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A B S T R A C T

In this thesis we focus on the multidimensional nature of light transport as
described by the plenoptic function, and in particular in the angular and
temporal domains. While traditional imaging has been limited to bidimen-
sional images, the emerging field of Computational Imaging has made increas-
ingly available more complex multidimensional visual data, disambiguating
additional domains of the plenoptic function. However, this higher dimen-
sionality requires changing the way that visual information is processed, ma-
nipulated, visualized or synthesized. In this thesis we present contributions
on these topics, addressing the challenges of adapting and rethinking them
to handle higher-dimensional visual information. Specifically, within the an-
gular domain we focus on light field editing, studying interaction paradigms
and user workflows when interacting with light fields, and on spatio-angular
filtering of complex appearances modeled with BTFs, studying how filtering
affects appearance perception. On the other hand, in the temporal domain we
focus on transient light transport, where the speed of light cannot longer be
considered infinite, including contributions on capture and data processing,
light transport simulation and visualization of time-resolved data.

M E A S U R A B L E C O N T R I B U T I O N S

This thesis has led to the following results, which can be found in detail in
Section 1.4:

• 6 JCR-indexed journal publications (3 of them ACM Transactions on
Graphics) [99, 105, 224, 226, 98, 103]

• 5 peer-reviewed conference publications (including one SIGGRAPH
Talk) [148, 100, 6, 225, 97]

• 1 peer-reviewed tutorial course [61]

• 1 research stay (three months) at Microsoft Research Asia in Beijing

• 1 research stay (five months) at Trinity College Dublin

• 1 research visit (eight days) at Tsinghua University

• 4 supervised PFC and 1 more in progress

• 1 best paper award, 1 paper selected in the ACM Best of 2013 list

• 5 invited talks

• Participation in 5 research projects

• Reviewer for 7 journals and 7 international conferences, and program
committee member for 2 conferences
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R E S U M E N

Esta tesis se centra en la naturaleza multidimensional del transporte de luz,
como describe la función plenóptica. Ésta modela la luz en un espacio hep-
tadimensional, en función de la posición, dirección, longitud de onda (color)
y tiempo. La imagen tradicional, incluyendo fotografía o imagen sintética,
proyecta este espacio multidimensional en el plano bidimensional del sensor
de la cámara, integrando las dimensiones angular y temporal. Esto resulta
en una pérdida significativa de información, reduciendo las capacidades de
extracción de información visual, y de manipulación de la misma.

Con la aparición del campo de Imagen Computacional (Computational Ima-
ging) la información contenida en las dimensiones integradas en el sensor,
antes perdida, es ahora recuperable. Esta información adicional abre un
gran número de aplicaciones en p.ej. visión por computador o imagen mé-
dica. Sin embargo, este incremento en la dimensionalidad obliga a cambiar
la forma en que los datos son procesados y manipulados, así como en su
visualización o síntesis. Esta tesis presenta contribuciones en estas áreas,
centrándose en desarrollar nuevas técnicas de manipulación, visualización
y síntesis del transporte de luz incorporando las dimensiones angular y tem-
poral de la función plenóptica. El objetivo es llenar el hueco existente entre
la imagen tradicional bidimensional, en la que se ha centrado la mayoría de
trabajo previo, y la nueva imagen plenóptica, de naturaleza multidimensio-
nal.

La tesis está dividida en dos partes: En la primera, nos centramos en el
dominio angular, y en particular en las diferentes representaciones direccio-
nales de apariencia. Primero presentamos un estudio sobre la interacción de
usuario a la hora de editar light fields, con foco en preferencias y workflows,
y proponemos una interfaz de edición de light fields basada en nuestros
resultados. En el segundo trabajo dentro del dominio angular analizamos
los efectos del filtrado en la percepción de la apariencia de materiales com-
plejos modelados con bidirectional texture functions (BTFs). Basados en las
conclusiones de nuestro análisis proponemos una serie de aplicaciones en
compresión, filtrado y visualización eficiente de dichos materiales.

La segunda parte de la tesis se dedica al dominio temporal, y en particular
al transporte de luz en estado transitorio, con contribuciones en el procesa-
do, generación y visualización de datos visuales resueltos en el tiempo. Pri-
mero nos centramos en el procesado y visualización de imagen ultrarápida,
obtenida mediante un sistema capaz de capturar a una resolución efectiva
de picosegundos. Después, presentamos un entorno de simulación transito-
ria de la iluminación, proponiendo diferentes estrategias de reconstrucción
y muestreo adaptadas a las particularidades del transporte de luz resuelto
en el tiempo. Finalmente, se describe un sistema de visualización interacti-
va de este tipo de datos, modelando los efectos relativistas resultantes del
movimiento ultrarápido de la cámara virtual.

Como resultado de esta tesis se han publicado 6 artículos en revista (inclu-
yendo 3 en ACM Transactions on Graphics), 5 artículos y 1 tutorial en conferen-
cias con revisión por pares, y se han realizado 2 estancias de investigación
(8 meses en total).
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Part I

I N T R O D U C T I O N & O V E RV I E W





1I N T R O D U C T I O N

Light, has always intrigued the human being. Since ancient times several
theories have tryed to explain why do we see, and what is light. This is not
surprising: Visual data is one of the main sources of information on how the
world around us is. It gives information on the shape and material of objects
which is crucial for their recognition, and is the main information used for
navigation around the world. In fact, it is the sense with longer sensibility,
allowing us to see up to distances of 2.5 million light years with the naked
eye (the distance to the Andromeda galaxy).

Moreover, light does not only play a fundamental role on survival. Its
emission and interaction with matter creates visual effects of great beauty,
from massive galaxies and nebulae to rainbows, auroras or, at very small
scale, the iridescent wings of butterflies. Such visual richness has inspired
painters and photographers, but also scientists aiming understand the na-
ture of light and why objects look as they look, and looking for ways to
measure and capture it.

In this thesis we focus on the multidimensional nature of light transport
as described by the plenoptic function, and in particular in the angular
and temporal domains, motivated by the emerging field of Computational
Imaging. This multidimensionality changes the way that visual information,
traditionally limited to bidimensional images, is processed, manipulated,
visualized or synthesized. In this thesis we present contributions on these
topics, addressing the challenges of adapting and rethinking them to handle
higher-dimensional visual information. In the following we provide a brief
overview of light transport and imaging from the plenoptic perspective, and
summarize the contributions of this thesis.

1.1 the plenoptic function

The plenoptic function [2] describes the visual information in a scene in
any point in space and time. It models the incoming wavelength-dependent
radiance Lλ with wavelength (color) λ at a point x =

(
xx, xy, xz

)
from a par-

ticular direction ω = (φ, θ) at a given time t, as a seven dimension function

P(xx, xy, xz, φ, θ, λ, t) = Lλ. (1.1)

Intuitively, the space defined by P models all possible photographs that can
ever be taken. Of course, this function is a simplification of the actual physics
of light, since it ignores the wave (e.g. polarization or phase) or quantum
properties of light. Nevertheless it is still valuable to reason about light
transport in general, and imaging in particular.

3



4 introduction

Traditional imaging samples this space by taking only a slice of P on the
bidimensional sensor. This makes the formation of the 2D image I (x, λ) an
integration along the angular and temporal domains1

I (x, λ) =
∫∫

P(x, ω, λ, t)dω dt. (1.2)

This form of imaging is influenced by how the the human eye captures im-
ages, where light enters through the cornea and the photo-receptors (cones
and rods) in the retina integrate the incoming angular domain along a cer-
tain exposure time (the temporal sensibility of the eye is over 10 miliseconds
depending on the type of signal [231]). Of course, capturing and represent-
ing the visual information as a bidimensional image I (x, λ) has dramati-
cally influenced the way we manipulate and generate visual content. First
of all, traditional displays were developed to show bidimensional images,
being optimized to match as much as possible the capabilities of the human
eye (in terms of e.g. frame-rate or wavelength). Additionally, realistic image
synthesis focuses on reconstructing the captured image as if it were captured
with a virtual camera [124, 73] or even the human eye [188], with significant
efford on accurately computing the double integral in angle and time in
Equation (1.2) responsible of effects such as defocus or motion blur [260].
Finally, the combination of bidimensional imaging, synthesis and display has
made that both manipulation and interaction with visual data had been
optimized to this type of content, including the interaction workflows and
tools, as can be observed in commercial image manipulation software such
as PhotoshopTM.

However, integrating over different domains in Equation (1.2) removes the
information contained in these domains, which cannot be recovered back.
This significantly limits the information that can obtained from the scene
through a photograph. While this can be partially recovered by a human ob-
server, it is very hard for a computer to interpret the information encoded in
a single bidimensional slice of the plenoptic function. Moreover, this strong
dimensionality reduction through projection and integration also reduces
the expressibility and manipulation capabilities of the captured visual data.

computational photography Recently it has emerged the field of
Computational Imaging [185, 61], at the intersection between computer vision,
optics and electronics, with the goal of avoiding the lost of information in
traditional photography and therefore capturing more data from the scene.
The main idea is to acquire more information of the scene by coding or
multiplex different steps of the pipeline (e.g. lens, sensor, illumination...) to
enhance the captured data, and then use this captured information to recon-
struct the final image after the capture by means of computation. These new
imaging techniques have opened up several new applications over visual
data, including light transport capture and analysis [199, 173, 169], changing
the camera setup in a post-capture basis [57, 94] or separating illumination
components [164, 46].

More in particular, several works have been proposed to capture the differ-
ent dimensions of the plenoptic function. The excellent survey by Wetzstein
et al. [241] provides a thorough discussion on the different proposed meth-
ods. These works allow accessing the information carried by the dimensions

1 Note that strictly speaking there is also an integration along the spatial domain in the footprint
of the pixel, and in the wavelength domain due transforming the full spectra into an RGB-value.
Additionally, the dimensionality of the spatial domain is also reduced from R3 to R2 once the
image is projected in the bidimensional sensor, taking only the x and y components of x.



1.2 angular and temporal domains 5

Figure 1.1: The Horse in Motion by Eadweard Muybridge (1878). To capture this se-
quence, Muybridge set a dozen cameras in line linked with a set of wires
placed on the floor. These wires then triggered each camera as the horse
ran past. Each capture had an exposure time of less than 2 miliseconds.
Via Wikimedia Commons.

in the plenoptic function traditionally integrated during imaging, and there-
fore lost. This additional information has permited unprecedent capabilities
for scene understanding and reconstruction from visual data, more power-
ful image processing algorithms or richer visualization of visual data. But
it comes with the price that all previous knowledge on processing, manip-
ulation, visualization or synthesis need to be rethougth to be adapted to
the multidimensional visual information now accessible. In this thesis we
deal with these new challenges, presenting contributions on each of these
for multidimensional plenoptic data, in particular for the two domains of
integration in Equation (1.2): angle and time.

1.2 angular and temporal domains

In this thesis we focus on the angular and temporal domains of the plenoptic
function. These have been in general undersampled or integrated in tra-
ditional imaging with the aforementioned loss of information, and have
recently gained significant attention since they allow extracting more in-
formation about the world while extending the capabilities of traditional
photography. This does not mean that imaging these dimensions is new:
the idea of sampling the angular domain of the plenoptic function, captur-
ing the same scene from slightly different points of view was first proposed
by Gabriel Lippmann in 1908 [139, 138] in what was termed integral photog-
raphy. While this technique is fundamentally the origin of most following
work on light field imaging [136, 51], and has also inspired the develop-
ment of a variety of display systems, it is now when these devices are
available in the consumer market in the form of light field cameras (e.g.
LytroTM, RaytrixTM or PCamTM). This new kind of imaging allows sophisti-
cated post-capture effects, such as view-panning [136, 56], refocus [92, 165],
super-resolution [144] or 3D reconstruction [117], while improving robust-
ness in computer vision in challenging conditions [26]. Moreover, light fields
are the input for automulticopic displays [150], which allow to show stereo
content to multiple viewers without the need of glasses or other equipment,
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and that are currently available on TV screens, desktop monitors or even
portable devices (e.g. consoles or mobile phones).

Similarly, sampling the temporal domain dates from more than a century:
the first high-speed photography was captured by Eadweard Muybridge in
the late 1800’s, and was used to study the motion of a galloping horse by
sequentially shooting a set of twelve cameras [154] (Figure 1.1). Since then,
a number of capture devices were developed, from Edison’s Kintergraph
and Kintescope to the Lumières’ Cinematographe that gave birth to the cin-
ema [143]. These techniques aimed to captured videos, but many other re-
search works focused on providing faster and faster exposure times; of par-
ticular interest is Harold Edgerton’s stroboscope [35], developed in the mid
1900’s, which allowed capturing stunning photographs of fast events where
the time seems to freeze. While these techniques helped understanding me-
chanical behavior in fast events such as liquids or explosions, they were still
unable to provide information to reason about the properties of the scene.
This has changed with the appearance of transient imaging, which aims to
capture at a temporal resolution enough to see the propagation of light. This
field emerged with the femto-photography [225, 224] system, presented in this
thesis in Chapter 4, which allows capturing videos at a temporal resolution
in the order of picoseconds. Such a temporal resolution has opened-up new
avenues of scene understanding and reconstruction such as non line-of-sight
imaging [223, 79], capturing material properties [162, 161] or separating illu-
mination components [245, 88]. In addition, while the original system was
very expensive, new lower-cost systems have appear [78, 111] that tradeoff
temporal resolution to allow faster and easier-to-use systems, that can even
work in domestic time-of-flight cameras such as the KinectTM

2 device [161].

1.3 goal & overview

The main goal of this thesis is to develop new techniques on processing,
manipulation, visualization and synthesis of multidimensional visual data
including the angular and the temporal domains of the plenoptic function.
The aim is to fill the existing gap between traditional imaging, that takes
only a spatial slice of the plenoptic function and where several works have
addressed these challenges, and new plenoptic imaging, in particular fo-
cusing on the angular and temporal domains. This is of fundamental im-
portance to the wide-spread of this multidimensional data in order to sub-
stitute, or at least become an alternative to, the traditional bi-dimensional
images. This is the case of, for example, new editing algorithms developed
to address the special characteristics of angularly-resolved data, which with
the emergence of plenoptic cameras and automultiscopic displays might
become a standard in a few years; or new computational techniques to ef-
fectively visualize and simulate time-resolved light transport, fundamental
to devise new techniques for scene reconstruction.

overview This thesis is divided in two main parts, one for each of the
two dimensions of interest of the plenoptic function:

• Part II deals with the angular domain of the plenoptic function, with
focus on different visual representations of appearance. Chapter 2 is
devoted to light fields [136, 56], and in particular with interaction and
manipulation of this angularly-resolved visual data. We study differ-
ent interaction paradigms for light fields and analyze the best way of
editing them. In Chapter 3 we move our focus to bidirectional texture



1.4 contributions and measurable results 7

functions (BTF) [25], that extends light fields including the directional
domain of the incoming light by representing the full reflectance field.
We analyze the effect of filtering on the perception of complex appear-
ance modeled with BTFs, and propose a set of applications for our
findings.

• Part III is devoted to the temporal domain, and in particular to ultra-
fast, time-resolved, light transport. In Chapter 4 we first introduce a
system capable to capture at picosecond resolution, and the data pro-
cessing necessary for correct visualization. This project was lead by col-
leagues at MIT Media Lab. Then, Chapter 5 focuses on time-resolved
rendering by presenting a framework for effective transient rendering.
We introduce a set of reconstruction and sampling techniques, together
with simulations of non-trivial phenomena in transient state. Finally,
Chapter 6 further explores the visualization of time-resolved data, tak-
ing into account the relativistic effects arising due to ultrafast camera
motion through the scene.

While I am the leading author in most of the works presented here, they
have been done in collaboration with different colleagues. Thus, at the be-
ginning of each chapter the work described is put in context, and my contri-
bution is explicitly described when needed.

1.4 contributions and measurable results

1.4.1 Publications

Most of the work presented in this thesis has been already published, in
particular in six journals indexed in JCR, including three papers in ACM
Transactions on Graphics and presented at SIGGRAPH or SIGGRAPH Asia,
and five peer-reviewed international conferences:

• Evaluation of Interaction Paradigms for Light Field Editing (Chapter 2,
Part II):

– The main work on light field editing was accepted in SIGGRAPH
2014, and published in ACM Transactions on Graphics [99]. This
journal has an impact factor of 4.096, and its position in the JCR
index is 1st out of 104 (Q1) in the category Computer Science,
Software Engineering (data from 2014).

– Further analysis on the workflows of the users when editing light
fields (Section 2.6) has been published in the International Con-
ference on Computer Graphics, Visualization, Computer Vision
and Image Processing (CGVCVIP) 2014 [148].

– Two papers describing preliminary results on edit propagation in
light fields (Section 2.7) have been published in the Ibero-American
Symposium in Computer Graphics (SIACG) 2011 [100] and in the
Pacific Rim Conference on Multimedia [6] respectively.

• Effects of Filtering on the Appearance of BTF (Chapter 3, Part II):

– This work has been published in IEEE Transactions on Visual-
ization and Computer Graphics [105], and presented in Pacific
Graphics 2014.. This journal has an impact factor of 2.482, and its
position in the JCR index is 8th out of 104 (Q1) in the category
Computer Science, Software Engineering (data from 2014).
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• Femto-Photography (Chapter 4, Part III):

– This work has been accepted in SIGGRAPH 2013, and published
in ACM Transactions on Graphics [224]. This journal has an im-
pact factor of 4.096, and its position in the JCR index is 1st out of
104 (Q1) in the category Computer Science, Software Engineering
(data from 2014).

– This work has been invited to be published as a Research Highlight
in the journal Communications of the ACM [226]. This journal has
an impact factor of 3.609, and its position in the JCR index is
5th out of 102 (Q1) in the category Computer Science, Theory
& Methods, and 2nd out of 104 (Q1) in the category Computer
Science, Software Engineering (data from 2014).

– Previously, it was accepted as a talk to SIGGRAPH 2012 [225].

• A Framework for Transient Rendering (Chapter 5, Part III):

– This work has been accepted in SIGGRAPH 2013, and published
in ACM Transactions on Graphics [98]. This journal has an impact
factor of 4.096, and its position in the JCR index is 1st out of
104 (Q1) in the category Computer Science, Software Engineering
(data from 2014).

• Relativistic Effects for Time-Resolved Light Transport (Chapter 6, Part III):

– This work has been published in Computer Graphics Forum [103],
and presented in the Eurographics Symposium on Rendering
(EGSR) 2015. This journal has an impact factor of 1.902, and its
position in the JCR index is 18th out of 104 (Q1) in the category
Computer Science, Software Engineering (data from 2014).

– Previous results were published in CEIG 2013 [102].

In addition to these previous publications, during my PhD I have collab-
orated in other research projects not directly related with the topic of this
thesis:

• Evaluation of the Effect of Shape and Material Stylization on the Per-
ception of Computer Generated Faces.

In this work, lead by Eduard Zell, we evaluate the effect that
different artistic stylizations have on the perception of faces. It
has been accepted in SIGGRAPH Asia 2015, and published in
ACM Transactions on Graphics [256].

• Separable Subsurface Scattering.

In this work, lead by Jorge Jimenez, we propose a method for
high-quality simulation of subsurface scattering at real-time frame
rates. It was published in Computer Graphics Forum [110], and
presented in EGSR 2015. This technique is currently the state-of-
the-art on real-time subsurface scattering, and had an enormous
impact on the industry, being used by game companies such as
Activision-Blizzard.

• A Biophysically-Based Model for Skin Aging.

In this work, lead by Jose Iglesias, we propose a new skin model
including the effects of aging, based on biophysical data. It was
accepted in Eurographics 2015, and published in Computer Graph-
ics Forum [90].
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• Evaluation of the Perceived Fidelity of Illuminated Dynamic Scenes.

In this work, we analyzed the effect on approximated global il-
lumination on the quality of complex dynamic scenes. It was ac-
cepted in Eurographics 2012, and published in Computer Graph-
ics Forum [104].

1.4.2 Awards

We include here a list of awards and fellowships received throughout this
thesis, that have allowed the realization of the work here presented:

• FPI Grant from the Universidad de Zaragoza (4-year PhD grant).

• NVIDIA Academic Program: Tegra prototype gift (Mobile Computa-
tional Photography: Appearance Capture and Editing; with Belen Ma-
sia and Diego Gutierrez).

• CAI Europa Grant: Funding for research visit at Trinity College Dublin.

Additionally, some projects described in this thesis have been received
different awards or recognitions:

• The paper Femto-Photography: Capturing and Visualizing the Propagation
of Light was selected into the ACM Best of 2013 list.

• Best paper (1 in 2) at CEIG 2013 for the work Rendering Relativistic
Effects in Transient Imaging (proposed for extension and submission to
the journal Computer Graphics Forum; the extension got accepted to
the journal).

1.4.3 Research Stays and Visits

Two research visits, totaling 8 months, were carried out during this PhD in
two different institutions:

• February 2011 – June 2011 (five months): Visiting student at the Graph-
ics, Vision and Visualisation (GV2) group, Trinity College Dublin. Super-
visor: Prof. Dr. Carol O’Sullivan. Our work on perception of illumina-
tion on complex dynamic scenes [104] was the result of this stay.

• June 2013 – August 2013 (three months): Research intern at the Internet
Graphics Group, Microsoft Research Asia. Supervisor: Dr. Steve Lin.

Additionally, a visit of 8 days to Tsinghua University (Beijing, China) took
place in September 2014.

1.4.4 Supervised Students

During the development of this thesis I have supervised the Graduate Thesis
of five students:

• Ongoing: David Guimera. Physically-Accurate Light Transport in the At-
mosphere. Expected graduation date: February 2016.

• 2014: Ibon Guillen. Progressive Instant Radiosity. Grade: 9/10.

• 2014: Raul Buisan. Bidirectional Clustering in Point-Based Global Illumina-
tion. Grade: 9.3/10.
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• 2013: Julio Marco. Transient Light Transport in Participating Media. Grade:
10/10.

• 2012: Carlos Aliaga. Prefiltered global illumination in objects with complex
geometry and reflectance. Grade: 9/10.

1.4.5 Research Projects

During my PhD studies I have participated in the following research projects:

• VERVE: Vanquishing fear and apathy through e-inclusion: personalised
and populated realistic virtual environments for clinical, home and
mobile platforms. European Commission (FP7-ICT-2011-7). Grant no.:
288914. PI (in Spain): Diego Gutierrez.

• GOLEM: Realistic Virtual Humans. European Commission Marie Curie
Industry–Academia Program, Seventh Framework. Grant no.: 251415.
PI: Diego Gutierrez.

• LIGHTSLICE: Captura, análisis y aplicaciones del transporte de luz
multidimensional (Aplicación a imagen médica). Spanish Ministry of
Economy and Competitivity. PI: Diego Gutierrez.

• MIMESIS: Técnicas de bajo coste para la adquisición de modelos de
apariencia de materiales. Spanish Ministry of Science and Education
(TIN2010-21543). PI: Diego Gutierrez

• Femto-Fotografía: Análisis y Aplicaciones Prácticas. BBVA Foundation.
PI: Diego Gutierrez.



Part II

A N G U L A R D O M A I N

In this part we focus on the angular domain of the plenoptic func-
tion, and in particular on angularly-resolved representations of
appearance. These representations include light fields and bidirec-
tional texture functions (BTF). We start focusing on editing and
manipulation of light fields, describing our work on design and
analysis of light field editing interfaces, with focus on prefer-
ences and workflows. Then, we move our focus to the second
directionally-varying representation (BTFs), and analyze the per-
ceptual effects of filtering this type of multidimensional data.





2E VA L U AT I O N O F I N T E R A C T I O N PA R A D I G M S F O R
L I G H T F I E L D E D I T I N G

Here we describe a thorough study to evaluate different light field editing
interfaces, tools and workflows from a user perspective. This is of special
relevance given the arrival in the consumer market of light field cameras po-
sitioning light fields as an alternative for traditional photography, and the
multidimensional nature of light fields, which may make common image
editing tasks become complex in light field space. We propose an interface
for light field editing based on the two main paradigms in the literature, and
perform two different experiments, collecting both objective and subjective
data from a varied number of point-based editing tasks of increasing com-
plexity, in both real and synthetic light fields. I shared the first authorship
of this work with Belen Masia, who was in charge of the analysis of the
experiment, while I focused on the design and development of the editing
interfaces, and the experimental design.

This work has been published in ACM Transactions on Graphics and pre-
sented at SIGGRAPH 2014. A follow up work analyzing in more depth the
user workflows was later published in the International Conference on Com-
puter Graphics, Visualization, Computer Vision and Image Processing (CGVCVIP)
2014. Additionally, we explored other types of interaction when editing light
fields, in particular sparse edits propagation, as described in Section 2.7.
While this is still research in progress, some initial results have been already
published [100, 6].

A. Jarabo, B. Masia, A. Bousseau, F. Pellacini & D. Gutierrez
How Do People Edit Light Fields?

ACM. Trans. Graph. Vol.33(4), SIGGRAPH 2014

B. Masia, A. Jarabo & D. Gutierrez
Favored Workflows in Light Field Editing

Proc. of CGVCVIP 2014

2.1 introduction

Light fields [136, 56] are rapidly gaining popularity as an alternative to
digital photographs. Consumer light field cameras already exist (such as
RaytrixTM or LytroTM, even compact enough to be included in mobile de-
vices [227]. As the number of captured and shared light fields increases,
the need for editing tools arises as well. However, current light field editing
techniques are limited to changing perspective or focus, or to applying some
pre-defined filters [145, 228]. As opposed to the well-established editing of
2D images, user interfaces to edit light fields remain largely unexplored.

Editing light fields is a challenging task for several reasons. First, a light
field is a four-dimensional data structure while the majority of displays and
input devices today are designed for two-dimensional content. Second, light
fields are redundant which implies that any local edit on a light field needs
to be propagated coherently to preserve this redundancy. Finally, while light
fields provide a vivid sense of depth, this depth information is not encoded

13



14 evaluation of interaction paradigms for light field editing

original light öeld

original light öeld original light öeldedited light öeld edited light öeld

edited light öeld

Figure 2.1: Example results of light fields edited by different users. Top: A syn-
thetic light field (vase), with ground truth depth information. Bottom:
Two real light fields (toys and motorbike) captured with the Lytro camera.
In this work we evaluate the benefits of different light field interaction
paradigms and tools, and draw conclusions to help guide future inter-
face designs for light field editing.

explicitly. Light field user interfaces must take these properties into account
to present the visual information in a legible way and to minimize redun-
dant work for the user.

Current literature proposes two general paradigms to interact with light
fields on two-dimensional devices. Multiview [258, 201, 229] relies on paral-
lax to convey disparity. Interaction is constrained to the angle of view: Users
can change the viewpoint, equivalent to limited displacement of a virtual
camera. Focus interfaces [27], on the other hand, rely on depth-of-field blur.
Interaction is constrained to the focus plane, which the users can change.
However, neither of these have been thoroughly analyzed or validated.

In this work, our goal is to explore light field editing interfaces from a
user perspective, and to provide a quantitative and qualitative evaluation
of the effectiveness of different approaches. To do this, we build interfaces
based on the two main existing light field editing paradigms, conduct a wide
range of experiments with novice users, and analyze their performance and
preferences. The experiments grow in complexity, and are divided in two
studies. In the first one, we ask participants to perform tasks with both in-
terfaces, based on simple edits and using synthetic light fields to be able to
use accurate depth information. From the gained insights, we design a third
interface, which additionally incorporates a series of new tools. This new in-
terface and tools are used in our second study, which covers more advanced
tasks (e.g. changing an object’s appearance, or colorization). Moreover, this
second study uses real light fields as input, which means that the recovered
depth is not perfect. In designing the experiments, we seek to answer ques-
tions such as: Can users edit light fields, similar to common image editing?
How do people interact with the 4D structure of a light field? What is the
best method to locate a position in such 4D space? What is the preferred
workflow for editing? Is the currently imperfect depth in real light fields
good enough for editing? Does it affect performance?

conclusions The analysis of the collected objective and subjective data
allows us to draw the following conclusions:
• novice users can edit captured light fields of different nature, although

with varying workflows;
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Figure 2.2: User interfaces used in our tests. Left: multiview paradigm. In it, win-
dows are inter-changeable, and show two different views of the light
field; epipolar lines (white) mark the trajectory a currently active stroke
will follow when moved in depth. Right: focus paradigm, in which the
in-focus plane marks the depth at which strokes will be placed; the win-
dow on the right shows the un-blended strokes (please see Section 2.3 for
details).

• users rely on depth information frequently, finding it essential in many
tasks;
• inaccuracies in depth information do not hinder users’ performance

when editing;
• a multiview approach is essential for navigating and viewing the light

field edits;
• on the other hand, a focus approach is attractive to users because of

the feeling of control it conveys; alternative tools, however, can also
provide that feeling of control without focus;
• we also present tools with which users exploit the extra dimensionality

of light fields and which, in combination with the editing paradigms,
support artistic exploration.

limitations and scope The findings of our work can only be conclu-
sive to the interfaces, tools and depth reconstruction methods used in the ex-
periments. While the interfaces are the two most common interfaces found
in previous literature on light field manipulation, other types of interfaces
could be proposed and studied. We limit our study to point-based tools,
but they represent common edits in most image editing software; addition-
ally, point-based interaction represents the building block for more complex
editing tools, such as selection or local filtering. Finally, our analysis on the
influence of errors in depth is limited to the real depth maps reconstructed
with three state-of-the-art depth reconstruction methods. However, despite
these issues, we believe our work provides a solid ground for the design
of light field editing interfaces, a reference for future researchers and inter-
face designers. Thus, to further validate our methods and allow others to
build on our work, we make our interfaces, raw data and analysis available
online1.

2.2 related work

Different interfaces and interaction paradigms have been explored in the
fields of computer graphics and human-computer interaction, for instance
for lighting [115, 170], material editing [116, 22], video editing [194, 54] or
painting [70]. In this work, we perform the first study focusing on the par-
ticular topic of light field editing.

1 http://giga.cps.unizar.es/~ajarabo/pubs/lfeiSIG14/

 http://giga.cps.unizar.es/~ajarabo/pubs/lfeiSIG14/
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light field editing Most light field editing systems perform consis-
tent operations over multiple views. Seitz and Kutulakos [197] estimate a
voxel-based representation of a light field to propagate local edits, such as
painting and scissoring, between multiple views of a scene. Jarabo et al. [100]
propagate sparse edits in a light field based on pixel affinity. Related meth-
ods estimate depth in a stereo pair to perform consistent painting and copy-
/pasting [206, 141, 178, 118]. While depth estimation assumes static scenes,
other approaches rely on feature matching to propagate edits over image
collections containing deformable objects [74, 69, 254].

In contrast, other systems require user intervention to indicate correspon-
dences between two or more views. Zhang et al. [258] and subsequent work
by Wang et al. [229] morph between two light fields by first requiring users
to position polygons in several views, constrained by epipolar geometry.
Users then indicate corresponding polygons in a second light field to guide
the morph. In Pop-Up Light Field [201], users segment the light field into
multiple depth layers by adjusting a polygon around the silhouette of each
object in multiple views. Chen et al. [20] segment the light field into multi-
ple volumes defined by the user, which can be deformed, while Horn and
Chen [82] present a shader-like language to edit and compose light fields.

There are, additionally, a few prototype displays that allow light field edit-
ing using gesture tracking [147] or 3D light pen [213]. However, we choose
to focus on interfaces that can be available to a wide audience without the
need for what today still is specialized hardware. We further reject alterna-
tives such as editing the light field in its epipolar volume form [117], or in a
stereo interface, based on a pilot study.

The goal of these works is to develop specific editing tools, or to propa-
gate edits consistently across views, but none of them provide an analysis of
the interface itself. In contrast, we focus on analyzing how the user interacts
with the four-dimensional structure of a light field in order to specify com-
mon editing operations, with the final goal of learning insights to design a
light field editing interface.

2.3 overview

interfaces In this work, we first analyze two basic interfaces, based
on interaction paradigms found in the light field editing literature. In one
interface, which we call multiview, users navigate between the views of the
light field to specify correspondences that locate their edits in space. This
class of interfaces is the most common in existing work on non-automatic
light field editing. We also investigate an alternative navigation interface,
which we call focus, where the light field is shown with a synthetic shallow
depth-of-field. This is based on Davis et al. [27], which relies on defocus,
computed following Isaksen et al. [92], to guide the capture of unstructured
light fields.

These interfaces rely on different depth cues to allow users to visualize
the disparity of edits between the views of the light field. While multiview
uses parallax to convey disparity, focus relies on depth-of-field blur to visual-
ize depth. Both cues are reminiscent of the way people experience 3D in
the real world, and it is unclear if one cue is preferable to another, even
though most existing light field editing tools have chosen so far to rely on
the multiview approach. Furthermore, they do not require specialized view-
ing hardware [242, 150] and do not intrinsically necessitate additional data
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Figure 2.3: Workflow when drawing a stroke in each paradigm. Top row, left: multi-
view. (1) The user first draws a stroke sa in one view ua. (2) Depth is then
adjusted on a different view ub by displacing the stroke along the epipo-
lar line. (3) The stroke is then projected onto the other views u{k} of the
light field, yielding s{k}. Top row, right: focus. (1) The user first specifies
depth by placing the focal plane. (2) A stroke sb is drawn on the central
view ub at the specified depth. (3) The stroke is projected onto the other
views of the light field, yielding sa, and sb. Bottom row: A light field in-
terpretation of the two paradigms. In the multiview paradigm, the user
specifies two correspondences (orange dots), which provide the disparity
of the 3D point (slant in the light field). In the focus paradigm, the user
first places the point of interest in focus by shearing the light field. As a
result, all images of the point are aligned and one scribble is enough to
edit all the views.

such as scene depth. We also test whether the use of depth information is
helpful during editing.

implementation The interfaces tested share the same screen layout,
shown in Figure 2.2. On the left, there is a description and example image
of the current task. Next to it, a control panel and two working windows,
named Window 1 (W1) and Window 2 (W2). Interface manipulation is per-
formed with a mouse or tablet. In the multiview interface (Figure 2.2, left),
the user is presented with two views of the light field, whose viewpoints are
independently manipulated by panning and tilting. This allows the artist to
view the light field from a different viewpoint than the one used for ma-
nipulation, which is a common workflow in 3D software packages. In this
interface, the windows are equivalent. The workflow for placing a stroke in
multiview is described in Figure 2.3, top left. In the focus interface (Figure 2.2,
right), the scene is rendered with a wide synthetic aperture that blends all
views of the light field [92]. Points that are in focus appear sharp because
their images are aligned, while points that are out of focus appear blurry be-
cause of the disparity between their images. By construction, this alignment
gives us the position of any in-focus point in all views of the light field. In
this interface, the user cannot alter the viewpoint, but can adjust the depth
of the focal plane of the scene, i.e. the relative disparity of the views [216].
Additionally, with depth enabled, the views focus directly on the visible
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surface below the mouse. Here, W2 displays the edit without blending it
with the views of the light field, to show its area of influence in other views
and help determine occlusions. The workflow for placing a stroke in focus is
described in Figure 2.3, top right.

Many editing tasks require users to pick locations in 3D space to, e.g.,
draw strokes. With depth information disabled, we place the user strokes
on a plane parallel to the camera, so all points in the stroke share the same
depth. Otherwise, we snap the strokes at the depth under the pointer. We
found no effect due to depth quantization when using depth to edit. In both
cases the strokes have zero-width in the depth domain. We refer the reader
to the supplementary video2 for a practical demonstration of the workflow
with each of them.

experiments We perform two separate user studies. In our first study,
we analyze the performance of the two paradigms described above (multi-
view and focus) when used exclusively, and considering their use with and
without depth information. This yields a total of four interfaces. We evaluate
those interfaces by making subjects perform several simple tasks. This first
study allows us to gain an initial but formal understanding of the light field
editing process by precisely characterizing the strengths and weaknesses of
each paradigm in simple, controlled tasks.

In our second study, we analyze users’ workflow on more complex, but
natural, editing tasks, informed by the analysis of the first study. In this case,
we let users switch paradigms and activate or not the use of depth; we also
include additional tools based on previous feedback. Furthermore, we use
captured light fields exhibiting imprecise reconstructed depth.

2.4 experiment 1 : synthetic scenarios

goal We want to compare the two interfaces with respect to their effec-
tiveness, efficiency and subjective preference. With effectiveness we refer to
how well the intended task is accomplished, efficiency is related to the effort
of obtaining a particular output, and subjective preference is based on qualita-
tive data, i.e. user opinions on ease of use, learning curve, among others.

light fields We use three different synthetic light fields, depicting dif-
ferent types of scenes (see Figure 2.4): a complex architectural scene (San
Miguel), a still-life scene (vase), and a human head (head). These scenes have
different depth, geometry and reflectance complexities. We use synthetic
scenes to have precise depth information and be able to compute the error
of the performed edits. We render the scenes with a light field camera im-
plementation in the physically-based renderer PBRT [176]. We use 17× 17
views with a resolution of 400× 400, in order to achieve real-time interac-
tions at roughly 30 frames-per-second. We up-sample the rendered images
to 600 × 600 during display to facilitate more accurate placement of the
strokes.

editing tools The set of tools for this study consists of: brush paint-
ing, erasing, dodging & burning and pasting of pre-loaded billboards parallel
to the camera plane. All these edits are directly controlled by strokes loca-
tions. We choose these operations since they are common in most image
editing software, they are well-known to users, requiring little training, and

2 http://giga.cps.unizar.es/~ajarabo/pubs/lfeiSIG14/videos/Jarabo2014_main_video.mp4

http://giga.cps.unizar.es/~ajarabo/pubs/lfeiSIG14/videos/Jarabo2014_main_video.mp4
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they represent simple operations from which more complex edits can be
performed.

tasks We asked users to perform two types of tasks: directed tasks, where
the user has specific instructions on what to edit; and open tasks, where the
user is only given general guidelines. We refer the reader to Section 2.A for
the specific instructions and example target images.

Figure 2.4: Top row: Target images given to users in the directed tasks of the first
study (S1 to S5). The small highlighted areas have been added to this fig-
ure for visualization purposes and future reference. Bottom row: Example
results of user edits for the open tasks, S6 and S7.

Directed tasks are performed for all four interface configurations. We use
the central view of an edited light field as the target image. Users are not
required to match the target image precisely, but rather to match the depth
at which the strokes have to be positioned using the target image as a visual
reference. Only one tool is available for each task, plus the eraser which is
always available; the color brush is limited to one color, to avoid unnecessary
distractions. Time to completion is limited to 5 minutes. These tasks, and the
specific light field for each, are the following (see Figure 2.4):

S1 Draw a simple object on a surface of constant depth (San Miguel)

S2 Paint a simple pattern on a non-planar surface (vase)

S3 Increase the brightness of the specular reflections on a curved surface
(vase)

S4 Place an object billboard within a certain depth range in free space
(vase)

S5 Draw on a partially occluded surface (San Miguel)

The five tasks have been chosen to cover a wide range of use cases: Tasks
S1 and S2 are devised to test general editing of surfaces, while Task S3

deals with the particular case of specular highlights, which do not lie on the
surface of the object. Task S4 investigates how to work in free space, while
Task S5 tests how to best deal with occlusions.

After performing the directed tasks, subjects complete two open tasks,
where real-world photos (see Table 2.2) are given as a source of inspira-
tion, and participants are free to use all the tools at will, plus two different
colors for the brush. Time to completion is limited to 12 minutes. The tasks
vary based on interface selection by the user:
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S6 The user is allowed to select whether to use depth information or not
during editing. The task is done twice per subject, once with the multi-
view paradigm (toggling freely between using or not depth), and once
with focus (also with or without depth). The task is carried out on the
head light field.

S7 The user is allowed to freely change between the four interfaces. The
task is done on the San Miguel light field.

experimental procedure Twenty paid subjects participated in the ex-
periment (6 female, 14 male). All of them had previous knowledge on image
editing, 3D modeling or 3D sculpting software, with either an artistic or tech-
nical background. Most of them (90%) had no previous knowledge of light
fields, which were briefly introduced to them in the beginning.

Each subject used each interface, with and without depth, first for all
directed tasks and then the open ones. We randomize the order of each in-
terface configuration to mitigate learning effects and record all users actions
and screen. Subjective preferences were collected with questionnaires filled
after each interface and at the end of the experiment. The full experiment
took around four hours per subject, including training and breaks.

