
Artificial Intelligence
for Efficient Image-based View Synthesis

Dissertation zur Erlangung des Grades des Doktors der
Ingenieurwissenschaften der Fakultät für Mathematik und Informatik der

Universität des Saarlandes

Vorgelegt von
Thomas Leimkühler

Saarbrücken, 2019

ii

Dean: Prof. Dr. Sebastian Hack
Date: June 24th, 2019
Chair: Prof. Dr. Philipp Slusallek
Reviewers: Prof. Dr. Hans-Peter Seidel

Dr. Tobias Ritschel
Prof. Dr. Hendrik Lensch
Prof. Dr. George Drettakis

Academic Assistant: Dr. Rhaleb Zayer

iii

Abstract

Synthesizing novel views from image data is a widely investigated topic in both
computer graphics and computer vision, and has many applications like stereo
or multi-view rendering for virtual reality, light field reconstruction, and image
post-processing. While image-based approaches have the advantage of reduced
computational load compared to classical model-based rendering, efficiency is still
a major concern. This thesis demonstrates how concepts and tools from artificial
intelligence can be used to increase the efficiency of image-based view synthesis
algorithms. In particular it is shown how machine learning can help to generate point
patterns useful for a variety of computer graphics tasks, how path planning can guide
image warping, how sparsity-enforcing optimization can lead to significant speedups
in interactive distribution effect rendering, and how probabilistic inference can be
used to perform real-time 2D-to-3D conversion.

v

Zusammenfassung

Die bildbasierte Synthese von neuen Ansichten ist Gegenstand intensiver Forschungs-
bemühungen sowohl in der Computergrafik als auch im maschinellen Sehen, mit
Anwendungen wie stereo- und multiskopisches Rendering, virtuelle Realität, Licht-
feldrekonstruktion und nachträgliche Bildverarbeitung. Bildbasierte Ansätze weisen
den Vorteil auf, dass sie im Vergleich zum klassischen modellbasierten Rendering
weniger Rechenleistung erfordern. Effizienz ist jedoch weiterhin ein großes Problem.
Diese Arbeit zeigt, wie Konzepte und Hilfsmittel aus dem Feld der künstlichen Intelli-
genz benutzt werden können, um die Effizienz der bildbasierten Synthese von neuen
Ansichten zu steigern. Im Einzelnen wird gezeigt, wie maschinelles Lernen das Gener-
ieren von Punktmustern, die für viele Anwendungen in der Computergrafik nützlich
sind, unterstützen kann und wie das Planen von Pfaden das Warpen von Bildern in
effiziente Bahnen lenken kann. Weiterhin wird eine Optimierung zur Ausdünnung
von Datenstrukturen entwickelt, die das interaktive Rendern von Verteilungseffekten
signifikant beschleunigt. Abschließend wird gezeigt, wie probabilistische Inferenz
zur 2D-zu-3D Konvertierung in Echtzeit benutzt werden kann.

vii

Acknowledgments

This work would have been impossible without the support of many. First and
foremost, I would like to sincerely thank Tobias Ritschel. During our numerous
insightful discussions, his vision, advice, and creativity gradually turned me into a
researcher. Karol Myszkowski is probably the wisest person I know. He provided
valuable guidance during our joint projects and beyond. The computer graphics
department in the Max-Planck-Institut für Informatik is a wonderfully inspiring
environment, which Hans-Peter Seidel created and maintains with generosity and the
desire to provide the best possible opportunities. I would like to thank Petr Kellnhofer
and Gurprit Singh for sharing their expertise in our pleasant common endeavors.
Learning from and exchanging ideas with Rhaleb Zayer, Anton Kaplanyan, Bernhard
Reinert, Jozef Hladký, Tobias Bertel, and Okan Tursun was not only fun, but also
opened my mind in many unexpected directions. A big round of thanks goes to
all members of AG4 for enriching my academic and personal life. Finally, I am
deeply grateful to my friends and family, who continually help me discover the most
important novel views.

ix

Contents

1 Introduction 1

1.1 Motivation . 1
1.2 Contributions . 3
1.3 Outline . 4

2 Background and Previous Work 5

2.1 Mathematical Background . 5
2.1.1 Differential Operators . 5
2.1.2 Integral Transforms . 6
2.1.3 Sparse Approximations . 8
2.1.4 Radial Basis Functions . 8
2.1.5 Bayesian Statistics . 9
2.1.6 Monte Carlo Integration . 10

2.2 Parallel Visual Computing . 11
2.2.1 Massively Parallel Computing 11
2.2.2 Data-parallel Operations . 11

2.3 Depth Perception . 12
2.3.1 Stereopsis . 12
2.3.2 Spatio-temporal Disparity Sensitivity 13
2.3.3 Computational Models of Depth Perception 13

2.4 View Synthesis . 14
2.4.1 Light Transport and Rendering 14
2.4.2 Image-based Rendering . 16

2.5 Sampling . 20
2.5.1 Pattern Properties . 20
2.5.2 Pattern Generation . 21
2.5.3 Projective Subspaces . 22

2.6 Artificial Intelligence . 23
2.6.1 Overview . 23
2.6.2 Optimization . 24
2.6.3 Classical Planning . 26
2.6.4 Machine Learning . 27
2.6.5 Probabilistic Reasoning . 29

3 Deep Point Correlation Design 31

3.1 Introduction . 31
3.2 Overview . 32
3.3 Point Pattern Agendas . 33

3.3.1 Notation . 33
3.3.2 Point Correlation . 34
3.3.3 Spectrum . 34
3.3.4 Differential Domain . 35
3.3.5 Radial Mean . 35

x

3.3.6 Anisotropy . 36
3.3.7 Swizzle . 36
3.3.8 Metrics . 36

3.4 Point Patterns via Iterated Filtering . 36
3.4.1 Architecture . 36
3.4.2 Filters . 37
3.4.3 Training . 41
3.4.4 Discussion . 41

3.5 Results . 42
3.5.1 Spectral and Differential Analysis 42
3.5.2 Monte Carlo Integration Convergence Analysis 44
3.5.3 Scalability . 45
3.5.4 Applications . 46

3.6 Conclusion . 46

4 Minimal Warping: Planning Incremental Novel-view Synthesis 47

4.1 Introduction . 47
4.2 Overview . 48

4.2.1 Input and Output . 48
4.2.2 Minimal Warping . 48
4.2.3 Pipeline . 49

4.3 Distribution Flow . 50
4.3.1 Domain and Mapping . 51
4.3.2 Flow Components . 51
4.3.3 Representing Distribution Flow 53

4.4 Minimal Warping . 54
4.4.1 Sample Planning . 54
4.4.2 Tiling and Batching . 56
4.4.3 Warping . 57
4.4.4 Aggregation . 60

4.5 Results and Discussion . 60
4.5.1 Qualitative Results . 60
4.5.2 Quantitative Results . 61
4.5.3 Discussion . 64
4.5.4 Limitations . 64

4.6 Conclusion . 65

5 Laplacian Kernel Splatting 67

5.1 Introduction . 67
5.2 Overview . 68
5.3 Background . 69

5.3.1 Point-spread Functions . 69
5.3.2 Laplacian Rasterization . 69

5.4 Pre-calculation: PSF Sampling . 70
5.4.1 PSF Model . 70
5.4.2 Sample Placement . 71
5.4.3 Sample Generation . 73
5.4.4 Pre-filtering . 73
5.4.5 Sparsification . 73

5.5 Runtime: PSF Splatting . 74
5.5.1 Sample Storage . 75

xi

5.5.2 Sample Splatting . 75
5.5.3 Integration . 76
5.5.4 Fast Track . 76

5.6 Results and Discussion . 76
5.6.1 Qualitative Results . 77
5.6.2 Quantitative Results . 79
5.6.3 Analysis . 79
5.6.4 Limitations . 81

5.7 Conclusion . 81

6 Perceptual Real-time 2D-to-3D Conversion Using Cue Fusion 83

6.1 Introduction . 83
6.2 Overview . 84
6.3 Pre-processing . 84

6.3.1 Disparity Priors . 84
6.3.2 Scene Classification . 87

6.4 Depth Cues . 87
6.4.1 Defocus . 88
6.4.2 Aerial Perspective . 89
6.4.3 Vanishing Points . 89
6.4.4 Static Occlusions . 90
6.4.5 Motion . 90
6.4.6 User Input . 91

6.5 Cue Fusion . 91
6.5.1 Unary Estimate . 91
6.5.2 Prior . 92
6.5.3 Robust Estimate . 92
6.5.4 Pairwise Estimate . 93

6.6 Stereo Image Generation . 94
6.7 Evaluation . 95

6.7.1 Cue Influence Analysis . 95
6.7.2 Validating Plausible Disparity 98
6.7.3 Perceptual Comparison Study 99
6.7.4 Quantitative Evaluation . 100

6.8 Conclusion . 101

7 Conclusion 103

7.1 Summary and Discussion . 103
7.2 Algorithmic Combinations . 106
7.3 Future Work . 107
7.4 Closing Remarks . 109

Bibliography - Own Work 111

Bibliography 113

1

Chapter 1

Introduction

This thesis proposes several techniques that accelerate and extend the scope of image-
based view synthesis algorithms. In this chapter we motivate our research (Sec. 1.1),
summarize our main contributions, (Sec. 1.2), and give an outline of the whole thesis
(Sec. 1.3).

1.1 Motivation

In 2014 the artists Denis Conolly, Anne Cleary, and Neil McKenzie developed devices
that would enable their users to experience the world when seen through the eyes
of animals. These “metaperceptual helmets” [Cleary et al., 2014] (Fig. 1.1) were
inspired by the work of Stratton [1897] who, for an extended period of time, wore
special glasses that would spatially invert his retinal images. During this peculiar
self-experiment, he discovered that his visual system could eventually adapt to the
new condition.

The ability of the human visual system to adopt a novel view is not only im-
pressive in the light of this exercise. It is rather a crucial skill for successful social
interaction. The term perspective-taking denotes an established concept in the field
of psychology, describing the act of perceiving or understanding a situation from
a different point of view. The aspect of visual perspective-taking is defined as the
capability to understand how a scene is perceived by another person at a different
position. Commonly, two levels of this skill are differentiated [Flavell et al., 1981]:
Level-1 visual perspective-taking is the ability to estimate which objects in a scene are
visible from a specific point of view, by essentially evaluating occlusion configurations

FIGURE 1.1: “Metaperceptual helmets” allow the wearer to see the world from a different view. Image
courtesy of Cleary Conolly, used with permission.

2 Chapter 1. Introduction

in physical space. Level 2 deals with the more difficult question of how the objects in
a scene are organized from the imagined point of view, e. g., to understand that an
object to my right appears to be on the left for a person facing me. Comprehending
what other people are able to see and how they perceive a situation is a core factor for
successful social interaction [Gerace et al., 2013], ranging from a hide-and-seek game
to warfare. It has also been shown to have strong links to creativity [Grant and Berry,
2011], which is not surprising when considering the amount of mental “in-painting”
necessary to hallucinate unknown views.

Taking a novel view solely mentally is not easy. In fact, children acquire this skill
rather late in their development. This is exemplified by the so called three mountain
problem [Piaget and Inhelder, 1969]: Children were shown a model of three mountains
of different appearance and a doll was placed in the scene. Now, the children were
asked which photograph in a collection best reflected the doll’s view. It turned
out that only children above the age of seven could consistently choose the correct
photograph. Studies in the field of comparative psychology indicate that higher
animals exhibit signs of visual perspective-taking only scarcely [Itakura, 2004].

In the light of these and numerous similar findings, it becomes evident that
taking a novel view requires a sophisticated amount of intelligence. This thesis argues
that a machine rendering novel views can, analogously, highly benefit from artificial
intelligence (AI).

In computer graphics, producing a novel view is seemingly straightforward: Just
render a new image. However, using a classical rendering pipeline results in two
fundamental problems. First, given finite computational capabilities, rendering an
image can take a very long time. Evaluating physically-correct global light transport
in a complex scene can require minutes to hours of computation. Finding a reasonable
trade-off between quality and runtime performance is difficult. Second, a model of
the scene to render might not exist. Sometimes, when we are interested in a novel
view of a scene, all we have is an image.

Image-based rendering aims at solving these two problems. Here, a novel view is
created just based on one or multiple already existing images (and possibly associ-
ated meta-information). Working with images instead of scene models reduces the
computational load significantly and is very flexible at the same time. Image-based
rendering naturally employs the redundancy between views: Moving a camera to
the right basically shifts the image left. A straightforward image-based approach for
novel-view synthesis is therefore to simply re-arrange pixels according to deforma-
tion rules. Consequently, image-based rendering usually excels when novel views
are very similar to the original image(s).

However, efficiency is still a major concern in many applications. Frequently,
interactive performance is a mandatory requirement. Virtual-reality applications
demand a refresh rate of up to 90 Hz to prevent motion sickness. Other light field-
related applications and distribution effect rendering require a multitude of views
to be created or integrated. An established methodology for algorithm design in
visual computing is to employ the massively parallel capabilities of modern graphics
processing units (GPUs). Many rendering tasks are trivially parallel, e. g., operations
are independent for pixels, and map well to the specific architecture of modern
GPUs. However, working on mere images using massively parallel hardware is not a
guarantee for satisfactory efficiency. In fact, the problem of interactive or real-time
view synthesis is far from being solved and new ideas and algorithms are needed to
tackle current and upcoming tasks.

This thesis provides novel techniques that increase the efficiency of image-based
view synthesis algorithms. Recognizing and acknowledging that taking a novel

1.2. Contributions 3

view is a complex task, it does so by injecting AI into several stages of the rendering
pipeline, while at the same time retaining their property of being massively par-
allelizable. Unfortunately, the problems arising in image-based rendering are not
offhandedly amenable to an intelligent agent. Rather, both a reformulation of the
problems and custom intelligent algorithms are required to fully benefit from this
joining. In successfully doing so, we are able to

• demonstrate major performance improvements for image-based view synthesis
up to orders of magnitude, and

• extend the scope of manipulations possible with image-based methods by in-
corporating many design dimensions, like e. g., observer position, aperture size
and shape, time and exposure interval, light source position, and wavelength
of light.

This has two important consequences: Image-based rendering becomes (i) more
efficient and (ii) more versatile. This has direct implications on the level of realism
that is possible to achieve in interactive environments, such as computer games
and visualizations, both on standard displays and in virtual or augmented reality.
While research on traditional rendering techniques is slowly approaching a state of
diminishing returns, the incorporation of more and more sophisticated AI technology
appears to be a promising direction towards photo-realistic imagery in dynamic and
interactive virtual environments.

1.2 Contributions

In this thesis we identify three core tasks of image-based rendering that benefit from
certain kinds of intelligence: Point pattern design, distribution effect rendering, and
2D-to-3D conversion.

Point Pattern Design The design of point patterns is a fundamental task at the
core of computer graphics and beyond, linking many topics such as light transport
computation, layout, object placement, and visual perception. The use of correlated
points as sampling patterns is a prevalent part of most rendering algorithms. In
Chapter 3 (based on Leimkühler et al. [2019]) we contribute

• a GPU-friendly method to generate point patterns using a sequence of unstruc-
tured filters that work in high dimensions,

• a method that utilizes machine learning to determine these filters from pre-
scribed design goals, and

• point patterns that have not been possible to create before.

Distribution Effects Complex light transport effects like depth of field, motion blur,
soft shadows, and spectral dispersion are important factors to the cinematic quality
of images. Adding these effects to images in a post-process is the topic of Chapter 4
and Chapter 5.

In Chapter 4 (published as Leimkühler et al. [2017]) we

• observe that distribution effects can be expressed as a sum of many pinhole
images and contribute a warping-based synthesis framework to exploit the
coherency among those images,

4 Chapter 1. Introduction

• introduce the notion of “distribution flow” that represents 2D image deforma-
tion in response to changes in relevant distribution coordinates, and

• use a planning algorithm to determine the traversal of the space of pinhole
images to be synthesized, resulting in superior image warping performance.

We attack the problem of distribution effect rendering from another angle in
Chapter 5 (published as Leimkühler et al. [2018a]), where we

• splat the point-spread functions (PSFs) of distribution effects into the image,

• accelerate this process by optimizing for a sparse representation of PSFs in the
Laplacian domain, and

• demonstrate the feasibility and efficiency of this approach for a wide range of
distribution effects.

2D-to-3D Conversion The conversion from monocular to binocular content is a
prototypical image-based rendering problem and naturally requires a sophisticated
amount of image analysis. In Chapter 6 (published as Kellnhofer et al. [2015],
Leimkühler et al. [2016], and Leimkühler et al. [2018b]), we contribute

• a biologically-inspired real-time 2D-to-3D conversion system based on learned
priors and depth cues,

• a probabilistic fusion procedure that takes different sources of evidence with
varying degrees of confidence into account.

1.3 Outline

This thesis is structured as follows. Chapter 2 reviews relevant theoretical and
practical background. In Chapter 3, we introduce a sampling algorithm that is based
on machine learning. Chapter 4 demonstrates an image warping technique that gains
its efficiency from a planning strategy. We move on to a distribution effect renderer in
Chapter 5 that performs a sparsity-enforcing optimization in the space of point-spread
functions. Next, a real-time 2D-to-3D conversion system is presented in Chapter
6 that combines ideas from machine learning, computer vision, and probabilistic
reasoning. We conclude the thesis and discuss future research directions in Chapter 7.

5

Chapter 2

Background and Previous Work

In this chapter we provide a review of concepts, tools, and previous work relevant for
this thesis. We recall basic mathematical concepts in Sec. 2.1. Necessary background
in parallel computing for computer graphics tasks is given in Sec. 2.2, followed by a
short review of human depth perception in Sec. 2.3. View synthesis constitutes the
core topic of this thesis and its relevant preliminary aspects are discussed in Sec. 2.4.
Sampling patterns are reviewed in Sec. 2.5, before Sec. 2.6 provides an overview of
the field of artificial intelligence.

2.1 Mathematical Background

This section reviews fundamental mathematical concepts that are used throughout
this thesis. All definitions are given for n-dimensional Euclidean space in Cartesian
coordinates. Boldface fonts indicate vector-valued quantities.

2.1.1 Differential Operators

A differential operator is a mapping from a function f to another function which
contains the derivative of f with respect to one or more variables. In the context of
this thesis it is sufficient to only consider linear differential operators. The most basic
operators are the derivative d

dx itself and the partial derivative ∂
∂xi

for functions with
multiple variables.

The gradient operator maps a scalar function of n variables to the vector of first
partial derivatives, as in

∇ : f 7→
(

∂ f

∂x1
,

∂ f

∂x2
, . . .

∂ f

∂xn

)T

.

The gradient vector points in the direction of the steepest ascent of f , while its
magnitude corresponds to the slope of the graph of f in that direction.

The divergence of a vector-valued function is a scalar field expressing the vector
field’s volume density of outward flux, i. e., its source, and is given by

div : f 7→
n

∑
i

∂ fi

∂xi
.

The divergence is positive in regions of local expansion, and negative in regions of
local contraction.

6 Chapter 2. Background and Previous Work

a) b) c) d)

FIGURE 2.1: a) Original image. b) Confidence image. c) Convolution of a) with a Gaussian function
as defined in Eq. 2.1. d) Normalized convolution of a) with a Gaussian function as defined in Eq. 2.2
(after Knutsson and Westin, 1993).

Finally, the Laplacian of a scalar function is given by

∆ : f 7→ div (∇ f) =
n

∑
i

∂2 f

∂x2
i

.

It is a straightforward generalization of the second derivative to functions with
multiple variables. A useful property of the Laplacian is its rotational invariance, i. e.,
R∆ f = ∆R f , where R is an n-dimensional rotation.

2.1.2 Integral Transforms

An integral transform T is a mapping from a function f to another function of the
general form

T : f (x) 7→
∫

Ω
f (u)K(u, x)du.

The integral kernel K uniquely characterizes the transform. The integration is carried
out over an application-specific domain Ω. This thesis makes extensive use of integral
transforms, in particular the ones described below.

Convolution

The convolution of two functions f and g is given by

(f ∗ g)(x) =
∫

Rn
f (u)g(x − u)du. (2.1)

f ∗ g can be interpreted as the weighted mean of f with the weights given by a
mirrored version of g, or vice versa, due to the commutativity of the operation.

In some applications the function f features an associated confidence function c,
indicating the amount of spatially-varying certainty of f . Integrating confidence into
the convolution operator yields the normalized convolution operator [Knutsson and
Westin, 1993] and is defined as follows:

(f ∗c g)(x) =
(f · c) ∗ g

c ∗ g
(x). (2.2)

The denominator Z := c ∗ g is often referred to as partition function. Fig. 2.1 illustrates
the concepts of convolution and normalized convolution.

2.1. Mathematical Background 7

Fourier Transform

The n-dimensional Fourier transform of a function f is defined as

F(f)(q) =
∫

Rn
f (x)e−2πi〈x,q〉dx, (2.3)

where q is an n-dimensional frequency, and 〈·, ·〉 denotes the inner product of vectors.
F maps f into the complex-valued frequency domain, by performing a transform to
the basis of sinusoids, as can be seen from Euler’s formula

eix = cos(x) + i sin(x).

In many cases we are not interested in the full complex-valued result of the Fourier
transform, but rather in the power spectrum, which corresponds to the magnitude of
the frequency response and is simply given by the absolute value of F(f).

In this thesis we exclusively deal with finite domains, and in particular the unit
hypercube. This leads to the Fourier series representation

F(f)q =
∫

[0,1]n
f (x)e−2πi〈x,q〉dx, (2.4)

where q is an n-dimensional integer Fourier series coefficient, i. e., frequency vector.
The non-uniform discrete Fourier transform of an unstructured n-dimensional

point set X = {xk}N−1
k=0 is given by

F(X)q =
1
N

N−1

∑
k=0

e−2πi〈xk ,q〉. (2.5)

Please notice that Eq. 2.5 is a special case of Eq. 2.4, with f being a sum of shifted
Dirac deltas.

Since the complex exponential function is periodic and discrete signals naturally
have a finite extent, the discrete Fourier transform by design creates a periodic
continuation of the signal both in the frequency and the primal domain.

Green’s Function

Integral transforms can be used to invert differential operators (Sec. 2.1.1). Inverting
the basic derivative operator is trivially done by integrating the derived function
(i. e., K = 1). However, given the result y of a more complex differential operator L
requires solving the inhomogeneous differential equation

L f = y

for f . The integral transform that solves this equation depends both on the differential
operator and the boundary conditions imposed. In this context, the integral kernel K
is referred to as Green’s function.

In this thesis we make use of the Laplacian operator for images. Therefore, we
are naturally interested in the Green’s function that solves the associated 2D Poisson
problem, i. e., the transformation from the Laplacian to the primal domain. For the
particular problem at hand we consider an infinite 2D domain with no boundary

8 Chapter 2. Background and Previous Work

conditions, which leads to the free-space Green’s convolution kernel

K(u, x) = K(‖u − x‖2) =
1

2π
log(‖u − x‖2 + ǫ).

This kernel is radially symmetric and only depends on the distance d = ‖u − x‖2 to
the origin. The value ǫ (we use ǫ = .5 px) prevents a singularity at d = 0.

Our images are compactly supported, that is, they are zero outside the unit square,
which enforces enough constraints to make the integration solution unique. We use
G to denote the operator applying the convolution with Green’s function. This is
routinely done in the Fourier domain [Bhat et al., 2008] or – even more efficiently –
using a pyramidal scheme [Farbman et al., 2011]. A useful property is the rotational
invariance of G, inherited from the rotational invariance of the Laplacian operator
itself: integration of a rotated Laplacian yields the same results as the rotation of an
integrated Laplacian.

In typical gradient image editing tasks, the manipulated [Bhat et al., 2010] or
noisy [Lehtinen et al., 2013] gradient ∇ f is given and a function f is to be found
by employing the Laplacian as a means for finding a least-squares solution, often
with additional regularization (screened). In this thesis, our methods never act on
gradient vector fields ∇ f , but directly on the scalar Laplacian ∆ f , allowing both
sparse processing and accurate, yet efficient integration [Farbman et al., 2011].

2.1.3 Sparse Approximations

Functions can be represented in numerous different ways. Storing and processing
functions is most efficient in a sparse representation, where only a few coefficients
reveal the information we are interested in. The usual way of obtaining a sparse
representation is to decompose the function of interest into elementary functions,
called a dictionary. An orthogonal basis is an example of a dictionary of minimum
size.

The core task of finding a sparse representation is to adapt the dictionary to
the properties of the class of functions to be represented. In practice, however, it
is oftentimes impossible to find a representation that fulfills certain sparsity con-
straints. Therefore, a common procedure is to obtain sparse approximations, which
trade sparsity for accuracy. This can be done either by simply thresholding small
dictionary coefficients [Donoho et al., 1992] or by directly optimizing for a desired
sparsity-accuracy trade-off [Bach et al., 2011]. In this thesis, we make extensive use of
a very specific kind of sparse approximation:

Scattered Samples

In a scattered data representation a function f(x) is stored as a list of sample positions
and values F = {xk, f(xk)}N−1

k=0 . This representation has the advantage of being able to
adapt to local features of f by choosing appropriate densities. The design of sample
patterns is a research question on its own and is discussed in Sec. 2.5. Obtaining f

from F is referred to as reconstruction.

2.1.4 Radial Basis Functions

Radial basis functions (RBF) are a simple, yet powerful finite-element technique for
reconstructing an unknown continuous function f from a sparse set of point samples
{f(xk)}N−1

k=0 (Sec. 2.1.3). The core idea is to employ a real-valued function φ whose

2.1. Mathematical Background 9

TABLE 2.1: Commonly used radial basis functions. The parameter a is an
application-dependent scaling factor.

Name φ(r)

Gaussian e−ar2

Multiquadric
√

r2 + a2

Inverse Multiquadric
√

r2 + a2−1

Thin Plate Spline r2 ln(r)

value solely depends on the distance to the origin, i. e., φ(x) = φ(‖x‖2). A weighted
sum of RBFs shifted to the sample position xk yields a continuous approximation of f

of the form

f(x) ≈ f̃(x) =
N−1

∑
k=0

wkφ(‖x − xk‖2),

where wk ∈ R
n are weights associated with the sample points. If the approximation

is required to interpolate the sample points, i. e., f(xk) = f̃(xk), the weights can be
determined by solving the linear system

N−1

∑
k=0

wkφ(‖xj − xk‖2) = f(xj), for 0 ≤ j < N.

To make sure that the linear system is solvable, RBFs are designed in such a way
that the symmetric system matrix is positive definite. This holds for several standard
RBFs, representative examples of which are given in Table 2.1.

2.1.5 Bayesian Statistics

Bayesian statistics provides the mathematical procedures to assess probabilities that
are changing as new information is gathered. The central tool is Bayes’ theorem:
Given two events A and B, the conditional probability of A given B is computed as

P(A|B) = P(B|A)P(A)

P(B)
.

While this expression is a fundamental result of probability theory and technically
symmetric in terms of A and B, in the context of Bayesian statistics each term has a
dedicated meaning. The event A usually represents a proposition whose posterior
probability P(A|B), given some evidence or new data B, we want to estimate. P(A)
is called the prior probability of the proposition, which expresses our knowledge
about A without taking the evidence into account. P(B|A) is called the likelihood
and corresponds to the probability estimated from the evidence. Finally, P(B) is
the probability of the evidence, which serves as a normalizing factor (constant of
proportionality).

A core task in the context of Bayesian statistics is the modeling of data-generating
processes (Sec. 2.6.5). Maximum likelihood estimation (MLE) is the process of estimat-
ing the parameters of such a probabilistic model to maximize the likelihood function,
i. e., to determine

BMLE = arg max
B

P(B|A).

10 Chapter 2. Background and Previous Work

θθMAP θMLE

P(θ)

Prior

Likelihood

Posterior

FIGURE 2.2: Bayesian inference in a continuous one-dimensional domain.

Analogously, the process of maximum a posteriori (MAP) estimation deals with
finding parameters that maximize the posterior, i. e.,

AMAP = arg max
A

P(A|B).

Usually, P(B) is not required for MAP estimation due to its independence of the
model and therefore purely normalizing contribution. Figure 2.2 illustrates the
concepts.

2.1.6 Monte Carlo Integration

Monte Carlo integration is a technique for numerically computing definite integrals
of the general form

I =
∫

Ω
f(x)dx.

Numerical integration is necessary whenever the integrand f(x) cannot be described
analytically.

The basic idea of naive Monte Carlo integration is to uniformly sample f at
positions {xk}N−1

k=0 . Due to the law of large numbers, for a sufficiently large N, the
integral I can be approximated by

I ≈ V
1
N

N−1

∑
k=0

f(xk),

where V =
∫

Ω
dx is the volume of Ω. When the sample positions xk are chosen ac-

cording to a probability density function p(x), the Monte Carlo estimator generalizes
to the form

I ≈ 1
N

N−1

∑
k=0

f(xk)

p(xk)
.

The sampling density p(x) can be chosen arbitrarily, as long as it is non-zero for all
x for which f (x) is non-zero. A common method to decrease the variance of the
stochastic integral estimation is to design p(x) in such a way that it matches the shape
of f (x) as closely as possible. This procedure is referred to as importance sampling.

2.2. Parallel Visual Computing 11

The stochastic approach of Monte Carlo integration allows for an efficient com-
putation in high-dimensional or even transdimensional domains, which are quite
common in light transport computations (Sec. 2.4).

2.2 Parallel Visual Computing

All algorithms developed in this thesis gain a substantial amount of their efficiency
from being massively parallel. This section therefore reviews the concepts of parallel
computing for graphics applications.

2.2.1 Massively Parallel Computing

A GPU is a co-processor designed to perform massively parallel computations. Typi-
cal contemporary GPUs exhibit hundreds or thousands of cores [Barlas, 2014], allow-
ing fine-grained parallelism. The prevalent compute model used is single instruction,
multiple data (SIMD) [Flynn, 1972], i. e., a large collection of items is processed using
the same instructions. This was motivated by graphics applications, where large sets
of triangles and pixels are processed independently, resulting in trivially parallel tasks.
Gradually, GPUs have been used in pipelines with a broader range of applications
(general-purpose computing on GPUs, GPGPU), in particular in the field of scientific
computing. Nowadays, many sophisticated interfaces (APIs) for programming GPUs
are available, such as OpenGL [Shreiner et al., 2013], CUDA [Kirk, 2007], and OpenCL
[Stone et al., 2010].

Optimization towards maximal GPU runtime performance requires considera-
tions close to the hardware level [Steinberger, 2013] and involves e. g., avoiding thread
divergence, efficient latency hiding, utilizing shared and other specialized memory,
and partitioning computational blocks. This can include optimizations specifically
tailored to dedicated pieces of hardware. Much of the above can be alleviated by an
informed combination of problem formulation and data layout, that maps well to
modern GPUs. Corresponding operations used throughout this thesis are discussed
next.

2.2.2 Data-parallel Operations

The processors of modern GPUs are naturally arranged in and accessed via array
structures. Therefore, data layouts in the form of implicit regular grids of relatively
low dimensionality (typically ≤ 3) are beneficial. The resulting implicit connec-
tivity between adjacent data points is pre-defined and does commonly not require
sophisticated acceleration structures, which might facilitate thread divergence. The
aggregation of data in regular grids is routinely performed using pyramidal struc-
tures, where fine-grained data is successively aggregated into coarser levels. This
often results in constant amortized complexity per data point and has direct hardware
support in the form of MIP mapping.

Most non-trivial parallel algorithms require a form of information exchange
or message passing between data points. An example is convolution (Sec. 2.1.2),
where neighboring points mutually contribute to their respective results. A parallel
algorithm naturally has three options for realizing message passing: Parallelization
over (i) senders, (ii) receivers, or (iii) messages. All strategies are equivalent and only
differ in their execution efficiency.

In gathering algorithms, receivers iterate over potential senders. This corresponds
to a search in the space of possible contributors to a result. When the data exhibits

12 Chapter 2. Background and Previous Work

Horopter

Disparity

FIGURE 2.3: The geometry of stereopsis. The eyes are converging to the blue point. This gives rise to
binocular disparity for the red point, which lies outside the horopter surface.

a regular layout and the search radius is relatively small, gathering is usually the
more efficient procedure. In contrast, in a scattering algorithm, senders iterate over
potential receivers. This procedure naturally requires incoherent memory writing
and is therefore particularly efficient in settings where only sparse data needs to be
transferred over possibly larger distances. The third option, the parallelization over
interactions, is suitable for situations where a reasonably low number of messages
is know a priori. This strategy can be beneficial when dealing with unstructured
data, but it can result in inferior efficiency due to a combinatorial explosion in the
number of messages. The decision for or against a particular parallelization strategy
largely depends on the particular problem to be solved and consequently needs to be
determined on a case-by-case basis.

A practical and efficient implementation of scattering is splatting [Westover, 1989].
Here, the rasterization pipeline is used to draw geometric primitives (e. g., points).
The corresponding projected images trigger shading computations in the covered
fragments.

2.3 Depth Perception

In this section we review the basic psychophysical and computational background of
stereo vision and depth perception.

2.3.1 Stereopsis

Humans (along with many animals) obtain visual information from two eyes. Due to
the lateral offset of the eyes, the two images projected to the corresponding retinas
are slightly different. When a human observer looks at an object, the two eyeballs are
rotated around a vertical axis so that the point of interest appears in the center of the
retina in both eyes. In doing so, single vision is obtained. Closer objects result in an
inward rotation (convergence) whereas distant objects lead to an outward rotation
(divergence). The set of all points yielding single vision for a fixed vergence state
is called horopter. Relative positional differences in the retinal images arising from
the lateral offset of the eyes are commonly referred to as binocular disparity (Fig. 2.3).
Since the amount of disparity depends on the distance to the horopter, the human
visual system is able to infer depth by performing region matching.

2.3. Depth Perception 13

2.3.2 Spatio-temporal Disparity Sensitivity

The spatial disparity sensitivity function determines the minimum disparity magni-
tude required to detect sinusoidal depth corrugations of various spatial frequencies
[Howard and Rogers, 2012, Ch. 18]. The highest resolvable spatial frequency is about
3–4 cpd (cycles per degree), which is almost 20 times below the cut-off frequencies for
luminance contrast [Wandell, 1995]. Similar investigations in the temporal domain
indicate that the highest sinusoidal disparity modulation that can be resolved is
about 6–8 Hz [Howard and Rogers, 2012], which is significantly lower than the 70 Hz
measured for luminance [Wandell, 1995].

As analyzed by Kane et al. [2014], the picture is different for disparity step-edges
in space and time, which are important in real-world images. They found that, for
step-edge depth discontinuities, observers might still notice blur due to the removal
of spatial frequencies up to 11 cpd, indicating that while overall disparity can be
smoothed significantly, this is not the case for depth discontinuities. Kane et al. could
further show that filtering temporal frequencies higher than 3.6 Hz from a step signal
remains mostly unnoticed. Their findings indicate that the temporal disparity signal
might be sparsely sampled and even more aggressively low-pass filtered, without
causing visible depth differences.

