, a binary
opacity, and a 3D view direction;

2. we synthesize an M × N output RGB image by rendering a textured rectangle that
uses the feature image as its texture, with linear filtering to average the features
for antialiasing. We apply the small MLP for pixels with non-zero alphas to convert
features into RGB colors. The small MLP is implemented as a GLSL fragment shader.

These rendering steps are implemented within the classic rasterization pipeline. Since z-
buffering with binary transparency is order-independent, polygons do not need to be sorted
into depth-order for each new view, and thus can be loaded into a buffer in the GPU once at
the start of execution. Since the MLP for converting features to colors is very small, it can
be implemented in a GLSL fragment shader [97], which is run in parallel for all pixels. These
classical rendering steps are highly-optimized on GPUs, and thus our rendering system can
run at interactive frame rates on a wide variety of devices; see Table 6.2. It is also easy
to implement, since it requires only standard polygon rendering with a fragment shader.
Our interactive viewer is an HTML webpage with Javascript, rendered by WebGL via the
threejs library.

117

6.3.6 Quadrature details

The regular-grid mesh M provides an efficient way for computing intersections between a
ray and the mesh of size P × P × P in O(P) complexity, as shown in Figure 6.5.

First, we compute the set of voxels that are intersected by the ray. This involves solv-
ing 3P ray-plane intersections and using those intersection points to obtain at most 3P

intersected voxels. This step is shown in Figure 6.5a and Eq. 6.7.
Then, we use the acceleration grid G ∈ RP ×P ×P to prune voxels that are unlikely to

contain geometry, with respect to a threshold τG = 0.1. This step is shown in Figure 6.5b
and Eq. 6.8.

Finally, we compute intersections between the ray and the faces of M that are incident
to the voxel’s vertex to obtain the final set of quadrature points. This step is shown in
Figure 6.5c and Eq. 6.9.

During the first quarter of the training iterations, G may not be accurate, therefore we
will keep all 3P intersected voxels regardless of τG , and keep 3P intersection points (Recall
that if the mesh grid is a regular grid, there are at most 3P intersections). Then in the next
quarter, we will use G to remove empty voxels and keep at most 3P/2 non-empty voxels
and 3P/2 intersection points that are closest to the camera. In the rest of the training, we
will keep 3P/4. We also double the training batch size each time we halve the number of
intersections.

For the concentric boxes in unbounded 360◦ scenes, we will compute their intersections
and keep all of them.

6.3.7 Initial meshes

In this section we detail the polygonal meshes used for synthetic 360◦, forward-facing, and
unbounded 360◦ scenes, see Fig. 6.4 for 2D illustrations.

We will call the coordinate system of a regular mesh grid in a unit cube centered at the
origin as the normalized coordinates, and we can apply transformations to obtain the grids
in the world coordinates for different types of scenes. In the following, we will denote points
in the normalized coordinates as p ∈ [−0.5, 0.5] and points in the world coordinates as p′.

For synthetic 360◦ scenes, we apply scaling to the grid to put the object inside the grid.

p′ = wp, (6.18)

where w = 2.4 or 3, depending on the size of the object. We use a grid size of P = 128.

118

In forward-facing scenes, we apply transformation to concentrate more voxels close to
the camera, as shown in Fig. 6.4 (b).

p′
z = exp(w(pz + 0.5)),

p′
x = upxp′

z,

p′
y = vpyp′

z,

(6.19)

where w is set to a value so that p′
z = 25 when pz = 0.5; u = v = 1.75. We use a grid size

of P = 128.
In unbounded 360◦ scenes, we assume the cameras are inside the unit cube in the

normalized coordinates, therefore we do not apply transformations. However, to model the
surrounding environments, we add a set of L + 1 concentric boxes around the regular grid.
The boxes have fixed positions and geometry, and their distances to the center are given by

di = (exp(wi

L
) + w − 1)/2w, (6.20)

where i ranges from 0 to L. w is set to a value so that dL = 8, therefore di ∈ [0.5, 8]. We
use a grid size of P = 128, and L = 64.

6.3.8 Network and Training details

Training Our training stages are formalized as follows. In the first training stage, we
optimize

arg min
V,θA,θF ,θH

LC + wdLdist + Lv (6.21)

and

arg min
G

Lbnd
G + wg1Lsparse

G + wg2Lsmooth
G , (6.22)

where wg1 = wg2 = 10−5. wd is set to 0.0 for synthetic 360◦ scenes, 0.01 for forward-facing
scenes, and 0.001 for unbounded 360◦ scenes. In the second training stage, we optimize

arg min
V,θA,θF ,θH

Lstage2
C + wdLdist + Lv (6.23)

and Eq. 6.22. When the loss converges, we fix the weights of V, θA, and G and optimize

arg min
θF ,θH

Lbin
C . (6.24)

119

Figure 6.6: Qualitative Results – Comparisons to the state-of-the-art and ablation stud-
ies. With a solid line we denote zoom-ins of the rendered (800×800) image, while with a
dashed line we move the camera to zoom-in onto the same detail.

Network architectures We adopt the MLP designed in NeRF as the network for both
A and F . We increase the hidden layer sizes from 256 to 384, since A and F are not used
during inference, so we can afford more time on training. The small MLP H is the same as
the small MLP used in SNeRG, with two hidden layers, each consisting 16 neurons.

Texture images Since the features to be stored are 8-dimensional, we use two PNG
images to store them. Each PNG image has 4 channels, therefore two PNG images have a
total of 8 channels to store 8-d features. To avoid having an extra image to store the binary
alpha (opacity) channel, we squeeze the alpha channel into the first feature channel, so that
the alpha is one when the first feature channel is non-zero, and zero when the channel is
zero. Since phones have a hardware constraint that the texture size must be a power of 2
and at most 4096×4096, we split the large texture images into multiple 4096×4096 texture
images.

6.4 Results and evaluation

We run a series of experiments to test how well MobileNeRF performs on a wide variety of
scenes and devices. We test on three datasets: the 8 synthetic 360◦ scenes from NeRF [167],
the 8 forward-facing scenes from LLFF [166], and 5 unbounded 360◦ outdoor scenes from
Mip-NeRF 360 [11]. We compare with SNeRG [97], since, to our knowledge, it is the
only NeRF model that can run in real-time on common devices. We also include extensive
ablation studies to investigate the impact of different design choices.

The online demo is available at https://mobile-nerf.github.io, where all the results can
be viewed on a web browser. The models in our online demo are the same as the ones used
in our paper. The rendered images of our method are nearly identical whether they are
rendered in Python (for computing quantitative metrics) or web browsers, see Figure 6.7.

120

https://mobile-nerf.github.io

Figure 6.7: Comparison between images rendered in Python and in a web browser. Image pixel value
range is 0-255. Zoom in for details.

If one overlays the difference image and the rendered image, one can find that the few very
different pixels are all on the boundary of a part, which indicates that they are likely caused
by precision errors in rasterization.

For Surface Pro 6, Gaming laptop, and Desktop, we disable frame-rate limiting from
vertical synchronization by starting the Chrome browser with the following arguments:

--disable-frame-rate-limit

--disable-gpu-vsync

However, for phones and Chromebook, we did not find a way to easily disable vertical
synchronization, therefore the FPS is capped at 60.

6.4.1 Comparisons

To show the superior performance and compatibility of our method, we test our method
and SNeRG on a variety of devices, as shown in Table 6.1. We report the rendering speed
in Table 6.2. The rendering resolution is the same as the training images: 800×800 for
synthetic, 1008×756 for forward-facing, and 1256×828 for unbounded. We test all methods
on a chrome browser and rotate/pan the camera in a full circle to render 360 frames.
Note that SNeRG is unable to represent unbounded 360◦ scenes due to its regular grid
representation, and it does not run on phone or tablet due to compatibility or out-of-
memory issues. We also report the GPU memory consumption and storage cost in Table 6.3.
MobileNeRF requires 5x less GPU memory than SNeRG.

Rendering quality We report the rendering quality in Table 6.4, while comparing with
other methods using the common PSNR, SSIM [257], and LPIPS [297] metrics. Our method
has roughly the same image quality as SNeRG, and better than NeRF. Visual results are
shown in Figure 6.6 (a-c). Our method achieves image quality similar to SNeRG when the

121

Device Type OS GPU Power
iPhone XS Phone iOS 15 Integrated GPU 6W
Pixel 3 Phone Android 12 Integrated GPU 9W
Surface Pro 6 Tablet Windows 10 Integrated GPU 15W
Chromebook Laptop Chrome OS Integrated GPU 15W
Gaming laptop Laptop Windows 11 NVIDIA RTX 2070 115W
Desktop PC Ubuntu 16.04 NVIDIA RTX 2080 Ti 250W

Table 6.1: Hardware specs – of the devices used in our rendering experiments. The power
is the max GPU power for discrete NVIDIA cards, and the combined max CPU and GPU
power for integrated GPUs.

Dataset Synthetic 360◦ Forward-facing Unbounded 360◦

Method Ours SNeRG Ours SNeRG Ours
iPhone XS 55.89 0.0 8

8 27.19 2
8 0.0 8

8 22.20 4
5

Pixel 3 37.14 0.0 8
8 12.40 0.0 8

8 9.24
Surface Pro 6 77.40 Unsupported 21.51 Unsupported 19.44
Chromebook 53.67 22.62 2

8 19.44 7.85 3
8 15.28

Gaming laptop 178.26 8.30 1
8 57.72 3.63 55.32

Gaming laptop 606.73 43.87 1
8 250.17 26.01 192.59

Desktop 744.91 207.26 349.34 50.71 279.70

Table 6.2: Rendering speed – on various devices in frames per second (FPS). The devices
are on battery, except for the gaming laptop and the desktop which are plugged in, indicated
with a . The mobile devices (first four rows) have almost identical rendering speed when
plugged in. With the notation M

N we indicate that M out of N testing scenes failed to run
due to out-of-memory errors.

Dataset Synthetic 360◦ Forward-facing Unbounded 360◦

Method Ours SNeRG Ours SNeRG Ours
GPU memory 538.38 2707.25 759.25 4312.13 1162.20
Disk storage 125.75 86.75 201.50 337.25 344.60

Table 6.3: Resources – memory and disk storage (MB).

camera is at an appropriate distance. When the camera is zoomed in, SNeRG tends to
render over-smoothed images.

Polygon count Table 6.5 shows the average number of vertices and triangles produced
by our method, and the percentage compared to all available vertices/triangles in the initial
mesh. As we only retain visible triangles, most vertices/triangles are removed in the final
mesh.

Shading mesh In Figure 6.2a and Figure 6.8, we show the extracted triangle meshes
without the textures. Most triangle faces do not align with the actual object surface. This is

122

Synthetic 360◦ Forward-facing Unbounded 360◦

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
NeRF 31.00 0.947 0.081 26.50 0.811 0.250 - - -
JAXNeRF 31.65 0.952 0.051 26.92 0.831 0.173 21.46 0.458 0.515
NeRF++ - - - - - - 22.76 0.548 0.427
SNeRG 30.38 0.950 0.050 25.63 0.818 0.183 - - -
Ours 30.90 0.947 0.062 25.91 0.825 0.183 21.95 0.470 0.470

Table 6.4: Quantitative Analysis – For NeRF [167] and NeRF++ [295], we dash entries
where the original papers did not report quantitative performance. For SNeRG, while one
could extend the method to include the unbounded design from [11], implementing this is
far from trivial. Our method can be easily adapted to work across all modalities.

Synthetic 360◦ Forward-facing Unbounded 360◦

V T V T V T
Number 494,289 224,341 830,076 338,535 1,436,033 608,785
Percentage 1.964% 1.783% 3.298% 2.690% 4.891% 4.147%

Table 6.5: Polygon count – Average number of vertices and triangles produced, and their
percentage compared to all available vertices/triangles in the initial mesh.

perhaps due to the ambiguity that good rendering quality can be achieved despite how the
triangles are aligned. For example, the results of our method after Stage 1 in Table 6.6 is
similar to other methods in Table 6.4. Therefore, better regularization losses or training ob-
jectives need to be devised if one wishes to have better surface quality. However, optimizing
vertices does improve the rendering quality, as shown in Figure 6.6h.

Per-Scene metrics We provide per-scene breakdown for the quality metrics at the end
of this chapter, in Table 6.8 6.9 6.10 6.12 6.13 6.14 6.16 6.17 6.18. We provide per-scene
breakdown for rendering speed and storage cost in Table 6.11 6.15 6.19, where OOM (out-
of-memory) indicates the device cannot run a testing scene due to GPU memory issues, and
ICP (incompatible) indicates the device cannot run the method due to compatibility issues.
The GPU memory and disk storage were tested on the Desktop.