2.4.1 Analysis

Throughout the experiment we collected both quantitative data on task er-
rors and timings, qualitative data on performance and difficulty of both
tasks and interfaces, and free-form comments on interface effectiveness. We
report here the analysis and main findings and include additional data in
Section 2.B. For brevity, we will refer to our interface configurations in the
rest of the analysis as M (multiview without depth), MD (multiview with
depth), F (focus without depth) and FD (focus with depth).

procedure We use repeated measures ANOVA for the analysis of er-
ror, timings and ratings, to test whether the levels of a factor (e.g. interface
is a factor; the types of interface are its levels) have influence on the ob-
served data. It is a repeated measures scheme because we measure the same
independent variables (e.g. error) using the same participants under the dif-
ferent conditions. Additionally, Kruskal-Wallis (a nonparametric extension
of ANOVA) is used to analyze rankings, since they are an ordinal variable
and typically cannot be assumed to follow a normal distribution. In all tests,
we use a p-value of 0.05 to indicate significance. When sphericity is violated,
according to Mauchly’s test, we report significance values adjusted with the
Greenhouse-Geisser correction [24]. In all figures, error bars represent the
standard error of the mean. We perform outlier rejection on the measured
error data, based on the interquartile difference, with a factor of 2.2 [81].
This led to dropping one user in Tasks S2, S3 and S5, two users in Task S1

and three users in Task S4.

error in depth To evaluate how well a user can specify locations in the
light field, we measure the error in depth of the stroke. We choose this over
measuring image-based differences since our tasks are not pure matching
tasks. Specifically, for each view of the light field, we first compute the L1
distance between the depth of the stroke and the target depth, for each pixel
of the stroke, and divide it by the number of pixels covered by such stroke.
We then average across all views of the light field. Our experiments showed
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that L1 averaged across views approximates a normal distribution better
than other metrics, which facilitates the subsequent analysis. Note that in
Task S4 (positioning in free space) there is not a single fixed target depth,
but a valid range between the vase and the sculpture. We thus compute
error in depth with respect to the limits of such range, assigning a value of
zero within it.

Figure 2.5 (top) shows the per interface mean error for each of the directed
tasks (S1–S5). The error is highly dependent on the task, which accounts
for 73% of the variance. When taking into account interfaces, the ANOVA
yielded significant differences between interfaces for all tasks, as summa-
rized in Table 2.1. The figure additionally illustrates significant differences
between interfaces according to the pairwise comparisons tests.

This analysis suggests that while interfaces with depth information work
well when manipulating surfaces without occlusions, not using depth in-
formation is actually more effective when occlusions are present, or when
the editing task requires positioning in free space. This is due to the fact
that the edits will snap to the underlying depth of the light field, which
is not desirable in those particular cases. A deeper analysis on workflows
can be found in Section 2.6. Moreover, the supplementary material contains
a video3 showing Task S5 (handling occlusions) being performed with all
four interfaces, as well as Tasks S1 to S4 performed with different interfaces.

Time

Error

Task S1 Task S2 Task S3 Task S4 Task S5

Task S1 Task S2 Task S3 Task S4 Task S5

Figure 2.5: Top: Mean error per interface for each task and pairwise comparisons for
the error in each task. Items in the same set are statistically indistinguish-
able. Bottom: Pairwise comparisons for the time to completion in each
task.

time to completion We illustrate statistically significant differences
between interfaces in time to completion for each directed task (S1–S5) in
Figure 2.5 (bottom). In general, users were able to complete the tasks in the
allocated time with all interfaces. We observe that having depth information

3 http://giga.cps.unizar.es/~ajarabo/pubs/lfeiSIG14/videos/Jarabo2014_suppvideo_

Experiment1.mp4

http://giga.cps.unizar.es/~ajarabo/pubs/lfeiSIG14/videos/Jarabo2014_suppvideo_Experiment1.mp4
http://giga.cps.unizar.es/~ajarabo/pubs/lfeiSIG14/videos/Jarabo2014_suppvideo_Experiment1.mp4
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H (d f1, d f2) p η2(%)

S1 25.230 (1.517, 25.792) 0.000 59.7

S2 138.745 (1.305, 23.491) 0.000 88.5

S3 70.390 (1.612, 20.108) 0.000 79.6

S4 24.951 (1.861, 29.779) 0.000 60.9

S5 6.275 (1.264, 22.760) 0.015 25.8

Table 2.1: Results of the repeated measures ANOVA for the interface factor for the
error in depth in each of the tasks. H is the test statistic, d f1 and d f2 the
between-group and within-group degrees of freedom, respectively, p the
associated significance and η2 is indicative of the proportion of variance
of the data that the interface factor explains.

leads to faster editing when painting on surfaces, as long as no occlusions
are present; M tends to take longer than the rest, apparently being less in-
tuitive for users, while F performs well in most situations, specially when
dealing with occlusions or positioning in free space, which are the two most
challenging scenarios in our tests.

rankings and ratings The final questionnaire contained eleven ques-
tions in which the users had to rank and rate the four interfaces. Five ques-
tions referred to the preference of interface for each of the five directed
tasks, and one to the overall preference. The remaining five questions inves-
tigate preference in more general aspects, namely positioning in depth and
on a plane (x-y), erasing, perceived accuracy of the interface and difficulty
of use. For each ranking, we also compute the rank product per interface
Ψ(ϑ) = (∏i rϑ,i)

1/m, where rϑ,i is the ranking received by interface ϑ in a
specific question and m the number of subjects [191]. We use rank products
to sort the interfaces when grouping them in statistically different groups
(Figure 2.6, top).

Rankings for the different tasks (Figure 2.6, top) exhibit again a large
between-task variability, in accordance with the error and time to com-
pletion. In Tasks S2 and S3 MD and FD are ranked significantly higher
(p ≤ 0.035) than no-depth interfaces (M and F). The difference between
the interfaces with depth (MD and FD) is not significant (p = 0.160). In
Tasks S4 and S5 the trend is again reversed: there is a clear preference for
interfaces without depth, and in particular for F (p ≤ 0.035 and p ≤ 0.008
in Tasks S4 and S5, respectively).

When asked about the overall ranking, MD ranks first, significantly higher
than FD and M (p ≤ 0.011), but there is no significant difference between
the rest. This is probably due to the large dependency on the task, shown
by previous analyses. Despite the similarity of both interfaces in the rest
of the tests, the users reported that the multiview paradigm allowed them a
better visualization of the light field and the edits. Results of pairwise com-
parisons between interfaces for mean ratings for preference per task and
overall preference are shown in Figure 2.6 (bottom). These ratings strongly
correlate with rankings (Spearman’s ρ = 0.80, p ' 0.000). This is meaning-
ful, indicating that users have clear opinions regarding the interfaces for the
different tasks.
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Ratings

Rankings

Task S1 Task S2 Task S3 Task S4 Task S5

Task S1 Task S2 Task S3 Task S4 Task S5 Overall

Overall

Figure 2.6: Top: Rankings from final questionnaire for questions on preference for
each task and overall preference (Ri: rank i), and pairwise comparisons
between interfaces for the rankings. Items in the same set are statistically
indistinguishable. Bottom: Pairwise comparisons between interfaces for
the ratings. There is a clear agreement between both ratings and rankings.

preferences in open tasks During open tasks, when users can freely
toggle the use of depth and interface, we record the time spent on each inter-
face, and what actions are performed in each of them. Specifically, we track
the time they spend drawing, erasing, changing the view point, and ad-
justing depth. When given complete freedom, the preferred workflow is to
perform edits with the focus paradigm, use multiview to inspect the changes
from different viewpoints, and then go back to editing with focus again.
This is supported by Table 2.12, which shows the total number of times
users went from one interface to another during editing, and by the users’
feedback in the final interview, where they agree in their preference to edit
with focus due to the feeling of control it provides. Finally, based on their
answers to the after-task questionnaires, 85% of the users found the possibil-
ity of switching between interfaces during Task S7 helpful or very helpful
(as indicated by a rating of 4 and 5 on a scale from 1 to 5). We refer to
the supplementary video4 for sample editing sessions by subjects for these
tasks.

main findings and interface improvements In this experiment
we make the following observations, which lead to improvements in our
editing system for the next experiment:

(i) There is a high between-task variability with respect to the choice of
interface in user preferences and error. Furthermore, the vast majority
(85%) of users report that switching between paradigms and toggling
depth on/off is very helpful.
→ We merge both interfaces into one in which users can switch be-
tween focus and multiview, and turn depth on or off.

4 http://giga.cps.unizar.es/~ajarabo/pubs/lfeiSIG14/videos/Jarabo2014_suppvideo_

Experiment1.mp4

http://giga.cps.unizar.es/~ajarabo/pubs/lfeiSIG14/videos/Jarabo2014_suppvideo_Experiment1.mp4
http://giga.cps.unizar.es/~ajarabo/pubs/lfeiSIG14/videos/Jarabo2014_suppvideo_Experiment1.mp4
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(ii) Handling occlusions is challenging for users, to the point that they
prefer not using depth information if they are present.
→ We introduce a Depth Selection tool that creates a selection mask by
clicking on a location to set the depth and specifying a depth threshold;
this avoids unwillingly editing occluding parts when trying to edit
occluded ones.

(iii) Focus gives users better understanding of where they are positioned
in the light field.
→ We introduce a Visual Aid mode that helps visualizing the active
depth range (either the one selected or the one potentially selectable, if
a threshold is set) by placing a semi-transparent checkerboard on the
parts of the light field which are not within the active depth range.

(iv) In interviews, users demanded selection tools based on color to be
combined with depth-based ones.
→ We introduce a Color Selection tool that creates a selection mask
based on picking a color and setting a threshold around it in color
space. This threshold is independent of the depth threshold, and thus
each one yields a different selected area. This tool can be combined
with the Depth Selection tool, in which case the selected area is the
intersection of both.

2.5 experiment 2 : real scenarios

goal In the second experiment, we investigate common edits on real, cap-
tured light fields with reconstructed depth. Our goal is to evaluate whether
users can perform such edits in the presence of imprecise depth, and what
interaction paradigms and tools they prefer. We incorporate the changes
mentioned above and also include a Hue Brush for more versatility. Quan-
titative evaluation of the effect of imprecise depth could in principle be
performed by introducing errors in depth procedurally; while this would
allow a controlled error analysis, we found that the different existing depth-
reconstruction algorithms produce very different types of artifacts, which
cannot be modeled with simple functions. Thus, such quantitative analysis
would hardly generalize to real scenarios. We choose instead to test whether
such reconstructed depth maps from a varied set of real scenes are good
enough to allow users to satisfactorily perform convincing edits.

light fields We use eight captured light fields, depicting different types
of scenes, shown in Figure 2.7. The first scene, watch, is captured with a
Raytrix camera and its depth obtained with the algorithm by Wanner and
Goldlücke [230]. The next four—couch, church, statue and mansion—are cap-
tured with a camera gantry, and depth information is obtained with the
algorithm by Kim and colleagues [117] (we use light fields and depth maps
from their own database). The final three scenes—matrioska, lab, and frog—
are captured with a Lytro light field camera, and the depth maps obtained
with the Lytro SDK. These scenes have different depth, geometry and re-
flectance complexities, feature different baselines, from small (Lytro and
Raytrix) to large parallax (Kim et al.) between views, and cover a wide range
of capture setups and depth reconstruction methods found today. Light field
angular resolutions are 9× 9 in all cases except for the horizontal-parallax-
only ones [117], whose resolution is 17× 1. Spatial resolution is the same as
in the first study.
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Figure 2.7: Target images given to users in the tasks of our second study. The small
highlighted areas have been added to this figure for visualization pur-
poses, marking the area to edit. In reading order, Tasks R1 to R10. Differ-
ent depth reconstruction methods are used: R1 is based on Wanner and
Goldlücke [230], R2 to R6 are based on Kim et al.[117], and R7 to R10 are
from Lytro.

tasks We asked users to perform a variety of directed tasks (see Figure
2.7) where textual instructions and an example target image (corresponding
to the central view of the light field) are given to the user, who is asked to
perform the given edit as accurately as possible. We chose tasks that span
a wide range of use cases, in terms of editing operations, tools used, com-
plexity of the geometry of the light field, quality of the depth reconstruction,
and type of edition (occlusion, free space, curved surface, etc):

R1 Colorization: Colorize the arrows and the marks on the inner circum-
ference of the watch, so that users draw on a slanted surface (watch)

R2 Correcting small parts: Change the color of the reindeer’s nose and of
the eyes of the crocodile, so that users draw on curved surfaces (couch)

R3 Cloning an object: Place another light, so that users work in free space
(church)

R4 Altering a material or color: Change the hue of the statue, so that users
deal with selection and complex geometries (statue)

R5 Texture brush: Add ivy to the wall, so that users deal with occlusions
and slanted surfaces (mansion)

R6 Importing an object (billboard-like): Add flowers to the bush, so that
users deal with occlusions and work on areas of complex reconstruc-
tion (mansion)

R7 Change luminances in the scene: Use dodge to brighten-up the ma-
trioska in the foreground, so that users edit curved surfaces with a
coarse depth reconstruction (matrioska)

R8 Altering the color of an object: Change one of the books’ color from
blue to red, to deal with color selection. Users are also asked to paste
a SIGGRAPH logo on a book, another import-and-paste task (lab)

R9 Improving small details: Change the RenderMan logo in the teapot to
a purplish color to make it more salient (lab)

R10 Harmonizing the colors in the scene: Change the colors of the two
foremost flowers in the scene to match those of the rest of the flowers,
so that users deal with selection of complex geometries (frog)
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experimental procedure Ten subjects participated in the experiment
(four female, six male). All of them had previous knowledge on image edit-
ing, 3D modeling or 3D sculpting software, with either an artistic or techni-
cal background. Half of them had previous knowledge of light fields. The
full experiment took around two hours per subject, including training and
short breaks. The order of the tasks is randomized to compensate for possi-
ble learning effects. We recorded the screen during all the experiments. Each
task had a time to completion limited to ten minutes. After finishing each
task, users had to fill in a five-question questionnaire and at the end of the
ten tasks the users completed a final questionnaire. All questionnaires can
be found in the supplementary material at the project page5. Each partici-
pant completed the study with a debriefing.

data In this case, since we have no ground truth depth, we cannot mea-
sure error. Our objective measurements correspond to time of use of the
different interaction paradigms (focus/multiview, with/without depth), the
different tools, and the time to completion. Subjective ratings were collected
in the questionnaires. For each task, we asked to rate, on a scale [1..5], the
difficulty of the task, the similarity of the obtained result to the target, the
ability to correctly position editions in space and depth, the perceived inac-
curacies in the depth information, and whether those inaccuracies affected
the editing process. Finally, we asked them to rate and rank each task ac-
cording to their difficulty. In addition, we record all their actions.
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PT1.  Difficulty of task                                                  1: very difficult            5: very easy
PT2.  Similarity to target                                             1: very different          5: very similar
PT3.  Specifying desired depth and position       1: could not, at all      5: always could
PT4.  Noticing of depth inaccuracies                      1: none                          5: many
PT5.  Effect of depth inaccuracies in editing        1: not at all                   5: a lot

Figure 2.8: Ratings in post-task questionnaires in our second study, averaged across
subjects, for each of the five questions. Bars represent the standard error
of the mean. Note that in questions one to three higher is better, while in
the two last questions lower is better.

5 http://giga.cps.unizar.es/~ajarabo/pubs/lfeiSIG14/

http://giga.cps.unizar.es/~ajarabo/pubs/lfeiSIG14/
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2.5.1 Analysis

overall In general, subjects were able to perform the tasks satisfactorily
in the allotted time, as indicated by results for post-task questions (see Fig-
ure 2.8 for the results and questions): All subjects were satisfied with the
result obtained (mean rating across subjects and tasks for similarity to the
target is µPT2 = 4.09, 5 being “very similar” and 1 “very different”), and
they did not find the editing very difficult (mean rating across tasks and
subjects for difficulty is µPT1 = 3.89, 5 being “very easy” and 1 being “very
difficult”). Further, they state that they were “almost always”, µPT3 = 4.04,
capable of placing the edits in the (3D) position they intended.

interaction paradigms Figure 2.10 (left) shows the mean times, across
subjects and per task, during which the focus and multiview paradigms
were used, in percentage with respect to time to completion of the task. Dif-
ferences are not significant for any task except for task R3 (church), where
multiview is preferred, and task R7 (matrioska), in which focus is preferred.
The first one is to be expected, since blur (or de-focus) does not offer a clear
depth cue due to the nature and configuration of the scene. In R7, however,
focus is more frequently used, the difference with respect to multiview be-
ing significant; we suspect this is due to the scene having a small number of
very clearly separated depth planes.

In the final questionnaire, subjects rated and ranked multiview and focus,
both in terms of visualization and of editing per se. For visualization, mul-
tiview is required by almost all subjects (see mean rating in Figure 2.9, Q2),
in a manner consistent with results in our first study; also consistently, rank
product for multiview for visualization is 1.07, meaning most of the time it
is ranked first of the two. However, when it comes to editing, subjects are
almost divided between both paradigms, meaning there is no preference for
one over the other (rank product for multiview for editing is 1.62). When
asked in the debriefing, many subjects would state that, given the tools at
hand and the Visual Aid, there was not a significant difference between one
paradigm and the other for editing.

depth information With respect to the use of depth information we
consider two aspects: First, whether inaccurate depth is good enough for
editing light fields; and second, whether the use of depth information is pre-
ferred. When looking at post-task questions, perhaps surprisingly, for most
of the tasks users noticed almost no inaccuracies in the depth information
(mean rating is µPT4 = 2.16, with 5 being “many inaccuracies” and 1 being
“none”). More importantly, the inaccuracies noticed did not significantly af-
fect their editing (mean rating for the corresponding question is µPT5 = 1.91,
5 being “they affected editing a lot” and 1 being “they did not affect editing
at all”). These averages are slightly lower for the more sophisticated method
of Kim et al. [117], which also makes use of higher resolution light fields,
than for the Lytro light fields (µPT4,Kim = 2.08 vs. µPT4,Lytro = 2.30, and
µPT5,Kim = 1.84 vs. µPT5,Lytro = 2.00), although the difference is not signif-
icant. These conclusions on depth inaccuracies are confirmed by subjects’
responses in the final questionnaire (see Figure 2.9, Q5 and Q6). In terms of
usefulness of depth information, users’ opinion has improved in the second
study. When looking at the final questionnaire responses (Figure 2.9, Q3

and Q4), we see that they find it “useful” or “very useful” and use it “fre-
quently” or “very frequently” (more detail in Section 2.6). Timings confirm
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this, as shown in Figure 2.10 (right), which depicts the mean percentage
over total time, across subjects and per task, during which depth informa-
tion is activated or de-activated. This confirms the need for taking into ac-
count depth information but coupled with tools that exploit it adequately.
It should be noted that while the task performed and the reconstruction
quality might influence users preferences, it is not our goal to perform an
accurate evaluation of depth reconstruction methods, but to derive usable
guidelines for light field editing taking into account state-of-the-art capture
and reconstruction methods.

Preferred interface for editing (1: Multiview - 5: Focus)
Preferred interface for visualization (1: Multiview - 5: Focus)

Utility of depth info (1: not at all - 5: very)
Freq. of use of depth info (1: not at all - 5: very)

Noticing inaccuracies in depth info (1: not at all - 5: a lot)
Effect of depth inaccuracies in editing (1: none - 5: very large)

Freq. of use of the second window (1: not at all - 5: very frequently)
Utility of Depth Sel. (1: not at all - 5: very)

Utility of Color Sel. (1: not at all - 5: very)
Freq. of use Depth Sel. (1: not at all - 5: very)

Freq. of use of Color Sel. (1: not at all - 5: very)

1 2 3 4 5

Q1
Q2
Q3
Q4

Q5
Q6
Q7
Q8
Q9
Q10
Q11

(3.7, 0.335)
(1.5, 0.307)
(4.6, 0.163)
(4.5, 0.167)

(2.2, 0.249)
(2.2, 0.249)

(1.7, 0.260)
(4.6, 0.163)
(4.7, 0.153)
(4.2, 0.200)
(3.8, 0.249)

Figure 2.9: Mean ratings for questions in the final questionnaire of our second exper-
iment, averaged across subjects. Bars represent the standard error of the
mean (SEM). For each question, the exact mean µ and SEM are shown in
the form (µ, SEM). Note that not always higher is better.

newly incorporated tools When asked about the Depth Selection
tool in the final questionnaire, responses by subjects were almost unani-
mous: the vast majority find it “useful” or “very useful”, and use it “fre-
quently” or “very frequently” (see Figure 2.9, Q8 and Q9). Similar to the
Depth Selection tool, the Color Selection tool is well received by subjects
(Figure 2.9, Q10 and Q11; mean rating for utility of Color Selection is 4.20, 5

being “very useful” and 1 being “not useful at all”), although they state that
the use of the Color Selection tool is less frequent than the Depth Selection
tool (µFQ,DepthUse = 4.70 vs. µFQ,ColorUse = 3.80). The tasks are designed in
such a way that, four of them can be done only with Color Selection (R2,
R8, R9, R10), four of them require Depth Selection (R1, R5, R6, R7), and one
both (R3 does not require either of them). Yet, the frequency of use of the
Depth Selection tool is significantly higher, as stated above, meaning that
subjects tend to favor the Depth Selection, or a combination of both even if
only Color Selection could suffice.

We also look at the temporal data to evaluate the use of the newly incor-
porated features: Depth Selection, Color Selection, and Visual Aid function-
alities. The times of use show that in most of the tasks, at least 50% of the
time either the Depth Selection or the Color Selection tools (or both) were
activated, as shown in Figure 2.11 (left). The frequency of use of the Visual
Aid feature can be seen in Figure 2.11 (right); on average, the time Visual
Aid is activated exceeds 50% of the time depth information is used in all
tasks, confirming its utility. Section 2.6.2 analyzes these workflows in more
detail.
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conclusions of experiment 2 We have seen that subjects are able
to satisfactorily perform the variety of tasks with the interface and tools
provided in the allotted time. Surprisingly, they very seldom notice inaccu-
racies in the depth information, and in any case these do not significantly
affect their editing process. Further, for editing, there is not a significant dif-
ference between focus or multiview, whereas as expected, for visualization
an approach that lets users see the different views individually is favored.
We can conclude that for editing, provided the adequate tools and depth
management functionalities (e.g. Visual Aid and Depth Selection), the dif-
ferences between the two interaction paradigms are blurred out. Another
relevant finding is the fact that users do leverage the extra dimensionality
of a light field: Even in cases where selection based on color would suffice,
they complement it with selection based on depth. Consequently, depth in-
formation, together with depth management functionalities, are favored and
extensively used, easing previously complicated tasks such as occlusion han-
dling.

Multiview Focus Depth Off Depth On

TaskTask

Figure 2.10: Mean percentage across subjects, in realistic scenarios, of total time
spent with multiview or focus (left) and with depth activated or de-
activated (right), with respect to the total time to completion.

Depth Sel. On Color Sel. On

Both Depth and Color Sel. On

Visual Aid On

TaskTask

Figure 2.11: Left: Mean across subjects of time of activation of only Depth Selection,
only Color Selection, and both tools simultaneously, in percentage over
total time to completion of the task. Right: Mean times of use of the
Visual Aid, in percentage over total time using depth information.
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2.6 workflow analysis

Data collection from the experiments described above yields an immense
quantity of both subjective and objective information which provides in-
sights on a variety of different aspects of light field editing: Usage of dif-
ferent tools, preferred interfaces, variability of preferences with the task to
perform, workflows, etc. While previous sections have focused on how suit-
able different interfaces and tools are, and whether an interface can allow for
satisfactory editing of light fields with current depth reconstruction meth-
ods, here we analyze subjects’ workflows, that is, we look for underlying
patterns in subjects’ actions and their preferences for different generic tasks.

2.6.1 Synthetic Scenarios (Experiment 1)

Analysis of the data for time to completion, error in depth (measured as the
L1 norm averaged across views), and ratings and rankings on interface pref-
erence provided by users yielded three distinct clusters, roughly correspond-
ing to three task categories: editing of surfaces (planar or curved), editing
in free space, and occlusion handling. Data analysis is performed using re-
peated measures ANOVA for error, timings, and ratings, and Kruskal-Wallis
for rankings (see Section 2.B.1).

editing of surfaces Tasks S1 to S3 allow us to draw insights on sur-
face editing. In terms of error, in these tasks error in depth for interfaces
with depth (MD and FD) is zero, since strokes snap to the surface below
them (Figure 2.5, top). In a consequent manner, realizing the task with these
interfaces took less time (Figure 2.5, bottom). For interfaces without depth,
M yielded a higher error (p ≤ 0.018) than F (p ≤ 0.018), showing that users
found it more difficult to locate an edit in depth with M. This is also reflected
in the timings, in which M is significantly slower (p ≤ 0.008) in most cases.
Task S1 is an exception, possibly because of its simplicity. Ratings show
a clear preference for interfaces with depth for editing on surfaces, as ex-
pected. The correlation of rankings with the results for ratings is extremely
high, showing that subjects have clear preferences. In summary, interfaces
with depth are the clear choice for editing surfaces, as expected. Further, a
slight preference for multiview over focus is hinted, but the difference is not
significant

editing in free space Task S4 deals with positioning in free space.
In this case, interfaces without depth yield lower error than those with
depth, although the difference between interaction paradigms is not signif-
icant (Figure 2.5, top). Even though errors are high, times to completion is
very low (Figure 2.5, bottom). In interfaces with depth, this can be due to
the fact that users realize that they will not be able to correctly place it in
depth (recall that the edit will snap to the surface right below) and give up.
This hypothesis seems supported by the low ratings these two interfaces re-
ceive in this task. In general, results suggest that users struggle to correctly
judge depth in free space, and feedback from users confirmed this fact, and
pointed out that F is chosen because of the clear feedback it provides with
respect to the position of the plane being edited. In accordance with this,
F takes the least time, even though the difference is only significant with
respect to M (p ≤ 0.008). Thus, F is the interface of choice among the four
tested for editing in free space.
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occlusion handling Task S5 implies handling occlusions. For this, F
yields both the lowest error and time to completion (although not signif-
icantly different from FD in the latter and from MD in the former) (Fig-
ure 2.5). Clearly, M and MD are not useful interfaces in this regard, since M
yields the largest error, and MD the highest time to completion, to the point
that some subjects (35%) did not complete the task in the given time. Note
that in this experiment, subjects need to erase to handle occlusions, which
can be time consuming. Ratings confirm the superiority of F in this task.

In summary, this experiment has shown the large influence of the task
to perform in the interface of choice, with, essentially, MD and FD being
ahead for on-surface editing, and F the interface of choice for free-space edit-
ing and occlusion handling. In the following, we will see if these findings
hold in real light fields, with new tools and subjects being freely allowed to
choose the interaction paradigm and whether depth information should be
used (essentially, being able to switch between the four previous interfaces).

2.6.2 Real Scenarios (Experiment 2)

Again, we cluster the tasks in categories; these are the same as the above,
with an additional category for editing of objects of intricate geometry, for
which subjects follow a different workflow than when editing simpler pla-
nar or curved surfaces. As mentioned above, our focus here will be on work-
flows, and we will look at times of use of the different interfaces and tools
as an indicator of preferences. We also collect data on subjective preferences.
We describe here the main findings, while the rest of the data can be found
in Section 2.C. Additionally, we refer to the supplementary video6 for exam-
ples on the workflows.

editing of surfaces Tasks R1 and R8 involved editing planar surfaces,
while R2, R7 and R9 require editing curved surfaces (see Figure 2.7 for ref-
erence). Among the latter, R2 and R9 are very similar in nature, since they
both involve changing small details, while R7 requires editing a large curved
surface. In all of these tasks, the use of depth information is largely favored,
which matches our results in Experiment 1. There is no clear preference be-
tween interaction paradigms (focus or multiview), although there is a slight
trend towards focus; in the debriefing interviews, subjects reported that fo-
cus offered a very strong and easy-to-interpret cue for visualization of the
active area. Regarding the tools used, Tasks R2 and R9 favor the use of the
color selection tool, possibly because, as mentioned, the areas requiring edit-
ing are small, similar in color, and without a distinct depth with respect to
their surrounding areas. The rest favor the use of the depth selection tool. A
sample editing workflow (for Task R1) is shown in Figure 2.12.

editing in free space Task R3 requires editing in free space. In this
case, again, results are consistent with Experiment 1: Depth information is
scarcely used, if at all. However, while, before, F was preferred, we observe
here a trend towards M, as shown in the workflow for Task R3 included
in Figure 2.12. This is possibly due to the absence of high frequency infor-
mation in the area to edit, which causes the blur of the focus interface to
provide little or no depth cues.

6 http://giga.cps.unizar.es/~ajarabo/pubs/lfeiSIG14/videos/Jarabo2014_suppvideo_

Experiment2.mp4

http://giga.cps.unizar.es/~ajarabo/pubs/lfeiSIG14/videos/Jarabo2014_suppvideo_Experiment2.mp4
http://giga.cps.unizar.es/~ajarabo/pubs/lfeiSIG14/videos/Jarabo2014_suppvideo_Experiment2.mp4
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Figure 2.12: Sample workflows for Tasks R1, R3, R5 and R10, one pertaining to each
of the four categories or use case scenarios (editing surfaces, editing in
free space, handling occlusions, and editing complex geometries). They
indicate the tools and interfaces used by the subject along time, shown
in the abscissa (in seconds). The six bottom marks in the y-axis corre-
spond to different operations (from bottom to top: adjust depth, change
view, draw, erase, set depth threshold, and set tool size). The top four
marks indicate whether that feature was activated or not at each time in-
stant, and correspond, from bottom to top, to color selection tool (C.Sel),
interface (Inter), depth selection tool (D.Sel) and visual aid tool (VAid).
Note that the Inter features different colors specifying the interface be-
ing used.

occlusion handling In this experiment, Tasks R5 and R6 require
dealing with occlusions. Here, the introduction of the depth and color se-
lection tools causes a change with respect to results obtained in Experiment
1. While in the first experiment, there was a large amount of erasing to deal
with the occlusions, the introduction of the depth selection tool, largely used
in both R5 and R6, reduces the need to erase to a minimum (see Figure 2.12,
Task R5, for a sample editing workflow in that task). Surprisingly, there is
little difference between the use of MD and FD, revealing that as long as
depth information and related tools are present, the interaction paradigm is
less relevant for these tasks. The color selection tool is fairly used in Task R5

to avoid the pipe, which is hard to disambiguate from the rest of the wall in
the depth dimension.

editing of complex geometries Tasks R4 and R10 clearly show the
need for the color and depth selection tools. When intricate geometries are
present, these are extensively used. The nature of the scene determines
which one is used: In the case of R4, 9 out of 10 subjects used the depth
selection tool to complete the task, while in the case of R10, 9 out of 10 used
the color selection tool, as shown in the sample editing workflow for Task
R10 shown in Figure 2.12. The majority of the subjects used depth informa-
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tion throughout the tasks; however, differences between the time of use of
FD and MD were not significant.

In summary, the second experiment confirms the findings of Experiment 1

in most aspects, with a clear exception in occlusion handling, which is now
easily dealt with thanks to the new tools. Similarly, handling of intricate
geometries is possible thanks to these tools. We also observe that depth
information is almost always required, while the differences between the
interface paradigms (multiview and focus) become less significant.

2.7 efficient propagation of light field edits

Until now, we have focused on point-based editing, where the user needs to
carefully position the edits on the light field. While this type of interaction
is the building block for other operations, it limits what the user can do
without long and painful editing sessions and strong artistic skills. Here we
briefly describe the work we have developed on edit propagation for the
multidimensional domain of light fields, and refer to the publications for
details [100, 6].

Coarse stroke-based edit propagation [140, 174, 4, 251] allows fast edit-
ing in images by asking the user to input just a few sparse strokes, and
propagating them to the rest of the image. This propagation is usually per-
formed keeping in mind two principles: first, pixels covered by one stroke
should keep the appearance given by the user as much as possible. And
second, near pixels with similar appearance should receive similar edits. To
account for these two principles, it is necessary to define the mathematical
formulation of the propagation, where the final propagated edits in a pixel
depends on the explicit edit performed over that pixel, and also in the edits
performed over pixels with similar appearance.

Editing the appearance of a light field is challenging because of some in-
herent difficulties. First, the consistency between views has to be preserved.
Additionally, the amount of data to manipulate is usually very large, since
the size of the light fields tends to be very high in order to provide well-
sampled data. Managing such data sizes can make the editing process very
slow, which is unacceptable if we are aiming to provide an interactive edit-
ing process to the user. Our light field editing framework succeeds in solv-
ing these difficulties: it provides a solution which maintains the coherence
between the samples in the light field, by taking advantage of the fact that co-
herent elements in the light field should receive similar edits, as far as they
have similar appearance; and it is done very efficiently, giving user feed-
back in interactive times, by using a downsampling-upsamping approach
where similar and close rays are clustered together, and the propagation is
performed in the downsampled version of the light field.

We downsample not only in the spatial domain, but also accounting for
other features, ensuring that similar (in a multi-dimensional way) pixels will
receive similar edits. This implies downsampling the data considering all the
dimensions of the distance metric used when propagating edits [135, 140, 4].
To do this, we follow an approach similar to the work of Xu et al. [251],
mapping all pixels to an n-dimensional affinity space defined by the dis-
tance metric and then performing the downsampling in that space. We ex-
plore two methods for downsampling: a hierarchical binary space subdi-
vision [100], and a k-means [255] based approach [6]. These two methods
exhibit competing advantages: while the former is very fast, the latter re-
sults in a more optimal clustering of the rays of the light field, at the cost of
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more expensive computations. This downsampling is performed only once
as a preprocess.

Then, during the editing, the strokes specifying the edits are transformed
into the downsampled space, and propagated in that space using the tech-
nique by An and Pellacini [4], that allows global propagation of the edits in
the scene by taking into account the low-rank nature of the per-pixels-pair
distance matrix. Finally, we upsample the propagated results into the origi-
nal light field using an upsampling procedure similar to the one proposed
by Kopf et al. [125].

Figure 2.13 shows some preliminary results on light field edit propaga-
tion using our approach. Although it shows the potential of the approach,
significantly more work is still needed to increase the robustness and effi-
ciency of our approach: advanced techniques for large-scale low-rank matrix
decomposition, together with specific distance metrics for light fields, are a
promising avenue for solving the problem.

(a) Original+Scribbles (b) Kd-Tree [251] (c) Sparse Ctrl [252] (d) Ours

Figure 2.13: Comparison of the results for light field edit propagation using the kd-
tree based method by Xu et al. [251], the sparse control method by Xu
et al. [252], and our method. The bottom row shows the central view of
each light field: Our method propagates more faithfully the input colors
from the user and results into proper color segmentation based on the
affinity of the different areas of the light field, while the results of the
kd-tree [251] and sparse control [252] methods exhibit clear artifacts in
form of blended colors, or wrongly propagated areas.

2.8 discussion and conclusions

Our findings support the potential for light field editing, currently under-
developed and not on-par with image editing software. Overall, the most
important general findings are: First, that users can perform editing tasks
on light fields with our interface and tools; and second, that they do exploit
the extra dimensionality of the light field. In fact, the real light fields in the
second experiment incorporate reconstructed depth information, which sub-
jects used constantly. Surprisingly, even though these reconstructed depth
maps have different degrees of inaccuracy, users reported that they barely
noticed these inaccuracies, or that they did not significantly affect the edit-
ing process. We believe this is due to the nature of the inaccuracies and to
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Figure 2.14: Top row: Central view of the original light field. Bottom row: Sample
edits performed by advanced users. From left to right: desaturating the
background in motorbike2 (Lytro); modifying the couch, the hippo, and
the crocodile’s body in couch (Kim et al. [117]); and changing his hair
color and lighting her up in couple (Lytro).

the set of tools provided. For instance, a combination of Depth Selection
and Color Selection typically overcomes the influence of noise. This is true
even in low-parallax light fields, which do not allow for geometry recovery
beyond a series of coarse discrete depth planes.

Moreover, occlusions, which are a very specific and relevant aspect in
light field editing, were handled gracefully using the Depth Selection tool in
the second experiment. However, having depth information does not mean
using it all the time. In fact, users reported that toggling depth off offered
them a high degree of control over the edits, although at the cost of longer
editing times. This kind of versatility of the interface in the second study
favored artistic exploration, as reported by subjects and shown in Figures 2.1
and 2.14 and in the supplementary video available in the project page.

Another interesting finding is the fact that all users edited specular high-
lights as if they were a feature on the surface of the object (Task S3). This
is physically inaccurate since they are actually detached from the reflecting
surface [211], but nothing was reported during the interviews. This seems
to confirm previous findings on the inability of the human visual system
to correctly assess the physical accuracy of reflections and highlights [42].
Finally, in terms of workflow and layout, the newly incorporated tools facil-
itated editing tasks to the point that the right window of the interface was
rarely used (see Figure 2.9, Q7). Thus, for the advanced edits shown in the
supplementary video and in Figure 2.1, we opted to add a button to open
the right window only when needed.

future work Interfaces for light field editing remain largely unexplored.
As such, there are many more opportunities for future studies. We have
presented a number of diverse scenes and common tools which we hope
help in future research. Additionally, our findings may be applied to edit-
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ing RGB+D data, or even stereoscopic editing, which can be regarded as
particular cases of light field editing.

However, as with any user study, our conclusions are only strictly valid
for the tested scenarios. Exploring other complex interaction procedures,
such as selecting a volume in a light field, using edit propagation tools (as
sketched in Section 2.7) or applying perspective corrections when pasting
objects, are interesting avenues of future work; these would require extend-
ing the local, point-based edits used in our experiments to other global or
non-local manipulations. Additionally, while our results suggest that users’
editing is not significantly affected by depth errors, a quantitative analysis
of the effect of imprecise depth remains an open question. Finally, we have
explored the two most common paradigms found in literature (multiview
and focus); devising and exploring new paradigms might lead to new in-
teraction workflows for light field editing. It is also important to remark
that we have used structured light fields [136], such as those acquired with
existing commercial plenoptic cameras (LytroTM, RaytrixTM); unconstrained
light fields (e.g. [56, 27]) are much less common, and out of the scope of this
work.

All the material covered in this paper, including code for the interfaces
and to record and analyze data; compiled, functioning versions of all the
interfaces; and the raw data itself, are publicly available in the web7. We
hope that other researchers will be able to build on our work by extend-
ing the functionality of the interfaces, sharing some new test light fields or
devising new tasks. We believe that our framework and principled evalu-
ation methodology can help gain a better understanding of editing in the
multidimensional space of light fields.

appendices

2.a description of tasks

2.a.1 Experiment 1: Synthetic Scenarios

We include here the description given to the users for each directed task,
while Table 2.2 compiles the task description, task challenge, and central
views of the input light field and target image. For open tasks (S6 and S7),
target images are given to the users only as a source of inspiration.

task s1 Draw your initial on the back blue wall approximately in the place
indicated in the sample image. Use the brush (and the erase tool if necessary). Do
not worry about the color of the brush. Time: 5 minutes.

task s2 Using the brush (and the erase tool if necessary), paint on the pattern
of the vase as shown in the sample image to change the color of that part of the vase.
Do not worry about the color of the brush. Time: 5 minutes.

task s3 Using the dodge tool (and the erase tool if necessary), increase the
brightness of the specular highlights in the glossy statue of the image. Change only
the specular highlights indicated in the sample image. Time: 5 minutes.

task s4 Once you press Start, an image will appear joined to the cursor. You
have to place that image in the scene, so that to appears to be floating in the air. The

7 http://giga.cps.unizar.es/~ajarabo/pubs/lfeiSIG14/

http://giga.cps.unizar.es/~ajarabo/pubs/lfeiSIG14/
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Task
Code

Input
Central
View

Target
Central
View

Task Description Task Challenge

S1 Draw initial on wall.
Paint planar geometry
parallel to camera
plane.

S2

Change the color of the
pattern in the vase.

Paint on a curved
surface.

S3

Dodge specular
highlights in fertility
figurine.

Modify specular
highlights on a curved
surface.

S4

Place paper airplane
between the vase and
the fertility figurine.

Place billboard-like
object in free space.

S5

Draw a heart on the
wall, behind the railing.

Place billboard-like
object in free space.

S6

Freely edit the Head
light field.

Edit a light field with
abundant curved
surfaces and a very
large baseline.

S7

Freely edit the San
Miguel light field.

Edit a light field with
several planar surfaces,
parallel and slanted, at
very different depths.

Table 2.2: Description of tasks in Experiment 1. See accompanying text for the exact
instructions given to users.

image needs to be placed such that in depth it is situated in front of the vase, but
behind the glossy statue (see sample image). Time: 5 minutes.

task s5 Using the brush (and the erase tool if necessary) draw, on the back
wall, a heart so that it is partially occluded by the railing (see sample image). The
heart needs to be on the wall, and thus occluded by the foreground railing. Time: 5
minutes.

task s6 In this task you can toggle depth information on/off at any point dur-
ing the editing process. You are given a set of photos for inspiration. Suggestions:
painting on the face, adding glasses, monocle, etc. Time: 12 minutes.

task s7 You can now choose between any of the four interfaces you have tested
so far, that is, focus with or without depth, and multiview with or without depth.
You can switch between focus and multiview and activate or deactivate depth infor-
mation at any point during the editing process. The goal is making the scene more
beautiful. Suggestions: adding flowers to the plants (the billboard object to insert
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are now some flowers), decorating the flower pots, or any other edit you can think
of. Time: 12 minutes.