Surprisingly, depth edges appear sharp, even though human ability to resolve
them in space and time is low. One explanation for this is that the perceived depth
edge location is determined mostly by the position of the corresponding luminance
edge [Robinson and MacLeod, 2013]. Interestingly, depth discontinuities that are
not accompanied by color edges of sufficient contrast poorly contribute to the depth
perception and do not require precise reconstruction in stereo 3D rendering [Didyk
et al., 2012].

The upper disparity gradient limit determines the maximum disparity for corru-
gations of a certain frequency the human visual system can fuse [Howard and Rogers,
2012, Fig. 18.28]. Intuitively, when increasing the disparity gradient (e. g., by slanting
a surface), retinal images become dissimilar and fusion becomes impossible [Filippini
and Banks, 2009]. Kane et al. [2014] generalize this observation to space-time.

2.3.3 Computational Models of Depth Perception

Inference of depth from monocular images is based on depth cues. A discussion of
individual cues is beyond the scope of this thesis and can be found in [Howard and
Rogers, 2012]. The combination of cues into a perception of depth is called fusion. If
multiple cues are extracted, their computational fusion is considered difficult, and left
to the user as in the system of Assa and Wolf [2007]. Two main opposing paradigms
of fusion exist: the weak and the strong model [Landy et al., 1995]. In the weak model,
cues act in isolation to produce an estimate of depth which is directly combined
in a fixed linear weighting. In a strong model, cues interact in an unspecified and
arbitrarily complex way.

A middleground is modified weak fusion [Landy et al., 1995], in which cues are
independent, but their combination is not a linear mixture with fixed weights, as it
locally adapts to the confidence of each cue. Bayesian fusion [Knill and Richards,
1996] using normal distributions is a formal way to achieve modified weak fusion.
Here, cues are weighted by their confidence before they are combined. Besides using
only the cues of the present stimulus, one strength of Bayesian inference is that it can
account for prior experience (Sec. 2.1.5).

14 Chapter 2. Background and Previous Work

a) b) d)c)

FIGURE 2.4: Different types of distribution effects. (a) Depth of field. (b) Motion blur. (c) Spectral
caustics. (d) Soft shadows.

2.4 View Synthesis

This section reviews the theoretical and practical background of view synthesis with
an emphasis on the topics relevant for this thesis.

2.4.1 Light Transport and Rendering

Synthesizing views means simulating light transport. The rendering equation [Kajiya,
1986] concisely describes how radiance L of wavelength λ leaving a differential
surface patch at location x with normal vector n in the direction ωo at time t can be
computed:

L(x, ωo, λ, t) = Le(x, ωo, λ, t) +
∫

S+
L(x, ωi, λ, t) fr(x, ωi → ωo, λ, t) 〈ωi, n〉dωi.

(2.6)

Here, Le is emitted radiance, S+ the upper hemisphere above x, ωi an incoming
direction, and fr is the bidirectional reflectance distribution function (BRDF) encoding
surface properties. As light arriving from a direction ωo recursively depends on all
incoming light reflected into this direction, this integral equation has highly non-
trivial solutions even for the simplest geometric configurations.

The function that describes radiance “flowing” in every direction at every point
in space is called light field [Gershun, 1939]. Neglecting spectral and temporal effects,
this plenoptic function [Adelson and Bergen, 1991] is naturally five-dimensional (3
positional and 2 angular dimensions), but since radiance is constant in free space
the effective parameter space reduces to a four-dimensional manifold [Gortler et al.,
1996].

Distribution Effects

Many phenomena arising from physical light transport cannot be computed by a mere
point-wise evaluation of Eq. 2.6, i. e., a single parameter vector (x, ωo, λ, t)T . Rather,
an integration of light contribution over one or multiple variables is necessary. The
degree of realism of synthetic images heavily depends on the successful simulation
of these distribution effects.

Depth of Field Images captured with physical cameras have a limited depth of
field (DoF) (Fig. 2.4, a). Objects further away from the focal plane exhibit stronger
defocus blur. This is, as light arrives at each sensor location from multiple directions,
namely from the entire lens surface, which corresponds to an integration over the
domain of incoming directions, i. e., ωo.

2.4. View Synthesis 15

a) b) c) d)

FIGURE 2.5: Different types of point-spread functions. (a) A circular shape arising from the depth-
of-field of a thin-lens camera. (b) A response exhibiting linear motion-blur and depth of field. (c) A
spectral response arising from a chromatic aberration. (d) A partially occluded depth-of-field response
of a physical lens model.

Motion Blur Real cameras do not capture incoming light instantaneously. Photons
are rather accumulated within a finite shutter interval, which corresponds to an
integration over the temporal domain, i. e., t. In the case of moving objects or a
moving camera, this leads to motion blur (MB) along the motion trajectory (Fig. 2.4, b).

Spectral Effects When light hits a dispersive interface like e. g., glass, it gets re-
fracted. The new ray directions depend on the wavelength of the light, which
oftentimes creates colorful effects. This phenomenon corresponds to an integration
over the spectral domain, i. e., λ, and is observable either as caustics, where dispersed
light hits a diffuse surface (Fig. 2.4, c), or when a scene is directly observed through a
dispersive medium, e. g., a lens producing chromatic aberrations.

Soft Shadows In contrast to the facilities of virtual scenes, real light sources always
have a physical extent. This naturally creates soft shadows, whose intricacies depend
on the geometric configuration of light sources, occluders and shadow receivers
(Fig. 2.4, d). These effects are determined by integrating over the surface of the light
source. While Eq. 2.6 handles this situation naturally, soft shadows are nevertheless
listed here, as their practical computation strongly resembles the ones of the other
distribution effects mentioned above.

Most distribution effects can be understood in terms of their point-spread functions
(PSF) [Kolb et al., 1995]. A PSF describes the response of the distribution effect
integration to a single point. This response can become arbitrarily complex, as it
naturally arises from e. g., perspective projection, occlusion, or dispersion (Fig. 2.5).
A formal definition of PSFs is given in Sec. 5.3.1.

Computer graphics has a long history in modeling the imperfections of physical
lens systems and film exposure to the end of providing the desired cinematic fidelity
of real imagery. The canonical way of simulating distribution effects is distribution
ray-tracing [Cook et al., 1984; Pharr et al., 2016] in combination with proper camera
models [Kolb et al., 1995], which employs Monte Carlo integration: For every sample
on the lens, in time, etc., a ray is sent. The final image is obtained by averaging
the contribution of all rays. This is a general and easily implemented solution, but
inherits the difficulties of ray-tracing that does not deliver the same performance
as rasterization. Despite its theoretical properties, ray-tracing does not scale favor-
ably with increasing geometry. Also shading complexity directly affects the cost
of distribution effects as it is usually not able to exploit the coherence in shading,
which is very similar in many cases. However, efficient reuse of samples is possible

16 Chapter 2. Background and Previous Work

by considering anisotropic footprints [Lehtinen et al., 2011], allowing to reduce the
sampling rate significantly.

An alternative to ray-tracing for high-quality images is REYES [Cook et al., 1987].
Here, the scene is decomposed into micro-polygons, shaded and rasterized from
many views. The shading of vertices decouples it from visibility determination,
allowing to exploit coherence. While GPU implementations of REYES are available
[Zhou et al., 2009], the complexity of the process does not map as well to GPUs as
plain rasterization does.

Accumulation buffering [Haeberli and Akeley, 1990; Yu et al., 2010] is a simple
alternative to this: A GPU is used to render many slightly different pinhole images,
which is a highly optimized process taking full advantage of common graphics hard-
ware. The resulting images are accumulated to produce an image with distribution
effects. While this is a fairly simple and general method, like every super-sampling it
can be slow and the (shading) coherence between similar images is not exploited.

Instead of averaging many pinhole images, an alternative solution is to blend the
random nature of distribution ray-tracing and rasterization in what is called stochas-
tic rasterization [Akenine-Möller et al., 2007]. Here, an output image is still rasterized,
but contains pixels from many views which are then aggregated to support many
distribution effects. Using layered rendering improves the quality here [Munkberg
et al., 2014]. Other specialized rasterizations have directly produced multiple views
[Hasselgren and Akenine-Möller, 2006]. Finally, direct samples of a light field ren-
dering, i. e., multiple views, can be produced and aggregated using optimization for
natural image (or light field) sparsity [Heide et al., 2013]. The optimization and the
required ray-tracing have not been demonstrated with interactive performance and
are limited to the lens domain.

While the algorithms mentioned above are to some extend general solutions
for rendering distribution effects and beyond, specialized solutions, such as Lee
et al. [2009] for depth-of-field do perform better. However, it is not clear how those
approaches should be combined, and what their resulting performance would be.
Also they often make assumptions on motion, scene configurations, sensor shapes
etc. that might not apply in general.

The reconstruction of noise-free images from stochastic images has received
substantial attention [McCool, 1999; Kontkanen et al., 2006; Lehtinen et al., 2011; Sen
and Darabi, 2012]. In particular for DoF and MB, light transport Fourier analysis
[Durand et al., 2005; Egan et al., 2009; Soler et al., 2009; Belcour et al., 2013; Munkberg
et al., 2014; Yan et al., 2015b] is of great importance. Such approaches account for
the effect of DoF and MB as a filter that reduces the bandwidth and therefore allows
blurring the image, eventually also reducing MC noise. However, the derivations
often consider only a limited set of geometric relations, distance assumptions, or
diffuse surfaces.

2.4.2 Image-based Rendering

The concepts and algorithms described in the last section are concerned with synthe-
sizing images from physical first principles or approximations thereof. This requires
the creation of virtual scenes, including geometric modeling and the definition of
surface properties and lighting configurations. A different procedure for synthesizing
views is the manipulation of existing images. This image-based rendering approach
is not concerned with solving the rendering equation (Eq. 2.6) explicitly, but rather
aims at re-using pixels from images similar to the one we want to create, possibly
including additional information like depth or surface orientation.

2.4. View Synthesis 17

a) b) c) d)

FIGURE 2.6: Image warping. (a) Deformation flow field, resulting in occlusions and disocclusions.
(b) Point warping. (c) Grid warping. (d) Quad-tree warping.

Image-based rendering has two tremendous advantages compared to classical
model-based rendering: First, the computations involved in manipulating pixels, i. e.,
regular two-dimensional arrays, are substantially cheaper. The reduced amount of
information allows for efficient algorithms and the regular structure of the data maps
well to GPUs. Second, image-based rendering is not reliant on scene descriptions.
In fact, regular images taken by real cameras can be used as a basis for novel-view
synthesis, substantially broadening the scope of this approach.

The main disadvantage of image-based rendering is the natural scarcity of in-
formation. Only scene content visible in the source image is available. Therefore,
occlusions are a typical problem that needs to be tackled. Furthermore, the uniform
sampling in image space implies a highly non-uniform sampling in world space: Sam-
pling density is low for distant objects and slanted surfaces, which can be problematic
in a local magnification configuration, where novel views require objects coming closer
or surfaces rotating into view. Finally, view-dependent shading information is lost.
Non-Lambertian surfaces change their appearance depending on the viewing angle.
This effect is considered hard to accommodate.

Due to the discussed limitations, image-based rendering is typically used in
applications where views similar to the original image are to be produced. In this
restricted application domain, the advantages tend to outweigh the disadvantages.

Warping

The deformation of an image is commonly referred to as warping [Mark et al., 1997].
Input to a warping algorithm are an image and a flow field, indicating where each
pixel should be moved (Fig. 2.6, a). Commonly, flow fields are non-injective and
non-surjective, i. e., many pixels can move to the same position and some positions
are never mapped to. The first situation corresponds to an occlusion and per-pixel
depth information is needed in addition to the two-dimensional flow vector to resolve
it. The second situation corresponds to a disocclusion, which either needs additional
information from another image [Shade et al., 1998] or an in-painting strategy. Cru-
cially, no obvious way exists to determine these kinds of visibility configurations
induced by a general flow field without executing the warping. A flow field can
originate from a simple reprojection or problem-specific deformation rules (Sec. 4.3.2).

Deforming images to produce novel views has its origin in interactive exploration
frameworks [Lippman, 1980], where images undergo simple transformations for
more appealing transitions. These basic ideas were further developed in the vision
community, where extrapolation from given real images is often required as no
mechanism exists to “render” arbitrary novel views [Chen and Williams, 1993]. Later,
the opposite was exploited: what is possible for real images is possible for synthetic
ones, too. Mark et al. [1997] were the first to present efficient image deformation to
speed up rendering.

18 Chapter 2. Background and Previous Work

When used in interactive applications such as games, computational efficiency of
warping has become important. Early graphics systems [Torborg and Kajiya, 1996]
have warped entire tiles instead of re-rendering using a linear mapping. If tiles cover
non-planar geometry, artifacts arise. Plain drawing of points (Fig. 2.6, b) is neither fast
nor does it give high quality: Holes naturally appear in the presence of disocclusions
or magnification. Drawing connected quads (Fig. 2.6, c) is a remedy, but, due to
the high number of primitives, does not deliver the performance required for many
warps. To reduce the number of primitives, quad trees were used [Didyk et al., 2010a]
(Fig. 2.6, d). In all cases, using layered depth images [Shade et al., 1998] can improve
quality [Widmer et al., 2015].

The best performance can be achieved when warping is expressed as a gathering
instead of a scattering operation [McMillan, 1997; Yang et al., 2011; Bowles et al.,
2012]. Here, instead of mapping pixels to a new location along a forward map, the
inverse of the map is found and used to decide from which position a pixel in the
output image is read. In practice, such approaches can require many iterations and
diverge if not initialized properly, such as by using a forward warp.

Image-based Distribution Effects

An efficient way to simulate distribution effects is to start with a pinhole image and
to apply suitable post-processing operations. This means that the involved integral
computations are approximated by an informed utilization of pixel data alone.

Simple image blurring [Potmesil and Chakravarty, 1981] has been popular for
DoF and MB and found commercial use in practical applications such as games
[Göransson and Karlsson, 2007]. Using image-space filters has been proposed in
many different forms [Rosado, 2007; McGuire et al., 2012]. A typical DoF solution is
to use MIP fetches [Kraus and Strengert, 2007] or learned kernels in a neural network
[Nalbach et al., 2017]. While very fast, these methods use convolution and are only
correct for translation-invariant PSFs.

An alternative approach is to splat PSFs [Lee et al., 2008]. Here, for each pixel in
the image the corresponding PSF is determined and additively drawn. Ray-marching
(layered) depth images [Lee et al., 2009; Lee et al., 2010] is another method to produce
high-quality DoF at high speed. They support complex DoF, producing a cinematic
effect. However, they still result in MC noise and we are not aware of extensions to
MB.

Warping-based distribution effects have been explicitly demonstrated for depth-
of-field [Yu et al., 2010], but most warping-based work considers distribution effects
as a common test case for the performance they achieve [Mark et al., 1997; Yang
et al., 2011; Bowles et al., 2012; Didyk et al., 2010a]. Related applications of warping
are light field pre-filtering [Zwicker et al., 2006], multi-view expansion [Didyk et al.,
2013], temporal up-sampling, specular rendering [Lochmann et al., 2014] or even
spectral rendering [Elek et al., 2014].

2D-to-3D Conversion

The conversion from monocular to binocular images is a core discipline in the field of
image-based rendering. This task naturally is a two-step procedure: First, binocular
disparity needs to be estimated from the monocular image. The second step produces
the binocular image pair. Here, we review manual and automatic approaches for
2D-to-3D conversion with an emphasis on real-time conversion, along with the use of
luminance and depth edges in computational stereo.

2.4. View Synthesis 19

Disparity Estimation Manual conversion produces high-quality results but re-
quires human intervention, which can result in substantial cost. It is based on painting
depth annotations [Guttmann et al., 2009] with special user interfaces [Ward et al.,
2011] and propagation in space and time [Lang et al., 2012]. The semi-supervised
method of [Assa and Wolf, 2007] combines cues extracted from an image with user
intervention to create depth parallax.

Automatic conversion does not induce manual effort, but results in long com-
putation times to produce results of medium quality. The system of Hoiem et al.
[2005] infers depth from monocular images by a low number of labels. Make3D
[Saxena et al., 2009] is based on learning appearance features to infer depth. This
approach shows good results for static street-level scenes with super-pixel resolution
but requires substantial computation. Non-parametric approaches rely on a large
collection of 3D images [Konrad et al., 2012] or 3D videos [Karsch et al., 2014] that
have to contain an exemplar similar to a 2D input. Conceptually, such an approach
aligns all 3D images or 3D videos in a large collection (hundreds of exemplars) with
a monocular query input image or video and transfers their depth to the query.
Aligning to a large collection of images or videos of hundreds of elements usually
contradicts real-time requirements. For cel animations, where each frame is drawn
manually and therefore usually contains pronounced outlines, T-junctions have been
shown to provide sufficient information to add approximate depth [Liu et al., 2013].
Tao et al. [2013] estimate depth by fusing information obtained from defocus and
correspondences in a confidence-aware fashion using a Markov Random Field. Their
offline method requires full light fields.

Real-time methods to produce disparity from 2D input videos usually come at low
visual quality. Individual cues such as color [Cheng et al., 2010], motion [Huang et al.,
2009] or templates [Yamada and Suzuki, 2009] are combined in an ad-hoc fashion.
A simple and computationally cheap solution is to time-shift the image sequence
independently for each eye, such that a space-shift provides a stereo image pair
[Murata et al., 1998]. This requires to identify the camera velocity and only works for
horizontal motions. For rigid motions in animations, structure-from-motion (SfM)
can directly be used to produce depth maps [Zhang et al., 2007]. Classical SfM makes
strong assumptions about the scene content such as a rigid scene with camera motion.
More recent work relaxes these assumptions [Vogel et al., 2015], but comes along
with high computational costs. Commercial 2D-to-3D solutions [Zhang et al., 2011]
based on custom hardware (e. g., JVC’s IF-2D3D1 Stereoscopic Image Processor) and
software (e. g., DDD’s Tri-Def-Player), reveal little about their used techniques, but
anecdotal testing shows the room for improvement [Karsch et al., 2014].

Recently, depth estimation based on deep learning outperformed most previous
approaches. This class of algorithms can be trained either in a supervised [Eigen et al.,
2014] or an unsupervised [Garg et al., 2016] fashion. Oftentimes it proved beneficial
to incorporate a probabilistic model into the system [Li et al., 2015; Liu et al., 2016;
Roy and Todorovic, 2016] to obtain high-resolution results and enforce an agreement
between depth and luminance edges, as discussed next.

Depth and Luminance Edges Since luminance and depth edges often coincide,
e. g., at object silhouettes, full-resolution RGB images have been used to guide depth
map upsampling both in the spatial [Kopf et al., 2007] and the spatio-temporal
[Richardt et al., 2012] domain. An analysis of a database with range images for
natural scenes reveals that depth maps mostly consist of piecewise smooth patches
separated by edges at object boundaries [Yang and Purves, 2003]. This property is
used in depth compression, where depth edge positions are explicitly encoded, e. g.,

20 Chapter 2. Background and Previous Work

by using piecewise-constant or linearly-varying depth representations between edges
[Merkle et al., 2009]. This in turn leads to a significantly better depth-image-based
rendering quality than is possible at the same bandwidth of MPEG-style compressed
depth, which tends to blur depth edges.

Differential and incremental image changes

This thesis make use of differentials and incremental changes in images. This section
therefore briefly reviews related concepts.

Capture Epsilon photography [Raskar, 2009] refers to techniques in computational
photography that rely on multiple images acquired by incrementally varying camera
parameters like aperture, exposure, or viewpoint. Observing that there is much
redundancy in the acquired images, compressive epsilon photography [Ito et al.,
2014] only acquires a subset of the images and uses techniques from compressive
sensing to infer the missing information.

Synthesis Ray and path differentials [Igehy, 1999; Suykens and Willems, 2001]
describe the spatial change of a ray under a differential change of the associated
sensor coordinate. This quantity essentially corresponds to the ray’s footprint and
is therefore an effective means for anti-aliasing. This concept was extended to also
include the spectral domain [Elek et al., 2014]. The differentials are effectively analytic
models for computing the change of ray properties with respect to a limited set of
parameters.

The gradient domain has previously been used for image processing [Heckbert,
1986; Simard et al., 1999; Pérez et al., 2003; Bhat et al., 2010], and recently received new
interest in contexts such as image compression [Galić et al., 2008], vector graphics
[Orzan et al., 2013], reprojection [Kopf et al., 2013], texture representation [Sun et al.,
2012], and realistic image synthesis [Lehtinen et al., 2013]. In gradient-domain path
tracing [Kettunen et al., 2015] pairs of paths are traced for explicitly estimating image
gradients. In conjunction with a Poisson reconstruction step this method yields
superior results compared to standard path tracing.

2.5 Sampling

While random sampling is undoubtedly useful for many computer graphics tasks, it
remains an active topic of research to determine exactly which form of randomness is
desirable. In this section, we review different properties of point patterns along with
algorithms to create them. An in-depth survey is provided by Yan et al. [2015a].

2.5.1 Pattern Properties

Yellott [1983] first noted that the receptors on the retina are neither regular nor random
but follow very specific patterns where they keep a minimal distance. These patterns
are routinely characterized by their expected power spectrum [Ulichney, 1988; Lagae
and Dutre, 2008]. The expected power spectrum of a point pattern is computed by
averaging over the Fourier transforms (Sec. 2.1.2) of many instances (Fig. 2.7, a and b).
For two or more dimensions, the full spectrum is often further radially averaged to a
one-dimensional subspace (Fig. 2.7, c). The variance of this radial estimate is called

2.5. Sampling 21

Frequency

P
o
w
e
r

a) b) c)

FIGURE 2.7: A sampling pattern (a) is characterized by its expected power spectrum (b) that can
be radially averaged to obtain a one-dimensional profile (c). This example shows a blue noise sample
pattern, as can be seen from the vanishing energy in the low-frequency region.

a) Uniform Random b) Regular c) Jittered d) Correl. Multi-Jittered e) Halton

FIGURE 2.8: Different classical point patterns in 2D.

the radial anisotropy which is low for radially symmetric (isotropic) patterns and large
for others.

Spectral properties of point patterns are often described in terms of noise “colors”.
A white noise pattern has a flat spectrum, where the energy is equally distributed over
all frequencies. A blue noise (BN) pattern has a power spectrum with little energy
in the low-frequency region. BN was first used in graphics for dithering [Ulichney,
1988] and stippling [Secord, 2002; Oliver et al., 2001]. In the context of dithering,
models of human perception can be used to improve quality [Mulligan and Ahumada,
1992]. BN patterns are also used for Monte Carlo integration-based image synthesis
(Sec. 2.1.6), as they shift the error into the high-frequency bands, to which humans
are less sensitive [Cook, 1986]. Besides BN, other colors of noise are useful in tasks
such as procedural primitive placement.

Heck et al. [2013] were the first to address oscillations in the power spectrum.
Kailkhura et al. [2016] suggest to add a stair to the spectrum to widen the low-energy
region in the low frequencies.

Another concept to create BN is the Poisson disk [McCool and Fiume, 1992; Lagae
and Dutre, 2008] or max-min distance. In such a pattern, the minimal distance from
one point to the others is maximized over all points i. e., all points keep a minimal
distance.

Histograms of points distances (the differential domain) [Bowers et al., 2010; Wei
and Wang, 2011] or pair correlations [Öztireli and Gross, 2012] are an alternative
and flexible tool to analyze point patterns. In particular, they allow working on
non-uniform point patterns and anisotropic spectra [Singh and Jarosz, 2017].

2.5.2 Pattern Generation

The most simple way to produce an n-dimensional point pattern is uniform random
sampling (Fig. 2.8, a). However, the white noise power spectrum of this pattern
naturally leads to clusters and holes.

The exact opposite of uniform random sampling is regular sampling (Fig. 2.8, b),
which deterministically places points on a uniform grid. This method has two main

22 Chapter 2. Background and Previous Work

drawbacks: First, it produces regularity artifacts that are clearly observable in many
applications. Second, it suffers from the curse of dimensionality: The number of points
required to fill a domain grows exponentially with the number of dimensions.

A straightforward method to attack the first problem is to mix the two patterns
described above. This leads to jittered sampling [Cook, 1986] (Fig. 2.8, c), where a
uniform random offset is applied to a regular sampling pattern. This results in a
stratified result, where only at most 2n samples can clump together. The quality of
jittered sampling can be further improved by stratifying the random offset applied to
each sample [Chiu et al., 1994] and shuffling those offsets in a correlated way [Kensler,
2013]. The result is referred to as correlated multi-jittered sampling (Fig. 2.8, d).

Quasi Monte-Carlo (QMC) sampling denotes a family of sampling techniques that is
based on low-discrepancy sequences. The governing principle of these deterministic
methods is the representation of numbers in prime bases and their radical inverses.
Popular low-discrepancy sequences are the Halton [Halton, 1964] (Fig. 2.8, e) and the
Sobol [Sobol, 1994] sequence.

Classic ways to produce BN patterns are dart throwing [McCool and Fiume, 1992]
and Lloyd relaxation [Lloyd, 1982]. The first can be slow, while the latter often suffers
from regularity artifacts, that need extra effort to be overcome [Balzer et al., 2009;
De Goes et al., 2012].

Methods that generate point patterns with a desired spectrum need to be run
every time when a point pattern is produced [Wei and Wang, 2011; Zhou et al., 2012;
Heck et al., 2013; Kailkhura et al., 2016]. Mitchell et al. [2018] have recently suggested
methods to produce BN point sets in high dimensions, including point saturation.

Many technical alternatives have been considered to produce blue noise patterns
such as variational [Chen et al., 2012], optimal transport [Qin et al., 2017; De Goes
et al., 2012], tiling [Ostromoukhov et al., 2004; Wachtel et al., 2014], Wang tiles [Kopf
et al., 2006], kernel-density estimation [Fattal, 2011], smooth particle hydro-dynamics
[Jiang et al., 2015] or electro-statics [Schmaltz et al., 2010]. All these methods include
involved mathematical derivations, can only realize a subset of properties and are
limited in dimensionality and/or speed.

2.5.3 Projective Subspaces

Several methods try to explicitly produce patterns with desired spectra also in their
projections. Chiu et al. [1994] proposes a construction that is jittered in 1D as well.
Reinert et al. [2016] produce n-D BN patterns that retain BN also when projected to
subspaces. This results in a typical cross-like spectrum. Ahmed et al. [2016] suggest
a way to produce 2D patterns that are BN, but also low-discrepancy. Perrier et al.
[2018] contribute an efficient and progressive point sequence to combine BN and LD
using tiling. Singh and Jarosz [2017] show convergence improvements by shearing
the subspaces according to the integrands’ spectra. Production renderers [Kulla et al.,
2018] also notice improvements when mixed subspaces are properly handled.

The relation of blue noise, low-discrepancy and variance reduction in MC inte-
gration is not fully clear [Christensen et al., 2018; Dobkin et al., 1996; Mitchell, 1992;
Shirley, 1991]. It is evident, however, that there are methods that result in a low error,
yet produce a more suspicious artifact pattern and that there are other approaches
that produce visually pleasing patterns at the cost of a high error [Georgiev and
Fajardo, 2016].

2.6. Artificial Intelligence 23

2.6 Artificial Intelligence

Artificial intelligence is a big field [Russell and Norvig, 2016] and continues to grow
at a fast pace. This section first provides an overview of the field, before diving into
the specific concepts and tools relevant for this thesis.

2.6.1 Overview

The field of artificial intelligence (AI) is concerned with the automation of intelligent
behavior. While “intelligence” is a notoriously ill-defined term, an operable definition
of what AI does can be formulated as follows: The analysis of a task followed by
actions to successfully and efficiently fulfill it. Autonomous devices that exhibit
artificial intelligence are referred to as agents. Agents act rationally, i. e., they are
driven by achieving the best or best expected outcome. This outcome is formalized as
a measure of performance, which can be defined explicitly as a utility function (e. g.,
an energy or loss to minimize) or implicitly (e. g., by observing that an item has not
yet been found).

Agents receive input from and act in an environment. Types of environments differ
vastly, ranging from the real world, over a game of chess, to the space of light field
samples. This extremely broad range of applications and the resulting impact qualifies
AI as a general purpose technology [Bresnahan and Trajtenberg, 1995], effectively
categorizing it among e. g., electricity and medicine. While AI is naturally associated
to the field of computer science, it draws upon a diverse set of disciplines, including
mathematics, control theory, neuroscience, psychology, linguistics, philosophy, and
economics.

Historically, the field was founded to develop the necessary technology to mimic
human cognitive abilities. This so called strong AI hypothesis, sometimes even
including goals as difficult as consciousness, was successively weakened, up to the
point where AI research split up into numerous subfields, each tackling isolated
narrow problems (weak AI). With the advent of recent technologies, however, the
borders between these subfields tend to gradually soften and the idea of general
intelligence as a long-term goal regains interest [Baum, 2017]. Critical voices argue
that strong AI is technically impossible [Penrose, 1999], or bears undesirable social and
ethical implications [Russell et al., 2015], up to an existential thread to humankind.

As AI applications become more and more mainstream, tasks previously consid-
ered to require intelligence tend to be excluded from the definition of AI in public
discourse. This so called “AI effect” effectively reduces the field to the set of yet
unsolved problems [McCorduck, 2009]. In this thesis we do not adapt this view and
consider AI techniques and tools intelligent, even if they are historical achievements
of the field.

In the following paragraphs we provide short descriptions of the central subfields
of AI. More in-depth reviews of the particular tools and concepts relevant for this
thesis are given in the sections thereafter.

Reasoning Generating conclusions from knowledge is at the very core of AI. Clas-
sical reasoning systems use variations of propositional or predicate logic to perform
inductive or deductive inference. Probabilistic reasoning (Sec. 2.6.5) performs in-
ference under uncertainty, using tools like Bayesian statistics (Sec. 2.1.5) or fuzzy
logic.

24 Chapter 2. Background and Previous Work

Planning This branch is concerned with the development of strategies to drive
sequences of actions. Classical planning (Sec. 2.6.3) operates in fully observable, static
environments, which are represented by discrete state spaces. More advanced plan-
ning problems include factors such as partially observable and dynamic environments
with stochastic elements and possibly multiple agents (inter-)acting in it.

Learning A learning agent improves its performance by observing its environ-
ment (Sec. 2.6.4). A mathematical model with modifiable parameters is optimized
by considering environment samples, known as training data. The benefit of ma-
chine learning is that the system does not need explicit instructions in the form of
“hand-crafted” algorithms, but rather utilizes general-purpose learning algorithms
to automatically find patterns in the training data most useful for the task it tries to
accomplish.

Perceiving Machine perception is the automated interpretation of raw sensor infor-
mation. Sensor modalities can range from simple inputs like a switch to sophisticated
pieces of hardware like multi-spectral cameras. Computer vision is one of the most
prominent sub-disciplines and is concerned with the acquisition, processing, and
analysis of digital images. The range of tasks includes low-level problems such as
edge detection and motion estimation, as well as much more high-level challenges
such as scene reconstruction or semantic action classification.

Natural Language Processing Since humans, different from computers, communi-
cate using natural languages, an important contributor to successful human-computer
interaction is the development of computer systems that understand natural lan-
guages. Common tasks include the analysis of syntax and semantics, the recogni-
tion and synthesis of speech, as well as information extraction from human-written
sources.

Representing Knowledge As soon as a non-trivial amount of knowledge needs to
be inserted into an intelligent system, a proper representation of information becomes
crucial. Expert systems deal with tractable collections of knowledge required for
narrow domains, whereas a comprehensive collection of commonsense knowledge
requires a structured representation of concepts like objects, properties, time, causal
relationships, and knowledge itself.

2.6.2 Optimization

Mathematical optimization is a general-purpose tool useful for many disciplines.
Many AI algorithms employ concepts from this branch of applied mathematics.
Continuous optimization refers to the theory and techniques of finding the minimum
value x̂ of an objective function f (x), i. e.,

x̂ = arg min
x

f (x),

with f ∈ R
n → R and x̂ ∈ Ω ⊆ R

n, where Ω is the possibly constrained domain of
feasible solutions. Integer programming problems refer to a variant of the above where
the variables x are restricted to be integers. A mixed-integer optimization problem
comprises both continuous and discrete variables.

2.6. Artificial Intelligence 25

a) b)

FIGURE 2.9: Examples of a convex (a) and a non-convex (b) optimization problem in 1D.

An important characteristic of an optimization problem is its convexity. A convex
problem exhibits a convex objective function f and a convex set of feasible solutions Ω

(Fig. 2.9, a). This leads to the existence of one global minimum. In contrast, a non-
convex problem might comprise many local minima (Fig. 2.9, b) and is therefore
generally considered harder to solve.

In this thesis, two optimization algorithms are used: Gradient descent and simu-
lated annealing.

Gradient Descent

Gradient descent is an iterative optimization algorithm that is based on the derivatives
of the objective function f . As the gradient of a function points into the direction
of steepest ascent, a straightforward method to proceed towards the minimum is
to iteratively make steps in the direction of the negative gradient. Starting from an
initial position x0, a sequence of steps

xi+1 = xi − λ∇ f (xi)

is generated, where λ ∈ R+ is the step size. For a sufficiently small λ it is guaran-
teed that f (xi+1) ≤ f (xi), leading to a sequence that converges to the closest local
minimum (in the case of a convex function this corresponds to the global minimum).

Gradient descent has two main disadvantages: First, the gradient needs to be
computed in each iteration. While this is usually not a problem for small to mid-
size problem instances, it is a serious concern for objective functions which are
defined on large data sets. This is routinely the case for machine learning, where the
objective function is defined on an entire training data set, which oftentimes does
not even fit into memory. Computing the full gradient for these kinds of problems is
computationally infeasible. Second, gradient descent converges to the closest local
minimum by construction. For non-convex problems, this can be vastly sub-optimal
with high probability, leading to a result that largely depends on the initial position
x0.

An important variation of the basic algorithm is stochastic gradient descent (SGD),
addressing these two shortcomings. It is concerned with objective functions that
comprise a sum of subterms of the form

f (x) =
1
N

N−1

∑
k=0

fk(x), (2.7)

where, typically, each summand fk evaluates a corresponding data point. In the
common mini-batch-variant of SGD the gradient of f is approximated by a stochastic

26 Chapter 2. Background and Previous Work

subset of the gradients of its summands:

∇ f (x) = ∇
(

1
N

N−1

∑
k=0

fk(x)

)
=

1
N

N−1

∑
k=0

∇ fk(x) ≈
1
|S| ∑

s∈S

∇ fs(x),

where S is a stochastic subset of indices in [0, N − 1]. In so doing, the gradient com-
putation is approximated by a Monte Carlo estimate and becomes computationally
feasible. Furthermore, the thusly injected stochasticity facilitates a random explo-
ration of the domain, which allows the procedure to escape local minima or saddle
points.

