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Outline

● How to choose the right solver?
– dense, sparse, direct, iterative, preconditioners, FMM, etc.

● Smoothness?
● Quadratic constraints
● Overview of other classical building-blocks
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A zoo of linear solvers
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SVD

● Singular Value Decomposition

– Welcome default behavior:
● over-constrained → Least-Square solution
● rank-deficient → Least-Norm solution

– Down-side:
● involve iterative decomposition algorithms
● overkill for linear solving?

A=V ΣW* x=A+ b=W Σ+ V* b
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QR

● QR decomposition
– Least-square solution:
– with column-pivoting → rank revealing

● rank-deficient:

→ complete orthogonalization (eliminate       )

→ yields minimal norm solution :)

A P=Q R

x=P R−1 QT b

A P=Q (T11 0
0 0 ) Z

A P=Q ( R1 R2

0 0 )
R2
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LU

● LU decomposition

– based on Gaussian elimination
– good for square, non symmetric problems
– mostly useful for sparse problems

A P=L U
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Cholesky

● Cholesky decomposition
– For SPD matrices

– For symmetric indefinite matrices:

● as fast
● numerical stability:

– pivoting
– or 2x2 diagonal blocks

A=L L '

PT A P=L D L '
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Dense solvers – Summary

QR

LU

Cholesky

SVD

robustness

speed

square
problem

normal
equation

LS/LN

symmetric
(well conditioned)

multi-dim. 
analysis,
polar dec., etc.
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Example

● Scattered data interpolation/approximation
– problem statement

input:
●  sample positions 
●  with associated values   

output:
●  a smooth scalar field

  s.t., 

p
i

f
i

f :ℝd→ℝ

f (p
i
)≈f

i
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unknowns

Discretization

● Decomposition on a set of basis functions

– linear LS minimization:

– plus, f has to be smooth 
● how to mathematically defines “smooth”?
→ seek for a (poly-)harmonic solution:

f (x)=∑
j
α
j
ϕ
j
(x )

α=argmin∑
i∥∑ j

α
j
ϕ
j
(p

i
)−f

i∥2

Δk f=0
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Smoothness & RBF

● Solution 1: Enforce smoothness by construction
– Choose (poly-)harmonic basis functions:

– Example: Radial Basis Functions
● centered at nodes      :

● polyharmonic splines:

● thin-plate spline :

f (x)=∑
j
α
j
ϕ(∥x−q j∥)

ϕ(t )=t k , k=1,3,5,…
ϕ(t )=t k ln(t) , k=2,4,6,…
ϕ(t )=t2 ln(t )

q
j

Δkϕ
i
=0
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RBF in practice

● Leads to a dense LS problem:

– Choice of the    ?
● take → interpolation!

– Solver choice?
● square & non-symmetric → LU

– Conditioning
● depends on the sampling

[ ⋮
⋯ ϕ(∥p

i
−q

j
∥) ⋯

⋮ ]⋅α=[ ⋮f i⋮ ]
q
j

q
j
=p

j

⇔ A α=b
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RBF in practice

● Globally supported basis
– storage: 
– solving:
– 1 evaluation:

 → very expensive for numerous nodes
– max: a few thousands

– For n large: Fast Multipole Method (FMM)
● iterative and hierarchical approach
● somewhat complicated, rarely used in practice

O(n3)

O(n)

O(n2)
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Global to Local Basis

● Solution 2: enforce smoothness through a PDE 
– the key problem is now to solve for

– subject to boundary constraints, e.g.: 

– advantage:
● enable locally supported basis functions

(e.g., box-splines)

→ Finite Element Method (FEM)

Δk f=0

f (p
i
)=f

i
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Laplacian equation

● Example:
– fundamental in many applications

● interpolation
● smoothing
● regularization
● deformations
● parametrization
● etc.

Δ f=0 (Δ f=▽⋅▽ f=
∂2
f
x

∂ x2 +
∂2
f
y

∂ y2 +⋯)
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FD Discretization

● Example on a 2D grid
– finite differences

– Matrix form:

Δ f (i , j)=
( f (i−1, j)+ f (i+ 1, j)+ f (i , j−1)+ f (i , j+ 1))

4
−f (i , j) = 0

Δ ⇔ [0 1 0
1 −4 1
0 1 0 ] f (i , j)

Lf=0
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FEM Discretization

● Leads to a sparse linear system of equations

–      is called the stiffness matrix
–       are compactly supported → most of the 
–       is usually huge, e.g.

● ~ number of pixels of an image
● ~ number of vertices of a mesh

→ How to exploit sparsity in linear solvers?

Lu=0 with L
i, j

=<▽ϕ
i
,▽ϕ

j
>

L
ϕ
i L

i , j
=0

L
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FEM Discretization

● On a triangular mesh
–    = linear basis (aka barycentric coordinates)
– famous “cotangent formula”:

L
i, j

=<▽ϕ
i
,▽ϕ

j
>=cotα

ij
+cotβ

ij

L
i , i
=− ∑

v
j
∈N1(vi)

L
i , j

ϕ
i

α
ij

β
ij

v
i

v
j

v
j−1

v
j+1
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Sparse representation?