2.a.2 Experiment 2: Real Scenarios

We include here the description given to the users for each task. Table 2.3
compile the task description, task challenge, and central views of the input
light field and target image.

task r1 Colorize in green the arrows and time marks of the watch, as shown in
the figure. Time: 10 minutes.

task r2 Two different tasks: (a) Change the color (“Hue” brush) of the nose of
the reindeer from brown to red; and (b) change the color (“Hue” brush) of the eyes
of the crocodile from white to light yellow. Time: 10 minutes.

task r3 Place two more street lights on the electric cable, as shown in the image.
There is no need to care about the change of size with perspective. You can use the
“Paste Img.” tool. Time: 10 minutes.

task r4 Change the color (“Hue” brush) of the large cube statue to dark red to
simulate a change of material, as shown in the image. Note: The statue has some
holes through which the wall of the building in the back is visible. Time: 10 minutes.

task r5 Add ivy (using the “Texture” brush) to the wall of the building, as
shown in the image. You should try to avoid having ivy on the tree in front of the
building and on the pipe on the wall. Time: 10 minutes.

task r6 Add flowers (use “Paste Img.”) to the bush that is behind the railing,
taking into account that they should not appear on top of the bars of the railing.
Time: 10 minutes.

task r7 Modify the exposure (you can use the “Dodge” brush) of the matrioska
in the foreground to lighten it up, making it less dark. Time: 10 minutes.

task r8 Add a SIGGRAPH logo (use “Paste Img.”) to the spine of the reddish-
brown book in the back, and change the color of the blue book (use the “Hue Brush”)
as shown in the image. Time: 10 minutes.

task r9 Change the color of the logo in the teapot using the “Hue” brush. Time:
10 minutes.

task r10 Change the color (“Hue” brush) of the yellow and blue flowers in the
foreground to colors in the color range of the rest of the flowers (red, orange, maroon,
pink), as shown in the image. Time: 10 minutes.

2.b additional data from analysis of experiment 1

2.b.1 Additional Information on Experimental Procedure

The study consisted of two main blocks: multiview and focus, in randomized
order for each user. Within each block, the two versions of the interface were
used (with and without depth), also in randomized order to compensate for
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Task
Code

Input
Central
View

Target
Central
View

Task Description Task Challenge

R1

Colorize the arrows
and the marks on the
inner circumference of
the watch.

Painting on a slanted
surface with a noisy
depth reconstruction.
Depth from Wanner and
Goldlücke [230].

R2

Change the color of the
reindeer’s nose and of
the eyes of the
crocodile.

Painting on a curved
surface. Depth from Kim
et al. [117].

R3

Place another light on
the cable.

Placing a billboard-like
object in free space.
Depth from Kim et
al. [117].

R4

Change the hue of the
statue.

Dealing with selection
and complex
geometries. Depth from
Kim et al. [117].

R5

Add ivy to the wall, as
shown in the image.

Dealing with occlusions
and slanted surfaces.
Depth from Kim et
al. [117].

R6

Add flowers to the
bush (see target image
for guidance).

Dealing with occlusions
and working on areas
of complex depth
reconstruction. Depth
from Kim et al. [117].

R7

Use dodge to
brighten-up the
matrioska in the
foreground.

Editing curved surfaces
with a coarse depth
reconstruction. Depth
from LytroTM [145].

R8

Change one of the
books’ color and paste
a SIGGRAPH logo on a
book.

Dealing with color
selection and pasting
onto an object parallel
to the camera plane.
Depth from
LytroTM [145].

R9

Change the RenderMan
logo in the teapot to a
purplish color.

Painting on a curved
surface with a coarse
depth reconstruction.
Depth from
LytroTM [145].

R10

Change the colors of
the two foremost
flowers in the scene to
match those of the rest
of the flowers.

Dealing with selection
of complex geometries.
Using selection based
on color and/or on
depth. Depth from
LytroTM [145].

Table 2.3: Description of tasks in Experiment 2. See accompanying text for the exact
instructions given to users.

possible learning effects. This yielded a total of four sessions, with each
one including all five tasks sequentially (S1 to S5). After each block, subjects
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were asked to complete Task S6 with the current interaction paradigm. After
completing both blocks, subjects additionally performed the final Task S7.
We recorded the screen during all the experiments.

After finishing a session with an interface or an open task, users had to
fill in a questionnaire and could write free-form comments as well. At the
end, subjects were required to fill in a final questionnaire where they had
to rate and rank interfaces per task, and also regarding other more general
aspects. All questionnaires can be found in the supplementary document8

at the project page. Each participant completed the experiment with an in-
formal interview, to collect general impressions and ask about the subject’s
workflow.

Although the participants were recommended to use a pen on a tablet,
they were allowed to use a mouse if they felt more comfortable using it, to
ensure that their performance was not affected by the input device. The full
experiment took around four hours per subject, including training and short
breaks. The training took around one hour, including filling in a preliminary
questionnaire, and was performed with an additional light field, shown in
the supplementary material.

2.b.2 Error in Depth

Here, Table 2.4 shows pairwise comparisons (p-value) for the error in depth
of each of the five directed tasks [S1..S5]. For the results of the ANOVA see
also Table 1 in the main text. A p-value ≤ 0.05 (marked with a star (*))
indicates the difference between interfaces is significant. Additionally, in
Figure 2.15 we plot 95% confidence intervals for the difference of the mean
between each pair of interfaces. Confidence intervals also show significance
(if the interval contains zero, then the difference between the compared in-
terfaces is not significant), but additionally they give an idea of the magni-
tude of the difference. Since confidence intervals are symmetric for each pair
of interfaces (e.g. between M − F and F − M only the sign of the interval
changes) we only show half of the pairwise comparisons.

2.b.3 Time to Completion

We plot mean times to completion per interface for each directed task (S1–
S5) in Figure 2.16, and also illustrate in it statistically significant differences
between them. For tasks S1 to S3, which require placing strokes on surfaces,
interfaces with depth information (MD and FD) took less time, although
the difference is only significant with respect to M (p ≤ 0.008). There is no
significant differences in Task S1, due to its simplicity.

We additionally provide here, in Table 2.5, the results of the repeated
measures ANOVA performed on the time to completion, from which the
main text only reports significant differences. The table contains the H-test,
the between-groups degrees of freedom d f1 (three unless the Greenhouse-
Geisser correction is applied because sphericity is violated), the within-
groups degrees of freedom d f2, the associated p-value, and the value of the
partial eta-squared η2 for each task, indicative of the proportion of variance
that can be attributed to the interface factor. Table 2.6 contains the pairwise
comparisons (p-value) for the time to completion in each of the five directed
tasks [S1..S5]. A p-value ≤ 0.05 (marked with *) indicates significant differ-

8 http://giga.cps.unizar.es/~ajarabo/pubs/lfeiSIG14/downloads/Jarabo_sig14_

Supplementary_Material.pdf

http://giga.cps.unizar.es/~ajarabo/pubs/lfeiSIG14/downloads/Jarabo_sig14_Supplementary_Material.pdf
http://giga.cps.unizar.es/~ajarabo/pubs/lfeiSIG14/downloads/Jarabo_sig14_Supplementary_Material.pdf
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Table 2.4: Significance of pairwise comparisons for error in depth in directed tasks.

M MD F FD

M - 0.000* 0.018* 0.000*

MD 0.000* - 0.000* -

F 0.018* 0.000* - 0.000*

FD 0.000* - 0.000* -

(a) Task S1

M MD F FD

M - 0.000* 0.000* 0.000*

MD 0.000* - 0.000* -

F 0.000* 0.000* - 0.000*

FD 0.000* - 0.000* -

(b) Task S2

M MD F FD

M - 0.000* 0.000* 0.000*

MD 0.000* - 0.000* -

F 0.000* 0.000* - 0.000*

FD 0.000* - 0.000* -

(c) Task S3

M MD F FD

M - 0.000* 0.951 0.000*

MD 0.000* - 0.000* 0.296

F 0.951 0.000* - 0.000*

FD 0.000* 0.296 0.000* -

(d) Task S4

M MD F FD

M - 0.018* 0.014* 0.028*

MD 0.018* - 0.606 0.285

F 0.014* 0.606 - 0.024*

FD 0.028* 0.285 0.024* -

(e) Task S5

ence. Additionally, in Figure 2.17 we plot 95% confidence intervals for the
difference of the mean between each pair of interfaces (see Section 2.B.2 for
details on confidence intervals).

Table 2.5: ANOVA results for time to completion in directed tasks.

S1 S2 S3 S4 S5

H 2.048 6.730 5.431 3.986 9.175

(d f1,d f2) (2.080,35.364) (3,54) (1.815,32.669) (3,48) (3,54)

p 0.142 0.001* 0.011* 0.013* 0.000*

η2 (%) 10.8 27.2 23.2 19.9 33.8

2.b.4 Ratings

Users were asked to rate their preferences in directed tasks (S1..S5), overall
preference, and general aspects on a scale [1..5]. Mean ratings for directed
tasks and for overall preference can be found in Figure 2.18, while in Fig-
ure 2.19 we show the mean values for the questions on general aspects, as
well as the results of the pairwise comparisons between interfaces (for both
ratings and rankings for comparison purposes).

Next we provide the results of the repeated measures ANOVA performed
on the ratings, from which the main text only reports which differences
between interfaces are significant. Table 2.7 provides the H-test, degrees of
freedom, and its associated significance p. The between-groups degrees of
freedom are three in all cases, since we have four interfaces and sphericity
can be assumed, while the within-group degrees of freedom are 57 in all
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(a) Task S1 (b) Task S2 (c) Task S3

(d) Task S4 (e) Task S5

Figure 2.15: Confidence intervals at 95% for mean difference of error in depth be-
tween interfaces for Tasks 1 to 5.
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Figure 2.16: Top: Mean time to completion per interface for each task. Bottom: Pair-
wise comparisons for the time to completion in each task. Items in the
same set are statistically indistinguishable.

cases. Additionally, we include the partial eta-squared η2 for each case, and
the significance results (p-value) of the pairwise comparisons in Table 2.8
(we found no significant difference for accuracy, see Table 2.7). A p-value
≤ 0.05 (marked with *) indicates the difference between interfaces is signifi-
cant.

2.b.5 Rankings

Similarly, users ranked preferences in directed tasks (S1..S5), overall prefer-
ence, and general aspects. Rankings for preferences in directed tasks and
for overall preference can be found in the main text (Figure 6, while here in
Figure 2.20 we show the ranks for the questions on general aspects. Addi-
tionally, results of pairwise comparisons between interfaces for rankings on
general aspects questions are shown in Figure 2.19.

Users’ preferences for the questions on general aspects (both in rankings
and ratings, see Figure 2.19, in addition to Figure 2.20) show that F ranks
first in most cases, with no significant difference among the others. When it
comes to accuracy, agreement among users decreases, and differences turn
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Table 2.6: Significance of pairwise comparisons for time to completion in directed
tasks.

M MD F FD

M - 0.293 0.104 0.007*

MD 0.293 - 0.977 0.367

F 0.104 0.977 - 0.115

FD 0.007* 0.367 0.115 -

(a) Task S1

M MD F FD

M - 0.001* 0.093 0.006*

MD 0.001* - 0.061 0.402

F 0.093 0.061 - 0.062

FD 0.006* 0.402 0.062 -

(b) Task S2

M MD F FD

M - 0.002* 0.386 0.008*

MD 0.002* - 0.063 0.850

F 0.386 0.063 - 0.004*

FD 0.008* 0.850 0.004* -

(c) Task S3

M MD F FD

M - 0.056 0.008* 0.068

MD 0.056 - 0.131 0.814

F 0.008* 0.131 - 0.294

FD 0.068 0.814 0.294 -

(d) Task S4

M MD F FD

M - 0.050* 0.003* 0.052

MD 0.050* - 0.000* 0.004*

F 0.003* 0.000* - 0.590

FD 0.052 0.004* 0.590 -

(e) Task S5

out not significant. Overall, what we extract from this analysis is users’ in-
clination towards the focus without depth interface. The high correlation be-
tween rankings and ratings is apparent.

We provide here as well the results of the Kruskal-Wallis test performed
on the rankings, from which the main text only reports which differences
between interfaces are significant. Table 2.9 provides the test statistic χ2, its
degrees of freedom (three in all cases, since we have four interfaces) and
its associated significance p. We also include the significance results of the
pairwise comparisons in Table 2.10 (we found no significant difference for
accuracy, see Table 2.9). A p-value ≤ 0.05 (marked *) indicates the difference
between interfaces is significant.

For each ranking obtained in each question, we obtain the rank product
per interface Ψ(ϑ) (see main text for details on computation). This rank prod-
uct is used when sorting the interfaces according to the rankings received.
In Table 2.11 we include all the rank products per interface per question,
highlighting in bold the highest ranked.

2.b.6 Workflow in open tasks

Figure 2.21 shows usage times for each interface and each of the open tasks,
divided into the action being performed in each (drawing, erasing, changing
the view or adjusting depth). The reader may refer to the supplementary
videos9 for sample editing sessions by subjects for these tasks.

9 http://giga.cps.unizar.es/~ajarabo/pubs/lfeiSIG14/videos/Jarabo2014_suppvideo_

Experiment1.mp4

http://giga.cps.unizar.es/~ajarabo/pubs/lfeiSIG14/videos/Jarabo2014_suppvideo_

Experiment2.mp4

http://giga.cps.unizar.es/~ajarabo/pubs/lfeiSIG14/videos/Jarabo2014_suppvideo_Experiment1.mp4
http://giga.cps.unizar.es/~ajarabo/pubs/lfeiSIG14/videos/Jarabo2014_suppvideo_Experiment1.mp4
http://giga.cps.unizar.es/~ajarabo/pubs/lfeiSIG14/videos/Jarabo2014_suppvideo_Experiment2.mp4
http://giga.cps.unizar.es/~ajarabo/pubs/lfeiSIG14/videos/Jarabo2014_suppvideo_Experiment2.mp4
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(a) Task S1 (b) Task S2 (c) Task S3

(d) Task S4 (e) Task S5

Figure 2.17: Confidence intervals at 95% for mean difference in time to completion
between interfaces for Tasks S1 to S5.
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Figure 2.18: Top: Mean ratings from final questionnaire for questions on preference
for each task and overall preference. Bottom: Pairwise comparisons be-
tween interfaces for the ratings. Items in the same set are statistically
indistinguishable.

In Task S6, the times spent with and without depth for each interface are
relatively balanced. This situation changes in Task S7, possibly as a conse-
quence of the different nature of the light fields involved: the head in Task S6

is a large non-planar surface, where having depth information is highly use-
ful, whereas San Miguel in Task S7 has many flat surfaces and larger depth
discontinuities with free-space in between.

In Table 2.12 we show the number of times users switched from one inter-
face to another in Task S7, in which they can freely switch between any of
the four interfaces at any time. We show the sum for all subjects. Note that,
due to how menus were implemented, users did not select one of four in-
terfaces, but switched between multiview and focus paradigms, and between
depth on or off (there are eight possible interface switches). The high num-
ber of switches between M and F supports the findings reported in the main
text: the preferred workflow was to edit mostly in F, then switch to M for
visualization.
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Figure 2.19: From left to right, for final questions on general aspects: mean ratings for
each interface; ratings ordered by mean; and rankings ordered by rank
product. Groupings show significant differences between interfaces.

Table 2.7: ANOVA results for ratings in final questionnaire.

S1 S2 S3 S4 S5 overall

H(3,57) 7.410 9.251 13.203 12.390 6.218 2.217

p 0.000* 0.000* 0.000* 0.000* 0.001* 0.096

η2 (%) 28.1 32.7 41.0 39.5 24.7 10.4

depth x-y erasing accuracy difficulty

H(3,57) 2.053 8.456 4.180 1.119 3.943

p 0.117 0.000* 0.010* 0.349 0.013*

η2 (%) 9.8 30.8 18.0 5.6 17.2

2.c additional data from analysis of experiment 2

2.c.1 Distribution of Times

Figure 2.23 illustrate the average times spent by users doing different ac-
tions and using different tools or features, namely: adjusting depth, chang-
ing view, drawing, erasing, setting the depth threshold (for the active depth
range), setting the tool size, using the Color Selection tool, using the Depth
Selection tool, and with the Visual Aid activated, plus the total time. For
each of these actions or tools, the times spent in each of the four interface
configurations (multiview without depth - M, focus without depth - F, mul-
tiview with depth - MD, and focus with depth - FD), as well as the total
time, is shown.

depth x-y erasing accuracy use

Figure 2.20: Rankings for each interface for questions on general aspects asked in
final questionnaire.
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Table 2.8: Significance of pairwise comparisons for ratings in final questionnaire.

M MD F FD

M - 0.000* 0.025* 0.001*

MD 0.000* - 0.384 0.494

F 0.025* 0.384 - 0.053

FD 0.001* 0.494 0.053 -

(a) Task S1

M MD F FD

M - 0.000* 0.541 0.019*

MD 0.000* - 0.001* 0.077

F 0.541 0.001* - 0.016*

FD 0.019* 0.077 0.016* -

(b) Task S2

M MD F FD

M - 0.000* 0.815 0.014*

MD 0.000* - 0.000* 0.045*

F 0.815 0.000* - 0.000*

FD 0.014* 0.045* 0.000* -

(c) Task S3

M MD F FD

M - 0.053 0.026* 0.014*

MD 0.053 - 0.000* 0.107

F 0.026* 0.000* - 0.000*

FD 0.014* 0.107 0.000* -

(d) Task S4

M MD F FD

M - 0.036* 0.035* 0.270

MD 0.036* - 0.001* 0.618

F 0.035* 0.001* - 0.002*

FD 0.270 0.618 0.002* -

(e) Task S5

M MD F FD

M - 0.131 0.275 0.566

MD 0.131 - 0.614 0.047*

F 0.275 0.614 - 0.044*

FD 0.566 0.047* 0.044* -

(f) Overall

M MD F FD

M - 0.338 0.041* 0.823

MD 0.338 - 0.220 0.410

F 0.041* 0.220 - 0.049*

FD 0.823 0.410 0.049* -

(g) Depth Positioning

M MD F FD

M - 0.316 0.001* 0.309

MD 0.316 - 0.001* 0.871

F 0.001* 0.001* - 0.000*

FD 0.309 0.871 0.000* -

(h) x-y Positioning

M MD F FD

M - 0.154 0.034* 0.910

MD 0.154 - 0.003* 0.234

F 0.034* 0.003* - 0.022*

FD 0.910 0.234 0.022* -

(i) Erasing

M MD F FD

M - 0.002* 0.015* 0.219

MD 0.002* - 0.785 0.102

F 0.015* 0.785 - 0.216

FD 0.219 0.102 0.216 -

(j) Difficulty of Use

Table 2.9: Kruskal-Wallis results for rankings in final questionnaire.

S1 S2 S3 S4 S5 overall

χ2(3) 26.149 14.931 35.313 22.357 11.455 9.006

p 0.000* 0.001* 0.000* 0.000* 0.008* 0.028*

depth x-y erasing accuracy difficulty

χ2(3) 13.825 28.440 10.507 5.925 12.403

p 0.002* 0.000* 0.014* 0.116 0.005*
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Table 2.10: Significance of pairwise comparisons for rankings in final questionnaire.

M MD F FD

M - 0.000* 0.025* 0.000*

MD 0.000* - 0.206 0.160

F 0.025* 0.206 - 0.008*

FD 0.000* 0.160 0.008* -

(a) Task S1

M MD F FD

M - 0.001* 0.673 0.011*

MD 0.001* - 0.005* 0.482

F 0.673 0.005* - 0.035*

FD 0.011* 0.482 0.035* -

(b) Task S2

M MD F FD

M - 0.000* 0.482 0.002*

MD 0.000* - 0.000* 0.206

F 0.482 0.000* - 0.000*

FD 0.002* 0.206 0.000* -

(c) Task S3

M MD F FD

M - 0.122 0.035* 0.025*

MD 0.122 - 0.000* 0.482

F 0.035* 0.000* - 0.000*

FD 0.025* 0.482 0.000* -

(d) Task S4

M MD F FD

M - 0.122 0.122 0.261

MD 0.122 - 0.002* 0.673

F 0.122 0.002* - 0.008*

FD 0.261 0.673 0.008* -

(e) Task S5

M MD F FD

M - 0.011* 0.160 1.000

MD 0.011* - 0.261 0.011*

F 0.160 0.261 - 0.160

FD 1.000 0.011* 0.160 -

(f) Overall

M MD F FD

M - 0.160 0.000* 0.482

MD 0.160 - 0.035* 0.482

F 0.000* 0.035* - 0.005*

FD 0.482 0.482 0.005* -

(g) Depth Positioning

M MD F FD

M - 0.092 0.001* 0.574

MD 0.092 - 0.000* 0.261

F 0.001* 0.000* - 0.000*

FD 0.574 0.261 0.000* -

(h) x-y Positioning

M MD F FD

M - 0.122 0.092 0.888

MD 0.122 - 0.001* 0.160

F 0.092 0.001* - 0.068

FD 0.888 0.160 0.068 -

(i) Erasing

M MD F FD

M - 0.003* 0.005* 0.325

MD 0.003* - 0.888 0.049*

F 0.005* 0.888 - 0.068

FD 0.325 0.049* 0.068 -

(j) Difficulty of Use

Table 2.11: Rank products per interface for rank scores on final questionnaire.

S1 S2 S3 S4 S5 overall

M 3.37 2.85 2.90 2.16 2.17 2.59

MD 1.99 1.66 1.39 2.72 2.70 1.71

F 2.34 2.66 3.28 1.37 1.64 2.07

FD 1.52 1.90 1.81 2.98 2.49 2.62

depth x-y erasing accuracy difficulty

M 2.72 2.42 2.23 2.36 2.85

MD 2.30 3.04 2.88 2.35 1.90

F 1.55 1.24 1.63 1.70 1.81

FD 2.47 2.63 2.29 2.54 2.46
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Figure 2.21: From left to right: Distribution of times for Task S6 using the multiview
and focus paradigms, and for Task S7. Note that we do not take idle
times into account. We plot median values, which makes FD in Task S7

become zero in all four categories.

Table 2.12: Switching between interfaces in Task S7.

F→M F→FD M→MD FD→MD

Nswitches 58 29 25 18

M→F FD→F MD→M MD→FD

Nswitches 52 27 15 31

2.c.2 Rankings of Difficulty

In the final questionnaire, we ask users to rank the tasks in difficulty, 10

being the easiest and 1 the most difficult. Figure 2.22 shows the rankings
and corresponding rank products for all tasks, computed as explained in
Section 2.5.

Figure 2.22: Rankings (left) and Rank products (right) for difficulty for each task, all
users.
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3E F F E C T S O F A P P R O X I M AT E F I LT E R I N G O N T H E
A P P E A R A N C E O F B I D I R E C T I O N A L T E X T U R E
F U N C T I O N S

In this chapter we present the first systematic study of the effects of approx-
imate filtering on the appearance of Bidirectional Texture Functions (BTF),
that define the appearance of complex surfaces in a spatio-bidirectional do-
main. We perform a variety of perceptual experiments exploring the spatial,
angular and temporal domains over a varied set of stimuli, on both sim-
ple and complex geometry and lighting conditions. Then, we correlate our
findings with low- and high-level descriptors of the BTF, and show different
practical applications of our findings in filtering, rendering or BTF compres-
sion. This work has been published in IEEE Transactions on Visualization and
Computer Graphics, and presented at Pacific Graphics 2014.

A. Jarabo, H. Wu, J. Dorsey, H. Rushmeier & D. Gutierrez
Effects of Approximate Filtering on the Appearance of

Bidirectional Texture Functions

IEEE Trans. on Visualization and Computer Graphics, Vol.20(6)

3.1 introduction

Many computer graphics applications require accurate depiction of visually
rich material appearance. Bidirectional Texture Functions (BTFs) represent
complex spatially and angularly-varying appearance, including effects such
as self-shadowing, inter-reflections or subsurface scattering. BTFs are usu-
ally captured by taking photographs of a material sample under different
combinations of light and view directions.

Filtering is required to render BTFs without aliasing. Mathematically ex-
act filtering is infeasible with finite processing power and/or memory. Ap-
proximate filtering techniques are needed, with the acceptability of approx-
imations measured by their perceptual impact. In this paper we present the
first systematic study of the effects of multi-dimensional filtering on the ap-
pearance of BTFs. Our goal is to understand how approximate filtering of
BTFs along the spatial, angular and temporal dimensions (both for a mov-
ing light source and a moving camera) affects the perceived visual quality
of the results (see Figure 3.1).

Previous studies have focused on developing efficient compression algo-
rithms (see [156, 41]). Recently, Filip et al. showed that different materi-
als actually require different compression strategies [39]. Another related
line of work deals with filtering strategies, where pre-computations are used
for efficient rendering, by computing multiple pre-filtered representation
of appearance at different viewing distances. Given the sophisticated, non-
linear illumination effects stored in a BTF, relatively complex filters are em-
ployed [13], although visual appearance is usually not taken into account.

Our work complements these two lines of research: We study how dif-
ferent filtering strategies affect the perceived appearance of a varied set of
BTFs, by means of systematic psychophysical experiments. We use a var-

51
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ied subset of the Bonn and UCSD BTF databases, and analyze them both
globally and according to high-level descriptors of their visual properties.

contributions Our main findings are:

• Approximate pre-filtered representations of BTFs can be used without
affecting visual equivalence with a multi-sampled reference solution

• For static scenes, there is a great tolerance for aliasing in the spatial
and angular domains, which is preferred to over-blurred BTFs. For
dynamic scenes, this trend is reversed, and over-blurred animations
are preferred over temporal aliasing artifacts. These findings correlate
well with known mechanisms of human perception

• The angular domain can be more aggressively filtered, while filtering
in the spatial domain rapidly affects visual equivalence

• High-level descriptors of the BTFs (such as e.g. glossy or structured)
correlate well with perceptually equivalent levels of filtering. This sug-
gests the necessity and usefulness of standardized high-level descrip-
tors in material and BTF databases. In turn, these high-level descrip-
tors are also correlated with low-level statistics of the BTF

• We show that our findings generalize to different geometries and il-
lumination conditions, and propose different practical applications in
filtering, rendering and compression strategies

This is the first work to systematically analyze the perceptual effect on ma-
terial appearance of different approximate BTF filtering strategies. While we
did not consider all possible combinations of all parameters, we believe that
our findings should provide enough traction to motivate future work, for
have made our stimuli and data publicly available1. We hope that this work
can also inspire future compression and filtering strategies for BTFs, which
in turn may lead to more sophisticated rendering and editing algorithms.

3.2 previous work

btf compression Dana et al. [25] first introduced BTF as an image-
based representation for material appearance. Müller et al. [156] presented
a comprehensive survey on BTF acquisition, synthesis and rendering. Sev-
eral BTF compression methods were compared, but none of them took into
account the perception of BTF at different viewing distances or under differ-
ent light directions. Another excellent survey including subsequent work in
the field can be found in [40].

More recently, Ruiters et al. [192] achieved high compression rates for
single-level BTFs, by fitting a small set of basis functions based on tensor
decomposition. Tsai et al. [215] further pushes the idea to a k-clustered ten-
sor approximation, which is suitable for efficient real-time rendering of the
compressed BTFs. Havran et al. [75] compressed the BTF by adopting a
multi-dimensional conditional probability density function in conjunction
with vector quantization. Mipmapping was handled by directly applying
the same algorithm to averaged BTF data. In contrast to our work, no per-
ceptual factors were considered.

1 http://giga.cps.unizar.es/~ajarabo/pubs/btfTVCG14/index.html

http://giga.cps.unizar.es/~ajarabo/pubs/btfTVCG14/index.html
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hierarchical representation of appearance Various algorithms
have been proposed to pre-filter material appearance, focusing on texture
maps [244], normal maps [210, 72], or general geometry and BRDFs [248]. A
survey for reflectance filtering algorithms was recently presented by Brune-
ton and Neyret [13]. Ma et al. [146] pre-filtered BTFs using Principal Com-
ponent Analysis (PCA) and parametric fitting of Phong models after a Lapla-
cian transformation. Impressive real-time LOD rendering results were achieved.
However, their method is purely numerical, and no evaluation of how the
BTF appearance is perceived for different levels of detail is provided.

perception The study of visual perception in the context of computer
graphics has produced many useful results [152]. Some example applica-
tions include selective rendering [207], global illumination [159, 104] and
motion blur [163]. Rogowitz and Rushmeier [190] found that simplified ge-
ometries were perceived differently for static and animated cases. Rama-
narayanan et al. [183] and Vangorp et al. [217] studied how object geometry,
material, and illumination interact to provide information about appearance.
Krivanek et al. [131] investigated the relationship between parameters of the
virtual point lights algorithm with the perception of different materials.

Meseth et al. [153] evaluated the rendering quality obtained by using BTFs
instead of simple 2D textures. A perception-based metric for single-level
BTFs was derived in [60], in order to achieve higher compression rates. Filip
et al. [39, 40] ran psychophysical tests to discard perceptually unimportant
data in the BTF. Although closer to our approach, our work differs in several
ways: First, we do not aim at reducing the input dataset of 2D texture images
that define the BTF; instead, we focus on efficient strategies to sample such
multidimensional data, and on studying the effect of pre-filtering BTFs in
their perceived appearance. Second, Filip et al. use a statistical description of
the BTFs, whereas we rely on more intuitive, high-level material descriptors.
Third, they compare results based on per-pixel visible differences between
the compressed and the original data, which is not related to higher-level
visual properties; instead, our work relies on the concept of visual equivalence,
where visibly different images are considered equivalent if they convey the
same impression of appearance. Our work offers applications beyond data
compression, ranging from level-of-detail or filtering techniques for BTFs,
to optimized rendering. Our findings could be applied in conjunction with
compression techniques, resulting in good filtering of reduced data.

3.3 problem statement

filtering a btf Rendering a richly textured surface at different dis-
tances without aliasing artifacts requires high sampling rates at consider-
able computational cost. To address this issue, one common approach is to
pre-filter the appearance of the surface [13]. However, to obtain the exact so-
lution, we would need to compute the filtered appearance for all light and
view conditions. This is impractical, due to huge storage and computation
requirements. Instead, the filtered appearance is typically approximated, by
pre-filtering only a subset of viewing distances, and then building a hierar-
chy of level-of-detail (LOD) representations.

Texture mipmapping is one such technique to reduce aliasing for surfaces
decorated with 2D plain textures. This technique creates a hierarchy of dif-
ferent versions of the texture, where each level is a down-sampled version of
the previous level. When the surface is rendered, the level is chosen so that
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Figure 3.2: This diagram shows the geometry of filtering the reflectance of surface
G (red, representing the area covered in one pixel). Appearance is mod-
eled with a BTF describing the underlying meso-geometry g (blue-yellow
surface). O denotes the viewpoint (please note that we have exaggerated
its proximity to the pixel for illustration purposes), while v0 (green) is
the viewing direction (vector O− x0), assumed to be constant. Sampling
points x1 and x2 from the constant or from the correct view directions
will yield different results. Note that even using an orthogonal projec-
tion (i.e. constant viewing direction v0), the angle between the viewing
direction and the normal at the differential points in the surface varies
according to the surface’s curvature, which creates an effective non-zero
solid angle.

the ratio r = t:p (texel to pixel) is preserved at 1:1. However, it is difficult
to extend texture mipmapping to BTFs, since it makes assumptions about
the underlying surface geometry, which may not hold for complex surface
representations as BTFs. For example, one assumption is that the normal n
of the surface and the light l and view v directions are uniform inside the
fraction of the surface contained in each pixel. This is not valid for BTFs, as
four additional directional dimensions defining l and v need to be sampled,
to take into account the effect of the underlying meso-geometry.

Figure 3.2 shows this. The red line represents the portion of geometry G
covered by one pixel, which has an underlying meso-structure g (the blue
and yellow shape) modeled with a BTF. The resulting outgoing radiance of
the pixel is the integral of the reflected light. However, this constant view
vector will introduce errors, due to parallax and to the directional depen-
dence of the reflectance. For point x1 in G, the sampled point in g would be
g(x1, v0) = x0

1, yielding a wrong blue sample. Using the correct view direc-
tion v1 we obtain g(x1, v1) = x1

1, a correct yellow sample (parallax problem).
For x2, the sampled reflected light is likely to be different for both view
directions; this is particularly problematic for glossy surfaces.

Similar problems occur when the incoming light direction l is assumed
to be constant. This means that, in practice, a correct BTF filtering should
not only preserve a correct ratio t:p in the spatial domain, but also filter the
view v and light l directions correctly.

perceptual consequences of filtering btf While necessary to
avoid the artifacts described above, approximately pre-filtering the BTF might
produce new, different artifacts: if the filter size is too small, aliasing artifacts
might appear on the surface. On the other hand, if the filter is too large, the
appearance of the surface will get blurred, decreasing overall contrast and
detail.
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Our main goal is to evaluate under which conditions an approximately
pre-filtered BTF is considered visually equivalent [183, 131] to the ground-
truth image. We want to explore how different kernel sizes applied on the
spatial, directional and temporal domains of the BTF affect the appearance
of the surface at different viewing and lighting conditions, both for static
images and animation. Particularly, we are interested in the following ques-
tions:

• Is it possible to approximately pre-filter BTFs while maintaining visual
equivalence with a multi-sampled reference?

• Is this perceived equivalence correlated with high-level visual proper-
ties of the surface?

• What kind of artifacts (e.g. aliasing, blur) are more easily accepted by
the human visual system? Under what conditions?

• Can different sampling strategies be applied to the different domains
of the BTF? What is the interplay between domains?

• How do different filtering kernels affect visual equivalence?

• Does the distance to the camera (i.e. projected area in the pixel) affect
visual equivalence?

• Does the motion of camera and light sources affect visual equivalence?

3.4 overview of the experiments

By applying different filtering kernels on the domains of the BTF (spatial
and angular), we want to analyze how each domain affects the appearance
of the filtered BTFs, as well as the interplay between them. We have de-
signed three different experiments: The first one evaluates the perception of
filtered BTFs on static images, seen at different distances and under differ-
ent illumination directions. The second one analyzes the effect of a varying
illumination vector l, while the third analyzes the effect for variations in the
view vector v.

For all the experiments, we use a simple scene (rendered at 512 × 512
pixels) consisting of a sphere, with material appearance modeled using a
BTF, illuminated by a single directional light. We choose this setup following
the work by Filip et al. [39], whose results suggest that simple geometry with
directional illumination is less forgiving than more complex geometry and
illumination. Vangorp et al. [217] found that simple objects like an sphere
are actually not appropriate for depicting material. However, the authors
only explore reflectance and explicitly leave spatially varying effects (e.g.
textures or BTFs) as a future line of research. On the contrary, the work
by Filip et al. focuses on the particular case of BTF’s, so their findings are
better suited for our research. Generalization to different object shapes and
illuminations is later evaluated in Section 3.8.

We describe here common aspects of all the experiments. We also show
how our multidimensional filtering strategy has advantages over classic
(spatial) mipmapping by means of a pilot study. Last, we give specific details
of each experiment in subsequent sections.



3.4 overview of the experiments 57

Figure 3.3: Reference renderings of the stimulus BTFs. From top to bottom, and
from left to right: Cambrils, Carpet, Ceiling, Corduroy; Floortile, Impala,
Lego, Lichen; Pinktile, Proposte, Pulli, Sponge; Velvet, Walkway, Wallpaper and
Wool.

input btfs We use the Bonn [195] and UCSD [127] databases. These
BTFs present a low to moderate angular frequency, restricted by the capabil-
ities of the acquisition devices. This in turn limits the types of materials that
can be represented using BTFs. Therefore, we limit our study to the materi-
als that BTFs excel at representing. We use captured BTFs since they are the
most common and used in practice. We visually analyzed high-resolution
multisampled renderings of several BTFs in order to detect pixel-wise regis-
tration inaccuracies, and discarded unsuitable ones. In the end, we keep six-
teen different BTFs (see Figure 3.3). Each one is made up of up to 151× 151
images with a resolution up to 2562 pixels. They have been chosen to repre-
sent a wide range of surfaces, showing different levels of complexity, both
in reflectance and meso-geometry. We use uncompressed versions of the
BTF, to avoid artifacts. Since these BTFs represent very different materials,
we classify them according to a set of high level properties describing their
appearance, by means of a pilot study performed by ten participants. These
properties are based on previous work on texture [184] and BRDF [151]
classification. The purpose of this descriptor-based classification is to ana-
lyze the results both globally, and at descriptor level. Table 3.1 shows the
result of the pilot study. More details on the pilot study can be found in
Section 3.A.

filtering kernels We test three different filters in our experiments:
box, Gaussian and Lanczos. The box filter is widely used, since it is the sim-
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BTF ( 1)( 2)( 3)( 4)( 5)( 6)( 7)( 8)( 9)(10)(11)(12)(13)(14)(15)

Cambrils ◦ ◦ • ◦ • ◦ ◦ • ◦ • • ◦ ◦ ◦ ◦
Carpet ◦ ◦ • • • ◦ ◦ • ◦ ◦ ◦ • ◦ ◦ ◦
Ceiling ◦ ◦ ◦ • ◦ • ◦ • • ◦ ◦ ◦ • ◦ •

Corduroy ◦ ◦ • ◦ ◦ ◦ ◦ • ◦ • ◦ • • ◦ ◦
Floortile ◦ ◦ ◦ ◦ • • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
Impala • ◦ • ◦ • ◦ ◦ • • ◦ ◦ ◦ ◦ ◦ •
Lego ◦ ◦ • ◦ • ◦ ◦ • ◦ ◦ ◦ • • ◦ •

Lichen • ◦ ◦ • • • ◦ • • ◦ ◦ ◦ ◦ ◦ •
Pinktile ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
Proposte ◦ • • ◦ • ◦ ◦ • ◦ ◦ ◦ • • ◦ ◦

Pulli ◦ ◦ • ◦ • • ◦ • ◦ ◦ ◦ • • • ◦
Sponge ◦ • ◦ ◦ • ◦ ◦ • ◦ ◦ ◦ • • ◦ ◦
Velvet ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ • ◦ • ◦

Walkway ◦ • ◦ • • ◦ ◦ • ◦ • • ◦ ◦ ◦ •
Wallpaper ◦ • ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • ◦ ◦

Wool ◦ ◦ • ◦ • ◦ ◦ • ◦ • ◦ • ◦ • ◦

Table 3.1: BTFs with their tagged descriptors, according to our pilot study. Green
• and red ◦ circles indicate whether the property has been associated or
not to the BTF. The properties tagged are: (1) high-contrast, (2) granular, (3)
structured, (4) rough, (5) feature-dense, (6) complex-structure, (7) flat, (8) relief,
(9) sharp-relief, (10) smooth-relief, (11) glossy, (12) color, (13) light, (14) soft,
and (15) hard.

Figure 3.4: Sphere viewed under the different distances used in Experiment 1, from
left to right d0, d1, d2, d3, and d4. The sphere is rendered using BTF Wool
iluminated with light direction l1.

plest and most efficient; additionally, it is implemented by default in graph-
ics hardware, although it has known poor performance with high frequen-
cies [13]. The Gaussian filter usually behaves better, and offers a good com-
promise between final result and cost. Finally, the Lanczos filter is the finite
filter that best models the ideal sinc kernel, but is the most computation-
ally expensive. The implementation and parameters of the kernels follow
PBRT [176]. We use isotropic filtering for the three cases. Anisotropic filter-
ing would improve the results, so using isoptropic filtering is a worst case sce-
nario. Additionally, it keeps the number of explored dimensions tractable.

pre-filtering the btfs If we opt for pre-filtering only in the spa-
tial domain of the BTF, each texture image used to represent the BTF is
mipmapped from a spatial resolution of 256× 256 down to 1× 1, thus yield-
ing a hierarchy of nine levels. Each scene is rendered from five different
distances di. The closest distance d0 is chosen so that r = 1 (the ratio texel to
pixel) in the center of the rendered image of the sphere. Successive distances



3.4 overview of the experiments 59
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Figure 3.5: Left: Incoming light direction ωi at each point in a texel varies from ωc in
the middle of the texel. Middle: To solve this, each level of the spatially
filtered mipmapping hierarchy is extended to contain several filtered ver-
sions computed for different solid angles Ω. Right: Radiance in texel t for
solid angle Ω0 is obtained by sampling the immediate lower level texels
in the hierarchy t1

i−1 and t2
i−1 at directions ω1

c and ω2
c respectively.

are set so that r at distance di is 22 times the ratio at di−1. Thus, for d1 we
have r = 4 and for the final d4 we have r = 256 (Figure 3.4). Distances di
vary directly with view vector v; in the following we use di as the distance
where the objects are viewed, and v as the view vector.

Filtering only in the spatial domain in BTFs might lead to incorrect ap-
pearance, as described in Section 3.3 and shown in Figure 3.5 (left). Let Ω0
be the effective solid angle subtended by a pixel and the light source, which
accounts for the variation of the angle between the light direction and the
normal in the points of the surface (see Figure 3.2). Assuming that all incom-
ing light on a pixel is from the same direction ωc (sampled at the center) is
wrong, since different points receive light from different directions ωi. Since
these directions depend on Ω0, we create several filtered versions for each
level of the mipmap hierarchy, varying it from 0◦ to 45◦ in 15-degree in-
crements (Figure 3.5 (middle)). We found that four levels are enough for
our BTFs. Then, to accurately compute incoming light at a given filtered
texel ti, we take into account the immediate lower level in the hierarchy ti−1,
and sample its center point instead (Figure 3.5 (right)). The same approach
works for the viewing direction v.

