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Abstract. First we introduce the concept of graph animations as a se-
quence of evolving graphs and a generic algorithm which computes a
Foresighted Layout for dynamically drawing these graphs while preserv-
ing the mental map. The algorithm is generic in the sense that it takes a
static graph drawing algorithm as a parameter. In other words, trees can
be animated with a static tree layouter, graphs with a static Sugiyama-
style layouter or a spring embedder, etc. Second we discuss applications
of Foresighted Layout in algorithm animation and visualization of navi-
gation behaviour.

1 Introduction

Most work on graph drawing addresses the problem of layouting a single, static
graph. Algorithms have been developed for different classes of graphs (trees,
dags, digraphs, ...) and different aesthetic criteria, like minimizing crossings and
bends or maximizing symmetries [1,7]. But the world is full of dynamic graphs,
e.g. animations of graph algorithms or algorithms which work on pointered data
structures, dynamic visualisations of resource allocation in operating systems
and project management, network connectivity and the constantly changing hy-
perlink structure of the web.

Dynamic graph drawing addresses the problem of layouting graphs which
evolve over time by adding and deleting edges and nodes. This results in an
additional aesthetic criterium known as “preserving the mental map” [8].

The ad-hoc approach is to compute a new layout for the whole graph after
each update using those algorithms developed for static graph layout. In most
cases this approach produces layouts which do not preserve the mental map.
The common solution is to apply a technique known from key-frame animations
called inbetweening to achieve “smooth” transitions between subsequent graphs,
i.e. animations show how nodes are moved to their new positions. This approach
yields decent results if only a few nodes change their position or whole clusters
are moved without substantially changing their inner layout. But in most cases
the animations are just nice and do neither convey much information nor help to
preserve the mental map. Incremental algorithms try to change the layout just
as far as to accomodate the update. Unfortunately, in the worst case they have
to compute the layout of the whole graph.
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In this paper we present a totally different approach. Given a sequence of
n graphs we compute a global layout which induces a layout for each of the n
graphs. A unique features of this approach is that once they are drawn on the
screen neither nodes nor the bends of edges change their positions in graphs
subsequently drawn. Using static graph layouters, which accepts fixed node po-
sitions as an additional input, it is also possible that only the bends change their
positions. We call the algorithm Foresighted Layout as it knows the future of the
graph, i.e. the next n — 1 modifications.

In particular applications can be visualized post mortem using information
stored in log files. In Sections 5 and 6 we discuss two applications of Foresighted
Layout. First in the area of algorithm animation we used it to visualize the
generation of finite state automata which are drawn as state transition diagrams.
Second, in the area of web visualization, we have implemented a portal which
logs the web pages and links visited by a user. We visualize these logs later to
analyse the navigation behavior of different users.

2 Graph Animations

In the following we consider graphs with multi-edges. For this we add unique
identifiers to each edge.

Definition 1 (Graph). A graph g = (V, E) consists of a set of nodes V, a set
of edges E CV xV x Id and for all (vi,v2,n), (v],v4,m) E E:n=m= v, =
vy, vy = V).

We define a graph animation as a sequence of graphs. A graph results from
modifications (adding or deleting nodes and edges) of its preceding graph. Usu-
ally subsequent graphs in a graph animation share some nodes and edges. But
in the worst case each graph can consist of totally different nodes and edges.

Definition 2 (Graph Animation). A graph animation G is a sequence G =
[91,---,9n] of graphs with G; = (V;, E;) and for all (vi,v2,n) € Ep, (vy,v),m) €
E. withl<p,r<n:n=m= v =v],vs =0}

The restriction in this definition ensures that edge identifiers are used consis-
tently in all graphs, i.e. for edges between the same nodes.

3 Foresighted Layout

A first approach to layout a graph animation is to compute its super graph and
to reuse its layout information for the layout of the individual graphs in the
animation.

