
Eurographics Symposium on Parallel Graphics and Visualization (2010)
J. Ahrens, K. Debattista, and R. Pajarola (Editors)

PaTraCo: A Framework Enabling the Transparent and
Efficient Programming of Heterogeneous Compute Networks

S. Frey and T. Ertl

Visualisierungsinstitut der Universität Stuttgart, Germany

Abstract
We propose PaTraCo (Parallel Transparent Computation), a framework for developing parallel applications for
single host or ad-hoc compute network environments incorporating a multitude of different kinds of compute
devices including graphics cards. It supports both task parallelism and data parallelism, and is designed for al-
gorithms that can be decomposed into passes. The provided API supports the user in structuring the program
accordingly. Only application-specific parts need to be implemented using a set of base classes. Multiple compute
kernel implementations can be provided per pass, one for each device class (e.g. CPU, GPU, CELL). The sched-
uler which is based on the critical path method determines prior to the actual computation which implementation
to execute on which device to minimize the overall runtime by considering device speed, availability and transfer
cost. This procedure has the additional advantage that data can already be transferred to a compute device before
the actual need for it arises and thus network transfers can often be executed parallel to computation. Overall,
this results in reduced device idling times (if any) and more efficient device utilization. Thread setup and com-
munication, network data transfers and scheduling are handled transparently to the user. PaTraCo monitors the
execution in order to update the cost estimates that are used by the scheduler and to provide the user with visual
analysis. We evaluate the framework by means of an interactive distributed volume renderer.

Categories and Subject Descriptors (according to ACM CCS): I.3.1 [Computer Graphics]: Parallel processing—
I.3.2 [Computer Graphics]: Distributed/network graphics—

1. Introduction

There are numerous frameworks available for programming
multi- and many-core computation devices, like CUDA for
NVIDIA GPUs and OpenMP for CPUs. OpenCL is even de-
signed for writing programs that execute on different types
of devices. However, when a computation needs to be dis-
tributed across multiple compute devices, the programmer
has to be aware of which and how many devices are available
on a machine, in a cluster environment, or even in very het-
erogeneous environments. Data management, network com-
munication and especially task scheduling, which should op-
timally consider data locality and compute device specifica-
tions amongst others, need to be implemented manually by
the application program developer.

In order to support the programmer in developing and
providing efficient execution scheduling, we introduce Pa-
TraCo (Parallel Transparent Computation). Computation
tasks need to be divided into one or several passes using the

provided API. Passes again are subdivided into pass blocks –
each pass block typically operates on a different data chunk –
which are scheduled to execute on a device in the cluster
such that the estimated computation time over all pass blocks
is minimal. This is achieved by an advanced load-balancing
heuristic that exploits the information about the overall com-
putation that is implicitly available to PaTraCo and addition-
ally uses performance estimations which may be provided
by the user. It enables to predictively copy data to nodes
on which it will be needed later on, which is one major ad-
vantage over standard work stealing algorithms for instance.
Our scheduling heuristic aims to choose the best hardware
to optimally process a given workload. However, since the
best hardware is not necessarily the hardware that processes
the problem fastest, also the cost of transferring the input
data to the device as well as the availability of the device
are taken into account. Our system allows user-transparent
execution of applications on heterogeneous, arbitrary linked

c© The Eurographics Association 2010.

DOI: 10.2312/EGPGV/EGPGV10/131-140

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/EGPGV/EGPGV10/131-140

S. Frey and T. Ertl / PaTraCo: Transparent Programming of Heterogeneous Environments

nodes across several device types, steered by our scheduling
heuristic for execution planning. Note that the scheduling
problem discussed in this paper focusses on assigning task
chunks to devices and not on alloting device time to pro-
cesses (see Fallenbeck et al. [FPSF06] amongst others).

2. Related Work

To our knowledge no framework is publicly available that
supports compute-network-transparent programming featur-
ing different classes of devices and automatic scheduling.
However, there are tools that enable device-transparent pro-
gramming and execution of applications on machine level
featuring multi-core processors, e.g. RapidMind [Mon08]
and HMPP [DBShmcppe07]. When the computation is ex-
pressed as a sequence of functions applied to arrays, it is
automatically divided among the available processing cores
(CPUs, GPUs and CELL). These frameworks base on a
runtime system that provides a uniform execution model,
scheduling policies and automated data transfers, as dis-
cussed by Augonnet et al. [ATNW09] amongst others.

Müller et al. [MFS∗09] presented CUDASA, a develop-
ment environment that additionally supports cluster environ-
ments but limits itself to GPUs and CUDA. The underlying
communication mechanisms are handled transparently and
a data locality aware scheduling mechanism is used. Sun-
deram [Sun90] proposed a programming environment for
parallel applications consisting of many interacting compo-
nents which is intended to operate on a collection of het-
erogeneous computing elements. Apart from that, there are
frameworks for grid batch computing like BOINC [And04]
focusing on large scale computations (e.g. astrophysics). Be-
sides these general frameworks, many application-specific
environments for user transparent computation on clusters
have been proposed, especially in the area of image and mul-
timedia processing [BDF∗93] [LWX02] [PTVvdS09]. Sein-
stra et al. [SGK∗07] proposed a cluster programming library
for implementing parallel multimedia applications as fully
sequential programs using pre-defined primitives.