6.4.2 Ablation studies

In Table 6.6, we show the rendering quality of our method at each stage, and report our
ablation studies. The rendering quality gradually drops after each stage, because each stage
adds more constraints to the model. In Stage 1, the performance drops significantly if we use
a fixed regular grid mesh instead of having optimizable mesh vertices, or if we forgo view-
dependent effects by directly predicting the color and alpha of each point. The performance
drops slightly if the grid is smaller (P=64 vs. 128). If we remove the acceleration grid, we
are not able to quadruple the batch size during training; the performance drops if we train
this model the same number of iterations as our method. Note that the PSNR of this model

123

Synthetic 360◦ Forward-facing
PSNR↑ SSIM↑ PSNR↑ SSIM↑

Stage 1, our method 32.13 0.955 26.57 0.839
Stage 1, fixed mesh grid 29.87 0.938 25.43 0.797
Stage 1, no view-dependent MLP 29.91 0.935 25.91 0.824
Stage 1, smaller grid P=128 → 64 31.58 0.952 26.39 0.831
Stage 1, no acceleration grid 31.77 0.953 26.61 0.835
Stage 2, our method 31.01 0.948 26.32 0.833
Stage 2, no fine-tuning 30.80 0.946 26.25 0.832
Stage 2, only pseudo-gradients 29.70 0.935 26.01 0.820
Stage 2, binary loss 30.89 0.947 26.32 0.832
Stage 3, our method 30.90 0.947 25.91 0.825
Stage 3, larger texture K=17 → 33 30.99 0.948 26.14 0.830
Stage 3, smaller texture K=17 → 9 30.49 0.945 24.85 0.796
Stage 3, no supersampling 29.26 0.937 24.88 0.799

Table 6.6: Ablation – rendering quality.

Speed in FPS Space in MB
Synthetic 360◦ scenes Pixel 3 Surface Gaming GPU Disk

Pro 6 laptop memory storage
our method 37.14 77.40 606.73 538.38 125.75
Larger texture K = 33 32.48 2

8 59.15 589.20 1290.88 283.50
Smaller texture K = 9 37.74 94.62 617.74 336.63 67.00
No supersampling 51.81 113.41 649.86 440.25 125.75
No view-dependent MLP 52.16 96.76 638.30 538.38 125.75

Forward-facing scenes Pixel 3 Surface Gaming GPU Disk
Pro 6 laptop memory storage

our method 12.40 21.51 250.17 759.25 201.50
Larger texture K = 33 12.88 3

8 18.79 241.52 2024.13 462.75
Smaller texture K = 9 12.70 23.61 257.64 394.13 105.75
No supersampling 16.97 42.11 413.02 645.00 201.50
No view-dependent MLP 23.72 28.06 385.65 759.25 201.50

Table 6.7: Ablation – rendering speed/memory.

is higher on forward-facing scenes. This is because the acceleration grid will remove cells
that are not visible in the training images, thus cannot “inpaint” the objects and may leave
holes. In Stage 2, if we do not perform the fine-tuning step that only optimizes F and H
and fix the weights of others, the performance drops. If we only use the binary opacity
with pseudo-gradients by applying Lstage2

C =Lbin
C instead of Eq. 6.14, the performance drops.

If we use a binary loss on the predicted opacity, e.g., Lbinary= −
∑

|αk − 0.5|, instead of
using the pseudo-gradients with Ĉ(r), the performance drops slightly. In stage 3, when we
use a larger texture size K=33 instead of 17, the performance improves, but the texture
size will be quadrupled; the performance drops when we use a smaller texture size K=9.

124

Figure 6.8: Shading mesh – not textured. The mesh corresponds to the bicycle (see
Figure 6.1). We manually removed the background mesh to better show the geometry of
the object. Zoom-in to see more details. In the bottom, we also show the rendered images of
our method. Note how the coarse mesh is able to represent detailed structures such as the
spokes of the wheels and the wires around the handles, thanks to high-resolution textures
with transparencies.

If we remove the super-sampling step, the performance drops significantly. Visual results
are shown in Figure 6.6. We omit some models because they do not have significant visual
differences compared to our method. Notice the squared pixels of the texture images are
clearly visible in the dashed-line boxes in (e) and almost invisible in (d). The aliasing
artifacts are conspicuous in the solid-line boxes in (f). In Stage 1, if the grid vertices cannot
be optimized, the results will be significantly worse, as shown in (h). Without the small
MLP, the model cannot handle reflections, as shown in (i). Changing to a smaller grid size
introduces some minor artifacts in (j). In Table 6.7. we show the rendering speed and space
cost if we use a larger or smaller texture size, or if we remove the super-sampling step,
or if we only perform the rasterization without using the small MLP to predict the view-
dependent colors. One can find that the super-sampling step and the small MLP have the
most significant impact.

125

Figure 6.9: Limitations – (a) the monitor/table are hollow, because the reflections are
modelled as real objects behind the monitor and below the table. (b) our method generates
scattered small fragments in the semi-transparent parts. (c) the camera is too close to the
scene and details in the grass cannot be represented at the chosen texture resolution.

6.4.3 Scene editing

The explicit mesh representation provided by MobileNeRF gives us direct editing control
over the NeRF model without any complex architectural change (e.g. ControlNerf [128]),
but in this paper we only superficially investigated these possibilities.

Our representation is a textured mesh with baked lighting, and thus can be used in any
application that combines, renders, or manipulates such meshes. Figure 6.10 (a) shows a
simple example where meshes learned from four different sets of photos are composited into
a single scene. The scene, rendered in 1920×1080 resolution without super-sampling, runs at
150 FPS on the gaming laptop, and consumes 1.5 GB of GPU memory. Similarly Figure 6.10
(b)(c) show scenes where some parts or objects are edited or removed by manipulating the
triangle meshes of the scenes in a 3D modeling software. The resulting renders do not account
for differences in illumination between the captured photos or indirect illumination between
different meshes. However, it suggests an easy way to create “photorealistic-looking” scenes
from a library of objects captured using photos rather than painstaking 3D modeling.

https://youtu.be/kVy2W6afuyk shows three examples where we manipulate the learned
NeRF objects interactively in real-time. We also highlight how easy it is to implement these
operations with our mesh representation. In contrast, implementing those with classic NeRF
is non-trivial.

126

https://youtu.be/kVy2W6afuyk

Figure 6.10: Scene editing – (a) four objects learned from the synthetic scenes are added
into an unbounded scene. (b) a branch of the ficus is bent. (c) the horns are removed.

In the first example, we render all 8 objects learned from the synthetic scenes at the same
time, and we move the objects by using mouse to drag the objects. This is implemented by a
single line of code with the DragControls class provided in the threejs library. DragControls
is designed for manipulating meshes, which suits our needs exactly since our objects are
meshes. We also cast real-time shadow of the objects by applying shadow mapping. This is
implemented by having a directional light, an ambient light, and a plane below the objects
to receive shadows. The drag control and the real-time shadow are also used in the following
examples.

In the second example, we interactively deform the learned chair object to create new
variations of chairs. To implement the deformation, we only need to deform the vertex
positions of the meshes, and this is achieved by adding vertex deformation code in the
vertex shader. Specifically, we implemented three operations: moving the chair up/down
will lengthen or shorten its legs, moving the chair left/right will adjust its width, and
moving the chair forward/backward will adjust the skew of its back.

In the third example, we render 9 ficus objects, which are considered “NeRF” objects,
and a blue ball, which is a classic object with standard material used in classic rendering.
We again change the vertex shader to make the leaves of the plants to be repelled by the
blue ball.

127

6.5 Conclusions

We introduce MobileNeRF, an architecture that takes advantage of the classical rasteriza-
tion pipeline (i.e. z-buffers and fragment shaders) to perform efficient rendering of surface-
based neural fields on a wide range of compute platforms. It achieves frame rates an order
of magnitude faster than the previous state-of-the-art (SNeRG) while producing images of
equivalent quality.

Limitations Our estimated surface may be incorrect, especially for scenes with specular
surfaces and/or sparse views (Figure 6.9a); it uses binary opacities to avoid sorting polygons,
and thus cannot handle scenes with semi-transparencies (Figure 6.9b); it uses fixed mesh and
texture resolutions, which may be too coarse for close-up novel-view synthesis (Figure 6.9c);
it models a radiance field without explicitly decomposing illumination and reflectance, and
thus does not handle glossy surfaces as well as recent methods [247]. Extending the poly-
gon rendering pipeline with efficient partial sorting, levels-of-detail, mipmaps, and surface
shading should address some of these issues. Also, the current training speed of MobileN-
eRF is slow due to NeRF’s MLP backbone. The extension of MobileNeRF to fast-training
architectures (e.g., Instant NGP [172]) constitutes an exciting avenue for future works.

128

Chair Drums Ficus Hotdog Lego Materials Mic Ship Mean
NeRF [167] 33.00 25.01 30.13 36.18 32.54 29.62 32.91 28.65 31.00
JAXNeRF [56] 33.88 25.08 30.51 36.91 33.24 30.03 34.52 29.07 31.65
SNeRG [97] 33.24 24.57 29.32 34.33 33.82 27.21 32.60 27.97 30.38
Ours 34.09 25.02 30.20 35.46 34.18 26.72 32.48 29.06 30.90

Table 6.8: PSNR↑ on Synthetic 360◦ scenes.

Chair Drums Ficus Hotdog Lego Materials Mic Ship Mean
NeRF [167] 0.967 0.925 0.964 0.974 0.961 0.949 0.980 0.856 0.947
JAXNeRF [56] 0.974 0.927 0.967 0.979 0.968 0.952 0.987 0.865 0.952
SNeRG [97] 0.975 0.929 0.967 0.971 0.973 0.938 0.982 0.865 0.950
Ours 0.978 0.927 0.965 0.973 0.975 0.913 0.979 0.867 0.947

Table 6.9: SSIM↑ on Synthetic 360◦ scenes.

Chair Drums Ficus Hotdog Lego Materials Mic Ship Mean
NeRF [167] 0.046 0.091 0.044 0.121 0.050 0.063 0.028 0.206 0.081
JAXNeRF [56] 0.027 0.070 0.033 0.030 0.030 0.048 0.013 0.156 0.051
SNeRG [97] 0.025 0.061 0.028 0.043 0.022 0.052 0.016 0.156 0.050
Ours 0.025 0.077 0.048 0.050 0.025 0.092 0.032 0.145 0.062

Table 6.10: LPIPS↓ on Synthetic 360◦ scenes.

SNeRG [97]
Chair Drums Ficus Hotdog Lego Materials Mic Ship Mean

iPhone XS OOM OOM OOM OOM OOM OOM OOM OOM -
Pixel 3 OOM OOM OOM OOM OOM OOM OOM OOM -
Surface Pro 6 ICP ICP ICP ICP ICP ICP ICP ICP -
Chromebook 28.06 OOM OOM 26.11 27.08 16.48 26.99 11.01 22.62
Gaming laptop 4.94 10.27 OOM 8.10 9.41 2.05 21.65 1.69 8.30
Gaming laptop 37.66 51.06 OOM 45.52 60.20 13.81 87.67 11.17 43.87
Desktop 120.70 147.72 81.88 436.05 232.03 92.45 507.54 39.73 207.26
GPU memory 1254.00 4729.00 8243.00 1253.00 1253.00 1253.00 1251.00 2422.00 2707.25
Disk storage 141.00 44.00 43.00 67.00 114.00 134.00 22.00 129.00 86.75

Ours
Chair Drums Ficus Hotdog Lego Materials Mic Ship Mean

iPhone XS 60.00 60.00 60.00 60.00 50.10 54.65 60.00 42.37 55.89
Pixel 3 41.68 38.71 43.09 35.59 29.56 32.35 52.65 23.52 37.14
Surface Pro 6 83.40 83.15 99.34 64.01 57.11 58.80 130.62 42.76 77.40
Chromebook 60.00 60.00 60.00 53.24 47.51 51.04 60.00 37.56 53.67
Gaming laptop 186.03 183.04 231.01 156.08 118.27 129.80 332.10 89.74 178.26
Gaming laptop 657.77 656.22 643.32 649.58 566.39 618.98 648.88 412.70 606.73
Desktop 810.99 789.30 882.23 707.27 629.70 659.95 970.35 509.48 744.91
GPU memory 451.00 590.00 450.00 456.00 723.00 721.00 322.00 594.00 538.38
Disk storage 107.00 120.00 80.00 88.00 199.00 191.00 50.00 171.00 125.75

Table 6.11: Rendering speed in frames per second (FPS), and GPU memory and disk
storage in MB, on Synthetic 360◦ scenes.

129

Room Fern Leaves Fortress Orchids Flower Trex Horns Mean
NeRF [167] 32.70 25.17 20.92 31.16 20.36 27.40 26.80 27.45 26.50
JAXNeRF [56] 33.30 24.92 21.24 31.78 20.32 28.09 27.43 28.29 26.92
SNeRG [97] 30.04 24.85 20.01 30.91 19.73 27.00 25.80 26.71 25.63
Ours 31.28 24.59 20.54 30.82 19.66 27.05 26.26 27.09 25.91

Table 6.12: PSNR↑ on Forward-facing scenes.