At rendering time, the pre-filtered hierarchy is accessed based on the ratio
r for the spatial domain, which is computed using the derivatives of the
texture coordinates at the pixel. This gives us a texel t at hierarchy level
k. Then, the light and view solid angles are used to choose the pre-filtered
version of t, as described above. Thus our multidimensional mipmapping
hierarchy is accessed by specifying three input parameters: r, Ωl (light) Ωv
(view). These last two are computed in run-time using the derivatives in the
light and view directions with respect to the normal of the surface, which
allows accounting for surfaces with a varying normal within a pixel. Note
that in our experiments the normal varies smoothly within the pixel, so
this variation can be captured using the pixel derivatives. For geometries
with more complex geometry, level-of-detail techniques can be applied [142].
Linear interpolation between hierarchy levels is used.

Similar to the common bias term used in mipmapping, we introduce a
scale factor s to guide the selection of the level in the pre-filtered hierarchy.
This factor is used to scale the input parameters used to traverse the pre-
filtered hierarchy r, Ωl , and Ωv. Intuitively, s < 1 means under-sampling
the BTF, while s > 1 means blurring it. We note that two key characteristics
that make BTF filtering interesting are the different nature of the spatial and
angular domains, and the interplay between them. We thus define three
different scales: sx for the spatial domain, and sl and sv for the light and
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Figure 3.6: Example of filtering in the angular domain. The BTF Cambrils is filtered
varying sv (top) and sl (bottom) with values (from left to right) .25, 1, 2,
8, and 32, at distance d2 and illuminated from direction l1. The inset dots
means whether the image has been considered visually equivalent to a
reference (green) or not (red), based on a pilot study.

the view directions in the angular domain, respectively. In our experiments,
we set sx ∈ S1 = {.25, .5, 1, 2, 4}. For the angular domain, we set sl and sv
to S2 = {.25, .5, 1, 2, 4, 8, 16, 32}, based on an initial exploratory pilot study.
Figure 3.6 shows an example of the Cambrils BTF under varying parameters
of sv and sl . To be able to explicitly explore angular filtering while keeping
the experiment tractable, we only vary one of the scale factors each time,
while fixing the other two at 1 (no filter size biasing). Additionally, we also
explore the interplay between domains by analyzing all five cases where
sx = si = so = s. This yields a total of 23 scale combinations.

comparison with mipmapping A first concern is whether the pro-
posed multidimensional filtering has advantages over classic, simple mipmap-
ping in the spatial domain, which assumes that the normal, light and view
directions remain constant within the pixel. We evaluate this by means of
a pilot study, run on sixteen participants in our laboratory. The study fol-
lowed a randomized two-alternative-choice (2AFC) design, similar to the
used subsequently in Experiment 1 (Section 3.5). The user is shown test
pairs consisting of an image filtered with either the multidimensional fil-
tering or classic mipmapping, and a multi-sampled ground truth, and he
has to select which of them represents a reference material more accurately.
The results show that our multidimensional filtering performs significantly
better (F = 28.8, p < 0.01) with a significance level of 99%, so it is indeed
a better strategy for BTFs than mipmapping. Details about this pilot study
can be found in Section 3.B.

mechanical turk Similar to many previous studies in computer graph-
ics [23, 191, 167, 11], we use Amazon Mechanical Turk (MTurk) as a source of
participants for the experiments. A reasonable concern when using MTurk
as a source of participants in user studies is the possible effect that uncon-
trolled viewing conditions (such as display resolution, brightness or environ-
ment light) may have in the data. On the other hand, using MTurk allows
to have a significantly larger number of participants, much larger than what
can be achieved in controlled lab sessions, which reduces variance. Heer and
Bostok [77] showed that MTurk can actually be used in visual psychophys-
ical experiments obtaining valid results; they replicated classic perception
experiments in MTurk and compared the results with those from controlled
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Figure 3.7: Sphere illuminated from the four light vectors li used in Experiment 1,
from left to right l1, l2, l3 and l4. This example shows the sphere rendered
using the BTF Pulli with scale s = 1 at distance d2.

Figure 3.8: Example of filtering all domains with same scale s. The BTF Wool is
shown at distances d2 (top) and d4 (bottom), filtered varying s with values
(from left to right) .25, .5, 1, 2, and 4, illuminated from direction l1.

experiments, finding a good match between the two sources of data. Nev-
ertheless, we wanted to check the reliability of our MTurk data. We thus
repeated the main experiments described in this paper under controlled con-
ditions in our lab, and found that the results are indeed consistent. Details
and analysis can be found in Section 3.D.

data analysis We seek to establish a threshold where the visual equiva-
lence between the reference and a given stimuli is lost, either due to aliasing
or excessive blurring. Following previous work [183, 131], we cut through
the data, using a conventional 75% 2AFC threshold value, where 50% is pure
guessing. Additionally, to study the effect of each variable and to find sig-
nificant trends in the data, we use N-ways Analysis of Variance (ANOVA),
focusing on main effects and interactions between variables. Significant ef-
fects are further analyzed by using a Tukey-Kramer post-hoc analysis, to
detect potential false-positives [24].

To obtain more meaningful analysis, we also analyze the effect of the
high-level appearance descriptors explained in Section 3.4. In the following
sections we describe each experiment, and summarize our main findings
derived from them.

3.5 experiment 1 : static scene

We first take into account both the spatial and angular domains on static
images.
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3.5.1 Description

stimuli The stimuli used are the result of combining our sixteen BTFs
rendered at four different distances d using all 23 possible combination of
scales s =< sx, si, so >, for each of the three filtering kernels. To account for
the light vector, we include four different incoming directions li = {φi, θi},
chosen to light the sphere from significantly different angles and offering
a wide range of depictions. In particular, we take: l1 = {−45◦, 45◦}, l2 =
{0◦, 22◦}, l3 = {30◦, 0◦} and l4 = {100◦,−28◦} (Figure 3.7). We define {φ =
0, θ = 0} as the direction from the camera to the center of the sphere.

This makes a total of 17664 stimuli images. To handle such large number,
we split the experiment into four smaller parts. In Part 1 we use the same
scale for all domains (s = sx = si = so), only one light direction (l1), and
the box filter, making a total of 320 test images. An example for BTF Wool
and distances d2 and d4 is shown in Figure 3.8; the full set of stimuli can
be found in the supplementary material. In Parts 2 and 3 we explore the
light direction l and the filter kernel respectively, so we reduce the num-
ber of images in other dimensions. First, we reduce the number of BTF by
clustering the original sixteen according to the results of the Part 1 (Section
3.5.2), and taking representatives from each cluster. This yields eight BTFs:
Cambrils, Corduroy, Impala, Proposte, Pulli, Velvet, Wallpaper and Wool (please
refer to Section 3.C for the full description of the clustering process). Addi-
tionally, we only use distances d2 and d4. Although no significant effect on d
was found in Part 1 of the experiment, we opt for a somewhat conservative
approach and analyze close/medium and long views. This makes a pool of
320 and 240 images respectively.

Finally, in Part 4 we explore the effect of scale s in the spatial and angular
domains independently; as argued before, this is of particular interest for BTF
filtering. We vary the scale factor in one domain at a time, while keeping the
other two set to 1 (no scaling) (see Section 3.4). We again use the reduced
stimuli from Parts 2 and 3 (eight BTFs, two distances d), using only the box
filter. Since no significant effect with light direction l was found in Part 2,
we only use two light directions l1 and l3. This gives us a total of 608 stimuli.

experimental procedure A total of 350 subjects took part in the first
part of the experiment (236 male, 78 female; some participants did not re-
port gender), 650 in the second (336 M, 233 F), 250 in the third (90 M, 140

F), and 625 in the fourth (300 M, 234 F), with ages between 18 and 64. All
of them reported normal acuity and color vision; some of them had a com-
puter graphics and/or artistic background. The minimum required screen
resolution was 1024 × 768 pixels. A written explanation was given at the be-
ginning of each experiment, although none of the participants were familiar
with the final goal.

The experiment followed a fully randomized two-alternative-forced-choice
(2AFC) design. Each participant was shown an average of around 20 tests,
with a time limit of 20 seconds to answer each one. Three images are shown
simultaneously, depicting a sphere with the same BTF. On the top, a multi-
sampled close view of the sphere is shown as reference (rendered with
super-sampling and jittered anti-aliasing to avoid artifacts, using a Gaus-
sian filter for reconstruction); on the bottom, two test images from the stim-
ulus set are shown. One shows the ground-truth, multi-sampled render of
the BTF, while the other shows a pre-filtered representation, rendered with
one sample-per-pixel. The position (left or right) is randomized. The two
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Figure 3.10: Main effects found for scale s in the results of Experiment 1 (Sec-
tion 3.5), Experiment 2 (Section 3.6), and Experiment 3 (Section 3.7).
In static scenes, visual equivalence drops significantly for over-blurred
BTFs (s > 1). However, when introducing dynamics in the stimulus (i.e.
moving light or camera), blur results into higher visual equivalence, in
contrast with visual equivalence for under-sampled BTFs (s < 1). In
the x-axis are the filter scales s, while the y-axis represents the visual
equivalence for each scale.

images are rendered from a more distant point of view, and under a differ-
ent illumination than the reference, to avoid matching tasks in image space.
We apply an antialiasing mask to the edges of the spheres. The subject is
asked: “Which image represents the reference material on top more accurately?".
We randomly introduced a few control tests with clear artifacts in one of the
images, and discarded the results from participants who failed to provide
the right answer to all of them, keeping in the end about 90 % of the total.

3.5.2 Results

Figure 3.9 (a) summarizes the results for the BTFs categorized with each
property for the same scale for all dimensions; we further discuss each
domain separately later in the section. Green indicates visual equivalence
with the reference for a given distance d and scale s (75% 2AFC thresh-
old), while red indicates visual differences in form of artifacts, globally and
for each visual property used to categorize the BTFs. For the second and
third parts of this first experiment, no significant differences were found
between light directions l (F = 1.34, p > 0.25), nor between different ker-
nels (F = 1.32, p > 0.26). A significant interaction effect between l and d
was found (F = 2.03, p < 0.05), but the post-hoc test showed no significant
differences between pairs. Finding no effect on the kernels used is surpris-
ing: one might expected that both the Lanczos and Gaussian kernels would
performed significantly better than box filter. However, we found in this ex-
periment that filter type did not affect the visual equivalence of BTFs. This
is interesting when designing efficient rendering strategies.

A significant trend is found in scale s (F = 198.05, p < 0.05): under-
sampled (s < 1) BTFs are overall considered visually equivalent to the
reference, while over-blurred (s > 1) BTFs are, in most cases, found non-
equivalent (s = 4 in particular is almost never considered visually equiva-
lent). This indicates that aliasing on the surface appearance is preferred for
static images. Blurring reduces contrast, and it is well-known that the hu-
man visual system is especially sensitive to contrast, which may explain this
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Figure 3.11: Interaction effect between d and s in Experiment 1. The trends shown
that the even when d increases, under-sampled BTFs (s < 1) still perform
better than over-blurring (s > 1) for our range of distances tested.

2

s
ls
v

Figure 3.12: Effect of varying the scale on each of the two angular domains of the
BTF (sv, sl) for distances d2 (left) and d4 (right) in static scenarios. Each
domain is scaled independently, while fixing the other two domains to
s = 1 (i.e. si = 1 is common for all domains).

result. A two-way interaction between filter scale s and distance d (F = 5.22,
p < 0.05) shows that this trend is consistent across all distances tested (Fig-
ure 3.11).

Globally, no effect was found between distance d and visual equivalence
(F = 0.43, p > 0.73). This is surprising, since it was expected that larger dis-
tances would be more forgiving. However, if we focus on individual proper-
ties, it can be seen that in structured, repeatable or regular BTFs when distance
is increased, over-blurred BTFs are preferred over under-sampled, proba-
bly because artifacts in repeated structured patterns are easier to spot, in
contrast with BTFs with complex structure, where aliasing is preferred.

BTFs with relief are significantly harder to filter than flat BTFs (F = 34.56,
p < 0.05). This was intuitively expected, but our tests confirm the statistical
significance of the difference. A closer look reveals another interesting find-
ing: for sharp relief, under-sampling (s < 1) is always preferred, while blur
(s > 1) is considered non-equivalent at any distance d; in contrast, for long
distances, blur is preferred in BTFs with smooth relief.

We found a significant difference on sampling each domain separately:
varying only the scale in the spatial domain sx rates significantly lower than
varying the scale of the angular dimensions (F = 77.71, p < 0.05), but do
not present significant differences with scaling all domains at the same time
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Figure 3.13: Effect of varying the scale on each of the two angular domains of the
BTF (sv, sl) for moving the light source (left) and the camera (right).
Only the scale of one domain is fixed at a time, while fixing the other
two domains to s = 1 (i.e. si = 1 is common for all domains).

(i.e. sx=sv=sl). This means that artifacts in the spatial domain due to under-
sampling or blur are more noticeable than in the angular domain, which
can be subsampled more aggressively. Focusing on the angular dimensions,
the results show that errors in the light domain are easier to spot than in
the view domain. A post-hoc test shows that this effect is dependent on the
distance d to the object: for close-medium distance d2 no significant trend
is observed when varying sv and sl (Figure 3.12 (left)), whereas for longer
views the view dimension can be further subsampled (Figure 3.12 (right)).

3.6 experiment 2 : time-varying illumination

Experiment 2 analyzes the effect of dynamic illumination conditions, with
the light vector l orbiting around the sphere.

3.6.1 Description

stimuli Adding a new parameter again makes the complete set of stim-
ulus too large. Additionally, each test is now longer, since it involves anima-
tions. We thus perform additional simplifications in our multidimensional
parameter space, based on the results of Experiment 1: we start from the
reduced stimuli from Part 2 and Part 3 of Experiment 1 i.e. eight BTFs times
two distances d. Since no significant effect on the filtering kernel was found
(see Section 3.5.2), we only use the box filter, because it represents the the-
oretical worst-case scenario. We analyze the 23 different combinations of
< sx, sl , sv >, making a total of 368 animations.

experimental procedure A total of 517 (320 M, 160 F) different par-
ticipants took part, with ages between 18 and 64. The experiment was car-
ried out under similar conditions as Experiment 1. Training tests were pre-
sented prior to the experiment. Each test shows two animations (ground-
truth and filtered) of the light vector l rotating around the sphere. No ref-
erence animation was shown, since three videos at the same time would be
too confusing. The participants are given 30 seconds to answer each test. The
video is played in loop mode until the user answers or time-out is reached.
We ask: "Which scene better represents the material without artifacts?". A brief
explanation of what we mean by artifacts is given at the beginning. Since we
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rely on a high-quality video reproduction, we add an additional confidence
test: if a participant reaches time-out more than 3 times, we conservatively
assume poor playback quality and reject the participant’s data. In the end
we kept the responses from about 80% of the participants.

3.6.2 Results

As before, we first focus on scaling all dimensions at the same time, and
then we discuss each domain separately. Our results show that visual equiv-
alence can be achieved in at least one pre-filtered representation for all BTFs
(Figure 3.9 (b)). A significant effect was found for scale s (F = 34.39, p < 0.05,
see Figure 3.10): Larger scales obtain better rates, which means that artifacts
produced by undersampling (s < 1) the light domain become too noticeable.
Even at close distances, over-blurred BTFs are considered visually equiva-
lent. This is the contrary to the static case analyzed in Experiment 1, where
contrast was the main feature to be preserved.

However, analyzing the individual properties of the BTFs, some other in-
teresting properties can be inferred from our results: On most high-frequency
BTFs where oversampling may blur out recognizable patterns (i.e. proper-
ties high-contrast, complex-structure, sharp-relief and feature-dense), some spa-
tial aliasing is preferred at close distances.

Analyzing filtering each BTF domain separately, we find that, again, the
angular domains can be filtered with values of sv and sl higher than the
spatial scale sx, confirming that artifacts in the spatial domain are more
easily spotted by a human observer than in the angular domain. We found
no significant effect between the different angular dimensions (F = 2.66,
p > 0.1), nor in the interaction effect between the dimensions and the scale
(F = 0.17, p > 0.77). However, an interesting trend can be observed for sv
(Figure 3.13 (left)), where over blurring in the view domain sv = 32 rates
significantly higher than the baseline sv = 1.

3.7 experiment 3 : time-varying view

Last, we study how the perception of pre-filtered BTFs is affected by changes
in the view vector v.

3.7.1 Description

stimuli We use the eight BTFs selected previously, rendered using the
scales si from Experiment 2 and the box kernel for filtering, and render an
animation of a receding sphere, from d0 to d4. Since in Experiment 1 no
significant effect was found on light direction l, we reduce the directions
used to two, l1 and l3. This makes again a total of 368 animations.

experimental procedure A total of 545 (346 M, 168 F) participants
took part of the experiment, with ages between 18 and 67. The videos are
shown in loop mode, with the camera moving back and forth perpendicu-
lar to the screen, so that the projected area of the sphere decreases linearly.
Again, no ground-truth animation is shown. The rest of the experiment (pro-
cedure and question asked) is similar to Experiment 2. We kept 75 % of the
participants in this experiment.
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3.7.2 Results

Figure 3.9 (c) summarizes our results for s = sx = sv = sl . A clear pat-
tern emerges: undersampled pre-filtered representations (s < 1) are not
considered visually equivalent to the reference. This indicates that temporal
aliasing artifacts due to varying the view vector v are the most disturbing.
This holds true except for surfaces with very high-frequency appearance
(high-contrast, complex-structure or sharp-relief ), which confirms our findings
in our previous experiment: The detailed appearance of these BTFs is over-
smoothed, and the exact filter size should be used.

Comparing these results with Experiment 1, the visual equivalence of
pre-filtered BTFs drops significantly (Figure 3.10). Under-sampled represen-
tations, which were considered equivalent in the static scenario, are now
viewed as non-equivalent for most tested BTFs (F = 34.29, p < 0.05).

Again, we observe no significant differences between scaling all parame-
ters and scaling only in the spatial domain sx (F = 1.33, p > 0.26). However,
there is an interesting trend as sv and sl increase, where the visual equiva-
lence of the pre-filtered BTF also tends to increase (Figure 3.13 (right)). This
again suggests that over-blurring the angular domain of the BTF is preferred
by the human observer.

3.8 generalization

We now show how our results generalize to more complex geometry and
illumination configurations. Additionally, we discuss an automatic method
to assign properties to the BTFs, based on statistical analyses.

geometry and illumination We have conducted an additional study
with new geometries and illumination conditions. We follow the work of
Ramanarayanan et al. [183], and add two new geometries of increasing
complexity: the Stanford Bunny and Dragon. For illumination, we intro-
duce natural illumination modeled with the Uffizi and Grace environment
maps from [28]. We choose these two maps as representatives of low- and
high-frequency illumination, respectively. The generalization study was per-
formed using the same procedure as Experiment 1, with two distances (d2
and d4) and the same scale s for the three domains. We compare the ground
truth with multiple samples per pixel against a prefiltered version, with just
one sample per pixel. From the intersection point of that sample 2048 rays
are thrown over the hemisphere to compute the illumination from the en-
vironment map. We found no significant differences from using different
geometry (F = 0.97, p > 0.37) or different illumination (F = 1.54, p > 0.21),
so we conclude that our findings generalize well. Details and example stim-
uli for the BTF Cambrils can be found in the Section 3.E and Figure 3.20

respectively. Figure 3.14 illustrates this generalization: the BTFs shown are
rendered using filtering scales s 6= 1 for distances d2 and d4, which were
found to be visually equivalent in Experiment 1 (see Section 3.5). Figure 3.15,
produced with the proposed rendering algorithm explained later in this sec-
tion, shows additional evidence.

statistical analysis In this work we have used high-level descriptors
of the BTFs. Adding such tags would be a simple, non-taxing step in future
acquisition protocols. However, for existing untagged BTF databases, auto-
matic classification is also interesting. As a first step towards such automatic
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model, we have explored how a set of low-level statistics correlate with our
categorization and our results. These statistics include common first-order
image statistics [177] and textural features [209] on both the spatial and the
angular domains, plus the BTF statistics proposed by Filip et al. [39]. We
have measured the correlation between these statistics and the results from
the pilot categorization study using Pearson correlation [24], which evalu-
ates the linear association r between the two variables tested, with r ∈ [−1, 1]
(r = 1 being perfect linear correlation, r = −1 perfect inverse correlation,
and r = 0 no correlation). We only keep correlations with a significance
of 95% (p < 0.05). We have found several strong correlations (|r| > .8) for
some properties. For instance, between Granularity and the directionality in
the angular domain (kurtosis and skewness of the histogram of directions),
between Glossiness and the kurtosis and skewness of luminances, or between
Structureness and the directionality statistics in the spatial domain. Please re-
fer to Section 3.F for the complete description of the statistics analyzed, and
the full list of correlations found. While finding a complete and robust set
statistics that match higher-level perceptual properties of BTFs is outside
the scope of this paper, we believe these preliminary findings show great
promise, while opening a new avenue of interesting future work.

Figure 3.15: Example of the application on adaptive rendering using our findings to
guide sampling. For each ratio texel : pixel defined by the projection
of the pixel in the BTF, the visual properties of the BTFs are used to
guide the number of samples (left) on the surface, based on the results
summarized in Figure 3.9. The base samples-per-pixel spp0 is 128. Note
that the sampling is guided only by the visual properties of the surface;
surfaces with no tagged descriptors (e.g. the floor) receive spp0 samples-
per-pixel (spp). Using this approach we use an average of 51.2 spp, as
opposed to the 128 spp needed without using any adaptive scheme.

3.9 practical applicability

We propose a set of practical applications to improve the performance of
rendering and compression of BTFs without compromising their final ap-
pearance.

filtering kernels The first immediate application of our study has to
do with the choice of filtering kernel: No significant effect was found from
using different kernels in static scenes. This means that the cheapest filter
kernel (box filter) can be used in several scenarios. In our implementation,
this is more than 8 times faster than Gaussian and Lanczos filters.



3.9 practical applicability 71

Figure PF Time MS Time Speed-Up

Figure 3.14, Wallpaper 6’47” 56’32” ×8.33

Figure 3.14, Cambrils 7’26” 1h05’01” ×8.74

Figure 3.14, Pulli 2’24” 16’15” ×6.77

Figure 3.16, Impala 6’47” 56’57’ ×8.39

Figure 3.16, Wool 0’1.8” 1’10” ×61.1

Table 3.2: Rendering times for the images in Figure 3.14 and Figure 3.16, both using
the pre-filtered representation (PF) and the multi-sampled ground truth
(MS). Image Wool is illuminated with one light sample per pixel; this
makes its speed up increase significantly.

rendering For all properties considered in all different scenarios tested
(static, moving light and moving camera), there is at least one pre-filtered
representation of the BTF (rendered with just one sample) that is visually
equivalent to a multi-sampled reference (see Figure 3.9). This has direct
applications in rendering, since it means that the isotropic pre-filtering pro-
posed in Section 3.4 can be used with just one sample per pixel, achieving
visual equivalence to a multi-sampled reference. Figure 3.16 shows side-by-
side comparisons between our pre-filtered versions and the multi-sampled
ground truth, rendered using ray-tracing. While not identical pixel-wise,
our pre-filtered versions are considered visually equivalent, and have been
rendered with a speed-up factor of up to 61.1× in the most extreme case,
and between 6× and 9× on average (see Table 3.2). Additional results and
comparisons, including timings for each of them, can be found in the sup-
plementary material2.

Another rendering application lies in the context of adaptive rendering
schemes, based on the visual properties of BTFs. It works as follows: once
the ray hits a surface shaded with a BTF, we can access the visual properties
defining the underlying BTF (manually tagged, or explored through statis-
tical analysis as explained above). With these properties, and the value d
obtained using the texel footprint in the pixel (computed with the deriva-
tives of the ray in the pixel), we obtain the minimum scale s that achieves
visual equivalence (Figure 3.9). This scale s determines the number of sam-
ples per pixel sppp needed to get good results at pixel p (sppp = s ∗ spp0,
with spp0 a predefined, baseline samples-per-pixel value). Following the re-
sults from Experiment 1 (Section 3.5), we can reduce the number of samples
up to a factor of 16 in static images. Figure 3.15 shows an example of a scene
rendered using this adaptive approach. Note that this scheme only adapts
the sampling to the surface being rendered, taking into account the surface
properties. Other adaptive sampling schemes, such as sampling complex
illumination patterns, are not handled by this scheme.

Our third rendering application involves BTF level-of-detail techniques
such as the work by Ma et al. [146]. The authors build a Laplacian pyramid
to model the pre-filtered LoD hierarchy. This is traversed for reconstruction
during rendering time, starting from the lowest frequency (most pre-filtered)
and adding higher-frequencies until reaching the appropriate level of detail.
Based on the results summarized in Figure 3.9, the traversal of the pyra-
mid can be stopped at lower-frequency levels, reducing reconstruction costs
while maintaining visual equivalence for s > 1.

2 http://giga.cps.unizar.es/~ajarabo/pubs/btfTVCG14/index.html

http://giga.cps.unizar.es/~ajarabo/pubs/btfTVCG14/index.html
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Figure 3.16: Comparison between a pre-filtered BTF (left) and its multi-sampled
ground truth (right) at distance d2. Top: Impala. Bottom: Wool.

compression Over-blurred BTFs are in general considered visually equiv-
alent for dynamic scenes. This has two immediate consequences in compres-
sion schemes: first, it allows us to discard high-resolution levels in the level-
of-detail hierarchy, which effectively reduces memory requirements. Second,
since low-frequencies generally contain most of the signal energy while be-
ing easier to approximate without noticeable artifacts, more aggressive com-
pressions can be employed. As a proof-of-concept, we have implemented a
common PCA-based BTF compression algorithm [195], and applied it to all
our BTFs using s = 2 and s = 4. On average, using the same reconstruc-
tion error threshold, we keep 99% of the original signal energy using only
28.5% and 8% of the coefficients needed for the original version, respectively
(Figure 3.17).

Finally, the fact that the angular domain may be aggressively filtered with-
out decreasing visual equivalence can also be applied to compression. Blur-
ring in the angular domain makes it possible to represent angular effects
with a small number of spherical harmonic basis functions. Representation
with a small number of spherical harmonic terms is also advantageous for
rendering with Precomputed Radiance Transfer techniques [204].

3.10 discussion and future work

Important conclusions can be drawn from our experiments. For static scenes,
there is a clear preference for under-sampled images, which might be due
to the fact that humans are very sensitive to contrast, which decreases with
blurring. The trend is reversed when considering motion (both light and
camera). This may be due not only to the lack of flickering artifacts, but
also to motion de-blurring mechanisms in our visual system, which make
moving images appear sharper than they actually are [14]. This preference
seems to be related to the motion blur effect [163]. Future work needs to
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Figure 3.17: Percentage of the signal energy stored by the N principal components
(x-axis) of the compressed BTF, averaged for all BTFs. Each line repre-
sents the results of compressing the original BTF (s = 1, blue), and its
overblurred versions with s = 2 (green) and s = 4 (red). We refer to the
supplementary material3 for the individual graphs of each BTF.

be conducted to examine the relationship between pre-filtering and motion
blur.

We have shown that filtering in the spatial domain rapidly affects vi-
sual equivalence, while the angular domain can be more aggressively fil-
tered. In fact, the trend observed in the angular domain is that over-filtering
is preferred over under-sampling; this supports the results from our pilot
study, which shown that a multidimensional filtering produces more visu-
ally equivalent results than just filtering in the spatial domain (i.e. sv =
sl = 0). In particular, at long distances the domain of the viewing vector
can be filtered the most before losing visual equivalence, specially at long
distances.

Another important finding is that high-level properties of the BTFs have
a significant effect on how filtering affects appearance perception. For in-
stance, under-sampling BTFs with clear symmetric structure quickly intro-
duces artifacts that affect visual equivalence. This generalizes a conclusion
of a recent study on media retargeting [191], which also identified struc-
ture as one of the most important image features that should be preserved.
On the other hand, BTFs with complex high-frequency structure are in gen-
eral more forgiving with under-sampling, specially for static scenes. This
is in accordance with previous work [38], possibly due to the effect of vi-
sual masking (high-frequency features mask high-frequency artifacts). For
BTFs with sharp relief, under-sampling s < 1 is preferred, even at the cost
of visible aliasing. This is probably because relief is a very dominant and
salient feature with strong parallax effects, which give the BTF a very three-
dimensional, appealing appearance. In static BTFs with a high specular com-
ponent, under-sampling is in general preferred. This makes sense since the
specular highlight is usually a salient high-frequency feature. On the other
hand, on animated scenarios, this behaviour is again reversed: aliasing be-
comes too distracting, making over-blur preferred by the observers. These
findings suggest that high-level descriptors of BTFs could be used when de-
vising an optimal sampling strategy, as we have shown in Section 3.9. We
have found some correlation between these high-level BTF descriptors and
low-level statistics, which we hope spur future work in this direction. Last,
we have proposed several applications in BTF filtering, compression and
rendering, directly derived from our results.
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Although we have shown that our results generalize well, our work is
limited by our choice of stimuli and filtering parameters. More BTFs could
be added to future experiments, along with different lighting schemes, pa-
rameters, BTF descriptors and the combinations of these. Additionally, our
conclusions are restricted to materials that can be accurately represented us-
ing BTFs, which are in general diffuse or moderately glossy. Although our
work focuses on BTFs, we believe that some of the insights and methodology
could be extrapolated to study the perception of other reflectance represen-
tations, such as SV-BRDFs, provided that the filtered surface’s reflectance
has moderate angular frequency. We hope that new studies and potential
future applications can leverage our stimuli set, which can be accessed at
the project page4.

appendices

3.a categorization of the btfs

The BTFs used in our experiments represent a wide range of materials,
which makes the experiments hard to analyze globally. To obtain more
meaningful data from the experiments, we categorize them into a set of
high-level visual properties, by means of a pilot study. We build our set of
categories from previous works on texture [184] and BRDF [151] naming.
The categories used in the study, together with the textual description given
to the participants, are:

high-contrast The surface presents, or no, high contrast in its features

granular Is the texture granular (i.e. it presents small micro-scale struc-
ture)?

structured Does the surface present a clear structure or is it just ran-
dom?

rough Is the surface rough or smooth?

feature-dense Does the surface presents several visual features (small
details) or is mainly plain (even having some isolated detail)?

complex-structure Has it a complex structure?

flat Is it flat...?

relief ...Or does it present relief?

sharp-relief If the texture presents relief, does it present sharp edges...?

smooth-relief ...Or more like smooth bumps?

glossy Does it have glossy (i.e. specular) appearance?

color Is the surface colored or gray-scale?

light Is the surface albedo light or dark?

soft Does the surface has smooth appearance?

hard Does the surface has hard appearance?

4 http://giga.cps.unizar.es/~ajarabo/pubs/btfTVCG14/

http://giga.cps.unizar.es/~ajarabo/pubs/btfTVCG14/
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Prior to the experiment, a short explanation of each category was given to
the ten participants. They were shown two static images of the same BTF,
rendered on a plane from different points of view and illuminated from dif-
ferent directions (see Figure 3.18), and they had to indicate if the displayed
BTF showed or not each individual property. No tiling was applied to the
BTF to avoid introducing bias.

To determine whether a BTF presents a category, we cut through the data,
using a conventional 75% threshold value, where 50% is pure guessing. The
final assignment of categories with BTFs can be found in Table 3.1. The
results have a confidence interval ranging from ±0% to ±39%. Note that
these confidence intervals are quite big, since the number of participants in
this pilot study was small.

Figure 3.18: Images shown to the participants of the categorization experiment, for
each BTF. In reading order: Cambrils, Carpet, Ceiling, Corduroy; Floortile,
Impala, Lego, Lichen; Pinktile, Proposte, Pulli, Sponge; Velvet, Walkway, Wall-
paper, and Wool.

3.b pilot study : comparison against mipmapping

In this pilot study we explore the differences in terms of visual equivalence
when pre-filtering a BTF using classic mipmapping [244] (filtering only in
the spatial domain), and using the multidimensional pre-filtering described
in Section 3.4.

stimuli The stimuli used in this pilot experiment is the result of com-
bining the sixteen BTFs used in this work, rendered at 4 different distances
d using five scales s, rendered using mipmapping or our multidimensional
filtering, making a total of 640 images. The box filter is used to pre-filter the
BTFs, and we limit the light direction to l1, in order to keep the experiment
tractable.

experimental procedure Sixteen subjects took part in the experiment
(12 male, 4 female), with ages between 23 and 32 years old. All of them had
normal acuity and color vision; some of them had a computer graphics
and/or artistic background. A brief explanation about the test was given
orally and in writing at the beginning, although none were familiar with
the final goal of the experiment. All tests were run on a LCD screen set to
its factory settings, with standard office lighting. The experiment followed
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Figure 3.19: Interface used in the pilot study that compares between mipmapping
and the proposed multidimensional filtering.

a fully randomized two-alternative-forced-choice (2AFC) design. There was
no time limit in the experiment, which took an average of 17 minutes to
complete.

For each test, three images were shown simultaneously, all of them depict-
ing a sphere with the same BTF and lighting conditions (see Figure 3.19).
On the top, a multi-sampled close view version of the sphere is shown as
reference (rendered with super-sampling and jittered anti-aliasing to avoid
artifacts); on the bottom, two test images from the stimuli set are shown.
These are rendered from a more distant point of view, to avoid matching
tasks in image space from the participants. One image shows the ground-
truth, multi-sampled render of the BTF, while the other shows a pre-filtered
representation (mipmapping or our multidimensional filtering) . The posi-
tion of these two images (left or right) is randomized. The subject is asked
the following question: "Which image represents the reference material on top
more accurately?".

results Our analysis shows that using our multidimensional filtering
performs significantly better than pre-filtering only in the spatial domain
with classic mipmapping (F = 28.8, p < 0.05), with a strong interaction
effect for s (F = 165.8, p < 0.05). Additionally, other interaction effects are
found for several visual properties. The most interesting is the significant
effect that appears in BTFs with relief ; these are considered visually equiva-
lent significantly more often when pre-filtered with multidimensional filter-
ing than when using mipmapping (F = 3.16, p < 0.05). This suggests that
for BTFs with visible self-shadows and parallax, it is necessary to filter all
dimensions in the BTF; this is one of the most notable properties introduced
by BTFs, as opposed to regular two-dimensional textures.

3.c clustering of btfs

Here we describe how to select a representative subset from the sixteen
original BTFs used in Part 1 from Experiment 1 (Section 3.5).

We first removed Walkway, since we found visible artifacts when rotating
the light due to discontinuities in the original BTF data; this would lead to
problems in Experiment 2, orthogonal to the purpose of the study. To se-
lect between the remaining fifteen BTFs, we cluster them hierachically in a
binary tree. This clustering groups the BTFs according to their Euclidean dis-
tance in a 20-dimensional space, defined by the results obtained combining
five distances d and four scales s in Experiment 1.
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Clustering is performed using the Matlab functions linkage and cluster.
Then, we take the clusters with smaller distances between their elements,
and remove one of them from the selection. Figure 3.20 shows the result
of the hierarchical clustering performed. In the end, we keep eight BTFs:
Cambrils, Corduroy, Impala, Proposte, Pulli, Velvet, Wallpaper and Wool.

Figure 3.20: Hierarchical clustering of the BTFs based on the similarity of their re-
sults in Experiment 1 (Part 1). This clustering is used to reduce the
amount of BTFs in the subsequent experiments. The BTFs kept for the
experiments are highlighted in red.

3.d comparison between controlled and un-controlled ex-
periments

Here we evaluate the potential effect that using MTurk may have on the
data; to do so, we partially repeat the experiments described in the main
text, under controlled lab conditions. In particular, we repeat Part 1 from
Experiment 1 (Section Section 3.5), and Experiments 2 (Section Section 3.6)
and 3 (Section 3.7). We refer to their particular sections in the main text for
the full description of these experiments and the stimuli used.

experimental procedure A total of sixteen subjects took part in the
in-situ Experiment 1 (12 male, 4 female), with ages between 23 and 32 years
old. All of them had normal acuity and color vision; some of them had a
computer graphics and/or artistic background. A brief explanation about
the test was given orally and in writing at the beginning, although none
were familiar with the final goal of the experiment. All tests were run on
a 21" BENQ GL2240 LCD screen set to its factory settings, with standard
office lighting. Each participant was shown the full stimuli in random order,
making a total of 320 tests. It took an average of 17 minutes to complete the
experiment.

Another sixteen different participants took part in the in-situ Experiments
2 and 3, equally divided between male and female, with ages between 23

and 41. The experiment was carried out under similar conditions as Experi-
ment 1 (display, lighting, no time limit). Each participant answered all tests
(64 tests in Experiment 2, 32 tests in Experiment 3), taking an average of 10

and 5 minutes to complete each experiment, respectively.
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Figure 3.21: Results from the comparison between the experiments performed under
controlled (in-situ) and uncontrolled (MTurk) conditions. From left to
right, results from Experiment 1 (static) for scale s, and for distance d,
and from Experiment 3 (dynamic view) for scale s. The results show no
significant differences between factors, and that the trends are consistent
in both scenarios.

results We compare the results from the in-situ experiment, performed
under controlled setup, with those obtained using MTurk. We seek signif-
icant differences between the source of the data, by using N-ways Anal-
ysis of Variance (ANOVA), focusing on both main and interaction effects
with significance of 95%. Significant effects are further analyzed by using
a Tukey-Kramer (or Tukey Honesty Significant Differences) post-hoc analy-
sis [24]; this test is a modified t-test, that compares multiple means, assum-
ing the null hypothesis that all means are equal. This test is appropriate
for detecting false-positives that might be found by ANOVA, specially in
multiple-factors experiments as ours.

On the static configuration studied in Experiment 1 we found a significant
effect, showing a decrease in the performance of filtering for the in-situ
experiments (F = 8.76, p < 0.05). However, the post-hoc test reveals that
there is no significant differences between pairs in any of the dimensions
analyzed: we found no significant differences on the results for BTF, distance
d or scale s between the in-situ and the MTurk experiments (Figure 3.21 (left
and middle)).

The results from Experiment 2, where we analyze the effect of moving
light source, shown no significant effect on using MTurk in comparison with
the data obtained in the controlled scenario (F = 0.12, p > 0.72).

Finally, the results of the comparison of the data in Experiment 3 (moving
camera) shows that visual equivalence was found significantly more often
in MTurk than in the in-situ experiment (F = 7.34, p < 0.05). Again, we
analyze further the results using a post-hoc test: it shows that no significant
differences between pairs appeared in the dimensions explored (Figure 3.21

(right)), even this main effect is found.

3.e generalization experiment

We evaluate here how well our results generalize under less restrictive se-
tups, introducing new geometries and illumination (see Figure 3.22).

geometry We test images with three levels of increasing geometric com-
plexity (sphere, bunny, dragon), which has been found to have a significant
effect on material appearance [183, 131].

illumination Similarly, we test three levels of increasing illumination
frequency: The Uffizi and Grace environment maps [28], plus a directional
light.
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Figure 3.22: Reference renderings, using the BTF Cambrils, of the scenes used in the
validation experiment. From left to right, the three geometries used:
sphere, bunny, and dragon, in order of geometrical complexity according
to Ramanarayanan et al. [183]. Top to bottom, the illumination setups
used, ordered from low to high frequency: Uffizi, Grace, and directional
light.

stimuli and procedure We use the reduced stimuli from Part 2 in
Experiment 1 (Section 3.5), with a box filter kernel. For direction illumina-
tion we use l1. For the images illuminated by an environment map, up to
2048 cosine-weighted samples are traced. We blur the background during
rendering to avoid masking effects in the appearance of the tested object.
The test is carried out as in Experiment 1. A total of 256 subjects (131 M, 99

F) took part, from which we kept 95% for the analysis.

results Both bunny and dragon perform slightly better than sphere. This
is in accordance with previous work [183, 39, 131], which suggested that
more complex objects are more forgiving to artifacts. In our particular case,
however, the results show no significant effect (F = 0.97, p > 0.37). Similarly,
no significant effect was found on illumination (F = 1.54, p > 0.21), with all
studied light sources (directional, and Grace and Uffizi environment maps)
performing similarly. Together, these results confirm that our findings do
generalize to more complex geometry and lighting.