Definition 3 (Super Graph). Let G be a graph animation G = [g1,--.,Gn]
with g; = (V;, E;), then the super graph G of G is defined as G = (V, E) with
V=Ui,Viand E=J._, E;.



In general the super graph will be large and there will be much unused
space in the layout of each individual graph. To avoid this Foresighted Layout
constructs on the basis of the super graph a smaller graph by taking into account
the live times of the nodes and edges in the graph animation.

Definition 4 (Live Time). Let G = [g1,--.,9s] be a graph animation and
G = (V,E) its super graph where g; = (V;, E;). Then T(v) = {ilv € V;} are the
live times of the node v € V and T(n) = {i|(v,w,n) € E;} are the live times
of the edge identified by n.

3.1 Graph Animation Partitionings

Definition 5 (Graph Partitioning). Let g = (V, E) be a graph and VCPWV)
and E CV xV x1d. A graph § = (V,E) is a graph partitioning of g iff
the nodes in V are disjoint, U sv =V and (01,02,n) € E & Fvy, € 01 and

vy € U3 : (v1,v2,n) € E. We call E the set of edges induced by V.

In other words, Visa partitioning of V. Each node in 1% represents one or
more nodes from V and all edges between two nodes in V are converted into
edges between the representatives of the two nodes.

Definition 6 (Graph Animation Partitioning GAP). Let G = [g1,. .., gn]
with g; = (Vi, E;) be a graph animation and G = (‘7 E) be the super graph of
G. A graph partitioning § = (V, E) of G where V = {P1,...,P;} is a graph
animation partitioning of G iff v,v' € P, = T(v)NT(v") = 0.

We call § a minimal GAP of G, if there exists no GAP of G with less nodes.

In a GAP nodes with disjoint live times are grouped together. Unfortunately,
the problem of computing a minimal GAP (hence mGAPP) is N'P-complete. We
have proven the N"P-completeness of mGAPP and mRGAPP (see Section 3.3)
by reduction on the minimal graph coloring problem [2,6]. Now we present an
algorithm which computes a GAP in O(n?) where n is the number of nodes of
the super graph.

Algorithm 1 (Computing a GAP).
W:=V,P:=[],p:=0
While v € W do
If 3j : T(v) N T(P;) = 0 then
Py = P U{v},T(P}) = T(P,) UT(v)
else
p:=p+ 1B :={v},T(P):=T(v)
W =W —{v}



3.2 Strategies for Computing a GAP

From an aesthetical point of view it is not too bad that we do not compute
minimal GAP’s. A minimal GAP is often not the best choice as we pay for
the minimal number of nodes by an increased number of edge crossings. In
Algorithm 1 we have not specified in which order the life times of the node v
and the already computed partitions P; are compared, i.e. how to find a j such
that T'(v)NT(P;) = 0. In our implementation we can choose one of the following
strategies which in general yield different GAPs:

Search the list from P; to Pp.

Search the list from P, to P;.

Add v to the partition with the smallest number of nodes.

Only allow a limited number of nodes in a partition. If there is no partition
with less nodes, then create a new partition.

Only allow a limited number of edges in a partition.

6. Give priority to nodes with induced edges to the same already computed
partitions.
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3.3 Reduced Graph Animation Partitionings

In a GAP the number of nodes of the super graph of a graph animation is
reduced. In a similar way, the number of edges can be reduced.

Definition 7 (Reduced Graph Animation Partitioning RGAP). Let
G = [g1,---,9n] with g; = (Vi, E;) be a graph animation and g = (V,E) be
a GAP of G. The graph g = (V,E), where E CV x V x P(Id), is a reduced
GAP, iff V(01,02,{m1,...,mp}) € E the following holds:

(61,03, M), (01,03, m;) € E:T(ms) NT(m;) =0 for 1 <i<j<k

We call g a minimal RGAP of G, if there exists no RGAP of G with less edges.

