Numerical Linear Algebra with examples in geometry processing

Gaël Guennebaud

Gaël Guennebaud - "Optimization techniques in computer graphics"

- How to choose the right solver?
 - dense, sparse, direct, iterative, preconditioners, FMM, etc.
- Smoothness?
- Quadratic constraints
- Overview of other classical building-blocks

A zoo of linear solvers

Gaël Guennebaud - "Optimization techniques in computer graphics"

7/04/2014

5

Singular Value Decomposition

$$A = V \Sigma W^* \rightarrow x = A^+ b = W \Sigma^+ V^* b$$

- Welcome default behavior:
 - over-constrained \rightarrow Least-Square solution
 - rank-deficient \rightarrow Least-Norm solution
- Down-side:
 - involve iterative decomposition algorithms
 - overkill for linear solving?

- QR decomposition AP=QR
 - Least-square solution: $x = P R^{-1} Q^T b$
 - with column-pivoting \rightarrow rank revealing
 - rank-deficient:

$$AP = Q \begin{vmatrix} R_1 & R_2 \\ 0 & 0 \end{vmatrix}$$

 \rightarrow complete orthogonalization (eliminate R_2)

$$AP = Q \begin{vmatrix} T_{11} & 0 \\ 0 & 0 \end{vmatrix} Z$$

 \rightarrow yields minimal norm solution :)

• LU decomposition

AP = LU

- based on Gaussian elimination
- good for square, non symmetric problems
- mostly useful for sparse problems

- Cholesky decomposition
 - For SPD matrices

$$A = L L'$$

- For symmetric indefinite matrices: $P^T A P = L D L'$
 - as fast
 - numerical stability:
 - pivoting
 - or 2x2 diagonal blocks

Dense solvers – Summary

- Scattered data interpolation/approximation
 - problem statement

input:

- sample positions \mathbf{P}_i
- with associated values f_i

output:

• a **smooth** scalar field $f : \mathbb{R}^d \to \mathbb{R}$

s.t.,
$$f(\mathbf{p}_i) \approx f_i$$

11

Decomposition on a set of basis functions

$$f(\mathbf{x}) = \sum_{j} \alpha_{j} \varphi_{j}(\mathbf{x})$$

- linear LS minimization:

$$\boldsymbol{\alpha} = \operatorname{argmin} \sum_{i} \left\| \sum_{j} \alpha_{j} \varphi_{j}(\mathbf{p}_{i}) - f_{i} \right\|^{2}$$

- plus, *f* has to be **smooth**
 - how to mathematically defines "smooth"?
 → seek for a (poly-)harmonic solution:

$$\Delta^k f = 0$$

- Solution 1: Enforce smoothness by construction
 - Choose (poly-)harmonic basis functions:

$$\Delta^k \varphi_i = 0$$

- Example: Radial Basis Functions
 - centered at *nodes* \mathbf{q}_j : $f(\mathbf{x}) = \sum_j \alpha_j \varphi(\|\mathbf{x} \mathbf{q}_j\|)$
 - polyharmonic splines: $\varphi(t) = t^k$, k = 1,3,5,... $\varphi(t) = t^k \ln(t)$, k = 2,4,6,...
 - thin-plate spline : $\varphi(t) = t^2 \ln(t)$

• Leads to a **dense** LS problem:

$$\begin{bmatrix} \vdots \\ \vdots \\ \vdots \end{bmatrix} \cdots \Rightarrow \mathbf{a} = \begin{bmatrix} \vdots \\ f_i \\ \vdots \end{bmatrix} \Rightarrow \mathbf{a} = \mathbf{b}$$

- Choice of the q_j ?
 - take $\mathbf{q}_j = \mathbf{p}_j \rightarrow \text{interpolation!}$
- Solver choice?
 - square & non-symmetric \rightarrow LU
- Conditioning
 - · depends on the sampling