Simulated Annealing

Simulated annealing is a stochastic optimization algorithm that is often applied in
discrete domains, e. g., for integer or mixed-integer problems. It is categorized as a
heuristic, as it is designed to find a sufficiently good solution without any optimality
guarantees, while at the same time being reasonably efficient. The iterative algorithm
was inspired by annealing procedures in metallurgy, where a material is subject
to heating and controlled cooling to facilitate a re-arrangement of molecules into a
lower-energy state.

In each iteration, the algorithm mutates the current state xi to a random neigh-
boring state x∗i . If f (x∗i) ≤ f (xi), the neighbor state x∗i is accepted as the new state. If
f (x∗i) > f (xi), the neighbor state is only accepted with probability

P(x∗i , xi, ti) = e
f (x∗

i
)− f (xi)

ti ,

where ti ∈ R is a monotonically decreasing sequence of “temperatures”. This con-
struction leads to a random search procedure where new, energy-increasing states
are only accepted with a probability that drops with energy difference and over time.

2.6.3 Classical Planning

A classical planning problem is the simplest possible task for an automated planning
system. It is concerned with a single agent performing a sequence of deterministic
and duration-less actions in a fully observable environment.

Classical planning algorithms are variations of a state space search. A state space
is a graph (Fig. 2.10, a). Each node V of the graph represents a possible state of
the environment and each (possibly directed) edge E corresponds to an action that
can be performed to transform one state into another. Searching a state space using
forward chaining means to start from an initial state V0 and to successively consider
neighboring states with the intention of finding a goal state. Backward chaining
methods proceed in reverse, starting from one ore multiple goal states. State space
search can be either uninformed, i. e., agnostic about the location of the goal state(s),
or guided by a heuristic function, that approximates the solution in some way.

Search strategies effectively differ in the order in which states are visited. This
thesis makes use of two simple uninformed forward-chaining state space searches:
Breadth-first search depth-first search. Both have a time complexity of O(|V|+ |E|),
i. e., they scale linearly in the size of the graph.

2.6. Artificial Intelligence 27

a) b) c)
1

2

5

6

9

7

3

8

4
1

2

3

4

5

6

7

8

9

FIGURE 2.10: (a) A state space with the initial state marked blue. (b) Traversal order of a breath-first
search. (c) Traversal order of a depth-first search. Dotted lines indicate edges to nodes that were
explored before.

Breadth-first Search

Breadth-first search traverses the state space one depth level at a time (Fig. 2.10, b).
Starting from the initial state V0, all neighboring nodes of V0 are added to a FIFO
queue. The algorithm proceeds by sequentially dequeuing nodes, checking them for
goal state properties and enqueing respective neighboring nodes that are not yet in
the queue. This procedure naturally results in a shortest-path tree.

Depth-first Search

Depth-first search explores the state space as far as possible along each branch
(Fig. 2.10, c). Starting form the initial state V0, all neighboring nodes of V0 are added
to a stack. The algorithm proceeds by sequentially popping nodes Vk from the stack.
If Vk has already been explored, it is discarded. Otherwise, Vk is checked for goal
state properties and its neighbors are added to the stack.

2.6.4 Machine Learning

Machine learning is concerned with models and algorithms for performing a specific
task by relying on inference and pattern recognition from large-scale data. This
approach renders explicit, problem-specific instructions largely unnecessary.

The field can be divided into two disciplines, namely supervised and unsupervised
learning. Supervised learning tries to learn a relationship between a space of inputs
X and a space of outputs Y from a data set {(xi, yi)}N−1

i=0 , with xi ∈ X and yi ∈ Y,
such that, when given a novel input x∗, its prediction y∗ is accurate. The accuracy
is quantified by a loss function L, measuring the deviation between predictions and
ground truth outputs. Common terms for categorizing supervised learning tasks are
classification and regression, which refer to discrete and continuous output spaces Y,
respectively. In contrast, unsupervised learning is concerned with finding a plausible
compact representation of the data set by inferring the data generation process to
model the data distribution.

In this thesis, two frameworks are used for supervised learning: Linear support-
vector machines and deep learning.

Linear Support-vector Machines

A support-vector machine (SVM) is a model for binary classification, i. e., splitting
data into two categories. Input data points xi ∈ R

n are interpreted geometrically as
points in n-dimensional Euclidean space. Each point has an associated class label y of

28 Chapter 2. Background and Previous Work

Separation Hyperplane

Se
p

ar
at

io
n

M
ar

g
in

Input Layer Output Layer

a) b)

FIGURE 2.11: (a) A linear SVM classifies the blue and green samples by optimizing for a separation
hyperplane surrounded by a margin of maximum size. The shaded areas indicate the value of the hinge
loss function (Eq. 2.9, darker means higher value). (b) Architecture of a neural network with 5 layers.
In this example, every node of each layer receives an input from each node of the previous layer.

either +1 or −1. A linear SVM optimizes for an (n − 1)-dimensional hyperplane that
separates the two classes with the largest separation margin.

A hyperplane can be written using the implicit equation

〈a, x〉 − b = 0, (2.8)

where the two parameters we want to find are a ∈ R
n, an un-normalized normal

vector to the hyperplane, and b ∈ R, an offset.
SVMs make use of the hinge loss function

Li = max (0, 1 − yi · (〈a, xi〉 − b)) . (2.9)

This loss implicitly defines a margin with size 2
‖a‖2

around the hyperplane of Eq. 2.8
(Fig. 2.11, a). Li is zero when yi · (〈a, xi〉 − b) ≥ 1, i. e., when xi lies on the correct
side of the margin and therefore delivers the desired prediction yi. Considering all
training data, the complete loss to minimize is

L =

(
1
N

N−1

∑
i=0

Li

)
+ λ‖a‖2, (2.10)

where the first term enforces all xi to lie on the correct side of the margin, and the
second term encourages a large margin width. The hyper-parameter λ determines
the trade-off between these potentially conflicting goals. Eq. 2.10 can be optimized by
a variant of gradient descent (Sec. 2.6.2), which needs to account for sub-gradients as
well, since the loss is not C1-continuous due to the max function.

Classification of multiple labels is done by a reduction to the binary case. The
most simple procedures are to train the SVM to separate one class from all others
(one-versus-all), or to always consider pairs of classes (one-versus-one).

Deep Learning

A learning paradigm that lately received lots of interest is deep learning. It is based
on artificial neural networks, which is an assemblage of connected units called neurons.
Each neuron is a non-linear function, accepting possibly multiple inputs and pro-
ducing a single output. Neurons are cascaded, such that the inputs of a neuron are
the outputs of other neurons earlier in the network (Fig. 2.11, b). Commonly, neural
networks consist of a multitude layers, forming a deep processing structure. Cascades

2.6. Artificial Intelligence 29

of non-linear functions are exponentially expressive in the number of layers, which is
why deep neural networks are considered universal function approximators [Csáji,
2001]. While neurons can be any non-linear functions, traditionally a neuron consists
of a linear combination of inputs followed by a non-linearity called an activation
function.

Neurons can have trainable parameters referred to as weights, which are updated
via stochastic gradient descent (Sec. 2.6.2) through reverse-mode automatic differ-
entiation [Linnainmaa, 1970], nowadays commonly referred to as backpropagation
[Rumelhart et al., 1985]: Given (i) a loss function L, (ii) a neuron somewhere in the
network that computes y = f (x), and (iii) the gradient of L with respect to the neu-
ron’s output y, the gradient of L with respect to the neuron’s input x is computed by
applying the chain rule of differentiation,

∂L

∂x
=

∂L

∂y

∂ f

∂x
.

This way, in each step of stochastic gradient descent, the gradient is propagated
backwards through the network, eventually updating all trainable weights.

Computer graphics, and in particular filtering recently sees a push towards
deep learning-based algorithms. In particular for inverse problems, this idea has
led to ground-breaking achievements [Krizhevsky et al., 2012]. Typically, in these
convolutional neural networks (CNNs), optimization is performed over the space of
image convolution kernels.

2.6.5 Probabilistic Reasoning

In many application domains, intelligent systems need to handle uncertainty. This is
as environments might not be fully observable and/or deterministic. Furthermore,
there might be different options of actions, neither of which has a guarantee of
successfully reaching a goal.

Technically, these uncertainties are modeled as random variables. Given the full
joint probability distribution p of variable assignments, the problem of reasoning under
uncertainty reduces to an MLE or MAP estimation problem (Sec. 2.1.5): We want
to find the most likely assignment of variables. Representing p is one of the main
challenges in the realm of probabilistic reasoning. The number of random variables
is usually high, e. g., in computer graphics, each pixel in each frame of a video is
routinely treated as a random variable, resulting in hundreds of millions of variables.
Therefore, accounting for the joint probabilities of every possible variable assignment
naturally results in a combinatorial explosion.

A key technique employed in many probabilistic models is to assume full or
conditional independence between certain variables, that is to assume that not every
variable influences every other variable directly. However, dependency chains might
lead to indirect influence between variables, retaining global dynamics. Mathemati-
cally, independence assumptions lead to a (partially) factorized distribution, which is
much more tractable.

Probabilistic graphical models [Koller and Friedman, 2009] are a popular tool for
representing (conditional) dependence structures between random variables. The
distribution p is modeled as a graph, in which nodes represent the random variables
of p and edges indicate dependencies between these variables. The topology of the
graph can vary depending on the problem at hand (Fig. 2.12).

In this thesis, a specific kind of probabilistic graphical model is used:

30 Chapter 2. Background and Previous Work

b)a)

FIGURE 2.12: Examples of undirected graphical models with variables arranged in a 2D grid structure,
as might be used for image pixels. (a) A model with adjacency structure, in which only direct neighbors
are connected. (b) A fully-connected model.

Conditional Random Fields

Conditional random fields (CRF) [Lafferty et al., 2001] are undirected graphical
models encoding relationships between observations y and random variables x. The
probability distribution of the random variables given the observations can be defined
as

p(x|y) = 1
Z(x)

exp

−

∑

i

ψu(xi|yi) + ∑
xj∈Ni

ψp(xi, xj|yi, yj)

 .

Here, ψu(xi|yi) is a unary term, encoding the probability distribution of the random
variable xi given its corresponding observation yi, such as for example the probability
distribution of depth values of a pixel given that it has a certain color. The pairwise
term or edge potential ψp(xi, xj|yi, yj) encodes how strong two variables xi and
xj influence each other, based on their corresponding observations yi and yj. For
example, if two pixels have the same color they are likely to have the same depth.
Further, Ni is the set of random variables that are directly connected to xi in the
graphical model. Finally, the normalizing partition function Z ensures that p is a
valid probability distribution.

MAP inference in conditional random fields of relevant size is considered difficult
and many algorithms have been designed for solving this problem exactly or approx-
imately [Koller and Friedman, 2009]. Notably, Krähenbühl and Koltun [2011] have
shown how inference in fully-connected CRFs with Gaussian edge potentials can be
performed by obtaining a mean-field approximation of the probability distribution
using bilateral filtering [Tomasi and Manduchi, 1998].

31

Chapter 3

Deep Point Correlation Design

3.1 Introduction

Point patterns have many important uses in computer graphics, linking apparently
disparate topics such as natural placement of procedural plants, accurately casting
shadows from an area light or placing artistic stipples in a visually pleasing fash-
ion. Many classic algorithms have been proposed to generate point patterns e. g.,
[Lloyd, 1982] relaxation algorithm or dart throwing [McCool and Fiume, 1992]. Their
properties are analyzed in terms of spectra [Yellott, 1983], differentials [Bowers et al.,
2010; Wei and Wang, 2011] and their application as samples in Monte Carlo (MC)
integration [Cook, 1986; Subr and Kautz, 2013; Pilleboue et al., 2015; Singh and Jarosz,
2017].

Designing methods to provide the desired pattern quality for different applica-
tions is an active topic of research [Wei and Wang, 2011; Fattal, 2011; Zhou et al.,
2012; De Goes et al., 2012; Heck et al., 2013; Kailkhura et al., 2016]. Devising such
point patterns typically requires complex mathematical derivations which are only
applicable in very specific conditions, implementation effort, and finally compute
time in order to run an optimization which produces a point set.

In this chapter we add a new level of abstraction and suggest to use modern
deep learning to optimize over the space of point pattern generation methods itself.
Instead of mathematical derivation, a user of our system provides a straightforward
implementation of the desired properties in form of an agenda snippet demanding
e. g., “a blue noise spectrum both in 2D but also projected to the x axis”. We then op-
timize over the learnable parameters of a deep generative model consisting of weighted
distance-based unstructured filters of compact support that map random point sets to
point patterns. Notably, we learn this in a weakly supervised fashion, without observ-
ing any instances of the desired point patterns – some of the patterns we produce are
not known how to produce – but directly from a description of the desired properties
alone. The pipeline is deep, so that several steps of correction (typical ca. 40) can occur
and communicate. We use filters based on distance measured in all subspaces which
allows both scaling to high dimensions (separability) but also supporting anisotropy
that can achieve different characteristics in different subspaces. Our unstructured
filters support sparse point sets, as a dense representation would not scale to high
dimensions. After the optimization i. e., learning, has finished, producing points does
only require running the resulting recursive GPU filters and no optimization.

Rendering is a key application of point patterns, where deep learning has been
used for relighting [Ren et al., 2015], screen-space shading [Nalbach et al., 2017],
volume rendering [Kallweit et al., 2017] or de-noising [Chaitanya et al., 2017], light
transport [Dahm and Keller, 2017] as well as importance sampling [Müller et al., 2018;
Zheng and Zwicker, 2018]. While Müller et al. [2018] and Zheng and Zwicker [2018]
also address sampling, their work is focused on building deep models of the indirect

32 Chapter 3. Deep Point Correlation Design

l1(spec(X)-BN)+

l2(spec(x(X))-Jitter)

T
ra

in
in

g
 p

h
a

se

E

...

.73

.21

D
e

p
lo

y
m

e
n

t
p

h
a

se

�

... Agenda LossFilters FiltersApplication Result

X

P
 (

 X
 |
 θ

�)

�1

�2

�3θ

θ

θ

θ

FIGURE 3.1: Overview of our system, comprising of two main parts: learning (left) and deployment
(right).

light field function in a specific scene and placing samples where this function is high
in an importance-sampling spirit. Note, that this is a scene-dependent process, that
is trained per-scene, while our approach is trained once to find point patterns that
generalize across all scenes / integrands.

We make use of learned operations on point clouds, as pioneered by PointNet
[Qi et al., 2017], but using non-linear filters, that generalize unstructured linear
convolution [Hermosilla et al., 2018]. Instead of inferring labels or per-pixel or per-
point attributes such as normals, we optimize for filters that transform sets of random
points into sets of points with the desired properties.

Our system introduces a point pattern agenda, a notation to define point pattern
requirements using programmatic expressions. This is a simple instance of a domain
specific language, such as recently proposed for image synthesis [Anderson et al.,
2017], non-linear image optimization [Devito et al., 2017; Heide et al., 2016] or physics
[Bernstein et al., 2016]. Instead of deriving our own parser, we provide functions
in TensorFlow [Abadi et al., 2016] that are parsed and evaluated efficiently dur-
ing training and testing using TensorFlow’s symbolic analysis and GPU evaluation
support.

In summary the contributions made in this chapter are: (i) A GPU-friendly method
to generate point patterns using recursive weighted distance-based unstructured
filtering in high dimensions, (ii) a method to learn these filters from prescribed
design goals alone, without math or coding, (iii) novel point patterns such as high-
dimensional isotropic BN, and mixed forms of BN in high dimensions and subspaces,
and (iv) an unbiased MC estimation of the radially-averaged spectra that allows for
analysis and optimization in high dimensions.

3.2 Overview

Our exposition has two main parts (Fig. 3.1): First, we introduce the notion of a point
correlation design agenda (Sec. 3.3) which defines the desired properties. Second, we
describe a deep architecture (Sec. 3.4) that can be optimized in respect to this design
agenda.

An agenda is a functional programming snippet, that maps a point pattern to
a scalar value. It is the only user-provided input to our system at training time.
Devising operations to compose agendas which allow defining point patterns is the
first key technical contribution of this chapter. We optimize for a point generation
method to realize the agenda by back-propagating it through a neural network
architecture. This architecture is our second main contribution and consists of a deep
cascade of weighted distance-based, unstructured filters (Sec. 3.4). The unstructured
representation we choose allows to scale to point sets that are naturally sparse in high
dimensions (>3D) and could not be captured using regular representations commonly

3.3. Point Pattern Agendas 33

Point Sets Deltas Non-radial Spectral Non-radial Differential

Radial Spectral

Radial Differential

c)a) b)
X1

X2

d

d) e)

f) q

q

FIGURE 3.2: Point Correlation (Eq. 3.1), here shown for a 2D example, between an orange point set
X1 and a blue point set X2 is defined as an expected value over all pairs of points from the respective
sets (a). We here show five point pair examples. For each pair the deltas are produced by subtracting
the first point (b), here shown for a single pair. This delta is then given to a function κ that can work
in different ways, out of which we illustrate four (c-f). c) and d) work in 2D and correlate with the 2D
Fourier basis (c) or the Gaussian basis (d) at all 2D correlation coords q. e) and f) proceed the same,
just that the correlation coordinate is a single scalar distance q.

used for 2D images or 3D volumes. Our filters map high-D signals to high-D signals,
but rely on weighted distances only. This avoids the curse of dimensionality that
common filter masks encounter: While, typically, high-dimensional filters depend
exponentially on the number of dimensions, our filters scale linearly. In a SIMD
compute model they are even constant. Finally, our filters have compact support,
allowing to execute fast, once trained, for large point numbers and high dimensions.

Our system further is comprised of two stages (left and right in Fig. 3.1): a learning
stage in which the architecture is optimized to fit the agenda and a deployment part,
in which the result of this optimization is executed to generate new point patterns.
The training is supervised only by the agenda, that measures point pattern quality and
never requires supervision by any example results of any point pattern generation.
Therefore, our supervision strategy can be classified as inexact [Zhou, 2017]. In
particular, our approach produces patterns which were previously unknown and
consequently could not have been input to a traditional supervised learning.

3.3 Point Pattern Agendas

Inspired from design theory we call our losses agendas to emphasize that they are not
hard-wired parts of our system (which a loss typically is), but user input. We define
a range of point correlation operators that form a simple domain-specific language
for point pattern design. We will start by simple spectral and differential domain
properties, include linear and non-linear projections, introduce coverage and finally
discuss the metrics between point correlations.

Note, that the key idea to allow our method to become scalable is, that all point
correlation operators are only ever computed at training time, never at test time.
Training is slow; execution is fast.

3.3.1 Notation

An agenda α(X) ∈ Rn×m → R+ maps an unstructured set X of m points in n-
dimensional space to a single non-negative scalar, which is smaller for point patterns
that are closer to the agenda’s goal. In the notion of deep learning, the agenda imple-
ments a loss. The agenda can make use of linear combinations of terms comprising
custom operations to be listed next. When combining multiple terms, it is still the end-
user’s responsibility to scale them appropriately, such that they fall in a compatible
range.

34 Chapter 3. Deep Point Correlation Design

3.3.2 Point Correlation

To simplify the exposition, we will define the point set correlation (Fig. 3.2) between
point set X1 and point set X2 as

Pκ(X1, X2)(q) = Ex1∼X1 [Ex2∼X2 [κ(x1 ⊖ x2, q)]], (3.1)

where Ea∼A is the expected value of the random variable A, κ is a kernel, ⊖ is the
toroidal vector difference and q is what we will call the correlation coordinate.

The notion of Pκ is a two-fold abstraction. It generalizes along one axis over
Fourier spectra [Zhou et al., 2012], the differential domain [Wei and Wang, 2011] but
also across properties such as saturation [Mitchell et al., 2018] defined on pairs of
point sets. Along a second axis, generalization is folded into κ, which can work both
on linear high-D offset and on non-linear 1D distance. Pκ(X1, X2)(q) is a distribution
across the correlation coordinate q, which is again an abstraction of frequency or
distance of points. The abstract notion is implemented by choosing a correlation
kernel κ. The kernel puts x1 ⊖ x2 and q in different relations: it can work on distances
or offsets as well as it can apply non-linearities such as complex exponentiation
followed by a norm.

We will frequently use X1 = X2, the correlation of a point set with itself. If we
analyze a point pattern in respect to itself, we will shorthand write P(X) in place of
P(X, X).

As Pκ(X1, X2)(q) is an expected value, it could be evaluated using quadrature
or estimated using Monte Carlo. We will however use specifically optimized imple-
mentations for specific κ such as Fourier or the differential domain [Wei and Wang,
2011].

Eq. 3.1 is similar to Eq. 6 in Wei and Wang [2011], but ours is using toroidal
distances, two point sets instead of one and formulated using expected values instead
of integrals to match the way they will be evaluated in back-propagation.

3.3.3 Spectrum

The spectrum of a point set X is computed using

spec(X) = P(X) with κ(d, q) = cos(2π 〈d, q〉)

and maps the n-dimensional sparse point pattern to an n-dimensional spectrum. In
this case q is a n-dimensional frequency. The resolution nc of the spectrum can be
configured by the user, but is typically chosen to be a multiple of m1/n.

This operation is commonly used in conjuction with a norm such as L1 to measure
the difference to a reference spectrum. The agenda

α(X) = l1(spec(X), BNOT)

for example computes the spectrum of a pattern X and compares it to a reference
blue noise spectrum BNOT. As the DC term (frequency 0) amounts to be the number
of points, and we would like to train independently of that number, we decided to
remove it from the spectrum i. e., set it to zero as in P(X)(0) := 0.

While P is in general defined on pairs of points in Eq. 3.1, it can be estimated by a
single loop over all points (Eq. 2.5).

3.3. Point Pattern Agendas 35

3.3.4 Differential Domain

The function

dDom(X) = P(X) with κ(d, q) = N (q − d)

maps the sparse point pattern to a dense distribution of offsets, where N is a zero-
mean Gaussian with a standard deviation of 2/nc. Effectively, a nc-bin n-D histogram.
The number of bins could be chosen optimally in respect to spectrum and point count
[Scott, 1979], but we found an empirically chosen value of 128 to perform well across
all experiments. In this case q is a n-dimensional differential coordinate. It is to be
used similar to the spectrum e. g.,

α(X) = l2(dDom, Jitter)

would ask for a power histogram that is L2-similar to the power histogram Jitter of
jittered sampling.

For computation, we iterate all pairs of points, compute their distance, and scatter
them to the respective bins around q with Gaussian weights instead of iterating all
pairs for all values of q. Linear complexity can be achieved by only iterating over
points within a certain distance range [Wei and Wang, 2011]. Note how the Gaussian
weights make this process back-propagatable.

3.3.5 Radial Mean

Besides producing an n-D spectrum or histogram from n-D points we also support
working on the radially-averaged spectrum

radSpec(X)(d) = Eq∼Ω spec(X)(d · q)

and the radially-averaged histogram

radDDom(X)(d) = Eq∼Ω dDom(X)(d · q),

where d is a radius and Ω is the n-dimensional unit hyper-sphere.

Monte Carlo estimate A trivial construction of radSpec would not operate on the
point set X, but on spec(X). This indeed would be more modular, but regrettably
does not scale well to high dimensions like n = 10, where a regularly sampled
spectrum would require prohibitive amounts in the order of O(nn

c) of memory. Note,
that the output of the radially averaged spectrum is always a compact 1D function of
radius, that has O(1) memory requirements.

Addressing this difficulty, we suggest estimating the spectrum using Monte Carlo
integration as follows: First, we generate random points q on the hypersphere Ω

using the method of Hicks and Wheeling [1959] and scale them by d. Since we are
only interested in integer frequencies, we then snap the points to the integer grid.
Finally, we evaluate P(d · q) as described above and average. For low-dimensional
point correlations (in practice n ≤ 2), we evaluate all q exhaustively in a grid using
quadrature.

36 Chapter 3. Deep Point Correlation Design

F (X | � 1) F (F (X | �1) | �2)

P (X | �)

...

R
a

n
d

o
m

 s
a

m
p

le
s

X

F (F (F (X | �1) ...) | �l)

...
θ θ θ θ θ

θ

FIGURE 3.3: Notation example for m = 32 in n = 2, showing, from left to right, the first two filters
and the final result.

3.3.6 Anisotropy

When computing a radial spectrum, we average across points on hyperspheres. In
the same way as a mean, we can compute the variance of those distributions. Same
as the radial average, this is a mapping from an n-D point set to a 1-D distribution of
variance across distances, defined as

radVarSpec(X)(d) = Eq∼Ω (radSpec(X)(d)− spec(X)(d · q))2

and analogous for the differential domain. Again both can be solved using quadrature
or MC integration.

3.3.7 Swizzle

As we are interested in the properties of subspaces, we make use of the typical swizzle
operations denoted as x(X) for the x component, y(X) for the y component, xy(X)
for the xy component, etc.

3.3.8 Metrics

Typical metrics to compare n-D spectra and histograms (distributions) are L1, L2,
which we denote as l1, l2. In our experiments, we mostly use L1 thanks to its
robustness. It is commonly achievable in deep learning, but harder to achieve in
mathematical derivations, that often revert to L2.

3.4 Point Patterns via Iterated Filtering

Here we introduce a deep neural network generating point patterns. The idea is
to use a deep pipeline (Sec. 3.4.1) of learnable filters (Sec. 3.4.2) that convert a high
number of random high-D points into points that follow the agenda formalism just
introduced in Sec. 3.3.

3.4.1 Architecture

We formalize this as learnable mapping Pα(X|Θ) from a set of m uniformly random
n-D input points XIn without any specific properties, into a set of m output points
XOut = P(XIn|Θ) with specific properties according to the agenda α. The mapping
P has tunable parameters Θ consisting of filter weights w (Sec. 3.4.2, Distance-based

3.4. Point Patterns via Iterated Filtering 37

Pattern

a) b)

Kernel Response Pattern Kernel Response

x
xx

x

y2

W
e
ig
h
t

W
e
ig
h
t Dist. Dist.

y1

y4

y3
y2

y1

y4

y3

y2

y1
y4

y3

y2

y1

y4

y3

FIGURE 3.4: Our tunable filters, based on distance (a) and based on weighted distances (b). The
“Pattern” images show a point x in 2D and all other pattern points. Colored lines indicate difference
between other points and the center point. The “Kernel” images show the filter kernel (x axis is
distance, y axis is weight). The four color-coded distances are used to look up the kernel weight. The

“Response” images show how the offset vectors between x and all other points are scaled by the kernel
response, and added, resulting in a single dark-grey correction vector that moves x. a) uses common
distances, b) uses weighted distance (here x-only).

Filters) and combination matrices S (Sec. 3.4.2, Combination), for which we SGD-
optimize i. e., learn,

Θ = arg min
Θ′

EX∼Um×n [α(P(X|Θ′))].

We choose to implement P as a cascade

P = F (F (. . .F (X|θ(1)) . . . |θ(l−1))|θ(l))

of l unstructured, weighted-distance filters F with learnable parameters

Θ = {θ(1), θ(2), . . . , θ(l)}.

These filters simply map a point set of a certain size and dimension to another point
set of the same size and dimensions and will be described next.

3.4.2 Filters

Our filters are required to work on unstructured data, i. e., a list of n-D points. Point-
Net [Qi et al., 2017] and following papers have made use of symmetric functions
and rotational transformers in a tunable fully-connected architecture, but without
translation-invariance, i. e., using fully connected settings. This might work when
sampling a chair into a small number of points in 3D, but not for many points in
high dimensions. Other work has generalized image convolutions to unstructured
3D by phrasing the convolution kernel as a neural network [Hermosilla et al., 2018],
but without scalability to higher-dimensional convolution domains. Our filters are
both convolutional and scale to high dimensions. We will first introduce distance-
based filters (Sec. 3.4.2), limited to isotropic agendas, before we generalize them to
weighted-distance based filters (Sec. 3.4.2) that can further be used for anisotropic
designs.

Distance-based Filters

A first solution is to work on one-dimensional distances, i. e., with radially symmetric
kernels, as shown in Fig. 3.4, a. These are simple enough to be represented using a 1D
table w of weights with b entries wi. As the computational complexity of our filters
is independent of the table size, we empirically set b = 128 in all our experiments.

38 Chapter 3. Deep Point Correlation Design

To avoid computing interaction between all points, which would imply quadratic
time complexity, we limit the filters to a constantly-sized neighborhood of a receptive
field r, that is typically chosen to be only a fraction of the domain.

Reading the kernel table continuously at distance d ∈ (0, r) using linear sampling,
makes the response differentiable, and therefore back-propagatable. We also always
learn a residual, i. e., an offset to adjust the point position, which improves the
gradient flow.

Let a kernel g, parametrized by a b-D weight vector w be

g(d|w) = (1 − frac(d̂)) · w⌊d̂⌋ + frac(d̂) · w⌈d̂⌉ where d̂ = d · r/b.

Now filtering F ′ with the kernel g is defined as

F ′(x|w)i = xi +
m

∑
j 6=i

g(||xj ⊖ xi||2|w)
xj ⊖ xi

||xj ⊖ xi||2
, (3.2)

where ⊖ denotes the toroidal vector difference. In a slight abuse of notation, we will
refer to the (overloaded) filtering of all points X as F (X) as well. See the appendix
for a derivation of the gradients required for more efficient learning.

Note, that the weights w can – and also need to be – negative. Positive weights
attract xi into the direction of xj, negative weights repel. This is shown by the positive
and negative weights in the column “Kernel” in Fig. 3.4, a.

Note that the number of filter kernel bins only adds to the number of trainable
parameters, but does not affect the speed at deployment time: It is a O(1) table
look-up.

This formulation is similar to the one of Zhou et al. [2012] and Heck et al. [2013],
who also update point positions with new positions in an optimization. The “Re-
sponse” column in Fig. 3.4, a visualizes this: some arrows (orange, yellow) point
towards x, the others (red, violet) point away. The sum of all these is applied to x

(black arrow). However, we do not perform a costly optimization for a given point
set X using analytic derivations at run-time, but instead optimize over all methods
that are suitable for fast execution of GPUs. Furthermore, our notion generalizes to
subspaces as we will explain in Sec. 3.4.2.

Gradients

Our unstructured filters (Eq. 3.2) can be used directly in a trivial TensorFlow imple-
mentation. However, we found this to execute much slower than a hand-crafted C++
implementation and most of all required memory in the order of O(m2). We here
give the derivation required to implement our filter as a custom operation: a forward
pass to filter points (F , Eq. 3.2) and the derivative passes in respect to kernel weights
parameters (∂L/∂w) and input point positions (∂L/∂x).

Both the forward pass and the backward pass are implemented parallel over all points
xi. Each point sequentially iterates all neighbors xi,j. Distances dij are computed and
the weights w are indexed at ⌈dij⌉ and ⌊dij⌋, interpolated, and applied to the deltas
xi ⊖ xj.

The backward pass requires the gradient of the loss L of Eq. 3.2 in respect to the l-th
weight w, which is

∂L

∂wl
= ∑

i
∑
j 6=i

∂g(dji|w)

∂wl

1
dij

〈
xi ⊖ xj,

∂L

∂(F (x|w))i

〉
,

3.4. Point Patterns via Iterated Filtering 39

a b-dimensional vector, where dab = ||xa ⊖ xb||. Here,

∂

∂wl
g(d|w) =

1 − frac(d̂) if ⌊d̂⌋ = l

frac(d̂) if ⌈d̂⌉ = l

0 else

,

where d̂ = d · b/r is the index scaled by receptive field and bin count and frac(d̂)
returns the fractional part of a real d̂. The derivative of Eq. 3.2 in respect to the k-th
dimension of the i-th input point is

∂L

∂xi,k
=

∂L

(∂F (x|w))i,k
+

〈

∑
j 6=i

∂⊗ji

∂xi,k
,

∂L

(∂F (x|w))i

〉
+ ∑

j 6=i

〈
∂⊗ij

∂xi,k
,

∂L

(∂F (x|w))j

〉
,

where ⊗ba is the pairwise interaction between point b and a

⊗ba = g(||xb ⊖ xa||2|w)
xb ⊖ xa

||xb ⊖ xa||

that has the derivative

∂⊗ba

∂xb,k
=

1
d2

ba

(
1 − b

r
(w⌈d̂⌉ − w⌊d̂⌋)(xb,k ⊖ xa,k)(xb ⊖ xa)+

g(dba|w) · ((xb,k ⊖ xa,k)(xb ⊖ xa)

dba
− 1kdba)),

where 1k is a one-hot vector. Finally,

∂⊗ba

∂xa,k
= −∂⊗ba

∂xb,k
.

Weighted Distance-based Filters

We found the distance-based unstructured filters to work well, if the agenda does not
ask for anisotropic effects: When requiring an elliptical spectrum, a filter based only
on distances has no way of disambiguating if a distance of .1 was along the x or y
direction, where it means something different. In other words the agenda can ask for
more than what the architecture can achieve.

As a solution, it is tempting to use full-dimensional filters, but a kernel would now
need to learn up to all, say, 10-D interactions, resulting in b10 learnable parameters, so
at least 310 = 49, 304 parameters for each filter, i. e., way too much to learn or even
execute efficiently.

As a middle ground, we opt to learn combinations of separable filters. The
weighted distances between two points x1 and x2 is ||M(x1 ⊖ x2)||2 ∈ Rn → R+

where M is a (diagonal) weight matrix. The common distance is a special case of an
identity weighting M = 1. The weighted distance-based filter is now

F (x|w)i = xi +
m

∑
j 6=i

g(||M(xj ⊖ xi)||2|w)
M(xj ⊖ xi)

||M(xj ⊖ xi)||2
. (3.3)

By choosing different weight matrices M, different subspaces can be addressed indi-
vidually, respectively others can be ignored, by setting a column to zero. In practice,

40 Chapter 3. Deep Point Correlation Design

X y(X)F ´(xy(X)| �XY) F ´ y(X)| �Y)xy(X) F (X)

+

(1,½)

(0,½)

θ θ

FIGURE 3.5: Combination example for an x, xy agenda.

we only use such M that are either 0 or 1 on the diagonal and encode this by simply
listing the non-zero elements, as done in the swizzle operation.

Please note that we learn the filters of the kernels w, while the weight matrix M

is input to our method. The weight matrix is found automatically from the agenda:
whenever the agenda asks for a property in any specific subspace (swizzling), a
special convolution for this subspace is created.

Combination

The weighted distance-based filtering can learn how to apply filters in subspaces,
but to be useful, multiple subspaces (e. g., x and y) need to work together, as well as
jointly with the space they are a subspace of (xy). To this end, the outcome of multiple
subspaces needs to be combined. In particular, this combination has to be done after
each layer. The necessity to do so is seen when considering an agenda optimizing
x and xy jointly (Fig. 3.5): after each adjustment in each dimension, both outcomes
affect the other; they need to share information and have to produce one joint xy
result, not two disparate x and xy results.

We achieve this by a trainable normalized sum of all subspaces. Its trainable
parameters form a real matrix S ∈ Rn×s, that is multiplied with the stacked vector of
all output coordinates from all subspaces. The normalization divides each element in
that vector by the number of occurrences in all subspaces. An agenda that e. g., asks
for x, xy and xyz would add the three, but divide x by 3 and y by 2 (green numbers
in Fig. 3.5). This normalization allows initializing the weights in subspaces without
considering how they are to be used later.