An edge (01,02, {m1,...,my}) of the RGAP represents k edges which exist at
different times, i.e. in different graphs of the graph animation, between a node
in v; and vs. But it does not represent two or more multi-edges which exist at
the same time; they can not be represented by a single edge in the RGAP. Also
the problem of computing a minimal RGAP (hence mRGAPP) is N'P-complete.
As computing minimal RGAPs is NP-complete, we present a faster algorithm
(O(m?) where m = |E|) which does not compute minimal RGAPs, but yields
good results in practice, i.e. RGAPs with small numbers of edges. The algorithm
actually computes the partitioning of the edge identifiers for an RGAP.

Algorithm 2 (Computing a RGAP).
W = {my,...,my}, i.e. the set of all identifiers occuring in E
P:= [],p =0
While n € W do
Let (v,w,n) be the edge identified by n.
p:=p+1,P,:={n},T(P) :=T(n)



While 3m € W with (v,w,m) and T(P,) NT(m) = @ then
P,:=P,U{m},T(Pp) :==T(P,) UT(m), W :=W — {m}
W =W —{n}

3.4 Algorithm

After we have seen how to compute RGAPs, we now show how they can be used
in combination with a static graph layouter to draw a sequence of graphs while
preserving the mental map.

Algorithm 3 (Forsighted Layout).
foresightedLayout([gy,.. ., gk], staticLayouter())
{ g =computeGAP(gy,...,gx)
g =computeRGAP(g)
layout=staticLayouter(g)
fori=1tok
drawGraph(g;, layout)

We call the static layouter to compute a layout of the RGAP of the graph
animation. We assume that the static layouter returns a layout, i.e. a data struc-
ture containing the positions of each node and polylines (or bends) for each edge.
The function drawGraph () gets this data structure and a graph of the graph an-
imation. For each node in the graph it uses the layout information of its super
node, i.e. the node in the RGAP it is a member of. For each edge it uses the
layout information of the bends of the edge in the RGAP which contains its
identifier.

4 TImplementation

We have implemented Foresighted Layout in Java as part of an API which we
use for algorithm animations [5]. The class AnimatedGraph of this API has the
following interface:

class AnimatedGraph {
public AnimatedGraph(GView view)
public void insertNode(Node n)
public void insertEdge(Edge e)
public void deleteNode(Node n)
public void deleteEdge(Edge e)

public void snapshot()
public void play()

public void mnext()
public void back()



public void perform(Object target, String methodname, Object arg)
throws NoSuchMethodException
public void perform(Object target, String methodname, Object arg,
Object reverseTarget, String reverseMethodname,
Object reverselArg)
throws NoSuchMethodException

The class provides methods to build and modify a graph, to record a graph
animation by doing snapshots of individual graphs and replay the animation
afterwards.

A node can be a specialization of any AWT component which has to imple-
ment a certain interface (a few additional methods). Thus it is also possible to
draw a graph in a node of a graph again. As the nodes can be AWT components,
one can also destructively change attributes of these objects during the recording
sessions. To defer these changes until the animation is replayed, such changes
must be done using the method perform(), which puts the method calls into a
data structure and invokes them later using Java Reflection.

The basic idea of the static layout algorithm used in our examples is to divide
the nodes into several levels. Then the algorithm computes the relative positions
of the nodes within these levels, so that edge crossings are minimized [11,9].
Ideally this method can be used for directed graphs, because the direction of the
edges can be used for the layouting process.

4.1 Drawing Graphs in 4 Dimensions

In addition to showing the different graphs in a graph animation one after an-
other in 2D, we have implemented a 3D viewer in Java3D which uses the third
dimension as a time axis. As a result we can show several graphs simultaneously
in a history view. In addition the 3D viewer can show the supergraph in the
background, see Figure 3. Finally it allows to interact and customize the view
in various ways including recolouring, translating and rotating the graph.