- Globally supported basis
 - storage: $O(n^2)$
 - solving: $O(n^3)$
 - 1 evaluation: O(n)
 - \rightarrow very expensive for numerous nodes
 - max: a few thousands
 - For *n* large: Fast Multipole Method (FMM)
 - iterative and hierarchical approach
 - somewhat complicated, rarely used in practice

- Solution 2: enforce smoothness through a PDE
 - the key problem is now to solve for

$$\Delta^k f = 0$$

- subject to *boundary* constraints, e.g.: $f(\mathbf{p}_i) = f_i$
- advantage:
 - enable locally supported basis functions (e.g., box-splines)

→ Finite Element Method (FEM)

Laplacian equation

• Example: $\Delta f = 0$

$$\left| \Delta f = \nabla \cdot \nabla f = \frac{\partial^2 f_x}{\partial x^2} + \frac{\partial^2 f_y}{\partial y^2} + \cdots \right|$$

- fundamental in many applications
 - interpolation
 - smoothing
 - regularization
 - deformations
 - parametrization
 - etc.

• Example on a 2D grid - finite differences $\Delta \Leftrightarrow \begin{bmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{bmatrix}$

$$\Delta f(i,j) = \frac{(f(i-1,j) + f(i+1,j) + f(i,j-1) + f(i,j+1))}{4} - f(i,j) = 0$$

- Matrix form: $\mathbf{L}\mathbf{f}=0$

Leads to a sparse linear system of equations

$$L \mathbf{u} = 0 \qquad \text{with} \qquad L_{i,j} = \langle \nabla \varphi_i, \nabla \varphi_j \rangle$$

- L is called the *stiffness* matrix
- φ_i are compactly supported \rightarrow most of the $L_{i,i}=0$
- L is usually huge, e.g.
 - ~ number of pixels of an image
 - ~ number of vertices of a mesh

\rightarrow How to exploit sparsity in linear solvers?

- On a triangular mesh
 - φ_i = linear basis (aka barycentric coordinates)
 - famous "cotangent formula":

$$L_{i,j} = \langle \nabla \varphi_i, \nabla \varphi_j \rangle = \cot \alpha_{ij} + \cot \beta_{ij}$$
$$L_{i,i} = -\sum_{v_j \in N_1(v_i)} L_{i,j}$$

Sparse representation?

- Naive way:std::map<pair<int,int>, double>
- Compressed {Row,Column} Storage
 - the most commonly used

- need special care to "assemble" the matrix
 - warning: might be time consuming!
- variant: store small blocks

Sparse solver classifications

- Direct methods
 - Simplicial versus Super{nodal,frontal}
 - Fill-in ordering
- Iterative methods
 - Preconditioning
- Multi-grid & Hybrid methods

- General principle
 - adapt matrix decompositions to sparse storage
 - Cholesky, LU, QR, etc.
- Main difficulties:
 - matrix-updates introduce new non-zeros

 \rightarrow need to predict their positions to avoid prohibitive memory reallocation/copies

 \rightarrow need to reduce the number of new non-zeros (fill-in)

- scalar-level computation is slow

 \rightarrow need to leverage dense matrix operations

23

- Fill-in depends on row/column order!
 - i.e., on the arbitrary choice of the numbering of the unknowns & constraints
 - pathological example:

- Fill-in depends on row/column order!
 - i.e., on the arbitrary choice of the numbering of the unknowns & constraints
 - pathological example:

- Fill-in depends on row/column order!
 - i.e., on the arbitrary choice of the numbering of the unknowns & constraints
 - \rightarrow re-ordering step prior to factorization
- tricky:
 - must be faster than the factorization!
 - must trade numerical stability!
 - must preserve symmetry

- Many heuristics
 - Band limiting
 - Nested discestion
 - approximate minimum degree (AMD)
 - symmetric and symmetric variants

Performance issue

- Sparse structure
 - \rightarrow indirect memory accesses
 - bad pipelining
 - bad cache usage
- Need to leverage dense matrix computations
 - several variants: multinodal, multifrontal, etc.
 - makes sense for not too sparse problems
 - e.g., Poisson eq. on a 3D domain