One fundamental idea of PaTraCo is that the distribution
of parallel applications is based on the graph structure de-
scribing the data dependencies. Basic research in this area
has been done by Diekmann [Die98] amongst others. He as-
sumed that the vertices of this graph represent data elements
and that the edges express the data dependencies. A distri-
bution of the vertices across the available compute devices
is achieved by partitioning the graph. Solving the graph par-
titioning problem while not only considering one but multi-
ple classes of devices (e.g. CPUs and GPUs) is an impor-
tant feature in our framework. Wang et al. [WzHCyZ08]
proposed a simple task scheduling algorithm for single ma-
chine CPU-GPU environments that not just uses first idle
compute device but chooses the fastest device from all idling
devices. Teresco et al. [TFF05] worked on a distributed sys-
tem in which every CPU requests tasks from the sched-

uler which are sized according to the device’s measured
performance score. Resource-aware distributed scheduling
strategies for large-scale grid/cluster systems were proposed
by Viswanathan et al. [VVR07]. There has also been a lot
of research on application specific load balancing strate-
gies. In particular, many volume visualization systems deal
with this issue (e.g. Frank and Kaufman [FK09]). Zhou et
al. [ZHR∗09] propose a multi-GPU scheduling technique
based on work stealing to support scalable rendering. In or-
der to allow a seamless integration of load-balancing tech-
niques into an application, object-oriented load-balancing li-
braries and frameworks were developed [DHB∗00] [SZ02].

PaTraCo’s scheduler is based on the critical path method,
which is a mathematically founded algorithm that was orig-
inally developed for scheduling project activities [KW59].
An early application of the critical path scheduling to com-
putation considering resource and processor constraints was
presented by Lloyd [Llo82]. Kwok and Ahmad [KA96] dis-
cussed the mapping of a task graph to multiprocessors.

3. Programming PaTraCo

PaTraCo is designed to handle the distributed execution of
a program on a hardware setup transparently, while the user
only needs to implement application-specific functionality.

3.1. Programming Model

The programming model provided by the PaTraCo API is
based on the notion of passes. A pass denotes a part of the
overall computation of the program. A pass is subdivided
into pass blocks such that one pass block can be executed
on a device in one step. Pass blocks can have dependencies
on any other pass blocks – from the same pass or a different
pass – as long as no cycles are implied.

PaTraCo allows the user to provide different implemen-
tations for different device classes (CPU, GPU etc.) per
pass. The scheduler determines which implementation to
use, which mainly depends on the device setup. The hard-
ware setup aware choice of code and execution paths allows
for the efficient execution of a program in substantially dif-
ferent environments. Implementations of a pass may be pro-
vided using any desired compute API, e.g. CUDA, OpenCL,
etc. for GPUs. Our framework only distinguishes between
different classes of devices but does not contain specifics of
any programming interface. Thus, device and API specific
operations like data organization need to be implemented by
the user. This is reasonable as the data structures which have
to be uploaded by the user heavily depend on the implemen-
tation of the respective computation kernels. Usually, special
input and output pass blocks are added to model the origin
and the target for a computation. These pass blocks can be
restricted for scheduling to a specific device to depict the
location of the input and output data and letting PaTraCo
automatically handle the necessary data transfers.

c© The Eurographics Association 2010.

132

S. Frey and T. Ertl / PaTraCo: Transparent Programming of Heterogeneous Environments

 p provides dexels 0-100

extract

p' requests dexels 30-70

p' assign

0 -100

30-70
dexels
data

Shared
Data Object

 s
 s'

Figure 1: Example to illustrate the concept of dexels. The
outcome of a pass block p is provided as shared data object
s and pass block p′ requires parts of s (denoted as s′) as
input. p′ defines in terms of dexels what data it needs from
s and the corresponding data is extracted to a new shared
data object s′ which can then be assigned to p′.

3.2. Programming Interface

The programming interface of PaTraCo can be subdivided
into two categories. The first category mainly consists of the
PaTraCo master class which is used to integrate PaTraCo
in an application. To issue a computation task, the member
function run() of this object needs to be called (e.g. once
for the rendering of every frame for an interactive applica-
tion). Parameters for this function are the input and output
pass blocks as well as parameters used for pass subdivision.

The second category provides the interface to implement
the computation passes that should be executed by PaTraCo.
For every pass, the following functionality needs to be im-
plemented by overriding the respective functions of the pro-
vided abstract base classes:

Passes: Subdivision of the pass into many small pass
blocks.

Shared Data: Shared data objects provide a container for
the data exchanged between pass blocks.

Pass Blocks: Provide the compute kernels that should be
executed. Typically passes are subdivided in such a way
that each pass block operates on a fraction of the data. Im-
plementations for different devices may be provided for
the same pass.

Required and provided data of pass blocks are specified
in terms of dependency elements (called dexels in the fol-
lowing) and exchanged between pass blocks in the form of
shared data objects. Dexels consist of a unique identification
number and are used for the specification of data relations
between pass blocks. Dexels abstract from actual data in a
sense that they only denote a certain data chunk (see Figure
1). The mapping between data and dexels is explicitly done
by the user in the shared data objects and in pass blocks. The
flexible concept of dexels is important to cover the various
complex data relations pass blocks might have.

4. PaTraCo Execution Procedure

An overview on the steps that PaTraCo executes is depicted
in Figure 2. After starting up the thread infrastructure on
each node (0)(1)(2), the user’s implementations of the passes

Pass
Subdivision (4)

Compute Graph
Construction (5)

Scheduling (6)

Computation (7)
(Communication)

Main Loop (8)
User Interaction

Thread Setup (2)

Program
Start (1)

PaTraCo Stage

User Program Stage

Script starting up
nodes (0) PaTraCo Cluster Setup

 Pass
Registration (3)

Figure 2: PaTraCo computation stages using the example
of an interactive application.

that are needed for the next task are registered with the mas-
ter class (3). The registered passes are then divided into pass
blocks with respect to the available compute devices and
their available storage resources (4). After that, a compute
graph is built that contains the information which dexels a
block requires from another block as well as estimates on
the cost of processing a pass block with respect to the avail-
able device classes (5). Using the compute graph, the sched-
uler assigns pass blocks to devices by employing a load-
balancing heuristic based on critical paths (6). Finally, the
computations (and required communication) are executed
(7). Depending on the dynamics of an interactive application
(8), steps (3) to (7) need to be executed only once, occasion-
ally, or for every frame. Note that all steps from pass reg-
istration to scheduling operate on the same pre-computation
input data on all nodes (local node information is automati-
cally distributed like updated device performance data) and
execute exactly the same computation.