Gridding

Our method can operate in a gridded and ungridded mode. The ungridded is
the default and used for general point patterns. The gridded variant holds some
dimensions fixed.

In a non-gridded point pattern, all dimensions are filtered as processed and P maps
from n to n dimensions. A point pattern is gridded when it maps from nIn input to
nOut output dimensions. Here, the first nIn − nout dimensions are initialized using a
regular grid. These values are left unchanged by the filter pipeline. However, all nIn
values are used to compute distances.

An example of a gridded point pattern with nIn = 3, nOut = 1 is a pattern where
the first two fixed dimensions are the pixel centers, and the third dimension is the
wavelength for spectral rendering. In other words, a gridded pattern is a height field:
x and y are implicit and fixed, and the height z changes. Our method can now learn
a P that arranges the wavelength such that they are BN in respect to other nearby
wavelengths at fixed spatial positions.

3.4. Point Patterns via Iterated Filtering 41

3.4.3 Training

Variance Reduction Individual patterns give rise to noisy point correlations, which
is why the set correlations of multiple realizations are typically averaged, even for
visualization. In particular for our Fourier design, we found the use of this unbiased
estimate essential for convergence: In each training iteration, multiple output spectra
of our system are averaged before they are evaluated within the agenda, e. g., by
comparing them to a target. This stabilizes training significantly, especially for small
point counts m. Crucially, the agenda designer does not have the freedom to combine
spectra of different realizations arbitrarily: Spectra are always averaged. Please notice
that this procedure is subtly different from mini-batching, as the latter requires a loss
function that linearly adds terms corresponding to the training data points (Eq. 2.7).
In a slight abuse of notation, we nevertheless refer to the point set realizations used for
variance reduction as a batch. We observe that a batch size of 2 samples – followed by
radial averaging – leads to spectra that are converged enough to be used for gradient
computations.

Optimization Training is implemented in TensorFlow using the ADAM optimizer,
with an exponentially decreasing learning rate initialized by 10−6. Learning typically
requires around 8 hours on an Nvidia Tesla V100-PCIE with 32GB memory and
1.38GHz memory clock rate.

3.4.4 Discussion

The trained network P is specific to the dimension n and the number of points m.
While the filters work on distances, and are agnostic to dimensions, what they learned
is a dimension-dependent task. Effectively, the network needs to be re-trained for
every dimension.

Our architecture is trained for a fixed number of points m. While the network
can also be applied to similar numbers of points, drastically different point numbers
require re-training.

A user also has to choose the depth of the network l and the trained filters will
be specific to that depth. As we find the solution to be progressive, i. e., the quality
to improve with layers, it is possible to stop computation earlier, at l′ < l, but the
maximum quality is achieved at l. One solution is to train with a high l and then cut
compute time at deployment to an l′ with the required quality.

In particular, we found the filter parameters θ to not be the same at different
depths, so θ(a) 6= θ(b) in general. We also tested, how training “siamese”, with all θ in
lock-step, decreases quality.

Applying the cascade of filters is similar to an update in a Jacobi or Gauss-Seidel-
type optimization or a generalized step of Lloyd relaxation but with learned update
rules. In this light, our approach uses non-linear filters to predict gradients in an
unrolled gradient-descent type optimization.

The filters we employ are non-linear by construction. We also experimented
with linear filters and introducing explicit non-linearities such as ReLUs but did not
observe an improvement. Also note, that, subtle enough, using a linear filter would
imply linear offsets, and these are subject to the curse of dimensionality.

As our training set comprises uniform random vectors, the concept of epochs that
relates to finite training examples is not applicable. Instead, we will refer to learning
effort in units of batch counts, i. e., how many pattern points were produced, divided
by the number of patterns per batch. The number of point sets per batch needs to be

42 Chapter 3. Deep Point Correlation Design

l1(radSpec(X), BNOT)

3

0

40

Target Result

P
o

w
e

r

A
n

iso
tro

p
y

Norm. freq l1(radSpec(X), Jitter)

3

0

40

P
o

w
e

r

-10 db

Target Result

A
n

iso
tro

p
y

-10 db

l1(radSpec(X), Step)

3

0

40

Target Result

P
o

w
e

r

A
n

iso
tro

p
y

Norm. freq l1(radSpec(X), Stair)

3

0

40

P
o

w
e

r

Norm. freq

-10 db

Target Result

A
n

iso
tro

p
y

-10 db

a) b)

c) d)

l1(radDDom(X), BNOT)

3

0

.1250

Target Result

P
o

w
e

r

l1(radDDom(X), Jitter)

3

0

.1250

P
o

w
e

r

Distance

Target Result

l1(radDDom(X), Step)

3

0

.1250

Target Result

P
o

w
e

r

Distance l1(radDDom(X), Stair)

3

0

.1250

P
o

w
e

r

Distance

Target Result

e) f)

g) h)

Distance

S
p
e
ct
ra
l

Di
ffe

re
n�

al

Norm. freq

FIGURE 3.6: Results for isotropic 2D agenda for different isotropic spectral (a-d) and differential
domain targets (e-h). Each block shows the source and target 2D spectrum / PCF, the source (dotted
blue) and target (orange) radial average the anisotropy (grey, only for Fourier, vertical scale different
from power).

larger than one for effective training to remove the realization noise. Test and train
split is realized by using different random seeds to generate the input patterns.

3.5 Results

Here we perform a quantitative analysis for our approach in terms of spectral and
differential properties (Sec. 3.5.1), we look into Monte Carlo convergence and dis-
crepancy (Sec. 3.5.2), we instrument different aspects of scalability and parameter
choices (Sec. 3.5.3) and finally show applications to rendering and object placement
(Sec. 3.5.4).

Default Parameters Unless said otherwise, this section uses m = 1024 points,
nc = 128 pixels / bins for full-dimensional and, na = 4m

1
n for radially averaged

spectra or histograms, networks with a depth of l = 45 layers / filters, where each
filter has a kernel with b = 96 elements which span a receptive field of r = .5.

Presentation Spectra or histograms shown are averaged across 1000 realizations.
Our radially averaged spectral plots are scaled horizontally by m−1/n to support
comparison across different numbers of points m and dimensions n and cropped to
the range [0, 4]. We call this normalized frequency.

3.5.1 Spectral and Differential Analysis

Isotropic 2D

We start by showing results from learning several state-of-the-art isotropic 2D patterns
in Fig. 3.6. All agendas minimize an l1 difference to radially averaged reference
spectra.

We see, that our approach can produce four relevant methods (BNOT [De Goes
et al., 2012], jitter [Cook, 1986], Step BN [Heck et al., 2013] and Stair BN [Kailkhura

3.5. Results 43

l1(radSpec(X), BNOT)

3

0

40

P
o

w
e

r

40Norm. Distance 0 40 40 40

2D 3D 4D 5D 10D

Norm. Distance Norm. Distance Norm. Distance

P
o

w
e

r

P
o

w
e

r

P
o

w
e

r

P
o

w
e

r

FIGURE 3.7: Results for isotropic agenda in higher dimensions from 2 to 10-D. We show the radi-
ally averaged spectrum of the target (dotted blue) and our result (orange). Note, that plots appear
increasingly discontinuous, as in higher dimensions the number of integer-frequency bins covering the
normalized range (0, 4) decreases exponentially.

l1(radSpec(xy(X)), Step) + l1(radSpec(xz(X)), Jitter) + l1(radSpec(yz(X)), BNOT)

1

0

30

Target (2X) Result (2X)

P
o

w
e

r

Norm. Frequency

A
n

iso
tro

p
y

-10 db

1

0

30

P
o

w
e

r

Norm. Frequency
-10 db

Target (2X) Result (2X)

Result (2X)

xz projec�on

xz projec�onxy projec�on

yz projec�on

yz projec�on

l1(radSpec(xy(X)), BNOT) + l1(radSpec(xz(X)), BNOT) + l1(radSpec(yz(X)), BNOT)

A
n

iso
tro

p
y

xy projec�on

Result (2X) Result (2X)

Target (2X) Result (2X)

Target (2X) Target (2X) Target (2X)

a)

b)

FIGURE 3.8: Results for anisotropic point patterns with different properties in different subspaces. In
each row, from left to right, we show the agenda, the spectra projected in xy, xz and yz, the radial mean
(blue) as well as the variance (grey). In the first row, all targets differ in the second, they are the same.

et al., 2016] in Fig. 3.6, a-d) as the radially averaged spectral profiles (orange and
dotted blue) match the reference closely, in particular in the low-frequency regions.
We see that also the 2D spectrum matches the reference while our learning was only
supervised to produce a radial average. This shows that no additional anisotropy
was introduced, further supported by the radial variance plots (grey).

Fig. 3.6, e–h, repeats the above experiment in the differential domain, where the
target is the 1D point correlation function. Again both 1D and 2D PCF match. Note,
that the PCF of Step BN [Heck et al., 2013] does only have a step in the 1D and 2D
spectra (Fig. 3.6, c), not in the PCFs (Fig. 3.6, g). We learned reproducing this.

High-dimensional Isotropic

We explore the previous analysis for n > 2 in Fig. 3.7, for one specific important
pattern, BNOT [De Goes et al., 2012]. Target spectra for higher dimensions were pro-
duced by scaling [Heck et al., 2013; Pilleboue et al., 2015] the two dimensional BNOT
power spectrum computed over 1M samples. Thanks to our MC-based formulation
that avoids reconstructing the high-D spectrum, we are able to measure such high-D
spectra and even optimize for them.

We note that the results match the target, but this gets increasingly difficult in
high-D. While at 5D, the BN peak is still distinct with a zero region and a peak at
1.0, at 10D the spectrum looks like jittered, but with a larger dark region. The only
other concurrent work to achieve similar results is Spoke Darts BN [Mitchell et al.,
2018], but at much higher algorithmic complexity (no code is changed to work in
high dimensions for us) and compute cost (we compute this pattern in 150 ms). In
particular, our method allows BN in subspaces as well, as explored next.

44 Chapter 3. Deep Point Correlation Design

Subspace Results

Adapting correlations across projections with [Singh and Jarosz, 2017] and without
[Keller, 2006; Dammertz and Keller, 2008] integrand knowledge have shown to
provide better integration and anti-aliasing quality for relevant rendering problems.
Projections have further uses far from integration, e. g., the arrangement of objects
such that they appear well-distributed in both 3D space and in multiple 2D projections
[Reinert et al., 2016] for visualization of 3D printing.

We now analyze agendas that ask for different spectra in different subspaces
[Chiu et al., 1994; Reinert et al., 2016; Ahmed et al., 2016]. Our exemplary analysis is
in n = 3 dimensions where three canonical 2-D subspaces, xy, xz and yz, exist. The
agenda now sums three L1 losses in three subspaces in respect to three references.
Results are shown in Fig. 3.8.

We see that our approach manages to produce a pattern that has the desired
spectra in all projections Fig. 3.8, a. Note, that this would not be the case for a 3D
BNOT pattern that is unaware of subspaces.

Taking it a step further (Fig. 3.8, b), we ask for different targets in different
subspaces. Overall, each subspace achieves the desired target spectra, but with slight
mutual concessions to be made: We see, that the xy projection that seeks to produce a
Step BN spectrum shares the y projection with BNOT which is reflected in the long
horizontal anisotropic line in our xy / Step BN spectrum. Along the vertical axis of
xy, the anisotropy is due to the shared X projection with Jitter. Jitter (x, z) shares the z
projection with BNOT. This manifests as the long horizontal anisotropic line in our
Jitter (x, z) spectrum. Along the vertical axis of Jitter, the anisotropy is due to the
shared X projection with Step BN.

We also show the radial average and the radial variance for both patterns (Fig. 3.8,
b & c). The radial average looks like a modified jittered pattern for both: a small ramp
and a constant range. As expected, for an anisotropic pattern, the variance is high.

Previous work has so far, by-construction, been only able to address special cases
such as jitter in multiple spaces [Chiu et al., 1994], BN along canonical projections
[Reinert et al., 2016] or combinations with LD patterns in 2D [Ahmed et al., 2016].

3.5.2 Monte Carlo Integration Convergence Analysis

In this section we look at an important application of point patterns: their use as
Monte Carlo sampling. We will first look into the discrepancy after which we analyze
integration convergence.

Discrepancy Our approach does not incentivize discrepancy as defined using clas-
sic metrics. Nonetheless, our patterns can have competitive discrepancy, as shown in
Fig. 3.9, a, where we compute the box discrepancy (100 k samples) of several common
patterns in 2D and 3D, as well as for some of ours. Common methods are random,
jittered, and Sobol. Ours are BNOT and Step BN as used in Fig. 3.6.

For 2D, we see, the expected relations between common methods are present. We
also see, that the discrepancy of BNOT and Step BN (dotted lines in Fig. 3.9 a, 2D)
is performing better than jitter, with a discrepancy closer to Sobol, which performs
best. Discrepancy is lower as a concession to spectral properties, which dominate MC
convergence, as demonstrated next.

Variance We conclude our analysis by demonstrating our samples in a Monte Carlo
rendering setting (Fig. 3.9, b). To this end, different scenes, e. g., integrands in 2D

3.5. Results 45

10-3

10-5

101 103

V
a

ri
a

n
ce

 [
lo
g
]

2D

Our BNOT radialJitter

Random

Our Step radial

10-2

10-4

101 103Point count [log]

Sobol

3D

Our BNOT 3D+2D

Our Jitter+BNOT+Step

Point count [log] Point count [log]Point count [log]

a) b)

V
a

ri
a

n
ce

 [
lo
g
]

1

10-3

101 103

D
is

cr
e

p
a

n
c

y

2D

Our BNOT
Random

Jitter

Sobol
Our Step BN

a/sqrt(N)

b log(N) / N

1

10-3

101 103

D
is

cr
e

p
a

n
c

y

3D

Our BNOT xy/xz/yz

Our BNOT/Step/Jitter

FIGURE 3.9: a) Discrepancy analysis: The left sub-plot analyzes 2D, the right one 3D patterns. In
each, the horizontal axis is log of point count and the vertical axis is the star discrepancy. The wedge
bounds the theoretic limits. b) Variance analysis: The left sub-plot analyzes a 2D, the right one a 3D
integration problem. In each plot, the horizontal axis is the log of the number of points and the vertical
axis is variance for a single pixel inside the image. Different colors encode different methods.

2D

Point count [log m]

T
im

e
 [

lo
g

 m
s]

3D 4D

Network depth [l]

10 40 901k 8k2k 4k

T
im

e
 [

m
s]

R
e

ce
p

ti
v

e
 fi

e
ld

 [
r
]

Norm Freq.

a) b) c) d)

102

103

101

10D

0

200

0 2

.075

.1

.2

.5

P
o

w
e

r

N
e

tw
o

rk
 d

e
p

th
 [
l]

Norm Freq.0 2

8

16

40

P
o

w
e

r

K
e

rn
e

l s
iz

e
 [
b

]

Norm Freq.

e)

0 2

16

32

64

P
o

w
e

r

A
B

FIGURE 3.10: Scalability analysis across numbers of points per time and error, network depth for time
and error, receptive field and kernel size. Please see Sec. 3.5.3.

(ambient occlusion) and 3D (pixel space and motion blur). We study our BNOT and
Step BN variants (dotted lines). The sample variance of a single pixel at (100,100) was
estimated over 200 realizations. A low variance is better, i. e., would render less noisy
images.

In 2D, we find, that our learned methods (dotted in Fig. 3.9, b, 2D) performs
better than random, jittered and Sobol, a typical industry standard pattern (solid,
Fig. 3.9, b, 2D). For low sample counts, our method performs on-par and in particular
our Step BN turns out to be most successful. Furthermore, ours scales to dimensions
not possible to the target spectra-producing methods, such as 6D.

For 3D, Sobol performs best, but we see that extending BNOT from radial average
(red dotted line in Fig. 3.9, b, 3D) to also include subspaces (green and blue dotted
line in Fig. 3.9, b, 3D), results in better convergence. A combination including Step
BN (light green dotted, Fig. 3.9, b, 3D) performs slightly better.

3.5.3 Scalability

Fig. 3.10 analyzes the scalability of our approach. Fig. 3.10, a shows compute time
(y-axis, less is better) as a function of points (x-axis) and number of dimensions
(different plots). We tested for a radially averaged BNOT target with l = 40 layers on
a Tesla K40m GPU. We see that our approach can produce large patterns, up to 8.192
points. A point set with 1, 024 points requires ca. 100 ms to produce. In one second,
we can produce sets in 2D to 10D of up to 8,192 points, indicating performance scales
favorably with dimensionality.

Similarly, Fig. 3.10, b repeats the experiment, but for networks of varying depth.
We see that the method scales lineary in all dimensions.

A key parameter of our network is its depth, i. e., the number of filter iterations.
We study again the speed and error across different network depths in Fig. 3.10, c.

46 Chapter 3. Deep Point Correlation Design

Our Blue Noise Grid

a)

Random

b)

Blue Noise Pink Noise Green Noise

FIGURE 3.11: Applications of our method. a) Dithering with our and a random mask. b) Object
placement for three learned colors of noise.

We see that time is roughly linear in the depth while quality saturates around the 45
levels we suggest.

An important parameter of our method is the size of the receptive field, which
we vary in Fig. 3.10, d to see that the receptive field of r = .2 is a good compromise:
Error for larger field saturates and smaller receptive fields produce low-frequency
error (arrow in Fig. 3.10, d).

Finally, we look into the effect of filter kernels size (b) on the spectrum in Fig. 3.10,e,
to find that quality saturate around the b = 64 we use. Smaller kernels smooth the
profile (A) and create aliasing (B). Please note, that speed is not affected by kernel
size (not shown), as it is a O(1) look-up.

We conclude that our method scales across different domains and is adjustable to
trade quality and speed.

3.5.4 Applications

Our trained filters can efficiently be applied to problems such as dithering or object
placement.

Dithering The ability to compute gridding masks (dithering patterns for rendering
[Georgiev and Fajardo, 2016]) is demonstrated in Fig. 3.11, a. To achieve this, our
framework does not require additional coding besides adding an enclosing ❣r✐❞

operator that extracts the x dimensions from a 3D pattern keeping, y and z fixed.
Explicit constructions of such masks can take considerable implementation effort
(simulated annealing). This also demonstrates our framework’s ability to handle
different target spectra along different projections (in this case, blue noise along 1D
and uniform for the rest).

Object placement We further demonstrate the capability of our framework to han-
dle different target spectra. In Fig. 3.11, b, we trained for different colors of noise to
procedurally place a flower object.

3.6 Conclusion

In this chapter we have proposed a framework to optimize for methods that turn
random points without properties into point patterns with properties relevant for
computer graphics tasks. Other than previous work that requires mathematical
derivation and implementation effort, we simply state the forward model as a loss
and rely on modern back-propagation to come up with a point pattern generation
method. We have shown that several previous patterns can be emulated using our
approach and in some cases even surpassed in terms of quality and/or execution
speed.

47

Chapter 4

Minimal Warping: Planning
Incremental Novel-view Synthesis

4.1 Introduction

Rendering images is time-consuming, in particular when complex visual phenomena
such as motion blur or depth of field are needed, for spectral rendering, soft shadow
or caustics, chromatic aberrations or when many images need to be produced, such
as for light fields or high refresh rates. We observe, that images which such effects
or those modalities are the sum of many pinhole images covering a “distribution
domain” and that the information across this domain at the same time is highly
redundant, presenting an opportunity for our method to exploit it.

One method to exploit this coherence is image warping: after an initial image
is shaded, it is warped into several novel ones across the distribution domain and
finally averaged. Warping is faster than re-rendering, mostly because geometric
transformations and shading costs become decoupled from sampling the distribution
effect visibility and is even shared over time or the angular domain. Still, warping
itself has two main limitations: First, it can have limited speed in practice, especially
when many and very different novel views are required. Second, it can only represent
object or camera motion, and ignores other effects such as moving shadows or caustics
or changes of wavelength. Our approach addresses these two shortcomings.

Addressing the first issue, our main observation is that small warps are easier
than large warps. In particular, warps by a single pixel can be achieved by an effort
not bigger than a conditional move from a tiny pixel neighborhood. Warps that do
not change any pixels in a spatial or sampling-domain region are even better: they
do not cost any time at all. To this end, instead of performing a large warp from
the input image into each new view, we propose a system to plan the traversal of
the warping space such that the warps become small. The resulting warping only
needs to be done incrementally, i. e., by moving pixels by an amount that is spatially
bounded or not at all.

Addressing the second issue, we generalize camera and object motion into a gen-
eral notion of distribution flow that captures arbitrary reactions of the pixel position
inside an image in response to changing any distribution coordinate, including area
light sampling position or motion or animated caustics. To this end, we make two
contributions: First we introduce shadow and spectral flow, that describe motions of
pixels in response to motions of lights, occluders or receivers as well as changes in
the spectral band. Second, to represent any arbitrary combination of flows, including
shadow and spectral flow, we sample the flow at a low number of representative
locations and extrapolate it to all other sample locations using radial basis functions.

The simplicity of our approach allows producing content that fuses arbitrary
combinations of distribution effects (lens, time, area lights, spectrum, including

48 Chapter 4. Minimal Warping: Planning Incremental Novel-view Synthesis

f -1(0,1)

f -1(0,1) f -1(1,2) f -1(2,3)

f -1(0,2) f -1(0,3)

f (0,1) f (0,2) f (0,3)

b) Inverse

a) Forward

f
-1
(s

,
s+

1
)

f
-1
(s

,
s+

1
)

f
-1
(0

,
s)

f
(0

,
s)

c) Forward

Space Space Space Space

V
ie

w
s

d) Inverse e) Minimal f) Minimal (limit)

FIGURE 4.1: Forward and inverse warping. (a) Starting from the original image at sample s = 0 the
warp f maps to new samples, here 1, 2 and 3 (pink arrow). (b) Commonly, inverse image warping
seeks to create the inverse map f−1 (blue arrow) from the original image to all other images by
inverting the forward warp. We show how the minimal warp (green arrow) between a known and
a new inverse map is easier and faster to compute. The right part shows a comparison of different
strategies for inverting many flows on a 1D image in a 1D sample space. The original image is shown
in the top row. The forward flow is show in (c). Different samples are on the vertical axis, space is on
the horizontal axis. Inverting the flow (d) using common approaches requires identifying the correct
solution in a set of candidates (orange box). This can be accelerated using an iterative search [Yang
et al., 2011; Bowles et al., 2012], but in practice compute time grows while quality is decreased when
the warp distance grows. Our approach (e) only needs to search a small neighborhood to find the
candidate. In the limit (f) this reduces to a single pixel.

shadow or caustic motion) into arbitrary combinations of outputs (plain images,
stereo pairs, light fields, higher temporal resolution). In particular, scenes with
complex geometry and high shading cost benefit from this decoupling, producing
images virtually free of sampling noise. Yet, we show how our approach, when using
the sampling bounds we devise, does not introduce more error in comparison to a
common warping-based solution while being much faster. At negligible planning
cost, our approach is roughly three to four times as fast as drawing points or a
forward-warping grid. For a one-megapixel resolution, minimal warping typically
requires less than a millisecond, which is only four times slower than the theoretical
optimum for any warping algorithm: Reading the forward flow from a texture and
directly using it as the inverse flow for a lookup in another texture.

4.2 Overview

We will here give an overview of our approach, starting from the input and output
(Sec. 4.2.1), motivating the need for minimal warping (Sec. 4.2.2) and giving the big
picture of our pipeline (Sec. 4.2.3).

4.2.1 Input and Output

Input to our approach is a root image and a continuous distribution sample domain,
e. g., lens, time and area light. Output is a small discrete set (e. g., a stereo pair) of
images that are each convex combinations of discrete images in the sample domain.

The root image can be any RGB-D image, be it synthetic or acquired, taken from a
representative sample, typically in the center of the domain. Highest quality results
are obtained by combining our approach with layered depth image (LDI) rendering
[Shade et al., 1998].

4.2.2 Minimal Warping

A forward warp from a source image to another view defines where every pixel is
written to (Fig. 4.1, a). Such a forward warp is easily applied by drawing points
[Zwicker et al., 2001; Sibbing et al., 2013], triangles [Mark et al., 1997] or a quad tree

4.2. Overview 49

Aggregate
Sample &

Plan

Tile &

Batch

Dist. flow

bound

Dist. flow

sample & fit

Input

Image

Sample

Pattern
Traverse

b

b

Plan Plan f -1

Update

sf

fi

sf

f(s)

f(s)

FIGURE 4.2: Overview of our pipeline (see Sec. 4.2.3).

[Didyk et al., 2010a]. Forward warping can produce holes or requires sophisticated
filtering and sampling and does not parallelize well.

Our approach instead finds the inverse warp [Yang et al., 2011; Bowles et al., 2012],
i. e., where every pixel is to be read from (Fig. 4.1, b). Why is finding an inverse flow
hard? It is easy, if the mapping is constant over the image: When all pixels move five
pixels to the right in the forward flow, every pixel just needs to look five pixels to
the left in an inverse flow. If pixels move differently – and they do if the distribution
space coordinates change in an arbitrary scene – the inversion is very hard. When
found, however, it is used for sampling the texture and averaging the result per pixel
[Haeberli and Akeley, 1990]. This avoids holes and fits modern GPUs well.

The differences of forward and inverse mappings are best visualized in 2D such
as on the right of Fig. 4.1. The input image (top row) is mapped forward (pink arrows
in Fig. 4.1, c) or backward (blue arrows in Fig. 4.1, d) to novel views (other rows).
Instead of previous work that uses iterative search to find the inverse map between
the input image and a new view, we proceed incrementally, allowing to work with
minimal warps (Fig. 4.1, e). In the limit, the search radius becomes a single pixel
(Fig. 4.1, f). For this to work, the approach requires planning.

4.2.3 Pipeline

Our approach has several steps (blocks in Fig. 4.2) and two main parts (colors in
Fig. 4.2). The first part (yellow in Fig. 4.2) estimates distribution flow (Sec. 4.3)
and plans the warping (Sec. 4.4.1 and Sec. 4.4.2), the second one executes this plan
(Sec. 4.4.3, blue in Fig. 4.2). The first part relies on intelligence, involving function
fitting, graph operations, optimizations, etc. and is mostly CPU-based. The second
part is very simple and executed on the GPU by no more than massive conditional
memcopies.

Distribution flow model Our approach proceeds in respect to a certain distribution
flow model, which defines how a 3D scene position changes as a function of quantities
such as, time, lens position, area light coordinate, wavelength, or index in the stereo
image pair of light field image array. Before planning the minimal warps, we therefore
first need to know how 3D distribution flow responds to changes in the corresponding
distribution domain.

Area

light

Time

Spectrum

Lens

A simplified version of distribution flow is shown on
the right: the arrows show motion of the central pixel in
response to changes in the distribution sample domain.
The image is a simplification, as we are interested in the
combined effect of all dimensions, while the image only
shows flow with respect to changes in a single variable.

50 Chapter 4. Minimal Warping: Planning Incremental Novel-view Synthesis

A
p

e
rt

u
re

S
a

m
p

le
s

Patch A Patch B

Scene Linear sequence Tree

FIGURE 4.3: “Wiping” effects in a linear sequence and a tree.

We opt to sample the domain using a low-discrepancy
pattern of pilot samples and fit a radial basis function (RBF) model to the pixel
motion. Output of this step is a model of how each pixel moves in 3D when any of its
distribution parameter changes.

Planning The planning phase uses the distribution flow model to sample the dis-
tribution domain into images where pixels move at most by a single-pixel distance
when moving from one image to its neighbor. The images are arranged into a sample
tree, in which an edge is an inverse warp between two images. The tree is organized
such that its traversal will always produce minimal warps. We define a warp from
image A to image B to be minimal, if for every pixel in the output image B, it has not
moved more than one pixel from its position in A.

An example is Fig. 4.3, rendering depth-of-field of two patches at different depth,
sampled at 9 views for depth-of-field. Consider comparing two alternative sample
graphs in the second and third column. The most simple sample graph could be
to find the shortest path to connect all samples (Fig. 4.3, second column). Here, the
long overall path can result in disocclusion (transparent in patch B that is behind
patch A) propagating over the entire solution (referred to as “Wiping”). Instead, we
arrange samples in a tree (Fig. 4.3, third column). Now, the disocclusions can only
affect a single branch, or as in this case, no pixels at all. Intuitively, combining a
tree-shaped flow that always expands and never shrinks with small warp lengths
creates an efficient solution without occlusion problems. “Wiping” is the only reason,
why our solution is not identical to the ground-truth inverse warp, i. e., an exhaustive
search for the best matching pixel in the source image.

The ideal traversal would minimize disocclusions directly instead of only mini-
mizing the path length. However, no obvious method exists to predict disocclusions
in a complex forward flow in an LDI without executing it.

4.3 Distribution Flow

We call flow which arises from general distributions and their mutual combinations
distribution flow, as it is a key component for our solution of the distribution rendering
problem [Cook et al., 1987]. In this section we give details on this notion. First,
we formally define the domain and the mapping (Sec. 4.3.1). Then, we explain
how individual flow components are computed (Sec. 4.3.2). Finally, we show how
complex distribution flow is efficiently and compactly represented by using radial
basis functions (Sec. 4.3.3).

4.3. Distribution Flow 51

f (s1,s2)

s1

s2
f (s1,s2)(x)

x

Source view

Ta
rg

e
t

v
ie

w

FIGURE 4.4: Common forward flow (red) is a mapping from each image location x to a new location
f (x). We operate on a family of flows f (s1, s2)(x) that depend on the source sample s1 and the
target sample s2 (green). In this illustration, the sample space, which is high-dimensional, is depicted
two-dimensionally for simplicity.

4.3.1 Domain and Mapping

The sample domain S is a subset of the nd-dimensional hypercube. Typically nd is 2 or
3, but can also be higher. A sample is a position in the sample space and corresponds
to an image (Fig. 4.4). The 3D motion in camera space is defined as a composed
mapping y = f (s1, s2)(x) ∈ S × S → (R2 → R3) from the source and target sample
s1 and s2 to a mapping of positions x, visible in the original image, to a new 3D
camera space position y. The original image sample is denoted as s = 0.

While the above notation describes the flow between two arbitrary samples s1
and s2 in distribution space, for the remainder of this section it is best thought of as
the warping from one source image at 0 to another image with coordinate s.

4.3.2 Flow Components

Taking a novel-view sample s induces a forward flow f (0, s). In the following sections,
we describe how to compute specific flow components individually. While object
motion flow , camera flow , and aberration flow correspond to traditional published
effects and are therefore only listed to make this chapter more self-contained, we give
more details on two novel, very specific types of flow: The first one is shadow flow that
predicts, how an image of a shadow changes when light, occluder or receiver move.
The second is caustic flow that is applicable to photon-mapped caustics.

The process of flow estimation is best imagined as capturing ❣❧❴P♦s✐t✐♦♥ of a
vertex shader that takes the distribution coordinate s as a parameter. Therefore, no re-
rendering is necessary at any point during flow estimation. Furthermore, occlusions
are not considered at this stage, since the warping step will take care of visibility
configurations. The flow field is stored in a texture at full input image resolution.

In order to combine different flow components, the individual mappings are
simply concatenated in light transport order, i. e., in the order they are listed below.

Object Motion Flow

Moving and deforming geometry causes a scene flow field [Vedula et al., 1999] that
can be used to produce motion blur. In order to obtain the 3D position x(t) of the
surface under a pixel, the rigid or non-rigid mesh deformation is sampled across
time.

52 Chapter 4. Minimal Warping: Planning Incremental Novel-view Synthesis

ll´

o´

r´

x´

n´

o

x r

n

a) b) c) d)
l

i i

i´

r´

l

l´
x´

x´

x x

r r

FIGURE 4.5: The geometry of shadow (a,b) and caustic (c,d) flow. (a) A moving light source l,
occluder o, and receiver r lead to a moving shadow position x. (b) Only shadow silhouettes have
a unique occluder. (c) A change of wavelength leads to caustic motion. (d) This can be combined
with a moving light source l, dispersive interface i, and receiver r. Dashed symbols denote the new
configuration.

Shadow Flow

Shadow flow predicts the motion of a 3D shadow point x for a point light source
at position l, blocked by an occluder at position o cast into a receiver position r. To
this end, we make the assumption, that the occluder does not change (the visibility
graph does not change topologically, but deforms) and that the receiver is locally
planar with normal n. Under this condition, the new position x′ can be computed
by ray-casting an “updated” ray from the new light position l′ through the new
occluder position o′ to the receiver plane with the new position r′ and new normal n′

(Fig. 4.5, a). This procedure is simply an analytical ray-plane intersection:

x′ = l′ + d
〈l′ − r′, n′〉
〈d, n′〉 with d =

o′ − l′

‖o′ − l′‖2
.

Since non-silhouette pixels do not have a unique occluder, the mapping from
old to new shadow position is well defined only at shadow boundaries (Fig. 4.5, b).
Therefore, we first compute shadow flow at the shadow silhouettes and then densify
the resulting sparse flow field using pull-push.

Note, that rendering twice is no solution to the shadow flow problem, as it would
explain how both shadows look like, but not which point has moved where. Shadow
flow is applicable to temporal upsampling of moving lights, occluders or receivers as
well as to sampling of area lights or the combination of both.

Caustic Flow

Caustic flow predicts where a single caustic x moves, if the wavelength or the position
of the light l, the dispersive interface i, or the receiver r is changed (Fig. 4.5, c,d).
Different from shadows at a single point that are caused by a single occluder, a caustic
at a world position is caused by multiple reflectors. We will therefore have to resort
to discrete derivatives and assume we use photon mapping to compute caustics: we
simply send the same photon for a different light, time and spectral component and
reproject it. Note, that in our approach this has to be done for a very low number of
distribution pilot samples only, as described in Sec. 4.3.3. To reconstruct per-pixel
flow, we use density estimation of distribution flows i. e., every photon does not splat
its color, but the change of position, relative to the distribution coordinate, e. g., time.

Since this produces noisy estimates, we robustify it by, first, setting flow with
a magnitude larger than a threshold to zero, and second, by performing median
filtering. The flow is finally densified using pull-push.

4.3. Distribution Flow 53

Camera Flow

Camera flow produces motion blur induced by camera motion as well as depth of
field from a thin lens. The 3D object position, which may be altered by the previously
described flows, is projected using a lens-time-sampled camera matrix A(u, v, t)
[Haeberli and Akeley, 1990].

Aberration Flow

For transverse chromatic aberrations (Fig. 4.11) a typical forward flow is given by the
second-order radial lens distortion model

f (0, s)(x) =

xx

(
1 + λs

(
αr + βr2

))

xy

(
1 + λs

(
αr + βr2

))

depth(x)

 ,

where λs denotes the wavelength of sample s, r =
√

x2
x + x2

y denotes the dis-

tance from the image space position x to the image center x0 = 0, and α, β are free
parameters to control the amount and shape of the radial distortion.