Room Fern Leaves Fortress Orchids Flower Trex Horns Mean
NeRF [167] 0.948 0.792 0.690 0.881 0.641 0.827 0.880 0.828 0.811
JAXNeRF [56] 0.958 0.806 0.717 0.897 0.657 0.850 0.902 0.863 0.831
SNeRG [97] 0.936 0.802 0.696 0.889 0.655 0.835 0.882 0.852 0.818
Ours 0.943 0.808 0.711 0.891 0.647 0.839 0.900 0.864 0.825

Table 6.13: SSIM↑ on Forward-facing scenes.

Room Fern Leaves Fortress Orchids Flower Trex Horns Mean
NeRF [167] 0.178 0.280 0.316 0.171 0.321 0.219 0.249 0.268 0.250
JAXNeRF [56] 0.086 0.207 0.247 0.108 0.266 0.156 0.143 0.173 0.173
SNeRG [97] 0.133 0.198 0.252 0.125 0.255 0.167 0.157 0.176 0.183
Ours 0.143 0.202 0.245 0.115 0.277 0.163 0.147 0.169 0.183

Table 6.14: LPIPS↓ on Forward-facing scenes.

SNeRG [97]
Room Fern Leaves Fortress Orchids Flower Trex Horns Mean

iPhone XS OOM OOM OOM OOM OOM OOM OOM OOM -
Pixel 3 OOM OOM OOM OOM OOM OOM OOM OOM -
Surface Pro 6 ICP ICP ICP ICP ICP ICP ICP ICP -
Chromebook 9.75 6.02 OOM 9.68 OOM 5.12 8.68 OOM 7.85
Gaming laptop 7.77 1.28 0.80 8.46 1.14 0.67 4.72 4.18 3.63
Gaming laptop 52.40 14.45 6.15 54.47 12.43 8.77 32.87 26.51 26.01
Desktop 110.36 28.18 13.54 122.91 17.59 15.96 62.65 34.46 50.71
GPU memory 3594.00 3585.00 4729.00 3595.00 5903.00 3593.00 3595.00 5903.00 4312.13
Disk storage 149.00 288.00 408.00 162.00 704.00 321.00 251.00 415.00 337.25

Ours
Room Fern Leaves Fortress Orchids Flower Trex Horns Mean

iPhone XS 29.82 25.10 OOM 30.02 OOM 26.28 26.30 25.59 27.19
Pixel 3 13.57 12.74 8.66 14.69 10.77 12.98 13.07 12.71 12.40
Surface Pro 6 22.92 20.32 13.84 29.13 17.10 22.30 22.53 23.92 21.51
Chromebook 20.70 18.95 14.65 23.16 16.79 20.06 20.08 21.12 19.44
Gaming laptop 64.27 55.88 37.11 76.29 48.72 60.60 59.65 59.26 57.72
Gaming laptop 281.01 252.70 170.66 303.77 222.54 260.44 258.45 251.82 250.17
Desktop 377.87 352.01 254.51 397.00 323.54 367.68 359.68 362.46 349.34
GPU memory 610.00 610.00 1143.00 473.00 1276.00 611.00 604.00 747.00 759.25
Disk storage 127.00 147.00 353.00 89.00 372.00 151.00 162.00 211.00 201.50

Table 6.15: Rendering speed in frames per second (FPS), and GPU memory and disk
storage in MB, on Forward-facing scenes.

130

Bicycle Flower Garden Stump Treehill Mean
JAXNeRF [56] 21.76 19.40 23.11 21.73 21.28 21.46
NeRF++ [295] 22.64 20.31 24.32 24.34 22.20 22.76
Ours 21.70 18.86 23.54 23.95 21.72 21.95

Table 6.16: PSNR↑ on Unbounded 360◦ scenes.

Bicycle Flower Garden Stump Treehill Mean
JAXNeRF [56] 0.455 0.376 0.546 0.453 0.459 0.458
NeRF++ [295] 0.526 0.453 0.635 0.594 0.530 0.548
Ours 0.426 0.321 0.599 0.556 0.450 0.470

Table 6.17: SSIM↑ on Unbounded 360◦ scenes.

Bicycle Flower Garden Stump Treehill Mean
JAXNeRF [56] 0.536 0.529 0.415 0.551 0.546 0.515
NeRF++ [295] 0.455 0.466 0.331 0.416 0.466 0.427
Ours 0.513 0.526 0.358 0.430 0.522 0.470

Table 6.18: LPIPS↓ on Unbounded 360◦ scenes.

Ours
Bicycle Flower Garden Stump Treehill Mean

iPhone XS OOM OOM 22.20 OOM OOM 22.20
Pixel 3 9.44 8.61 10.49 8.54 9.12 9.24
Surface Pro 6 20.24 19.12 21.67 18.21 17.97 19.44
Chromebook 15.89 14.72 16.56 14.23 15.02 15.28
Gaming laptop 55.62 59.18 58.19 51.73 51.89 55.32
Gaming laptop 195.63 194.66 204.31 178.89 189.46 192.59
Desktop 280.24 282.02 295.74 265.90 274.58 279.70
GPU memory 1350.00 1081.00 808.00 1082.00 1490.00 1162.20
Disk storage 400.00 294.00 239.00 337.00 453.00 344.60

Table 6.19: Rendering speed in frames per second (FPS), and GPU memory and disk
storage in MB, on Unbounded 360◦ scenes.

131

Chapter 7

Conclusion and Future Work

7.1 Conclusion

In this thesis, we introduce several deep learning algorithms that reconstruct meshes from
various input sources, including voxels, point clouds, single images, and multi-view images.
These methods encompass models that rely on encoding global shape features, encoding
local features, and differentiable rendering. They provide a wide range of tools for high-
performance mesh reconstruction and generation, as well as frameworks for future research
and industrial applications.

In Chapter 3, we introduced BSP-Net, a shape decoder network that generates compact
and structured polygonal meshes in the form of convex decomposition. Trained as a neural
implicit representation, our network learns an explicit BSP-tree built on a set of planes, and
in turn, a set of convex primitives, in an unsupervised manner. These planes and convexes
are defined by weights learned by the neural network. Compared to state-of-the-art methods,
meshes generated by BSP-Net exhibit superior visual quality, especially in sharp geometric
details.

In Chapter 4, we introduced Neural Marching Cubes, the first iso-surfacing algorithm
capable of recovering sharp geometric features without requiring additional inputs, such
as normal information. We designed an efficient parameterization to represent a triangle
mesh in a regular grid structure that is compatible with neural processing. Trained on
automatically generated “ground-truth” meshes, our method shows superior performance in
preserving various geometric features such as sharp/soft edges, corners, and thin structures.

In Chapter 5, we introduced Neural Dual Contouring, a new data-driven approach to
mesh reconstruction based on Dual Contouring. The signed version of our approach, NDC,
has similar performance with Neural Marching Cubes but produces 3-7 times fewer vertices
and triangles. The unsigned version of our approach, UNDC, is sign agnostic, therefore able
to reconstruct open surfaces and thin structures from unsigned distance fields or unoriented
point clouds. Both NDC and UNDC are designed as local networks using limited receptive
fields, thus can generalize well to new datasets. Extensive experiments demonstrate the su-

132

perior performance of our approach on multiple datasets over traditional and deep-learning
state-of-the-art methods.

In Chapter 6, we introduced MobileNeRF, an architecture that takes advantage of the
classical rasterization pipeline (i.e. z-buffers and fragment shaders) to perform efficient ren-
dering of surface-based neural fields on a wide range of compute platforms. Thanks to its
explicit mesh representation with deep-feature textures, MobileNeRF achieves frame rates
an order of magnitude faster than the previous state-of-the-art while producing images of
equivalent quality.

7.2 Future Work

BSP-Net adopts an encoder-encoder structure, therefore, in principle, it can reconstruct
meshes from all types of inputs as long as they can be encoded into a global shape latent
code. However, recent evidence has suggested that relying solely on global features may
lead to overfitting to the training category and inability to represent detailed geometries.
NMC and NDC employ fully convolutional networks with limited receptive fields, therefore
they are only aware of local features in the input, which gives them strong generalization
ability across new shapes and new datasets, but in turn hinders their ability to perform
global-aware inference such as shape completion and shape generation. MobileNeRF relies
purely on differentiable rendering, and thus cannot benefit from any learned priors from
large training corpuses. Therefore, unifying global features, local features, and test-time
optimization such as differentiable rendering, is an interesting topic for future research on
neural mesh reconstruction.

Reconstructing 3D representations from multi-view images has been a trending research
topic these days. Our attempt, MobileNeRF, has an apparent undesirable trait that its
output is a polygon soup, where the triangles neither align with the actual shape surface
nor form manifold meshes. In addition, MobileNeRF uses fixed mesh and texture resolutions,
which cannot adapt to the granularity of different objects in the scene. Besides, how to model
semi-transparent objects, reflection, refraction, and other light effects remains an open and
challenging research problem.

The primary focus of this thesis is on mesh reconstruction, where substantial informa-
tion in the inputs is relayed to the mesh outputs. Generative models that can take sparse
and ambiguous inputs, such as texts, to perform shape editing and novel shape synthesis
constitute another valuable research field. Existing works in this field are predominantly
based on differentiable rendering, neural fields, and optionally, differentiable iso-surfacing.
However, these approaches based on differentiable rendering and large text-to-image models
differ significantly from how humans imagine new shapes. It prompts us to explore more
natural ways of creating 3D shapes with neural networks, and perhaps ways that offer
compact meshes, as opposed to those extracted from neural fields.

133

Bibliography

[1] Panos Achlioptas, Olga Diamanti, Ioannis Mitliagkas, and Leonidas J. Guibas. Learn-
ing representations and generative models for 3d point clouds. In ICML, 2018.

[2] Nina Amenta, Marshall Bern, and Manolis Kamvysselis. A new voronoi-based surface
reconstruction algorithm. In SIGGRAPH, page 415–421, 1998.

[3] Benjamin Attal, Jia-Bin Huang, Michael Zollhöfer, Johannes Kopf, and Changil Kim.
Learning neural light fields with ray-space embedding networks. CVPR, 2022.

[4] Benjamin Attal, Selena Ling, Aaron Gokaslan, Christian Richardt, and James Tomp-
kin. MatryODShka: Real-time 6DoF video view synthesis using multi-sphere images.
ECCV, 2020.

[5] Matan Atzmon and Yaron Lipman. Sal: Sign agnostic learning of shapes from raw
data. In CVPR, pages 2562–2571, 2020.

[6] Matan Atzmon and Yaron Lipman. Sald: Sign agnostic learning with derivatives. In
International Conference on Learning Representations, 2020.

[7] Dejan Azinović, Ricardo Martin-Brualla, Dan B Goldman, Matthias Nießner, and
Justus Thies. Neural rgb-d surface reconstruction. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 6290–6301, 2022.

[8] Abhishek Badki, Orazio Gallo, Jan Kautz, and Pradeep Sen. Meshlet priors for 3D
mesh reconstruction. In CVPR, pages 2849–2858, 2020.

[9] Sai Praveen Bangaru, Michael Gharbi, Fujun Luan, Tzu-Mao Li, Kalyan Sunkavalli,
Milos Hasan, Sai Bi, Zexiang Xu, Gilbert Bernstein, and Fredo Durand. Differen-
tiable rendering of neural sdfs through reparameterization. In SIGGRAPH Asia 2022
Conference Papers, pages 1–9, 2022.

[10] Alan H Barr. Superquadrics and angle-preserving transformations. IEEE Computer
graphics and Applications, 1(1):11–23, 1981.

[11] Jonathan T. Barron, Ben Mildenhall, Dor Verbin, Pratul P. Srinivasan, and Peter
Hedman. Mip-nerf 360: Unbounded anti-aliased neural radiance fields. CVPR, 2022.

[12] Stefan Behnel, Robert Bradshaw, Craig Citro, Lisandro Dalcin, Dag Sverre Selje-
botn, and Kurt Smith. Cython: The best of both worlds. Computing in Science &
Engineering, 2011.

134

[13] Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating
gradients through stochastic neurons for conditional computation. arXiv preprint
arXiv:1308.3432, 2013.

[14] Matthew Berger, Andrea Tagliasacchi, Lee M. Seversky, Pierre Alliez, Gaël Guen-
nebaud, Joshua A. Levine, Andrei Sharf, and Claudio T Silva. A survey of surface
reconstruction from point clouds. In Computer Graphics Forum, volume 36, pages
301–329, 2017.

[15] Fausto Bernardini, Joshua Mittleman, Holly Rushmeier, Cláudio Silva, and Gabriel
Taubin. The ball-pivoting algorithm for surface reconstruction. IEEE TVCG,
5(4):349–359, 1999.

[16] Tobias Bertel, Mingze Yuan, Reuben Lindroos, and Christian Richardt. OmniPhotos:
Casual 360° VR photography. ACM Transactions on Graphics, 2020.

[17] Bharat Lal Bhatnagar, Garvita Tiwari, Christian Theobalt, and Gerard Pons-Moll.
Multi-garment net: Learning to dress 3d people from images. In ICCV, pages 5420–
5430, 2019.