4.1. Setup and Thread Infrastructure

Before the actual computation can commence, the user’s
program is started on all nodes that take part in the com-
putation. This is accomplished using a Python startup script
that evaluates an XML file which contains the description of
all nodes. The same file is also used for building the com-
pute resource graph. For all nodes, the XML file contains
the information that is required for the invocation of the pro-
gram: the host name, the login, and the path to the binary
that should be executed. We focused on enabling the ad-hoc
construction of a compute network even for very inhomoge-
nous environments. Note that this initial step does not invoke
PaTraCo directly.

In order to use PaTraCo, the user program eventually has
to create one instance of the PaTraCo master class on ev-
ery node. Its constructor sets up the computing infrastructure
consisting of threads and communication objects as illus-
trated in Figure 3. It spawns a new thread for each available

c© The Eurographics Association 2010.

133

S. Frey and T. Ertl / PaTraCo: Transparent Programming of Heterogeneous Environments

Local Data (e)
Save all locally available data

Remote Data Requests (e)
Requests for remote data

Schedule and Computation
Pass Block Queue

Task Queue (g)
Handles computation tasks

Client (c)
Request/receive remote data

Server (d)
Answer remote data requests

Compute Device N (a)
Pass block computation

Master (f)
Runtime interface to PaTraCo

Node

Scheduler
Computation setup

Performance Monitor
Record time measurements

Communication ObjectThread Data Stream

Figure 3: Data stream (indicated by arrows) between
threads and communication objects on a node.

compute device according to the nodes XML file, which is
also used to build the resource graph describing the compute
network. Furthermore, a client thread is started that requests
and receives data from remote nodes and a server thread is
spawned to answer data requests from other nodes.

The threads (Figure 3, blue) on a node communicate and
exchange data using thread communication objects (red).
Before processing the pass blocks, a thread belonging to
a compute device (a) adds requests to the remote request
queue (b) for data elements that are required from pass
blocks that are scheduled to execute on other nodes. This
queue is processed by the client thread (c) on the same node
which requests and receives data from remote nodes. These
data requests are answered by a server thread (d) on the re-
spective node, which has access to all local data (e). As soon
as the client receives the requested data, it is stored in the lo-
cal data pool object (e). This object is also used for accessing
results that were computed locally. Thus data can be fetched
transparently. As soon as all dependencies are satisfied for
a pass block, the data is assigned to the respective device
and the computation is executed. The result is then stored in
form of a shared data object in the local data communication
object from which it can be accessed by other threads (blue).
The overall computation is finished when the final result data
is available to the master thread (f) as requested in the in-
vocation by the user program. The computation tasks that
need be processed are added to a task queue (g) by invok-
ing run() in the PaTraCo master class (f). For interactive
programs, the queue should maximally contain one element
while for offline batch jobs it is used to store all computation
tasks of the user’s program.

4.2. Pass Subdivision

For every pass, pass blocks are generated with respect to
user-defined input data and characteristics of available com-

pute devices. Note that generated pass blocks which are
not needed to compute the final result are simply ignored
by the scheduler. For subdivision, the member function
determineBlocks() of PaTraCoPass needs to be
implemented by the programmer (Listing 1). For optimiza-
tion purposes, an internal member variable can be used to
declare dexel blocks to be stable, if it can be determined us-
ing inputData that these dexels will not change in this task
with respect to the previous task. This indicates to the shared
local data object that this data should not be deleted. This can
significantly reduce transfer costs and allows the scheduler
to skip pass blocks which produce the respective data.

class PaTraCoPass {
virtual void
determineBlocks(PaTraCoPassBlocks∗ partitionedBlocks,

std::vector<PaTraCoPass∗>∗ prevPasses,
PaTraCoSharedData∗ inputData) = 0;

};

Listing 1: Implementation framework for pass subdivision.
Arguments like data sizes and other parameters are provided
in inputData and the function has access to all previous pass
subdivisions, which helps avoiding redundant subdivision
computations for passes with similar partitioning

4.3. Constructing the Compute Graph

A compute graph is a directed acyclic graph (DAG) in which
both the edges and the vertices are weighted (for an exam-
ple see Figure 4, right). The vertices stand for pass blocks
and feature one weight for each device class implementa-
tion which is available for the respective pass. This weight
is made up of measurements and pass block characteristics,
which are specified by the user in pass subdivision (see Sec-
tion 4.4 for details). Edge weights denote the amount of data
that has to be transferred between pass blocks based on the
required dexels and their weights as again indicated by the
user in pass subdivision (e.g. for a dexel standing for a pixel
in a float texture, its weight is the size of a float in bytes).

The compute graph is constructed back-to-front from the
pass blocks that provide the result data to the pass blocks that
contain the input data. For every visited pass block, edges
are created to the vertices (pass blocks) that provide required
data and subsequently these are visited. Subsequently, pass
blocks which are not required to compute the final result are
removed. After that, the resulting graph is checked for cycles
to ensure a seamless execution and provide the programmer
with details about potential problems.

4.4. Scheduler

In our context, the problem that needs to be solved by the
scheduler is the assignment of pass blocks to compute de-
vices considering the compute device speed for the given

c© The Eurographics Association 2010.

134

S. Frey and T. Ertl / PaTraCo: Transparent Programming of Heterogeneous Environments

pass block, the implied transfer costs, and the availability
of the device. The scheduler is a critical component in Pa-
TraCo. It needs to run fast, especially when it is used in the
context of highly dynamic, interactive applications that re-
quire rescheduling for each frame. However, it also needs to
deliver a good solution because the performance of the sub-
sequent computations heavily relies on a good schedule.