3.f low-level statistics of btfs

In order to give a first step on automatic extraction of high-level descriptors
of BTFs, we investigate different low-level statistics of the BTF. The analysis
covers a set of metrics based on first-order image statistics [177] and on a
set of textural visual features [209]. This statistics have been computed for
both different representations of the BTF: images in the spatial domain (i.e.
photographs of the BTF taken under different light and view direction), and
images in the angular domain (i.e. per-pixel BRDF representation).
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Domain General Stat. Image Stat. High-Level Prop r

VL Mean LKurtosis Granular -0.812236

VL Mean DirKurtosis Granular -0.811917

VL Mean DirKurtosis Flat 0.805539

VL Median DirSkewness Granular -0.829850

VL Median DirKurtosis Granular -0.877730

VL Median DirSkewness Flat 0.810800

VL Median DirKurtosis Flat 0.816263

VL STD LSkewness Granular -0.836658

VL Skewness LMean Glossy 0.817957

VL Kurtosis LMean Glossy 0.844585

ST Mean DirSkewness Structured -0.822910

ST Mean LSkewness Glossy 0.803670

ST Mean LKurtosis Glossy 0.822522

ST Median DirSkewness Structured -0.821881

ST Median LSkewness Glossy 0.808776

ST Median LKurtosis Glossy 0.828666

ST Max DirSkewness Structured -0.863716

ST Max DirKurtosis Structured -0.843974

ST Max DirSTD Smooth -0.806921

Table 3.3: Significant correlations found between low-level BTF statistics and high-
level visual properties of the BTF. Domain is the space where the statistics
have been computed (VL: view-light, ST: spatial); General Stat. is the metric
used to integrate the measures for all images into a single value for each
BTF; Image Stat. is the statistic computer, which can be a first-order statistic
or a textural feature. The prefix "L" refers to luminances, while "Dir" refers
to the directionality of the texture. Note that no value obtained with the
measures of coarseness and contrast present significant correlation with
visual properties.

For each image (in the spatial or angular domain) we compute several
statistics: mean, standard deviation, skewness and kurtosis of the luminance
channel of the image. Additionally, we compute the three most significatives
textural features defined by Tamura et al. [209]: coarseness, contrast and di-
rectionality. We refer to the original paper for the mathematical description
of these features.

Then, to compute the general metric of the full BTF, we compute the mean,
median, standard deviation, skewness, kurtosis, maximum and minimum,
in both the spatial and the angular domains. Note that the statistics used by
Filip et al. [39] are included within this set of metrics.

To measure the correlation between the computed BTF statistics and the
high-level descriptors presented in Section 3.A we have used Pearson cor-
relation [24], which evaluates the linear association r between the two vari-
ables tested, with r ∈ [−1, 1] (r = 1 being perfect linear correlation, r = −1
perfect inverse correlation, and r = 0 no correlation). We only keep corre-
lations with a significance of 95% (p < 0.05). The results of the significant
correlations are listed in Table 3.3.



Part III

T E M P O R A L D O M A I N

This part is devoted to the temporal domain of the plenoptic func-
tion. In particular, we focus on time-resolved light transport,
where the speed of light cannot be longer considered infinite.
We start by describing the femto-photography technique, which
is the first imaging system capable of imaging at a temporal
resolution of picoseconds in macroscopic scenes, and the data
processing needed for adequate visualization. We follow describ-
ing our framework for effectively simulating transient light trans-
port, taking into account the particularities of the radiance in the
temporal domain. Finally, we demonstrate a visualization sys-
tem for time resolved data handling the relativistic effects due to
ultra-fast camera motion.





4F E M T O - P H O T O G R A P H Y : C A P T U R I N G A N D
V I S U A L I Z I N G T H E P R O PA G AT I O N O F L I G H T

In this chapter we present a system for imaging with an effective temporal
resolution in the order of picoseconds, and the reconstruction and process-
ing techniques needed to correctly visualize the captured data. media. This
work originates as a colaboration between our lab and the Camera Culture
Group at MIT Media Lab, inventors of the technique. My role in the project
was fundamentally on devising the time-unwarping method Section 4.6 for
correcting the temporal delays causing unintuitive effects as a post-process.
We describe here the full project for completeness and context. This work
was published in ACM Transactions on Graphics and presented at SIGGRAPH
2013, and was selected in the ACM Best of 2013 list.

This work was the first on demonstrating time-resolved light transport
in macroscopic scenes. Since the initial publication of this work numerous
works [78, 111] have advanced this field by improving numerical models and
introducing new, more accessible capture technology. In addition, numerous
applications on scene understanding have been developed using this new
type of imaging [223, 245, 79, 80]. Given the impact of the work, it was later
invited to be published as a Research Highlight in the journal Communications
of the ACM.

A. Velten, D. Wu, A. Jarabo, B. Masia, C. Barsi, C. Joshi, E. Lawson, M. Bawendi,
D. Gutierrez & R. Raskar

Femto-Photography:
Capturing and Visualizing the Propagation of Light

ACM. Trans. Graph. Vol.32(4), SIGGRAPH 2013

A. Velten, D. Wu, B. Masia, A. Jarabo, C. Barsi, C. Joshi, E. Lawson, M. Bawendi,
D. Gutierrez & R. Raskar

Transient Imaging of Macroscopic Scenes at Picosecond Resolution

Communications of the ACM 2015, to appear

4.1 introduction

Forward and inverse analysis of light transport plays an important role
in diverse fields, such as computer graphics, computer vision, and scien-
tific imaging. Because conventional imaging hardware is slow compared to
the speed of light, traditional computer graphics and computer vision algo-
rithms typically analyze transport using low time-resolution photos. Conse-
quently, any information that is encoded in the time delays of light propa-
gation is lost. Whereas the joint design of novel optical hardware and smart
computation, i.e, computational photography, has expanded the way we
capture, analyze, and understand visual information, speed-of-light prop-
agation has been largely unexplored. In this work, we present a novel ul-
trafast imaging technique, which we term femto-photography, consisting of
femtosecond laser illumination, picosecond-accurate detectors, and mathe-
matical reconstruction techniques, to allow us to visualize movies of light
in motion as it travels through a scene, with an effective framerate of about
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one half trillion frames per second. This allows us to see, for instance, a light
pulse scattering inside a plastic bottle, or image formation in a mirror, as a
function of time.

challenges Developing such time-resolved system is a challenging prob-
lem for several reasons that are under-appreciated in conventional methods:
(a) brute-force time exposures under 2 ps yield an impractical signal-to-
noise (SNR) ratio; (b) suitable cameras to record 2D image sequences at this
time resolution do not exist due to sensor bandwidth limitations; (c) compre-
hensible visualization of the captured time-resolved data is non-trivial; and
(d) direct measurements of events appear warped in space-time, because
the finite speed of light implies that the recorded light propagation delay
depends on camera position relative to the scene.

contributions Our main contribution is in addressing these challenges
and creating a first prototype as follows:

• We exploit the statistical similarity of periodic light transport events to
record multiple, ultrashort exposure times of one-dimensional views
(Section 4.3).

• We introduce a novel hardware implementation to sweep the expo-
sures across a vertical field of view, to build 3D space-time data vol-
umes (Section 4.4).

• We create techniques for comprehensible visualization, including movies
showing the dynamics of real-world light transport phenomena (in-
cluding reflections, scattering, diffuse inter-reflections, or beam diffrac-
tion) and the notion of peak-time, which partially overcomes the low-
frequency appearance of integrated global light transport (Section 4.5).

• We introduce a time-unwarping technique to correct the distortions in
captured time-resolved information due to the finite speed of light
(Section 4.6).

limitations Although not conceptual, our setup has several practical
limitations, primarily due to the limited SNR of scattered light. Since the
hardware elements in our system were originally designed for different
purposes, it is not optimized for efficiency and suffers from low optical
throughput (e.g., the detector is optimized for 500 nm visible light, while
the infrared laser wavelength we use is 795 nm), and from dynamic range
limitations. This lengthens the total recording time to approximately one
hour. Furthermore, the scanning mirror, rotating continuously, introduces
some blurring in the data along the scanned (vertical) dimension. Future
optimized systems can overcome these limitations.

4.2 related work

ultrafast devices The fastest 2D continuous, real-time monochromatic
camera operates at hundreds of nanoseconds per frame [53] (about 6· 106

frames per second), with a spatial resolution of 200×200 pixels, less than
one third of what we achieve. Avalanche photodetector (APD) arrays can
reach temporal resolutions of several tens of picoseconds if they are used in
a photon starved regime where only a single photon hits a detector within a
time window of tens of nanoseconds [19]. Repetitive illumination techniques
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used in incoherent LiDAR [214, 48] use cameras with typical exposure times
on the order of hundreds of picoseconds [15, 21], two orders of magnitude
slower than our system. Liquid nonlinear shutters actuated with powerful
laser pulses have been used to capture single analog frames imaging light
pulses at picosecond time resolution [32]. Other sensors that use a coherent
phase relation between the illumination and the detected light, such as opti-
cal coherence tomography (OCT) [89], coherent LiDAR [250], light-in-flight
holography [1], or white light interferometry [249], achieve femtosecond
resolutions; however, they require light to maintain coherence (i.e., wave in-
terference effects) during light transport, and are therefore unsuitable for
indirect illumination, in which diffuse reflections remove coherence from
the light. Simple streak sensors capture incoherent light at picosecond to
nanosecond speeds, but are limited to a line or low resolution (20 × 20)
square field of view [17, 93, 200, 48, 122, 181]. They have also been used as
line scanning devices for image transmission through highly scattering tur-
bid media, by recording the ballistic photons, which travel a straight path
through the scatterer and thus arrive first on the sensor [76]. The principles
that we develop in this paper for the purpose of transient imaging were first
demonstrated by Velten et al. [225]. Recently, photonic mixer devices, along
with nonlinear optimization, have also been used in this context [78].

Our system can record and reconstruct space-time world information of
incoherent light propagation in free-space, table-top scenes, at a resolution
of up to 672× 1000 pixels and under 2 picoseconds per frame. The varied
range and complexity of the scenes we capture allow us to visualize the dy-
namics of global illumination effects, such as scattering, specular reflections,
interreflections, subsurface scattering, caustics, and diffraction.

time-resolved imaging Recent advances in time-resolved imaging have
been exploited to recover geometry and motion around corners [186, 120,
223, 222, 59, 171] and albedo of from single view point [162]. But, none
of them explored the idea of capturing videos of light in motion in di-
rect view and have some fundamental limitations (such as capturing only
third-bounce light) that make them unsuitable for the present purpose. Wu
et al. [245] separate direct and global illumination components from time-
resolved data captured with the system we describe in this paper, by analyz-
ing the time profile of each pixel. In a recent publication [247], the authors
present an analysis on transient light transport in frequency space, and show
how it can be applied to bare-sensor imaging.

4.3 capturing space-time planes

We capture time scales orders of magnitude faster than the exposure times
of conventional cameras, in which photons reaching the sensor at different
times are integrated into a single value, making it impossible to observe
ultrafast optical phenomena. The system described in this paper has an ef-
fective exposure time down to 1.85 ps; since light travels at 0.3 mm/ps, light
travels approximately 0.5 mm between frames in our reconstructed movies.

system : An ultrafast setup must overcome several difficulties in order to
accurately measure a high-resolution (both in space and time) image. First,
for an unamplified laser pulse, a single exposure time of less than 2 ps
would not collect enough light, so the SNR would be unworkably low. As
an example, for a table-top scene illuminated by a 100 W bulb, only about 1
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Figure 4.3: Left: Photograph of our ultrafast imaging system setup. The DSLR cam-
era takes a conventional photo for comparison. Right: Time sequence il-
lustrating the arrival of the pulse striking a diffuser, its transformation
into a spherical energy front, and its propagation through the scene. The
corresponding captured scene is shown in Figure 4.10 (top row).

photon on average would reach the sensor during a 2 ps open-shutter period.
Second, because of the time scales involved, synchronization of the sensor
and the illumination must be executed within picosecond precision. Third,
standalone streak sensors sacrifice the vertical spatial dimension in order
to code the time dimension, thus producing x-t images. As a consequence,
their field of view is reduced to a single horizontal line of view of the scene.

We solve these problems with our ultrafast imaging system, outlined in
Figure 4.2. (A photograph of the actual setup is shown in Figure 4.3 (left)).
The light source is a femtosecond (fs) Kerr lens mode-locked Ti:Sapphire
laser, which emits 50-fs with a center wavelength of 795 nm, at a repetition
rate of 75 MHz and average power of 500 mW. In order to see ultrafast
events in a scene with macro-scaled objects, we focus the light with a lens
onto a Lambertian diffuser, which then acts as a point light source and
illuminates the entire scene with a spherically-shaped pulse (see Figure 4.3
(right)). Alternatively, if we want to observe pulse propagation itself, rather
than the interactions with large objects, we direct the laser beam across the
field of view of the camera through a scattering medium (see the bottle scene
in Figure 4.1).

Because all the pulses are statistically identical, we can record the scat-
tered light from many of them and integrate the measurements to average
out any noise. The result is a signal with a high SNR. To synchronize this
illumination with the streak sensor (Hamamatsu C5680 [71]), we split off a
portion of the beam with a glass slide and direct it onto a fast photodetector
connected to the sensor, so that, now, both detector and illumination operate
synchronously (see Figure 4.2 (a)).

capturing space-time planes : The streak sensor then captures an
x-t image of a certain scanline (i.e. a line of pixels in the horizontal dimen-
sion) of the scene with a space-time resolution of 672× 512. The exact time
resolution depends on the amplification of an internal sweep voltage signal
applied to the streak sensor. With our hardware, it can be adjusted from 0.30

ps to 5.07 ps. Practically, we choose the fastest resolution that still allows for
capture of the entire duration of the event. In the streak sensor, a photo-
cathode converts incoming photons, arriving from each spatial location in
the scanline, into electrons. The streak sensor generates the x-t image by
deflecting these electrons, according to the time of their arrival, to different
positions along the t-dimension of the sensor (see Figure 4.2(b) and 4.2(c)).
This is achieved by means of rapidly changing the sweep voltage between
the electrodes in the sensor. For each horizontal scanline, the camera records
a scene illuminated by the pulse and averages the light scattered by 4.5× 108

pulses (see Figure 4.2(d) and 4.2(e)).
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Laser

Figure 4.4: Performance validation of our system. Left: Measurement setup used
to validate the data. We use a single streak image representing a line of
the scene and consider the centers of the white patches because they are
easily identified in the data. Right: Graph showing pixel position vs. total
path travel time captured by the streak sensor (red) and calculated from
measurements of the checkerboard plane position with a Faro digitizer
arm (blue). Inset: PSF, and its Fourier transform, of our system.

performance validation To characterize the streak sensor, we com-
pare sensor measurements with known geometry and verify the linearity,
reproducibility, and calibration of the time measurements. To do this, we
first capture a streak image of a scanline of a simple scene: a plane being
illuminated by the laser after hitting the diffuser (see Figure 4.4 (left)). Then,
by using a Faro digitizer arm [37], we obtain the ground truth geometry of
the points along that plane and of the point of the diffuser hit by the laser;
this allows us to compute the total travel time per path (diffuser-plane-streak
sensor) for each pixel in the scanline. We then compare the travel time cap-
tured by our streak sensor with the real travel time computed from the
known geometry. The graph in Figure 4.4 (right) shows agreement between
the measurement and calculation.

4.4 capturing space-time volumes

Although the synchronized, pulsed measurements overcome SNR issues,
the streak sensor still provides only a one-dimensional movie. Extension
to two dimensions requires unfeasible bandwidths: a typical dimension
is roughly 103 pixels, so a three-dimensional data cube has 109 elements.
Recording such a large quantity in a 10−9 second (1 ns) time widow requires
a bandwidth of 1018 byte/s, far beyond typical available bandwidths.

We solve this acquisition problem by again utilizing the synchronized re-
peatability of the hardware: A mirror-scanning system (two 9 cm × 13 cm
mirrors, see Figure 4.3 (left)) rotates the camera’s center of projection, so
that it records horizontal slices of a scene sequentially. We use a computer-
controlled, one-rpm servo motor to rotate one of the mirrors and conse-
quently scan the field of view vertically. The scenes are about 25 cm wide
and placed about 1 meter from the camera. With high gear ratios (up to
1:1000), the continuous rotation of the mirror is slow enough to allow the
camera to record each line for about six seconds, requiring about one hour
for 600 lines (our video resolution). We generally capture extra lines, above
and below the scene (up to 1000 lines), and then crop them to match the
aspect ratio of the physical scenes before the movie was reconstructed.

These resulting images are combined into one matrix, Mijk, where i =
1...672 and k = 1...512 are the dimensions of the individual x-t streak im-
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Figure 4.5: Left: Reconstructed x-y-t data volume by stacking individual x-t images
(captured with the scanning mirrors). Right: An x-y slice of the data cube
represents one frame of the final movie.

ages, and j = 1...1000 addresses the second spatial dimension y. For a given
time instant k, the submatrix Nij contains a two-dimensional image of the
scene with a resolution of 672 × 1000 pixels, exposed for as short to 1.85 ps.
Combining the x-t slices of the scene for each scanline yields a 3D x-y-t data
volume, as shown in Figure 4.5 (left). An x-y slice represents one frame of
the final movie, as shown in Figure 4.5 (right).

4.5 depicting ultrafast videos in 2d

We have explored several ways to visualize the information contained in
the captured x-y-t data cube in an intuitive way. First, contiguous Nij slices
can be played as the frames of a movie. Figure 4.1 (bottom row) shows a
captured scene (bottle) along with several representative Nij frames. (Effects
are described for various scenes in Section 7.) However, understanding all
the phenomena shown in a video is not a trivial task, and movies composed
of x-y frames such as the ones shown in Figure 4.10 may be hard to in-
terpret. Merging a static photograph of the scene from approximately the
same point of view with the Nij slices aids in the understanding of light
transport in the scenes (see movies within the supplementary video). Al-
though straightforward to implement, the high dynamic range of the streak
data requires a nonlinear intensity transformation to extract subtle optical
effects in the presence of high intensity reflections. We employ a logarithmic
transformation to this end.

We have also explored single-image methods for intuitive visualization of
full space-time propagation, such as the color-coding in Figure 4.1 (right),
which we describe in the following paragraphs.

integral photo fusion By integrating all the frames in novel ways,
we can visualize and highlight different aspects of the light flow in one
photo. Our photo fusion results are calculated as Nij = ∑ wk Mijk, {k =
1..512}, where wk is a weighting factor determined by the particular fusion
method. We have tested several different methods, of which two were found
to yield the most intuitive results: the first one is full fusion, where wk = 1
for all k. Summing all frames of the movie provides something resembling
a black and white photograph of the scene illuminated by the laser, while
showing time-resolved light transport effects. An example is shown in Fig-
ure 4.6 (left) for the alien scene. (More information about the scene is given
in Section 4.7.) A second technique, rainbow fusion, takes the fusion result
and assigns a different RGB color to each frame, effectively color-coding the
temporal dimension. An example is shown in Figure 4.6 (middle).
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Figure 4.6: Three visualization methods for the alien scene. From left to right, more
sophisticated methods provide more information and an easier interpre-
tation of light transport in the scene.

peak time images The inherent integration in fusion methods, though
often useful, can fail to reveal the most complex or subtle behavior of light.
As an alternative, we propose peak time images, which illustrate the time
evolution of the maximum intensity in each frame. For each spatial position
(i, j) in the x-y-t volume, we find the peak intensity along the time dimen-
sion, and keep information within two time units to each side of the peak.
All other values in the streak image are set to zero, yielding a more sparse
space-time volume. We then color-code time and sum up the x-y frames in
this new sparse volume, in the same manner as in the rainbow fusion case
but use only every 20th frame in the sum to create black lines between the
equi-time paths, or isochrones. This results in a map of the propagation of
maximum intensity contours, which we term peak time image. These color-
coded isochronous lines can be thought of intuitively as propagating energy
fronts. Figure 4.6 (right) shows the peak time image for the alien scene, and
Figure 4.1 (top, middle) shows the captured data for the bottle scene depicted
using this visualization method. As explained in the next section, this visu-
alization of the bottle scene reveals significant light transport phenomena
that could not be seen with the rainbow fusion visualization.

4.6 time unwarping

Visualization of the captured movies (Sections 4.5 and 4.7) reveals results
that are counter-intuitive to theoretical and established knowledge of light
transport. Figure 4.1 (top, middle) shows a peak time visualization of the
bottle scene, where several abnormal light transport effects can be observed:
(1) the caustics on the floor, which propagate towards the bottle, instead of
away from it; (2) the curved spherical energy fronts in the label area, which
should be rectilinear as seen from the camera; and (3) the pulse itself being
located behind these energy fronts, when it would need to precede them.
These are due to the fact that usually light propagation is assumed to be
infinitely fast, so that events in world space are assumed to be detected si-
multaneously in camera space. In our ultrafast photography setup, however,
this assumption no longer holds, and the finite speed of light becomes a fac-
tor: we must now take into account the time delay between the occurrence
of an event and its detection by the camera sensor.

We therefore need to consider two different time frames, namely world
time (when events happen) and camera time (when events are detected). This
duality of time frames is explained in Figure 4.7: light from a source hits a
surface first at point P1 = (i1, j1) (with (i, j) being the x-y pixel coordinates



92 femto-photography

Figure 4.7: Understanding reversal of events in captured videos. Left: Pulsed light
scatters from a source, strikes a surface (e.g., at P1 and P2), and is then
recorded by a sensor. Time taken by light to travel distances z1 + d1 and
z2 + d2 is responsible for the existence of two different time frames and
the need of computational correction to visualize the captured data in
the world time frame. Right: Light appears to be propagating from P2 to
P1 in camera time (before unwarping), and from P1 to P2 in world time,
once time-unwarped. Extended, planar surfaces will intersect constant-
time paths to produce either elliptical or circular fronts.

Figure 4.8: Time unwarping in 1D for a streak image (x-t slice). Left: captured streak
image; shifting the time profile down in the temporal dimension by ∆t
allows for the correction of path length delay to transform between time
frames. Center: the graph shows, for each spatial location xi of the streak
image, the amount ∆ti that point has to be shifted in the time dimension
of the streak image. Right: resulting time-unwarped streak image.

of a scene point in the x-y-t data cube), then at the farther point P2 = (i2, j2),
but the reflected light is captured in the reverse order by the sensor, due
to different total path lengths (z1 + d1 > z2 + d2). Generally, this is due to
the fact that, for light to arrive at a given time instant t0, all the rays from
the source, to the wall, to the camera, must satisfy zi + di = ct0, so that
isochrones are elliptical. Therefore, although objects closer to the source re-
ceive light earlier, they can still lie on a higher-valued (later-time) isochrone
than farther ones.

In order to visualize all light transport events as they have occurred (not
as the camera captured them), we transform the captured data from camera
time to world time, a transformation which we term time unwarping. Mathe-
matically, for a scene point P = (i, j), we apply the following transformation:

t′ij = tij +
zij

c/η
(4.1)
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Figure 4.9: Time unwarping for the bottle scene, containing a scattering medium.
From left to right: a frame of the video without correction, where the
energy front appears curved; the same frame after time-unwarping with
respect to distance to the camera zij; the shape of the energy front is
now correct, but it still appears before the pulse; the same frame, time-
unwarped taking also scattering into account.

where t′ij and tij represent camera and world times respectively, c is the
speed of light in vacuum, η the index of refraction of the medium, and zij is
the distance from point P to the camera. For our table-top scenes, we mea-
sure this distance with a Faro digitizer arm, although it could be obtained
from the data and the known position of the diffuser, as the problem is anal-
ogous to that of bi-static LiDAR. We can thus define light travel time from
each point (i, j) in the scene to the camera as ∆tij = t′ij − tij = zij/(c/η).
Then, time unwarping effectively corresponds to offsetting data in the x-y-t
volume along the time dimension, according to the value of ∆tij for each of
the (i, j) points, as shown in Figure 4.8.

In most of the scenes, we only have propagation of light through air, for
which we take η ≈ 1. For the bottle scene, we assume that the laser pulse
travels along its longitudinal axis at the speed of light, and that only a single
scattering event occurs in the liquid inside. We take η = 1.33 as the index
of refraction of the liquid and ignore refraction at the bottle’s surface. A
step-by-step unwarping process is shown in Figure 4.9 for a frame (i.e. x-y
image) of the bottle scene. Our unoptimized Matlab code runs at about 0.1
seconds per frame. A time-unwarped peak-time visualization of the whole
of this scene is shown in Figure 4.1 (right). Notice how now the caustics
originate from the bottle and propagate outward, energy fronts along the
label are correctly depicted as straight lines, and the pulse precedes related
phenomena, as expected.

4.7 captured scenes

We have used our ultrafast photography setup to capture interesting light
transport effects in different scenes. Figure 4.10 summarizes them, showing
representative frames and peak time visualizations. The exposure time for
our scenes is between 1.85 ps for the crystal scene, and 5.07 ps for the bot-
tle and tank scenes, which required imaging a longer time span for better
visualization. Please refer to the supplementary video1 to watch the recon-
structed movies. Overall, observing light in such slow motion reveals both
subtle and key aspects of light transport. We provide here brief descriptions
of the light transport effects captured in the different scenes.

bottle This scene is shown in Figure 1 (bottom row), and has been used to
introduce time-unwarping. A plastic bottle, filled with water diluted with
milk, is directly illuminated by the laser pulse, entering through the bot-
tom of the bottle along its longitudinal axis. The pulse scatters inside the

1 http://giga.cps.unizar.es/~ajarabo/pubs/femtoSIG2013/downloads/velten_sig13_movie.

mov

http://giga.cps.unizar.es/~ajarabo/pubs/femtoSIG2013/downloads/velten_sig13_movie.mov
http://giga.cps.unizar.es/~ajarabo/pubs/femtoSIG2013/downloads/velten_sig13_movie.mov
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Figure 4.10: More scenes captured with our setup (refer to Figure 1 for the bottle
scene). For each scene, from left to right: photograph of the scene (taken
with a DSLR camera), a series of representative frames of the recon-
structed movie, and peak time visualization of the data. Please refer to
the videos in the project page for the full movies. Note that the view-
point varies slightly between the DSLR and the streak sensor.
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liquid; we can see the propagation of the wavefronts. The geometry of the
bottle neck creates some interesting lens effects, making light look almost
like a fluid. Most of the light is reflected back from the cap, while some
is transmitted or trapped in subsurface scattering phenomena. Caustics are
generated on the table.

tomato-tape This scene shows a tomato and a tape roll, with a wall be-
hind them. The propagation of the spherical wavefront, after the laser pulse
hits the diffuser, can be seen clearly as it intersects the floor and the back
wall (A, B). The inside of the tape roll is out of the line of sight of the light
source and is not directly illuminated. It is illuminated later, as indirect light
scattered from the first wave reaches it (C). Shadows become visible only af-
ter the object has been illuminated. The more opaque tape darkens quickly
after the light front has passed, while the tomato continues glowing for a
longer time, indicative of stronger subsurface scattering (D).

alien A toy alien is positioned in front of a mirror and wall. Light in-
teractions in this scene are extremely rich, due to the mirror, the multiple
interreflections, and the subsurface scattering in the toy. The video shows
how the reflection in the mirror is actually formed: direct light first reaches
the toy, but the mirror is still completely dark (E); eventually light leaving
the toy reaches the mirror, and the reflection is dynamically formed (F). Sub-
surface scattering is clearly present in the toy (G), while multiple direct and
indirect interactions between the wall and the mirror can also be seen (H).

crystal A group of sugar crystals is directly illuminated by the laser from
the left, acting as multiple lenses and creating caustics on the table (I). Part
of the light refracted on the table is reflected back to the candy, creating
secondary caustics on the table (J). Additionally, scattering events are visible
within the crystals (K).

tank A reflective grating is placed at the right side of a tank filled with
milk diluted in water. The grating is taken from a commercial spectrometer,
and consists of an array of small, equally spaced rectangular mirrors. The
grating is blazed: mirrors are tilted to concentrate maximum optical power
in the first order diffraction for one wavelength. The pulse enters the scene
from the left, travels through the tank (L), and strikes the grating. The grat-
ing reflects and diffracts the beam pulse (M). The different orders of the
diffraction are visible traveling back through the tank (N). As the figure
(and the supplementary movie) shows, most of the light reflected from the
grating propagates at the blaze angle.

cube A very simple scene composed of a cube in front of a wall with a
checkerboard pattern. The simple geometry allows for a clear visualization
and understanding of the propagation of wavefronts.

4.8 conclusions and future work

Our research fosters new computational imaging and image processing op-
portunities by providing incoherent time-resolved information at ultrafast
temporal resolutions. We hope our work will inspire new research in com-
puter graphics and computational photography, by enabling forward and
inverse analysis of light transport, allowing for full scene capture of hidden
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geometry and materials, or for relighting photographs. To this end, cap-
tured movies and data of the scenes shown in this chapter are available
at the project page2. This exploitation, in turn, may influence the rapidly
emerging field of ultrafast imaging hardware.

The system could be extended to image in color by adding additional
pulsed laser sources at different colors or by using one continuously tunable
optical parametric oscillator (OPO). A second color of about 400 nm could
easily be added to the existing system by doubling the laser frequency with
a nonlinear crystal (about $1000). The streak tube is sensitive across the en-
tire visible spectrum, with a peak sensitivity at about 450 nm (about five
times the sensitivity at 800 nm). Scaling to bigger scenes would require
less time resolution and could therefore simplify the imaging setup. Scal-
ing should be possible without signal degradation, as long as the camera
aperture and lens are scaled with the rest of the setup. If the aperture stays
the same, the light intensity needs to be increased quadratically to obtain
similar results.

Beyond the ability of the commercially available streak sensor, advances
in optics, material science, and compressive sensing may bring further op-
timization of the system, which could yield increased resolution of the cap-
tured x-t streak images. Nonlinear shutters may provide an alternate path
to femto-photography capture systems. However, nonlinear optical methods
require exotic materials and strong light intensities that can damage the ob-
jects of interest (and must be provided by laser light). Further, they often
suffer from physical instabilities.

We believe that mass production of streak sensors can lead to affordable
systems. Also, future designs may overcome the current limitations of our
prototype regarding optical efficiency. Future research can investigate other
ultrafast phenomena such as propagation of light in anisotropic media and
photonic crystals, or may be used in applications such as scientific visual-
ization (to understand ultra-fast processes), medicine (to reconstruct sub-
surface elements), material engineering (to analyze material properties), or
quality control (to detect faults in structures). This could provide radically
new challenges in the realm of computer graphics. Graphics research can en-
able new insights via comprehensible simulations and new data structures
to render light in motion. For instance, in Chapter 6 we show relativistic ren-
dering techniques developed using this data, where the common assump-
tion of constant irradiance over the surfaces does no longer hold [102, 103].
It may also allow a better understanding of scattering, and may lead to new
physically valid models, as well as spawn new art forms.

2 http://giga.cps.unizar.es/~ajarabo/pubs/femtoSIG2013/

http://giga.cps.unizar.es/~ajarabo/pubs/femtoSIG2013/
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In this chapter we present a framework for rendering time-resolved light
transport. It originated to address the need of simulation tools helping on
the development of the incipient field of transient imaging. We first intro-
duce the transient path integral framework, formally describing light trans-
port in transient state, and then analyze the difficulties arising when consid-
ering the light’s time-of-flight in the simulation (rendering) of images and
videos. We propose a novel density estimation technique that allows reusing
sampled paths to reconstruct time-resolved radiance, and devise new sam-
pling strategies that take into account the distribution of radiance along time
in participating media. This work was published in ACM Transactions on
Graphics and presented at SIGGRAPH Asia 2014.

A. Jarabo, J. Marco, A. Muñoz, R. Buisan, W. Jarosz & D. Gutierrez
A Framework for Transient Rendering

ACM. Trans. Graph. Vol.33(6), SIGGRAPH Asia 2014

5.1 introduction

One of the most general assumptions in computer graphics is to consider
the speed of light to be infinite, leading to the simulation of light transport
in steady state. This is a reasonable assumption, since most of the existing
imaging hardware is very slow compared to the speed of light. Light trans-
port in steady state has been extensively investigated in computer graphics
(e.g. Dutré et al. [34], Gutierrez et al. [63], Křivánek et al. [132]), including
for instance the gradient [182, 108] or frequency [33] domains. In contrast,
work in the temporal domain has been mainly limited to simulating motion
blur [163] or time-of-flight imaging [123].

We introduce in this work a formal framework for transient rendering,
where we lift the assumption of an infinite speed of light. While differ-
ent works have looked into transient rendering [205, 96, 3], they have ap-
proached the problem by proposing straight forward extensions of tradi-
tional steady-state algorithms, which are not adequate for efficient transient
rendering for a variety of reasons. Firstly, the addition of the extra sam-
pling domain given by the temporal dimension dramatically increases the
convergence time of steady state rendering algorithms. Moreover, by extend-
ing the well-accepted path integral formulation [218], we observe that paths
contributing to each frame form a near-delta manifold in time, which makes
sampling almost impossible. We solve this issue by devising new sampling
strategies that improve the distribution of samples along the temporal domain,
and a new density estimation technique that allows reconstructing the sig-
nal along time from such samples.

Our paper presents valuable insight apart from rendering applications.
Recent advances in time-resolved imaging are starting to provide novel so-
lutions to open problems, such as reconstructing hidden geometry [223] or
BRDFs [162], recovering depth of transparent objects [111], or even visual-
izing the propagation of light [224]. Despite these breakthroughs in tech-
nology, there is currently a lack of tools to efficiently simulate and analyze

97
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transient light transport. This would not only be beneficial for the graphics
and vision communities, but it could open up a novel analysis-by-synthesis
approach for applications in fields like optical imaging, material engineering
or biomedicine as well. In addition, our framework can become instrumental
in teaching the complexities of light transport [108], as well as visualizing
in detail some of its most cumbersome aspects, such as the formation of
caustics, birefringence, or the temporal evolution of chromatic dispersion.

In particular, in this work we make the following contributions:
• Establishing a theoretical framework for rendering in transient state,

based on the path integral formulation and including propagation in
free space as well as scattering on both surfaces and in media (Sec-
tion 5.4). This allows us to analyze the main challenges in transient
rendering (Section 5.4.1).

• Developing a progressive kernel-based density estimation technique
for path reuse that significantly improves the reconstruction of time-
resolved radiance (Section 5.5).

• Devising new sampling techniques for participating media to uniformly
sample in the temporal domain, that complement traditional radiance-
based sampling (Section 5.6).
• Providing time-resolved simulations of several light transport phe-

nomena which are impossible to see in steady state (Section 5.7).

5.2 related work

transient radiative transfer . With advances in laser technology,
capable of producing pulses of light in the order of a few femtoseconds,
transient radiative transfer gained relevance in fields like optical imaging,
material engineering or biomedicine. Many numerical strategies have been
proposed, including Monte Carlo simulations, discrete ordinate methods, in-
tegral equation models or finite volume methods [155, 257, 259]. Often, these
methods are applied on simplified scenarios with a particular application in
mind, but a generalized framework has not yet been adopted.

ultra-fast imaging . Several recent advances in ultra-fast imaging have
found direct applications in computer graphics and vision. Raskar and Davis [186]
introduce the basic theoretical framework in light transport analysis that
would later lead to a number of practical applications, such as reconstruc-
tion of hidden geometry [120, 223] or reflectance acquisition [162]. Velten
et al. [225, 224] have recently presented femto-photography, a technique that
allows capturing time-resolved videos with an effective exposure time of
one picosecond per frame, using a streak camera. Heide et al. [78] later pro-
pose a cheaper setup using Photonic Mixing Devices (PMDs), while sacrific-
ing temporal and spatial resolution. Kadambi and colleagues [111] address
multi path interference in time-of-flight sensors by recovering time profiles
as a sequence of impulses, allowing them to recover depth from transparent
objects.

analysis of time-resolved light transport. Wu et al. [247] ana-
lyze the propagation of light in the frequency domain, and show how the
cross-dimensional transfer of information between the temporal and fre-
quency domains can be applied to bare-sensor imaging. Later, Wu et al. [245]
used time-of-flight imaging to approximately decompose light transport
into its different components of direct, indirect and subsurface illumination,
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by observing the temporal profiles at each pixel. Lin and colleagues [137]
perform a frequency-domain analysis of multifrequency time-of-flight cam-
eras. Recently, O’Toole and colleagues [168] derived transient light transport
as a linear operator, as opposed to our formulation in ray space, and showed
how to combine the generation and acquisition of transient light transport
for scene analysis. In this regard, our work can be seen as complementary:
we provide a simulation (rendering) framework, suitable for an analysis-by-
synthesis approach to exploring novel ideas and applications, and to help
better understand the mechanisms of light transport.

transient rendering . The term transient rendering was first coined by
Smith et al. [205]. In their work, the authors generalize the rendering equa-
tion as a recursive operator including propagation of light at finite speed.
The model provides a solid theoretical background for time-of-flight, com-
puter vision applications, but does not provide a practical framework for
transient rendering of global illumination. Keller et al. [114] develop a time-
of-flight sensor simulation, modeling the behavior of PMDs. These works
are again geared towards time-of-flight applications; moreover, they are lim-
ited to surfaces, not taking into account the presence of participating media.
Simulation of relativistic effects [238, 102, 103] could also potentially benefit
from our transient rendering framework, as shown later on Chapter 6.

Some recent works in computer graphics make use of transient state in-
formation: d’Eon and Irving [29] quantize light propagation into a set of
states, and model the transient state at each instant using Gaussians with
variance proportional to time. These Gaussians are then integrated into the
final image. The wave-based approach by Musbach et al. [158] uses the Finite
Difference Time Domain (FDTD) method to obtain a solution for Maxwell’s
equations, rendering complex effects like diffraction. In all these cases, how-
ever, the main goal is to render steady state images, not to analyze the
propagation of light itself. Jarabo [96] showed transient rendering results
based on photon mapping and time-dependent density estimation, but lim-
ited to surfaces in the absence of participating media. Last, Ament et al. [3]
include time into the Radiative Transfer Equation in order to account for
a continuously-varying indices of refraction in participating media, though
they do not introduce efficient techniques for transient rendering.

acoustic rendering . Our work is somewhat related to the field of
acoustic rendering [45]. Traditional light rendering techniques have been
adapted to sound rendering, such as photon (phonon) mapping [8] or pre-
computed acoustic radiance transfer [5]. Closest to our approach, the work
by Siltanen et al. [202] extends the radiosity method to include propagation
delays due to the finite, though much slower, speed of sound. As opposed
to us, they use finite elements methods to compute sound transport, do
not handle participating media and do not propose sampling techniques for
uniform temporal sample distribution.

5.3 background

Here we introduce our notation and review the classic (steady state) path
integral formulation, as well as the photon mapping algorithms and its pro-
gressive variant. The former will serve as the basis for the definition of
transient path integral (Section 5.4), while the second closely relates with the
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Figure 5.2: Schematic description of bidirectional path tracing (BPT, top) and photon
mapping (PM, bottom). In both algorithms, an eye and a light subpath
are traced from the eye and the light source respectively; these two sub-
paths are then connected to form a full path, via deterministic shadow
connection in the case of bidirectional path tracing, and via an additional
random segment and density estimation in photon mapping (Figure after
Georgiev et al. [49]).

path reuse technique described in Section 5.5, which as we will see, its crucial
for transient rendering.

5.3.1 Path Integral

In the path integral formulation [218, 172], the image pixel intensity I is
computed as an integral over the space of light transport paths Ω:

I =
∫

Ω
f (x)dµ(x), (5.1)

where x = x0 . . . xk represents the spatial coordinates of the k + 1 vertices
of a length-k path with k ≥ 1 segments. Vertex x0 lies on a light source, xk
lies on the camera sensor, and x1 . . . xk−1 are intermediate scattering vertices.
The differential measure dµ(x) denotes area integration for surfaces vertices
and volume integration for media vertices. The path contribution function
f (x) is the product of the emitted radiance Le, path throughput T, and
sensor importance We:

f (x) = Le(x0→x1)T(x)We(xk−1→xk). (5.2)

The path throughput is itself the product of the scattering function ρ for
the inner path vertices and the geometry G and visibility V terms for path
segments:

T(x)=

[
k−1

∏
i=1

ρ(xi)

][
k−1

∏
i=0

G(xi, xi+1)V(xi, xi+1)

]
. (5.3)

For a path segment xy, we have G(x, y) = D(x→y)D(y→x)
‖x−y‖2 , where D(x →

y) = |nx · ωxy| if x is on a surface and D(x→ y) = 1 if x is in a medium,
and likewise for D(y → x). Here nx is the surface normal at x and ωxy
is a unit-length vector from x to y. We assume that V is a fractional vis-
ibility function accounting for transmittance within media in addition to
binary visibility for opaque objects. For path segment xy, it is given by
V(x, y) = exp

(
−
∫ ‖x−y‖

0 σt(x + tωxy)dt
)

where σt is the extinction coeffi-
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cient of the medium or a delta function at the boundary of opaque objects.
The scattering kernel at each vertex is defined as:

ρ(xi) =

ρs(xi−1→xi→xi+1) xi on surface,

ρp(xi−1→xi→xi+1)σs(xi) xi in medium,
(5.4)

where σs is the scattering coefficient in the medium, and ρs and ρp are the
surface BSDF and phase function respectively.