[18] Federica Bogo, Angjoo Kanazawa, Christoph Lassner, Peter Gehler, Javier Romero,
and Michael J Black. Keep it smpl: Automatic estimation of 3d human pose and
shape from a single image. In European conference on computer vision, pages 561–
578. Springer, 2016.

[19] Federica Bogo, Javier Romero, Matthew Loper, and Michael J. Black. FAUST:
Dataset and evaluation for 3D mesh registration. In CVPR, pages 3794–3801, 2014.

[20] Alexandre Boulch and Renaud Marlet. Fast and robust normal estimation for point
clouds with sharp features. Computer Graphics Forum, 31(5):1765–1774, 2012.

[21] Alexandre Boulch and Renaud Marlet. Poco: Point convolution for surface reconstruc-
tion. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 6302–6314, 2022.

[22] Michael Broxton, John Flynn, Ryan Overbeck, Daniel Erickson, Peter Hedman,
Matthew DuVall, Jason Dourgarian, Jay Busch, Matt Whalen, and Paul Debevec.
Immersive light field video with a layered mesh representation. ACM Transactions
on Graphics, 2020.

[23] Chris Buehler, Michael Bosse, Leonard McMillan, Steven Gortler, and Michael Co-
hen. Unstructured lumigraph rendering. In Proceedings of Computer graphics and
interactive techniques, 2001.

[24] Brent Burley and Dylan Lacewell. Ptex: Per-face texture mapping for production
rendering. In Computer Graphics Forum, 2008.

[25] Yan-Pei Cao, Zheng-Ning Liu, Zheng-Fei Kuang, Leif Kobbelt, and Shi-Min Hu.
Learning to reconstruct high-quality 3d shapes with cascaded fully convolutional net-
works. In Proceedings of the European Conference on Computer Vision (ECCV),
pages 616–633, 2018.

135

[26] Rohan Chabra, Jan E Lenssen, Eddy Ilg, Tanner Schmidt, Julian Straub, Steven
Lovegrove, and Richard Newcombe. Deep local shapes: Learning local sdf priors for
detailed 3d reconstruction. In European Conference on Computer Vision, pages 608–
625. Springer, 2020.

[27] Angel Chang, Angela Dai, Thomas Funkhouser, Maciej Halber, Matthias Niebner,
Manolis Savva, Shuran Song, Andy Zeng, and Yinda Zhang. Matterport3D: Learning
from RGB-D data in indoor environments. In 3DV, pages 667–676, 2017.

[28] Angel X. Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qixing
Huang, Zimo Li, Silvio Savarese, Manolis Savva, Shuran Song, Hao Su, Jianxiong
Xiao, Li Yi, and Fisher Yu. ShapeNet: An information-rich 3D model repository.
arXiv preprint arXiv:1512.03012, 2015.

[29] Anpei Chen, Zexiang Xu, Andreas Geiger, Jingyi Yu, and Hao Su. Tensorf: Tensorial
radiance fields. ECCV, 2022.

[30] Ding-Yun Chen, Xiao-Pei Tian, Yu-Te Shen, and Ming Ouhyoung. On visual similarity
based 3d model retrieval. In Computer graphics forum, 2003.

[31] Wenzheng Chen, Huan Ling, Jun Gao, Edward Smith, Jaakko Lehtinen, Alec Ja-
cobson, and Sanja Fidler. Learning to predict 3d objects with an interpolation-based
differentiable renderer. Advances in Neural Information Processing Systems, 32, 2019.

[32] Wenzheng Chen, Joey Litalien, Jun Gao, Zian Wang, Clement Fuji Tsang, Sameh
Khamis, Or Litany, and Sanja Fidler. Dib-r++: Learning to predict lighting and
material with a hybrid differentiable renderer. Advances in Neural Information Pro-
cessing Systems, 34:22834–22848, 2021.

[33] Zhiqin Chen, Thomas Funkhouser, Peter Hedman, and Andrea Tagliasacchi. Mobilen-
erf: Exploiting the polygon rasterization pipeline for efficient neural field rendering on
mobile architectures. In The Conference on Computer Vision and Pattern Recognition
(CVPR), 2023.

[34] Zhiqin Chen, Vladimir G Kim, Matthew Fisher, Noam Aigerman, Hao Zhang, and
Siddhartha Chaudhuri. Decor-gan: 3d shape detailization by conditional refinement.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition, pages 15740–15749, 2021.

[35] Zhiqin Chen, Andrea Tagliasacchi, Thomas Funkhouser, and Hao Zhang. Neural dual
contouring. ACM Transactions on Graphics, 2022.

[36] Zhiqin Chen, Andrea Tagliasacchi, and Hao Zhang. BSP-Net: generating compact
meshes via binary space partitioning. In CVPR, 2020.

[37] Zhiqin Chen, Kangxue Yin, Matthew Fisher, Siddhartha Chaudhuri, and Hao Zhang.
BAE-NET: Branched autoencoder for shape co-segmentation. ICCV, 2019.

[38] Zhiqin Chen and Hao Zhang. Learning implicit fields for generative shape model-
ing. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 5939–5948, 2019.

136

[39] Zhiqin Chen and Hao Zhang. Neural marching cubes. ACM Transactions on Graphics,
40(6):1–15, 2021.

[40] Evgeni Chernyaev. Marching Cubes 33: construction of topologically correct isosur-
faces. Technical Report CN/95-17, CERN, 1995.

[41] Julian Chibane, Thiemo Alldieck, and Gerard Pons-Moll. Implicit functions in feature
space for 3d shape reconstruction and completion. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 6970–6981, 2020.

[42] Julian Chibane, Gerard Pons-Moll, et al. Neural unsigned distance fields for implicit
function learning. Advances in Neural Information Processing Systems, 33:21638–
21652, 2020.

[43] Christopher B Choy, Danfei Xu, JunYoung Gwak, Kevin Chen, and Silvio Savarese.
3d-r2n2: A unified approach for single and multi-view 3d object reconstruction. In
European conference on computer vision, pages 628–644. Springer, 2016.

[44] Paolo Cignoni, Fabio Ganovelli, Claudio Montani, and Roberto Scopigno. Reconstruc-
tion of topologically correct and adaptive trilinear isosurfaces. Computers & Graphics,
2000.

[45] David Cohen-Steiner and Tran Kai Frank Da. A greedy Delaunay-based surface
reconstruction algorithm. The Visual Computer, 20(1):4–16, 2004.

[46] Forrester Cole, Kyle Genova, Avneesh Sud, Daniel Vlasic, and Zhoutong Zhang. Dif-
ferentiable surface rendering via non-differentiable sampling. In ICCV, 2021.

[47] Steven A Coons. Surfaces for computer-aided design of space forms. Technical report,
MASSACHUSETTS INST OF TECH CAMBRIDGE PROJECT MAC, 1967.

[48] Brian Curless and Marc Levoy. A volumetric method for building complex models
from range images. In SIGGRAPH, pages 303–312, 1996.

[49] Lis Custodio, Tiago Etiene, Sinesio Pesco, and Claudio Silva. Practical considerations
on marching cubes 33 topological correctness. Computers & Graphics, 2013.

[50] Angela Dai and Matthias Nießner. Scan2mesh: From unstructured range scans to
3d meshes. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 5574–5583, 2019.

[51] Angela Dai, Charles Ruizhongtai Qi, and Matthias Nießner. Shape completion using
3d-encoder-predictor cnns and shape synthesis. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 5868–5877, 2017.

[52] François Darmon, Bénédicte Bascle, Jean-Clément Devaux, Pascal Monasse, and
Mathieu Aubry. Improving neural implicit surfaces geometry with patch warping. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion, pages 6260–6269, 2022.

[53] Abe Davis, Marc Levoy, and Fredo Durand. Unstructured light fields. Computer
Graphics Forum, 2012.

137

[54] Bruno Rodrigues De Araújo, Daniel S. Lopes, Pauline Jepp, Joaquim A. Jorge, and
Brian Wyvill. A survey on implicit surface polygonization. ACM Computing Surveys
(CSUR), 47(4):1–39, 2015.

[55] Paul Debevec, Yizhou Yu, and George Borshukov. Efficient view-dependent image-
based rendering with projective texture-mapping. In Eurographics Workshop on Ren-
dering Techniques, 1998.

[56] Boyang Deng, Jonathan T. Barron, and Pratul P. Srinivasan. JaxNeRF: an efficient
JAX implementation of NeRF, 2020.

[57] Boyang Deng, Kyle Genova, Soroosh Yazdani, Sofien Bouaziz, Geoffrey Hinton, and
Andrea Tagliasacchi. Cvxnet: Learnable convex decomposition. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 31–44,
2020.

[58] Yu Deng, Jiaolong Yang, Sicheng Xu, Dong Chen, Yunde Jia, and Xin Tong. Accurate
3d face reconstruction with weakly-supervised learning: From single image to image
set. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition Workshops, pages 0–0, 2019.

[59] Tamal K. Dey and Joshua A. Levine. Delaunay meshing of isosurfaces. The Visual
Computer, 2008.

[60] Akio Doi and Akio Koide. An efficient method of triangulating equi-valued surfaces
by using tetrahedral cells. IEICE Transactions on Information and Systems, 1991.

[61] Martin J. Dürst. Letters: additional reference to marching cubes. In SIGGRAPH,
1988.

[62] Philipp Erler, Paul Guerrero, Stefan Ohrhallinger, Niloy J Mitra, and Michael Wim-
mer. Points2surf learning implicit surfaces from point clouds. In European Conference
on Computer Vision, pages 108–124. Springer, 2020.

[63] Wang et al. HF-NeuS: Improved surface reconstruction using high-frequency details.
In NeurIPS, 2022.

[64] Tiago Etiene, Luis Gustavo Nonato, Carlos Scheidegger, Julien Tienry, Thomas J.
Peters, Valerio Pascucci, Robert M. Kirby, and Cláudio T. Silva. Topology verification
for isosurface extraction. TVCG, 2011.

[65] Haoqiang Fan, Hao Su, and Leonidas J. Guibas. A point set generation network for
3d object reconstruction from a single image. In CVPR, 2017.

[66] John Flynn, Michael Broxton, Paul Debevec, Matthew DuVall, Graham Fyffe, Ryan
Overbeck, Noah Snavely, and Richard Tucker. DeepView: View synthesis with learned
gradient descent. CVPR, 2019.

[67] Qiancheng Fu, Qingshan Xu, Yew-Soon Ong, and Wenbing Tao. Geo-neus: Geometry-
consistent neural implicit surfaces learning for multi-view reconstruction. Advances
in Neural Information Processing Systems (NeurIPS), 2022.

138

[68] Henry Fuchs, Zvi M Kedem, and Bruce F Naylor. On visible surface generation by
a priori tree structures. In Proceedings of the 7th annual conference on Computer
graphics and interactive techniques, pages 124–133, 1980.

[69] Thomas Funkhouser, Michael Kazhdan, Philip Shilane, Patrick Min, William Kiefer,
Ayellet Tal, Szymon Rusinkiewicz, and David Dobkin. Modeling by example. ACM
Transactions on Graphics, 23(3):652–663, 2004.

[70] Matheus Gadelha, Rui Wang, and Subhransu Maji. Multiresolution tree networks for
3d point cloud processing. In ECCV, 2018.

[71] Jun Gao, Wenzheng Chen, Tommy Xiang, Alec Jacobson, Morgan McGuire, and Sanja
Fidler. Learning deformable tetrahedral meshes for 3d reconstruction. Advances In
Neural Information Processing Systems, 33:9936–9947, 2020.

[72] Lin Gao, Yu-Kun Lai, Jie Yang, Ling-Xiao Zhang, Leif Kobbelt, and Shihong Xia.
Sparse data driven mesh deformation. IEEE transactions on visualization and com-
puter graphics, 2019.

[73] Lin Gao, Tong Wu, Yu-Jie Yuan, Ming-Xian Lin, Yu-Kun Lai, and Hao Zhang. Tm-
net: Deep generative networks for textured meshes. ACM Transactions on Graphics
(TOG), 40(6):1–15, 2021.

[74] Lin Gao, Jie Yang, Tong Wu, Yu-Jie Yuan, Hongbo Fu, Yu-Kun Lai, and Hao Zhang.
Sdm-net: Deep generative network for structured deformable mesh. ACM Transac-
tions on Graphics (TOG), 38(6):1–15, 2019.

[75] Stephan J. Garbin, Marek Kowalski, Matthew Johnson, Jamie Shotton, and Julien
P. C. Valentin. Fastnerf: High-fidelity neural rendering at 200fps. In ICCV, 2021.

[76] Michael Garland and Paul S. Heckbert. Surface simplification using quadric error
metrics. In SIGGRAPH, pages 209–216, 1997.

[77] Kyle Genova, Forrester Cole, Avneesh Sud, Aaron Sarna, and Thomas Funkhouser.
Local deep implicit functions for 3d shape. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pages 4857–4866, 2020.