Finding an optimal distribution would be very time con-
suming and not efficient in general, which is why we chose
to use a heuristic that is much faster to compute. Our iterative
algorithm can even be run with a variable amount of itera-
tions per critical path depending on existing time constraints.
The basic idea is to iteratively identify the longest, critical
and thus the most time consuming path through the graph
until all vertices (pass blocks) are assigned to a compute de-
vice. A critical path contains those computations that, when
delayed, lead to a later completion of the overall task de-
scribed by all vertices in the graph. The sooner a pass block
is identified as part of a critical path of the remaining graph,
the earlier it may allocate the most suitable device for a cer-
tain time span.

For determining the longest (critical) paths, the scheduler
uses a strongly modified version of the Bellman-Ford algo-
rithm [Bel58]. Bellman-Ford can compute shortest as well
as longest paths in a weighted directed graph with running
time O(|V ||E|) (compared to O(|E|+ |V |log|V |) of Dijk-
stra’s algorithm [Dij59] which can only compute shortest
paths) with |V | being the number of vertices and |E| de-
noting the number of edges. We need to extend this algo-
rithm as our scheduler not only needs to consider vertex, but
also edge weights both of which depend on the chosen com-
pute device for a vertex. More importantly, edge and vertex
weights vary with the compute devices that are assigned to
the vertices.

The scheduler is finished when a compute device has been
assigned to every vertex, which means that the set of edges
that are connected to an open vertex (meaning that no com-
pute device is assigned to it) is empty (Listing 2). Until then,
in every iteration the longest critical path is searched con-
sidering previously found paths and the remaining set of
edges which at least connect to one open vertex. Similar
to Bellman-Ford, for every remaining edge we test whether
this edge would be part of a critical path passing through the
target vertex. If it does, the compute device is chosen that
leads to the shortest critical path considering the suitabil-
ity of the device for the task block, the device availability,
and transfer cost from and to the device. Internally, these
parameters are computed, combined and evaluated in mi-
croseconds. The vertex weight is determined by the product
of the average time consumption of task blocks belonging to
their respective pass (measured), the relative complexity of
the current pass block with respect to other pass blocks in the
same pass, general device class suitability for the given pass
(both assigned by the user in pass subdivision), and device

while not edges.empty()
for v in vertices

length[v] = 0, next[v] = none, device[v] = none
cost.clear()
for nIterations

for e in edges with e.target in vertices
update cost array , see definition in Listing 3
updateVicinityCost(cost[e.target], e, next[e.target],

device[e.source], device[next[e.target]],
length[e.source])

cost for the best device choice considering all edges
(transfer cost to next node not contained in return value)
bestWorstCaseCostNoOut = bestWorstCaseNoOut(cost[e.target])
if length[e.source] + bestWorstCaseNoOut > length[e.target] ||

next[e.source] = e.target # always update current path
length[e.target] = length[e.source] +

bestWorstCaseNoOut(cost[e.target])
next[e.source] = e.target
return device with the best worst case performance
with respect to the direct vicinity of the vertex
device[e.target] = bestWorstCaseDevice(cost[e.target])

cricalPathEndVertex = maxValIndex(length[], vertices)
criticalPathVertices[] = traverseInv(criticalPathEndVertex, next[])
for v in criticalPathVertices, inverse order # from input to output

reserve best device for edge, so that the resulting worse case
does not takes longer compared to the lowest possible worst
case by more than the factor allowWorseFactor (we chose 0.2)
reserveDevice(bestWorstCaseDevice(cost[v], inverse(next[])[v],

allowWorseFactor), length[v])
remove(edges, (v, next[v]))
remove(vertices, v)

Listing 2: Simplified scheduling procedure. Apply devices
to the critical paths first, but still do not completely ignore
other crossing paths. The multidimensional array cost
stores the induced local cost (in- and outgoing connection
and computation cost) of all combinations of incoming edges
and compute devices for each vertex. nIterations can
be chosen by the user to adapt to performance constraints.
The array length saves for each vertex the accumulated
cost of the longest path from a source to this vertex.

speed relative to other devices of its class (from the resource
graph). Besides, when considering the use of a device, its
availability is taken into account by adding the wait time un-
til it can be used according to its schedule when the device is
already busy for the requested time frame. In this context, it
is also considered that no pass block may be planned for ex-
ecution before any pass block it depends on (Listing 3). The
edge weight is calculated by multiplying the transfer speed
between the two devices as depicted by the resource graph
(evaluated using Dijkstra’s algorithm) with the size in bytes
of the required dexel block (implicitly specified by the user
in pass subdivision). At the end of each iteration, a critical
path is identified and compute devices are allocated.

Note that in our current implementation we chose redun-

c© The Eurographics Association 2010.

135

S. Frey and T. Ertl / PaTraCo: Transparent Programming of Heterogeneous Environments

def updateVicinityCost(costPerVertex, e, nextVertex,
prevDevice, nextDevice, from)

for d in deviceGraph
wait = d.availableFrom(from, dependencies[e.target]) − from
lengthConnection = length(prevDevice, d, e.source, e.target)

+ length(d, nextDevice, e.target, nextVertex)
costPerVertex[d][e.source] = weight(d, e.target) +

wait + lengthConnection

Listing 3: Simplified algorithm to determine the path weight
around the considered vertex for all devices (if no implemen-
tation for a given device is available, its weight for the vertex
is infinity). The function length returns zero, when required
data is already available on a device/node from previous
tasks. Otherwise it returns the connection weight, which is
determined using the resource graph, multiplied by the edge
weight (the transferred data size).

dant scheduling on all nodes over distributing the schedule
with associated information like dependencies over the net-
work in order to save bandwidth. However, if nodes are in-
volved which only have a very slow CPU (but potentially
a fast GPU for example), transferring the schedule over the
network is the better alternative.