4.3.3 Representing Distribution Flow

The distribution flow is potentially high-dimensional and partly expensive to eval-
uate, making it impractical to sample for any cubature-type approach. In contrast,
we will perform a cubature-like sampling to produce individual view samples in
Sec. 4.4.1. This is feasible, since the amount of work needed for creating a view
sample via minimal warping is in the order of magnitude of a texture copy operation.

To find the distribution flow for every pixel, we assume it to be smooth across the
sample domain S. Note, that this does not assume spatial smoothness of either the
image itself or the flow field or the inverse flow field, which need to tackle occlusions.

Inspired by quasi-Monte Carlo rendering we create a low number K of pilot
samples s f with low discrepancy (Halton pattern with leaping [Robinson and Atcitty,
1999]) and sample the flow at these pilot locations, avoiding the curse of dimensional-
ity and still covering the domain well. We include an additional deterministic sample
at s = 0 to ensure that the original image will be interpolated exactly. We did not see
evidence that more than K = 12 samples provide a change in the scenes we explored.
Next, we fit a radial basis function (RBF) model

f (0, s)(x) =
K

∑
i

wi(x)φ(‖s − s f ,i‖2) (4.1)

with s f ,i being the i’th pilot sample. We use the inverse multiquadric radial basis

function φ(r) =
(
r2 + a2

)− 1
2 with scale factor a = 2nd. The weights wi(x) ∈ R3 are

determined by solving the linear system

K

∑
i

wi(x)φ(‖s f ,i − s f ,j‖2) = f (0, s f ,j)(x), for 1 ≤ j ≤ K.

This is done by first performing a QR decomposition of the K × K system matrix
(which is the same for all pixels) and with this then cheaply and robustly solving the
system for each pixel in parallel.

54 Chapter 4. Minimal Warping: Planning Incremental Novel-view Synthesis

S
a

m
p

li
n

g

a)

B
o

u
n

d
e

d

d
is

ta
n

ce
 g

ra
p

h

b)

S
h

o
rt

e
st

 p
a

th
 t

re
e

c)

C
o

n
n

e
cc

ti
o

n

sa
m

p
li

n
g

d)

Tr
e

e
 li

n
e

a
ri

za
ti

o
n

O
rd

e
r

e)

W
a

rp
 li

fe
sp

a
n

f) Edges

O
rd

e
r

FIGURE 4.6: Overview of six steps for sample planning, here for a two-dimensional lens sample space
example.

After this step, the flow from the root to any sample can be approximated by K
RBF evaluations and a dot product.

4.4 Minimal Warping

The central idea of this work, is to efficiently find the inverse flow f−1(0, s3) from
the original image to many s3 by recursively re-using solutions f−1(s1, s2) computed
previously. The inverse flow is not the inversion of the entire mapping. Instead, it
can only explain where a 2D position in the novel images was in the original image.

We will now explain the four main steps of our algorithm in detail. Planning
(Sec. 4.4.1) produces a set of samples and a traversal order that allows for minimal
warps. Tiling and Batching (Sec. 4.4.2) determines which image regions for which
samples can be skipped without introducing errors. Warping (Sec. 4.4.3) performs
the flow inversion, and Aggregation (Sec. 4.4.4) produces the final output.

4.4.1 Sample Planning

Input to the planning is the sample domain S and an RBF distribution flow. Output is
a discrete set of samples S and a view traversal order. Planning proceeds in seven
steps (Fig. 4.6): Bounding distribution flow (i) and sampling (ii) produce a set of
samples with a carefully determined density that allows for minimal warps. A
bounded distance graph (iii) in conjunction with a shortest-path tree algorithm (iv)
and connection sampling (v) augment the samples with a connectivity structure. Tree
linearization (vi) produces the final traversal order. Optionally, a traversal stack (vii)
can be created to significantly reduce the memory requirements of the Warping step.

Bounding distribution flow In order for minimal warping to work we need to
know how a change of a sample domain coordinate translates into pixel motion in
image space. More specifically, we want to know how many samples are needed per
sampling dimension so that f moves at most p pixels in the image when moving
from one sample to the next. We denote this quantity b ∈ Rnd . The total number of
samples is then ns = ∏ bi. A usual value for p is 1 or 2 pixels.

For determining a conservative estimate of b we are interested in the maximum
rate of change of f with respect to each sampling dimension. Therefore,

bi =
1
p

max
x

max
s∈S

∥∥∥∥∥∥

(
∂ f (1)(0, s)(x)

∂s(i)
,

∂ f (2)(0, s)(x)

∂s(i)

)T
∥∥∥∥∥∥

2

, (4.2)

where s(i) denotes the i’th component of s and f (1) and f (2) are the horizontal and
vertical component of the flow, respectively. The depth component of f is not neces-
sary at this point, because it does not give any information about image space motion.
The maximum over s is found using gradient ascent, starting at every pilot sample

4.4. Minimal Warping 55

s f , in parallel for all pixels. The maximum over all pixels x is found using a max MIP
map.

Sampling Sampling (Fig. 4.6, a) considers the entire continuous domain S and
produces a discrete sample set S = {si}. To this end, the sample domain is discretized
into a grid of size 1/b (where / denotes element-wise division) and one sample is
produced per grid cell. Following the above, samples are placed exactly such that
pixels move only p pixel distances when going from one sample to the next for the
entire sampling domain. Additionally, every sample is subject to correlated multi-
jittering [Kensler, 2013]. Our approach naturally lends to such a sampling pattern as
it exhaustively covers the domain in all dimensions by design to not miss any feature.

Bounded distance graph Key to our planning is to arrange the samples into a graph
(Fig. 4.6, b). In this graph, the samples si are vertices. Edges are created between
two vertices if their sample space distance corresponds to less than p pixels in image
space. The distance between samples i and j is measured according to a b-weighted
norm that converts the Euclidean sample distance into units of pixel motion, so
dij = ||B(si − sj)||2, where B is a diagonal matrix scaling dimension k by bk. The
graph is computed in parallel for all ns × ns candidate edges and is very sparse with
an average outdegree of 1.8.

Shortest-path tree Next, the graph is converted into a shortest-path tree, with the
input sample s = 0 as a root, using a breadth-first search in linear time (Fig. 4.6,
c). For each node during search we select the child being explored next at random,
which leads to a smaller traversal stack (explained below).

Connection Sampling Occasionally, due to the jittered sampling pattern, tree edges
correspond to a pixel motion slightly larger than p. Therefore, we simply add a
sample in the middle of each such edge (Fig. 4.6, d).

Tree linearization Tree linearization turns the tree into a sequence of edges (indices
of parent and child) as encountered in a depth-first, pre-order traversal (Fig. 4.6, e).
Depth-first warping is preferred over breadth-first warping that would also allow
for minimal warping, but requires to store a much larger number of intermediate
inverse warps when using a traversal stack as explained below. No particular order
is necessary among children. However, to optimize progressiveness, optionally,
when more than two children are present, we employ a farthest-first traversal of the
children. As the representative position of a child we choose the mean position of
all nodes in the child’s sub-tree. The farthest-first traversal avoids exploring similar
sub-trees sequentially and encourages the exploration of diverse solutions first. The
end-outcome is not affected by this operation, only when executing parts of S, e. g.,
for progressive preview.

Traversal stack While the procedure described above is sufficient to execute a mini-
mal warping plan, it still requires to have all previously visited nodes in memory as
they can appear as the parent of any child. If we are interested in creating distribution
effects, there is no need to store all warped images. Instead, we can perform a moving
average to achieve the same effect. In this step, which is optional, the traversal is
augmented with additional information, such that only a small stack of active inverse

56 Chapter 4. Minimal Warping: Planning Incremental Novel-view Synthesis

warps needs to be remembered when executing the minimal warping plan. Therefore,
the space complexity of our approach depends on the depth of the traversal tree and
not on the total number of its vertices.

A warped sample needs to be remembered only, if it will be needed as a source
sample for a minimal warp at a later point in the traversal (Fig. 4.6, f). Whenever a new
sample si has been created from a source (i. e., parent) sample si−1, two configurations
may occur: a) If si is the last child of si−1 in the traversal order, si−1 can be forgotten.
b) If si is not a leaf, si needs to be stored as a source sample for one or more later
warps. Since the sample ordering originates from a pre-ordered, depth-first traversal
of a tree, a simple stack data structure is sufficient to encode this behavior. After the
last occurrence of a sample si−1 as the source for a minimal warp, the sample can be
popped from the stack. When a newly created sample si will be needed as a source
for a later warp, it is pushed to the stack. Following this procedure, the source sample
for the current minimal warp will always be the top of the stack while executing the
traversal plan.

4.4.2 Tiling and Batching

Depending on the distribution domain and its associated flow, different image regions
move at different speeds. Some regions are even completely unaffected by the
sampling and do not move at all. We exploit this fact by subdividing the image into
tiles (for execution coherence) and determining a distinct update pattern for each tile.

When using the max MIP map for solving Equation 4.2, we can simply read the
MIP map at a lower level to get a vector b(i) per tile. A typical tile size is 16× 16 pixels.
The values of b(i) cannot be used as a representative sampling density measure for
the tiles, since they are only estimating forward flow. A tile in an inverse warping
framework can only be skipped, if nothing maps to it. In order to get an estimate of
the inverse flow bounds b̃(i), we first compute a per-pixel axis-aligned bounding box
(AABB) of the flow (Fig. 4.7, a). The four sides of the AABB are determined as

left/right : min
s∈S

/ max
s∈S

f (1)(0, s)(x),

bottom/top : min
s∈S

/ max
s∈S

f (2)(0, s)(x),

using gradient descent and ascent, respectively, in parallel for all pixels. Then, we
intersect each tile with the AABBs of all other tiles and compute, in parallel for all
tiles, b̃(i) = maxj∈Ωi

b(j), where Ωi is the set of all indices corresponding to tiles
whose AABB intersects tile i. The maximum is performed component-wise. Tiles
with b̃(i) = 0 are not affected by the distribution sampling. Consequently, they do not
need to be processed at all. As a side effect, this achieves scalability in regard to scenes
with high depth complexity by avoiding spending too much work on almost-empty
LDI layers.

Since we cannot afford to compute and store an update pattern for each tile,
all remaining active tiles are clustered by their b̃ vectors (Fig. 4.7, b). We use k-
means clustering using scattering and blending [Dong et al., 2009] (k = 20 in all
our experiments). To produce the final update pattern per cluster (Fig. 4.7, c), we
iterate over all samples s for all tiles in parallel: If in any sampling dimension the
distance between the current sample and the sample at which the cluster had its
last update is larger than the cluster’s value 1/b̃, the cluster needs an update at the
current sample’s parent in the traversal tree. Once the update pattern is created, all

4.4. Minimal Warping 57

100%

0%b)a) c)

FIGURE 4.7: Tiling and batching is done by computing axis-aligned bounding boxes of the flow (a) to
perform clustering of tiles (b). In (c) the update frequency for individual tiles during sample space
traversal is shown. In this motion blur example most tiles need an update only at every third sample
or less often.

that needs to be done for each tile during the sample space traversal is to look up if it
needs an update based on its cluster ID. During aggregation, this update pattern will
be taken into account.

4.4.3 Warping

The warp itself is executed for every sample in two steps: Requesting evaluates the
forward flow and computes necessary auxiliary information. Searching inverts this
forward flow based on a previously warped sample.

Requesting

Requesting computes f (0, si), the camera-space 3D forward flow from the original
image to sample si of every pixel seen in the original image. This is done by evaluating
Equation 4.1.

From the forward flow field we additionally compute a magnification field
m(0, si)(x) at sample si. This field contains the larger absolute eigenvalue of the
Jacobian

J(0, si)(x) =

∂ f (1)

∂x(1)
∂ f (1)

∂x(2)

∂ f (2)

∂x(1)
∂ f (2)

∂x(2)

 (0, si)(x),

where, again, ·(1) and ·(2) denote horizontal and vertical components, respectively.
The entries of the Jacobian are computed numerically from neighboring pixels using
central differences. A magnification field value of 1 indicates that the forward flow
merely induces translation or rotation locally in image space. In a minification or
magnification condition, this value is smaller or larger than 1, respectively. The
magnification field is later used to appropriately deal with those two conditions.
Note that neither condition will increase the number of elements required to search
for flow inversion, but will only adapt the thresholds for deciding which candidate is
better than a different one.

Searching

Next, we explain how the plan can be executed by performing minimal warps. A
minimal warp is essentially a small search. As we will explain, the search can be
performed directly or in an occlusion-aware fashion. Finally we will show, how, while
we work on an integer nearest neighbor field (NNF), an optional sub-pixel accurate
search allows to read the input image at fractional coordinates.

58 Chapter 4. Minimal Warping: Planning Incremental Novel-view Synthesis

a) Result b) Direct search c) Occlusion-aware search

Sample 0 Sample i Sample i–1 Sample i Sample i–1Sample 0

FIGURE 4.8: Details of our searching procedure. Consider a yellow ball with a pink dot casting a
shadow moving from left to right and rotating to produce motion blur (a). Our method inverts the
flow from sample i − 1 to sample i. For the direct search (Alg. 1), in sample i, for one pixel (thick
box), the inverse flow in sample i − 1 is looked up. Using this result, a neighborhood [−p, . . . , p]2 is
searched in sample 0, i. e., the original image, to find the pixel that best maps to the current sample
(again, thick box). This procedure works well, except at occlusions, which require an occlusion-aware
search (Alg. 2) instead (c). Here the pixel of interest in sample i (thick box) is an occlusion, i. e., the
same pixel in sample i − 1 belongs to the background. The solution is to perform two searches: The
first one finds the best position in sample i − 1, the second one proceeds as in direct search. Note, that
in the case of simple 2D motion like in this example, the second search is not necessary, because the
first search finds the best position immediately. In case of perspective 3D motion, the second search
prevents error accumulation.

Direct search The direct search is illustrated in Fig. 4.8, b. Searching will pro-
duce the inverse warp of the current sample f−1(0, si) from the inverse warp of the
previous sample f−1(0, si−1). The planning step has assured that for every x, the
solution f−1(0, si)(x) is in the set { f−1(0, si−1)(x ⊕ [−p, . . . , p]2)}, where ⊕ denotes
Minkowski summation i. e., the set of all points in a two-dimensional integer lattice
of side length 2p + 1 around that point. Intuitively, this says that the correct solution
for the current sample is known to be a very nearby other pixel in a previous sample.
Therefore, for every pixel in the output, all that is required is a two-dimensional loop
over its (2p + 1)2 neighboring pixels.

Input : Inverse flow f−1(0, si−1) at previous sample,
Forward flow f (0, si) for new sample.

Output : Inverse flow f−1(0, si) and depth at new sample.
forall pixels x in f−1(0, si) do

result(x) := vec3(0, 0, ∞);
vec2 u := f−1(0, si−1)(x)
forall y ∈ [−p, . . . , p]2 do

vec3 t := f (0, si)(u + y);
if ‖xxy − txy‖∞ < m(0, si)(x) and tz ≤ resultz(x) then

result(x) := vec3(u + y, tz);
end

end

end

return result;
Algorithm 1: Direct search.

This can be implemented in a very simple and shader-friendly way as seen in
Alg. 1. The outer loop is parallel over all pixels. The small inner loop is performed by
a fragment shader. It merely requires visiting the neighboring pixels and performing
two tests: If the forward flow maps to the current pixel, and if yes, if it is closer to the
camera than any other pixel that previously also mapped there. The winner is the
new inverse flow. The acceptance criterion for the decision whether a pixel maps to
the current one depends on the minification or magnification m. In a magnification
condition (m > 1), the forward flow is allowed to map to a location further away from

4.4. Minimal Warping 59

the pixel center to be accepted, avoiding holes in the warped image. In a minification
condition (m < 1), the tighter threshold leads to a more accurate selection of the best
match.

Input : Inverse flow f−1(0, si−1) at previous sample,
Forward flow f (0, si) for new sample.

Output : Inverse flow f−1(0, si) and depth at new sample.
forall pixels x in f−1(0, si) do

result(x) := vec3(0, 0, ∞);
vec3 u := vec3(0, 0, ∞);
forall y ∈ [−p, . . . , p]2 do

vec2 r := f−1(0, si−1)(x + y);
vec3 q := f (0, si)(r);
if ‖xxy − qxy‖∞ < m(0, si)(x) and qz ≤ pz then

u := vec3(r, qz);
end

end

forall y ∈ [−1, 0, 1]2 do
vec3 t := f (0, si)(uxy + y);
if ‖xxy − txy‖∞ < m(0, si)(x) and tz ≤ resultz(x) then

result(x) := vec3(uxy + y, tz);
end

end

end

return result;
Algorithm 2: Occlusion-aware search. The gray part is identical to the non-
occlusion-aware variant.

Occlusion-aware search The above direct search procedure fails, if the target pixel
was occluded in the source sample. In this situation, the inverse flow from the
previous sample is an inaccurate initial guess of the current inverse flow. But since
also occlusion boundaries can only have moved within [−p, . . . , p]2, the problem can
be solved by an additional small search in f−1(0, si−1)(x) for the best initial estimate,
as seen in Fig. 4.8, c and defined in Alg. 2. After this search, the algorithm proceeds as
in the non-occlusion-aware version. All results in this chapter were produced using
occlusion-aware search.

Sub-pixels accuracy The above procedure searches a low number of discrete choices.
The continuous forward flow, however, maps every discrete pixel in the initial sample
to a continuous sub-pixel location. Sub-pixel accurate inverse flow is found by
fetching the four pixels around the discrete optimum and computing the continuous
location y that minimizes the cost of pyramid matching [Bailey, 2003]. In practice, we
never remember the continuous sub-pixel coordinate in floating point precision, but
a discrete NNF with integer coordinates to avoid the accumulation of floating point
errors.

Sorting

When using LDIs, the sparsity naturally occurring in the back layers can be used to
prevent wiping even more. On a per-pixel basis, values are simply pushed back as

60 Chapter 4. Minimal Warping: Planning Incremental Novel-view Synthesis

Wiping No Wiping

Framebuffer Framebuffer

Layer 1
Layer 2
Layer 3

a) b)

FIGURE 4.9: Per-pixel sorting of layers prevents wiping, here illustrated for a box moving in front of
a planar background.

far as possible in the layer ordering, as illustrated in Fig. 4.9. This is done once per
input LDI. All LDI results in this chapter were produced using sorting.

Implementation

Requesting and searching are implemented in parallel for all pixels in all tiles. Our
prototype is implemented in the OpenGL shading language. The plan is stored in
a vertex buffer object and executed by layered rendering, where the samples corre-
spond to layers. A geometry shader emits quads for all tiles that require updating.
Synchronization has to be performed, such that all tiles in one layer are finished
before a new layer can start.

4.4.4 Aggregation

Once the inverse flow for a view sample has been found, it can be used to perform a
simple texture lookup of the input image to create the associated novel view. After a
sample has been produced, it can contribute to a single, or multiple output images.
Let no denote the number of output images. In the simplest case, the output is
a single image, and all samples are averaged. The other extreme is temporal up-
sampling: here multiple samples are produced and each one is a result image. In
general, multiple samples can contribute to multiple output images. In general, the
aggregation of ns samples into no images can be described as an aggregation matrix
denoted as A ∈ Rns×no . Fig. 4.10 shows a visualization of A. The aggregation is
performed point-wise for all output modalities. When not using LDIs as input to the
system, disocclusions occur naturally. During aggregation, these undefined regions
are simply ignored.

4.5 Results and Discussion

Here we present qualitative (Sec. 4.5.1) as well as quantitative (Sec. 4.5.2) results of
our approach, and discuss design choices (Sec. 4.5.3) and limitations (Sec. 4.5.4).

4.5.1 Qualitative Results

Here we show several applications of planning minimal warping.

Temporal up-sampling Besides distribution effects, a typical application of warp-
ing is temporal up-sampling (frame rate conversion) [Didyk et al., 2010b; Bowles
et al., 2012]. This is challenging in the presence of complex geometry and motion.
In Fig. 4.10 we show a sequence of several moving characters, undergoing complex
accelerating local motion between two key-frames (left- and rightmost image).

4.5. Results and Discussion 61

Images

Sa
m
p
le
s

Keyframe Interpolated Interpolated Interpolated Keyframe

FIGURE 4.10: Temporal up-sampling from two key-frames to in-between images with a 360◦ degree
tent shutter. Insets show pairs of our interpolation (top) and the rendered reference (bottom). The
aggregation matrix A ∈ R256×3 is shown right (large weights are darker).

Mono Input Spectral Output

FIGURE 4.11: Chromatic aberrations produced by our method.

Stereo-to-light field A typical application requiring many warps is conversion
of stereo content to light fields, in particular, when correct inter-view filtering is
required to avoid aliasing [Zwicker et al., 2006]. In Fig. 4.12, depth is created by
finding correspondences from the stereo pair, which is then used to create many
virtual views that are carefully combined using a custom aggregation matrix to avoid
inter-view aliasing.

Depth-enabled photo effects Finally, we demonstrate the quality and time of
adding several effects to acquired RGB-D data [Silberman et al., 2012] in Fig. 4.13
using our approach.

4.5.2 Quantitative Results

Our approach is compared to different competitors in terms of computing different
effects. As competitors, we consider i) point splatting, ii) grid warping with a cell
size of one pixel [Mark et al., 1997], iii) quad tree-warping [Didyk et al., 2010a], and
iv) a ray-traced reference. We did not consider iterative gathering methods in this
comparison, because the complex flow fields with wide baselines lead to non-convex

Virtual pinhole viewsStereo input Filtered Lightfield

FIGURE 4.12: Conversion of a stereo image (left) into a light field (right) – here showing a single
new view. Our approach creates many virtual views (center) that are carefully combined to provide
inter-view anti-aliasing [Zwicker et al., 2006].

62 Chapter 4. Minimal Warping: Planning Incremental Novel-view Synthesis

a) b) c) d) e)

FIGURE 4.13: Results of our method applied to acquired RGB-D data from the NYU dataset [Silberman
et al., 2012]. a) and b): Depth of field, 256 samples. c): Motion blur from camera motion, 64 samples.
d): Motion blur from camera motion, 128 samples. e): Original images.

energies to minimize, requiring these methods to be initialized, i. e., with a quad
tree [Bowles et al., 2012]. This shows, that any converging search method can in
principle not be faster than our approach which is already 2 to 3 times faster than
quad tree-warping. All competitors had the same LDIs as input.

The effects tested are i) depth-of-field, ii) motion blur, iii) soft shadows, iv) spectral
caustics, and v) combinations of the above. Fig. 4.14 shows images produced from
our approach as well as insets made from our approach and the ray-tracing reference.
The results were produced on a Nvidia Geforce GTX 980Ti with an Intel Xeon E5-1607
CPU at a resolution of 1024×1024 pixels and are summarized in Tbl. 4.1. The given
timings include all steps described in this chapter, except for the “Prism” scene,
where the spectral photon tracing (Sec. 4.3.2) was done using an external application.
We performed same-quality comparisons, as can be seen from the almost identical
SSIM values. We observe that our approach can produce same-quality images in
significantly less time than common approaches using warping. Additionally, our
novel shadow and spectral flow formulations allow our approach to produce a more
versatile range of distribution effects.

In Tbl. 4.2 we give timings for the individual processing stages of our method. It
can be seen that the planning stage usually constitutes only a small fraction of the
total amount of work. It is furthermore noticeable that the timing for the warping
is almost in the same order of magnitude as the aggregation step i. e., summing the
novel views.

Tbl. 4.3 shows equal-time and equal-quality comparisons of our approach to a
path tracing solution created with Renderman 20.10. It can be seen that path tracing,
which has to perform shading evaluation for each ray, produces results of significantly
less quality in the same time and needs considerably longer to compute equal-quality
results. This is true even if the time to shade a pinhole image i. e., one sample per
pixel, which is the input to our system (timings are given in the Shading column of
Tbl. 4.2), is taken into account.

TABLE 4.1: Efficiency and visual quality of different methods (columns) on different scenes (rows).
Factor is time relative to our solution (smaller is better). Similarity is measured in SSIM [Wang et al.,
2004] relative to a ray-tracing reference (larger is better). Distribution effects marked with an asterix
cannot or can only partially be reproduced by the competitors.

Scene Effect Point Grid Quad-tree Ours
Time Fac. Sim. Time Fac. Sim. Time Fac. Sim. Time Sim.

Dancers MB 4.1 s ×4.2 .93 2.5 s ×2.6 .93 2.1 s ×2.1 .92 1.0 s .92
Garden DOF 84.8 s ×2.1 .91 99.5 s ×2.4 .90 104.9 s ×2.6 .88 41.2 s .90
Bouncing Cubes MB + Shadow MB∗ 35.9 s ×4.8 .88 24.3 s ×3.2 .86 15.2 s ×2.0 .85 7.5 s .86
Vehicle Soft Shadows∗ - - - - - - - - - 40.0 s .96
Space Station MB + DOF 1350.1 s ×3.5 .93 1132.5 s ×2.9 .92 1035.0 s ×2.7 .91 387.7 s .93
Prism Spectral Caustics∗ - - - - - - - - - 4.2 s -

4.5. Results and Discussion 63

O
u
rs

In
p
u
t

R
e
fe
re
n
ce

O
u
rs

In
p
u
t

R
e
fe
re
n
ce

O
u
rs

In
p
u
t

R
e
fe
re
n
ce

Aft
er

In
p
u
t

O
u
rs

In
p
u
t

R
e
fe
re
n
ce

O
u
rs

In
p
u
t

R
e
fe
re
n
ce

B
e
fo
re

FIGURE 4.14: Results of our method. The large figures show the end-result. Insets show comparisons
between a multi-pass reference and ours.

64 Chapter 4. Minimal Warping: Planning Incremental Novel-view Synthesis

TABLE 4.2: Timings for the individual stages. Two numbers in the Layers column denote the number
of non-shadow and shadow layers. The timing of flow estimation for Prism does not include the
spectral photon tracing, for which an external application was used. Timings given in italics are shown
for completeness and are independent of our approach.

Scene Layers nd ns Shading Flow est. Planning Tiling Warping Aggreg.

Dancers 3 1 191 115 s 0.01 s 0.06 s 0.08 s 0.58 s 0.27 s
Garden 4 2 5385 168 s 0.05 s 0.91 s 0.09 s 30.96 s 9.15 s
Bouncing Cubes 5+5 1 848 150 s 0.05 s 1.15 s 0.09 s 4.89 s 1.36 s
Vehicle 2 2 11230 95 s 0.01 s 0.38 s 0.09 s 27.40 s 12.13 s
Space Station 5 3 53864 426 s 0.04 s 6.67 s 0.13 s 275.78 s 105.03 s
Prism 1 1 1059 103 s 0.01 s 0.12 s 0.08 s 3.26 s 0.74 s

TABLE 4.3: Equal-time and equal-quality comparison to a path tracer.

Scene
Equal Time

(SSIM)
Equal Quality

(Time)

Dancers .70 3300 s
Garden .38 4800 s
Bouncing Cubes .80 480 s
Space Station .89 1400 s

4.5.3 Discussion

Our cubature employs a regular sampling of the distribution domain. In theory, the
approach therefore needs time exponential in the number of distribution dimensions
nd. In practice, the volume of all distribution flows (i. e., ns = ∏ bi) effectively
constitutes the amount of work to be done. Consequently, it makes no difference
if a combined lens-time sample space requires 10 × 10 × 10 samples, or if motion
blur alone smears a single pixel across 1000 pixels. We share this inherently strong
dependency on the magnitude of the distribution effects to be produced with other
rendering methods, including Monte Carlo approaches. Producing a novel view
via minimal warping requires nothing more than two texture lookups in a 3 × 3
neighborhood per pixel. This is in contrast to producing a sample via ray-tracing,
which exhibits larger constants and scales with geometric scene complexity, making
cubature integration infeasible.

4.5.4 Limitations

Our main limitation, shared with typical assumptions in production, is to assume
shading can be decoupled from resolving visibility. In several occasions such as small
but strong highlights or shadows in the presence of motion blur, this assumption
is violated and can become noticeable. The consequences of this decoupling have
been analyzed and discussed elsewhere [Cook et al., 1987]. Another limitation is
anti-aliasing: in our approach, every image pixel is associated with a single visibility
sample and a unique depth value (modulo the layers of the LDI). Anti-aliasing can be
applied by later super-sampling, but this remains costly as it increases both memory
requirements and compute time.

While the limitations given above apply to all warping-based approaches, wiping
is an error source unique to our approach. For flow configurations with complex
visibility relations this results in image regions disappearing after occlusions for
single branches of the sample tree. Wiping is rare in practice, not only because of the
sample tree structure, but also because different geometry is placed on different LDI
layers, which in turn are purposefully sorted to reduce the problem.

4.6. Conclusion 65

Our approach has the highest throughput if many very similar views are required.
If the distribution space is not sampled densely (i. e., p ≫ 1), searching becomes
inefficient. Therefore, warping an image into another single image is better done
using other methods.

4.6 Conclusion

In this chapter we have presented an approach to solve the problem of producing
novel views that considers an entire family of images instead of individual single
ones. We have shown that given the forward flow organized in a tree of flows, the
inverse warping can become as simple as looking up a small pixel neighborhood for
each pixel. Planning minimal warping provides a fast and flexible alternative to ray-
tracing or multi-sampling using accumulation buffering, yet with enough flexibility
to support all combinations of distribution effects such as motion blur, depth-of-field,
soft shadows, and spectral shading. In particular, upcoming output devices such as
high-refresh rate displays found in head-mounted displays or light field displays,
require a massive amount of pixels in space and time. Yet, those images are redundant
and almost identical. Minimal warping exploits this redundancy, resulting in flexible,
efficient and high-quality imagery.

67

Chapter 5

Laplacian Kernel Splatting

5.1 Introduction

Depth-of-field (DoF) and motion blur (MB) are a key ingredient to the look and feel of
most cinematic-quality feature films [Goy, 2013]. Reproducing them in synthesized
imagery is a typical and well-understood part of most photo-realistic rendering
systems. When it comes to efficient, interactive or even real-time rendering, current
solutions to DoF and MB typically make several key assumptions that result in
computational efficiency but come at the cost of reduced quality. A typical example
is to assume DoF and MB to be independent, to be able to approximate the space-
time lens transport by a convolution [Potmesil and Chakravarty, 1981] and often
to approximate their reconstruction using Gaussian filtering [Munkberg et al., 2014;
Vaidyanathan et al., 2015; Belcour et al., 2013; Egan et al., 2009; Soler et al., 2009].
In this work, we devise a method to synthesize or reconstruct cinematic quality
motion blur and depth-of-field, while retaining most of the efficiency of typical
approximations.

Input to our method are pixels (Fig. 5.1, a), which we see as light-field samples,
labeled with additional geometric and dynamic information. We can work on pixels
coming both from simple and layered images, as well as from a pinhole camera
(synthesis), or stochastic path-tracing/rasterization (reconstruction). The point spread
function (PSF) of each input pixel can affect a very large image area. Computing this
contribution from each input point to a high number of output pixels is both the key
to high quality, but regrettably also the reason for slow execution speed (Fig. 5.1, b).

Our key idea is to perform the required splatting operations in the Laplacian
domain (Fig. 5.1, c). While the spatial extent affected by the typical PSF can be very
large, it remains compressible, i. e., sparse, in the Laplacian domain (Fig. 5.1, ∆ in b).

�
 �

�

�

Input pixels Dense PSF Sparse PSF Laplacian domain Result

a) b) c) d)100 % 9,3 %

FIGURE 5.1: Computing motion blur and depth-of-field by applying a point spread function (PSF) to
every pixel (a) is computationally costly. We suggest splatting a pre-computed sparse approximation
of the Laplacian of a PSF (b) to the Laplacian of an image (c) that under integration provides the same
result (d). Note the circular bokeh combined with motion blur (1024×1024 pixels, 2 layers, 190 ms,
Nvidia GTX 980Ti at .97 SSIM to a path-traced reference).

68 Chapter 5. Laplacian Kernel Splatting

Ouf-of-focusFocusIn-focus RGB DepthMotion

b) Input imagesa) PSF-sampling c) Image Laplacian splatting d) Poisson solution

M
o
t
io
n

S
lo

w
Fa

st

RGB DepthMotion
RGB DepthMotion

RGB DepthMotion

RGB DepthMotion

S
in

g
le

L
D

I
S

to
ch

a
st

ic (P
re

-c
o

m
p

u
ta

ti
o

n

R
u

n
ti

m
e

e) Result image

R
G

B

D
e

p
th

M
o

tio
n (

.
or

or

or

FIGURE 5.2: Overview of our approach. The pre-computation (a) samples the space of all PSFs into a
sparse representation. At runtime, one of the three types of images we support (b) are treated as lists of
labeled pixels, here shown as three column vectors, the first holding appearance, the second motion
and the third depth. To render, a PSF is splat for each pixel onto layered Laplacian images (c) that are
integrated (d) and composed to produce the final result (e).

Therefore, instead of splatting a dense contribution onto an image, we splat sparse
points we call spreadlets onto the Laplacian of the image, which is finally transformed
into the primal domain (Fig. 5.1, d) using a fast method [Farbman et al., 2011]. We
operate on different models of spaces of all PSFs, depending on depth, motion and
image position. A pre-process jointly optimizes for a sparse representation and a
small reconstruction error of all PSFs in a particular space.

5.2 Overview

Our approach comprises of two steps: a pre-calculation (Fig. 5.2, a) followed by a
runtime step (Fig. 5.2 b–e).

Pre-computation The pre-computation (Fig. 5.2, b and Fig. 5.4) samples the space of
all PSFs according to a specific PSF model. Each PSF is converted into the Laplacian
domain where it is approximated by a sparse set of optimized points. This “spreadlet”
representation is stored on disk.

Input At runtime, input to our method are pixels labeled with shading and lens-
time-etc. coordinates that we interpret as temporal light field samples. Such a sample
captures the radiance emitted from a certain world position at a certain point in time
through a certain lens position. This general notion allows to work on any simple,
layered and stochastic (Fig. 5.2, b) image, produced either using a pinhole (OpenGL)
rasterization, a deep framebuffer [Nalbach et al., 2014], LDI-style [Shade et al., 1998],
using ray-tracing or by stochastic rasterization [Akenine-Möller et al., 2007].

Runtime Actual rendering is performed on (soft) global depth layers [Kraus and
Strengert, 2007] (Fig. 5.2, c and Sec. 5.5). A global depth layer holds the appearance
and transparency of pixels at a specific depth interval, where intervals are typically
smaller close to the camera. Layering is required to capture non-linear occlusion
relations while our splatting performs linear addition within a layer. Composing
all layers provides the final image. For every input pixel, the pre-computed sparse
PSF representation is drawn additively onto one or multiple layers, each holding
the Laplacian of the image to reconstruct. When all pixels were splat, all layers are
efficiently integrated [Farbman et al., 2011], i. e., converted from the Laplacian into
the primal domain (Fig. 5.2, d). Finally, all layers are composed into the result image
(Fig. 5.2, e).