[78] Kyle Genova, Forrester Cole, Daniel Vlasic, Aaron Sarna, William T Freeman, and
Thomas Funkhouser. Learning shape templates with structured implicit functions. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, pages
7154–7164, 2019.

[79] Rohit Girdhar, David F Fouhey, Mikel Rodriguez, and Abhinav Gupta. Learning a
predictable and generative vector representation for objects. In ECCV, 2016.

[80] Shubham Goel, Georgia Gkioxari, and Jitendra Malik. Differentiable stereopsis:
Meshes from multiple views using differentiable rendering. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 8635–
8644, 2022.

[81] Shubham Goel, Angjoo Kanazawa, and Jitendra Malik. Shape and viewpoint without
keypoints. In European Conference on Computer Vision, pages 88–104. Springer,
2020.

139

[82] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial networks.
Communications of the ACM, 63(11):139–144, 2020.

[83] Steven J. Gortler, Radek Grzeszczuk, Richard Szeliski, and Michael F. Cohen. The
lumigraph. SIGGRAPH, 1996.

[84] Benjamin Graham, Martin Engelcke, and Laurens van der Maaten. 3d semantic
segmentation with submanifold sparse convolutional networks. In CVPR, 2018.

[85] Amos Gropp, Lior Yariv, Niv Haim, Matan Atzmon, and Yaron Lipman. Implicit
geometric regularization for learning shapes. In Proceedings of the 37th International
Conference on Machine Learning, pages 3789–3799, 2020.

[86] Thibault Groueix, Matthew Fisher, Vladimir G. Kim, Bryan C. Russell, and Mathieu
Aubry. A papier-mâché approach to learning 3D surface generation. In CVPR, pages
216–224, 2018.

[87] Xianfeng Gu, Steven J Gortler, and Hugues Hoppe. Geometry images. In Proceedings
of the 29th annual conference on Computer graphics and interactive techniques, pages
355–361, 2002.

[88] Haoxiang Guo, Shilin Liu, Hao Pan, Yang Liu, Xin Tong, and Baining Guo. Com-
plexgen: Cad reconstruction by b-rep chain complex generation. ACM Transactions
on Graphics (TOG), 41(4):1–18, 2022.

[89] Haoyu Guo, Sida Peng, Haotong Lin, Qianqian Wang, Guofeng Zhang, Hujun Bao,
and Xiaowei Zhou. Neural 3d scene reconstruction with the manhattan-world assump-
tion. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 5511–5520, 2022.

[90] Kunal Gupta and Manmohan Chandraker. Neural mesh flow: 3d manifold mesh gen-
eration via diffeomorphic flows. In Proceedings of the 34th International Conference
on Neural Information Processing Systems, pages 1747–1758, 2020.

[91] Heli Ben Hamu, Haggai Maron, Itay Kezurer, Gal Avineri, and Yaron Lipman. Multi-
chart generative surface modeling. ACM TOG, 2018.

[92] Christian Häne, Shubham Tulsiani, and Jitendra Malik. Hierarchical surface predic-
tion for 3d object reconstruction. In 2017 International Conference on 3D Vision
(3DV), pages 412–420. IEEE, 2017.

[93] Rana Hanocka, Amir Hertz, Noa Fish, Raja Giryes, Shachar Fleishman, and Daniel
Cohen-Or. MeshCNN: A network with an edge. ACM TOG, 2019.

[94] Rana Hanocka, Gal Metzer, Raja Giryes, and Daniel Cohen-Or. Point2mesh: a self-
prior for deformable meshes. ACM Transactions on Graphics (TOG), 39(4):126–1,
2020.

[95] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In CVPR, 2016.

140

[96] Peter Hedman, Julien Philip, True Price, Jan-Michael Frahm, George Drettakis, and
Gabriel Brostow. Deep blending for free-viewpoint image-based rendering. ACM
Transactions on Graphics, 2018.

[97] Peter Hedman, Pratul P. Srinivasan, Ben Mildenhall, Jonathan T. Barron, and Paul
Debevec. Baking neural radiance fields for real-time view synthesis. ICCV, 2021.

[98] Paul Henderson, Vagia Tsiminaki, and Christoph H Lampert. Leveraging 2d data to
learn textured 3d mesh generation. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 7498–7507, 2020.

[99] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural compu-
tation, 9(8):1735–1780, 1997.

[100] Kurt Hornik. Approximation capabilities of multilayer feedforward networks. Neural
Networks, 1991.

[101] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua Ben-
gio. Binarized neural networks. In NeurIPS, 2016.

[102] Ka-Hei Hui, Ruihui Li, Jingyu Hu, and Chi-Wing Fu. Neural template: Topology-
aware reconstruction and disentangled generation of 3d meshes. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 18572–
18582, 2022.

[103] Eldar Insafutdinov, Dylan Campbell, João F Henriques, and Andrea Vedaldi. Snes:
Learning probably symmetric neural surfaces from incomplete data. In European
Conference on Computer Vision (ECCV), pages 367–383. Springer, 2022.

[104] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. Image-to-image trans-
lation with conditional adversarial networks. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 1125–1134, 2017.

[105] Boyi Jiang, Juyong Zhang, Yang Hong, Jinhao Luo, Ligang Liu, and Hujun Bao.
Bcnet: Learning body and cloth shape from a single image. In European Conference
on Computer Vision, pages 18–35. Springer, 2020.

[106] Chiyu Jiang, Jingwei Huang, Andrea Tagliasacchi, and Leonidas J Guibas. Shape-
flow: Learnable deformation flows among 3d shapes. Advances in Neural Information
Processing Systems, 33:9745–9757, 2020.

[107] Chiyu Jiang, Avneesh Sud, Ameesh Makadia, Jingwei Huang, Matthias Nießner, and
Thomas Funkhouser. Local implicit grid representations for 3d scenes. In CVPR,
pages 6001–6010, 2020.

[108] Yue Jiang, Dantong Ji, Zhizhong Han, and Matthias Zwicker. Sdfdiff: Differentiable
rendering of signed distance fields for 3d shape optimization. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pages 1251–1261,
2020.

[109] Jeong Joon Park, Peter Florence, Julian Straub, Richard Newcombe, and Steven
Lovegrove. DeepSDF: Learning continuous signed distance functions for shape repre-
sentation. In CVPR, 2019.

141

[110] Tao Ju, Frank Losasso, Scott Schaefer, and Joe Warren. Dual contouring of Hermite
data. ACM Transactions on graphics, 21(3):339–346, 2002.

[111] Angjoo Kanazawa, Shubham Tulsiani, Alexei A Efros, and Jitendra Malik. Learning
category-specific mesh reconstruction from image collections. In Proceedings of the
European Conference on Computer Vision (ECCV), pages 371–386, 2018.

[112] Kacper Kania, Maciej Zieba, and Tomasz Kajdanowicz. Ucsg-net-unsupervised discov-
ering of constructive solid geometry tree. Advances in Neural Information Processing
Systems, 33:8776–8786, 2020.

[113] Abhishek Kar, Shubham Tulsiani, Joao Carreira, and Jitendra Malik. Category-
specific object reconstruction from a single image. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages 1966–1974, 2015.

[114] Animesh Karnewar, Tobias Ritschel, Oliver Wang, and Niloy J. Mitra. Relu fields:
The little non-linearity that could. ACM Transactions on Graphics, 2022.

[115] Hiroharu Kato, Yoshitaka Ushiku, and Tatsuya Harada. Neural 3d mesh renderer. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pages
3907–3916, 2018.

[116] Yuki Kawana, Yusuke Mukuta, and Tatsuya Harada. Neural star domain as primitive
representation. Advances in Neural Information Processing Systems, 33:7875–7886,
2020.

[117] Michael Kazhdan, Matthew Bolitho, and Hugues Hoppe. Poisson surface reconstruc-
tion. In Proceedings of the fourth Eurographics symposium on Geometry processing,
volume 7, 2006.

[118] Michael Kazhdan and Hugues Hoppe. Screened Poisson surface reconstruction. ACM
Transactions on Graphics, 32(3):1–13, 2013.

[119] Petr Kellnhofer, Lars C Jebe, Andrew Jones, Ryan Spicer, Kari Pulli, and Gordon
Wetzstein. Neural lumigraph rendering. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 4287–4297, 2021.

[120] Diederik P. Kingma and Jimmy Ba. Adam: a method for stochastic optimization. In
ICLR, 2015.

[121] Leif P. Kobbelt, Mario Botsch, Ulrich Schwanecke, and Hans-Peter Seidel. Feature
sensitive surface extraction from volume data. In SIGGRAPH, 2001.

[122] Sebastian Koch, Albert Matveev, Zhongshi Jiang, Francis Williams, Alexey Artemov,
Evgeny Burnaev, Marc Alexa, Denis Zorin, and Daniele Panozzo. ABC: a big cad
model dataset for geometric deep learning. In CVPR, pages 9601–9611, 2019.

[123] Ravikrishna Kolluri. Provably good moving least squares. ACM Transactions on
Algorithms (TALG), 4(2):1–25, 2008.

142

[124] Nikos Kolotouros, Georgios Pavlakos, and Kostas Daniilidis. Convolutional mesh
regression for single-image human shape reconstruction. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 4501–
4510, 2019.

[125] Georgios Kopanas, Julien Philip, Thomas Leimkühler, and George Drettakis. Point-
based neural rendering with per-view optimization. In Computer Graphics Forum,
2021.

[126] Joseph George Lambourne, Karl Willis, Pradeep Kumar Jayaraman, Longfei Zhang,
Aditya Sanghi, and Kamal Rahimi Malekshan. Reconstructing editable prismatic cad
from rounded voxel models. In SIGGRAPH Asia 2022 Conference Papers, pages 1–9,
2022.

[127] Christoph Lassner and Michael Zollhofer. Pulsar: Efficient sphere-based neural ren-
dering. CVPR, 2021.

[128] Verica Lazova, Vladimir Guzov, Kyle Olszewski, Sergey Tulyakov, and Gerard Pons-
Moll. Control-nerf: Editable feature volumes for scene rendering and manipulation.
arXiv preprint arXiv:2204.10850, 2022.

[129] Eric-Tuan Lê, Minhyuk Sung, Duygu Ceylan, Radomir Mech, Tamy Boubekeur, and
Niloy J Mitra. Cpfn: Cascaded primitive fitting networks for high-resolution point
clouds. In Proceedings of the IEEE/CVF International Conference on Computer Vi-
sion, pages 7457–7466, 2021.

[130] Jaakko Lehtinen, Jacob Munkberg, Jon Hasselgren, Samuli Laine, Tero Karras, Miika
Aittala, and Timo Aila. Noise2Noise: Learning image restoration without clean data.
In ICML, pages 2965–2974, 2018.

[131] Jiabao Lei and Kui Jia. Analytic marching: an analytic meshing solution from deep
implicit surface networks. In ICML, 2020.

[132] Marc Levoy and Pat Hanrahan. Light field rendering. SIGGRAPH, 1996.

[133] Thomas Lewiner, Hélio Lopes, Antônio Wilson Vieira, and Geovan Tavares. Efficient
implementation of marching cubes’ cases with topological guarantees. Journal of
Graphics Tools, 8(2):1–15, 2003.

[134] Jun Li, Kai Xu, Siddhartha Chaudhuri, Ersin Yumer, Hao Zhang, and Leonidas
Guibas. Grass: Generative recursive autoencoders for shape structures. ACM TOG,
2017.

[135] Lingxiao Li, Minhyuk Sung, Anastasia Dubrovina, Li Yi, and Leonidas J Guibas.
Supervised fitting of geometric primitives to 3d point clouds. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 2652–
2660, 2019.

[136] Manyi Li and Hao Zhang. D2im-net: Learning detail disentangled implicit fields from
single images. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 10246–10255, 2021.

143

[137] Ruosi Li, Lu Liu, Ly Phan, Sasakthi Abeysinghe, Cindy Grimm, and Tao Ju. Polygo-
nizing extremal surfaces with manifold guarantees. In Proceedings of ACM Symposium
on Solid and Physical Modeling, pages 189–194, 2010.

[138] Xueting Li, Sifei Liu, Kihwan Kim, Shalini De Mello, Varun Jampani, Ming-Hsuan
Yang, and Jan Kautz. Self-supervised single-view 3d reconstruction via semantic
consistency. In European Conference on Computer Vision, pages 677–693. Springer,
2020.

[139] Yiyi Liao, Simon Donne, and Andreas Geiger. Deep marching cubes: Learning explicit
surface representations. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 2916–2925, 2018.

[140] Chen-Hsuan Lin, Chen Kong, and Simon Lucey. Learning efficient point cloud genera-
tion for dense 3d object reconstruction. In AAAI Conference on Artificial Intelligence
(AAAI), 2018.

[141] Chen-Hsuan Lin, Oliver Wang, Bryan C Russell, Eli Shechtman, Vladimir G Kim,
Matthew Fisher, and Simon Lucey. Photometric mesh optimization for video-aligned
3d object reconstruction. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 969–978, 2019.