4.5. Communication

The communication between threads can be classified as lo-
cal or remote, depending on whether they run on the same
node or not. Local communication includes the invocation of
a computation by the insertion of a task into the task queue
by the master thread, assigning this task to the scheduler and
providing the device threads with their respective schedule.
The data exchange between local device threads is also in-
cluded. Local communication simply works asynchronously
using objects which are shared by threads and guarded with
mutexes. Remote communication is necessary for exchang-
ing computation results between device threads on differ-
ent nodes and providing input data for pass subdivision and
scheduling. For this, we implemented a client and a server
which are based on sockets and run in separate processes
decoupled from the device threads. When there are requests
in the client queue, it polls the respective remote server un-
til the data is available, and then receives and saves it in the
local shared result data pool.

The shared data pool stores all data that is generated on or
transferred to a node and it is deleted automatically when it
is not needed anymore. Note that it not only stores data that
is available in main memory but also data in device memory.
Data is kept in the pool until after the pass subdivision of
the subsequent task data determinded which dexels are con-
sidered to be stable. All data belonging to non-stable dexels
are deleted. Should there be not enough (device) memory
available for storage, then the data, which according to the

schedule is not needed for the longest time, is downloaded to
one storage level below (from device memory to main mem-
ory, from main memory to disk) and deleted from the current
storage level.

We use sockets for the remote communication. In contrast
to higher level APIs like MPI (Message Passing Interface),
sockets have no restrictions concerning the construction of
an arbitrary compute network. This design choice is impor-
tant for the flexibility to run applications in very heteroge-
neous environments on only loosely coupled nodes.

The data exchange between pass blocks, independent
whether they are scheduled to execute on the same de-
vice, different devices or even different nodes is done using
PaTraCoSharedData (Listing 4) objects. The result data
of a computation must be saved by the programmer in an ob-
ject whose class is derived from PaTraCoSharedData.
Three functions need to be implemented here to enable data
exchange. extract generates a new shared data object
with a subset of the data of the original object. This is trig-
gered for every different shared data request that needs to be
satisfied by this data object – this is inherently given by the
pass subdivision – and saved in the shared data object pool.
Note that this does not necessarily mean that the underlying
data structure is copied to another location. For many appli-
cations saving a pointer to an array and an offset variable
is enough. In the case of reusing the same memory chunk,
the programmer has to increment and decrement a reference
counter manually to prevent a too early destructor call by the
local data handler. This highly depends on the application
and the programmer has to take care of an efficient imple-
mentation. The same is true for both the serialize and
the deserialize functions which are exclusively needed
for remote data transfers. The serialize call is triggered
by the server process for data objects which were requested
by another node and the result is stored in the local data com-
munication object for further use. After the transfer, serial-
ized data is stored in the local data communication object as
well and deserialize is called on demand by the device
thread that requires the data.

class PaTraCoSharedData {
virtual void serialize(serialized_t& data) = 0;
virtual bool deserialize(const serialized_t& data) = 0;
virtual void extract(PaTraCoSharedData∗& sharedData,

PaTraCoDexelBlock∗ dexelBlockRequest,
computeDevice_t deviceClass,
int localId, bool onDevice) = 0;

};

Listing 4: Shared Data implementation. The parameters for
extract determine which data to extract from what kind of
device, that is uniquely identified by its local id and further
it is specified for devices with dedicated memory whether the
data stays on the device or is downloaded to main memory.

c© The Eurographics Association 2010.

136

S. Frey and T. Ertl / PaTraCo: Transparent Programming of Heterogeneous Environments

4.6. Computation

In the computation step, the device threads process the pass
blocks as scheduled. A pass block is an object of a class de-
rived from PaTraCoPassBlock (Listing 5), whose func-
tions for assigning data and computation need to be im-
plemented by the programmer. Note that there are many
empty functions provided, one for every class of devices
like computeCPU, computeGPU, computeCELL and so
on. At runtime, the scheduler checks which ones are imple-
mented by the user (using testonly=true) and consid-
ers them for execution.

class PaTraCoPassBlock {
virtual bool
assignCPU(int localDeviceId,PaTraCoSharedData∗ sharedData,

PaTraCoDexelBlock∗ dexelBlock, bool onDevice,
bool testonly=false)
{return false;}

virtual bool
assignGPU(int localDeviceId,PaTraCoSharedData∗ sharedData,

PaTraCoDexelBlock∗ dexelBlock, bool onDevice,
bool testonly=false)
{return false;}

virtual bool computeCPU(int localDeviceId,bool testonly=false)
{return false;}
virtual bool computeGPU(int localDeviceId,bool testonly=false)
{return false;}

};

Listing 5: For providing implementations for a device class,
the respective assign() and compute() functions need
to be overwritten. testonly is used internally for checking
which implementations are available. Due to that, the first
line of the actual function definition should be a small macro
provided by PaTraCo that returns true if the testonly is true
and otherwise continues the function.

However, before actually computing a pass block, the de-
vice thread has to wait until all required dexels are avail-
able in the local data communication object. Then, the in-
put data has to be provided in a structure that is required
by the computation. This is done by calling the user-defined
assign function for every block of dexels. The function is
device-class-specific, because fundamentally different data
structures might be needed (e.g. for a GPU, data structures
might need to be serialized and uploaded to the graphics card
as textures). If required, input data from main memory is up-
loaded to device memory using this function. The program-
mer can create a new shared data object containing the up-
loaded data, so that it can be accessed by other pass blocks.

Note that the order in which the pass blocks are executed
is not finally determined by the scheduler. The pass blocks
are executed out of order when the required data is not en-
tirely available for the current block, but for any other pass
block in the schedule. After completing its computation, it

is checked again in the order determined by the scheduler
which is the first pass block in the schedule that can be exe-
cuted without waiting for results of other devices. Pass block
computation results need to be saved such that they can be
fetched from requiring subsequent pass blocks directly using
shared data objects as discussed in section 4.5. For compute
devices with dedicated memory, the data is saved in the same
way as data located in main memory. It is downloaded au-
tomatically (using the Shared Data extract() function)
only if requested by another device, or if the current device
requires more free memory for other computations.