● Naive way:
● Compressed {Row,Column} Storage

– the most commonly used

– need special care to “assemble” the matrix
● warning: might be time consuming!

– variant: store small blocks

std::map<pair<int,int>, double>
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Sparse solver classifications

● Direct methods
– Simplicial versus Super{nodal,frontal}
– Fill-in ordering

● Iterative methods
– Preconditioning

● Multi-grid & Hybrid methods
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Direct methods

● General principle
– adapt matrix decompositions to sparse storage

● Cholesky, LU, QR, etc.
● Main difficulties:

– matrix-updates introduce new non-zeros
→ need to predict their positions to avoid prohibitive 
memory reallocation/copies
→ need to reduce the number of  new non-zeros (fill-in)

– scalar-level computation is slow
→ need to leverage dense matrix operations
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Fill-in

● Fill-in depends on row/column order!
– i.e., on the arbitrary choice of the numbering of the 

unknowns & constraints
– pathological example:

lu L
U

sparse input dense factors :(
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Fill-in

● Fill-in depends on row/column order!
– i.e., on the arbitrary choice of the numbering of the 

unknowns & constraints
– pathological example:

lu L
U

sparse input
after re-ordering

sparse factors :)
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Fill-in

● Fill-in depends on row/column order!
– i.e., on the arbitrary choice of the numbering of the 

unknowns & constraints
→ re-ordering step prior to factorization

● tricky:
– must be faster than the factorization!
– must trade numerical stability!
– must preserve symmetry
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Fill-in ordering

● Many heuristics
– Band limiting
– Nested discestion
– approximate minimum degree (AMD)

● symmetric and symmetric variants
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Performance issue

● Sparse structure
→ indirect memory accesses

● bad pipelining
● bad cache usage

● Need to leverage dense matrix computations
– several variants: multinodal, multifrontal, etc.
– makes sense for not too sparse problems

● e.g., Poisson eq. on a 3D domain
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Direct solvers – summary

● Typical pipeline to solve Ax=b

pre-ordering

structure
analysis

numerical
factorization

solve
(back/forward           
         substitutions)

A

(same structure but different
  numerical coefficients)

(has many as you want,
  can even be a matrix)

A

b

x

matrix
assembly

problem
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Direct solvers – summary

● Pros
– solve for multiple right-hand sides
– very fast for very sparse problems (e.g., 2D Poisson)

● Cons
– high memory consumption

● ok for 2D domains
● huge for 3D domains

– (very) difficult to implement
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Iterative methods

● Jacobi iterations, Gauss-Seidel
– stationary methods based on matrix splitting:

● Jacobi :
● Gauss-Seidel :

– easiest to implement but...
– slow convergence
– needs to be diagonally dominant (or SPD)

x(i+1)=D−1(b−R x( i)) A=D+R

x(i+1)=L−1(b−U x(i)) A=L+U
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Iterative methods

● Conjugate Gradient (CG)
– non-stationary method
– SPD: convergence with 

decreasing error
– principle

● descent along a set of
optimal search directions:

with

{d1 ,…, d i }

d j
T A d i=0
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Conjugate Gradient

● In practice
– dominated by matrix-vector products:
– no need to “assemble” the matrix A

● operator approach
● easy to implement on the GPU

– much faster convergence with a pre-conditioner
● Jacobi, (S)SOR → easy, matrix-free and GPU friendly
● Incomplete factorization → more involved

A di
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Least-Square & CG

● Conjugate Gradient for Least-Square problems
– The bad approach: form the normal equation

– LSCG
● solve for the normal equation without computing 
● numerically more stable
● matrix-free & GPU friendly

AT A x=AT b

AT A
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Iterative methods

● Iterative methods for non-symmetric problems
– Bi-CG(STAB)

● close to CG but...
● convergence not guaranteed
● error may increase!

– GMRES
● error monotonically decreases but...
● may stall until the n-th iteration!
● memory consumption

– has to store a list of basis vectors (hundreds)
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Sparse solvers – Summary

memory mat-free multiple rhs 2D domain 3D domain
Direct
(simplicial)

- - *** *** *

Direct
(with dense blocks)

- - *** * **

Iterative
methods

*** *** - * ***

● Symmetry Positive Definite is important
– simpler implementation
– up to an order of magnitude faster
– more robust
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Solver Choice

● Questions:
– Solve multiple times with the same matrix?

● yes → direct methods
– Dimension of the support mesh

● 2D → direct methods
● 3D → iterative methods

– Can I trade the performance? Good initial solution?
● yes → iterative methods

– Hill conditioned?