[142] Cheng Lin, Tingxiang Fan, Wenping Wang, and Matthias Nießner. Modeling 3d
shapes by reinforcement learning. In European Conference on Computer Vision, pages
545–561. Springer, 2020.

[143] Cheng Lin, Changjian Li, Yuan Liu, Nenglun Chen, Yi-King Choi, and Wenping
Wang. Point2Skeleton: Learning skeletal representations from point clouds. In CVPR,
2021.

[144] Zhi-Hao Lin, Wei-Chiu Ma, Hao-Yu Hsu, Yu-Chiang Frank Wang, and Shenlong
Wang. Neurmips: Neural mixture of planar experts for view synthesis. CVPR, 2022.

[145] David B. Lindell, Julien N.P. Martel, and Gordon Wetzstein. Autoint: Automatic
integration for fast neural rendering. CVPR, 2021.

[146] Gidi Littwin and Lior Wolf. Deep meta functionals for shape representation. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, pages
1824–1833, 2019.

[147] Feng Liu and Xiaoming Liu. 2d gans meet unsupervised single-view 3d reconstruction.
In European Conference on Computer Vision, pages 497–514. Springer, 2022.

[148] Hsueh-Ti Derek Liu, Vladimir G. Kim, Siddhartha Chaudhuri, Noam Aigerman, and
Alec Jacobson. Neural subdivision. ACM Transactions on Graphics, 2020.

[149] Minghua Liu, Xiaoshuai Zhang, and Hao Su. Meshing point clouds with predicted
intrinsic-extrinsic ratio guidance. In ECCV, pages 68–84, 2020.

[150] Shaohui Liu, Yinda Zhang, Songyou Peng, Boxin Shi, Marc Pollefeys, and Zhaopeng
Cui. Dist: Rendering deep implicit signed distance function with differentiable sphere
tracing. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 2019–2028, 2020.

144

[151] Shi-Lin Liu, Hao-Xiang Guo, Hao Pan, Peng-Shuai Wang, Xin Tong, and Yang Liu.
Deep implicit moving least-squares functions for 3d reconstruction. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
1788–1797, 2021.

[152] Shichen Liu, Tianye Li, Weikai Chen, and Hao Li. Soft rasterizer: A differentiable
renderer for image-based 3d reasoning. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 7708–7717, 2019.

[153] Shichen Liu, Shunsuke Saito, Weikai Chen, and Hao Li. Learning to infer implicit
surfaces without 3d supervision. Advances in Neural Information Processing Systems,
32, 2019.

[154] Stephen Lombardi, Tomas Simon, Jason Saragih, Gabriel Schwartz, Andreas
Lehrmann, and Yaser Sheikh. Neural volumes: Learning dynamic renderable volumes
from images. SIGGRAPH, 2019.

[155] Xiaoxiao Long, Cheng Lin, Peng Wang, Taku Komura, and Wenping Wang.
Sparseneus: Fast generalizable neural surface reconstruction from sparse views. In
Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October
23–27, 2022, Proceedings, Part XXXII, pages 210–227. Springer, 2022.

[156] Adriano Lopes and Ken Brodlie. Improving the robustness and accuracy of the march-
ing cubes algorithm for isosurfacing. TVCG, 2003.

[157] William E. Lorensen and Harvey E. Cline. Marching cubes: A high resolution 3d
surface construction algorithm. In SIGGRAPH, page 163–169, 1987.

[158] Yiming Luo, Zhenxing Mi, and Wenbing Tao. Deepdt: Learning geometry from delau-
nay triangulation for surface reconstruction. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 35, pages 2277–2285, 2021.

[159] Haggai Maron, Meirav Galun, Noam Aigerman, Miri Trope, Nadav Dym, Ersin
Yumer, Vladimir G. Kim, and Yaron Lipman. Convolutional neural networks on
surfaces via seamless toric covers. ACM TOG, 2017.

[160] Ricardo Martin-Brualla, Rohit Pandey, Shuoran Yang, Pavel Pidlypenskyi, Jonathan
Taylor, Julien Valentin, Sameh Khamis, Philip Davidson, Anastasia Tkach, Peter
Lincoln, Adarsh Kowdle, Christoph Rhemann, Dan B Goldman, Cem Keskin, Steve
Seitz, Shahram Izadi, and Sean Fanello. Lookingood: Enhancing performance capture
with real-time neural re-rendering. ACM Transactions on Graphics, 2018.

[161] Ricardo Martin-Brualla, Noha Radwan, Mehdi SM Sajjadi, Jonathan T Barron,
Alexey Dosovitskiy, and Daniel Duckworth. Nerf in the wild: Neural radiance fields
for unconstrained photo collections. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 7210–7219, 2021.

[162] Sergey V. Matveyev. Approximation of isosurface in the marching cube: ambiguity
problem. In IEEE Visualization, 1994.

145

[163] Lars Mescheder, Michael Oechsle, Michael Niemeyer, Sebastian Nowozin, and Andreas
Geiger. Occupancy networks: Learning 3d reconstruction in function space. In CVPR,
pages 4455–4465, 2019.

[164] Zhenxing Mi, Yiming Luo, and Wenbing Tao. SSRNet: Scalable 3d surface recon-
struction network. In CVPR, pages 970–979, 2020.

[165] Mateusz Michalkiewicz, Jhony K Pontes, Dominic Jack, Mahsa Baktashmotlagh, and
Anders Eriksson. Implicit surface representations as layers in neural networks. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, pages
4743–4752, 2019.

[166] Ben Mildenhall, Pratul P. Srinivasan, Rodrigo Ortiz-Cayon, Nima Khademi Kalantari,
Ravi Ramamoorthi, Ren Ng, and Abhishek Kar. Local light field fusion: Practical view
synthesis with prescriptive sampling guidelines. ACM Transactions on Graphics, 2019.

[167] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi
Ramamoorthi, and Ren Ng. Nerf: Representing scenes as neural radiance fields for
view synthesis. In ECCV, pages 405–421. Springer, 2020.

[168] Paritosh Mittal, Yen-Chi Cheng, Maneesh Singh, and Shubham Tulsiani. Autosdf:
Shape priors for 3d completion, reconstruction and generation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 306–315,
2022.

[169] Kaichun Mo, Paul Guerrero, Li Yi, Hao Su, Peter Wonka, Niloy Mitra, and Leonidas J
Guibas. Structurenet: Hierarchical graph networks for 3d shape generation. SIG-
GRAPH Asia, 2019.

[170] Kaichun Mo, Shilin Zhu, Angel X. Chang, Li Yi, Subarna Tripathi, Leonidas J. Guibas,
and Hao Su. PartNet: A large-scale benchmark for fine-grained and hierarchical part-
level 3D object understanding. In CVPR, 2019.

[171] Tom Monnier, Matthew Fisher, Alexei A. Efros, and Mathieu Aubry. Share With Thy
Neighbors: Single-View Reconstruction by Cross-Instance Consistency. In ECCV,
2022.

[172] Thomas Müller, Alex Evans, Christoph Schied, and Alexander Keller. Instant neural
graphics primitives with a multiresolution hash encoding. ACM Transactions on
Graphics, 2022.

[173] Jacob Munkberg, Jon Hasselgren, Tianchang Shen, Jun Gao, Wenzheng Chen, Alex
Evans, Thomas Müller, and Sanja Fidler. Extracting triangular 3d models, materials,
and lighting from images. In CVPR, 2022.

[174] Charlie Nash, Yaroslav Ganin, S. M. Ali Eslami, and Peter W. Battaglia. PolyGen:
an autoregressive generative model of 3d meshes. ICML, 2020.

[175] Thomas Neff, Pascal Stadlbauer, Mathias Parger, Andreas Kurz, Joerg H Mueller,
Chakravarty R Alla Chaitanya, Anton Kaplanyan, and Markus Steinberger. Donerf:
Towards real-time rendering of compact neural radiance fields using depth oracle
networks. In Computer Graphics Forum, 2021.

146

[176] Gregory M. Nielson. On marching cubes. TVCG, 2003.

[177] Gregory M. Nielson. Dual marching cubes. In IEEE Visualization, pages 489–496,
2004.

[178] Gregory M. Nielson and Bernd Hamann. The asymptotic decider: resolving the am-
biguity in marching cubes. In IEEE Visualization, 1991.

[179] Michael Niemeyer, Lars Mescheder, Michael Oechsle, and Andreas Geiger. Differen-
tiable volumetric rendering: Learning implicit 3d representations without 3d supervi-
sion. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 3504–3515, 2020.

[180] Chengjie Niu, Jun Li, and Kai Xu. Im2struct: Recovering 3d shape structure from
a single rgb image. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 4521–4529, 2018.

[181] Michael Oechsle, Lars Mescheder, Michael Niemeyer, Thilo Strauss, and Andreas
Geiger. Texture fields: Learning texture representations in function space. In Proceed-
ings of the IEEE/CVF International Conference on Computer Vision, pages 4531–
4540, 2019.

[182] Michael Oechsle, Songyou Peng, and Andreas Geiger. Unisurf: Unifying neural im-
plicit surfaces and radiance fields for multi-view reconstruction. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pages 5589–5599, 2021.

[183] OpenAI. Gpt-4 technical report, 2023.

[184] Junyi Pan, Xiaoguang Han, Weikai Chen, Jiapeng Tang, and Kui Jia. Deep mesh
reconstruction from single rgb images via topology modification networks. In Proceed-
ings of the IEEE/CVF International Conference on Computer Vision, pages 9964–
9973, 2019.

[185] Jeong Joon Park, Peter Florence, Julian Straub, Richard Newcombe, and Steven
Lovegrove. Deepsdf: Learning continuous signed distance functions for shape repre-
sentation. In CVPR, pages 165–174, 2019.

[186] Despoina Paschalidou, Luc Van Gool, and Andreas Geiger. Learning unsupervised
hierarchical part decomposition of 3d objects from a single rgb image. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
1060–1070, 2020.

[187] Despoina Paschalidou, Ali Osman Ulusoy, and Andreas Geiger. Superquadrics revis-
ited: Learning 3d shape parsing beyond cuboids. In CVPR, 2019.

[188] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmai-
son, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani,
Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala.
Pytorch: An imperative style, high-performance deep learning library. In NeurIPS,
pages 8024–8035, 2019.

147

[189] Mark Pauly, Niloy J. Mitra, Joachim Giesen, Markus H. Gross, and Leonidas J.
Guibas. Example-based 3D scan completion. In Symp. on Geometry Processing,
pages 23–32, 2005.

[190] Georgios Pavlakos, Luyang Zhu, Xiaowei Zhou, and Kostas Daniilidis. Learning to
estimate 3d human pose and shape from a single color image. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pages 459–468, 2018.

[191] Dario Pavllo, Graham Spinks, Thomas Hofmann, Marie-Francine Moens, and Aure-
lien Lucchi. Convolutional generation of textured 3d meshes. Advances in Neural
Information Processing Systems, 33:870–882, 2020.

[192] Songyou Peng, Chiyu Jiang, Yiyi Liao, Michael Niemeyer, Marc Pollefeys, and An-
dreas Geiger. Shape as points: A differentiable Poisson solver. In NeurIPS, volume 34,
2021.

[193] Songyou Peng, Michael Niemeyer, Lars Mescheder, Marc Pollefeys, and Andreas
Geiger. Convolutional occupancy networks. In ECCV, pages 523–540, 2020.

[194] Eric Penner and Li Zhang. Soft 3D reconstruction for view synthesis. ACM Transac-
tions on Graphics, 2017.

[195] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet: Deep learning
on point sets for 3d classification and segmentation. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 652–660, 2017.

[196] Charles R. Qi, Li Yi, Hao Su, and Leonidas J. Guibas. PointNet++: Deep hierarchical
feature learning on point sets in a metric space. In NeurIPS, volume 30, pages 5105–
5114, 2017.

[197] Marie-Julie Rakotosaona, Paul Guerrero, Noam Aigerman, Niloy J. Mitra, and Maks
Ovsjanikov. Learning delaunay surface elements for mesh reconstruction. In CVPR,
pages 22–31, 2021.

[198] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. Xnor-net:
Imagenet classification using binary convolutional neural networks. In ECCV, 2016.

[199] Daniel Rebain, Wei Jiang, Soroosh Yazdani, Ke Li, Kwang Moo Yi, and Andrea
Tagliasacchi. DeRF: Decomposed radiance fields. CVPR, 2021.

[200] Christian Reiser, Songyou Peng, Yiyi Liao, and Andreas Geiger. Kilonerf: Speeding
up neural radiance fields with thousands of tiny mlps. In ICCV, 2021.

[201] Edoardo Remelli, Artem Lukoianov, Stephan R. Richter, Benoît Guillard, Timur
Bagautdinov, Pierre Baque, and Pascal Fua. MeshSDF: differentiable iso-surface ex-
traction. In NeurIPS, volume 33, pages 22468–22478, 2020.