4.7. Monitoring

Monitoring the performance of all stages of PaTraCo – es-
pecially during computation and communication – is very
important. First, it is useful for the programmer to be able
to analyze the resulting performance as this can give hints,
how to improve the program by reducing bottlenecks. Af-
ter the computation, the monitoring results can be visualized
by our monitoring frontend that is based on the 2D graphics
library Cairo (see Figure 5). Second, the program requires
these for self-calibration by incorporating timing measure-
ments to update cost estimates. Remember that scheduling
is based on the resource graph, which contains assumptions
of computation speeds of devices relative to different passes.
It is crucial for these estimates to be as good as possible to
achieve a near-optimal schedule.

5. Results

We implemented an interactive distributed volume renderer
incorporating shadow volumes for evaluating our frame-
work, in particular our scheduler. The user interacts with a
node called frontend, which displays the rendering result and
provides the light position, the view matrix, and the volumet-
ric data set. Our framework was tested in small networks of
differently equipped nodes.

5.1. The Volume Rendering Application

Our distributed volume renderer employs object-space data
distribution (like e.g. [MSE06]) and uses shadow volumes
for determining the illumination contribution of an omni-
directional point light source L with a limited radius (Fig-
ure 4). This example application consists of three passes:
generation of the shadow volume, volume rendering and
compositing. The first pass generates a shadow volume for
all volume bricks within the radius of the light source by
naively sending a ray for each voxel towards the light source
(for a more sophisticated algorithm see Hadwiger et al.
[HKSB06]). For all adjacent volume bricks, where a ray ex-
its is originating brick on its way to the light source, a one
voxel thin shadow volume layer needs to be available for
light value contribution lookup. This results in an in-pass de-
pendency structure. The second pass does standard volume

c© The Eurographics Association 2010.

137

S. Frey and T. Ertl / PaTraCo: Transparent Programming of Heterogeneous Environments

Pass Shadow Vol

Pass Vol Render

V0 V1
V3s

V4 V6

V7 V8 V9

V11S3

S1

S2

Pass Subdivision

Shared Volume Data

Shared Render Image

Pass Block
Input Vol

/View

Shared Volume
Data

Pass Block
Output

Shared
Render
Image

Shared View

Pass Compositing S0

V14

V13

V17

V16

V10

V0

V12

V15

Scheduling

First critical path

C0

Pass Block Shadow Vol
CPU: 100 GPU: 10

Pass Block Vol Render
CPU: 100 GPU: 10

Pass Block Compositing
GPU: 20

Compute Graph
Construction

GPU0

GPU0

GPU0

CPU0(F)

CPU0(F)

S0 S1

S2 S3
L

V5

GPU0 GPU0

respective device allocation

Figure 4: Chart from pass subdivision to scheduling for
the distributed volume rendering example. On the upper left,
passes and input/output pass blocks are shown with their
data dependency relations. After subdividing the passes and
assigning a volume brick to each pass block (bottom left), the
compute graph is constructed that includes the data depen-
dencies between the pass blocks (bottom right). The sched-
uler determines critical passes and assigns devices to pass
blocks by using this graph in conjunction with the resource
graph and timing measures.

raycasting and employs the shadow volume for lighting each
sample point. The third and final pass takes the renderings
of all bricks generated in the previous pass and combines
them into the final image. For both shadow volume genera-
tion and volume rendering CPU and GPU implementations
using CUDA are provided. Compositing is implemented on
the GPU only using CUDA as well.

The effort to compute a volume rendering pass block de-
pends on the view matrix (i.e. camera position and orienta-
tion) and the size and position of the associated volume brick
as well as the screen resolution. Using this input data, the rel-
ative cost of rendering a brick is estimated in the pass block
generation by computing the rendering size of the brick on
the screen. In this case of an interactive application, in con-
trast to programs which run computations only once, initial
costs (here for the first frame) like static volume data distri-
bution might be negligible, when in return the overall com-
putation runs faster in all subsequent frames. Hence we set
the weight of the incoming dexel blocks to zero in the pass
subdivision of the first frame and thus enable data distribu-
tion which better reflects the rendering speed provided by
a node. From the second frame on, the input dexel block
weights are set normally, in order to allow further volume
data transfers only in the case of high load imbalance.

5.2. Evaluation

All nodes we used in the evaluation were connected with
Gigabit Ethernet, and equipped with a Intel Core2 Quad 2.4
GHz CPU. They featured three different kinds of GeForce
graphics cards: 8600 GT, 8800 GTX and GTX 280. Our

frontend node used a 8800 GTX. In our scenario, we ren-
dered a 1600×1024 frame using 16-bit 5123 data set, which
was split into 16 bricks by the the scheduler, so that each
brick has the dimension of 128×256×256. The respective
measurements are shown in Figure 5. The timings include
all steps from providing input data until the output data is
available. However, they do not include scheduling, which
took between 5 – 30 ms, depending on the amount of de-
vices given and the number of iterations specified. In our
testing scenario, three iterations per critical path were al-
ready enough to achieve a good schedule. Even though CPU
implementations are available for shadow volume generation
and volume rendering, the computation ran on the GPU ex-
clusively due to its vastly superior performance in this con-
text. Using the CPU for the execution of a pass block would
have significantly slowed down the overall computation with
our hardware setup (the CPU was slower by a factor of≈ 100
in our implementation than a 8800 GTX). However, note that
the relative performance might substantially differ using dif-
ferent setups or slightly different tasks, so in general it is
advantageous when a large range of compute devices can
be used potentially. Nevertheless, this case shows the impor-
tance of considering device speed in the context of the over-
all computation and not simply using an available device.