5.3. Background 69

SensorTime

Le
n

s

x
p(t = 0)f (x)

p(t = 1)

Lens

a) b) c)

World point

∫
y

l

FIGURE 5.3: a) The lens-time integration domain and range for a relative sensor location x. At
different time coordinates, different lens coordinates receive a contribution. b) There is one such
function to integrate for every sensor location. c) The sensor-lens-world geometry.

5.3 Background

Here we describe the formalization of DoF and MB into point-spread functions
(Sec. 5.3.1) and derive the concept of differential rasterization (Sec. 5.3.2).

5.3.1 Point-spread Functions

Classic DoF can be described using point-spread functions (PSFs) [Kolb et al., 1995]. In
this work we formalize the combination of DoF and MB using generalized space-time
PSFs (Fig. 5.3). Such a PSF describes the contribution of a constantly light-emitting
3D point moving during a shutter interval T along a path p(t) ∈ T → R3 to every
relative sensor location x. Therefore,

f (x) =
∫

T

∫

L
R(y → l, p(t))dl dt, (5.1)

where, x ∈ R2 is a 2D coordinate relative to y = P(p(0)) + x, the absolute 2D sensor
coordinate using projection P at start time, L is the lens area and R(y → l, p) is a Dirac
that peaks when a ray y → l starting at 2D coordinate y in the sensor plane passing
through 2D lens coordinate l (a two-plane light field parametrization) intersects the
world point p (a “ray-point intersection”).

As we will be dealing with multiple PSFs for different motion, lenses and absolute
sensor locations we define a space of PSFs f (x)(s) subject to a PSF parameter vector
s ∈ Rns , as in

f (x)(s) =
∫

T

∫

L
R(s)(y → l, p(s)(t))dl dt,

so the ray formation R and the motion p depend on the PSF parameter vector s.

5.3.2 Laplacian Rasterization

Our approach heavily relies on the fact that splatting can be performed in the Lapla-
cian domain, i. e.,

splat(f , I) = G(∆(splat(f , I))) = G(splat(∆ f , I)),

where splat(f , I) denotes additive splatting (scattering) of a spatially-varying function
f into an image I and G is Green’s function (Sec. 2.1.2). The second equality holds due
to the commutativity and distributivity of all involved operations. Please note that
the above would also hold if splatting was replaced by convolution [Heckbert, 1986].

70 Chapter 5. Laplacian Kernel Splatting

a) Sample space b) Sample placement c) Sample generation e) Laplacian f) Sparsificationd) Pre-filtering

D
e

p
th

Eccentricity

FIGURE 5.4: The steps of our PSF sampling: a) Definition of the sample space. b) Non-uniform
placement of samples (blue circles). c) Generation of the PSF at each sample. d) Pre-filtering in the
sample space. e) Computing the Laplacian and f) sparsification into a set of points.

We opt for splatting, however, as it delivers higher-quality results for our application
domain.

To understand the relation of MB and DoF to the Laplacian, lets consider the
cost of splatting PSFs onto pixels using different methods in the following three
paragraphs:

Drawing a solid circle area appears to require filling all the, say, na pixels inside
an image with np pixels. Simple drawing equals to evaluating a function f (x) that
is 1 inside the circle and 0 outside. Alternatively, we could draw ∆ f (x) and later
solve for f , leading to the same result. Now, drawing this Laplacian would in general
also cost na drawing operations and additionally np operations to solve a Poisson
problem f = G∆ f using a pyramidal approach [Farbman et al., 2011]. This does not
yet provide any benefit.

Consider drawing the sum of np circles, one for each pixel. This requires na × np

fill operations. Drawing using the Laplacian, still requires 2 × np × na operations,
while classic drawing requires np × na so no immediate benefit here either.

The key insight is that the Laplacian of the typical PSFs found in DoF/MB is very
sparse: Splatting only a sparse approximation comprising of na pixels of the Laplacian,
can result in a very similar reconstructed result. This means that na is much smaller
for ∆ f than na is for f . Our approach builds on this property.

5.4 Pre-calculation: PSF Sampling

Sampling the space of all PSFs comprises of different stages (Fig. 5.4). First, we have
to parametrize the space using a PSF model, such that we have a low-dimensional
effective way to cover it as explained in Sec. 5.4.1. Second, we need to choose
where to place samples, such that it is best represented where it is needed most
(Sec. 5.4.2). Third, computing the PSF at specific sample positions can be challenging
for complex lenses in combination with MB as explained in Sec. 5.4.3. Fourth, pre-
filtering (Sec. 5.4.4) as with any sampling, also in the space of PSFs can prevent
aliasing. Finally, the dense pre-filtered PSF sample is converted into a sparse set of
points (spreadlets) approximating its Laplacian in an optimization step (Sec. 5.4.5).

5.4.1 PSF Model

Our approach allows for different PSF models (Tbl. 5.1) and resulting spaces to
be discussed next in increasing complexity. Some PSFs are monochromatic, others
support chromatic aberration. Coordinates in this space will be denoted as s ∈ S =
Rns .

Some PSF models exhibit a natural rotational symmetry. As the Laplacian and,
consequently, the integration operator G are rotational invariant, we can omit the

5.4. Pre-calculation: PSF Sampling 71

TABLE 5.1: The PSF model zoo.

Name ns Color Smp. β Size Spar.

SIMPLELENS 1 ✗ 100 2.0 1.1 MB 31.3 %
COMBINED 2 ✗ 400 2.0, 1.0 4.2 MB 9.3 %
PHYSICALLENS 2 ✓ 4,000 2.5, 1.2 30.8 MB 2.2 %
VOLUME 1 ✓ 200 1.0 5.3 MB 18.4 %
STYLIZED 1 ✓ 200 1.5 9.0 MB 24.9 %

corresponding angular dimension during sampling. Note that this would not hold
for other (differential) representations and reconstructions such as quad trees [Crow,
1984]. While an omitted sampling dimension significantly reduces memory, symme-
tries are not necessary for our approach to work.

Circular Depth-of-field The SIMPLELENS model is assuming a thin lens [Kolb et al.,
1995]. The result is a one-dimensional space of monochromatic PSFs parametrized by
the scalar circle of confusion (CoC) radius. The PSF is shift-invariant, i. e., points at
the same depth are mapped to the same circle, regardless of the image position.

DoF and MB The COMBINED model adds motion blur to the previous model. It
uses linear motion of constant projected speed and no motion in depth. This supports
arbitrary viewer and object motion as well as deformation. More complex motion is to
be composed from linear segments. This results in a two-dimensional monochromatic
model, with scalar motion length (speed) as an additional parameter.

Physical Lens The PSF shape depends on absolute sensor position in our PHYSICAL-
LENS model. Assuming this spatial layout to be rotation-invariant, we parametrize
using the distance to the sensor center (eccentricity). This resulting space is two-
dimensional: depth and eccentricity. Here, a chromatic PSF becomes important: In a
physical lens model, light paths depend on wavelength and the PSF shows colored
fringes. We use a simple bi-convex spherical lens in all our results.

Scattering Light scattering in participating media can also be described as a PSF
[Premože et al., 2004]. Notably, the shape of the PSF in this case resembles the
Green’s function itself, i. e., it is highly compressible. For our VOLUME model we
implemented volumetric light tracing in a homogeneous medium using Woodcock
tracking and a Henyey-Greenstein (HG) phase function. The parameter of this space
is the distance to the camera and the medium parameters remain fixed. We use a
density of .9 and a HG anisotropy of .8 and RGB albedo of (1, 1, .9).

Stylized Finally, we show how our approach is not limited to any physical model,
but can use any mapping between pixel labels and PSFs. The STYLIZED PSF in our
experiments is a logo with chromatic aberrations, scaled depending on the distance
to the focal plane.

5.4.2 Sample Placement

Our approach achieves an appropriate cover of the PSF space using a power remapping
and a nested grid. Both methods seek to place samples non-uniformly across the
sample space, while retaining constant access time. For our PSF models it proved
beneficial to allocate more samples to parameter ranges where artifacts due to quanti-
zation and pre-filtering (Sec. 5.4.4) would be most objectionable. This is typically the

72 Chapter 5. Laplacian Kernel Splatting

c)b)

p(s)β

d)

g1

g-1

0

1

2

3

0 1 2 3

a)

0 9 10 11 12 13 14 15 16

1

2

3

4

5

6

7

8

17 21 22 23

18

19

20

24 26

25
27

FIGURE 5.5: Nested grid: a) Physical parameter grid. b) Its power remapping. c) Our nested grid
topology. d) List of cells. (Please see text in Sec. 5.4.2.)

case for PSFs where one or multiple coordinates are small, e. g., the slow-motion or
near-focus PSFs in COMBINED.

Power Remapping The power remapping changes the physical PSF coordinates
(Fig. 5.5, a) such that they cover the range from 0 to 1 non-uniformly by using a
component-wise exponentiation p(s) = sβ with a PSF model-specific vector β listed
in Tbl. 5.1 as seen in Fig. 5.5, b. For β > 1 this results in a higher resolution for small
coordinates and a lower resolution for large coordinates.

Nested Grid A straight-forward solution is to sample in a regular grid after the
power-remapping. While a regular grid can be accessed in constant time it requires
exponential pre-compute time and storage. Note that the power remapping does not
change this property. We observe that our PSF models allow for a dramatically re-
duced resolution for large coordinates to such an extent that we chose to abandon the
grid topology. Therefore, we suggest a nested grid, reducing the storage to polynomial
time while retaining constant access time (Fig. 5.5, c).

We achieve this by increasing the length of the sample cell edges linearly with
increasing coordinates for all required dimensions. This naturally results in a nested
structure with different resolution levels (colors and large numbers in Fig. 5.5, c).
We note that for the 2D 9 × 9 example shown in Fig. 5.5 a regular grid would have
81 entries, while our nested grid requires 28 entries. To work with such grids, we
require two functions: a mapping g(s) ∈ Rns → N0 from a continuous coordinate to
an index and an inverse mapping g−1(i) ∈ N0 → Rns from an index to a coordinate.
The forward map is required at runtime, the backward one at the pre-computation
step.

The backward mapping g−1(i) is constructed incrementally by placing boxes until
a level is filled, continuing until the space is filled. Note that some of those boxes are
not cubic, as a cube would fall outside the space on such a lattice. It is consequently
stored as a list of boxes (Fig. 5.5, d).

The forward mapping g(s) is performed in two steps: First, we compute the
minimum coordinate smin = min(s1, . . . , sns). By construction of the nested grid,
this value determines the resolution level. Since every level starts at a triangular
number (triangles in Fig. 5.5, c), the level index l equals the triangular root of smin,
i. e., l = ⌊(√8smin + 1 − 1)/2⌋. Second, the final cell index i is the sum i = i1 + i2 of
the inter-level index and the intra-level index. The inter-level index i1 is the sum of all
indices before the current level l and we store this for all levels in a small table (indices
of the boxes on the diagonal in Fig. 5.5, c). The intra-level index i2 is computed just
as in a regular grid within the level.

5.4. Pre-calculation: PSF Sampling 73

5.4.3 Sample Generation

Sampling f (si) for each si means to evaluate many (for each pixel) complex integrals
as defined in Eq. 5.1. The value of the function is a 2D RGB image, in our case
with a resolution of 512 pixels square. While a closed-form solution might exist for
special models, such as SIMPLELENS, the task becomes harder for motion, forming
capsule-shaped intensity-varying profiles as well as the famous cat eye-shaped flares.
To compute the PSF of a complex lens system, including chromatic aberration is a
research question on its own [Hullin et al., 2011]. The very general solution is light
tracing [Dutré et al., 1993], which we opt to use, as it scales to complex lens systems
including time-sampling. We typically use 700 million rays per PSF in a specialized
GPU implementation. The high number of rays is required as differentiation in
later steps will amplify any remaining variance. Note that our run-time efficiency
is independent of the compute time of the PSF, only the sparsity in the Laplacian
domain is relevant.

5.4.4 Pre-filtering

One sample si is a representative for an entire hyper-volume Si in the space of PSFs.
As we will use a single discrete pre-computed PSF sample that is nearest to the PSF
required at runtime, a PSF sample should represent all PSFs that are closer to it than
to any other. Failure to do so would result in aliasing or require a prohibitively large
number of PSF samples. As a solution we suggest to pre-filter the PSF as in

f̄ (x)(si) =
∫

N (si)

∫

T

∫

L
r(||si − s||)R(s)(y → l, p(s)(t))dl dt ds ,

for all samples in its neighborhood N (si), where r(d) is a reconstruction kernel such
as a Gaussian. This can be achieved by just another outer integration over the hyper-
volume of the neighborhood in PSF space in the light tracing MC loop evaluating
Eq. 5.1 above. Instead of tracing a particle through always the same PSF f (si), the PSF
parameters are varied as well to fall into N (si). For SIMPLELENS, instead of using a
single discrete confusion, a range of confusions is used, etc. The neighborhood N (si)
is a simple-to-filter axis-aligned box with varying extent that can be computed from
the inverse sample density used in Sec. 5.4.2.

Effectively, pre-filtering blurs the PSF spatially, trading aliasing against blur. As a
typical PSF is spatially band-limited as well – no CoC in a real camera system is fully
sharp – this appears plausible.

5.4.5 Sparsification

Instead of storing each PSF f̄ (si), which is dense, we store its sparse Laplacian ∆ f̄ (si).
This helps representing entire areas of the dense PSF by sparse isolated peaks we call
“spreadlets”. We therefore would like to find a set of np,i points with 2D position xi,j
and values ∆ f̄i,j that minimizes the reconstruction cost

c(np,i, xi, ∆ f̄i| f) =
∫

(0,1)2
| f (x)

︸︷︷︸
Signal

−G

np,i

∑
j=0

∆ f̄i,j1(xi, x)

︸ ︷︷ ︸
Reconstruction

|dx,

in respect to a PSF f , where 1(x0, x1) is an indicator function that is one if x0 = x1
and zero otherwise.

74 Chapter 5. Laplacian Kernel Splatting

Laplacian

image filter

Dart

throwing

Lloyd

relaxation

Simulated

annealing

Input

PSF

FIGURE 5.6: Our four steps of PSF sparsification (conceptual illustration).

Minimizing c poses several challenges: i) The cost landscape is highly non-convex,
since every spreadlet adds one local extremum to it. ii) The reconstruction operator G
has global support, resulting in a difficult condition. iii) The dimensionality of the
problem is variable, since the point count np,i is unknown. iv) We can splat only to
discrete pixel coordinates, making the optimization a mixed problem where the xi

are integer and ∆ f̄i are continuous.
Our attempts to partially (i. e., with a fixed np,i and continuous xi) optimize via

gradient descent or nonlinear conjugate gradient failed. However, we found the
following practical procedure to minimize the cost in several steps (Fig. 5.6).

First, we apply a 3 × 3 Laplacian filter to f̄ , producing ∆ f̄ . This transformation
into our target domain maps constant and linear regions to zero.

Second, we create a 2D Poisson disk pattern {xi,0, . . . , xi,np,i} with |∆ f̄ | as an impor-
tance function using a dart-throwing algorithm. We stop the placement after 10, 000
failed random attempts. This step initializes the sparse spreadlet representation we
seek to obtain, by placing samples according to the local complexity of the PSF and at
the same time determining the first free variable np,i of our cost function.

To improve the spatial arrangement, we run 50 iterations of Lloyd relaxation
[Lloyd, 1982], again using |∆ f̄ | for weighting.

Next, we sum the Laplacian PSF values in the Voronoi cell of every xi,j and store
it as a value ∆ f̄ (xi,j). This way, each Voronoi cell of the Laplacian is collapsed into
a single pixel. This significantly increases sparsity, especially for areas with large
cells. As the cell area is inversely proportional to the Laplacian PSF value, the values
∆ f̄ (xi,j) are very similar for different j, i. e., have a similar contribution to the final
image.

Finally, we apply 400 steps of simulated annealing, where in each iteration, we
first pick a fraction (1 %) of the integer positions and change them by at most one
pixel, and second, re-assign the values ∆ f̄ (xi,j) according to the new Voronoi cells as
described above. When two points happen to fall on the same integer grid coordinate,
they can be merged, further increasing sparsity.

5.5 Runtime: PSF Splatting

The representation of all possible PSFs acquired in the previous section can now be
used to efficiently compute new images with distribution effects. The procedure is
similar to a trivial code that iterates all pixels and densely draws their PSFs in linear
time [Lee et al., 2008]. Instead, we store (Sec. 5.5.1) and splat the sparse Laplacians
of the PSFs (Sec. 5.5.2) of all pixels, followed by a final transform of the entire image
from the Laplacian to the primal domain (Sec. 5.5.3).

5.5. Runtime: PSF Splatting 75

5.5.1 Sample Storage

Each sample si has a varying number of points np,i. We concatenate all points xi,j of
all samples into a large sequence that is stored as a VBO P. The same is done for all
function values ∆ f̄i,j stored in a VBO V. The typical size of such a representation is
several mega-bytes (Tbl. 5.1). The number of points changes for every sample: An
in-focus sample requires fewer points than a moving lens flare. To efficiently handle
a sequence of unstructured lists, we first pre-compute the vector of cumulative sums
nc,i of all points in all samples with indices smaller than i and store it into a vector C.

5.5.2 Sample Splatting

Splatting happens for all input pixels in all layers independently and in parallel. We
will therefore describe it for a single pixel at absolute sensor position y here. Let s be
the PSF coordinate of that pixel. We now pick the sample si that is closest to s and
draw all points to positions y + xi with value ∆ f̄ (xi).

GPU Implementation Splatting is implemented in a compute shader that executes
one thread for every pixel. Each thread fetches s for each pixel and computes the
index i of the nearest PSF sample. After compensating for the non-linearities, the
nested grid structure of our space (Sec. 5.4.2) makes this a simple and efficient O(1)
operation. If the PSF model employs symmetries, they have to be applied at this
step: e. g., for motion blur, the spreadlets are pre-computed for motion in a certain
reference direction and now have to be rotated to align with a specific direction of
motion. Next the spreadlet is multiplied by the pixel color and drawn in a ❢♦r loop
over all points using ❛t♦♠✐❝❋❧♦❛t❆❞❞ into four ❘✸✷❋ textures.

Boundary The image has to be padded by a boundary large enough to accommo-
date for the largest PSF used. It is not sufficient to simply cut the kernel: consider
a simple 1D example of a hat function that spans the image boundary. Depending
on the PSF, that can include a translational part, to sample a certain output sensor
size, the size of a virtual sensor that generates the input pixels might need to be
substantially bigger or can be much smaller than the output sensor. The same applies
for sampling considerations if the PSF is magnifying. Also note that the boundary
only consumes memory, no splatting time and extra amount of integration time linear
in its size.

Layering Details Since our approach operates on labeled pixel lists (Fig. 5.2, b),
we naturally support (soft) global depth layers, LDIs [Shade et al., 1998], or deep
framebuffers [Nalbach et al., 2014] as input formats. However, we need to splat into
global depth layers for being able to properly pre-integrate per-layer radiance and
opacity [Vaidyanathan et al., 2015]. Splatting is done independently for each output
layer. If soft layering is desired [Kraus and Strengert, 2007], splats have to be drawn
into more than one layer and weighted. In any case, we apply the re-weighting as
suggested by Lee et al. [2008] when compositing the layers back-to-front.

In all our experiments we use nl global input and output layers, where nl = 1 can
be useful in some conditions. We bin them in units of constant parallax [Lee et al.,
2009; Munkberg et al., 2014].

Note that layering only amplifies memory and merely shifts around the work: In
particular the dominant splatting cost is not multiplied by nl as a pixel is typically

76 Chapter 5. Laplacian Kernel Splatting

a) b) c) d) e)

FIGURE 5.7: Illustration of PSF splatting in a stochastic image with DoF: a) Stochastic image of a
single bright point under defocus. b) A single PSF splat (yellow) centered around a single pixel at y.
c) Overlay of all PSFs. d) The same single splat, but now centered around y′. e) Overlay of all PSFs.

only contained in one layer (or two layers if soft) and empty pixels will be culled very
early on.

Stochastic Frame-buffers Special considerations are to be taken if the framebuffer
is stochastic (Fig. 5.7, a). An example is DoF: a surface projecting to the sensor position
y′ at l = t = 0 will move to a new sensor position y (yellow point in Fig. 5.7, b), as
they are distributed across the entire circle of confusion.

Just running the above procedure on this data would mean to place another circle
of confusion on an already distributed pixel i. e., to apply the PSF twice (Fig. 5.7, c).
As every pixel has a unique distribution coordinate si, we can re-compute its original
absolute sensor position y′, and splat the PSF around y′ instead of y. Conceptually,
for the DoF example, this realigns the PSF such that it is drawn around the center of
the CoC it belongs to, not around the pixel itself that is part of the CoC (Fig. 5.7, d–e).
Consequently, non-stochastic input is a special case of stochastic input with y = y′.

5.5.3 Integration

After all points for all pixels were drawn, the image is transformed from the Laplacian
into the primary domain. This is efficiently done using convolutional pyramids
[Farbman et al., 2011] which takes 6 ms for a 1024×1024 image.

5.5.4 Fast Track

In practice, some PSFs can have less sparsity than others. The main speed-up we
achieve is for large PSFs that are sparse, which also implies that splatting small
PSFs using our sparsification scheme is not effective. Fortunately, our approach can
combine both strategies seamlessly. To this end, we maintain two images per layer: A
Laplacian image to which sparse points are splatted and a direct one. The decision
to draw sparse or dense is made simply on the number of points. Both images are
added after the Laplacian image was integrated. This strategy is used in all results
shown in this chapter and typically amounts to about 9% of the PSFs.

5.6 Results and Discussion

In this section we show qualitative (Sec. 5.6.1), quantitative (Sec. 5.6.2) results of our
approach and an analysis of its properties (Sec. 5.6.3). We compare OUR approach to
different alternatives:

A SPLATTING approach draws the dense ground-truth PSF. This is an upper
bound on what we can achieve, as our Laplacians are just an approximation. We
would hope to achieve similar quality, just at a much higher speed.

5.6. Results and Discussion 77

Our

Ref.

Splat

Filter

FIGURE 5.8: Results of our (large) as well as other (insets) synthesis approaches on different scenes.
(1024×1024 pixels).

The FILTERING method uses the same space of PSFs we use, but instead of
splatting the PSF, we filter using the PSF. Note that this is an upper bound on what
any filtering-based method can achieve. We expect to achieve both higher quality
and speed. We do not apply filtering to PHYSICALLENS, as neither the pre-computed
dense PSF images fit into memory, nor is it feasible to compute them for every pixel
on the fly.

Many methods to remove noise, in particular the noise specific to path-traced
images, exist [McCool, 1999; Kontkanen et al., 2006; Sen and Darabi, 2012; Egan
et al., 2009; Soler et al., 2009; Belcour et al., 2013; Munkberg et al., 2014]. As all these
methods have different trade-offs and assumptions, we here opt for BM3D, a general
state-of-the-art image denoiser [Dabov et al., 2006] that has been used to denoise
path-traced images before [Kalantari and Sen, 2013].

The REFERENCE method uses path tracing based on a reasonably implemented
GPU ray-tracer with an SAH-build BVH where nodes are extended to bound space-
time primitives.

5.6.1 Qualitative Results

Qualitative results of synthesis and reconstruction are shown in Fig. 5.8 and Fig. 5.9.

Synthesis In Fig. 5.8 we see in “Whirl” how OUR method produces detailed PSFs
that add cinematic quality to the shot, with circular bokeh and long motion trails. MB
and DoF arising from the complex motion patterns are faithfully synthesized, while
the colorful specular highlights in “Coins” are transformed into overlapping, yet
distinct circles of confusion. The rotational motion in “Gears”, here in combination
with bright specular highlights under defocus, gives rise to appealing high-contrast
image regions entirely defined by the PSFs produced. The “Rain” scene rendered
with the physical model shows the expected complex cat-eye shapes in image corners,
where the CoC is deformed. Chromatic aberration is reproduced as well. The
same figure shows the comparison to alternative methods as insets. We see that the

78 Chapter 5. Laplacian Kernel Splatting

Our

Ref.

Splat

BM3D

Input

FIGURE 5.9: Results of our (large) as well as other (insets) reconstruction approaches on different
scenes. (1024×1024 pixels, 1spp path traced input).

Stylized PSF Participating media PSF

FIGURE 5.10: Results for the STYLIZED (left) and VOLUME (right) PSF models.

FILTERING method looks quite different, while the method based on SPLATTING is
very similar to OURS and the REFERENCE.

Results for the STYLIZED and VOLUME PSF models are shown in Fig. 5.10. We
see how stylization provides a non-physical effect where the PSFs take the shape of a
logo, while for the participating media PSF the colors shift according to the model. In
addition, a distinct blur can be observed, in particular for locations in the background,
as one would expect from scattered light.

Reconstruction In Fig. 5.9 we use our method for reconstructing from stochastic
input. While the input already contains MB and DoF, our method preserves it, yet
removes the noise. In several cases, our method reconstructs features that are almost
invisible in the input to the naked eye, such as in “Rain”. Please note how our carefully
aligned high-frequency PSFs are able to reconstruct subtle semi-transparencies.

5.6. Results and Discussion 79

5.6.2 Quantitative Results

We provide quantitative results in terms of comparison to a reference and alternative
approaches. Quality is measured in SSIM (larger is better) and speed in milliseconds.
All comparisons are done in resolution 1024×1024 on an Intel Xeon E5-1607 CPU in
combination with a Nvidia Geforce GTX 980Ti GPU. The pre-computation requires
roughly 20 seconds for one PSF. Numerical results are stated in Tbl. 5.2 for synthesis
and in Tbl. 5.3 for reconstruction. We see our approach consistently has the highest
speed and provides images of high similarity to the reference. Splatting has a similar
error, but is typically slower by almost one order of magnitude, as our representation
is typically one order of magnitude more sparse.

TABLE 5.2: Numerical results for Fig. 5.8.

OUR FILTER SPLAT REF.
Model Time Err. Time Err. Time Err. Time

Whirl Comb. 88.0 ms .94 299.6 ms .81 722.8 ms .94 592 s
Coins Comb. 163.0 ms .96 368.1 ms .92 1930.9 ms .96 232 s
Rain Phy. 126.3 ms .90 — — 7170.4 ms .88 >1000 s
Gear Comb. 65.9 ms .94 186.2 ms .87 783.8 ms .96 >1000 s

TABLE 5.3: Numerical results for Fig. 5.9.

OUR BM3D SPLAT REF.
Model Time Err. Err. Time Err. Time

Whirl Comb. 75.8 ms .95 .93 605.3 ms .95 346 s
Coins Comb. 496.4 ms .94 .91 2652.3 ms .94 366 s
Rain Comb. 499.5 ms .96 .89 2276.2 ms .96 >1000 s
Gear Comb. 1699.1 ms .91 .91 3495.8 ms .92 >1000 s

5.6.3 Analysis

Here we analyze how our approach and variants thereof perform under different
conditions. As we already established we can generate images similar to a reference,
provided we have a suitable (sparse and low-error) PSF representation, we perform
analysis purely on the space of PSFs images (the test set) instead of complex images.
Three qualities are important: i) the sparsity in percentage (which translates into
computational efficiency, up to a small additive constant overhead for integration),
ii) the similarity measured between PSFs in terms of SSIM, and finally, iii) a good
efficiency ratio between the two, measured in similarity-per-sparsity.

Sparsity Our representation achieves an average sparsity of 9.3 % (Fig. 5.11, a) while
retaining an average similarity of .97, which results in an efficiency if 10.75. We further
look into the distribution of sparsity (Fig. 5.11, b) and similarity (Fig. 5.11, c). The
sparsity distribution is peaked around very sparse PSFs and most solutions have a
high similarity. Only very few PSFs have a low similarity.

Laplacian Domain We have chosen to use the Laplacian domain while other repre-
sentations could also achieve the sparsification required. A typical sparse coding that
is efficient to produce and generate is wavelets, i. e., a quad tree [Crow, 1984] (QT). To
this end we convert the test set into the QT domain. In Fig. 5.11, a, adjusting QT for a

80 Chapter 5. Laplacian Kernel Splatting

Sparsity

S
im

il
a

ri
ty

5% 12%

.97

.95

Sparsity

Fr
e

q
u

e
n

c
y

QT

Our

d)

10% 100%

c)

9.3%

S
p

a
rs

it
y

a)

9.4% .97

S
im

il
a

ri
ty

.89

b)

Similarity

Fr
e

q
u

e
n

c
y

0-.8 .98-1

9.3%

.966

.96

4.3%

 .953

12.0%

.966

Samples Sparsity

S
im

il
a

ri
ty

S
im

il
a

ri
ty

200 900

.8

.6

2% 32%

e) f)

.7

.8-.82

400

.67

175

 .56

900

.78

.5 .4

1

.8

.6
Gauss

DoF
MB+DoF

S
M
L

FIGURE 5.11: Analysis for COMBINED: a) Mean sparsity and similarity for our approach and a
quad tree (QT). b, c) Sparsity resp. similarity histograms for Laplacian and QT. Frequency counts
how often a PSF with this property occurs. d) Relation of sparsity and similarity for a 0.5× and a
2×-sparsity operational point. e) Relation of sample count and similarity for the same operational
points. f) Relation of sparsity (log. scale) and similarity for differently-sized (S, M, L) PSFs.

similar sparsity, we find a lower similarity of .89, providing an inferior efficiency of
9.67. A distribution of sparsity and similarity is seen in Fig. 5.11, b and c. We see that
the sparsity is not as peaked for very sparse solutions while at the same time, many
more solutions are of low similarity. Note that a QT is not rotation-invariant, leading
to an order of magnitude more memory requirement. This indicates the Laplacian is
a good representation for PSF sparsification in terms of memory and speed.

Spreadlet Count We have chosen two other operational points of our approach in
Fig. 5.11, d where the average sparsity is roughly half and twice as large as the one
we suggest to use. We observe that quality saturates at a very high similarity to a
reference, indicating that sparsity can be used to control quality.

Sample Count We instrument the relation of PSF sample count and average simi-
larity between the closest sampled PSF and the ground-truth PSF at 1,000 random
coordinates in Fig. 5.11, e. We see that increasing the number of samples increases
similarity. This is because pre-filtering introduces blur. In practice, the PSF is not
applied to individual pixels, but to groups of pixels which also results in blurring,
resulting in the good end-image similarity we observe.

Approximation Quality Our approach builds on the observation that a sparse
approximation of the Laplacian of certain PSFs is feasible. To better understand the
approximation behavior of our sparsification scheme we analyze the reconstruction
quality for different PSF types of different sizes (S/M/L) with varying sparsity
in Fig. 5.11, f. We compare isotropic Gaussian functions (σ = 25/40/55 px) with
our DoF CoCs (r = 25/50/100 px) and capsule-shaped motion-blurred CoCs (r =
50/50/100 px, l = 50/128/128 px). We observe that the reconstruction quality for
the typical PSFs we target increases with spatial extent, while the opposite can be
found for corresponding Gaussians. This can be attributed to the relatively small
total variation of our large-scale target PSFs, allowing a representation by a small set
of Laplacian peaks. This is in contrast to the uniform smoothness of Gaussians. For

5.7. Conclusion 81

Without pre-filter With pre-filter Reference

FIGURE 5.12: Comparing the effect of pre-filtering for the COMBINED model.

the binary DoF kernels, which exhibit natural sparsity in the Laplacian domain, the
reconstruction quality saturates at 100% once enough spreadlets are allocated.

Optimization Here we report results of ablational studies regarding our optimiza-
tion procedure. The mean L1 error across our PSF corpus relative to dart throwing
only (100%) is 96.7% for dart throwing and Lloyd relaxation, 87.1% for dart throwing
and simulated annealing, and 86.5% for the full procedure. While this is a modest
mean improvement, it removes outliers that are visually disturbing.

5.6.4 Limitations

While our approach is impaired by typical limitations inherent to image-based syn-
thesis and reconstruction, such as layer quantization and the assumption of diffuse
reflectance, we discuss three limitations and artifacts unique to our approach in the
following paragraphs.

Pre-filtering The effect of pre-filtering for the COMBINED model is studied in
Fig. 5.12. Without pre-filtering, we see discontinuity errors. With pre-filtering the
aliasing is converted into blur, a less suspicious artifact when comparing to the
reference.

Spreadlet Undersampling Occasionally, for PSFs with small spatial extent and high
frequencies, the dart throwing step of our optimization procedure fails to allocate
enough spreadlets. This results in blotchy artifacts after reconstruction, as can be
observed in the third main column of Fig. 5.8.

Curse of Dimensionality Our approach requires full sample coverage of the PSF
spaces it operates on. Even though the sample count is reduced by utilizing our
nested grid structure and by exploiting rotational symmetries, higher-dimensional
PSF models, like a physical lens in combination with a higher-order motion model,
would require a prohibitive amount of pre-computation.

5.7 Conclusion

We have described a method to achieve interactive performance when synthesizing
and reconstructing combinations of DoF and MB. The key observation of this chapter
is that many PSFs are sparse in the Laplacian domain. Our method gains its efficiency
by computing a sparse approximation of a multitude of PSFs in a pre-process, which
enables cinematic-quality distribution effects with a run-time performance that is an
order of magnitude faster than previous methods.

83

Chapter 6

Perceptual Real-time 2D-to-3D
Conversion Using Cue Fusion

6.1 Introduction

The majority of images and videos available is 2D and automatic conversion to 3D
is a long-standing challenge [Zhang et al., 2011]. For applications such as view
synthesis, for surveillance, autonomous driving, human body tracking, relighting or
fabrication, accurate physical depth is mandatory, and obviously binocular disparity
can be computed from such data, resulting in a perfect stereo image pair. However,
for 2D-to-3D stereo conversion, such physical depth is not required. Instead, we seek
to compute perceptually plausible disparity in this work. It differs from physical
depth by three properties. First, the absolute scale of disparity is not relevant, and
any reasonable smooth remapping [Lang et al., 2010; Didyk et al., 2012] is perceived
equally plausible and may even be preferred in terms of viewing comfort and realism.
Second, the natural statistics of depth and luminance indicate that depth is typically
spatially smooth, except at luminance discontinuities [Yang and Purves, 2003; Merkle
et al., 2009]. Therefore, not reproducing disparity details can be acceptable and is
often not even perceived, except at luminance edges [Kane et al., 2014]. Third, the
temporal perception of disparity allows for a temporally coarse solution, as fine
temporal variations of disparity are not perceivable [Howard and Rogers, 2012; Kane
et al., 2014]. Consequently, as long as the error is 2D-motion compensated, depth
from one point in time can be used to replace depth at a different, nearby point in
time.