[202] Daxuan Ren, Jianmin Zheng, Jianfei Cai, Jiatong Li, Haiyong Jiang, Zhongang Cai,
Junzhe Zhang, Liang Pan, Mingyuan Zhang, Haiyu Zhao, et al. Csg-stump: A learning
friendly csg-like representation for interpretable shape parsing. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pages 12478–12487, 2021.

148

[203] Daxuan Ren, Jianmin Zheng, Jianfei Cai, Jiatong Li, and Junzhe Zhang. Extrudenet:
Unsupervised inverse sketch-and-extrude for shape parsing. In European Conference
on Computer Vision, pages 482–498. Springer, 2022.

[204] Stephan R Richter and Stefan Roth. Matryoshka networks: Predicting 3d geometry
via nested shape layers. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 1936–1944, 2018.

[205] Gernot Riegler, Ali Osman Ulusoy, Horst Bischof, and Andreas Geiger. Octnetfusion:
Learning depth fusion from data. In 2017 International Conference on 3D Vision
(3DV), pages 57–66. IEEE, 2017.

[206] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Om-
mer. High-resolution image synthesis with latent diffusion models. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
10684–10695, 2022.

[207] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks
for biomedical image segmentation. In International Conference on Medical image
computing and computer-assisted intervention, pages 234–241. Springer, 2015.

[208] Darius Rückert, Linus Franke, and Marc Stamminger. Adop: Approximate differen-
tiable one-pixel point rendering. arXiv preprint arXiv:2110.06635, 2021.

[209] Sara Sabour, Nicholas Frosst, and Geoffrey E. Hinton. Dynamic routing between
capsules. In NeurIPS, 2017.

[210] Shunsuke Saito, Zeng Huang, Ryota Natsume, Shigeo Morishima, Angjoo Kanazawa,
and Hao Li. Pifu: Pixel-aligned implicit function for high-resolution clothed human
digitization. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pages 2304–2314, 2019.

[211] Shunsuke Saito, Tomas Simon, Jason Saragih, and Hanbyul Joo. Pifuhd: Multi-level
pixel-aligned implicit function for high-resolution 3d human digitization. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 84–93, 2020.

[212] Sara Fridovich-Keil and Alex Yu, Matthew Tancik, Qinhong Chen, Benjamin Recht,
and Angjoo Kanazawa. Plenoxels: Radiance fields without neural networks. In CVPR,
2022.

[213] Scott Schaefer, Tao Ju, and Joe Warren. Manifold dual contouring. IEEE TVCG,
13(3):610–619, 2007.

[214] Scott Schaefer and Joe Warren. Dual marching cubes: primal contouring of dual grids.
In Pacific Conference on Computer Graphics and Applications (PG), 2004.

[215] Ruwen Schnabel, Patrick Degener, and Reinhard Klein. Completion and reconstruc-
tion with primitive shapes. Computer Graphics Forum, 28:503–512, 2009.

[216] John Schreiner, Carlos E. Scheidegger, and Claudio T. Silva. High-quality extraction
of isosurfaces from regular and irregular grids. TVCG, 2006.

149

[217] R Schumacher. Study for applying computer-generated images to visual simulation,
volume 69. Air Force Human Resources Laboratory, Air Force Systems Command,
1969.

[218] Gopal Sharma, Rishabh Goyal, Difan Liu, Evangelos Kalogerakis, and Subhransu
Maji. Csgnet: Neural shape parser for constructive solid geometry. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, pages 5515–5523,
2018.

[219] Gopal Sharma, Difan Liu, Subhransu Maji, Evangelos Kalogerakis, Siddhartha
Chaudhuri, and Radomír Měch. Parsenet: A parametric surface fitting network for 3d
point clouds. In European Conference on Computer Vision, pages 261–276. Springer,
2020.

[220] Nicholas Sharp and Maks Ovsjanikov. Pointtrinet: Learned triangulation of 3d point
sets. In European Conference on Computer Vision, pages 762–778. Springer, 2020.

[221] Chao-Hui Shen, Hongbo Fu, Kang Chen, and Shi-Min Hu. Structure recovery by part
assembly. ACM Transactions on Graphics, 31(6):1–11, 2012.

[222] Tianchang Shen, Jun Gao, Kangxue Yin, Ming-Yu Liu, and Sanja Fidler. Deep march-
ing tetrahedra: a hybrid representation for high-resolution 3d shape synthesis. Ad-
vances in Neural Information Processing Systems, 34:6087–6101, 2021.

[223] Yue Shi, Bingbing Ni, Jinxian Liu, Dingyi Rong, Ye Qian, and Wenjun Zhang. Ge-
ometric granularity aware pixel-to-mesh. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, pages 13097–13106, 2021.

[224] Yawar Siddiqui, Justus Thies, Fangchang Ma, Qi Shan, Matthias Nießner, and Angela
Dai. Retrievalfuse: Neural 3d scene reconstruction with a database. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, pages 12568–12577,
2021.

[225] Ayan Sinha, Jing Bai, and Karthik Ramani. Deep learning 3d shape surfaces using
geometry images. In ECCV, 2016.

[226] Ayan Sinha, Asim Unmesh, Qixing Huang, and Karthik Ramani. Surfnet: Generating
3d shape surfaces using deep residual networks. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 6040–6049, 2017.

[227] Vincent Sitzmann, Julien NP Martel, Alexander W. Bergman, David B. Lindell, and
Gordon Wetzstein. Implicit neural representations with periodic activation functions.
In NeurIPS, volume 33, pages 7462–7473, 2020.

[228] Dmitriy Smirnov, Mikhail Bessmeltsev, and Justin Solomon. Learning manifold patch-
based representations of man-made shapes. In International Conference on Learning
Representations, 2020.

[229] Hang Su, Subhransu Maji, Evangelos Kalogerakis, and Erik Learned-Miller. Multi-
view convolutional neural networks for 3d shape recognition. In ICCV, 2015.

150

[230] Cheng Sun, Min Sun, and Hwann-Tzong Chen. Direct voxel grid optimization: Super-
fast convergence for radiance fields reconstruction. CVPR, 2022.

[231] Jiaming Sun, Xi Chen, Qianqian Wang, Zhengqi Li, Hadar Averbuch-Elor, Xiaowei
Zhou, and Noah Snavely. Neural 3d reconstruction in the wild. In ACM SIGGRAPH
2022 Conference Proceedings, pages 1–9, 2022.

[232] Qingyang Tan, Lin Gao, Yu-Kun Lai, and Shihong Xia. Variational autoencoders for
deforming 3D mesh models. In CVPR, 2018.

[233] Jia-Heng Tang, Weikai Chen, Bo Wang, Songrun Liu, Bo Yang, Lin Gao, et al. Oct-
field: Hierarchical implicit functions for 3d modeling. Advances in Neural Information
Processing Systems, 34:12648–12660, 2021.

[234] Jiapeng Tang, Xiaoguang Han, Junyi Pan, Kui Jia, and Xin Tong. A skeleton-bridged
deep learning approach for generating meshes of complex topologies from single rgb
images. In Proceedings of the ieee/cvf conference on computer vision and pattern
recognition, pages 4541–4550, 2019.

[235] Jiapeng Tang, Jiabao Lei, Dan Xu, Feiying Ma, Kui Jia, and Lei Zhang. Sa-convonet:
Sign-agnostic optimization of convolutional occupancy networks. In ICCV, pages
6484–6493, 2021.

[236] Maxim Tatarchenko, Alexey Dosovitskiy, and Thomas Brox. Octree generating net-
works: Efficient convolutional architectures for high-resolution 3d outputs. In Pro-
ceedings of the IEEE international conference on computer vision, pages 2088–2096,
2017.

[237] Maxim Tatarchenko, Stephan R Richter, René Ranftl, Zhuwen Li, Vladlen Koltun,
and Thomas Brox. What do single-view 3d reconstruction networks learn? In CVPR,
2019.

[238] Justus Thies, Michael Zollhöfer, and Matthias Nießner. Deferred neural rendering:
Image synthesis using neural textures. ACM Transactions on Graphics, 2019.

[239] Shubham Tulsiani, Hao Su, Leonidas J Guibas, Alexei A Efros, and Jitendra Malik.
Learning shape abstractions by assembling volumetric primitives. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, pages 2635–2643,
2017.

[240] Benjamin Ummenhofer and Vladlen Koltun. Adaptive surface reconstruction with
multiscale convolutional kernels. In Proceedings of the IEEE/CVF International Con-
ference on Computer Vision, pages 5651–5660, 2021.

[241] Mikaela Angelina Uy, Yen-Yu Chang, Minhyuk Sung, Purvi Goel, Joseph G Lam-
bourne, Tolga Birdal, and Leonidas J Guibas. Point2cyl: Reverse engineering 3d
objects from point clouds to extrusion cylinders. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 11850–11860, 2022.

[242] Mikaela Angelina Uy, Jingwei Huang, Minhyuk Sung, Tolga Birdal, and Leonidas
Guibas. Deformation-aware 3d model embedding and retrieval. In European Confer-
ence on Computer Vision, pages 397–413. Springer, 2020.

151

[243] Stefan Van der Walt, Johannes L Schönberger, Juan Nunez-Iglesias, François
Boulogne, Joshua D Warner, Neil Yager, Emmanuelle Gouillart, and Tony Yu. scikit-
image: image processing in python. PeerJ, 2014.

[244] Allen Van Gelder and Jane Wilhelms. Topological considerations in isosurface gener-
ation. ACM Transactions on Graphics, 1994.

[245] Gokul Varadhan, Shankar Krishnan, Young J. Kim, and Dinesh Manocha. Feature-
sensitive subdivision and isosurface reconstruction. In IEEE Visualization, 2003.

[246] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in
neural information processing systems, 30, 2017.

[247] Dor Verbin, Peter Hedman, Ben Mildenhall, Todd Zickler, Jonathan T. Barron, and
Pratul P. Srinivasan. Ref-NeRF: Structured view-dependent appearance for neural
radiance fields. CVPR, 2022.

[248] Dan Wang, Xinrui Cui, Xun Chen, Zhengxia Zou, Tianyang Shi, Septimiu Salcudean,
Z Jane Wang, and Rabab Ward. Multi-view 3d reconstruction with transformers. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, pages
5722–5731, 2021.

[249] Nanyang Wang, Yinda Zhang, Zhuwen Li, Yanwei Fu, Wei Liu, and Yu-Gang Jiang.
Pixel2mesh: Generating 3d mesh models from single rgb images. In Proceedings of
the European conference on computer vision (ECCV), pages 52–67, 2018.

[250] Peng Wang, Lingjie Liu, Yuan Liu, Christian Theobalt, Taku Komura, and Wenping
Wang. Neus: Learning neural implicit surfaces by volume rendering for multi-view
reconstruction. Advances in Neural Information Processing Systems, 34:27171–27183,
2021.

[251] Peng-Shuai Wang, Yang Liu, Yu-Xiao Guo, Chun-Yu Sun, and Xin Tong. O-cnn:
Octree-based convolutional neural networks for 3d shape analysis. ACM Transactions
On Graphics (TOG), 36(4):1–11, 2017.

[252] Peng-Shuai Wang, Yang Liu, and Xin Tong. Mesh denoising via cascaded normal
regression. ACM Transactions on Graphics, 2016.

[253] Peng-Shuai Wang, Yang Liu, and Xin Tong. Dual octree graph networks for learning
adaptive volumetric shape representations. ACM Trans. Graph., 41(4), jul 2022.

[254] Peng-Shuai Wang, Chun-Yu Sun, Yang Liu, and Xin Tong. Adaptive o-cnn: A patch-
based deep representation of 3d shapes. ACM Transactions on Graphics, 37(6):1–11,
2018.

[255] Weiyue Wang, Duygu Ceylan, Radomir Mech, and Ulrich Neumann. 3dn: 3d defor-
mation network. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 1038–1046, 2019.

[256] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma, Michael M Bronstein, and
Justin M Solomon. Dynamic graph cnn for learning on point clouds. Acm Transactions
On Graphics (tog), 38(5):1–12, 2019.

152

[257] Zhou Wang, A.C. Bovik, H.R. Sheikh, and E.P. Simoncelli. Image quality assessment:
from error visibility to structural similarity. IEEE Transactions on Image Processing,
2004.

[258] Chao Wen, Yinda Zhang, Zhuwen Li, and Yanwei Fu. Pixel2mesh++: Multi-view
3d mesh generation via deformation. In Proceedings of the IEEE/CVF international
conference on computer vision, pages 1042–1051, 2019.

[259] Francis Williams, Zan Gojcic, Sameh Khamis, Denis Zorin, Joan Bruna, Sanja Fidler,
and Or Litany. Neural fields as learnable kernels for 3d reconstruction. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
18500–18510, 2022.

[260] Francis Williams, Teseo Schneider, Claudio Silva, Denis Zorin, Joan Bruna, and
Daniele Panozzo. Deep geometric prior for surface reconstruction. In CVPR, pages
10130–10139, 2019.

[261] Francis Williams, Matthew Trager, Joan Bruna, and Denis Zorin. Neural splines: Fit-
ting 3d surfaces with infinitely-wide neural networks. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 9949–9958, 2021.