In our first series of measurements, no shadow volume is
generated because we moved the light source out of the vol-
ume and gave it a tiny radius. In the first test, we used two
identical machines each equipped with a GeForce 8800 GTX
besides the frontend node (Figure 5, top left). It can be seen
that the scheduler efficiently assigns task blocks considering
the costs and thus a good scaling factor can be achieved. In
the heterogeneous setup using a node with a 8600 GT and
a GTX 280 (bottom) left, the adaptation of the scheduler to
different device speeds can be seen. Most importantly, the
node featuring the 8600 GT is not assigned more than two
pass blocks, even though the device and further tasks are
available because this would result in an overall slowdown.
For the second series of measurements, we moved the light
source inside the volume and gave it a radius such that four
volume bricks are covered. The primary critical path was
determined by the scheduler to consist of pass blocks with
the following ids: 22 (input) – 0 (shadow) – 1 (shadow) – 3
(shadow) – 14 (render) – 20 (composit) – 23 (output). Fig-
ure 5 (top middle) shows that this critical path dominates the
total computation time. The volume rendering pass blocks
5 and 7 are also scheduled on the frontend GPU, because
they require the shadow volumes generated by the shadow
passes 0 and 1 for lighting and the transfer over the network
of a shadow volume brick is too expensive. The allocation
of other devices for these blocks would have substantially
increased the total computation time, even though the other
devices idle otherwise. When running the application with
a node featuring a 8600 GT and a node featuring a GTX
280 besides the frontend node, it can be seen that the sched-
uler exploits the fast GTX 280 for execution of the primary

c© The Eurographics Association 2010.

138

S. Frey and T. Ertl / PaTraCo: Transparent Programming of Heterogeneous Environments

Wait for Data
Assign Data to Device
Compute and Extract

(Possibly) Delaying
Dependency

10 ms 100 ms

No Shadow Shadow
Shadow
Render

Composit

- 0-3
0-15 4-19

2016

Nodes: GPU, Speed
frontend: 8800 GTX, 1.0

duett: 8800 GTX, 1.0
calgia: 8800 GTX, 1.0

country: GTX 280, 0.78
h.hardcore: 8600 GT, 3.1

I/O 17-19 21-23

Shadow

Shadow

No Shadow

No Shadow

No Shadow

Pass

happyhardcorehappyhardcore

Figure 5: Five performance monitoring outputs generated by PaTraCo using a timeline for each device that computes at least
one pass block. Especially timelines from different nodes can be shifted to each other as computations do not start exactly at
the same time. The black bars depict the beginning of a pass block with its identification number. Devices Ids without host
information belong to the frontend node. Pass block ids can be matched with passes using the bottom right table. wait depicts
the time until all data is available to start computing a pass block, assign the time to prepare the data for computation (e.g.
GPU upload) and compute the time for pass block computation and result extraction (e.g. GPU download).

critical path (Figure 5, bottom middle). The overall compu-
tation is not significantly faster compared to the previous
case though, because the 8600 GT is significantly slower
than the 8800 GTX (the system measured a factor of 3.1)
and thus a lot of work has to be done by the other graph-
ics devices. The advantage of pre-copying data also mani-
fests itself in the shadow volume measurements: pass block
2 requires data from pass block 1 and pass block 3 requires
data from pass block 2, but there is no waiting time involved
even though volumes are processed on different nodes, be-
cause result data is sent immediately afterwards. For the last
measurement series we again ignored the shadow volume,
but this time decreased the CPU cost for volume rendering
artificially by sending less rays through the volume. We used
the GPU and three CPU cores on one node. The results show
the advantage of systems featuring many compute devices
locally as opposed to distributed system which cause a lot of
network traffic, even though our framework allows to hide
latencies by predictively copying data in parallel to ongoing
computations (Figure 5, top right).

6. Conclusion and Future Work

We presented a framework for the development of parallel,
multi-pass applications for heterogeneous compute environ-
ments. The user only has to implement application-specific
parts using base classes provided by PaTraCo and to regis-
ters them with the framework. Before the actual computa-
tion, a device schedule is generated using our critical path

heuristic. It takes device availability, suitability and data
transfer costs into account for achieving a fast overall com-
putation. Another advantage of the available schedule is that
data can already be transferred to a given device before it
is actually required thus increasing computation efficiency.
PaTraCo is designed to support any API, device dependent
or not. Scheduling, thread setup and handling, as well as
network communication and data transfer are handled com-
pletely transparent to the user. A further benefit of PaTraCo
is that it supports the programmer in the development pro-
cess by providing a basic structure for the application.

For future work, we plan to make the scheduling more
flexible during the computation through a work stealing
mechanism. In order to enable changes in device assign-
ment, the current architecture could be extended such that
the node on which the originally assigned device is lo-
cated is informed about the changes which would allow
a rerouting of requests. We also want to add the possibil-
ity to transfer precomputed device schedules to nodes with
weak CPUs. Additionally network interconnects should be
treated like compute devices, with the ability to schedule
them in order to take bandwidth occupancy into account.
Additionally, we work on developing a graphical user inter-
face that supports the user in implementing and connecting
passes.Furthermore, we want to compare our scheduling al-
gorithm to other scheduling strategies (i.e. first-come-first-
serve) in a wide range of computing scenarios. Finally, we
plan to add support for interleaved task execution.

c© The Eurographics Association 2010.

139

S. Frey and T. Ertl / PaTraCo: Transparent Programming of Heterogeneous Environments

References

[And04] ANDERSON D. P.: Boinc: A system for public-resource
computing and storage. In 5th IEEE/ACM International Work-
shop on Grid Computing (2004), pp. 4–10.

[ATNW09] AUGONNET C., THIBAULT S., NAMYST R.,
WACRENIER P.-A.: StarPU: A Unified Platform for Task
Scheduling on Heterogeneous Multicore Architectures. In Pro-
ceedings of the 15th International Euro-Par Conference, Lec-
ture Notes in Computer Science (Delft, The Netherlands, Aug.
2009), vol. 5704 of Lecture Notes in Computer Science, Springer,
pp. 863–874.

[BDF∗93] BAKER R., DOWNING A., FINN K., RENNISON E.,
KIM D. D., LIM Y. H.: Multimedia processing model for a
distributed multimedia i/o system. In Proceedings of the Third
International Workshop on Network and Operating System Sup-
port for Digital Audio and Video (London, UK, 1993), Springer-
Verlag, pp. 164–175.