● Still lost? → online sparse benchmark → demo
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Let's go back to our Laplacian problem...
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Laplacian problem

● Laplacian matrix on a triangular mesh 

– with                                     ,

– symmetric
– conditioning depends on triangle shapes
– SPD for well shaped triangles
– solver choice: direct simplicial LDL^T

L
i , j

=cot α
ij
+cotβ

ij
L
i ,i
=−∑ L

i, j

Δu=0 ⇔ Lu=0
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Laplacian problem

● This is an abstract problem
– need to add constraints to make it meaningful

● Fix values at vertices, i.e.,              for some i
– remove smoothness constraints at these vertices
– and reorder:

– problem is still SPD :)

Δu=0 ⇔ Lu=0

u
i
=ū

i

[ L00 L01

L10 L11 ]⋅[uū ]=[00 ] ⇒ L00⋅u=−L01⋅ū
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Laplacian problem

● Add linear constraints:
– Solution 1:

● reduce the solution space through the null-space of C

● reduce problem size :)
● problem is not symmetric anymore :(

Cu=b
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Laplacian problem

● Add linear constraints:
– Solution 2:

● Lagrange multipliers yields

● not SPD :(
● but symmetric indefinite → LDL^T if well conditioned

Cu=b

[ L CT

C 0 ]⋅[uλ ]=[ 0b ]
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Regularizing homogeneous equations

with

quadratic constraints
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A first example

● How to fit a hyper-plane trough points?
– Search a plane with center c and normal n

to a set of points 
– Minimize least-square error :

– Subject to 

→ at a first glance, non linear problem...

p
i

E(c ,n)=∑
i

((pi−c)T n )2

∥n∥=1
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Plane fitting

● E(c,n) minimum when its derivative wrt. c vanish :

– implies that 

∂E(c ,n)
∂c

=...=−2nnT∑
i
(p

i
−c)=0

∑
i
(p

i
−c)=0 ⇒ c=1

n
∑

i
p
i
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Plane fitting

● Reformulate E(c,n):

● subject to

● Lagrange multiplier :
● Differentiate on n yields an eigenvalue problem :

– residual:

→ n is eigenvector of smallest eigenvalue

E(c ,n) = nT (∑i
(q

i
−c)(q

i
−c)T )n = nTCn → min

∥n∥=1

nTCn−λ (nT n−1) → min

Cn=λ n
nTCn=λ
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A second example

● How to fit an hyper-sphere to points?
– Search a sphere with center c and radius r

to a set of points 
– Minimize least-square error :

● non-linear energy → see previous session
(need an initial guess)

● numerically unstable for flat area (              )

E(c , r)=∑
i

(∥pi−c∥−r )2

p
i

c , r→∞
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Sphere fitting

● Linearized energy:

– metric is not Euclidean anymore
– still unstable for flat area

E(c , r)=∑
i

(∥pi−c∥2−r2 )2

=∑
i

(c2−r2−2p
i

T c+p
i

2 )2

=∑
i

(uc+piT ul+pi2 )2
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Sphere fitting

● Linearized energy:

– metric is not Euclidean anymore
– again, needs to avoids trivial solution

E(c , r)=∑
i

(∥pi−c∥2−r2 )2

=∑
i

(c2−r2−2p
i

T c+p
i

2 )2

=∑
i

(uc+piT ul+pi2 )2

=∑
i

(uc+piT ul+uqpi2 )2

u=0
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Algebraic sphere fitting

● Some bad ideas:
– fix some values, e.g.:
– linear equality:
– unit norm:

● What do we want?
– be invariant to similarity transformations
– mimic Euclidean norm

u
q
=1

∑
j
u
j
=1

∥u∥=1



7/04/2014Gaël Guennebaud - "Optimization techniques in computer graphics"

53

Algebraic sphere fitting

● Solution:
– constraint
– algebraic distance close to Euclidean one nearby 

region of interest
● In practice:

– with     symmetric
– solve E over the unit ball induced by 

∥▽ f (x)∥=1    at    f (x)=0

uTQu=1
Q

Q
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Quadratic constraints

● The general problem is now:
● minimize
● subject to

– through Lagrange multipliers, we end up with a 
generalized eigenvalue problem:

– residual = 
–     is the eigenvector of the smallest eigenvalue

uTQu=1
∥A u∥2

A u=λQ u

λ
u
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Quadratic Constraints

● Other examples:
– Unsigned surface reconstruction
– Smooth n-direction fields

● Taking home message
– the choice of the regularization norm is crucial!
– taking              is unlikely the right choice!∥x∥=1
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Eigenvalue problems

● How to solve?
● closed forms 2x2 and 3x3
● iterative algorithms otherwise
● need only the largest → Power iterations

– fast, easy, GPU-friendly, sparse-friendly
– be careful with repeated eigenvalues

● need only the smallest → Inverse Power iterations
– slightly more tricky: needs a linear solver

● Can-it be considered as a direct method?
● numerically no, but
● it provides many of the advantages of simple linear 

problems such as analytic derivatives
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in geometry processing

● Alternate solution
– chicken-egg problems

● fix one part of the equation, solve for the second part
● fix the second part, solve for the first one
● repeat

– ex.: ARAP energy
● Barriers

– replace inequality constraints with penalty functions
– much more tricky than it looks like
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in geometry processing

● Smooth functions on meshes
– linear basis are unnecessarily numerous
– compute a small set of smooth eigenfunctions

● typically: a few hundreds
● many kernels, e.g., heat-kernel, Laplacian

– your solution becomes “smooth by construction”
– permits to work with medium-size dense algebra
– overheads: initialization, conversions, storage