Monte Carlo solutions approximate the path integral as a Monte Carlo
estimator:

〈I〉 = 1
n

n

∑
j=1

f (xj)

p(xj)
, (5.5)

that averages the contribution of n random paths xj, sampled with a proba-
bility distribution function (pdf) p(xj), which is given by the combined prob-
ability density of each of the vertex locations p(x) = p(x0...xk). The proba-
bility density of the path is determined by the sampling technique used to
obtain the path: for example, bidirectional path tracing (BPT) [133, 219] inde-
pendently generates a subpath xw from the eye with pdf p(xw) and a sub-
path xl from the light with pdf p(xl). These are then (optionally) connected
using a shadow ray to build the full path x with pdf p(x) = p(xl)p(xw) (see
Figure 5.2, top).

5.3.2 Photon Mapping

Photon mapping (PM) [109] is an efficient and robust two-pass global illumi-
nation algorithm. In the first pass (photon tracing), light subpaths are traced
from the light sources, and their vertices hitting a diffuse surface are stored
in a data structure called the photon map, which represents incoming flux.

In the second pass (radiance estimation, see Figure 5.2,bottom), PM esti-
mates the reflected radiance at a point x in direction ωo using density esti-
mation from the M nearest photons as:

L̂o(x, ωo) =
1
M

M

∑
j=1

KR(‖x− xj‖)γj (5.6)

where KR is the spatial smoothing kernel with bandwidth R, and xj and
γj are the position and contribution of photon j. Note that γj is a function
of the light subpath of the photon xl ,j, and is computed as: γj = ρ(ωj →
x→ ωo)Le(x0,j→x1,j)T(xl ,j)/p(xl ,j), with ωj the incoming direction of the
photon j. PM successfully handles difficult light paths, at the price of intro-
ducing bias. This means that the estimated radiance in Equation (5.6) can be
written as L̂o = Lo + ε, where Lo is the actual radiance and ε represents the
error introduced by the density estimation. An important property of PM is
that, although biased, it is consistent, meaning that the bias vanishes in the
limit using an infinite number of photons M and a kernel KR with differ-
ential bandwidth dR. This is obviously not a practical solution, so several
improvements have been proposed over the last few years [65].

progressive photon mapping Progressive photon mapping (PPM) [68,
67, 121] is a multipass variant of photon mapping that allows handling dif-
ficult light paths without having to store an infinite number of photons in
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the photon map to eliminate bias. The method progressively traces pho-
tons, estimates radiance and discards photons, updating the results at each
step while ensuring convergence in the limit. Since a new photon map is
computed at each iteration, this is equivalent to performing different inde-
pendent samples on the radiance. The approximated pixel measure 〈In〉 in
pass n is computed as:

〈In〉 =
1
n

n

∑
j=1

Ψj L̂o(xj, ωo,j) (5.7)

where Ψj = T(xw ,j)/p(xw ,j)We(xk,j→xk−1,j) is the eye subpath contribution
to x.

Knaus and Zwicker [121] showed that this estimation is consistent if both
the variance Var[εn] and expected value E[εn] of the error εn vanish as n→
∞:

Var[εn]→0 =⇒ Var[〈In〉]→0 (5.8)

E[εn]→0 =⇒ E[〈In〉]→ I. (5.9)

To accomplish this, the bias E[εj] is reduced in each iteration j by progres-
sively reducing the bandwidth R of KR, while allowing the Var[εj] at each
iteration to increase as:

Var[εj+1]

Var[εj]
=

R2
j

R2
j+1

=
j + 1
j + α

(5.10)

Note that this radius redution is valid for surfaces, for volumetric density
estimation of photon points in media it is a function of R3. The user param-
eter α ∈ (0, 1) controls how much the variance is allowed to increase in each
iteration. This value determines the trade-off between the reduction of bias
and radiance [121], and its choice has a dramatic effect on the convergence
rate of the algorithm, as shown by Kaplanyan and Dachsbacher [113].

5.4 transient path integral framework

We first extend the standard path integral formulation to transient state. This
will allow us to formalize the notion of transient rendering, understand how
to elevate steady state rendering to transient state, and, most importantly,
identify the unique challenges of solving this more difficult light transport
problem.

For transient rendering, in addition to integrating over spatial coordinates,
we must also integrate over the space of temporal delays ∆T of all paths:

I =
∫

Ω

∫
∆T

f (x, ∆t)dµ(∆t)dµ(x), (5.11)

where ∆t = ∆t0 . . . ∆tk defines a sequence of time delays and dµ(∆t) de-
notes temporal integration at each path vertex.

We define the path contribution function f (x, ∆t) as the original, but with
the emission Le, path throughput T, and sensor importance We additionally
depending on time:

f (x, ∆t) = Le(x0→x1, ∆t0)T(x, ∆t)We(xk−1→xk, ∆tk). (5.12)

The temporal sensor importance We now defines not only the spatial and
angular sensitivity, but also the region of time we are interested in evaluat-
ing. This could specify a delta function at a desired time, or more commonly,
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Figure 5.3: Spatio-temporal diagram of light propagation for a path with k = 2. Light
is emitted at time t0, and reaches x1 at t0 + t(x0↔x1). After a microscopic
temporal delay ∆t1, light emerges from x1 at t1 and takes t(x1↔x2) time
to reach x2. The sensor may include a further temporal delay ∆t2.

a finite interval of interest in the temporal domain (analogous to the shut-
ter interval in steady state rendering, though at much smaller time scales).
Likewise, the time parameter of the emission function Le can define tempo-
ral variation in emission (e.g. pulses). The transient path throughput is now
defined as:

T(x, ∆t)=

[
k−1

∏
i=1

ρ(xi, ∆ti)

][
k−1

∏
i=0

G(xi, xi+1)V(xi, xi+1)

]
. (5.13)

Since we assume that the geometry is stationary (relative to the speed of
light), the geometry and visibility terms depend only on the spatial coor-
dinates of the path, as in steady state rendering. However, we extend the
scattering kernel ρ with a temporal delay parameter ∆ti to account for po-
tential time delays at each scattering vertex xi. Such delays can occur due to
e.g. multiple internal reflections within micro-geometry [240], electromag-
netic phase shifts in the Fresnel equations [55, 193], or inelastic scattering
effects such as fluorescence [243, 64].

time delays . A transient light path is defined in terms of spatial and
temporal coordinates. The temporal coordinates at each path vertex xi are
t−i , the time immediately before the scattering event, and ti, the time im-
mediately after (see Figure 5.3). Both time coordinates can be obtained by
accounting for all propagation delays between vertices t(xi↔ xi+1) and scat-
tering delays ∆ti at vertices along the path:

t−i =
i−1

∑
j=0

(
t(xj↔xj+1) + ∆tj

)
, ti = t−i + ∆ti, (5.14)

where t0 and tk denote the emission and detection times of a light path. The
transient simulation is assumed to start at t−0 = 0. In the general case of
non-linear media [62, 91, 3], propagation time along a path segment is:

t(xj↔xj+1) =
∫ sj+1

sj

η(xr)

c
dr, (5.15)

where r parametrizes the path of light between the two points, sj and sj+1
are the parameters of the path at xj and xj+1, respectively, c is the speed of
light in vacuum and η(xr) represents the index of refraction of the medium
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Figure 5.4: Left: The probability of finding a sample at a specific time instant (tp or
tq) is nearly zero (Section 5.4). Middle: Density estimation on the tempo-
ral domain (Section 5.5) allows us to reconstruct radiance at any instant,
although with varying bias and variance in time. Right: A more uniform
distribution of samples in the temporal domain leads to more uniform
bias and better reconstructions (Section 5.6).

at xr. In the typical scenario where η is constant along a path segment,
Equation (5.15) reduces to a simple multiplication: t(xj ↔ xj+1) = ‖xj −
xj+1‖η/c. Figure 5.3 illustrates both the spatial and temporal dimensions of
a path for the case of k = 2.

numerical integration. Similar to its steady state counterpart (5.1),
the transient path integral (5.11) can be numerically approximated using a
Monte Carlo estimator:

〈I〉 = 1
n

n

∑
j=1

f (xj, ∆tj)

p(xj, ∆tj)
, (5.16)

which averages n random paths xj, ∆tj drawn from a spatio-temporal proba-
bility distribution (pdf) p(xi, ∆ti) defined by the chosen path and time delay
sampling strategy. In steady state, the pdf only needs to deal with the loca-
tion of path vertices xi.

5.4.1 Challenges of sampling in transient state

Equation (5.11) shows a new domain of scattering delays ∆T that must be
sampled. Most existing path sampling techniques generate random paths
incrementally, vertex-by-vertex, by locally importance sampling the scatter-
ing function ρ at each bounce, and optionally making deterministic shadow
connections between light and camera subpaths. We could in principle ele-
vate any such algorithm to transient state by simply sampling the transient
scattering function ρ(xi, ∆ti), instead of the steady state scattering function
ρ(xi).

Unfortunately, transient rendering poses hidden challenges, since propa-
gation delays between vertices t(xi↔xi+1) are fundamentally different than
scattering delays ∆ti defined at the light, sensor, and interior vertices. While
scattering delays reside on a separate sampling domain ∆T, propagation
delays are a direct consequence of the spatial positions of path vertices sam-
pled from Ω. Hence, if spatial positions are determined by a steady state
sampling routine ignorant of propagation delays, control of the propaga-
tion time in a path’s total duration tk is lost, leaving only the scattering
delays ∆ti to control tk.

Other factors resulting from the temporal structure of light transport
make any naïve extension to transient rendering extremely inefficient: to
visualize transient effects, the time window of both the sensor and the light
source needs to be small (≈ 10 picoseconds); moreover, scattering events re-
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sult in femtosecond temporal delays. The temporal domain of the path con-
tribution thus becomes a near delta manifold (i.e. a caustic in time), which
is virtually impossible to sample by random chance. Since the total path
duration tk cannot be directly controlled, deterministic shadow connections
are rendered useless, having little chance of finding a non-zero contribution
in both the light Le and the sensor We. In general, the probability of ran-
domly finding non-zero contribution for a specific time decreases as either
∆ti, Le or We get closer to delta functions in the temporal domain, which
are precisely the cases of interest in transient light transport.

When several distinct measurements of the path integral have to be com-
puted, a common optimization strategy is to share randomly sampled paths
to estimate all measurements simultaneously. This technique (path reuse) is
utilized in the spatial domain in light tracing and bidirectional path tracing
to estimate all pixels in the image plane at once. A similar situation occurs
in the transient domain, where each frame f defines a specific sensor impor-
tance function W f

e (xk−1→xk, tk) and the time window covered by all frames
is significantly larger than the per-frame time window. We could therefore
leverage temporal path reuse to improve the efficiency of steady state path
sampling methods when applied to rendering transient light transport. In
practice, for every generated random path in Equation (5.16), we could eval-
uate the contribution functions for every frame f , which differ only in the
temporal window of the sensor importance function W f

e .
This path reuse technique is equivalent to histogram density estimation [203]

in the temporal domain of the sensor, where each bin of the histogram repre-
sents one frame, and the bin’s width h is the frame duration. Unfortunately,
this type of density estimation produces very noisy results, especially for
bins with very small width (i.e. exposure time). This results in a low con-
vergence rate of O(n−1/3) [196], where n is the number of samples. This is
illustrated in Figure 5.5: although obviously better than not reusing paths,
results are still extremely noise even with a large amount of samples. Still,
this suggests that more elaborated density estimation techniques may lead
to better convergence rates and/or less noisy reconstructions.

In the following, we first show how kernel-based density estimation tech-
niques in the temporal domain allow us to reconstruct radiance along time
from a sparse set of samples (see Section 5.5 and Figure 5.4, middle). Then,
we show how a skewed temporal sample distribution affects radiance recon-
struction, and develop a set of sampling strategies for participating media
that enable some control over propagation delays, leading to a more uniform
distribution of samples in time and therefore more accuracy (see Section 5.6
and Figure 5.4, right).

5.5 kernel-based temporal density estimation

Kernel-based density estimation is a widely known statistical tool to re-
construct a signal from randomly sampled values. These techniques sig-
nificantly outperform histogram-based techniques (like the path reuse de-
scribed above), especially for noisy data [203]. A kernel with finite band-
width is used to obtain an estimate of the value of a signal at a given point
by computing a weighted average of the set of random samples around such
point. We thus introduce a temporal kernel KT with bandwidth T to esti-
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Figure 5.5: Time-resolved irradiance computed at pixel (a) in the scene on the left us-
ing, no path reuse (green), histogram-based path reuse (red), and kernel-
based path reuse (blue), for the same number of samples. Without path
reuse it is extremely difficult to reconstruct the radiance, since the proba-
bility of finding a path arriving at the specific frame is close to zero. This
is solved using path reuse, although with different levels of improvement:
while histogram-based density estimation shows a very noisy result, our
proposed progressive kernel-based estimation shows a solution with sig-
nificantly lower variance, while preserving high-frequency features due
to the progressive approach.

mate incoming radiance I at the sensor at time t as a function of n samples
of I:

〈In〉 =
1
n

n

∑
j=1

KT (‖t− tk,j‖) Îj, (5.17)

where Îj = f (xj, ∆tj)/p(xj, ∆tj) is the contribution of path xj in the mea-
sured pixel, and tk,j is the total time of the path (5.14). Using this temporal
density estimation kernel reduces variance, but at the cost of introducing
bias (see Figure 5.4, middle). This can be solved by using consistent progres-
sive approximations [68, 121], which converge to the correct solution in the
limit.

Inspired by these works, we model our progressive density estimation
along the temporal domain, for which we rely on the probabilistic approach
for progressive photon mapping used by Knaus and Zwicker [121]. We com-
pute the estimate 〈In〉 in n steps, progressively reducing bias while allowing
variance to increase; this is done by reducing the kernel bandwidth T in
each iteration as Tj+1/Tj = (j + α)/(j + 1). The variance of our temporal
progressive estimator vanishes with O(n−α) as expected, since the shrink-
ing ratio is inversely proportional to the variance increase factor. Bias, on
the other hand, vanishes with O(n−2(1−α)). Note that the parameter α de-
fines the convergence of both sources of error (bias and variance). To find
the optimal value that minimizes both, we use the asymptotic mean square
error (AMSE), defined as:

AMSE(〈In〉) = Var[In] + E[εn]
2. (5.18)

Using the convergence rate for both bias and variance, we find that the op-
timal α that minimizes the AMSE is α = 4/5, which leads to a convergence
of O(n−4/5). This is significantly faster than using the histogram method,
O(n−1/3), which we illustrate in Figure 5.5. The detailed derivation of the
behavior of the algorithm can be found in Section 5.A.
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Figure 5.6: Sampling strategies for participating media with a uniform distribution
in the time domain. Left: Sampling scattering distance for a light sub-
path. This strategy can also be applied to eye subpaths. Middle Sam-
pling shadow connections through a new indirect vertex: line-to-point
sampling of shadow connections. Right: Sampling the angular scattering
function (phase function).

5.5.1 Transient progressive photon mapping.

Our approach above is agnostic to the algorithm used to obtain the samples
(e.g. samples in Figure 5.5 have been computed using path tracing). This
means that it can be combined with biased density estimation-based algo-
rithms such as (progressive) photon mapping [109, 68, 67], which is well
suited for complex light paths such as spatial caustics. However, although
using progressive photon mapping as the source of samples for our tem-
poral density estimation is consistent in the limit, it results in suboptimal
convergence due to the coupling of the bias and variance between the spa-
tial and temporal kernels. Instead, we introduce the temporal domain into
the photon mapping framework, by adding the temporal smoothing kernel
KT in the radiance estimation [16]. Radiance L̂o(x, t) is estimated using M
photons with contribution γi as

L̂o(x, t) =
1
M

M

∑
i=1

K(‖x− xi‖, ‖t− t−i ‖)γi. (5.19)

Combining both kernels into a single multivariate kernel allows control-
ling the variance increment in each step as a function of a single α, so that
it increments at a rate of (j + 1)/(j + α), while reducing bias by progres-
sively shrinking both the spatial and temporal kernel bandwidths (R and T
respectively). As shown in Section 5.B, these are reduced at each iteration j
following:

Tj+1

Tj
=

(
j + α

j + 1

)βT
,

R2
j+1

R2
j

=

(
j + α

j + 1

)βR

, (5.20)

where βT and βR are scalars in the range [0, 1] controling how much each
term is to be scaled separately, with βT + βR = 1. The convergence rate
of the combined spatio-temporal density estimation is O(n−4/7)1. Using this
formulation allows us to handle complex light paths in transient state, while
still progressively reducing bias and variance introduced by both progres-
sive photon mapping and our temporal density estimation, in the spatial
and temporal domains respectively. We refer to Section 5.B for the detailed
description of the algorithm, including the full derivation of the error and
convergence rate.

1 Note that a naïve combination of the temporal (1D) and the spatial (2D) kernels would yield
a slower convergence than the combined 3D kernel convergence O(n−4/7) when using the
optimal parameters α = 4/7 and βT = 1/3 reported in previous work [113] (for volumetric
density estimation) or in the statistics literature [196].
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5.6 time sampling in participating media

As we mentioned earlier (Section 5.4.1), the performance of our transient
density estimation techniques can be further improved by a more uniform
distribution of samples in time. This makes the relative error uniform in
time and optimizes convergence (see Figure 5.4, right). Steady state sam-
pling strategies aim to approximate radiance (path contribution). Since more
radiant samples happen at earlier times (due to light attenuation), these sam-
pling techniques skew the number of samples towards earlier times. As a
consequence, there is a increase of error along time (see Figures 5.8 and 5.10).
New sampling strategies are therefore needed for transient rendering.

Sampling strategies over scattering delays ∆ti have a negligible influence
over the total path duration tk (Figure 5.3). For surface rendering, scattering
delays are the only control that sampling strategies can have on the tempo-
ral distribution of samples, and there is therefore little control over the total
path duration. In participating media, however, sample points can be po-
tentially located anywhere along the path of light, providing direct control
also over the propagation times t(xi↔xi+1). In this section we develop new
sampling strategies for participating media that target a uniform sample
distribution in the time domain, by customizing:
• The pdf for each segment of the camera or light subpath (Section 5.6.1).
• The pdf for a shadow connection (connecting a vertex of the cam-

era path to a vertex of the light path) via an additional vertex (Sec-
tion 5.6.2).
• The pdf in the angular domain to obtain the direction towards the next

interaction (Section 5.6.3).
Each of these sampling strategies ensures a uniform distribution of samples
in time for each particular domain of the full path. Although this does not
statistically ensure uniformity for the whole path, in practice the resulting
distribution of total path duration tk samples in time is close to uniform
and therefore noise is reduced (the improvement over steady state strategies
is discussed in Section 5.7). Note that these strategies are also agnostic of
the properties of the media (except for the index of refraction), and can
therefore be used in arbitrary participating media. Additionally, they can
be combined with steady-state radiance sampling via multiple importance
sampling (MIS) [220].

5.6.1 Sampling scattering distance in eye/light subpaths

Each of the segments of a subpath in participating media often shares the
same steady-state sampling strategy, such as mean-free-path sampling, which
does not necessarily ensure a uniform distribution of temporal location of
vertices. We aim to find a pdf p(r) (where r is the scattering distance along
one of the subpath segments) so that the probability distribution p

(
∪∞

i=1ti
)

of temporal subpath vertex locations is uniform (see Figure 5.6, left). We
first define p

(
∪∞

i=1ti
)

based on the combined probability distribution p(ti)
(temporal location of vertex xi in the light subpath) for all subpath vertices:

p (∪∞
i=1ti) =

∞

∑
i=1

p(ti), (5.21)
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where p(ti) is recursively defined based on p(ti−1). Given that ti = t(xi↔
xi−1) + ti−1, as shown in Equation (5.14), we have

p(ti) =
∫ ti

0
p
(
t(xi−1↔xi)

)
p(ti−1)dti−1, (5.22)

p(t1) = p
(
t(x0↔x1)

)
, (5.23)

since the probability of the addition of two random variables is the con-
volution of their probability distributions. p (t(xi↔xi−1)) is the probability
distribution of the propagation time, which is related to the scattering dis-
tance pdf p(r) by a simple change of variable r = c

η t(xi−1↔ xi). Note that,
in this notation, we are assuming (as previously discussed) that scattering
delays ∆ti are negligible compared to propagation time. This definition is
analogous for the eye subpath.

We show in Section 5.C.1 that the exponential distribution p(r) = λe−λr

ensures that p
(
∪∞

i=1ti
)

follows a uniform distribution for any λ parame-
ter. Figure 5.7 (left) experimentally shows that this exponential distribution
leads to this uniform probability for the whole subpath, while a uniform pdf
leads to a non-uniform temporal sample distribution. In practice, λ modu-
lates the average number of segments of the subpath: for a path ending
at time te, the average number of segments with path duration tk ≤ te is
λ c

η te. Our results show that an average of three or four vertices per subpath
gives a good compromise between path length, efficiency and lack of correla-
tion. Note that mean-free-path sampling is also an exponential distribution
whose rate equals the extinction coefficient of the medium (λ = σt). Directly
using mean-free-path sampling is thus optimal for time sampling when σt
is close to the optimal λ.

subpath termination. Russian roulette is a common strategy in steady
state rendering algorithms. It probabilistically terminates subpaths at each
scattering interaction, reducing longer paths with a small radiance contri-
bution. In transient state, this unfortunately translates into fewer samples
as time advances, reducing the signal-to-noise ratio (SNR) at higher frames.
Instead, we simply terminate paths with a total duration greater than the
established time frame.

While the temporal locations of subpath vertices are uniform, there is still
little control over the spatial locations xi. These depend not only on scatter-
ing distances but also on scattering angles. As shadow rays are determinis-
tic and depend on such spatial locations, uniformity cannot be ensured. To
address this, we develop a new strategy that deals with such shadow con-
nections (Section 5.6.2) and an angular sampling strategy (Section 5.6.3) that
leads to an improved distribution in the temporal domain of the location-
dependent propagation delays.

5.6.2 Sampling line-to-point shadow connections

Shadow rays are deterministic segments connecting a vertex in the eye sub-
path to another vertex in the light subpath, so their duration cannot be
controlled. We introduce a new indirect shadow vertex whose position can
be stochastically set to ensure a uniform sample distribution along the du-
ration of the (extended) shadow connection. The geometry of this indirect
connection is similar to equiangular sampling [112, 187, 130] (see Figure 5.6,
middle).



5.6 time sampling in participating media 111

Given a vertex xi of a light subpath, a vertex xi+2 and a direction ω (im-
portance sampled from the scattering function) on an eye subpath, our tech-
nique connects the two vertices via an indirect bounce at an importance-
sampled location xi+1. If ri+1 and ri+2 are the distances from xi+1 to xi and
xi+2 respectively, we importance sample ri+2 to enforce a uniform propa-
gation time between the connected vertices {xi, xi+1, xi+2}. This connection
could also be done in reverse order (from xi+2 to xi).

Given l = xi − xi+2 and a connection time range (ta, tb) (in which we aim
to get uniformly distributed samples), the pdf is:

p(ri+2) =
η

c(tb−ta)

1+
ri+2 − (l ·ω)√

r2
i+2 − 2ri+2(l ·ω) + (l · l)

, (5.24)

which leads to the following inverse cumulative distribution function (cdf):

ri+2(ξ) =
(ξ(tb − ta) + ta − ti − ∆ti+1)

2 −
( η

c
)2

(l · l)
2 η

c (ξ(tb − ta) + ta − ti − ∆ti+1)− 2
( η

c
)2

(l ·ω)
. (5.25)

where ξ ∈ [0, 1) is a random number. Assuming a rendered temporal range
of (0, te), we set the shadow connection limits to ta = ti + t(xi ↔ xi+2)

and tb = te − ∆tk −
(

∑k−1
j=i+2 t(xj↔xj+1) + ∆tj

)
. The derivation of this pdf

can be found in Section 5.C.2. Figure 5.7 (middle) compares our line-to-
point sampling strategy with other common strategies in terms of sample
distribution along the temporal domain, leading to a uniform distribution
of samples. Note that we discard all paths with a total duration larger than
te (when tb < ta).

5.6.3 Angular sampling

Importance sampling the phase function generally leads again to a subop-
timal distribution of samples in time. We propose a new angular pdf p(θ)
to be applied at each interaction of the light subpath, which targets the
temporal distribution of samples assuming that the next vertex xi+1 casts a
deterministic shadow ray towards the sensor. Given the sensor vertex xk and
a sampled distance ri+1 between two consecutive vertices xi and xi+1 (see
Figure 5.6, right), this strategy ensures a uniform distribution of the total
propagation time in {xi, xi+1, xk}. The direction from xi to xi+1 is ω = (θ, φ)
(in spherical coordinates) where θ is the sampled angle and φ is uniformly
sampled in [0..2π). Note that the sampled angle θ is related to the direction
towards the sensor (l = xk − xi) and not to the incoming direction (which is
often the system of reference for phase function importance sampling). This
pdf is:

p(θ) =
ri+1 sin θ

2
√

r2
i+1 + |l|2 − 2ri+1|l| cos θ

, (5.26)

with the following inverse cdf:

θ(ξ) = arccos

(
|l| − 2r2

i+1ξ2 − 2ξri+1 (|l| − 1)
ri+1|l|

)
. (5.27)

Section 5.C.3 contains the full derivation. This pdf prioritizes segments
towards the target vertex xt, which helps in practice since backward direc-
tions often lead to paths that become too long for the rendered time frame.
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Figure 5.7: Histogram of the number of samples along the temporal dimension for
different sampling strategies. Left: Sample distribution for the whole
light subpath, according to the importance sampling of subpath seg-
ments. Middle: Importance sampling of a line-to-point shadow connec-
tion Right: Angular importance sampling. Notice how our developed
sampling strategies (exponential for segment sampling and the corre-
sponding time sampling strategies in the other two cases) lead to a uni-
form distribution of samples along the temporal domain on each case.
Both the line-to-point and the angular sampling are defined over a cer-
tain range.

Figure 5.7 (right) shows how our angular sampling strategy leads to a uni-
form distribution of samples in time, as opposed to other alternatives. The
shadow ray from vertex xi+1 to the sensor in xk (and to every vertex in
the eye subpath in bidirectional path tracing) is then cast by applying the
sampling technique described in Section 5.6.2. Alternatively, the shadow ray
could be cast from xi by applying MIS between this angular sampling and
line-to-point time sampling (Section 5.6.2). We also apply the same angular
sampling strategy for each interaction of the eye subpath, targeting the light
source.

5.7 results

Here we show and discuss our rendered scenes. For visualization we use
selected frames of the animations; for the complete animations, we refer the
reader to the supplementary video2.

In all the scenes light emission occurs at t = 0 with a delta pulse3. Un-
less otherwise stated, we use transient path tracing and kernel-based den-
sity estimation (Section 5.5) for sampling and reconstruction, respectively.
For the latter, we use a Perlin [175] smoothing kernel, following previous
work [66, 113], with forty nearest neighbors to determine the initial ker-
nel bandwidth. Unless noted otherwise, all results are shown in camera
time [224] (i.e. including the propagation time of the last segment).

2 http://giga.cps.unizar.es/~ajarabo/pubs/transientSIGA14/videos/Jarabo2014_main_

video.mp4
3 We could use a Gaussian pulse, although this would introduce a number of downsides: 1) an

ideal delta pulse does not introduce any additional temporal blur; 2) in reality, the scale of
physical Gaussian pulses is 2-3 orders of magnitude smaller than the shutter open interval, in
effect constituting a delta pulse; and 3) a delta pulse allows us to distinguish between effects
caused by the actual behavior of light and effects due to limitations of current hardware.

http://giga.cps.unizar.es/~ajarabo/pubs/transientSIGA14/videos/Jarabo2014_main_video.mp4
http://giga.cps.unizar.es/~ajarabo/pubs/transientSIGA14/videos/Jarabo2014_main_video.mp4
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Figure 5.8: Comparison of our three time sampling strategies combined, against the
standard techniques used in steady state, in the dragon scene account-
ing for multiple scattering (top). Each graph shows the time-resolved
radiance (bottom) at pixel (a), for three different scattering coefficients
σs = {0.2, 0.9, 1.5}, and absorption σa = 0.1. For 1K samples per pixel
and frame, our combined techniques (red) feature a similar quality as
standard steady state techniques with 128 times more samples (green),
while with the same number of samples, our techniques significantly out-
perform standard sampling (blue), especially in highly scattering media.
To emphasize the differences between sampling techniques, here we use
the histogram path reuse (see Section 5.5). Additional results for other
types of media can be found in Figure 5.9.

Figure 5.8 and Figure 5.9 compares transient rendering using our three
time-based sampling strategies (Section 5.6) against common radiance-based
steady-state sampling techniques (mean-free-path and phase-function sam-
pling, and deterministic shadow connection) for isotropic and anisotropic
media, respectively. Our approach distributes samples more uniformly in
time, which reduces variance along the whole animation, while significantly
lowering noise in later frames. We obtain similar quality to standard sam-
pling using two orders of magnitude less samples. These advantages are
even more explicit when using our line-to-point sampling strategy to ren-
der single scattering, as shown in Figure 5.10, where we compare against
equiangular sampling [130]. Figure 5.11 shows how the combination of our
kernel-based density estimation and our time sampling strategies produces
better results than using either technique in isolation.

Figures 5.1, 5.13 and 5.12 demonstrate the macroscopic delays due to
traversing media with different orders of refraction, which leads to a tempo-
ral delay of the wavefront, especially visible in the caustics. In these exam-
ples, we use a transient version of the photon beams algorithm [106] to obtain
the radiance samples due to scattering in the media. For the single image
visualization of Figure 5.1 we use the peak-time visualization proposed by
Velten et al. [224]. Another example of macroscopic time delay can be ob-
served in the mirror ball in Figure 5.12 (bottom), where the refracted image
shows a delay with respect to the actual events in the world, due to the
additional path length introduced by reflection. In both scenes of this figure
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Figure 5.9: Comparison of our three time sampling strategies combined, against the
standard techniques used in steady state, in the dragon scene of Figure 5.8,
for three different scattering coefficients σs = {0.2, 0.9, 1.5}, and absorp-
tion σa = 0.1, for anisotropic media with g = 0.8 and g = −.08. For 1K
samples per pixel and frame, our combined techniques (red) feature a
similar quality as standard steady state techniques with 1000 times more
samples (green), while with the same number of samples, our techniques
significantly outperform standard sampling (blue), especially in highly
scattering media. This shows that, as the directionality of the scattering
in the media increases, our technique results in higher performance than
standard techniques (note that in Figure 5.8 the results with similar qual-
ity for standard sampling are computed for 128K samples, while in this
case we compare against 1M samples). As in Figure 5.8, we use the his-
togram path reuse for reconstruction (see Section 5.5).

we can also see the different orders of scattering in the surfaces, which gets
diffuser as time advances.

The temporal delay due to refraction becomes particularly interesting sim-
ulating real-world glass (Figure 5.14): This scene, computed using the tran-
sient progressive photon mapping described in Section 5.5 that allows us to
robustly render complex paths such as caustics, shows how as light traverses
the glass, its wavelength-dependent index of refraction causes chromatic dis-
persion even when light incomes perpendicular to the surface normal. This
could be used to obtain the wavelength-dependent index of refraction of dif-
ferent crystals, or the power spectra of a light source by using a perpendicu-
lar incident beam. Moreover, this refraction delay is different between ordi-
nary and extraordinary rays in birefringent crystals [232, 134] (Figure 5.15).
Figure 5.16 shows an example of the effect of the delay produced at scatter-
ing events ρs(xi−1→ xi→ xi+1, ∆ti), for the particular case of fluorescence.
The object’s material is chlorophyll, which re-emits energy at 680 nm after
absorption [64].

Finally, Figure 5.17 compares our simulation against a real scene captured
with the femtophotography technique of Velten et al. [224]. We can see that
our simulation faithfully reproduces the different orders of scattering events
occurring during light propagation.
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Figure 5.10: Comparison of different sampling techniques for computing single scat-
tering, in a scene consisting of a dragon illuminated by point light
source within participating media (left). As opposed to simple mean-
free-path sampling and the state-of-the-art equiangular sampling [130], that
distributes samples based on radiance, our point-to-line sampling (Sec-
tion 5.6.2) distributes samples so that the are uniformly distributed in
time (bottom, right). This allows performing better in terms of relative
error (bottom, left) when rendering time-resolved radiance, avoiding the
radiance signal degradation at longer times. Here we use the histogram
(Section 5.5) to emphasize the performance of the algorithms.

5.8 discussion

In summary, we have extended the classical path space integral to include
the temporal domain, and shown how the high frequency nature of tran-
sient light transport leads to severe sampling problems. We have proposed
novel sampling strategies and density estimation techniques, which allow
us to distribute samples uniformly in time, resulting in reduced variance
and a constant distribution of bias. Sections 5.A, 5.B and 5.C contain a rigor-
ous mathematical analysis of all our technical contributions. Last, we have
presented simulations of interesting transient light transport effects using
modified versions of a representative cross section of common rendering
algorithms.

Apart from educational benefits, our work could be used to help design
prototypes of novel ultra-fast imaging systems, or as a forward model for
inverse problems such as recovering hidden geometry or material estima-
tion. Our temporal progressive density estimation (Section 5.5) could also
be used to accelerate radiance reconstruction in time-resolved imaging tech-
niques, reducing the need for taking repeated measurements to improve the
SNR. Moreover, synthetic ground truth data may become a very valuable
tool for designing and benchmarking future ultra-fast imaging devices.

Our time-resolved simulations can help analyze the complex phenomena
involved in light transport, and gain new insights. For instance, Figure 5.18

shows how during the early stages of light propagation, the first orders of
scattering determine the shape of the light distribution (a spherical wave-



116 a framework for transient rendering

d)c)b)a)

Figure 5.11: Selected frame of the dragon scene with σs = 0.2, rendered with a) stan-
dard sampling and histogram, b) our time sampling and histogram, c)
standard sampling and our kernel-based density estimation, and d) time
sampling and kernel-based density estimation. We can see how using
our techniques combined lead to frames with significantly lower noise.

front), but over time this shape becomes a Gaussian of increasing variance.
This observation is consistent with previous work [253], where it is shown
that light in a medium exhibits diffusion after traveling about ten times the
mean-free-path, and might explain some of the errors near the light source
reported in the quantized diffusion model [29]. This effect is more accentu-
ated in the presence of anisotropic media, where the wavefront behavior is
even more dominant.

future work . There are many compelling avenues of future work: First,
it would be interesting to extend a unified path sampling framework [129]
to transient state. We have shown how the photon beams algorithm [107]
can be used in transient rendering, combined with our temporal density es-
timation; however, a spatio-temporal progressive photon beams framework
would be needed to achieve optimal convergence in transient state. Addi-
tionally, by building a joint sampling strategy in both angle and distance,
as in recent advanced steady state sampling techniques [166, 50], we could
leverage the benefits of both to ensure better uniformity in the temporal dis-
tribution of samples. Furthermore, the three proposed time sampling strate-
gies are limited to participating media; extending this to surface transport
results in a much narrower sampling space. Metropolis Light Transport tech-
niques [221] represent promising candidates in this regard, where temporal
mutation strategies would be needed.

We hope that our research will inspire future work on our understanding
of light transport, the design of ultra-fast imaging and the development of
novel rendering techniques. For instance, several geometric approaches to
acoustic rendering are also based on ray tracing: a more extensive analysis
of similarities between acoustic and transient rendering might prove fruitful
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Figure 5.12: Light propagation in the absence of participating media, in the two
scenes depicted in the leftmost column. In the bunny scene (top) we can
see the curved shape of the indirect wavefronts, and how the irregular
shape of the bunny model makes several different indirect wavefronts
(a). In contrast the spheres scene we can observe the different delays due
to longer optical paths in the mirror (c) and glass (e) spheres, and the
primary (d) and secondary caustics (f). At longer times, when light has
been reflected several times, the directionality is lost, and light is funda-
mentally diffuse (b).

to both domains. Our code and datasets (scenes and movies) are publicly
available at the project page4.

appendices

5.a progressive temporal density estimation

In this section we analyze the behavior and convergence of the error of the
kernel-based temporal density estimation described in Section 5.5. We first
analyze the variance and expected error introduced by using the density
estimation kernel with a fixed bandwidth (Section 5.A.1). Based on these
results, we then analyze the error and convergence rate of the progressive
density estimation scheme, which allows to obtain a consistent estimation
in the limit (Section 5.A.2). Finally, we derive the parameters yielding op-
timal convergence with respect to the AMSE for the progressive approach
(Section 5.A.3).

5.a.1 Variance and expected error of density estimation

Following the recent probabilistic framework for the progressive photon
mapping algorithm [121], here we analyze the variance and expected value
of the error introduced by the temporal kernel-based density estimate at
each iteration. This error ε is defined as the difference between the esti-
mated pixel value 〈I〉 and the actual value I, at sensor point x and time t.
Using the temporal kernel KT , with bandwidth T , we have:

ε =
1
n

n

∑
j=1

KT (‖t− t−j ‖) Îj − I. (5.28)

4 http://giga.cps.unizar.es/~ajarabo/pubs/transientSIGA14/

http://giga.cps.unizar.es/~ajarabo/pubs/transientSIGA14/


118 a framework for transient rendering
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Figure 5.13: Selected frames from animations of transient light propagation in two
scenes with scattering media (the steady state rendering for both is in
the leftmost column) computed using transient photon beams. In both
scenes we can see the delay produced in the caustics by the higher index-
of-refraction of the crystal media (g,h), and how the different geometries
generate different caustic patterns (g,i). We can also observe how the
caustics are scattered and suffer extinction as they advance through the
medium.

Glass

Diffuse Floor

Diffuse Wall

Diffuse reflection 
710 ps50 ps

280 ps 420 ps 560 ps

140 ps

Figure 5.14: An orthogonal view of a scene with a white light pulse traversing per-
pendicularly a cube made of glass with index of refraction that varies
linearly with the wavelength, in the range of [1.5,1.65], and hitting a wall
after traversing the cube, transforming the interaction point into a vir-
tual light source which illuminates a ground floor (b). Due to different
speeds, the different wavelengths of the pulse are decomposed along
the trajectory, even after the interaction. White light, as would be seen
in steady state (a), therefore becomes a rainbow in the temporal domain.
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Figure 5.15: Light propagation in a piece of glass placed in front of a display with
continuous emission in time; the left half of the image an isotropic crys-
tal (with transmission governed by Snell’s law) and the right half an
uniaxial birefringent crystal. In both cases, the ordinary index of refrac-
tion is 1.5, and the extraordinary ηe in the birefringent is 1.65. First, di-
rect light from the display arrives the camera (a); then, the refracted
image begins to form (b). The extraordinary image appears instants
later than the ordinary (c), due to higher index of refraction. Also note
that ordinary refraction in the uniaxial crystal has lower energy than in
the isotropic. Finally, internal reflections with longer optical paths are
formed (d,e).

a b c

Figure 5.16: Fluorescent bunny illuminated by a pulse of light from a point light
source. Light reaches the bunny, which reflects light centered in the
green-ish spectra (b), and the rest is absorbed. After 10 ns, part of the
absorbed light gets re-emitted at lower quantum energy, centered at 680

nm (c). Because of this re-emission, the hue of the bunny in steady state
(a) is shifted towards yellow.
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Figure 5.17: Comparison between the Cube scene from [224] and our rendered sim-
ulation of the same scene. Visible differences are due to approximate
materials and camera properties.
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Figure 5.18: Time-resolved light transport from a point light source placed in the
middle of an isotropic (left) and forward (right) scattering medium, emit-
ting at time t = 0. Both media have a mean free path of 0.244 mm
(σt = 4.1 mm−1). In the initial phase the light distribution is dominated
by the wavefront shape of the low-order scattering events. In isotropic
scattering, light distribution becomes Gaussian after traveling ten times
the mean free path. In forward scattering, this distance is increased.

variance In order to compute the variance of the error Var[ε] we need
to make a set of assumptions: First, we assume that the samples’ probability
density is constant within the kernel KT in the temporal domain. We denote
this probability as pT (t). We also assume that the samples’ time tj and pixel
measurement Îj are independent samples of the random variables T and Î,
respectively, where T has probability density pT (t). Finally, we assume that
the random variables T and Î are mutually independent. We thus model
Var[ε] as:

Var[ε] = Var[
1
n

n

∑
j=1

KT (‖t− T‖) Î − I]

=
1
n
(Var[KT ] + E[KT ]2)

(Var[ Î] + E[ Î]2)− 1
M

E[KT ]2E[ Î]2. (5.29)

Here E[KT ] = pT (t), while the variance introduced by the temporal ker-
nel Var[KT ] has the form:

Var[KT ] =
∫

ΩT
KT (‖t− T‖)2 pT (T)dT − pT (t)2, (5.30)

where ΩT is the area where KT is compactly supported, with constant den-
sity of samples pT (t). We express KT as a canonical kernel kT with unit
integral such that KT (ξ) = kT (ξ/T )T −1, and perform the change of vari-
able ψ = (ξ − t)/T and dξ = T dψ:∫

ΩT
KT (‖ξ − t‖)2 dξ =

∫
R

1
T kT (ψ)2 dψ, (5.31)

which substituted in (5.30) allows us to define Var[KT ] as:

Var[KT ] =
pT (t)
T

∫
R

kT (ψ)2 dψ− pT (t)2. (5.32)
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These transformations allow us to express (5.29) as:

Var[ε] =
1
M

(Var[ Î] + E[ Î]2)

(
pT (t)
T

∫
R

kT (ψ)2 dψ− pT (t)2 + pT (t)2)

− 1
M

pT (t)2E[ Î]2

=
1
M

(Var[ Î] + E[ Î]2)(
pT (t)
T CT ) (5.33)

where CT is a kernel-dependent constant. The last term can be neglected
by assuming that the kernels cover small areas in their respective domains,
which effectively means that CT � pT (t). Equation (5.33) shows that in
transient density estimation, the variance Var[ε] is inversely proportional to
T .

bias Bias at each iteration j is defined as the expected value of the error
E[εj]:

E[εj] = E[
1
M

M

∑
i=1

KT (‖t− T‖) Î − I]

= E[KT (‖t− T‖)]E[ Î]− I. (5.34)

As with the variance, we need to assume that the samples time and con-
tribution can be interpreted as independent identically distributed random
samples from the random variables T (with probability density pT (t)) and
Î respectively.