Direct solvers – summary

Typical pipeline to solve Ax=b

problem

Direct solvers – summary

- Pros
 - solve for multiple right-hand sides
 - very fast for very sparse problems (e.g., 2D Poisson)
- Cons
 - high memory consumption
 - ok for 2D domains
 - huge for 3D domains
 - (very) difficult to implement

- Jacobi iterations, Gauss-Seidel
 - stationary methods based on matrix splitting:
 - Jacobi : $x^{(i+1)} = D^{-1}(b-Rx^{(i)})$ A = D+R
 - Gauss-Seidel : $x^{(i+1)} = L^{-1}(b Ux^{(i)})$ A = L + U

- easiest to implement but...
- slow convergence
- needs to be diagonally dominant (or SPD)

- Conjugate Gradient (CG)
 - non-stationary method
 - SPD: convergence with decreasing error
 - principle
 - descent along a set of optimal search directions:

 $\left\{\mathbf{d}_{1},\ldots,\mathbf{d}_{i}\right\}$

with $d_j^T A d_i = 0$

Conjugate Gradient

- In practice
 - dominated by matrix-vector products: $A d_i$
 - no need to "assemble" the matrix A
 - operator approach
 - easy to implement on the GPU
 - much faster convergence with a pre-conditioner
 - Jacobi, (S)SOR \rightarrow easy, matrix-free and GPU friendly
 - Incomplete factorization \rightarrow more involved

- Conjugate Gradient for Least-Square problems
 - The bad approach: form the normal equation $A^{T}Ax = A^{T}b$
 - LSCG
 - solve for the normal equation without computing $\mathbf{A}^{\mathrm{T}}\mathbf{A}$
 - numerically more stable
 - matrix-free & GPU friendly

- Iterative methods for non-symmetric problems
 - Bi-CG(STAB)
 - close to CG but...
 - convergence not guaranteed
 - error may increase!
 - GMRES
 - error monotonically decreases but...
 - may stall until the *n*-th iteration!
 - memory consumption
 - has to store a list of basis vectors (hundreds)

Sparse solvers – Summary

	memory	mat-free	multiple rhs	2D domain	3D domain
Direct (simplicial)	-	-	***	***	*
Direct (with dense blocks)	-	-	***	*	**
Iterative methods	***	***	-	*	***

- Symmetry Positive Definite is important
 - simpler implementation
 - up to an order of magnitude faster
 - more robust

Solver Choice

- Questions:
 - Solve multiple times with the same matrix?
 - yes \rightarrow direct methods
 - Dimension of the support mesh
 - $2D \rightarrow direct methods$
 - $3D \rightarrow iterative methods$
 - Can I trade the performance? Good initial solution?
 - yes \rightarrow iterative methods
 - Hill conditioned?
- Still lost? \rightarrow online sparse benchmark

 \rightarrow demo

Let's go back to our Laplacian problem...

• Laplacian matrix on a triangular mesh

$$\Delta u = 0 \quad \Leftrightarrow \quad \mathbf{L} \mathbf{u} = 0$$

- with
$$L_{i,j} = \cot \alpha_{ij} + \cot \beta_{ij}$$
, $L_{i,i} = -\sum L_{i,j}$

- symmetric
- conditioning depends on triangle shapes
- SPD for well shaped triangles
- solver choice: direct simplicial LDL^T

Laplacian problem

$$\Delta u = 0 \quad \Leftrightarrow \quad \mathbf{L} \, \mathbf{u} = 0$$

- This is an *abstract* problem
 - need to add constraints to make it meaningful
- Fix values at vertices, i.e., $u_i = \overline{u}_i$ for some *i*
 - remove smoothness constraints at these vertices
 - and reorder:

$$\begin{bmatrix} \mathbf{L}_{00} & \mathbf{L}_{01} \\ \mathbf{L}_{10} & \mathbf{L}_{11} \end{bmatrix} \cdot \begin{bmatrix} \mathbf{u} \\ \mathbf{\overline{u}} \end{bmatrix} = \begin{bmatrix} \mathbf{0} \\ \mathbf{\theta} \end{bmatrix} \implies \mathbf{L}_{00} \cdot \mathbf{u} = -\mathbf{L}_{01} \cdot \mathbf{\overline{u}}$$

- problem is still SPD :)

Laplacian problem

- Add linear constraints: $C \mathbf{u} = \mathbf{b}$
 - Solution 1:
 - reduce the solution space through the null-space of C

- reduce problem size :)
- problem is not symmetric anymore :(

Laplacian problem

- Add linear constraints: $C \mathbf{u} = \mathbf{b}$
 - Solution 2:
 - Lagrange multipliers yields

$$\begin{bmatrix} \mathbf{L} & \mathbf{C}^{\mathrm{T}} \\ \mathbf{C} & \mathbf{0} \end{bmatrix} \cdot \begin{bmatrix} \mathbf{u} \\ \mathbf{\lambda} \end{bmatrix} = \begin{bmatrix} \mathbf{0} \\ \mathbf{b} \end{bmatrix}$$

- not SPD :(
- but symmetric indefinite $\rightarrow \text{LDL^T}$ if well conditioned

Regularizing homogeneous equations

with

quadratic constraints

45

Gaël Guennebaud - "Optimization techniques in computer graphics"

- How to fit a hyper-plane trough points?
 - Search a plane with center **c** and normal **n** to a set of points \mathbf{p}_i
 - Minimize least-square error :

$$E(\mathbf{c},\mathbf{n}) = \sum_{i} \left| (\mathbf{p}_{i} - \mathbf{c})^{T} \mathbf{n} \right|^{2}$$

- Subject to $||\mathbf{n}|| = 1$

\rightarrow at a first glance, non linear problem...

• E(c,n) minimum when its derivative wrt. c vanish :

$$\frac{\partial E(\mathbf{c},\mathbf{n})}{\partial \mathbf{c}} = \dots = -2\mathbf{n}\mathbf{n}^T \sum_i (\mathbf{p}_i - \mathbf{c}) = 0$$

- implies that

$$\sum_{i} (\mathbf{p}_{i} - \mathbf{c}) = 0 \qquad \Rightarrow \qquad \mathbf{c} = \frac{1}{n} \sum_{i} \mathbf{p}_{i}$$

• Reformulate E(c,n):

$$E(\mathbf{c},\mathbf{n}) = \mathbf{n}^T \Big| \sum_i (\mathbf{q}_i - \mathbf{c}) (\mathbf{q}_i - \mathbf{c})^T \Big| \mathbf{n} = \mathbf{n}^T \mathbf{C} \mathbf{n} \rightarrow min$$

- subject to $||\mathbf{n}|| = 1$
- Lagrange multiplier : $\mathbf{n}^T \mathbf{C} \mathbf{n} \lambda (\mathbf{n}^T \mathbf{n} 1) \rightarrow min$
- Differentiate on **n** yields an eigenvalue problem :

$$\mathbf{C} \mathbf{n} = \lambda \mathbf{n}$$
- residual: $\mathbf{n}^T \mathbf{C} \mathbf{n} = \lambda$

$$\rightarrow \mathbf{n}$$
 is eigenvector of smallest eigenvalue

- How to fit an hyper-sphere to points?
 - Search a sphere with center c and radius r
 to a set of points p_i
 - Minimize least-square error :

$$E(\mathbf{c}, r) = \sum_{i} (\|\mathbf{p}_{i} - \mathbf{c}\| - r)^{2}$$

- non-linear energy → see previous session (need an initial guess)
- numerically unstable for flat area ($\mathbf{c}, r \rightarrow \infty$)

• Linearized energy:

$$E(\mathbf{c}, \mathbf{r}) = \sum_{i} \left(\|\mathbf{p}_{i} - \mathbf{c}\|^{2} - \mathbf{r}^{2} \right)^{2}$$