5 Algorithm Animation

Algorithm animation is one of the most prominent areas of software visualiza-
tion. The GaniFA applet visualizes and animates several generation algorithms
from automata theory including the generation of a non-deterministic finite au-
tomaton (NFA) from a regular expression RE [12]. We have included GaniFA
into an electronic textbook on automata theory to allow interactive exercises
[3-5].

In case of visualizing transition diagrams of finite automata our static layout
algorithm is a good choice, but the algorithm RE — NFA changes the graph
successively. Animations of algorithms which change graphs, i.e. add or delete
nodes and edges, are often very confusing, because after each change a new
layout of the current graph is computed. In this new layout nodes are moved to
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Fig. 1. Ad-hoc and foresighted layout of the intermediate and final NFA for (a|b)”.

different places although the algorithm didn’t actually change these nodes. As a
result it is not clear to the user what changes of the graph are due to the graph
algorithm and what changes are due to the layout algorithm.

The lower part of Figure 1 shows how Foresighted Layout can be used to
animate the conversion of a regular expression (a|b)* into an appropriate nonde-
terministic finite state automaton (RE — NFA). In contrast to the upper part
of Figure 1, which shows the same conversion, this visualization is significantly
more clear because once created, a node doesn’t change its position.

6 Visualization of Navigation Behavior

As a user browses through web pages he unfolds a subgraph of the web. As he
moves from one page to another, new pages become directly accessible as hy-
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perlinks, whereas those which have been directly accessible before, might not be
accessible from the current page. To analyse the browsing or navigation behavior
of one or several users we visualize the subgraphs which they are currently aware
of. We can visualize the subgraphs of different users at the same time sharing
nodes, if these represent the same web page. The edges in each subgraph are
drawn in the users color. Thus we see when they visit the same page or have a
links to the same pages. In Figure 2 we see, that both users are currently on web
page 2 as indicated by the two circles with the colors of the users in node 2.

There are various ways to acquire the necessary information in log files. We
have implemented a web page, which we call portal, which logs the web pages
and links visited by a user who enters our web server through this portal. We
visualize these logs later to analyse the navigation behavior of different users.

With the help of the portal and a tool which uses foresighted layout it is
possible to analyse the learner navigation through the electronic textbook dis-
cussed above. Thus, we can see what pages a student looks at or that a student
frequently uses the glossary. If we visualize the behavior of several students we
might find that different students catch up (synchronize) on certain pages, al-
though their navigation behavior differs considerably on intermediate pages.

These analyses are facilitated by the history view of the 3D version of our
foresighted graphlayout, see Figure 3.

7 Interactive Graph Animations

In most applications the future of a graph depends on user input. Neverthe-
less between such points in time when the user interacts with the application,
the program can perform several “foreseeable” changes of the graph. Thus the
execution of such an interactive application can be modeled as a sequence of
graph animations. When we draw a graph animation of such a sequence on the
screen, we do not know the next animation in the sequence but we know the
one before. As a “smooth” transition between the previous and the actual graph
animation we can use the traditional morphing approach. More precisely: Let
G =[g1,---,9n] be the previously drawn graph animation. Then graph g, was
drawn on the screen using the Foresighted Layout for an RGAP 7 of G. Now
the user does some input and triggers the graph animation G’ = [g],...,g;]
To draw this animation the application computes an RGAP ¢’ of G' and uses
morphing between the graph g, with node and edge positions as in g’ and g}
with node and edge positions as in g'.

8 Conclusion

We have presented the motivation and theory behind Foresighted Layout. Us-
ing our generic algorithm existing static graph drawing algorithms can be used
for graph animations which preserve the mental map. The algorithm has been
implemented in Java and in particular used for algorithm animations and vi-
sualization of navigation behaviour. For these kinds of application it provides



better results than traditional approaches which use smooth transitions and/or
incremental changes of the layout, e.g. using the VCG tool [10]. For the analy-
sis of navigation behaviour the history of our 3D viewer turned out to be very
beneficial.
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