Our method is modular (Sec. 6.2) and based on priors learned in a pre-process
(Sec. 6.3) combined with stereo cues extracted from 2D images or videos at runtime
(Sec. 6.4). Both priors and cues are represented as normal distributions allowing
to fuse a plausible disparity map with high spatial and temporal resolution in real-
time (Sec. 6.5). Image-based rendering produces a stereo video stream from this
map (Sec. 6.6). In Sec. 6.7 we validate our notion of perceptually plausible disparity
and discuss our results. We find that our system can perform 2D-to-3D conversion
at ca. 35 Hz for HD video and compares favorable to off-line methods in terms of
different error metrics as well as user ratings. In summary, our contributions are (i)
a real-time 2D-to-3D conversion system based on the fusion of learned priors and
depth cues into a coherent disparity estimate, (ii) an analysis of the importance of
different depth cues in different scenes based on estimated confidence, and (iii) a
perceptual analysis of disparity plausibility, including spatial and temporal sampling
requirements for perceptual disparity processing tasks.

84 Chapter 6. Perceptual Real-time 2D-to-3D Conversion Using Cue Fusion

T
ra

in
in

g
 d

a
ta

Pre-process Runtime

In
p

u
t

2
D

 v
id

e
o

P
ri

o
rs C
u

e
 e

x
tr

a
ct

io
n

S
te

re
o

 in
fe

re
n

ce

O
u

tp
u

t
 s

te
re

o
 v

id
e

o

C
la

ss
s

1
C

la
ss

s
2

C
la

ss
s

1
C

la
ss

s
2

...

...

...

...

...

... ...

... ...

O
p

ti
ca

l fl
o

w

Classification

Flow

DisparityDisparity Conf.

T
im

e
 t

T
im

e
 t
+

1

Conf.

RGB Space

Disparity

Cue 1
Disparity Conf.

Cue 2

Cue

Near Far

Low High

Confidence

Time

Disparity

Confidence

Disparity Conf.
Cue 3

Weight

Disparity

p
0
(d|x,a) β

1,1

β
1,2

β
2,1

β
2,2

p
0
(d|x, a)

σ1
(x)-2μ1(x)

σ0
(x)-2μ0(x)

σ2
(x)-2μ2(x) σ3

(x)-2μ3(x)

Flow conf.

FIGURE 6.1: Overview of our approach (from left to right) as described in Sec. 6.2. The grey coding
used is annotated in the top right.

6.2 Overview

An overview of our approach is shown in Fig. 6.1. It has two main parts: a pre-process
(Sec. 6.3) to extract disparity priors (Fig. 6.1, left) and a runtime component (Fig. 6.1,
right). While the pre-process uses many example images and requires considerable
time, the runtime components execute in real time.

At runtime, first disparity and disparity confidence maps are extracted from
monocular images (Sec. 6.4). This is the most computationally intensive part of our
pipeline and implemented as parallel algorithms to require only a few milliseconds
each. We support a flexible combination of both static cues (defocus, aerial perspec-
tive, vanishing points and occlusions) and dynamic cues (depth-from-motion). Each
cue alone often has a low confidence in many areas and might contradict other cues.
The cue evidence is then fused into plausible disparity maps (Sec. 6.5) using a robust
maximum a posteriori (MAP) estimate [Knill and Richards, 1996]. This fusion hap-
pens again in real time, producing results that are smooth in time and space, except
at luminance edges. Finally, the monocular input image is converted into a stereo
image pair obeying the disparity gradient limit (Sec. 6.6).

We will use a simplified disparity space ranging from 0 (close, depicted as black)
to 1 (far, shown as white). As our goal is producing plausible disparity, we choose
not to work in physical units like, e. g., the difference of vergence angles [Howard
and Rogers, 2012] or pixel disparities [Szeliski, 2010]. Our perceptually plausible
disparities arise instead from a smooth and monotonic remapping of physical dis-
parities and are inspired by the way depth maps for manual stereoscopic conversion
are painted. The perceptual effect of monotonic remappings of disparity is analysed
in Sec. 6.7.2. The resulting disparity values will later be remapped to a comfortable
range depending on the reproduction device.

6.3 Pre-processing

In a pre-process we learn prior information about disparity for certain classes of
images and how to detect those classes.

6.3.1 Disparity Priors

Priors model what is known about disparity in general without considering any
specific image. This information is acquired from example depth images, validated
and calibrated, and finally fit to a conditional distribution.

6.3. Pre-processing 85

a) b) c)

FIGURE 6.2: Example disparity maps for the scene class “street”. (a)
Appearance. (b) Disparity from sensor. (c) Disparity from human
annotation.

A disparity prior is the probability distribution of disparity p0(d). For efficient
storage and computation, the probability distribution p0(d) = N (d|µ0, σ0) is mod-
eled as a normal distribution N of a certain mean µ0, standard deviation σ0, and
variance σ2

0 in this work. Furthermore, our priors p0(d|c, x, a) are conditioned on three
parameters: the scene class c (the depth distribution in “street” is different from
“open countries”), the location x ∈ R2 inside the image (the upper areas are more
likely to be distant) and the appearance (RGB color) a ∈ R3 (blue in the top of a
forest image is more likely distant than green). For final cue fusion, scene class, image
location and appearance are known and unconditioned priors will be used. Formally,
the conditioned prior is defined as two 6D maps containing mean disparity µ̄0(c, x, a)
and the confidence of disparity σ̄−2

0 (c, x, a). A high-variance value is found for a wide
and unreliable distribution, while a high-confidence value σ̄−2

0 indicates a reliable
estimate.

We use 10 representative scene classes consisting of about 40 example images each.
Disparity maps were acquired both by sensors and by human annotation. Sensor-
acquired classes are “street” and “indoor”. For all other classes (“close-up”, “coast”,
“forest”, “inside city”, “mountain”, “open country”, “portrait”, “tall buildings”),
depth maps were painted manually. Annotation was done in parts by 2D-to-3D
conversion professionals, and experienced users of image manipulation software.
Images have a resolution of ca. 100 k pixels.

To compare human annotation performance to physical measurements, additional
manual depth map painting was repeated for classes where sensor measurements are
available by participants naïve with respect to the purpose of the procedure. A linear
fit from painted depth x to physical vergence angles y with y = .74 x − .03 has an
error of adjusted R2 = .40, indicating humans do a fair job when painting vergence
compared to a sensor (Fig. 6.2).

Priors are extracted from example data independently for each class (see examples
in Fig. 6.3). Each prior is represented as a 5D regular grid where the spatial dimension
is discretized into 62×38 and the color dimension into 3×3×3 bins. Normalized image
coordinates between 0 and 1 are used for the spatial component and YCrCb color
coordinates for the color component. Consequently, our prior contains nb = 63 612
bins, with coordinates denoted as bi ∈ R5. The 2D positions and 3D colors of the
ns input pixels from all input images from that class are concatenated into a set of
5D samples sj ∈ R5, where each sample is labeled with its disparity dj. Note that
the number of bins is much smaller than the number of samples, nb ≪ ns (Fig. 6.4).
Prior mean and confidence are each computed independently for all grid cells in two
consecutive passes. In the first pass, the prior mean is computed as

µ̄0,i =
∑

ns
j=1 wijdj

∑
ns
j=1 wij

where wij = αiψ(sj, bi) (6.1)

86 Chapter 6. Perceptual Real-time 2D-to-3D Conversion Using Cue Fusion

Fo
re

st
O

p
e

n
 C

o
u

n
tr

y
P

o
rt

ra
it

S
tr

e
e

t

FIGURE 6.3: Mean, variance, weight and confidence (columns) at different colors (tiles) for priors of
different classes (rows). For “forest”, green central pixels have a medium depth. For “open country”,
brown and green lower pixels have a nearby depth. For “portrait”, skin-colored central pixels are more
nearby.

A
p
p
e
a
ra
n
ce

Location0 1

1

FIGURE 6.4: A schematic of our prior extraction procedure with a 1D location and appearance
domain. The samples sj (blue dots) stem from the example images. The sparse bins bi (orange
circles) constitute the actual prior data (µ̄0,i and σ̄−2

0,i) to be determined. This is done by calculating

the Gaussian weight ψ(s, b) for each possible sample/bin combination (shown as a radial gradient
for the highlighted bin). To avoid a boundary bias (hatched) a correction αi has to be determined for
each bin.

6.4. Depth Cues 87

and ψ(s, b) = exp
(
−(s − b)TA(s − b)

)
is a Gaussian kernel with a diagonal preci-

sion matrix A. For all results in this chapter, the empirically chosen matrix entries are
A11 = A22 = 75 for the spatial and A33 = A44 = A55 = 40 for the appearance term.
The normalization αi for bin i is required because the 5D population can be highly
non-uniform, and we use Gaussian filters of infinite support instead of compact (e. g.,
Epanechnikov) kernels. At the same time, our number of bins introduces a boundary
bias for bins closer to the surface of the space-appearance cube which would receive
a lower total weight compared to other pixels. To compensate for this effect, we
compute a correction

αi =

(∫

(0,1)5
ψ(s, bi)ds

)−1

of each 5D bin using Monte Carlo integration and normalize the result of each bin by
this value. In the next pass, prior per-bin variance and weight

σ2
i =

∑
ns
j=1 wij(µ̄0,i − dj)

2

∑
ns
j=1 wij −

∑
ns
j=1 w2

ij

∑
ns
j=1 wij

and ŵi =
∑

ns
j=1 wij

∑
nb
i=1 ∑

ns
j=1 wij

are computed. The final prior confidence is

σ̄−2
0,i =

ŵi

σ2
i

. (6.2)

For the confidence σ̄−2
0,i of the prior to be high, the variance σ2

i has to be low
(agreement of samples to the mean) and the weight ŵi has to be high (many samples
similar to this bin). This combination prevents bins with a low number of samples to
have a high confidence just because their estimate of variance is not stable.

6.3.2 Scene Classification

Priors depend on the scene class c which is found from the monocular input RGB
image. To this end, an image classifier is trained from example images that were
manually labeled by their scene class. To meet our real-time requirements at test time
and following ideas from Torralba [2009], the image downscaled to 8 × 8 pixels is
used as a feature vector. A linear Support Vector Machine is trained using gradient
descent to separate each class from the other classes (one-versus-one). At test time,
we count the number of wins for each class over the other classes and pick the class c
with the largest number of wins.

6.4 Depth Cues

We model the i-th depth cue as a conditional probability distribution pi(d|x) of
disparity d given a position x. This distribution is described by a spatially-varying
map of normal distributions in our approach. We store and process maps of mean
disparity µi(x) and their confidence βi,cσ−2

i (x) at position x. The factor βi,c is a global
per-cue i and per-category c weight that gives higher weights to cues that have shown
to work better for certain scene categories. Actual values were determined empirically.
We now briefly explain the nc = 6 cues we use. While the input sequence might have
an arbitrary spatio-temporal resolution, the typical resolution to store each cue pi

is 300 × 170 pixels at 3 Hz, which will later be upsampled in space and time by the

88 Chapter 6. Perceptual Real-time 2D-to-3D Conversion Using Cue Fusion

a) c) d)

Level 0 Level 1

Level 2 Level 3

Level 0 Level 1

Level 2 Level 3

b)

FIGURE 6.5: Cue extraction for defocus builds a Laplacian pyramid (b) of the input image (a). Here,
the red/blue color coding represents positive/negative values. The next step is thresholding and blurring
of the absolute Laplacian per level (c). The final disparity map (d) is created by collapsing the pyramid
as described in Sec. 6.4.1.

pairwise fusion (Sec. 6.5.4). We refer to frames of the image sequence holding depth
cues as keyframes.

Our cue extraction is conceptually similar to other approaches, but differs with
respect to previous work in two ways: First, that all cues can be processed in time
linear in the number of pixels and in parallel using common GPU functionality, and
second, that they provide an additional measure of per-pixel confidence.

6.4.1 Defocus

Scenes imaged with a finite-size aperture are increasingly blurry at image locations
with distances different from the distance of the focal plane. Notably, the defocus only
indicates a difference of distance to the focal plane, but not the sign. For the cue to be
effective, the image has to contain this depth-of-field, which mostly occurs in images
taken with a larger aperture for nearby objects. Depth-from-defocus is computed
by measuring the local frequency content around a pixel [Pentland, 1987]. Areas
with only low-frequency content are considered out of focus. We use a Laplacian
pyramid in multiple passes but constant amortized time per pixel (Fig. 6.5, b). The
Laplacian acts as a bandpass while preserving spatial locality and its absolute value
can be interpreted as the integral over one octave of the frequency spectrum [Darrell
and Wohn, 1988]. On each level of the pyramid, we first soft-threshold the absolute
value of the Laplacian up to 0.02 using a sigmoid and then blur the resulting per-level
map with a box kernel of size 7 × 7 (Fig. 6.5, c). The thresholding is required to
avoid interpreting high-contrast features (such as edges) as being more in-focus. We
then collapse the pyramid by summing the contributions of all levels for each pixel,
leveraging hardware-accelerated texture interpolation.

Out-of-focus regions are assumed to lie behind in-focus regions. This assumption,
which is not always valid (Fig. 6.14, b) but nevertheless common in the absence
of additional information [Lin et al., 2013; Valencia and Rodriguez-Dagnino, 2003],
corresponds to images with focused objects in front of a defocused background
(Fig. 6.5, a). Consequently, sharp regions map to a disparity of 0 and sufficiently
blurred regions to a value of 1 (Fig. 6.5, d).

Confidence for defocus is inversely proportional to disparity. This is motivated
by the fact that high-frequency regions can only stem from scene content close to the
focal plane, while there is an intrinsic ambiguity for low-frequency regions: either the
depicted object is out of focus or it does not contain any high-frequency details (e. g.,
a plain-colored wall) [Lin et al., 2013]. We found this cue to work better when we
additionally reduce the overall confidence if no defocus blur is present in the image.
In order to determine if in-focus features dominate the image, we simply calculate
the mean disparity of this cue by employing a MIP map.

6.4. Depth Cues 89

a) b) c)

FIGURE 6.6: Vanishing points are determined by splatting a line primitive (b) for
each multi-scale edge pixel of the input image (a). The red rectangle indicates the
original image boundary. The final disparity map (c) is a radial gradient centered
at the estimated vanishing point (cf. Sec. 6.4.3).

6.4.2 Aerial Perspective

Distant objects in images showing a landscape-scale range of depth undergo changes
in appearance due to atmospheric scattering. This typically results in a depth-
dependent loss of luminance contrast and a color shift towards blue, which can
be analyzed to infer depth [Cozman and Krotkov, 1997; Fattal, 2008; Gibson et al.,
2013]. As the Cr channel of the YCbCr color space separates low-frequency from
high-frequency wavelengths, we use its inverse as the disparity map of this cue [Tam
et al., 2009] in constant time, parallel for all pixels. Pixels with little local contrast
in their vicinity (low variance) have higher confidence. Local variance is efficiently
estimated using a Laplacian pyramid (cf. Sec. 6.4.1).

6.4.3 Vanishing Points

Perspective projections of parallel 3D lines cross in a 2D vanishing point. If dominant
lines are visible in an image, their point of convergence is a strong depth cue we
would like to exploit as well. We use an approach based on edge extraction and
line accumulation [Barnard, 1983]. First, edge orientation is found at multiple image
scales [Ma and Manjunath, 2000] and edge strength is measured by counting the
number of scales at which the edge is present. Next, all pixels along a line elongating
the orientation of every edge pixel are incremented by splatting a line primitive
with additive blending (Fig. 6.6, b). The value of the line increases linearly with the
distance to the pixel creating this line. This gradient is required, as vanishing points
are more stable if they result in agreement with other lines at an image position far
away from the respective pixel causing them. Finally, the pixel in the accumulated
line-image that has the highest response to a Harris corner detector is considered the
vanishing point pixel. This pixel is found using a parallel reduction.

The drawing area of the accumulated line-image is extended by a factor of 1.5 in
both width and height compared to the input frame (red rectangle in Fig. 6.6, b). This
way, vanishing points lying a reasonable distance outside the image boundaries can
be detected. We found the recovery of vanishing points with positions further away
from the image boundaries to become unstable in practice, while additionally only
indicating a diminishing depth gradient.

The vanishing point itself is additionally low-pass filtered in time using a temporal
cut-off of 0.5 Hz. Disparity is created according to this vanishing point using a radial
gradient that is 1 at the vanishing point and 0 at the pixel farthest away from this
point (Fig. 6.6, c). Confidence is computed by the curvature of the accumulated value:
If all lines concentrate on a single pixel, the confidence is high and the vanishing
point is reliable. If multiple vanishing points are found or if the accumulated lines do
not concentrate in a small region, the cue is considered less confident. While images

90 Chapter 6. Perceptual Real-time 2D-to-3D Conversion Using Cue Fusion

c) d)

a)

b)

FIGURE 6.7: Occlusions are found by first convolving the input image with a filter bank (a, b; the
pixel under consideration is marked red) and then combining the responses to detect T-configurations
(c), leading to a sparse map of depth gradients (d). In a), b) and d) a grey pixel indicates the value
zero. The first row in a) and the first six images in b) show odd kernels for detecting edges, while
the bottom row in a) and the last six images in b) show even filters for detecting lines. Note that the
centered kernels in b) can be used to produce responses identical to those of the kernels in a). Individual
processing steps are explained in Sec. 6.4.4.

can contain multiple vanishing points, we found it more stable in practice to only
pick the dominant one.

6.4.4 Static Occlusions

Occlusion is a strong depth cue that works on all depth scales: If an object A occludes
object B, A is closer. However, occlusion is only a relative cue and furthermore cannot
be measured directly, only inferred. Occlusions are found by detecting T-junctions
of edges and lines. This is done by convolving the image with a bank of separable
filter kernels. 24 kernels are necessary to detect incident edges (Fig. 6.7, a, top row)
and lines (bottom row) with an angular spacing of 30 degrees at a single scale. Note,
that the same response can be created by convolving the image with only 12 centered
kernels (Fig. 6.7, b) and then offsetting and/or inverting the resulting responses. We
are interested in filter responses at different scales and for this purpose implement
filters of increasing size by executing same-sized (15-tap) oriented 1D filters on an
image pyramid. The approach of Michaelis and Sommer [1994] is used to detect
T-configurations based on these responses. As occlusion only indicates ordering, not
absolute disparity, it cannot directly produce disparity and confidence, but produces
sparse spatial disparity gradients with high confidence. More precisely, if a T-junction
is found (Fig. 6.7, c) at position x with a vertical bar in direction d at scale s, a line
orthogonal to d with length 10s is drawn with high confidence (we use a constant
value of 10 in our implementation) and a positive gradient at x + sd and with a
negative gradient at x − sd (Fig. 6.7, d).

6.4.5 Motion

Several different depth cues are related to motion. Particular observer motions result
in typical depth patterns and typical motions in the scene allow predictions about
the relative depth of objects. In this work we use the computationally most simple
cue that works based on optical flow alone. First, optical flow f(x) is computed
between consecutive frames using a GPU implementation of Lucas-Kanade [Lucas
and Kanade, 1981] registration. Although the output of the stereo cues is at low
temporal resolution, the flow is computed at the full temporal, but reduced spatial
resolution of the input image sequence, as we found flow between consecutive frames
to work more reliably than registration of stronger deformations. Flow is augmented
by a confidence map σ−2

f (x), computed from the local luminance variance of the
respective input frame: Flow in featureless regions is considered unreliable. f is later
also used for temporal upsampling and propagation (Sec. 6.5.4).

6.5. Cue Fusion 91

To determine a disparity and confidence map for each keyframe, the confidence-
weighted flow average is removed from the flow, leading to a motion residual

fr(x) = f(x)− ∑
x′

σ−2
f (x′)f(x′)

σ−2
f (x′)

,

where the weighted sum over all pixels in the current keyframe is efficiently deter-
mined by employing an image pyramid. The residual motion magnitude ‖fr(x)‖ is
used as an estimator for motion parallax and finally mapped to disparity, such that
fast moving objects are closer. Confidence of this cue is determined by

σ−2
Motion(x) = σ−2

f (x)n−1 ∑
x′
‖fr(x

′)‖,

where n is the number of pixels in the keyframe. Here, the average residual motion
magnitude of the keyframe serves as a global indicator that motion parallax is present.

6.4.6 User Input

Optionally, user input can be included as another depth cue to augment traditional
manual stereo painting with automatic inference in the propagation. A user simply
paints a disparity and confidence map and the system includes this additional cue
into the inference. No results in this chapter were produced using any manual
intervention, except for Fig. 6.12.

6.5 Cue Fusion

Cue fusion combines evidence from cues over space and time with the scene-specific
prior (Fig. 6.8). Here, we will first explain the use of maximum likelihood estimation
(MLE) to fuse evidence from multiple cues in a single pixel. Second, we extend the
idea to include priors, yielding a maximum a posteriori (MAP) estimate. Next, we
describe an iteratively reweighted variant of the estimate to make it robust to outliers
and contradicting cues. Finally, we include interactions over time and space, and
compute them using efficient edge-aware filtering.

6.5.1 Unary Estimate

The unary estimate predicts the most likely value, given multiple observations with
different levels of confidence. For a pixel x, the MLE estimate of disparity µMLE(x) is
the confidence-weighted average of disparity means

µMLE(x) =
1

Z(x)

nc

∑
i=1

µi(x)βi,cσ−2
i (x),

where Z is the normalizing partition function. Furthermore, the MLE of the confi-
dence simply is

σ−2
MLE(x) =

nc

∑
i=1

βi,cσ−2
i (x). (6.3)

This approach was taken in computer vision for measurements in the presence of
sensor uncertainty [Szeliski, 1990] but not for 2D-to-3D conversion.

92 Chapter 6. Perceptual Real-time 2D-to-3D Conversion Using Cue Fusion

U
n

a
ry

+
P

ri
o

r

+
 R

o
b

u
st

n
e

ss

+
 P

a
ir

w
is

e

R
e

su
lt

FIGURE 6.8: Cue fusion (left to right). Here, unary fusion combines confident occlusion, aerial
perspective and defocus. The prior overrides values in the sky. Inconclusive evidence between prior
and other cues is resolved by iterated re-weighting. The pairwise step propagates confident estimates to
other locations, preserving space-time luminance discontinuities and eliminating low-confidence noise.

6.5.2 Prior

Priors are included in the fusion using Bayesian inference (Sec. 2.1.5), which states
that the probability distribution p(h|e) of the hypothesis h given the evidence e is
p(h|e) = p(e|h)p(h)p−1(e) [Knill and Richards, 1996]. A prior is included as an
additional observation {µ0, σ−2

0 }, producing the MAP estimate of disparity

µMAP(x) =
1

Z(x)

(
µ0(x)β0,cσ−2

0 (x) +
nc

∑
i=1

µi(x)βi,cσ−2
i (x)

)
.

The MAP estimate of variance σ−2
MAP(x) is computed by extending the sum of the

MLE confidence (Eq. 6.3):

σ−2
MAP(x) = β0,cσ−2

0 (x) +
nc

∑
i=1

βi,cσ−2
i (x).

In practice, the prior extracted in the pre-process (Sec. 6.3) that expresses in-
formation for all possible appearances at a location (conditioned prior {µ̄0,i, σ̄−2

0,i };
Eq. 6.1, Eq. 6.2) is used for an image with a specific appearance at a specific loca-
tion (unconditioned prior {µ0, σ−2

0 }). Let L(x) ∈ R2 → R3 be this appearance, a
simple RGB image. We denote mean and variance of the final unconditioned pri-
ors as µ0(x) = fetch(µ̄0, (x|L(x)) and σ−2

0 (x) = fetch(σ̄−2
0 , (x|L(x)). The function

fetch(X, y) ∈ R5 → R is the 5D linear filtering of a grid X at position y. For effi-
ciency, we store the prior as a 2D array (spatial domain) of 3D textures (appearance
domain). As linear filtering is separable, this texture is read using four 3D linearly-
filtered hardware-accelerated interpolations in the appearance domain followed by
spatial interpolation.

6.5.3 Robust Estimate

If multiple high-confidence cues (including the prior) indicate different disparities,
not all can be correct and at least one of them has to be considered an outlier. As
MLE and MAP estimates for Gaussian noise models are generalized least-squares
fits, they do not perform well in such conditions [Green, 1984], as a single outlier
quadratically skews the entire solution. Consider an example of two cues (e. g., focus
and aerial perspective) and the prior that indicate a blurry blue pixel in the top to
be far away, and a single cue (e. g., motion) to indicate it is close, all with the same
confidence. A least squares-fit would indicate a medium disparity value. A more
robust fit would result in a distant disparity and ignore the other cue as an outlier.
This can be achieved by an iteratively reweighted MAP estimation. In each step (3 in
our implementation) a weighted MAP is computed. In the first iteration, the weight
is 1 for all evidence. In later iterations, the weight of evidence not supporting the
MAP estimate of the previous iteration is decreased. Evidence does not support the

6.5. Cue Fusion 93

estimate, if it is very different from it. The Cauchy weight function [Green, 1984] is
used to control the reweighting.

6.5.4 Pairwise Estimate

The disparity at one space-time location x also depends on evidence from other pixels
at nearby space-time positions y. This serves both as an additional regularization
constraint and as an opportunity to share information between less confident and
more confident space-time locations. We model these dependencies using a variant
of a fully-connected conditional random field. The pairwise term contains a domain
weight (disparity of nearby pixels should be similar) and a range weight (pixels with
similar luminance values should have similar disparity),

v(x, y) = N (‖x − y‖f, σd)N (I(x)− I(y), σr),

where I is the monocular image intensity [Tomasi and Manduchi, 1998; Kopf et
al., 2007; Richardt et al., 2012]. Here, we assume the images have been motion-
compensated, i. e., ‖x − y‖f is the spatial distance of x and y moved to the time
coordinate of x along f. We set this distance to infinity if they are not related by
optical flow. Then the final inference that combines spatially-varying cues and priors
with confidence maps and interactions of pixels in space and time is

µ(x) =
1

Z(x)

∫

Ω
v(x, y)σ−2

MAP(y)µMAP(y)dy (6.4)

with confidence

σ−2(x) =
1

Z(x)

∫

Ω
v(x, y)σ−4

MAP(y)dy, (6.5)

where Ω is the entire space-time domain. This inference is realized in three steps:
i) Pixel-wise pre-multiplication of the mean disparity map µMAP by its confidence
map σ−2

MAP; ii) edge-aware blurring of both the pre-multiplied mean disparity and
confidence maps in time and space; iii) per-pixel division of the propagated mean
disparity by its confidence [Knutsson and Westin, 1993].

Steps i) and iii) are trivially parallel and equivalent to compositing using pre-
multiplied alpha. For propagation in time, the two nearby keyframes are first motion-
compensated and then blended [Miksik et al., 2013]. Recall that we compute the
flow in full temporal resolution in the depth-from-motion cue component. For mo-
tion compensation, we forward-concatenate the flow from the past keyframe and
backward-concatenate the flow from the future keyframe and use this flow to warp
depth from the respective keyframes into the current frame. Warping disocclusions
are filled using push-pull from a Gaussian MIP map. The backward flow is approx-
imated using the negated forward flow, assuming motion is linear on small time
scales. The result is then linearly blended using the temporal distance to the future
and past keyframe as weights. The output of this step is at full temporal, but still at
low spatial resolution. For propagation in space, a two-channel bilateral grid [Chen
et al., 2007] with 8 layers and the full spatial resolution is used. Confidence-weighted
disparity and confidence values are inserted into the layers of that grid using the
final image intensity I as a guide with a standard deviation of σr = 0.1. This grid
is then blurred using a standard deviation of σd = 0.5 deg using a Gaussian MIP
map. Next, the bilateral grid is upsampled to the desired high resolution, using the

94 Chapter 6. Perceptual Real-time 2D-to-3D Conversion Using Cue Fusion

Space

Space

D
is

p
.

D
is

p
.

Space

D
is

p
.

Space

*
Space

Original

D
is

p
a

ri
ty

 M
a

p
O

p
e

ra
ti

o
n

D
is

p
a

ri
ty

S
li

ce

S
te

re
o

 Im
a

g
e

S
te

re
o

S
li

ce

Global Rescaling Blurring Ours

Space

Space

Space

Space

Space

Space

Space

D
is

p
. G

ra
d

ie
n

t

Mid

High

Low

FIGURE 6.9: Disparity maps and stereo images without (first column) and with different approaches
(second to fourth column) to enforce the disparity gradient limit. First column: The original
disparity map contains gradients exceeding the limits, resulting in fold-overs in the stereo signal (red
box). Second column: A global linear rescaling resolves the issue, but results in a loss of overall depth
contrast. Third column: Simple low-pass filtering is a natural way to reduce exceeding gradients, but
comes at the cost of the loss of fine details. Fourth column: Our approach prevents fold-overs while
at the same time retaining the global depth range and fine-scale details not exceeding the disparity
gradient limit (green box).

high-resolution luminance as a guide. After this step, the filtered, high-resolution
disparity-confidence product is finally divided by the filtered confidence component.

6.6 Stereo Image Generation

The final step converts the acquired disparity maps into a stereo image pair. This
step is a standard 2D-to-3D procedure for which many alternatives exist. We use
grid-based image deformation [Mark et al., 1997] with a cell size of one pixel.

Before converting, however, we assure that the upper disparity gradient limit
is maintained. Our disparity is produced by an automatic process and contains
disparity with high spatial frequencies (Fig. 6.9, left column) that is important for
the vivid and natural appearance. Consequently, the result may contain areas which
are too distorted to be fused or even overlap (red box in Fig. 6.9). In particular, the
result may contain fold-overs, where space runs backwards to create an overlap.
We correct for this issue in a post-process as follows. First, a Laplacian pyramid
of disparity [Didyk et al., 2012] is produced, which contains gradients of disparity
at multiple scales (Fig. 6.9, top right). Gradient values outside the level-dependent
fusible disparity range [Howard and Rogers, 2012; Kane et al., 2014] (dotted lines in
Fig. 6.9, top right) are clamped (red area in Fig. 6.9, top right). Finally, the resulting
pyramid is collapsed into a new disparity map (Fig. 6.9, center right) that is fusible
(green box in Fig. 6.9, lower right). Note, how the above is not equivalent to global
rescaling, nor is it equivalent to blurring. Both are options to fit stereo content into
the gradient limit range, but would result in a reduced overall depth impression or in

6.7. Evaluation 95

loss of fine details (Fig. 6.9, second and third column). Instead, our processing only
removes disparity variations that are too strong for their spatial extent.

6.7 Evaluation

Example results of our real-time system are shown in Fig. 6.10. All are produced at
35 fps on a Geforce GTX 780 with an Intel Xeon E5-1620 CPU. A timing breakdown can
be found in Tbl. 6.1. Results for video are seen in Fig. 6.11. An example comparison
between our cue-guided manual 2D-to-3D conversion and a conventional scribble
interface is seen in Fig. 6.12. We found that our system works well over a range
of scenes, while other approaches are more specific to a certain class, e. g., static
street-level outdoor images. While other approaches are specialized to a specific
cue (like vanishing points), certain motion (like rigid), a certain shape (like ground
plane), or requiring that the image is similar to an image in a database, our technique
relies on a greater variety of pictorial depth cues combined with priors based on
scene types. Finding a balance between prior information and individual cues is
an important component of our system (Fig. 6.13, a-d). To use a prior, the scene
needs to be classified, and if classification fails, disparity quality degrades as seen in
Fig. 6.13, e-h. Failure cases are discussed in Fig. 6.14.

TABLE 6.1: Computation time for a keyframe (every ca. 3 Hz) and for every
non-keyframe (more than 30 Hz) at a resolution of 1280 × 720. Time for the
actual computation granularity used is shown in bold.

Part Step Time Res.
10 f. 1 f.

Cue Aerial per. 2 ms 0.2 ms 300 × 170
Defocus 8 ms 0.8 ms 300 × 170
Van. points 18 ms 1.8 ms 300 × 170
Motion 9 ms 0.9 ms 300 × 170
Occlusions 11 ms 1.1 ms 300 × 170

Opt. flow 58 ms 5.8 ms 300 × 170
Fusion Robust MAP 13 ms 1.3 ms 300 × 170

Temp. prop. 30 ms 3.0 ms 300 × 170
Spatial prop. 46 ms 4.6 ms 1280 × 720

Warping 80 ms 8.0 ms 1280 × 720

275 ms 27.5 ms

6.7.1 Cue Influence Analysis

In order to gain insights into the influence of the cues and the prior on the resulting
stereoscopic conversion we analyzed the results of our system for 83 videos with
80 keyframes each. Fig. 6.15, a lists the mean confidence of each cue and the prior.
One can observe that the contribution of the prior on the result is about 50 %, while
the cues contribute the other half of the depth information. Fig. 6.15, b gives each
cue’s tendency to be an outlier by showing the confidence-weighted deviation of
its disparity estimate from the robust unary and the final pairwise estimate. One
can observe that the deviation is fairly uniform across the cues, while the pairwise
propagation step of our system tends to increase the deviation in order to perform
the space-time regularization. Finally, Fig. 6.15, c shows the normalized confidence
distribution of each cue over the disparity range. We can observe that the occlusion
cue is mostly covering near distances, while the defocus, vanishing point and motion

96 Chapter 6. Perceptual Real-time 2D-to-3D Conversion Using Cue Fusion

FIGURE 6.10: Results for static images. (a) (Aerial perspective, occlusion) A typically good result
as luminance edges give a good indication for depth edges. (b) (Prior) The fine details detach flowers
from the ground. The overall ground plane is perceivably non-linear in depth, a typical artefact of
our approach. (c) (Prior) The bright sky, the dark trees, the ground plane in the foreground and
the forest-typical color-disparity relation in this image allow a plausible, detailed result. (d) (Prior)
Classification into coast is easy by the colors. Human shapes are distinct from their context due to the
edge-aware pairwise propagation. (e) (Vanishing point, prior) This is a typical street-level scene well
covered by other approaches. Our result reproduces the side walls, the sky and the ground plane, but
also includes fine details. (f) The twigs indicate occlusions, otherwise this image is dominated by the
prior. Disparity is considerably wrong, but the fractal distribution of disparity combined with a correct
tendency from the prior produces a consistent stereo look. (g) This image works, because the disparity
contrast at the strongest depth discontinuity is correct due to a generic vertical-gradient prior. (h)
(Aerial perspective, prior). The color-dependency of the prior correctly places depth edges on the hill’s
horizon lines at all distances. (i) (Occlusion, vanishing point, prior) It can be noted that the ground
plane in the front is not a plane in disparity. (j) (Aerial perspective, prior) (k) An image following
no prior, where defocus is found as the relevant cue, detaching the butterfly from the backdrop. (m)
(Occlusion) (l) An open country prior is fused with occlusion from the fence preserving fine details
with good depth discrimination.

FIGURE 6.11: Our 2D-to-3D video result with motion-compensated filtering provides temporally
stable stereo with fine details.