[262] Suttisak Wizadwongsa, Pakkapon Phongthawee, Jiraphon Yenphraphai, and Supa-
sorn Suwajanakorn. Nex: Real-time view synthesis with neural basis expansion.
CVPR, 2021.

[263] Markus Worchel, Rodrigo Diaz, Weiwen Hu, Oliver Schreer, Ingo Feldmann, and Peter
Eisert. Multi-view mesh reconstruction with neural deferred shading. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
6187–6197, 2022.

[264] Jiajun Wu, Chengkai Zhang, Tianfan Xue, Bill Freeman, and Josh Tenenbaum. Learn-
ing a probabilistic latent space of object shapes via 3d generative-adversarial modeling.
In NeurIPS, 2016.

[265] Jiajun Wu, Chengkai Zhang, Xiuming Zhang, Zhoutong Zhang, William T Free-
man, and Joshua B Tenenbaum. Learning shape priors for single-view 3d completion
and reconstruction. In Proceedings of the European Conference on Computer Vision
(ECCV), pages 646–662, 2018.

[266] Liwen Wu, Jae Yong Lee, Anand Bhattad, Yuxiong Wang, and David Forsyth. Diver:
Real-time and accurate neural radiance fields with deterministic integration for volume
rendering. CVPR, 2022.

[267] Rundi Wu, Chang Xiao, and Changxi Zheng. Deepcad: A deep generative network
for computer-aided design models. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 6772–6782, 2021.

[268] Rundi Wu, Yixin Zhuang, Kai Xu, Hao Zhang, and Baoquan Chen. Pq-net: A genera-
tive part seq2seq network for 3d shapes. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 829–838, 2020.

153

[269] Shangzhe Wu, Christian Rupprecht, and Andrea Vedaldi. Unsupervised learning of
probably symmetric deformable 3d objects from images in the wild. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
1–10, 2020.

[270] Xiuchao Wu, Jiamin Xu, Zihan Zhu, Hujun Bao, Qixing Huang, James Tompkin, and
Weiwei Xu. Scalable neural indoor scene rendering. ACM Transactions on Graphics,
2022.

[271] Zhijie Wu, Xiang Wang, Di Lin, Dani Lischinski, Daniel Cohen-Or, and Hui Huang.
SAGNet: Structure-aware generative network for 3D-shape modeling. SIGGRAPH,
2019.

[272] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xiaoou Tang,
and Jianxiong Xiao. 3d shapenets: A deep representation for volumetric shapes. In
CVPR, 2015.

[273] Geoff Wyvill, Craig McPheeters, and Brian Wyvill. Data structure for soft objects.
The Visual Computer, 2:227–234, 1986.

[274] Haozhe Xie, Hongxun Yao, Xiaoshuai Sun, Shangchen Zhou, and Shengping Zhang.
Pix2vox: Context-aware 3d reconstruction from single and multi-view images. In
Proceedings of the IEEE/CVF international conference on computer vision, pages
2690–2698, 2019.

[275] Yiheng Xie, Towaki Takikawa, Shunsuke Saito, Or Litany, Shiqin Yan, Numair Khan,
Federico Tombari, James Tompkin, Vincent Sitzmann, and Srinath Sridhar. Neural
fields in visual computing and beyond. In Computer Graphics Forum, volume 41,
pages 641–676. Wiley Online Library, 2022.

[276] Qiangeng Xu, Weiyue Wang, Duygu Ceylan, Radomir Mech, and Ulrich Neumann.
Disn: Deep implicit surface network for high-quality single-view 3d reconstruction.
Advances in Neural Information Processing Systems, 32, 2019.

[277] Qiangeng Xu, Zexiang Xu, Julien Philip, Sai Bi, Zhixin Shu, Kalyan Sunkavalli, and
Ulrich Neumann. Point-nerf: Point-based neural radiance fields. CVPR, 2022.

[278] Yifan Xu, Tianqi Fan, Yi Yuan, and Gurprit Singh. Ladybird: Quasi-monte carlo
sampling for deep implicit field based 3d reconstruction with symmetry. In European
Conference on Computer Vision, pages 248–263. Springer, 2020.

[279] Siming Yan, Zhenpei Yang, Chongyang Ma, Haibin Huang, Etienne Vouga, and Qix-
ing Huang. Hpnet: Deep primitive segmentation using hybrid representations. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, pages
2753–2762, 2021.

[280] Yaoqing Yang, Chen Feng, Yiru Shen, and Dong Tian. Foldingnet: point cloud auto-
encoder via deep grid deformation. In CVPR, 2018.

[281] Yuan Yao, Nico Schertler, Enrique Rosales, Helge Rhodin, Leonid Sigal, and Alla
Sheffer. Front2back: Single view 3d shape reconstruction via front to back predic-
tion. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 531–540, 2020.

154

[282] Lior Yariv, Jiatao Gu, Yoni Kasten, and Yaron Lipman. Volume rendering of neural
implicit surfaces. Advances in Neural Information Processing Systems, 34:4805–4815,
2021.

[283] Lior Yariv, Yoni Kasten, Dror Moran, Meirav Galun, Matan Atzmon, Basri Ronen,
and Yaron Lipman. Multiview neural surface reconstruction by disentangling geom-
etry and appearance. Advances in Neural Information Processing Systems, 33:2492–
2502, 2020.

[284] Jianglong Ye, Yuntao Chen, Naiyan Wang, and Xiaolong Wang. Gifs: Neural im-
plicit function for general shape representation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 12829–12839, 2022.

[285] Li Yi, Vladimir G Kim, Duygu Ceylan, I Shen, Mengyan Yan, Hao Su, Cewu Lu,
Qixing Huang, Alla Sheffer, Leonidas Guibas, et al. A scalable active framework for
region annotation in 3D shape collections. SIGGRAPH Asia, 35(6), 2016.

[286] Kangxue Yin, Zhiqin Chen, Hui Huang, Daniel Cohen-Or, and Hao Zhang. LO-
GAN: Unpaired shape transform in latent overcomplete space. ACM Transactions on
Graphics, 2019.

[287] Kangxue Yin, Hui Huang, Daniel Cohen-Or, and Hao Zhang. P2P-NET: Bidirectional
point displacement net for shape transform. ACM TOG, 2018.

[288] Alex Yu, Ruilong Li, Matthew Tancik, Hao Li, Ren Ng, and Angjoo Kanazawa.
PlenOctrees for real-time rendering of neural radiance fields. In ICCV, 2021.

[289] Fenggen Yu, Zhiqin Chen, Manyi Li, Aditya Sanghi, Hooman Shayani, Ali Mahdavi-
Amiri, and Hao Zhang. Capri-net: Learning compact cad shapes with adaptive primi-
tive assembly. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 11768–11778, 2022.

[290] Lequan Yu, Xianzhi Li, Chi-Wing Fu, Daniel Cohen-Or, and Pheng-Ann Heng. PU-
Net: Point cloud upsampling network. In CVPR, 2018.

[291] Zehao Yu, Songyou Peng, Michael Niemeyer, Torsten Sattler, and Andreas Geiger.
Monosdf: Exploring monocular geometric cues for neural implicit surface reconstruc-
tion. Advances in Neural Information Processing Systems (NeurIPS), 2022.

[292] Jason Zhang, Gengshan Yang, Shubham Tulsiani, and Deva Ramanan. Ners: Neural
reflectance surfaces for sparse-view 3d reconstruction in the wild. Advances in Neural
Information Processing Systems, 34:29835–29847, 2021.

[293] Jingyang Zhang, Yao Yao, Shiwei Li, Tian Fang, David McKinnon, Yanghai Tsin, and
Long Quan. Critical regularizations for neural surface reconstruction in the wild. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion, pages 6270–6279, 2022.

[294] Jingyang Zhang, Yao Yao, and Long Quan. Learning signed distance field for multi-
view surface reconstruction. In Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision, pages 6525–6534, 2021.

155

[295] Kai Zhang, Gernot Riegler, Noah Snavely, and Vladlen Koltun. Nerf++: Analyzing
and improving neural radiance fields. arXiv preprint arXiv:2010.07492, 2020.

[296] Nan Zhang, Wei Hong, and Arie Kaufman. Dual contouring with topology-preserving
simplification using enhanced cell representation. In IEEE Visualization, 2004.

[297] Richard Zhang, Phillip Isola, Alexei A. Efros, Eli Shechtman, and Oliver Wang. The
unreasonable effectiveness of deep features as a perceptual metric. In CVPR, 2018.

[298] Xiuming Zhang, Zhoutong Zhang, Chengkai Zhang, Josh Tenenbaum, Bill Freeman,
and Jiajun Wu. Learning to reconstruct shapes from unseen classes. Advances in
neural information processing systems, 31, 2018.

[299] Yuxuan Zhang, Wenzheng Chen, Huan Ling, Jun Gao, Yinan Zhang, Antonio Tor-
ralba, and Sanja Fidler. Image gans meet differentiable rendering for inverse graphics
and interpretable 3d neural rendering. In International Conference on Learning Rep-
resentations, 2020.

[300] Wenbin Zhao, Jiabao Lei, Yuxin Wen, Jianguo Zhang, and Kui Jia. Sign-agnostic
implicit learning of surface self-similarities for shape modeling and reconstruction
from raw point clouds. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 10256–10265, 2021.

[301] Qian-Yi Zhou, Jaesik Park, and Vladlen Koltun. Open3D: A modern library for 3D
data processing. arXiv preprint arXiv:1801.09847, 2018.

[302] Qingnan Zhou and Alec Jacobson. Thingi10K: a dataset of 10,000 3D-printing models.
arXiv preprint arXiv:1605.04797, 2016.

[303] Tinghui Zhou, Richard Tucker, John Flynn, Graham Fyffe, and Noah Snavely. Stereo
magnification: Learning view synthesis using multiplane images. ACM Transactions
on Graphics, 2018.

[304] Chenyang Zhu, Kai Xu, Siddhartha Chaudhuri, Renjiao Yi, and Hao Zhang. SCORES:
Shape composition with recursive substructure priors. ACM TOG, 2018.

[305] Chuhang Zou, Ersin Yumer, Jimei Yang, Duygu Ceylan, and Derek Hoiem. 3D-PRNN:
Generating shape primitives with recurrent neural networks. In ICCV, 2017.

156

	Declaration of Committee
	Abstract
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Motivation and Problem Statement
	Challenges
	Representing explicit meshes in neural networks
	Learning mesh tessellations with pseudo or no ground truth

	Contributions
	Generating compact meshes with neural networks
	Data-driven iso-surfacing algorithm
	Unified mesh reconstruction framework
	Real-time NeRF based on textured polygon meshes

	Thesis Organization

	Background
	3D Representations for Neural Networks
	Deformation-based
	Set of primitives
	Constructive solid geometry
	Sketch and extrude
	Primitive detection
	Grid mesh
	Voxels
	Neural implicit
	Others

	Reconstruction from Voxels
	Shape super-resolution
	Shape parsing

	Reconstruction from Point Clouds
	Explicit representation
	Implicit representation

	Reconstruction from Single Images
	With 3D supervision
	With 2D supervision

	Reconstruction from Multi-View Images
	Differentiable rendering on explicit representation
	Surface rendering on implicit representation
	Volume rendering on implicit representation

	BSP-Net: Generating Compact Meshes via Binary Space Partitioning
	Introduction
	Related work
	Method
	Training Stage 1 – Continuous
	Training Stage 2 – Discrete
	Algorithmic and training details

	Results and evaluation
	Auto-encoding 2D shapes
	Auto-encoding 3D shapes
	Single view reconstruction (SVR)

	Conclusions

	Neural Marching Cubes
	Introduction
	Related work
	Marching Cubes (MC) and Variants
	Other Isosurfacing Algorithms
	Neural Geometry Learning

	Neural Marching Cubes
	2D NMC: representation in a 2D square
	3D NMC: representation in a 3D cube
	3D NMC: tessellating a 3D cube
	Data preparation
	NMC network and objective functions

	Results and evaluation
	Conclusions

	Neural Dual Contouring
	Introduction
	Related work
	Isosurfacing and differentiable reconstruction
	Mesh reconstruction from point clouds
	Dual Contouring (DC)

	Method
	Encoders
	Training data preparation
	Training losses
	Post-processing
	Training details

	Results and evaluation
	Datasets, training, and evaluation metrics
	Metrics
	Reconstruction from SDF
	Reconstruction from UDF
	Reconstruction from binary voxels
	Reconstruction from point clouds
	Reconstruction from noisy real scans

	Conclusions

	MobileNeRF: Exploiting the Polygon Rasterization Pipeline for Efficient Neural Field Rendering on Mobile Architectures
	Introduction
	Related work
	Method
	Continuous training (Training Stage 1)
	Binarized training (Training Stage 2)
	Discretization (Training Stage 3)
	Anti-aliasing
	Rendering
	Quadrature details
	Initial meshes
	Network and Training details

	Results and evaluation
	Comparisons
	Ablation studies
	Scene editing

	Conclusions

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography

