Numerical Linear Algebra
with examples in geometry processing
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w Outline |

« How to choose the right solver?

- dense, sparse, direct, iterative, preconditioners, FMM, etc.

¢ Smoothness?

 Quadratic constraints
 Overview of other classical building-blocks
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A zoo of linear solvers
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SVD

» Singular Value Decomposition
A=VEIW — x=A'b=WXZ'V'b

- Welcome default behavior:
 over-constrained — Least-Square solution
* rank-deficient — Least-Norm solution

- Down-side:
* involve iterative decomposition algorithms
« overkill for linear solving?
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QR

« QR decomposition AP=QR
- Least-square solution: x=PR'Q'b
- with column-pivoting — rank revealing

* rank-deficient:

R; R
AP= : 2
Q 0O O
— complete orthogonalization (eliminate R, )
0 Z
0
— Yyields minimal norm solution :)

AP=Q

Ty
0
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LU

» LU decomposition
AP=LU

- based on Gaussian elimination
- good for square, non symmetric problems
- mostly useful for sparse problems
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Cholesky

» Cholesky decomposition
- For SPD matrices

A=LL’

- For symmetric indefinite matrices:

P AP=LDL"’

« as fast

 numerical stability:
- pivoting
- or 2x2 diagonal blocks
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Dense solvers — Summary

symmetric ——» Cholesky
(well conditioned)
square normal
problem —* LU equation
LSILN & QR
multi-dim.
analysis, - SVD
polar dec., etc.
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Example

 Scattered data interpolation/approximation
- problem statement

input: output:
« sample positions P; « asmooth scalar field f:IRd - IR
* with associated values f.

s.t,, f(pi)Nfi
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Discretization

« Decomposition on a set of basis functions

:Zj aj(pj(x)
—

—p UNKNOWNS

- linear LS minimization:
a=argmin 3. |2 o, (p)—f||

- plus, f has to be smooth

 how to mathematically defines “smooth™?
— seek for a (poly-)harmonic solution:

A“f=0
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w Smoothness & RBF B

» Solution 1: Enforce smoothness by construction
- Choose (poly-)harmonic basis functions:

Akcpl:()

- Example: Radial Basis Functions
- centered at nodes q;: f(x)zzjocjcp(Hx—qu)

« polyharmonic splines: ¢ (t)=t" , k=1,3,5,...
o(t)=tIn(t) , k=2,46,...
+ thin-plate spline : o(t)=t"In(t)
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RBF in practice

» Leads to a dense LS problem:

CP(HPI'_qj”) = f:i < Aa=b

- Choice of the q.?

- take q,=p; — interpolation!
- Solver choice?

 square & non-symmetric — LU
- Conditioning

 depends on the sampling
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RBF in practice

 Globally supported basis
- storage: o(n*)
- solving: o(n’)
- 1 evaluation: o(n)
— very expensive for numerous nodes

- max; a few thousands

- For n large: Fast Multipole Method (FMM)

« |terative and hierarchical approach
« somewhat complicated, rarely used in practice
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w Global to Local Basis 16

 Solution 2: enforce smoothness through a PDE
- the key problem is now to solve for

A“f=0
- subject to boundary constraints, e.g.: f(p)=f

- advantage:

 enable locally supported basis functions
(e.g., box-splines)

— Finite Element Method (FEM)
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Laplacian equation

« Example: Af=0 Af= vvf_f;f Zf
X Yy

- fundamental in many applications

* Interpolation

« smoothing

e regularization
 deformations

« parametrization
* efc.
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@ié FD Discretization 18

« Example on a 2D grid

- finite differences o
O 1 O TR
Aol —4 1 {}f( JJ)
0 1 0

4

- Matrix form: Lf=0
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e, FEM Discretization 19

 Leads to a sparse linear system of equations
Lu=0 with L =<Vg,Ve>

- L, is called the stiffness matrix

- ©; are compactly supported — most of the L; ;=0

- L is usually huge, e.g.
« ~ number of pixels of an image
« ~ number of vertices of a mesh

— How to exploit sparsity in linear solvers?
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- FEM Discretization

 On a triangular mesh

- ;= linear basis (aka barycentric coordinates)
- famous “cotangent formula™:

L. .= <chl.,chj> =cota,;+cotf3

I, ] Z L

vEN
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Sparse representation?

° Naive Way:std: :map<pair<int,int>, double>

« Compressed {Row,Column} Storage
- the most commonly used

0O 3 0 0O

22 0 0 0 17 Values: 22 7 3 5 14 1 17 8
7 50 10 -l Innerindices: 1 2 0 2 4 2 1 4
0 00 00 OuterStarts: 0 2 4 5 6 8

0O O 14 0 8

- need special care to "assemble” the matrix
« warning: might be time consuming!
- variant: store small blocks
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* Direct methods

- Simplicial versus Super{nodal,frontal}
— Fill-in ordering

* |terative methods
- Preconditioning

 Multi-grid & Hybrid methods
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Direct methods

 General principle

- adapt matrix decompositions to sparse storage
« Cholesky, LU, QR, etc.

* Main difficulties:

- matrix-updates introduce new non-zeros

— need to predict their positions to avoid prohibitive
memory reallocation/copies

— need to reduce the number of new non-zeros (fill-in)
- scalar-level computation is slow
— need to leverage dense matrix operations
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Fill-in

* Fill-in depends on row/column order!

- l.e., on the arbitrary choice of the numbering of the
unknowns & constraints

- pathological example:

lu

sparse input dense factors (
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Fill-in

25

» Fill-in depends on row/column order!
- l.e., on the arbitrary choice of the numbering of the

unknowns & constraints
- pathological example:

lu

sparse input
after re-ordering

L

sparse factors :)
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& Fill-in

» Fill-in depends on row/column order!

- l.e., on the arbitrary choice of the numbering of the
unknowns & constraints

— re-ordering step prior to factorization

e tricky:
- must be faster than the factorization!

- must trade numerical stability!
- must preserve symmetry
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Fill-in ordering

27

» Many heuristics
- Band limiting
- Nested discestion

- approximate minimum degree (AMD)
« symmetric and symmetric variants
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Performance issue

28

« Sparse structure

— Indirect memory accesses
* bad pipelining
 bad cache usage

* Need to leverage dense matrix computations

- several variants: multinodal, multifrontal, etc.

- makes sense for not too sparse problems
* e.g., Poisson eq. on a 3D domain
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Qﬁé Direct solvers — summary

» Typical pipeline to solve Ax=b

problem
- matrix
pre-ordering < A — assembly <
structure
analysis
numerical < A (same structure but different
factorization numerical coefficients)
solve
(back/forward < b (has many as you want,
substitutions) can even be a matrix)
X
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w Direct solvers — summary

 Pros

- solve for multiple right-hand sides
- very fast for very sparse problems (e.g., 2D Poisson)

« Cons

- high memory consumption

» ok for 2D domains
* huge for 3D domains

- (very) difficult to implement
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w lterative methods 31

« Jacobi iterations, Gauss-Seidel
- stationary methods based on matrix splitting:

. Jacobi - x""=D'(b—Rx") A=D+R
. Gauss-Seidel : x"*'=L'(b—Ux") A=L+U

- easlest to implement but...
- slow convergence
- needs to be diagonally dominant (or SPD)
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« Conjugate Gradient (CG)

- non-stationary method

- SPD: convergence with
decreasing error

- principle

 descent along a set of
optimal search directions:

d,....d;

with d ;" Ad,=0 \\
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Conjugate Gradient

33

* |n practice

- dominated by matrix-vector products: Ad.

- no need to "assemble” the matrix A
 operator approach
* easy to implement on the GPU
- much faster convergence with a pre-conditioner

« Jacobi, (S)SOR — easy, matrix-free and GPU friendly
 Incomplete factorization — more involved
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w Least-Square & CG 34

» Conjugate Gradient for Least-Square problems

- The bad approach: form the normal equation
A"Ax=A"b

- LSCG

« solve for the normal equation without computing A" A
 numerically more stable
 matrix-free & GPU friendly
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lterative methods

* |terative methods for non-symmetric problems

- Bi-CG(STAB)
 close to CG but...

* convergence not guaranteed
* error may increase!

- GMRES

« error monotonically decreases but...
« may stall until the n-th iteration!

e memory consumption
- has to store a list of basis vectors (hundreds)
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Qié Sparse solvers — Summary

memory mat-free multiple rhs 2D domain 3D domain
DlreCt *%k* *%k* *
(simplicial)
Direct e * **
(with dense blocks)
Iteratlve *%k* *%k* _ * *%k*
methods

« Symmetry Positive Definite is important

- simpler implementation
- up to an order of magnitude faster
- more robust
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Solver Choice

* Questions:

- Solve multiple times with the same matrix?
* yes — direct methods
- Dimension of the support mesh

« 2D — direct methods
« 3D — iterative methods

- Can | trade the performance? Good initial solution?
* yes — iterative methods

- Hill conditioned?

. . d
. Still lost? — online sparse benchmark ~ — 9"
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Let's go back to our Laplacian problem...
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w Laplacian problem

» Laplacian matrix on a triangular mesh
Au=0 < Lu=0

- symmetric

- conditioning depends on triangle shapes
- SPD for well shaped triangles

- solver choice: direct simplicial LDLMT
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Laplacian problem

Au=0 < Lu=0
 This Is an abstract problem

- need to add constraints to make it meaningful
« Fix values at vertices, i.e., U;=U. for some i

- remove smoothness constraints at these vertices
- and reorder:

Loo Lo jw_|0] 5 Ly, u=—L, T
E L5 u] O

- problem is still SPD :)

Gaél Guennebaud - "Optimization techniques in computer graphics" 7/04/2014

41




mn

Laplacian problem

42

* Add linear constraints: Cu=b

- Solution 1:
« reduce the solution space through the null-space of C

* reduce problem size :)
 problem is not symmetric anymore :(
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Laplacian problem

43

* Add linear constraints: Cu=b

- Solution 2:

 Lagrange multipliers yields

L C'lu

.C O.

 not SPD (

 but symmetric indefinite — LDLAT if well conditioned

A

)
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Regularizing homogeneous equations
with
quadratic constraints
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w A first example 46

» How to fit a hyper-plane trough points?

- Search a plane with center ¢ and normal n
to a set of points p,

- Minimize least-square error :

E(c,n)zz,

l

((Pi_C)Tn)2
- Subject to ||n||=1

— at a first glance, non linear problem...
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Qﬁé Plane fitting 47

 E(c,n) minimum when its derivative wrt. ¢ vanish :

6E(g(;,n) =...=—2nnTZi (p,—c)=0

- Implies that

Z,-(Pi_c):() i C:%Zipi

Gaél Guennebaud - "Optimization techniques in computer graphics" 7/04/2014



48

| N |

Plane fitting

« Reformulate E(c,n):
E(C:n) — nT(Zi(qi—c)(qi—c)T)n

- subjectto ||n||=1

T .
n Cn = min

 Lagrange multiplier : nTCn—K(nTn—l) - min
» Differentiate on n yields an eigenvalue problem :
Cn=An
- residual: n. Cn=A\
— N is eigenvector of smallest eigenvalue
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A second example

» How to fit an hyper-sphere to points?

- Search a sphere with center ¢ and radius r
to a set of points p,

- Minimize least-square error :

E(c,r)=2. llp—cl-rf

* non-linear energy — see previous session
(need an initial guess)

« numerically unstable for flat area ( ¢,r> )
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w Sphere fitting 50

* Linearized energy:

E(c,r)=Y [lp—cl’~r*
=2 [ =r'=2p[crp]]

:Zi

T 2|2
u.+p, ul+pi)

- metric is not Euclidean anymore
- still unstable for flat area
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w Sphere fitting 51

* Linearized energy:

E(c,r)=2 lIp—cl’=rf
=2, | =r'=2p/c+p]/
- metric is not Euclidean anymore
- again, needs to avoids trivial solution u=0

T 2|2
u.+p,; ul+pi)

212
I

T
uc+pi ul+qu
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w Algebraic sphere fitting 52

« Some bad ideas:

- fix some values, e.g.: u,=1
- linear equality: > u=1

joJ

- unit norm: |ul|=1

 What do we want?

- be invariant to similarity transformations
- mimic Euclidean norm
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w Algebraic sphere fitting 53

» Solution:
- constraint ||[Vf(x)[|=1 at f(x)=0

- algebraic distance close to Euclidean one nearby
region of interest

* |n practice:
u'Qu=1
- with Q symmetric
- solve E over the unit ball induced by Q
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w Quadratic constraints

» The general problem is now:
. minimize ||Aul
. subjectto u Qu=1

- through Lagrange multipliers, we end up with a
generalized eigenvalue problem:

Au=AQu

- residual = )\
- u Is the eigenvector of the smallest eigenvalue
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@ Quadratic Constraints 55

» Other examples:

- Unsigned surface reconstruction
- Smooth n-direction fields

 Taking home message

- the choice of the regularization norm is crucial!
- taking ||x||=1 is unlikely the right choice!
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Eigenvalue problems

« How to solve?

* closed forms 2x2 and 3x3
* iterative algorithms otherwise

* need only the largest — Power iterations

- fast, easy, GPU-friendly, sparse-friendly
- be careful with repeated eigenvalues

* need only the smallest — Inverse Power iterations
- slightly more tricky: needs a linear solver

« Can-it be considered as a direct method?

« numerically no, but

* it provides many of the advantages of simple linear
problems such as analytic derivatives
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w Other classical approaches "
: In_ geometry processing

« Alternate solution

- chicken-egg problems

« fix one part of the equation, solve for the second part
» fix the second part, solve for the first one
* repeat

- eX.. ARAP energy

« Barriers

- replace inequality constraints with penalty functions
- much more tricky than it looks like
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Other classical approaches
In_ geometry processing

« Smooth functions on meshes

- linear basis are unnecessarily numerous

- compute a small set of smooth eigenfunctions

« typically: a few hundreds
* many kernels, e.g., heat-kernel, Laplacian

- your solution becomes “smooth by construction”
- permits to work with medium-size dense algebra
- overheads: initialization, conversions, storage
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