=
$$\sum_{i} \left(\mathbf{c}^{2} - \mathbf{r}^{2} - 2\mathbf{p}_{i}^{T}\mathbf{c} + \mathbf{p}_{i}^{2} \right)^{2}$$

=
$$\sum_{i} \left(\mathbf{u}_{c} + \mathbf{p}_{i}^{T}\mathbf{u}_{l} + \mathbf{p}_{i}^{2} \right)^{2}$$

- metric is not Euclidean anymore
- still unstable for flat area

• Linearized energy:

$$E(\mathbf{c}, r) = \sum_{i} \left(||\mathbf{p}_{i} - \mathbf{c}||^{2} - r^{2} \right)^{2}$$

$$= \sum_{i} \left(\mathbf{c}^{2} - r^{2} - 2\mathbf{p}_{i}^{T}\mathbf{c} + \mathbf{p}_{i}^{2} \right)^{2}$$

$$= \sum_{i} \left(\mathbf{u}_{c} + \mathbf{p}_{i}^{T}\mathbf{u}_{l} + \mathbf{p}_{i}^{2} \right)^{2}$$

$$= \sum_{i} \left(\mathbf{u}_{c} + \mathbf{p}_{i}^{T}\mathbf{u}_{l} + \mathbf{u}_{q}\mathbf{p}_{i}^{2} \right)^{2}$$

- metric is not Euclidean anymore
- again, needs to avoids trivial solution $\mathbf{u} = 0$

Algebraic sphere fitting

- Some bad ideas:
 - fix some values, e.g.: $u_q = 1$
 - linear equality:
 - unit norm:

$$\sum_{j} u_{j} = 1$$
$$\|\mathbf{u}\| = 1$$

- What do we want?
 - be invariant to similarity transformations
 - mimic Euclidean norm

Algebraic sphere fitting

- Solution:
 - constraint $\|\nabla f(\mathbf{x})\| = 1$ at $f(\mathbf{x}) = 0$
 - algebraic distance close to Euclidean one nearby region of interest
- In practice:

$$\mathbf{u}^{\mathrm{T}}\mathbf{Q}\mathbf{u}=1$$

- with Q symmetric
- solve E over the unit ball induced by $\,Q\,$

- The general problem is now:
 - minimize $||A\mathbf{u}||^2$
 - subject to $\mathbf{u}^{\mathrm{T}} \mathbf{Q} \mathbf{u} = 1$
 - through Lagrange multipliers, we end up with a *generalized eigenvalue* problem:

$$A \mathbf{u} = \lambda Q \mathbf{u}$$

- residual = λ
- \mathbf{u} is the eigenvector of the smallest eigenvalue

Quadratic Constraints

- Other examples:
 - Unsigned surface reconstruction
 - Smooth *n*-direction fields
- Taking home message
 - the choice of the regularization norm is crucial!
 - taking $||\mathbf{x}|| = 1$ is unlikely the right choice!

Eigenvalue problems

- How to solve?
 - closed forms 2x2 and 3x3
 - iterative algorithms otherwise
 - need only the largest \rightarrow Power iterations
 - fast, easy, GPU-friendly, sparse-friendly
 - be careful with repeated eigenvalues
 - need only the smallest \rightarrow Inverse Power iterations
 - slightly more tricky: needs a linear solver
- Can-it be considered as a direct method?
 - numerically no, but
 - it provides many of the advantages of simple linear problems such as analytic derivatives

Other classical approaches in geometry processing

- Alternate solution
 - chicken-egg problems
 - fix one part of the equation, solve for the second part
 - fix the second part, solve for the first one
 - repeat
 - ex.: ARAP energy
- Barriers
 - replace inequality constraints with penalty functions
 - much more tricky than it looks like

- Smooth functions on meshes
 - linear basis are unnecessarily numerous
 - compute a small set of smooth eigenfunctions
 - typically: a few hundreds
 - many kernels, e.g., heat-kernel, Laplacian
 - your solution becomes "smooth by construction"
 - permits to work with medium-size dense algebra
 - overheads: initialization, conversions, storage