[Bel58] BELLMAN R.: On a routing problem. Quarterly of Ap-
plied Mathematics 16, 1 (1958), 87–90.

[DBShmcppe07] DOLBEAU R., BIHAN, S. B., HYBRID MULTI-
CORE PARALLEL PROGRAMMING ENVIRONMENT. F. H. A.:
A hybrid multi-core parallel programming environment. First
Workshop on General Purpose Processing on Graphics Process-
ing Unit. (2007).

[DHB∗00] DEVINE K., HENDRICKSON B., BOMAN E., JOHN
M. S., VAUGHAN C.: Design of dynamic load-balancing tools
for parallel applications. In Proc. Intl. Conf. on Supercomputing
(Santa Fe, New Mexico, 2000), pp. 110–118.

[Die98] DIEKMANN R.: Load Balancing Strategies for Data Par-
allel Applications. PhD thesis, Universität Paderborn, 1998.

[Dij59] DIJKSTRA E. W.: A note on two problems in connexion
with graphs. Numerische Mathematik 1 (1959), 269–271.

[FK09] FRANK S., KAUFMAN A.: Dependency graph approach
to load balancing distributed volume visualization. The Visual
Computer 25, 4 (2009), 325–337.

[FPSF06] FALLENBECK N., PICHT H.-J., SMITH M.,
FREISLEBEN B.: Xen and the art of cluster scheduling.
In VTDC ’06: Proceedings of the 2nd International Work-
shop on Virtualization Technology in Distributed Computing
(Washington, DC, USA, 2006), IEEE Computer Society, p. 4.

[HKSB06] HADWIGER M., KRATZ A., SIGG C., BÜHLER K.:
GPU-accelerated deep shadow maps for direct volume rendering.
In GH ’06: Proceedings of the 21st ACM SIGGRAPH/EURO-
GRAPHICS symposium on Graphics hardware (New York, NY,
USA, 2006), ACM, pp. 49–52.

[KA96] KWOK Y.-K., AHMAD I.: Dynamic critical-path
scheduling: An effective technique for allocating task graphs to
multiprocessors. IEEE Transactions on Parallel and Distributed
Systems 7, 5 (1996), 506–521.

[KW59] KELLEY JR J. E., WALKER M. R.: Critical-path plan-
ning and scheduling. In IRE-AIEE-ACM ’59 (Eastern): Papers
presented at the December 1-3, 1959, eastern joint IRE-AIEE-
ACM computer conference (New York, NY, USA, 1959), ACM,
pp. 160–173.

[Llo82] LLOYD E. L.: Critical path scheduling with resource and
processor constraints. J. ACM 29, 3 (1982), 781–811.

[LWX02] LI Z., WANG C., XU R.: Task allocation for dis-
tributed multimedia processing on wirelessly networked hand-
held devices. Parallel and Distributed Processing Symposium,
International 1 (2002), 0079.

[MFS∗09] MÜLLER C., FREY S., STRENGERT M., DACHS-
BACHER C., ERTL T.: A compute unified system architecture for
graphics clusters incorporating data locality. IEEE Transactions
on Visualization and Computer Graphics 15, 4 (2009), 605–617.

[Mon08] MONTENEY M.: Rapidmind multi-core development
platform, Feb 2008.

[MSE06] MÜLLER C., STRENGERT M., ERTL T.: Optimized
Volume Raycasting for Graphics-Hardware-based Cluster Sys-
tems. In Eurographics Symposium on Parallel Graphics and Vi-
sualization (2006), Eurographics Association, pp. 59–66.

[PTVvdS09] PARK H., TURAGA D. S., VERSCHEURE O.,
VAN DER SCHAAR M.: A framework for distributed multimedia
stream mining systems using coalition-based foresighted strate-
gies. In ICASSP ’09: Proceedings of the 2009 IEEE International
Conference on Acoustics, Speech and Signal Processing (Wash-
ington, DC, USA, 2009), IEEE Computer Society, pp. 1585–
1588.

[SGK∗07] SEINSTRA F. J., GEUSEBROEK J.-M., KOELMA D.,
SNOEK C. G., WORRING M., SMEULDERS A. W.: High-
performance distributed video content analysis with parallel-
horus. IEEE MultiMedia 14, 4 (2007), 64–75.

[Sun90] SUNDERAM V. S.: Vm: A framework for parallel dis-
tributed computing. Concurrency: Practice and Experience 2, 4
(1990), 315–337.

[SZ02] STANKOVIC N., ZHANG K.: A distributed parallel pro-
gramming framework. IEEE Trans. Softw. Eng. 28, 5 (2002),
478–493.

[TFF05] TERESCO J. D., FAIK J., FLAHERTY J. E.: Resource-
aware scientific computation on a heterogeneous cluster. Com-
puting in Science and Engineering 7, 2 (2005), 40–50.

[VVR07] VISWANATHAN S., VEERAVALLI B., ROBERTAZZI
T. G.: Resource-aware distributed scheduling strategies for
large-scale computational cluster/grid systems. IEEE Trans. Par-
allel Distrib. Syst. 18, 10 (2007), 1450–1461.

[WzHCyZ08] WANG L., ZHONG HUANG Y., CHEN X., YAN
ZHANG C.: Task Scheduling of Parallel Processing in CPU-GPU
Collaborative Environment. Computer Science and Information
Technology, International Conference on 0 (2008), 228–232.

[ZHR∗09] ZHOU K., HOU Q., REN Z., GONG M., SUN X.,
GUO B.: Renderants: interactive reyes rendering on gpus. In
SIGGRAPH Asia ’09: ACM SIGGRAPH Asia 2009 papers (New
York, NY, USA, 2009), ACM, pp. 155:1–11.

c© The Eurographics Association 2010.

140