The expected value of KT (‖t− T‖) is described as:

E[KT ] =
∫

ΩT
KT (‖t− T‖)pT (T)dT

=
∫

R

1
T kT (‖t− T‖/T )pT (T)dT. (5.35)

The second form of the equation is obtained by transforming KT into a
unit canonical form of the kernel kT such that KT (ξ) = kT (ξ/T )1/T . As-
suming a locally uniform distribution pT (ξ) (similar to modeling Var[ε]) is
too restrictive to model the expected error accurately, since it leads to zero
bias in the limit. Therefore, following previous work [121], we use a Taylor
expansion of pT (ξ):

pT (ξ) = pT (t) + (ξ − t)5pT (t) + O(‖ξ − t‖2). (5.36)

We plug this expression into (5.35), and apply the changes of variable ψ =
(T − t)/T and dT = T dψ, to get:

E[KT ] =
1
T

∫
R

kT (ψ)(pT (t) + T ψ5pT (t) + O(‖T ψ‖2))T dψ

= pT (t)
∫

R
kT (ψ)dψ + T 5pT (t)

∫
R

kT (ψ)ψ dψ

+T 2
∫

R
kT (ψ)O(‖ψ‖2)dψ

≈ pT (t) + T 2
∫

R
kT (ψ)O(‖ψ‖2)dψ

= pT (t) + T 2C ii
T . (5.37)
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This means that bias due to radiance estimation in the temporal domain is
inversely proportional to T 2 and a constant C ii

T dependent on the high-order
derivatives of the probability densities. We apply the last approximation by
observing that in most common scenarios

∫
R

kT (ψ)ψ dψ ≈ 0. Given this
approximation, and using I = pT (t)E[ Î], we can formulate the expected
value E[KT ] as:

E[εj] ≈ (pT (t) + T 2C ii
T )E[ Î]− pT (t)E[ Î]

= E[ Î]T 2C ii
T . (5.38)

5.a.2 Variance and expected error of the pixel estimate

Here we derive the variance and expected error of the pixel estimate 〈In〉 af-
ter the n-th pass of the progressive algorithm, as modeled in Equation (5.17).
The sampled variable is the time instant tj where the estimation is being
computed. As previously, we assume that they are independent identically
distributed random samples.

variance Assuming the random variable εj, we model the variance of
the estimator Var[〈In〉] as [121]:

Var[〈In〉] =
1
n

Var[I] +
1
n2

n

∑
j=1

Var[εj]. (5.39)

The first term is the usual Monte Carlo estimator, which vanishes with
O(n−1). The other three terms, however, are functions of the error εj. Var[εn]
is the variance of the average error, modeled as:

Var[εn] =
n

∑
j=1

1
n

Var[εj] =
1
n2

n

∑
j=1

Var[εj]. (5.40)

In oder to achieve consistency, we allow the variance of the expected error
to increase at each iteration by a factor (5.10):

Var[εj+1]

Var[εj]
=

(
j + 1
j + α

)
. (5.41)

We can model Var[εn] as a function of the variance at the first iteration
Var[ε1] as:

Var[εn] =
Var[ε1]

n2 (1 +
n

∑
j=2

jαB(α, j)), (5.42)

where B(x, y) = Γ(x)Γ(y)
Γ(x+y) is the Beta function, and Γ(n) = (n − 1)! is the

Gamma function. Using the approximation proposed by Kaplanyan and
Dachsbacher [113], we get:

Var[εn] ≈
Var[ε1]

(2− α)nα
= O(n−α). (5.43)

Finally, using this formulation of the variance of the average error Var[εn]
and asypmtotic simplifications, we can formulate Var[〈In〉] (5.39) as:

Var[〈In〉] ≈
1
n

Var[I] + Var[εn]

≈ 1
n

Var[I] +
Var[ε1]

(2− α)nα

= O(n−1) + O(n−α) = O(n−α). (5.44)
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expected error The expected value of of the estimator E[〈In〉] is mod-
eled as:

E[〈In〉] = E[
1
n

n

∑
j=1

(Ij + εj)]

=
1
n

n

∑
j=1

E[Ij] +
1
n

n

∑
j=1

E[εj]

= I + E[εn] (5.45)

where E[εn] is the bias of the estimator after n steps:

E[εn] =
1
n

n

∑
j=1

E[εj], (5.46)

and E[εj] is the expected value of the error at each pass, described in Equa-
tion (5.38).

Following Equation (5.10) we compute Tj as a function of its initial value
T1 as:

Tj = T1

j−1

∏
k=1

(
k + α

k + 1

)
= T1

(
(α + 1)j−1

Γ(j− 1)

)
= T1

(
Γ(α + j)

Γ(α + 1)Γ(j + 1)

)
= T1

(
Γ(α + j)

j · α · Γ(α)Γ(j)

)
= T1(j · α · B(α, j))−1 (5.47)

where Γ(n) is the Gamma function, B(x, y) is the Beta function, and (x)n is
the Pochhammer symbol (x)n = x(x− 1)(x− 2)..(x− n + 1).

Using (5.47) we can express E[εj] (5.38) as a function of the initial kernel
bandwidths:

E[εj] = T 2
1 (j · α · B(α, j))−2C ii

T . (5.48)

As noted by Knaus and Zwicker [121], we can use Stirling’s formula to
get the asymptotic approximation of Tj, which allows us to express E[εj] in
asymptotic notation:

E[εj] = C ii
T T 2

1 Θ(j1−α)−2. (5.49)

Finally, we use ∑n
j=1 Θ(jx) = nO(nx) to plug Equation (5.49) into Equa-

tion (5.46) to get the asymptotic behavior of E[εn]:

E[εn] =
1
n
C ii
T T 2

1 nO(n1−α)−2

= O(n1−α)−2. (5.50)

Inserting this last equality into Equation (5.45) allows us to compute the
asymptotic form of E[〈In〉] as:

E[〈In〉] = O(n1−α)−2. (5.51)
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5.a.3 Minimizing the Asymptotic Mean Squared Error

As shown above, the convergence rates of both the variance Var[〈In〉] and
the expected error E[〈In〉] depend on the value assigned to the parameter α.
Ideally, we want to obtain the parameter that allows reducing faster the total
error. We measure the total error using the asymptotic mean squared error
(AMSE), defined in Equation (5.18); using the obtained values for variance
Var[〈In〉] and bias E[〈In〉], it becomes:

AMSE(〈In〉) = O(n−α) + O(n1−α)−4. (5.52)

By finding the derivate of Equation (5.52) and equating to zero we get the
optimal parameter α = 4/5, which leads to the optimal convergence rate of
the AMSE of our transient density estimate:

AMSE(〈In〉) = O(n−
4
5 ) + O(n1− 4

5 )−4 = O(n−
4
5 ). (5.53)

5.b transient progressive photon mapping

Here we describe our transient formulation of progressive photon map-
ping (PPM) [68, 67]. We first give an overview of the algorithm, describing
the spatio-temporal smoothing kernel used, the progressive approach fol-
lowed to vanish error in the limit, and the behaviour of the algorithm (Sec-
tion 5.B.1). Then, we analyze the variance and expected error introduced by
the spatio-temporal density estimation for a given iteration j (Section 5.B.2),
and use these results to derive the asymptotic convergence rate after n it-
erations (Section 5.B.3). Finally, we detail the derivation of the optimal pa-
rameters for higher asymptotic convergence with respect to the AMSE (Sec-
tion 5.B.4).

5.b.1 Algorithm

To include the temporal domain in a photon mapping framework, we need
to take into account the time delays described in Equation (5.14), while
adding a temporal smoothing kernel KT in the density estimation, simi-
lar to Cammarano and Jensen [16]. This results in an approximation of the
radiance L̂o(x, t) as:

L̂o(x, t) =
1
M

M

∑
i=1

K(‖x− xi‖, ‖t− t−i ‖)γi, (5.54)

where K(x, t) = KR(x) · KT (t) and KR is the spatial smoothing kernels with
bandwidth R. We decompose K into KR and KT since they operate in sepa-
rate domains, which might result into different kernel types; this is a typical
approach in multivariate density estimation [196].

In our transient framework, Equation (5.7) now becomes:

〈In〉 =
1
n

n

∑
j=1

Ψj L̂o(xj, tj), (5.55)

where Ψj = T(xw ,j)/p(xw ,j)We(xk,j→ xk−1,j) is the importance of the mea-
surement, which is the contribution of the eye subpath xw ,j. Unfortunately,
although variance is reduced, using this estimator introduces bias in the fi-
nal solution due to the expected error εj in each iteration, which depends



5.B transient progressive photon mapping 125

on the size of the kernel estimation (as seen in Section 5.3). This means that
the estimate of the pixel 〈In〉 is the sum of the actual value of the pixel I and
the expected error E[εn]:

E[〈In〉] = I + E[εn] = ΨjLo +
1
n

n

∑
j=1

ΨjE[εj]. (5.56)

Section 5.B.2 derives the expression for the expected error E[εj] for the case
of transient rendering.

eliminating bias . To eliminate bias, a transient progressive approach
can be used. As discussed in Section 5.3, progressive photon mapping uses
a number of photon tracing passes, each providing an increasingly accurate
solution. It can be shown (see Section 5.B.2 for the full derivation) that the
variance of the density estimation in transient PPM is inversely proportional
to R2T :

Var[εj+1]

Var[εj]
=

R2
j Tj

R2
j+1Tj+1

=
j + 1
j + α

. (5.57)

Equation (5.57) shows that transient PPM involves progressively reducing
two parameters, R and T , referring to the spatial and temporal domains. We
thus split the variance scaling factor (j + 1)/(j + α) into two, one for each
kernel bandwidth. This yields:

Tj+1

Tj
=

(
j + α

j + 1

)βT
,

R2
j+1

R2
j

=

(
j + α

j + 1

)βR

(5.58)

where βT and βR are scalars in the range [0, 1] which control how much
each term is to be scaled separately, with βT + βR = 1.

error analysis . For our analysis on the error of the estimate, we use
the AMSE metric (5.18) again. The progressive approach described above
ensures that error tends to zero when n→∞. However, the two terms of the
AMSE metric have different convergence rates, dependent on the parameters
α, βT and βR. We model the variance of the estimate Var[〈In〉] as [121]:

Var[〈In〉] =
1
n

Var[ΨLo] +
1
n2

n

∑
j=1

Var[Ψεj]. (5.59)

The first term is a Monte Carlo estimator, with known convergence rate
O(n−1), while the second is the variance of the average error Var[εn], which
converges with O(n−α). The detailed derivation of this result appears in
Appendix 5.B.3:

Var[〈In〉] = O(n−1) + O(n−α) = O(n−α). (5.60)

Therefore, variance for transient PPM converges at the same rate as standard
PPM, which for α = 1 converges at the same rate as a Monte Carlo estimator.
The parameters βT and βR have no influence on the convergence rate.

On the other hand, the expected average error in transient PPM E[εn] is
(see Section 5.B.3):

E[〈In〉] = E[
1
n

n

∑
j=1

Ψj(Lo,j + εj)] = I + E[
1
n

n

∑
j=1

Ψjεj]. (5.61)
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while its convergence rate is:

E[〈In〉] = O(n1−α)−2βT + O(n1−α)βT −1 + O(n1−α)−(1+βT ). (5.62)

In this case, the choice of βT (and in consequence βR) has a crucial effect
on the asymptotic bias reduction. By observing the behavior in the limit,
we find that the optimal parameter is βT = 1/3, which means that E[〈In〉]
converges with O(n−

2(1−α)
3 ).

Given these convergence rates, and using the AMSE metric given by Equa-
tion (5.18), we can now obtain the optimal parameter α for progressive tran-
sient radiance estimation, α = 4/7 (see Section 5.B.4). This means that the
AMSE vanishes asymptotically with order AMSE = O(n−

4
7 ). This shows

that including the temporal domain leads to a slower convergence rate than
standard PPM (O(n−2/3) [113]); since the additional temporal kernel effec-
tively increases bias, reducing it requires increasing the variance more at
each step. However, note that in order to use standard PPM we would need
to combine it with e.g. the histogram; this leads to a much slower conver-
gence of standard PPM in transient rendering.

5.b.2 Variance and Expected Error of Transient Radiance Estimation

Following again the recent probabilistic framework for the progressive pho-
ton mapping algorithm [121], we first analyze the variance and expected
value of the error introduced by the radiance estimate at each iteration. This
error ε is defined as the difference between the estimated radiance L̂o and
the actual radiance Lo, at point x and time t. Using the spatial and temporal
kernels KR and KT , with bandwidths R and T respectively, we have:

ε(x, R, t, T ) = 1
M

M

∑
i=1

KR(‖x− xi‖)KT (‖t− t−i ‖)γi − Lo(x, t). (5.63)

variance In order to compute the variance of the error Var[ε] we need
to make a set of assumptions: First, we assume that the photons’ probability
density is constant within the kernel KR in the spatial domain [121], and
within KT in the temporal domain. We denote these probabilities as pR(x)
and pT (t) respectively. We also assume that the photons’ position xi, time
ti and energy contribution γi are independent samples of the random vari-
ables X, T and γ, respectively, where X and T have probability densities
pR(x) and pT (t). Finally, we assume that the random variables X, T and γ
are mutually independent. We thus model Var[ε] as:

Var[ε] = Var[
1
M

M

∑
i=1

KR(‖x− X‖)KT (‖t− T‖)γ− Lo(x, t)]

=
1
M

(Var[KR] + E[KR]
2)(Var[KT ] + E[KT ]2)

(Var[γ] + E[γ]2)− 1
M

E[KR]
2E[KT ]2E[γ]2. (5.64)

Here E[KR] = pR(x) and E[KT ] = pT (t), the variance introduced by the
temporal kernel Var[KT ] is modeled by Equation (5.30), and Var[KR] is de-
rived analogously to Equation (5.30) (see Section 5.A.1) as:

Var[KR] =
pR(x)

R2

∫
R2

kR(ψ)
2 dψ− pR(x)2. (5.65)
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These transformations allow us to express (5.64) as:

Var[ε] =
1
M

(Var[γ] + E[γ]2)

(
pR(x)

R2

∫
R2

kR(ψ)
2 dψ− pR(x)2 + pR(x)2)

(
pT (t)
T

∫
R

kT (ψ)2 dψ− pT (t)2 + pT (t)2)

− 1
M

pR(x)2 pT (t)2E[γ]2

≈ 1
M

(Var[γ] + E[γ]2)(
pR(x)

R2 CR)(
pT (t)
T CT ) (5.66)

where CR and CT are kernel-dependent constants. The last term can be ne-
glected by assuming that the kernels cover small areas in their respective
domains, which effectively means that CR � pR(x) and CT � pT (t). Equa-
tion (5.66) shows that for transient density estimation, the variance Var[ε] is
inversely proportional to R2T . We show in Section 5.B.3 how this fact affects
the shrinking formulation for progressive estimation.

bias Bias at each iteration j is defined as the expected value of the error
E[εj]:

E[εj] = E[
1
M

M

∑
i=1

KR(‖x− X‖)KT (‖t− T‖)γ− Lo(x, t)]

= E[KR(‖x− X‖)]E[KT (‖t− T‖)]E[γ]− Lo(x, t). (5.67)

As with the variance, we need to assume that the photons’ position, time
and energy contribution can be interpreted as independent identically dis-
tributed random samples from the random variables X (with probability
density pR(x)), T (with probability density pR(x)) and γ respectively.

The expected value of KT (‖t− T‖) is described in Section 5.A.1, and mod-
eled using Equation (5.37), while the expected value of the spatial kernel
E[KR] is derived in [121] as:

E[KR] ≈ pR(x) + R2
∫

R2
kR(ψ)O(‖ψ‖2)dψ = pR(x) + R2C ii

R. (5.68)

Using Equations (5.37) and (5.68), and Lo(x, t) = pR(x)pT (t)E[γ] we get the
expected value of the error E[εj] for iteration j:

E[εj] ≈ (pR(x) + R2C ii
R)(pT (t) + T 2C ii

T )E[γ]

−pR(x)pT (t)E[γ] (5.69)

= E[γ](pR(x)T 2C ii
T + pT (t)R2C ii

R + T 2C ii
T R2C ii

R).

5.b.3 Variance and expected error of the pixel estimate

Here we derive the variance and expected error of the pixel estimate 〈In〉 af-
ter n steps of the progressive algorithm, as modeled in Equation (5.56). The
samples are the hit position xj and time instant tj where the radiance estima-
tion is being computed. As previously, we assume that they are independent
identically distributed random samples.
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variance Assuming that the random variables Ψ and εj are indepen-
dent, we model the variance of the estimator Var[〈In〉] as [121]:

Var[〈In〉] =
1
n

Var[ΨLo] +
1
n2

n

∑
j=1

Var[Ψεj]

=
1
n

Var[ΨLo] + Var[Ψ]
1
n2

n

∑
j=1

Var[εj] (5.70)

+E[Ψ]2
1
n2

n

∑
j=1

Var[εj] + Var[Ψ]
1
n2

n

∑
j=1

E[εj]
2.

The first term is the usual Monte Carlo estimator, which vanishes with
O(n−1). The other three terms, however, are functions of the error εj. Var[εn]
is the variance of the average error, modeled as:

Var[εn] =
n

∑
j=1

1
n

Var[εj] =
1
n2

n

∑
j=1

Var[εj]. (5.71)

As described before, we allow the variance of the expected error to increase
at each iteration by a factor:

Var[εj+1]

Var[εj]
=

(
j + 1
j + α

)βT
·
(

j + 1
j + α

)βR

=
j + 1
j + α

. (5.72)

Following [121], we can model Var[εn] as a function of the variance at the
first iteration Var[ε1] as:

Var[εn] =
Var[ε1]

n2 (1 +
n

∑
j=2

jαB(α, j)), (5.73)

where B(x, y) is the Beta function. This value can be approximated as [113]:

Var[εn] ≈
Var[ε1]

(2− α)nα
= O(n−α). (5.74)

Finally, using this formulation of the variance of the average error Var[εn]
and asypmtotic simplifications, we can formulate Var[〈In〉] (5.71) as:

Var[〈In〉] ≈
1
n

Var[ΨLo] + E[Ψ]2Var[εn]

≈ 1
n

Var[ΨLo] +
Var[ε1]

(2− α)nα

= O(n−1) + O(n−α) = O(n−α). (5.75)

expected error The expected value of of the estimator E[〈In〉] is mod-
eled as:

E[〈In〉] = E[
1
n

n

∑
j=1

Ψj(Lo,j + εj)]

=
1
n

n

∑
j=1

E[ΨjLo,j] +
1
n

n

∑
j=1

E[Ψj]E[εj]

= In + E[Ψ]E[εn] (5.76)

where E[εn] is the bias of the estimator after n iterations (5.46), and E[εj] is
the expected value of the error at each pass (5.70).
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Following Equation (5.58) and (5.47) we compute Tj as a function of its
initial value T1 as:

Tj = T1(jαB(α, j))−βT (5.77)

where B(x, y) is the Beta function. Analogously, we compute R2
j as a function

of its initial value R2
1:

R2
j = R2

1(jαB(α, j))−βR . (5.78)

Using (5.77) and (5.78) we can express E[εj] as a function of the initial
kernel bandwidths:

E[εj] = E[γ]pR(x)T 2
1 (jαB(α, j))−2βT C ii

T

+E[γ]pT (t)R2
1(jαB(α, j))−βRC ii

R (5.79)

+E[γ]T 2
1 R2

1(jαB(α, j))−(2βT +βR)C ii
T C ii

R,

which using Stirling’s formula to approximate T j and Rj allows us to ex-
press E[εj] as:

E[εj] = E[γ]pR(x)C ii
T T 2

1 Θ(j1−α)−2βT

+E[γ]pT (t)C ii
RR2

1Θ(j1−α)−βR

+E[γ]C ii
T C ii

RT 2
1 R2

1Θ(j1−α)−(2βT +βR). (5.80)

Finally, we use ∑n
j=1 Θ(jx) = nO(nx) to plug Equation (5.80) into Equa-

tion (5.46) to get the asymptotic behavior of E[εn] in transient progressive
photon mapping:

E[εn] =
E[γ]

n
pR(x)C ii

T T 2
1 nO(n1−α)−2βT

+
E[γ]

n
pT (t)C ii

RR2
1nO(n1−α)−βR

+
E[γ]

n
C ii
T C ii

RT 2
1 R2

1nO(n1−α)−(2βT +βR) (5.81)

= O(n1−α)−2βT + O(n1−α)−βR + O(n1−α)−(2βT +βR),

which, by using the equality βR = 1− βT , becomes:

E[εn] = O(n1−α)−2βT + O(n1−α)βT −1 + O(n1−α)−(1+βT ). (5.82)

Inserting this last equality into Equation (5.76) allows us to compute the
asymptotic form of E[〈In〉] as:

E[〈In〉] = O(n1−α)−2βT + O(n1−α)βT −1 + O(n1−α)−(1+βT ). (5.83)

where the error vanishes in the limit since we impose that E[εj] > E[εj]. This
consistency has a convergence rate dependent on both α (the common PPM
parameter), and βT , which balances the shrinking rate of the spatial and
temporal kernels.

5.b.4 Minimizing the Mean Squared Error

Here we obtain the parameters α and βT that allows optimal consistency in
terms of ASME (5.18) in transient progressive photon mapping. Using the
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expressions obtained for the variance Var[〈In〉] and expected error Var[〈In〉],
we model AMSE as:

AMSE(〈In〉) = O(n−α) + (O(n1−α)−2βT

+O(n1−α)βT −1 + O(n1−α)−(1+βT ))2. (5.84)

which is a function of the parameters α and βT . Given that the variance
is independent of βT , we first obtain the optimal value for this parameter
that yields the highest convergence rate of the bias E[εn]. After differenci-
ating Equation (5.82), applying asymptotic simplifications and equating to
zero, we obtain the optimal value βT = 1/3. By plugging this value in
Equation (5.82), we can express the AMSE as:

AMSE(〈In〉) = O(n−α) + O(n−
4
3 (1−α)). (5.85)

Differentiating Equation (5.85) and equating to zero we get the optimal
parameterα = 4/7, which results in the optimal convergence rate of the
AMSE of our transient progressive photon mapping formulation:

AMSE(〈In〉) = O(n−
4
7 ) + O(n−

4
3 (1−

4
7 )) = O(n−

4
7 ). (5.86)

5.c derivations for time sampling

Here we derive the different pdf shown in Section 5.6 and illustrate how
each of those pdf lead to a uniform distribution of path samples along the
temporal domain.

5.c.1 Sampling scattering distance in eye/light subpaths

This section describes the derivation for the pdf chosen in Section 5.6.1 of
the paper. We aim to find a pdf p(r) for a single segment of the light subpath,
such as the distribution of subpath vertices along the temporal domain is
uniform. We define p

(
∪∞

i=1ti
)

based on the per-vertex temporal location
probability distribution p(ti) for all subpath vertices:

p (∪∞
i=1ti) =

∞

∑
i=1

p(ti), (5.87)

where p(ti) is defined based as the addition on ti = t(xi↔xi−1)+ ti−1 (prop-
agation time plus temporal location of the previous sample). The probability
distribution of an addition is the convolution of the probability distribution
of the addends, so therefore

p(ti) =
∫ ti

0
p
(
t(xi−1↔xi)

)
p(ti−1)dti−1, (5.88)

p(t1) = p
(
t(x0↔x1)

)
. (5.89)

The probability distribution of the propagation time p (t(xi↔xi−1)) is re-
lated to the scattering distance pdf p(r) by the change of variable r =
c
η t(xi−1↔xi).

This temporal distribution p
(
∪∞

i=1ti
)

should be uniform in time. We are
obviously not letting the system to cast paths of infinite number of interac-
tions. As stated in the paper, we reject samples when they get out of the
sensor temporal window.
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For this derivation we will move our calculations to Laplace space. We
note the Laplace transform of a function f as L{ f }, and we are interested
in the following properties of the Laplace transform:

L{a f (t)} = aL{ f }(s) (5.90)

L{ f (t) + g(t)} = L{ f }(s) + L{g}(s) (5.91)

L{ f (at)} = 1
|a|L{ f }( s

a
) (5.92)

L{
∫ t

0
f (τ)g(t− τ)dτ} = L{ f }(s) · L{g}(s) (5.93)

L{u(t)} = 1
s

(5.94)

L{e−αt · u(t)} = 1
s + α

(5.95)

where u(t) is the unit step function:

u(t) =

0 t < 0

1 t ≥ 0
(5.96)

and s is the variable in the Laplace frequency domain.
Lets prove that the exponential distribution p(r) = u(r)λe−λr leads to a

uniform distribution of samples in time p
(
∪∞

i=1ti
)
. We start by applying the

Laplace transform to p(r) based on the Laplace properties defined in (5.90)
and (5.95):

L{λe−λr} = λ

s(r) + λ
(5.97)

where s(r) is the Laplace frequency domain representation of r. For any
propagation time t(xi↔xi−1) we always apply the same scattering distance
pdf p(r) so we apply the change of variable:

L{p(t(xi↔xi−1))} =
c
η

η

c
L{p}(η

c
s(↔)) =

λ
η
c s(↔) + λ

(5.98)

where t(xi↔ xi−1) represents propagation time in this case as a change of
variable from distance r, and s(↔) is the Laplace domain representation of
t(xi↔xi−1). This is applied for the first interaction,

L{p(t1)} =
c
η

η

c
L{p}(η

c
si) =

λ
η
c s(t)1 + λ

, (5.99)

where s(t)i is the Laplace domain representation of ti. The subsequent inter-
actions are obtained by applying the convolution property (5.93) to (5.88):

L{p(ti)} = L{p}(s(↔)) · L{p}(s(t)i−1). (5.100)

We then apply recursively (5.100) so L{p(ti)} actually becomes a simple
power:

L{p(ti)} =
(
L{p}(s(↔))

)i
=

(
λ

η
c s(↔) + λ

)i

(5.101)
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We then apply the Laplace transform to (5.87) using the property (5.91):

L{p (∪∞
i=1ti)} =

∞

∑
i=1

(
λ

η
c s(↔) + λ

)i

(5.102)

which is in fact an infinite geometric series, which has the following analyt-
ical solution:

L{p (∪∞
i=1ti)} =

1
1− λ

η
c s(↔)+λ

− 1 =
c
η

λ

s(↔)
(5.103)

If we then apply the anti-transform by properties (5.90) and (5.94) we get:

p (∪∞
i=1ti) =

c
η

λu(t) (5.104)

which is uniform in time. We reject all paths with total duration tk out of
the rendered time window (0, te) so p

(
∪∞

i=1ti
)

never reaches infinite time
nor infinite number of bounces. Notice that this derivation is analogous for
the eye subpath.

5.c.2 Sampling line-to-point shadow connections

This section describes the derivation of the line-to-point shadow connection
pdf described in Section 5.6.2 of the paper.

Any sampling strategy is usually based on a pdf that can be analytically
integrated to get an invertible cdf. In the case of steady-state strategies, the
pdf reduces variance by approximating the integrand (in this case path con-
tribution, radiance) as close as possible. This approach, however, cannot be
directly applied to transient rendering, where the uniformity of samples
along the temporal dimension becomes quite relevant for the accuracy of
the result.

The inverse cdfselects a sample according to a uniformly distributed ran-
dom number ξ ∈ [0, 1). The key idea of this sampling strategy is to pre-
serve the uniformity of such random number when changing to the tem-
poral domain. The time to be uniformly sampled is the propagation time
{xi, xi+1, xi+2}. We name the distance from xi to xi+1 as ri+1, and ri+2 is
the distance from xi+1 to xi+2. Therefore, the total propagation time for this
connection is

t =
η

c
(ri+2 + ri+1) . (5.105)

We start by expressing the total propagation time as a function of ri+2:

t−i+2(ri+2) =
η

c

ri+2+
√

r2
i+2− 2ri+2(l ·ω) + l · l︸ ︷︷ ︸

ri+1

+ ti + ∆ti+1,

(5.106)

where l = xi − xi+2. Inverting this allows us to sample path locations for a
specified temporal duration:

ri+2(t−i+2) =
(t−i+2 − ti − ∆ti+1)

2 − η2

c2 (l · l)

2 η
c (t
−
i+2 − ti − ∆ti+1)− 2 η2

c2 (l ·ω)
. (5.107)
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To obtain shadow connections uniformly distributed in a time range (ta, tb),
we use Equation (5.107) as the inverse cdf

cd f−1(ξ) = ri+2(ξ(tb − ta) + ta). (5.108)

The normalized derivative of (5.106) is then the sampling pdf:

p(ri+2) =
η

c(tb−ta)

1+
ri+2 − (l ·ω)√

r2
i+2 − 2ri+2(l ·ω) + (l · l)

, (5.109)

Assuming that animation lies within the time range (0, te), we set the
connection time limits (ta, tb) to the temporal range left by the rest of the
path for that connection:

ta = ti + t(xi↔xi+2) (5.110)

tb = te − ∆tk −
(

k−1

∑
j=i+2

t(xj↔xj+1) + ∆tj

)
. (5.111)

5.c.3 Angular sampling

This section describes the derivation of the angular time sampling strategy
discussed on Section 5.6.3 of the paper.

For the angular sampling pdf we follow a similar strategy than for a line-
to-point shadow connection: we also aim to preserve the uniformity of the
random number ξ when moving to the temporal domain. The propagation
time between the vertices {xi, xi+1, xi+1} is

t =
η

c
(rk + ri+1) , (5.112)

where ri+1 is the distance from xi to xi+1 and rk is the distance from xi+1 to
xk. We express this propagation time as a function of θ

t(θ) =
η

c

ri+1 +

√
(ri+1 sin θ)2 + (|l| − ri+1 cos θ)2︸ ︷︷ ︸

rk

 , (5.113)

where l = xk − xi. This can be simplified to:

t(θ) =
η

c

(
ri+1 +

√
r2

i+1 + |l|2 − 2ri+1|l| cos θ

)
. (5.114)

Inverting (5.114) allows us to choose an angle for a specified temporal
duration:

θ(t) = arccos

 |l|2 + 2t c
η −

(
t c

η

)2

2|l|ri+1

 . (5.115)

We use (5.115) as the base for the inverse cdf

cd f−1(ξ) = θ(ξ(t(π)− t(0)) + t(0)), (5.116)

which can be expanded into

cd f−1(ξ) = arccos

(
|l| − 2r2

i+1ξ2 − 2ξri+1 (|l| − 1)
ri+1|l|

)
. (5.117)



134 a framework for transient rendering

The normalized derivative of (5.114) is therefore our angular pdf:

p(θ) =
ri+1 sin θ

2
√

r2
i+1 + |l|2 − 2ri+1|l| cos θ

. (5.118)



6R E L AT I V I S T I C E F F E C T S F O R T I M E - R E S O LV E D L I G H T
T R A N S P O RT

This chapter describes a real-time framework that allows interactive visu-
alization of relativistic effects for time-resolved light transport. We explore
the effects occurring due to ultrafast camera motion on time-resolved light
transport, including time dilation, light aberration, frequency shift and radi-
ance accumulation, considering not only linear motion, but also acceleration
and rotation of the camera. The main goal of this project is to visualize on a
physically-plausible way the data captured and synthesized using the works
described in Chapter 4 and Chapter 5 respectively.

This work was first published at the Spanish Conference in Computer
Graphics (CEIG) 2013, where it was selected one of the two Best Papers.
Then an extension of the paper was published at Computer Graphics Forum,
and presented at the Eurographics Symposium on Rendering (EGSR) 2015.

A. Jarabo, B. Masia, A. Velten, C. Barsi, R. Raskar & D. Gutierrez
Rendering Relativistic Effects in Transient Imaging

Spanish Conference on Computer Graphics (CEIG) 2013, Best Paper (1 in 2)

A. Jarabo, B. Masia, A. Velten, C. Barsi, R. Raskar & D. Gutierrez
Relativistic Effects for Time-Resolved Light Transport

Computer Graphics Forum, to appear

6.1 introduction

Analyzing and synthesizing light transport is a core research topic in com-
puter graphics, computer vision and scientific imaging [63]. One of the most
common simplifications, rarely challenged, is the assumption that the speed
of light is infinite. While this is a valid assumption in most cases, it is cer-
tainly not true: light travels extremely fast, but with finite speed. In this
work, we lift this assumption and explore the consequences of dealing with
time-resolved data (finite speed of light), focusing on the effects predicted
by special relativity when the camera moves at speeds comparable with the
speed of light.

Transient imaging has recently emerged as a vibrant, exciting area of
research. Being able to analyze light transport at picosecond scale has al-
ready helped gain a better understanding of the complexities of light prop-
agation [225, 224], to approximate the shape of hidden objects [223] or re-
flectance properties [162, 160]. In this paper, we offer a novel contribution by
visualizing relativistic effects of time-varying radiance. Beyond the pure sci-
entific interest of advancing the field of relativistic visualization, our work
has direct applications in education and even games (see for instance Open-
Relativity from the MIT Game Lab [126]). Additionally, it can also contribute
to recent works which have set the ground for a time-resolved framework
for light transport simulation [98] described in Chapter 5.

Relativistic rendering is not new [83, 18, 236]. However, our particular
time-resolved framework implies by definition that radiance is not constant
in the temporal domain. In particular, we need to address how time af-
fects light aberration, the Doppler effect and the searchlight effect typically

135
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Figure 6.1: Scene setups and selected frames for the four scenes used throughout
this chapter. The scenes on the left (cube and tomato) depict real data
captured using femto-photography [224] (Chapter 4), while the scenes on
the right (bunny and dragons) have been synthesized using time-resolved
rendering [98] (Chapter 5).

handled in relativistic rendering, and include time dilation effects due to
Lorentz contraction.

Additionally, we modify the traditional camera model used in previous
literature and introduce for the first time—to our knowledge—a pinhole
camera model in a relativistic rendering framework. This implies the consid-
eration of two reference frames in the camera, co-moving with the pinhole
and with the sensor respectively, and thus a focal length (distance pinhole-
sensor) which can vary in certain reference frames under certain conditions;
this, in turn, has an effect on the field of view of the camera, affecting
the recorded imagery. We describe the required formulation for this cam-
era model both in the presence of constant velocity and accelerated motion.
Our model of relativistic acceleration is based on the clock hypothesis; we
assume instantaneously co-moving frames of reference, thus being able to
apply special relativity [30, 235]. Besides, we develop a model that accounts
for relativistic rotation, allowing to freely rotate the camera.

We demonstrate our relativistic rendering framework with fly-throughs in
a range of scenes. We rely on both captured data (using femto-photography [224],
presented in Chapter 4, and which allows capturing light propagation at ef-
fective exposure times of less than 2 ps per frame), and synthesized data
(using the transient rendering framework [101, 98] described in Chapter 5),
which is shown in Figure 6.1.

In summary, we have developed a rendering and visualization tool for
transient light transport, capable of simulating relativistic effects, lifting
some of the assumptions and constraints of previous works. Our contri-
butions can be summarized as follows:

• We describe a special relativity rendering framework which is able to
handle time-resolved data

• We extend the traditional camera model used in the literature to a
pinhole camera model, and describe the necessary transformations for
rendering time-resolved scenes under this new model, both in the case
of constant velocity and accelerated motion

• We propose an approximate solution for the case of relativistic rotation,
including relativistic deformation of the sensor, so the camera can be
moved freely in 3D space
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6.2 related work

time resolved light transport A modified rendering equation can
account for the finite speed of light and handle transient effects [7, 205].
However, in previous works no practical rendering framework is derived
from the proposed transient rendering framework. A fully functional time-
resolved rendering system was recently presented by Jarabo and colleagues [101,
98]. In their work, they introduce the transient path integral framework, and
devise new sampling strategies and density estimation techniques for effi-
cient rendering. Wu et al. [246] perform a rigorous analysis on transient
light transport in frequency domain. They derive an analytic expression
that models the information transfer between dimensions, and show that
this derivation can be exploited to build a bare-sensor imaging system.

Time-resolved imaging is further analyzed by Wu et al. [245] to sepa-
rate direct and global illumination components in macroscopic table-top
scenes. The authors analyze the time profile for each pixel and decompose
it into direct, subsurface scattering and interreflection components. Kirmani
et al. [119] utilized global information in time-of-flight images to infer ge-
ometries of hidden objects, not directly visible by the camera, by using the
encoded time-of-flight of diffuse indirect illumination. This work was fur-
ther improved by Velten et al. [223]. Material BRDFs of distant patches were
reconstructed [162] via light-bounce analysis from ultrafast image measure-
ments.

Very recently, Velten et al. [225, 224] developed femto-photography, a
novel technique that allows ultra-fast (in the order of picoseconds) capture
of transient light transport, at an effective frequency of a trillion frames per
second.

relativistic rendering Here we discuss the most relevant work on
relativistic rendering. For a wider survey, we refer to [236], where the differ-
ent proposed techniques for both general and special relativistic rendering
are discussed, including their application as educational tools. A number
of early works by Hsiung et al. [83] were the first to tackle rendering of
relativistic effects in the field of computer graphics and visualization, ap-
plying the Lorentz transform to render scenes in which the observer moves
at relativistic speeds relative to the scenes. A set of works followed, extend-
ing this work to three dimensional motion, considering the Doppler shift
and time dilation, and improving rendering times [86, 84, 87, 85]. Later,
Chang et al. [18] developed a more comprehensive framework accounting
for both geometric and radiance transformations, including light aberration
(Lorentz transform), the Doppler effect, and the searchlight effect. How-
ever, their formulation modeled the searchlight and Doppler effects incor-
rectly; these were corrected by Weiskopf et al. [238], who later further de-
scribed the rendering pipeline in [233]. Weiskopf was also the first to for-
malize a complete rendering pipeline which could deal with special rela-
tivity and considered not only moving observers but also dynamic scenes,
including acceleration, and moving light sources [235]. This pipeline, with
an application to a virtual reality environment, is described in [234], while
special relativity renderings of accelerated extended objects are considered
in [236, 128]1. Acceleration is further dealt with [239], correcting earlier work
by Betts [9]. Related work simulates relativistic effects in synthetic scenes

1 English version available at http://www.spacetimetravel.org/tompkins/tompkins.

html

http://www.spacetimetravel.org/tompkins/tompkins.html
http://www.spacetimetravel.org/tompkins/tompkins.html
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modeled with image-based techniques, by applying the relativistic transfor-
mations directly on the light field [237]. Finally, visualization approaches
and games have been created with a didactic goal, aiming at helping stu-
dents in the understanding of relativity. Doat et al. [31] developed a billiard
game, with a relativistic rendering engine and a non-Newtonian physics
engine to deal with the collisions, to help students visualize the effects of
special relativity. The game A Slower Speed of Light, also notable among these,
uses the open-source toolkit OpenRelativity which works with the Unity en-
gine and can also simulate special relativity effects [126]. In this paper we de-
velop a relativistic rendering framework including a pinhole camera model,
with a finite focal length; this has an effect on image formation, since, as
we will show, this focal length can suffer contractions and dilations in the
sensor frame of reference. Further, we show results of relativistic rendering
of time-resolved data acquired from the real world.

6.3 relativistic rendering

Time-resolved data allows us to explore light transport like never before,
no longer being constrained by the assumption that light speed is infinite.
However, current capture systems only allow to visualize light propagation
from the capture point of view. Assuming that the geometry in the scene is
known (which can be easily acquired with a digitizer arm or from time-of-
flight data), we can synthesize new viewpoints and animations of the scene
by taking an image-based rendering approach, using x-y textures from the
x-y-t data cube (see [224] and Section 4.4) and projecting them onto the
geometry. This allows us to visualize real-world events from new angles.

6.3.1 Time-warping

Visualizing light transport events at pico-second scale yields counter-intuitive
results, as observed by Velten et al. [224] and described in Section 4.6. Due
to the finite speed of light, events are not captured in the sensor as they
occur, which leads to unexpected apparent distortions in the propagation
of light. From this observation, it follows that different temporal frames of
reference must be employed: one for the world O (when the events occur),
and one for the camera sensor O′ (when the events are actually captured).

As a consequence, sensor data acquired by the femto-photography tech-
nique appears warped in the temporal domain, and must be time-unwarped
to take into account the finite speed of light. So for each frame in the syn-
thesized animations, we access the original warped data and apply the fol-
lowing transformation [224]:

t′ij = tij +
zij

c/η
(6.1)

where t′ij and tij are sensor (camera) and world times respectively, zij is
the depth from each point (i, j) to the new camera position, c is the speed
of light and η the index of refraction of the medium. Note how a naive
approach based on simply sticking the textures from the first frame to the
geometry through the animation would produce wrong results; the distance
from each geometry point to the center of projection of the camera varies for
each frame, and thus a different transformation must be applied each time
to the original, warped x-y-t data (see Figure 6.2).
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Figure 6.2: Time unwarping between camera time and world time for synthesized
new views of a cube scene. Top row, left: Scene rendered from a novel
view keeping the unwarped camera time from the first frame (the small
inset shows the original viewpoint). Right: The same view, warping data
according to the new camera position. Notice the large changes in light
propagation, in particular the wavefronts on the floor not visible in the
previous image. Bottom row: Isochrones visualization of the cube-scene
for a given virtual camera (color encodes time); from left to right: original
x-y-t volume in the time-frame of the capturing camera, unwarped x-y-t
data in world time frame, and re-warped data for the new virtual camera.

6.3.2 Camera Model

We model our camera as a pinhole camera, with a focal distance d from the
sensor to the pinhole aperture, and a field of view (FOV) α = 2 arctan(w/d),
with w the half width of the sensor (Figure 6.3, left). We assume the camera
has no lenses, the pinhole being what ensures correct focusing on the sensor.
This model effectively splits the camera into two frames of reference: one
frame O′ which will be co-moving with the sensor, and one for the pinhole
aperture O′′. Note that considering the camera as a finite, instead of a point-
like, object, has important effects on the recorded imagery due to relativistic
contractions and dilations of the focal length, which will need to be taken
into account. We detail how this is done in the following sections.

6.3.3 Relativistic Effects

In addition to the time-warping of data, which occurs in both static and dy-
namic cameras, macroscopic camera movement at pico-second time scales,
like the one synthesized in Figure 6.2, would give rise to relativistic effects.
This requires a relativistic framework to correctly represent and visualize
light traveling through the 3D scene.

According to special relativity, light aberration, the Doppler effect, and
the searchlight effect need to be taken into account when simulating motion
at fast speeds. Light aberration accounts for the apparent geometry defor-
mation caused by two space-time events measured in two reference frames
moving at relativistic speeds with respect to each other. The Doppler effect
produces a wavelength shift given by the Doppler factor. Last, the searchlight
effect increases or decreases radiance, according to whether the observer is
approaching or moving away from a scene.
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Figure 6.3: Left: Pinhole camera model, with P marking the position of the pinhole,
w the half-width of the sensor, and d the focal length. Right: World lines
for the sensor and the pinhole, moving with constant speed β = 0.2. The
green dotted axes depict a local frame of reference of the sensor; these
axes show how, in the frame of the sensor, the focal length d′ is larger
than when measured in the world frame, d. Note that the t axis actually
corresponds to ct, but only t is stated in this and subsequent figures for
clarity.

We build our relativistic visualization framework on the derivations by
Weiskopf et al. [238]. We consider two inertial frames, O and O′, where O′

(the sensor) is moving with velocity v = βc with respect to O, with β ∈ [0..±
1). L represents wavelength-dependent radiance2 measured in O, defined by
direction (θ, φ) and wavelength λ. θ and φ are defined with respect to the
direction of motion, with θ ∈ [0..π] being the angle between the view and
the motion vector, and φ ∈ [0..2π] the angular coordinate of the view vector
around the motion vector on its tangent plane. The corresponding primed
variables (θ′, φ′) and λ′ define radiance L′ measured in O′. To obtain the
modified radiance L′ given L and the speed of the sensor, we need to apply
the following equation [238]:

L′(θ′, φ′, λ′) = D−5L
(

arccos
cos θ′ + β

1 + β cos θ′
, φ′,

λ′

D

)
, (6.2)

where D = γ(1 + βcosθ′) and γ = 1/
√

1− β2 are the Doppler and Lorentz
factors, respectively. This equation accounts for all three factors: light aberra-
tion, the Doppler effect, and the searchlight effect. However, it cannot model
explicitly the effect of special relativity on non-constant radiance. In the fol-
lowing paragraphs we explain each effect separately, and discuss the modi-
fications needed to handle time-resolved radiance.

time dilation Breaking the assumption of constant radiance means
that we cannot ignore the effect of time dilation [36]. Time dilation estab-
lishes that, given an observer moving with respect to a stationary (world)
frame O, if ∆t0 is the elapsed time in the rest frame of the moving observer,
the time elapsed for an observer in the stationary frame ∆t, and the time
elapsed for the moving observer are related by ∆t = γ∆t0. Since γ ≥ 1, this
effectively means that a clock carried by the moving observer will tick more
slowly than a clock carried by the stationary observer. Consequently, if we
take as the proper time the time in the frame O′ in which the camera is at
rest, the relationship between time intervals in the camera frame O′ and the

2 For legibility we use the term "radiance" to describe "wavelength-dependent radiance" through
the text.
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world frame O is ∆t = γ∆t′. Thus, we need to keep track of both world t
and camera time t′, since they differ depending on the speed of motion.

In addition to time dilation, Lorentz contraction shrinks the space in the
direction of motion. This means that the time warping modeled with Equa-
tion (6.1), which accounts for the time it takes light to travel to the camera,
has to be computed in the moving frame O′. Establishing the proper length
for z in the world frame, the transformation to obtain z′ is given by:

z′ = z

√
sin2 θ +

cos2 θ

γ2 . (6.3)

camera deformation In addition to the effects on propagation delays,
the Lorentz contraction also affects the focal length d of our pinhole camera
(see Section 6.3.2). We define the proper length of the camera in its own rest
frame O′, thus being d′ the proper focal length. Therefore, the focal length in
the world frame O is d = d′/γ, as can be seen in the space-time diagram in
Figure 6.3 (right). This effectively produces a reduction in the field of view
of the camera α′, such that:

α′ = 2 arctan
(

w
γd

)
= 2 arctan

(
tan(α/2)

γ

)
. (6.4)

light aberration An easy example to understand light aberration is
to visualize how we see rain drops when traveling on a speeding train.
When the train is not moving, raindrops fall vertically; but as the train picks
up speed, raindrop trajectories become increasingly diagonal as a function
of the train’s speed. This is because the speed of the train is comparable with
the speed of raindrops. A similar phenomenon occurs with light if moving
at relativistic speeds. However, as opposed to rain drops, relativistic light
aberration cannot be modeled with classical physics aberration; the Lorentz
transformation needs to be applied on top of it.

Light aberration is computed by transforming θ′ and φ′ with the following
equations, which provide the geometric transformation between two space-
time events measured in two reference frames which move at relativistic
speeds with respect to each other:

cos θ′ =
cos θ − β

1− β cos θ
(6.5)

φ′ = φ. (6.6)

The end result is that light rays are tilted towards the direction of motion
as velocity increases, causing light rays reaching the sensor from behind
the camera to become visible. Finally, as β approaches 1, and thus v ≈ c,
most incoming light rays are compressed towards the motion direction; this
makes the scene collapse into a single point as the camera moves towards
it (note that this produces the wrong impression that the camera is moving
away from the scene). The first two rows in Figure 6.4 show the effects of
light aberration with increasing velocity as the sensor moves at relativistic
speeds, towards and away from the scene respectively.

doppler effect The Doppler effect is better known for sound, and it
is not a phenomenon restricted to relativistic velocities. In our case, the
Doppler effect alters the observed frequency of the captured events in the
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Figure 6.4: Relativistic effects shown separately for the cube scene. First rows: Distor-
tion due to light aberration as the camera moves towards and away from
the scene at different velocities, with β = {0, 0.3, 0.6, 0.9, 0.99}. We assume
a laser wavelength of 670 nm for visualization purposes. Note how in
both cases light aberration produces counter-intuitive results as the cam-
era appears to be moving in the opposite direction. Third row: Doppler
effect, showing the shift in color as a consequence of the frequency
shift of light reaching the sensor, with β = {0, 0.15, 0.25, 0.35, 0.50, 0.55}.
Fourth row: Searchlight effect, resulting in an apparent increase in bright-
ness as the speed of the approaching camera increases, with β =
{0, 0.2, 0.3, 0.4, 0.5} (simulated laser at 508 nm). All images have been
tone-mapped to avoid saturation.

Camera Frame
d’=36mm

World Frame
d=36mm

Camera Frame
d’=36mm

World Frame
d=36mm

Figure 6.5: Relativistic phenomena for the cube (top, captured data) and bunny (bot-
tom, simulated data) scenes including light aberration, Doppler effect and
the searchlight effect, as the camera approaches the scene at increasing
velocities v = βc, with β increasing from 0 to 0.77 (cube), and from 0.2 to
0.9 (bunny). In both scenes, we compare between fixing the focal distance
d′ in the sensor frame O′ (left), and fixing it in the world frame O, and
therefore being transformed in the moving frame (right). Note that we
transform RGB radiance into luminance.
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world when seen by a fast-moving camera, which produces a wavelength
shift, as defined by the Doppler factor D:

λ′ = Dλ. (6.7)

The overall result is a color shift as a function of the velocity of the sensor
relative to the scene. Somewhat less known, the Doppler effect also creates a
perceived speed-up (or down, depending on the direction of camera motion)
of the captured events. This means that the original frame rate of the time-
varying radiance f in world frame is Doppler shifted, making the perceived
frame rate f ′ in camera frame become f ′ = f /D. Figure 6.4 (third row)
shows an example of the Doppler effect.

searchlight effect Due to the searchlight effect, photons from sev-
eral instants are captured at the same time differential, in part as a cause
of the Doppler shift on the camera’s perceived frame rate. This results in
increased (if the observer is approaching the scene) or decreased (if the ob-
server is moving away) brightness (see Figure 6.4, bottom row):

L′(θ′, φ′, λ′) = D−5L(θ, φ, λ). (6.8)

Intuitively, continuing with our previous rain analogy, it is similar to what
occurs in a vehicle driving in the rain: the front windshield will accumulate
more water than the rear windshield. Equation (6.8) has an implicit depen-
dence on time; for our time-varying streak-data, we need to make it explicit,
yielding:

L′(θ′, φ′, λ′, t′) = D−5L(θ, φ, λ, t). (6.9)

In our case, since in the end we need to obtain the radiance accumulated
over the duration of each frame of the movie, we are interested in comput-
ing the incoming radiance impinging the camera during a certain camera
time interval T′ = 1/ f ′, where f ′ is the frame rate in the camera frame.
As a consequence of the Doppler shift in the frame rate mentioned in the
previous paragraph ( f ′ = f /D), this camera time per frame T′ corresponds
to a time interval T = T′/D in the world frame O. To do this, we need
to integrate the wavelength-dependent radiance of Equation (6.9) over that
time interval, resulting in the following:∫

T′
L′(θ′, φ′, λ′, t′)dt′ =

∫
T′
D

D−5L(θ, φ, λ, t)dt′. (6.10)

When incorporating the previously described effects into Equation (6.10),
we obtain the final expression for incoming radiance in the frame of the
camera for each camera time frame (which has a duration T′):∫

T′
L′(θ′, φ′, λ′, t′)dt′ =

D−5
∫

T′
D

L
(

arccos
cos θ′ + β

1 + β cos θ′
, φ′,

λ′

D
,

t′

γ
− z′

c/η

)
dt′. (6.11)

Note that the D−5 factor used is valid only for a velocity vector v parallel
to the sensor normal (see [238] for a detailed derivation); for other motion
configurations that factor should be re-derived.

Finally, Figure 6.5 shows the result of combining all these relativistic ef-
fects, both for the cube scene (data captured with femto-photography tech-
niques) and the bunny scene (simulated data by rendering) respectively, both
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fixing the camera focal length in the world frame (i.e. varying d′ with speed,
as shown in Figure 6.3, right), and fixing it in the sensor frame. The laser
wavelength is set at 670 nm for visualization purposes. We refer the reader
to the supplementary videos to see the full animations.

Figure 6.6: Relativistic phenomena for the cube scene due to an accelerating camera
with focal length in world frame d = 36 mm. The camera starts at rest,
and accelerates up to v = 0.9c towards the scene, with acceleration g =
0.01c s−1 in the camera frame O′. Note the slight differences in the field
of view with respect to Figure 6.5.

Constant Speed Acceleration

Figure 6.7: Comparison of taking into account the effect of relativistic acceleration on
the camera (right), against the effects of using constant speed (left). The
camera has a focal length d = 36 mm, and proper acceleration g = 0.01c
s−1. Velocities shown here are v = βc = [0.0..0.99c]. Note that the simul-
taneity between the sensor and pinhole frames is broken in the scenario
with acceleration, and therefore they have different speeds at proper time
t′. As a consequence, the focal length d′ in the moving frame O′ is trans-
formed differently in the presence of camera acceleration than when mov-
ing at constant speeds, an effect which becomes more visible at increas-
ingly higher speeds.

6.3.4 Relativistic Acceleration

Until now, we have assumed that the camera accelerates instantaneously,
and therefore no effect is produced by such acceleration. Similar to previ-
ous works [235, 30, 208], our framework for relativistic acceleration assumes
that the clock hypothesis is valid. This hypothesis is implicit in the original
formulation of special relativity, and states that the rate of a clock is only de-
pendent on its instantaneous velocity. Therefore, an accelerating frame suffers
the same relativistic effects as in its instantaneous co-moving inertial frame
(i.e. a frame uniformly moving with the same instantaneous speed) [235],
modeled using Equation (6.11). It is important to note that the clock hy-
pothesis is not universally accepted [12, 44]; breaking the assumption of its
validity makes the formulation of relativistic acceleration significantly more
complex.

With this assumption, we model the acceleration a in the world frame O
as [212]:

a′ =
dv′

dt
=

d
dt

γv = γ3a, (6.12)

where a′ is the constant proper acceleration in the moving frame; following
the standard notation in physics literature, in the following we call it g. By
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Figure 6.8: (a) World lines for the sensor and the pinhole in an accelerated scenario
(g = 0.002c s−1), and local frames of reference of the sensor at different
time instants and thus with different velocities (dotted axes). (b-d) Space-
time diagrams for the sensor and the pinhole in the three local frames of
reference drawn in (a). Note how the focal length (distance between sen-
sor and pinhole) measured in the sensor frame increases as the velocity
of the sensor increases due to acceleration.

integration we can get the velocity in the world frame as a function of time
t [208]:

v(t) =
g(t− t0)√

1 + (g(t− t0)/c)2
, (6.13)

where t0 is the time at which acceleration starts (v(t0) = 0). Integrating v(t)
allows us to obtain the position of the accelerating object in the world frame,
x(t), as:

x(t) =
c2

g

√
1 +

(
g(t− t0)

c

)2

− c2

g
+ x0, (6.14)

where x0 is the initial position of the object. This means that due to Lorentz
contraction, the acceleration in the world frame is dependent on the velocity
of the camera, which results in a hyperbolic motion with asymptotic speed
c in the world frame O, as seen in Figure 6.8. Both v and x are defined as a
function of time t in the world frame O, while we are capturing the scene
from the sensor frame O′, and therefore accounting for the proper time t′.
These two times t and t′ are related as:

t =
c
g

sinh
(

gt′

c

)
. (6.15)

Note that Equations (6.13) and (6.14) are only valid for constant proper ac-
celeration g; for time varying acceleration we would need to solve an initial
value problem [234].

Acceleration has an important effect on our extended camera model, since
an accelerating body changes its frame of reference at each instant; this, ac-
cording to Equation (6.4), would make the focal distance d′ increase as the
object accelerates. However, when considering two different objects with the
same acceleration and initial speed with respect to a world frame, we need
to take into account that simultaneity is broken: two simultaneous instants
in the world frame O might not be so in accelerating frame O′. The con-
sequence of this is that the distance between the two objects (sensor and
pinhole in our case) will be constant when measured in the world frame
(Figure 6.8(a)), but will keep changing when measured in a frame local to
either of the objects (as shown in Figure 6.8(b-d) for three different velocities
of the sensor with respect to the world frame, corresponding to three differ-
ent time instants along the world line of the sensor, depicted in Figure 6.8(a)).
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Note that in our case, the distance between the two objects corresponds to
the focal length (d in world frame O), which, when measured in the sensor
frame O′ (d′), is changing as the sensor (and pinhole) accelerates. This affects
the field of view of the camera, and thus needs to be taken into account for
the rendering framework.

We model this varying distance d′ using the formulae derived by Styer [208]:

d′ =
c2

g

(
1−

√
1− (v/c)2 + (gd/c2)2(v/c)2

1− (v/c)2

)
+ γd, (6.16)

where v is the speed of the sensor in the world frame (Equation (6.13)). Note
that once both the sensor and pinhole stop accelerating, and therefore both
are at constant speed βc, then d′ = γd, as explained in Section 6.3.33. Equa-
tion (6.16) shows that the distance d′ varies non-linearly with the distance d
in the world frame; in fact, the larger the distance, the more notable are the
effects due to an accelerating camera.

Given d′, we can obtain the transformed field of view of the camera α′

as α′ = 2 arctan(w/d′) (for constant speed g = 0 it corresponds to Equa-
tion (6.4)). Note that in order to maintain a constant field of view α′ during
acceleration, different accelerations would be needed in the pinhole and the
sensor, as derived by Franklin [43].

Figure 6.6 shows a sequence of an accelerating camera in the cube scene.
We can see that, as opposed to the case in which a constant camera speed
is used, the reduced field of view due to the Lorentz transform reduces the
effect of light aberration observed with a camera at constant speed. This
effect is more explicit in Figure 6.7, which compares the effect of constant
speed and acceleration.

Figure 6.9: Distortion of the sensor (curves) and the camera pinhole lens (dots) due
to relativistic rotation, as seen for the leftmost sensor differential area
si. The velocity vector is perpendicular to such area (marked with a red
arrow), with speeds ranging from βi = 0 (dark blue, sensor at rest, no
distortion), to βi = 0.9 (dark red). Note how aberration in the sensor
increases with higher speeds, even occluding the line at sight for very
high values.

3 When this takes place, there will be a transition period in which, measured in the sensor frame,
the sensor will stop accelerating before the pinhole; we have omitted this there for clarity but
refer the interested reader to the thorough description in [208].
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Figure 6.10: Assuming that the rotation angle θ can be neglected between frames,
we model the rotation as a continuous linear velocity field on the sen-
sor Ψ, so each differential area is assigned a different velocity ψs (left).
This causes that depending on the position on the sensor, different
relativistic transformations are applied on the scene. The rest of the
frames show the effects of a clockwise rotation of the sensor, with
β = {0, 0.4, 0.8, 0.99} (measured at the edge of the sensor), assuming
that no relativistic effect affects the camera. Figure 6.11 shows the effect
when this last assumption is broken.

6.3.5 Relativistic Rotation

Providing free navigation of a scene depicting time-resolved light transport
implies that the viewers should be allowed to rotate the camera. However,
there is no universally accepted theory of relativistic rotation [189].

In the absence of a universal theory of relativistic rotation, we propose
an approximation for the particular case of very small rotation angles per
frame. This assumption, which is feasible in a scenario in which the camera
moves at relativistic speeds, allows us to effectively treat each differential
area of the sensor as undergoing linear translation only in the direction of
the sensor’s normal, with a different velocity for each sensor differential,
according to the linear velocity field Ψ, and with a zero-crossing at the axis
of rotation.

To simulate the rotation of the camera we therefore first divide the sensor
S in different areas s ∈ S. Our approximation effectively turns each of them
into a different translational frame, with linear velocity ψs. Then, for each
s we render the scene applying the novel relativistic transformations intro-
duced in this section, with a different βs for each s (trivially obtained from
an input β measured at the edge of the sensor). This causes the incoming
radiance to be deformed differently depending on the position of the sen-
sor where it is imaged. Figure 6.10 shows an example, where the sensor is
rotating clockwise.

This transformation is enough if we are assuming that for each surface
area s the camera lens moves with β = βi, and that each sensor area si is
independent of the rest. The center of the sensor thus has velocity β = 0,
with each sensor area moving at different speeds. As a consequence, for an
individual sensor area si, the sensor areas sj suffer light aberration, each
with different speed ∆βi→j. This speed is the composition of βi and β j, and
it is obtained using the relativistic law of composition of velocities:

∆βi→j =
βi + β j

1 + βiβ j
. (6.17)

This difference in speed makes both the camera lens and the sensor un-
dergo light aberration, and therefore their projection is distorted following
Equations (6.5) and (6.6). As a consequence, for each si with speed βi, each
ray from si to the camera lens is distorted, effectively changing the field of
view at each sensor area. Additionally, since the rest of the sensor is aber-
rated with spatially-varying ∆βi→j, it is even possible that the sensor plane
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Figure 6.11: Relativistic effects of a clockwise rotation of the sensor, with β =
{0, 0.25, 0.5, 0.75, 0.99} (measured at the edge of the sensor), including
relativistic aberrations in the camera. The lower half of the sequence
shows the effect of rotation when taking into account the aberrations
suffered by the sensor as seen from si (Figure 6.9), including the change
in the FoV and the self-occlusion, while the upper half shows the ro-
tation at the same speed ignoring its effect on the sensor. Note that at
high-speeds, the edges of the sensor are occluded by the sensor itself due
to sensor aberration, as shown in Figure 6.9 (marked here as a red rect-
angle). The image appearing to the right of this sensor occlusion comes
from the scene, visible due to the high relativistic aberration caused by
the rotation at high speeds.

itself occludes the incoming light, as shown in Figure 6.9. Figure 6.11 shows
the same scene depicted in Figure 6.10, but including the aberration effects
in the camera lens and sensor.

6.3.6 Discussion

In order to include the relativistic effects described above, there are several
assumptions that need to be made in order to keep physical plausability.
First, our work is restricted to special relativity, so we assume that no grav-
itational force is present in the scene; otherwise, general relativity would
need to be considered. Additionally, we model relativistic acceleration based
on the clock hypothesis.

We also need to assume that all components of the camera have infinite
elasticity, to support the stress produced by relativistic acceleration and ro-
tation, as well as a lensless pinhole camera. Including a lens would require
adding lens transformations due to relativistic contractions (Sections 6.3.3
and 6.3.4), which would effectively change the plane of focus of the camera,
and introduce additional time-varying delays. Our model does take into
account the finite nature of the camera, including two frames of reference
(pinhole and sensor), and a focal length, which can change under certain
conditions. While in certain scenarios this effect may be negligible, it is im-
portant for time-varying radiance. Current transient data can reach a tem-
poral resolution of picoseconds; at this timescale, a pinhole camera model
makes a significant difference (Figure 6.7). To include rotation, we need to
define a sensor with differential width, to avoid problems related with ra-
dius contraction as discussed in the Ehrenfest paradox [189]. Furthermore,
for rotation we assume that the pinhole aperture is almost at the middle of
the sensor, so it does not move when rotating. Finally, the formulae exposed
here are constrained to camera motion parallel to the sensor normal; for
other motion directions the equations modeling the Doppler and searchlight
effect need to be modified (see [238] for the full mathematical derivation);
in particular, the Doppler factor D should be re-derived accounting for the
new configuration.
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6.4 implementation

Our implementation allows for real-time visualization of relativistic effects,
both from real and simulated data. It is implemented in OpenGL as an stand-
alone application, taking as input the reconstructed geometry of the scene,
as well as the time-resolved data. The system is based on classic image-based
rendering (IBR) techniques, where the shading of the surface is modeled by
the images projected over the surface. In our case, we use x-y images from
the x-y-t data cube to shade the geometry. The cube is stored as a 3D texture
on the GPU in world time coordinates. This allows us to apply time-warping
to adapt it to the new viewpoint in rendering time, by simply applying the
transformation defined in Equation (6.1) (see Section 6.3.3).

Due to light aberration the geometry viewed from the camera is distorted.
This distortion causes straight lines to become curved, so the geometry has
to be re-tessellated. Image-space warping, which has been used in many
scenarios (e.g. [237, 211, 149]) is not a viable alternative due to the large ex-
tent of the deformations. Our implementation performs the re-tessellation
off-line on the CPU, but it is straightforward to tessellate it on the GPU on
the fly. During render time, each vertex should be then transformed accord-
ing to Equation (6.2). Another suitable alternative to the tessellation could
be the use of 4D local ray tracing, such as the GPU-based system by Müller
et al. [157].

The Doppler effect is introduced by modifying the wavelength of the
outgoing illumination from the surfaces. To avoid the complexity of a full-
fledged spectral renderer, we assume light with energy in only one wave-
length of the spectrum. To display radiance we use a simple wavelenght-to-
RGB conversion encoded as a 1D texture. Note that wavelengths out of the
visible spectrum are displayed with gray-scale values in this paper.

Finally, when modeling the searchlight effect, we avoid the straightfor-
ward approach to access all frames in the x-y-t data cube, bounded by the
duration T, and integrate them. This would require several accesses to the
3D texture, which would hinder interactivity. Instead, we pre-integrate ra-
diance in the temporal domain, and use anisotropic mipmapping to access
the pre-integrated values, using T to select the mipmap level in the time
dimension.

6.5 conclusions and future work

We have described a method to visualize light transport from a new perspec-
tive, no longer constrained by the assumption of infinite speed of light, and
including relativistic effects with time-resolved light transport data (both
real and simulated). Additionally, we have developed an interactive image-
based rendering application for free navigation and exploration. We are able
to account for both constant and accelerated motion, and have developed a
method to approximate the effects of camera rotation, for which a definite
solution does not exist in the physics literature. We have also introduced a
pinhole camera model in a relativistic rendering framework, taking into con-
sideration the variation of the focal length with camera motion at relativistic
speeds, which in turn results in a varying field of view. We hope this will
spur future research and help to better understand the complex behavior of
time-resolved interactions between light and matter. All videos showing the
effects presented here can be found at the project page4.

4 http://giga.cps.unizar.es/~ajarabo/pubs/relativisticCGF15/

http://giga.cps.unizar.es/~ajarabo/pubs/relativisticCGF15/
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Of course there is plenty of future work ahead: Several assumptions dis-
cussed in Section 6.3.6 should be relaxed to generalize our model to other
types of camera. Also, in order to provide a full physically-based solu-
tion mass (and therefore gravitational forces) must be included by consid-
ering general relativity. Our current implementation assumes Lambertian
surfaces, so the viewing angle with respect to the normal has no influence
in the result. This assumption can be relaxed by using more sophisticated
IBR techniques, e.g. [10].
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7C O N C L U S I O N S A N D F U T U R E W O R K

In this thesis we have presented a variety of contributions on processing,
synthesizing and visualizing multidimensional plenoptic data, departing
from the two dimensional projection of the plenoptic function in traditional
imaging. This higher dimensionality not only increases significantly the
amount of information that can be obtained from scenes, but also changes
drastically the way we handle visual data.

Through this thesis we have focused in the angular and temporal domains,
each presenting different particularities but sharing the difficulty of han-
dling and computing more visual data in a higher dimensional space than
traditional imaging. In the former, we have focused on light fields, and re-
flectance fields described as BTFs, while in the temporal domain we have
focused on time-resolved light transport, including capture and processing,
synthesis and visualization. In the following we summarize the conclusions
for each of the two parts.

angular domain In this first part we have presented two main lines of
work. In the first one (Chapter 2) we have presented a thorough analysis on
how people interact with light fields when editing, focusing on point-based
operations. For that, we have developed a fully-working interface for light
field editing, and we have analyzed the two main interaction paradigms
available in the literature (focus and parallax). We have performed a series
of user studies, and collected information about both the preferences and
workflows. Interestingly, we have found that the two main paradigms are
complementary, and while focus is preferred for editing, parallax tends to
be the choice for navigating through the light field, suggesting that a hy-
brid interface would be the most optimal for light field editing. Of course,
this study cannot be considered final; instead it provides a solid foundation
for the development of future interfaces for this multidimensional data. For
example, more advanced edit workflows, such as lazy selection or sparse
edit propagation are not analyzed in our study, where we focus only on
point-wise operations: a first proof-of-concept for these types of interaction
in light fields is briefly described in Section 2.7, but it definitely deserves
more work. Another example operation not addressed in our work is copy-
ing and paste in light fields: this is particularly challenging, since in addition
to the challenges existing on copy-paste in traditional two-dimensional im-
ages (e.g. maintaining illumination consistency), it introduces new such as
correcting the angular-dependent component of the input light field into the
target one. This requires new exploration on whether the angular inconsis-
tencies are detected, how these affect the shape perception of the input light
field, and also on how the angular domain of the input light field needs to
be warped depending on its position to match the target one.

In the second work of this part we analyze the effect on the perception of
the appearance of surfaces modeled using BTFs when filtering its reflectance
field (Chapter 3). To perform this analysis, we conduct several large-scale
perceptual studies, evaluating the effect of undersampling and blurring in
both static and dynamic scenes, with different illumination and geometric
setups. We then link our results with high- and low-level properties of sur-
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faces, drawing a set of different applications from our results. Of course,
as in all user studies, we do not claim that our work answers all questions
regarding complex appearance filtering and perception; ours was the first
work to systematically analyze the perceptual effect on material appearance
of different BTF filtering strategies, and therefore several avenues of future
work are still open. For example, more exploration into the relationships
between appearance and the high-level visual properties might help un-
derstanding better the semantic effect on the perception of materials, even
leading to better sampling strategies from this information, as shown in
the sampling application described in Section 3.9. Another very interesting
side finding is the correlation between the semantic high-level properties
and low-level statistics on the material, which might have interesting ap-
plications on automatic material recognition based on image statistics; we
believe that this last finding is a promising avenue for research to obtain a
better understanding on why materials look as they do.

temporal domain In this second part of the thesis we have focused on
light transport at extremely high temporal resolution, so that the speed of
light cannot longer be considered infinite. This has important implications
on the technical challenges for capturing or simulating light transport, and
introduces new problems on data processing, reconstruction or visualiza-
tion. In particular, we have presented the first system capable of capturing
light transport in macroscopic scenes at an effective temporal resolution of 2

ps (Chapter 4), in a project lead by colleagues at MIT Media Lab. This allows
to visualize how light propagates through scene and interacts with matter.
We have also shown that there are two different reference frames in tran-
sient light transport (world and camera frames), and proposed a method for
time unwarp our data, to visualize the events as they happen, instead of as
they are captured by the camera. Since the emergence of our work, several
works have been proposed improving the temporal resolution up to tens of
femtoseconds [52], or on the other side of the spectrum, reducing the hard-
ware cost by trading-off temporal resolution [78, 111, 58]. Moreover, ultrafast
imaging has been used not only for capturing stunning animations of light
in motion. As happened with Edgerton’s stroboscope in the 50’s, several sci-
entific and engineering applications have emerged from this new type of ul-
trafast data: classic problems in computer vision, such as depth recovery, can
be easily solved by using ultrafast imaging [168, 161], while other problems
very hard to solve, or even unsolvable, in traditional computer vision can
now be tackled, such as non-line-of-sight depth reconstruction [223, 79] or
motion estimation [171], illumination components decomposition [245, 88],
BRDF capture [162, 160], imaging through turbid media [80] or single shot
capture of scattering media [179].

This rapidly emerging field however lacked visualization and simulation
tools helping on the development of new imaging and scene understand-
ing techniques based on transient imaging. This motivated us to develop
an interactive visualization system allowing to observe time-resolved light
transport at different positions, taking in consideration the relativistic effects
due to ultrafast motion of the camera (Chapter 6). Moreover, we addressed
the lack of transient rendering tools by presenting a principled framework
for time-resolved rendering (Chapter 5), which we use to demonstrate sev-
eral non-trivial light transport effects, such as indirect illumination, caustics
formation, fluorescence or birefringence. We reformulate the classic path in-
tegral formulation [218] into transient state, and based on that we propose a
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method for efficiently reconstructing time-resolved radiance based on den-
sity estimation. We then propose a set of sampling techniques for light trans-
port in participating media designed for sample uniformly the temporal
domain, instead of focusing on radiance as in traditional steady-state sam-
pling. This change of sampling domain, moving from sampling radiance to
sampling the temporal domain results in a significantly better sample dis-
tribution along the simulation, and can inspire new sampling strategies for
other applications where radiance is not the most important sampling do-
main. However, these techniques are only designed for participating media;
in surfaces, the time-resolved radiance signal is fundamentally similar to a
caustic, and therefore is extremely hard to sample the path’s time-of-flight
uniformly. Using a variant of manifold exploration [95] could significantly
help, even in participating media, given that the propagation time of the
full path could be sampled in a unified fashion. Apart from technical im-
provements the rendering, one of the main opened line of research is using
time-resolved rendering in combination with capture methods, or as a tool
helping scene understanding techniques. By using physically-accurate ren-
dering we can develop a set of controlled priors for reconstruction-based
transient imaging [78, 111], or even develop a dictionary of basis for sparse
coding-based reconstruction, improving previous simple priors or basis (in
general, only delta-functions and Gaussians are used [78, 88, 168, 180]). In-
verse rendering [198] with time-resolved imaging is another powerful appli-
cation for transient rendering, which given the extended dimensionality of
the problem could allow even capturing visible and non-visible geometry
and materials at once.

future work Although in this thesis we have focused on only two do-
mains of the plenoptic function, it does not mean that similar challenges
as the addressed in our work for the angular and temporal domains are
not present for the remaining plenoptic domains. For example, in a simi-
lar fashion as in light fields, is not well known nor established how to edit
and manipulate hyperspectral images, which are gaining more importance
in e.g. modern rendering systems, including production-oriented ones (e.g.
Weta Digital’s Manuka or Next Limit’s MaxwellTM). The dimensionality of
the problem is even higher if we consider an extended plenoptic function,
including wave properties such as polarization state or phase. Therefore, sig-
nificant work following the same spirit of the work presented in this thesis
is important to help on the development and wide-spread of this new type
of multidimensional imaging.

Moreover, in this thesis we have explored the angular and temporal do-
main independently. This has allowed to simplify the problem, at the cost
of integrating, and therefore losing, the other domain. Previous work has
shown that there is a cross-dimensional information transfer between these
two domains [247]. This suggests that handling jointly both domains can
be beneficial when inferring information from the data, or at simulation
time. This hypothesis is valid for the interaction between other domains: in
a recent paper [97] we have seen that by simulating the angular and spa-
tial domain jointly using adaptive rendering techniques we can reduce the
rendering time of light fields around a 30% in simple scenes, and more as
we increase the size and complexity in both domains. Other dimensions of
the extended plenoptic function exhibit also close correlation: for example,
the electromagnetic phase can be formulated as a function of the optical
path (time) and the wavelength. Given these existing correlations between
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different domains, an exciting avenue for future work is to explore the po-
tential of including all, or a subset, of them for solving complex problems of
scene understanding, and how to effectively manipulate, visualize or simu-
late them.

personal conclusions During the development of this thesis I have
been able to work on a variety of projects, with different topics. This has
allowed me to expand my knowledge, from pure rendering, which was my
main field when started, to other fields such as perception, interaction or
computational imaging. I think that is one of the most interesting aspects
of the work I have done: instead of becoming extremely focused in one
field I have also gained several insights from several related areas. Thus,
although I still consider myself very knowledgeable in rendering, I think
that open-mindedness is very valuable as a researcher, and it is probably
a consequence of being in a rather multidisciplinary lab. I feel very lucky
about that.

In addition to technical knowledge, during this years I have significantly
improved other research skills, which are as valuable as pure mathemati-
cal or programming capabilities. Working with several collaborators from
different institutions and backgrounds in most of my projects has led into
significant evolution in terms of the way I communicate both problems and
possible solutions, and also in work distribution and time management. This
has helped to reach deadlines, and in general has made my life easier. Be-
ing able to supervise students has also had a deep impact on these skills.
Also I have acquired some perspective, allowing me to see the projects as a
whole, to put them in context or even to be able to kill them when they had
to be killed. In this regard, the projects that died, or were put on hold sine
die, have been as important as the projects that have made it in the thesis.
Of course, my supervisor is to blame for most of these skills. Nevertheless,
there is still a long way to go, and tons of stuff to learn and improve.

I must also mention the research stays and visits I have done during the
thesis, that have given me the opportunity to learn from other groups, ob-
serving different lab dynamics and personalities, both in pure academia or
in more industry-oriented research, and also acquire new knowledge and
insights from new fields.

Finally, I would like to mention the most important thing of the thesis:
I have been working in what I like, and having a lot of fun during the
process. And of course it has been tough sometimes, but that only makes it
more rewarding.
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ing physically correct bidirectional reflectance distribution functions.
IEEE Comput. Graph. Appl. 26, 1 (2006), 30–36.

[23] Cole, F., Sanik, K., DeCarlo, D., Finkelstein, A., Funkhouser, T.,
Rusinkiewicz, S., and Singh, M. How well do line drawings depict
shape? ACM Trans. Graph. 28, 3 (2009).

[24] Cunningham, D., and Wallraven, C. Experimental Design: From User
Studies to Psychophysics. AK Peters, 2011.

[25] Dana, K. J., van Ginneken, B., Nayar, S. K., and Koenderink, J. J.
Reflectance and texture of real-world surfaces. ACM Trans. Graph. 18
(January 1999), 1–34.

[26] Dansereau, D. G. Plenoptic signal processing for robust vision in field
robotics. PhD thesis, The University of Sydney, 2014.

[27] Davis, J., Jähne, B., Kolb, A., Raskar, R., and Theobalt, C. Time-of-
flight imaging: Algorithms, sensors and applications (Dagstuhl Semi-
nar 12431). Dagstuhl Reports 2, 10 (2012).

[28] Debevec, P. Rendering synthetic objects into real scenes: Bridging
traditional and image-based graphics with global illumination and
high dynamic range photography. In Proceedings of SIGGRAPH ’98
(1998).

[29] D’Eon, E., and Irving, G. A quantized-diffusion model for rendering
translucent materials. ACM Trans. Graph. 30, 4 (2011).

[30] Dewan, E. Stress effects due to Lorentz contraction. American Journal
of Physics 31 (1963).

[31] Doat, T., Parizot, E., and Vézien, J.-M. Novative rendering and
physics engines to apprehend special relativity. In Proceedings of Euro-
graphics Conference on Virtual Environments (2011).

[32] Duguay, M. A., and Mattick, A. T. Pulsed-image generation and
detection. Applied Optics 10 (1971), 2162–2170.

[33] Durand, F., Holzschuch, N., Soler, C., Chan, E., and Sillion, F. X.
A frequency analysis of light transport. ACM Trans. Graph. 24, 3 (2005).

[34] Dutré, P., Bala, K., and Bekaert, P. Advanced Global Illumination. AK
Peters, 2006.



Bibliography 159

[35] Edgerton, H. E., and Killian, J. R. Flash!: Seeing the unseen by ultra
high-speed photography. CT Branford Co., 1954.

[36] Einstein, A. Relativity: the special and the general theory. Crown Pub-
lishers, 1961.

[37] Faro. Faro Technologies Inc.: Measuring Arms. http://www.faro.com, 2012.

[38] Ferwerda, J. A., Shirley, P., Pattanaik, S. N., and Greenberg, D. P.
A model of visual masking for computer graphics. In Proceedings of
SIGGRAPH ’97 (1997).

[39] Filip, J., Chantler, M. J., Green, P. R., and Haindl, M. A psy-
chophysically validated metric for bidirectional texture data reduction.
ACM Trans. Graph. 27, 5 (2008).

[40] Filip, J., Chantler, M. J., and Haindl, M. On uniform resampling
and gaze analysis of bidirectional texture functions. ACM Trans. Appl.
Percept. 6, 3 (2009).

[41] Filip, J., and Haindl, M. Bidirectional texture function modeling: A
state of the art survey. IEEE Trans. on Pattern Analysis and Machine
Intelligence 31 (2009).

[42] Fleming, R. W., Dror, R. O., and Adelson, E. H. Real-world illumi-
nation and the perception of surface reflectance properties. Journal of
Vision 3, 5 (2003), 347–368.

[43] Franklin, J. Lorentz contraction, Bell’s spaceships and rigid body
motion in special relativity. European Journal of Physics 31, 2 (2010).

[44] Friedman, Y., and Gofman, Y. A new relativistic kinematics of accel-
erated systems. Physica Scripta 82, 1 (2010).

[45] Funkhouser, T., Tsingos, N., and Jot, J.-M. Survey of methods for
modeling sound propagation in interactive virtual environment sys-
tems. Presence and Teleoperation (2003).

[46] Garces, E., Martin, F., and Gutierrez, D. Low cost decomposi-
tion of direct and global illumination in real scenes. In Proceedings
of CEIG’15 (2015).

[47] Gbur, G. A camera fast enough to watch light move? http://

skullsinthestars.com/2012/01/04/a-camera-fast-enough-to-watch-light-move/, 2012.

[48] Gelbart, A., Redman, B. C., Light, R. S., Schwartzlow, C. A., and

Griffis, A. J. Flash lidar based on multiple-slit streak tube imaging
lidar. vol. 4723, SPIE, pp. 9–18.
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