6.7. Evaluation 97

Result & strokes Disparity map Result & strokes Disparity map

Luminance-guided (Previous) Cue-guided (Ours)

FIGURE 6.12: Manual 2D-to-3D stereo conversion without (left) and with (right) using our cue
fusion. Our approach results in a better disparity layout and keeps details, such as the wires.

a) b) c) d) e) f)

g) h)

FIGURE 6.13: Result (a) and depth map produced by cue fusion without priors (b), and including the
prior for open country (c and d). The defocus cue has identified the sharpness gradient complemented
by the prior. An image (e) was classified to show mountains, resulting in a disparity map (f) that is
more vertical as seen from the low vertical contrast and the light-grey beach is mapped to a near depth.
With correct classification as coast (g), the beach will be placed at medium depth (h).

a) b) c) d)

FIGURE 6.14: a) High-contrast textures can cause problems in the cue extraction as well as the
cue fusion phase. Here, the occlusion module detected several T-junctions in the butterfly wing and
hallucinated depth gradients. This misinterpretation cannot be compensated by the pairwise fusion,
since it does not distribute the available depth information across the whole object, but rather stops at
the luminance edges. This leads to false-positive depth edges in the disparity map. b) If an assumption
made in a cue extraction module is violated, the module may produce wrong disparity values with
high confidence. If only a small number of cues is present in the input video, there is not much reliable
information to compensate for that. In this case, the assumption of the defocus cue, that blurred regions
are distant, is violated. Since there is no other strong cue present, this leads to a large disparity in the
foreground. c) The motion cue fails, because the walking subjects cover the image in large part. This
leads to residual motion, whose magnitude is low for the subjects and high for the background, hence
turning the latter into foreground. d) For a camera rotating around an object, both close and far points
with high velocity get classified as close.

100

a) c)b)

Aerial Persp.

Defocus

Vanishing Point

Motion

Occlusion

Prior

DisparityCue

.18

0
Cue

.3

D
is

p
. D

e
v

ia
ti

o
n

C
o

n
fi

d
e

n
ce

C
o

n
fi

d
e

n
ce

FIGURE 6.15: Cue influence analysis: a) Mean confidence. b) Mean deviation of each cue’s disparity
estimate from the robust unary (dark) and the final pairwise estimate (light). Occlusion is not listed
here, as it only provides disparity gradients. c) Normalized confidence distribution over disparity.

98 Chapter 6. Perceptual Real-time 2D-to-3D Conversion Using Cue Fusion

80

a) b)

40

20

60

0
0.9 0.8 0.6 0.3 0 0.025 10.25

c) d) e)

12631 0.25 1

0.1 0.6 ∞

2 0.25 1 2 0.25 1 2

Remap [γ]Control

E
q

u
iv

a
le

n
ce

 [
%

] 80

40

20

60

0

E
q

u
iv

a
le

n
ce

 [
%

]

Removal [vis. deg.] Spatial blur [vis. deg.] Temporal blur [s]

FIGURE 6.16: Perceptual experiment analysis (Sec. 6.7.2): The horizontal axis shows different bars
for different distortions. The vertical axis is equivalence in percentage. A high value means that
the distortion is more equivalent to a reference. A green bar has a significantly different equivalence
compared to how equivalent the reference is to itself, which is only ca. 80%, not 100%. Bars are
grouped by distortions. Inside each group the distortion is the same, just more or less strong in one (b,
c and e) or two (d) respects.

cues have their strongest influence in the mid-range. The aerial perspective cue
as well as the prior mostly cover the larger distances. We conclude that our cues
provide a balanced mixture of sources of information. In our versatile test dataset all
cues provide important information and tend to complement each other, while our
data-driven prior gives strong indications whenever there is not enough evidence
from the cues alone.

6.7.2 Validating Plausible Disparity

We would like to know to what extent the three properties of perceptually plausible
disparity, which motivate our approach (Sec. 6.1), are applicable to complex images.
To this end, we run perceptual experiments, in which we intentionally reduce physical
disparity in these aspects [Kellnhofer et al., 2015].

Experiment

Participants were asked if they consider a physical and a distorted disparity stimulus
visually equivalent or not. The physical disparity in our stimuli is distorted by one
out of four simple operations: i) remapping by a power curve with a gamma value
of r1 ∈ {0.9, 0.8, 0.6, 0.3, 0}, ii) entire removal of a disparity from circles of radius
r2 ∈ {1, 3, 6, 12} visual degrees followed by luminance-based edge-ware inpainting
that restores structure but not disparity values, iii) edge-aware spatial blurring with a
spatial std. dev. of r3,1 ∈ {0.25, 1, 2} visual degrees and range Gaussian std. dev. of
r3,2 ∈ {0.1, 0.6, ∞} in the intensity range from 0 to 1, as well as iv) temporal blurring
with a std. dev. of r4 ∈ {0.025, 0.25, 1} seconds. The original image or movie in
comparison to the reference is used as a control group. 17 participants took part in
the experiment, which comprised of 2 repetitions for each of the 4 videos or images
being presented with 1 placebo, 5 different remappings, 4 removals, 3×3 spatial blurs
and 3 temporal blurs yielding the total of 2 × 4 × (1 + 5 + 4 + 3 × 3 + 3) = 64 trials.
In each trial, participants were shown the reference image and a distorted variant in a
randomly shuffled vertical arrangement for 3 seconds and were asked if they provide
an equivalent stereo impression or not.

Results and Discussion

We compute sample means and confidence intervals (binomial test, 95% CIs, Clopper-
Pearson) for the percentage of trials in which a distorted and an original are consid-
ered equivalent (Fig. 6.16). The control group that is not distorted at all (placebo),

6.7. Evaluation 99

is considered equivalent to the reference in 79.0% ± 4.0% of the cases (Fig. 6.16, a).
Consequently, a reduction that is equivalent will result in a measure of equivalence of
ca. 80% in the best case, not 100%. Equivalence is rejected using a two-sample t-test
(all p < 0.01). Additionally, the effect of reduction can be seen from comparing their
CIs to the control group, in particular, its lower bound (Fig. 6.16, dotted line).

Remapping values for r1 ≤ 0.6 (stronger deviation from identity) are significantly
nonequivalent (Fig. 6.16, b), indicating (but not proving) that more subtle remappings
might be equivalent. Our approach does only reproduce disparity up to such a
smooth remapping. Not reproducing objects as large as r2 = 6 vis. deg. or larger are
significantly nonequivalent (Fig. 6.16, c), indicating that removal of smaller objects
might not be objectionable. In our approach, some objects do not get resolved because
neither a cue nor a prior provides evidence for its depth. As long as such objects
are consistently embedded into the environment, which typically happens due to
our luminance-based edge-aware upsampling, the proper values of depth are not
mandatory.

For blurring (Fig. 6.16, d), not respecting edges (r3,2 = ∞), or edge-stopping
blurring (r3,2 = 0.6 and r3,2 = 0.1) with a spatial Gaussian of std. dev. r3,1 ≥ 1, resp.
r3,1 ≥ 2 vis. deg. is not equivalent. This indicates that the slightly larger spatial extent
and similar range support used in our approach produces a functionally equivalent
result.

For temporal blurring (Fig. 6.16, e) all reductions with a temporal Gaussian of std.
dev. r4 ≥ 1s have been found visually non-equivalent. This indicates that temporal
disparity sampling can be surprisingly sparse if it is motion-compensated, as in our
approach, where disparity is computed only for keyframes at ca. 3 Hz which is
likely faster than the value required for equivalence. This outcome indicates that
in natural images, even more edge-aware spatial blurring and temporal filtering is
tolerated than what was reported for disparity-only stimuli by Kane et al. [2014].
While the reductions in our experiment (and application) might introduce conflicts
between disparity and pictorial cues, the latter seem to play the dominant role in
depth perception, and tolerance for disparity reduction is higher. Edges at larger
depth discontinuities must be preserved (Fig. 6.16, d), and in the temporal domain
(Fig. 6.16, e) disparity should follow the image flow, while the temporal update of
specific disparity values can be sparse.

6.7.3 Perceptual Comparison Study

We would like to know if the results produced in real time by our method are preferred
over other approaches. Therefore, image pairs produced by our method and one of
three previous methods were presented using Nvidia 3D Vision active shutter glasses
on a 27” Asus VG278HE display with a resolution of 1920×1080 pixels at a viewing
distance of 60 cm under normal office lighting. 10 participants (all male, 23 to 30 years
old) took part in the study. All of them had normal or corrected-to-normal vision
and passed a stereo-blindness test. The subjects were naïve to the purpose of the
experiment. Overall, 77 image pairs were used. Each pair was presented as a random
horizontal arrangement and participants were asked which image provides a better
3D impression. The images have been produced using methods proposed by Saxena
et al. [2009], Cheng et al. [2010], and Karsch et al. [2014]. In our study, we include
results on our images for the method of Cheng et al., images and depths provided by
the original publication for the method of Saxena et al. and a mixture of both for the
method of Karsh et al.

100 Chapter 6. Perceptual Real-time 2D-to-3D Conversion Using Cue Fusion

To produce results for our images the method of Karsh et al. was trained using 400
outdoor images from the Make3D dataset [Saxena et al., 2009] as done in the original
paper. Our main goal in this study was to maximize the participants’ performance
in seeing differences between the methods. Therefore we chose to use static images
instead of videos, since human disparity sensitivity decreases with motion [Kane et al.,
2014; Kellnhofer et al., 2016] and participants were less likely to overlook artifacts. Our
method is preferred over the method of Cheng et al. in 69.6 %± 3.3 % (0.95 confidence
intervals, binomial) of the cases, over the one of Saxena et al. in 64.4 % ± 7.0 % and
over the approach of Karsch et al. in 54.5 % ± 3.6 % of the cases. All comparisons
are statistically significant (p < 0.02). Comparing our result and the method of
Karsch et al. on a subset containing their images leads to a significant preference for
their results (31.3 % ± 8.1 % prefer ours) while comparing on a subset only containing
our images provides significant preference for our method (60.0 % ± 3.9 %). This can
be attributed to a non-optimal training set for certain images used in the study.

We conclude that we can outperform real-time and offline 2D-to-3D conversion
methods for general imagery, while the performance of data-driven offline methods
highly depends on the training data used.

6.7.4 Quantitative Evaluation

The final quality of a stereo image arises from the complex interactions of monocular
and binocular stereo cues, for which no computational model is available. The
perceived error of a 2D-to-3D stereo conversion consequently correlates only very
little with the predictions of classic image quality metrics such as the peak signal-
to-noise ratio (PSNR) and structural similarity (SSIM) index when they are applied
to the disparity maps [Kellnhofer et al., 2015]. Merkle et al. [2009] show that more
meaningful quality predictions can be obtained when the reconstructed disparity
is actually applied to generate stereo-image pairs and those are compared to the
ground-truth images. Tbl. 6.2 nonetheless lists the numerical error with respect to the
ground truth NYU (Kinect sensor; well-aligned key luminance and depth edges) and
Make3D (laser scanning; low-resolution depth maps) data sets for the approaches
of Cheng et al. [2010], Karsch et al. [2014] as well as ours and a baseline that uses
low-frequency fractal noise as a disparity map. We see that according to the PSNR
(which is poor in detecting localized disparity distortions and rather assumes their
spatially uniform distribution), the approach of Karsch performs best and that most
approaches perform better than random, but not on all datasets and according to all
metrics. Overall, in terms of SSIM, the margin starts to get smaller. Finally, when
using the most recommended metric by Merkle et al. , the differences between all
three methods are marginalized.

We conclude that we can achieve similar quality in terms of error numbers as
the competitors that either take much longer to compute and/or have a lower user
preference. Interestingly, although the visual quality of the fractal baseline stereo-
image pairs is clearly not acceptable, the metric predictions (Tbl. 6.2) do not show
them as clear outliers in all cases. The fact that, on one hand, we do not intend to
reproduce ground truth depth but rather perceptually plausible disparity, and, on the
other hand, the given quantitative evaluation clearly does not reflect stereoscopic con-
version quality, indicates that our perceptual comparison study (Sec. 6.7.3) provides
the most meaningful evaluation results.

6.8. Conclusion 101

TABLE 6.2: Numerical comparison (larger is better).

NYU Range Make3D
Disparity Image pair Disparity Image pair

Method PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Cheng et al. 9.96 0.72 21.84 0.80 10.30 0.56 16.91 0.42
Karsch et al. 10.77 0.76 21.77 0.80 11.60 0.77 18.40 0.49

Ours 10.18 0.74 21.03 0.78 10.03 0.66 17.02 0.43
Baseline 10.11 0.75 18.20 0.68 8.69 0.69 16.29 0.37

6.8 Conclusion

In this chapter we have proposed a system to infer perceptually plausible binocular
disparity from a monocular video stream in real time. Several monocular cues
estimate disparity and confidence maps of low spatial and temporal resolution,
which are complemented by spatially-varying, class-specific disparity priors. Robust
MAP fusion produces stereo image streams with high spatial and temporal resolution.
Perceptual experiments favorably compared our approach to existing techniques.
Our method reconstructs perceptually plausible disparity and not physical depth,
which was inspired from how humans proceed when manually annotating disparity
in 2D-to-3D conversion.

103

Chapter 7

Conclusion

This chapter concludes the thesis. First, we summarize and discuss our contributions
in Sec. 7.1. Then we elaborate on possible algorithmic combinations in Sec. 7.2, before
developing directions for future work in Sec. 7.3. Closing remarks are given in Sec. 7.4.

7.1 Summary and Discussion

This thesis has demonstrated how artificial intelligence can speed up image-based
rendering algorithms and extend their scope. The common methodology in each
chapter was to utilize a problem-specific form of intelligence in a pre-process that the
actual execution could greatly benefit from. Deep Point Correlation Design (Chapter
3) utilized modern back-propagation to train a generative model. Minimal Warping
(Chapter 4) planned the traversal of images based on an efficient approximation of
displacements in the space of distribution coordinates. Laplacian Kernel Splatting
(Chapter 5) performed a sparsity-enforcing optimization in the space of point-spread
functions. Stereo Cue Fusion (Chapter 6) learned a disparity prior with a scene
classifier which would guide an efficient probabilistic inference procedure. In each
of these cases the application of AI payed off, either in terms of efficiency, result
quality, versatility, or their combination. The employed AI technologies differ notably
in their degree of sophistication. While uninformed graph traversals and stochastic
optimization are rather simple procedures, probabilistic graphical models and deep
learning mark the state of the art in AI research.

An important distinction needs to be drawn between Minimal Warping and
Laplacian Kernel Splatting on the one hand, and Stereo Cue Fusion on the other
hand. Besides plain images, the former techniques require additional per-pixel
information, like e. g., depth or motion vectors. The latter method works on images
alone, extending its scope significantly. This difference in required input is directly
reflected in the respective algorithmic choices.

The following paragraphs discuss the solutions of the individual tasks in image-
based rendering that this thesis developed.

Point Pattern Design The deep-learning-based algorithm developed in Chapter 3
optimizes for point pattern creation methods. Our approach employs a generative
model which projects random inputs to the manifold of point patterns with pre-
scribed properties. Interestingly, the model is trained without ever sampling the data
distribution, i. e., without considering concrete realizations of point patterns. Rather,
an indirect, statistical description of the point patterns is provided at train time. This
form of inexact supervision [Zhou, 2017] allows our system to produce point patterns
with characteristics that have been impossible to realize before.

104 Chapter 7. Conclusion

While we have demonstrated how our approach can fulfill many common tasks
accurately, we share a limitation with many data-driven approaches: The lack of
theoretical guarantees. Simply put, we state the design agenda and hope for modern
optimizers to find a good solution. However, most mathematical derivations in the
field of sample pattern design also do not provide rigorous evidence, such as we
are unaware of a proof that Lloyd relaxation converges in high dimensions. Besides
the use cases as an exploratory device, in this light, our method can be a valuable
tool for the analysis of point patterns, eventually moving forward their theoretical
understanding. This is due to its property of being a unified and universal framework
capable of producing or at least closely approximating any point correlation that can
be expressed in terms of an admissible agenda.

Distribution Effects The algorithms developed in Chapter 4 and Chapter 5 are two
very different approaches to attack the problem of image-based distribution effect
rendering. While Minimal Warping interprets a distribution effect as the sum of many
“pinhole” views, i. e., images that do not contain the desired light field integrals,
Laplacian Kernel Splatting adopts the view of impulse responses in the form of PSFs.
Both interpretations are equivalent, but result in completely different algorithms and
vary accordingly in terms of efficiency, quality, and use cases.

A connecting element of both developed algorithms is their generality: Unlike
many previous works our methods are not confined to a single effect, but support a
wide range of light field interactions, like e. g., the important combination of depth
of field and motion blur. Consequently, both methods have to tackle the inevitable
curse of dimensionality, resulting in an exponential explosion of computation when
effects are combined. Minimal Warping solves this problem by relying on a sparse
distribution flow representation. Only a small number of per-pixel pilot samples
is required to fill the entire space of image deformations. The view sample tree,
however, needs to fill this space densely to ensure that its edges correspond to minimal
warps. This is considered acceptable, as the warps themselves are computationally
extremely lightweight. Laplacian Kernel Splatting has to deal with a similar problem:
The space of PSFs needs to be covered exhaustively as well. By observing that
pre-filtering in this space is mostly noticeable for small PSFs, a custom nested sub-
sampling structure prevents a combinatorial explosion. Crucially, PSF sampling and
sparsification happen in a pre-process, so that the curse of dimensionality mostly
affects pre-compute time.

In terms of quality, Minimal Warping trumps Laplacian Kernel Splatting. This is,
as Minimal Warping has the core advantage of accurately resolving primary visibility.
Each node in the view sample tree is a valid image by itself, as fine-grained occlusions
are handled explicitly in the warping procedure. Furthermore, this method allows for
a carefully designed layered image representation: Pixels undergo a custom sorting
procedure to maximize result quality. In contrast, Laplacian Kernel Splatting – in
its synthesis mode – relies on the pre-integration of radiance and opacity per layer.
This requires global depth layers as an (intermediate) scene representation, which
can adapt to the image content only to a very limited extent. Even though global
depth layers are a common approximation both in synthesis [Lee et al., 2009] and
reconstruction [Vaidyanathan et al., 2015], their use in the context of distribution
effects does inevitably pose problems in particular for semi-transparencies. While
carefully extracted disocclusion maps [Lee et al., 2008] can alleviate the artifacts, they
come along with rather high computational costs. We can therefore conclude that
Minimal Warping successfully masters the task of level-1 visual perspective-taking,
while Laplacian Kernel Splatting resorts to an approximation thereof.

7.1. Summary and Discussion 105

In terms of execution speed, Laplacian Kernel Splatting is unsurprisingly ranked
first. This is particularly striking when comparing the timing for same-sized com-
binations of distribution effects. Here, Minimal Warping is up to three orders of
magnitude slower than Laplacian Kernel Splatting. However, while this thesis put an
emphasis on large-scale distribution effects, the efficiency of Minimal Warping can
also be exploited in real-time applications. An example is latency reduction in virtual
reality, where warping is commonly used for temporal upsampling [Van Waveren,
2016]. Performing small incremental warps is a perfect match for the high frame rates
prevalent in this setting.

Besides the broader range of output sampling modalities that Minimal Warping
can handle in comparison to Laplacian Kernel Splatting (e. g., temporal upsampling,
stereo, light fields), the former does also comprise a larger set of supported distribu-
tion effects. In particular soft shadows and spectral caustics are only discussed in the
context of Minimal Warping. Incorporating these effects in the framework of Lapla-
cian Kernel Splatting would require to express them in terms of PSFs. Considering
the physics of light transport, this is certainly realizable. However, both soft shadows
and in particular spectral caustics have many more degrees of freedom than the other
distribution effects discussed in this thesis. Corresponding pre-computed PSFs would
span a high-dimensional space resulting from the large variety of possible physical
configurations, e. g., the position and shape of light sources, occluders, receivers, and
dispersive interfaces. Expressing these variables in terms of deformation flow fields
as done in Minimal Warping is vastly more convenient and economic.

2D-to-3D Conversion The method described in Chapter 6 performs a perceptually-
motivated conversion from monoscopic to stereoscopic video content. It is based
on the observation that plausible stereo is only loosely connected to physical depth.
The comparably small-scale image deformations resulting from disparity maps of
real-world imagery do not pose a major challenge in the sense of level-1 visual
perspective-taking. However, in contrast to the methods described in the previous
paragraph, here we do not have access to a layered scene representation. Half-
occlusions [Harris and Wilcox, 2009], albeit small-scale, can therefore not pe properly
resolved. Our grid-based warping simply stretches the background to fill in missing
information. While this is noticeable under close inspection of the individual views,
the stereo experience does not suffer.

We found our algorithm to produce images that might have physically incorrect
depth, yet, they almost always provide a 3D look due to the agreement to high-
frequency luminance features and overall plausible layout. The quality of results
our approach produces seems to be rather insensitive to the variety of scenes we
explored.

The disparity database used to train our priors was created by painting, as is
done in manual stereo conversion. Depending on the problem at hand, working with
sensor data instead can be more or less efficient than our pragmatic approach.

In the light of recent ground-breaking developments in 3D scene reconstruction
from single images based on supervised deep learning, the question arises if our
system is already superseded. To some extent this is certainly the case. When you
have the choice between an accurate and a plausible result, you choose accuracy.
Current deep architectures tend to come close and even reach real-time execution
speed. Combinations with probabilistic models are common [Roy and Todorovic,
2016] and can be accelerated using filtering algorithms similar to ours [Barron and
Poole, 2016]. However, the distribution of natural videos is extremely heavy-tailed,
i. e., it is very difficult to capture all relevant intricacies using a finite training set.

106 Chapter 7. Conclusion

To solve this problem, strong priors can be beneficial. The depth cue modules of
our system essentially encode perceptually relevant physical laws, which can be
considered the ultimate prior for an image analysis task in this universe. We therefore
conceive that our approach offers a complementary toolkit modern machine learning
can benefit from. Hard-coded and hand-crafted parts in a deep learning architecture
are admissible as long as it is possible to back-propagate through them. The relevant
modules of the system presented in Chapter 6 fulfill this requirement.

All image-based rendering methods developed in this thesis make use of a common
approximation: The re-use of shading. Neglecting the view-dependent appearance
of many materials, shaded pixel information is bluntly recycled in novel views.
This results in e. g., highlights and mirrored images stuck to the surfaces of scene
objects. When interpreted strictly, this is a failure of level-2 visual perspective-taking.
However, perceptual research shows that even humans are not able to reliably reason
on specular light-surface interactions [Fleming et al., 2003; Ramanarayanan et al.,
2007; Marlow et al., 2012]. While it is possible to take specular shading into account in
image-based rendering, it usually requires a clean separation of diffuse and specular
components [Lochmann et al., 2014]. A notable exception is the work of Kopf et al.
[2013] who apply image deformations in the gradient domain, which tends to de-
correlate diffuse and specular shading. We consider these works orthogonal to our
warping-based approaches, with one caveat however: Specular shading of surfaces
with high curvature result in potentially unbounded deformation flow. In such cases
a specular minimal warping algorithm would have to resort to a fall-back strategy,
such as plain forward warping.

A separation or de-correlation of diffuse and specular shading does not appear
promising for a PSF representation as is adopted in Laplacian Kernel Splatting. In
these cases a parametric appearance model would be beneficial. In particular, low-
dimensional image-based appearance manifolds [Lischinski and Rappoport, 1998;
Maximov et al., 2018] are required to avoid the curse of dimensionality during pre-
processing.

7.2 Algorithmic Combinations

A straightforward and intended amalgamation is the use of Deep Point Correlation
Design for the sampling tasks of other methods. In Minimal Warping we require
sampling in the domains of distribution flow on the one hand and views on the other
hand. For the former case any design agenda could be used that leads to a good strat-
ification. The core principle of minimal warps, however, crucially depends on view
samples that have very similar distances to their respective direct neighbors. A trivial
solution to this problem would be regular sampling, at the cost of aliasing artifacts. To
prevent these, we opted for a custom semi-stochastic sampling procedure, including
a connection sample, whenever a warp was too large. Deep Point Correlation Design
allows us to combine regularity and stochasticity in a mix-and-match fashion. The
best power spectrum to aim for would likely be a convex combination of a blue-noise
pattern like BNOT and regular sampling.

For Laplacian Kernel Splatting, we require sampling in the space of PSFs and a
(initial) sampling of spreadlets within each PSF. Both tasks require a non-stationary
point pattern. A corresponding avenue for future work is discussed in Sec. 7.3. Finally,
Stereo Cue Fusion could benefit from Deep Point Correlation Design in the prior
extraction step, where a stratification of samples is required.

7.3. Future Work 107

a) b) c) d)

FIGURE 7.1: Perceptually plausible disparity does not provide high-quality depth-of-field. (a) Original
monoscopic image. (b) Perceptually plausible disparity created with the method developed in Chapter
6. (c) Using b) to create a stereoscopic image pair from a). (d) Using b) to apply depth of field to
a). Even though stereoscopic appearance is acceptable, the depth-of-field effect suffers from a heavy
distortion of the focal plane.

A seemingly promising combination of ideas would be the use of perceptually
plausible disparity as produced by Stereo Cue Fusion as a depth input for distribu-
tion effect rendering. Anecdotal experiments suggest, however, that the physical
inaccuracies of plausible disparity are too strong to be acceptable for a depth-of-field
effect (Fig. 7.1). This is not surprising, as the disparities were carefully designed for
the very specific use case of 2D-to-3D conversion.

7.3 Future Work

In this section we elaborate on possible directions for future work. First, separate
deliberations for the individual chapters of this thesis are given, before engaging in a
more general discussion on future avenues for novel-view synthesis.

Deep Point Correlation Design The exact scope of our method remains mostly
unclear. Ultimately we would want to ask if any point pattern can be learned as
we have only shown a small but important subset. This would require a large-scale
analysis, since our agendas facilitate many degrees of freedom, including point
count, dimensionality, correlation descriptors, projections, and distance metrics. An
important application of our method is Monte Carlo integration. Future work will
need to perform a detailed convergence analysis for different agendas.

For Monte Carlo integation, enforcing correlations across non-canonical axes has
been shown to reduce integration error [Singh and Jarosz, 2017]. So far, our learned
mapping does only support axis-aligned projections, but an extension to the general
case appears realizable.

Point patterns of spatially-varying density would extend the scope of our method
significantly. This could be realized by acknowledging the observation of Wei and
Wang [2011] that working in the differential domain allows for spatial adaptivity.
Since our filters work on differentials as well, a simple density-dependent scaling
of the distances involved in our filter design could be a solution. A naïve imple-
mentation would probably not be able to adapt to high-frequency spatial changes in
density. Here we could exploit the recursive structure of our model, by progressively
adding higher frequencies to the target densities over the course of the filter sequence.
Similarly, distances could be scaled as a function of angle to realize certain kinds of
anisotropies.

Another desirable property of point patterns is their applicability on manifolds,
like e. g., surface meshes. This could be realized similarly to our gridding approach:
After each filtering step, the points could be projected back to the closest location on

108 Chapter 7. Conclusion

b) c)a)

FIGURE 7.2: Minimal Warping for global illumination. (a) A scene illuminated using instant
radiosity. (b) VPL clusters (colors indicate cluster affiliation). (c) Minimal-warping trees could be
used to warp VPL shadows.

the manifold. Again, a certain kind of scale-space progressivity over the course of the
filter sequence might help with handling high frequencies of the target geometry.

Minimal Warping It would be interesting to investigate other possible input for-
mats to our method. Per-pixel lists of shading samples or point clouds [Nalbach et al.,
2014] are potential candidates amenable to our approach.

The fact that our method is able to handle soft shadows bears the assumption that
it could also be used to simulate other global-illumination effects beyond caustics. In
particular, a many-lights approach [Keller, 1997] appears promising. The shadows
cast by adjacent virtual point lights (VPLs) are highly similar to each other. In a first
step, VPLs could be clustered based on position and corresponding surface normal
(Fig. 7.2, b). Then, a minimal-warping tree could be created for each cluster (Fig. 7.2, c).
This way, shadow rays would only have to be traced for one cluster representative,
while all other VPL shadows could be produced by our efficient warping method.
Regrettably, this procedure cannot be offhandedly combined with light cuts [Walter
et al., 2005] or other hierarchical acceleration techniques, since the view tree always
considers entire images. However, a custom locality-aware procedure based on the
tiling approach developed in Sec. 4.4.2 is conceivable.

Laplacian Kernel Splatting The biggest limitation of this approach is the restriction
to a low number of parameter dimensions. For example, we approximate object mo-
tion using linear segments, mostly because of the dimensionality restriction imposed
by the pre-calculation. Also, the ability to change the appearance of depth-of-field in
a dynamical optical system is desirable.

This problem could be attacked in two ways: On the one hand, a more efficient
PSF creation and sparsification pipeline could be developed, as the limiting factor
is pre-computation time. On the other hand, a more aggressive sub-sampling in
the space of PSFs could be achieved by a custom PSF interpolation scheme. This
interpolation, however, would have to be performed in the sparse spreadlet domain.

Stereo Cue Fusion In future work we would like to integrate more sophisticated
cues into our method. Structure-from-motion could be introduced into our system
as a cue itself. More elaborate priors conditioned on texture and flow could add to
the inference without imposing additional complexity and compute cost. We also
would like to model cue fusion with the goal of improving the quality of stereoscopic

7.4. Closing Remarks 109

experience when binocular disparity is given, instead of producing it from monocular
images. Finally, our fusion is not limited to inference of disparity, but could include
other modalities such as observer motion, multiple images or real-time sensor data.

This thesis has injected “islands” of intelligence into the image-based rendering
pipeline. However, considering recent developments in machine learning, end-to-end
trainable pipelines tend to outperform most alternatives. Promising future work
could directly apply this line of thought to the algorithms developed in this thesis.
Point patterns can be optimized for a specific use case, like Monte Carlo integration
in a domain of interest. In the context of our Deep Point Correlation Design, only the
agenda would need to change to incorporate task-specific losses. Likewise, Laplacian
Kernel Splatting could benefit from an end-to-end approach. While the current system
relies on hard-coded mathematics to integrate a sparse PSF representation, a trainable
densification scheme would probably achieve higher compression rates and efficiency.
That way, our system would become an auto-encoder [Hinton and Salakhutdinov,
2006] for PSFs. Stereo Cue Fusion provides back-propagatable modules that can
complement a fully trainable deep system.

Ultimately, we would want all components of the view synthesis pipeline to be
aware of each other. That way, the sampler in a stochastic path tracer would be able
to adapt to the demands of a stereo conversion system after large-scale depth of
field has been reconstructed from sparse light field probes. Current state of the art
comes closer in achieving this goal by using back-propagatable modules throughout
the rendering pipeline. Besides technical challenges like controlling the gradient
magnitude, there are fundamental problems that need to be solved. For example, a
differentiable renderer needs to be able to back-propagate through binary visibility
functions [Li et al., 2018].

Taking these ideas a step further, it appears that dedicated modules in the render-
ing pipeline may not be necessary at all. Recently, Eslami et al. [2018] have developed
a system that consumes a small number of images from a scene. Their generative
model solely consists of two neural networks and allows to walk through a three-
dimensional reconstruction of the scene without ever being explicitly programmed to
do so.

7.4 Closing Remarks

The focus of this thesis was to make image-based novel-view synthesis more efficient
and versatile. Along with the considerations and examples developed in this chapter,
it serves as a strong indicator that artificial intelligence is a valuable tool for view
synthesis tasks. We believe and have shown evidence that an informed combina-
tion of artificial intelligence, massively parallel algorithms, and perception-driven
approximations has the potential to pave the way towards photo-realistic imagery in
dynamic and interactive virtual environments.

111

Bibliography - Own Work

Kaplanyan, Anton, Anton Sochenov, Thomas Leimkühler, Mikhail Okunev, Todd
Goodall, and Gizem Rufo [2019]. “DeepFovea: Neural Reconstruction for Foveated
Rendering and Video Compression using Learned Statistics of Natural Videos”.
In: ACM Transactions on Graphics (Proc. SIGGRAPH Asia).

Kellnhofer, Petr, Thomas Leimkühler, Tobias Ritschel, Karol Myszkowski, and Hans-
Peter Seidel [2015]. “What Makes 2D-to-3D Stereo Conversion Perceptually Plau-
sible?” In: Proceedings of the ACM SIGGRAPH Symposium on Applied Perception.
SAP ’15. Tübingen, Germany: ACM, pp. 59–66.

Leimkühler, Thomas, Petr Kellnhofer, Tobias Ritschel, Karol Myszkowski, and Hans-
Peter Seidel [2016]. “Perceptual real-time 2D-to-3D conversion using cue fusion”.
In: Proc. Graphics Interface.

Leimkühler, Thomas, Hans-Peter Seidel, and Tobias Ritschel [2017]. “Minimal Warp-
ing: Planning Incremental Novel-view Synthesis”. In: Computer Graphics Forum
(Proc. EGSR) 36.4.

Leimkühler, Thomas, Hans-Peter Seidel, and Tobias Ritschel [2018a]. “Laplacian
Kernel Splatting for Efficient Depth-of-field and Motion Blur Synthesis or Recon-
struction”. In: ACM Transactions on Graphics (Proc. SIGGRAPH) 37.4.

Leimkühler, Thomas, Petr Kellnhofer, Tobias Ritschel, Karol Myszkowski, and Hans-
Peter Seidel [2018b]. “Perceptual real-time 2D-to-3D conversion using cue fusion”.
In: IEEE Transactions on Visualization and Computer Graphics 24.6, pp. 2037–2050.

Leimkühler, Thomas, Gurprit Singh, Karol Myszkowski, Hans-Peter Seidel, and
Tobias Ritschel [2019]. “Deep Point Correlation Design”. In: ACM Transactions on
Graphics (Proc. SIGGRAPH Asia).

113

Bibliography

Abadi, Martín, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean,
Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Manjunath
Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek G. Murray, Benoit
Steiner, Paul Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan Yu,
and Xiaoqiang Zheng [2016]. “TensorFlow: A System for Large-scale Machine
Learning”. In: OSDI.

Adelson, Edward H and James R Bergen [1991]. “The plenoptic function and the
elements of early vision”. In: Computational Models of Visual Processing.

Ahmed, Abdalla GM, Hélène Perrier, David Coeurjolly, Victor Ostromoukhov, Jianwei
Guo, Dong-Ming Yan, Hui Huang, and Oliver Deussen [2016]. “Low-discrepancy
blue noise sampling”. In: ACM Trans. Graph. 35.6.

Akenine-Möller, Tomas, Jacob Munkberg, and Jon Hasselgren [2007]. “Stochastic
rasterization using time-continuous triangles”. In: Graphics Hardware, pp. 7–16.

Anderson, Luke, Tzu-Mao Li, Jaakko Lehtinen, and Frédo Durand [2017]. “Aether:
An Embedded Domain Specific Sampling Language for Monte Carlo Rendering”.
In: ACM Trans. Graph. 36.4.

Assa, Jackie and Lior Wolf [2007]. “Diorama construction from single images”. In:
Comp. Graph. Forum (Proc. EG) 26.3, pp. 599–608.

Bach, Francis, Rodolphe Jenatton, Julien Mairal, and Guillaume Obozinski [2011].
“Optimization with Sparsity-Inducing Penalties”. In: arxiv:1108.0775.

Bailey, Donald G [2003]. “Sub-pixel estimation of local extrema”. In: Proc. Image and
Vision Computing, pp. 414–19.

Balzer, Michael, Thomas Schlömer, and Oliver Deussen [2009]. “Capacity-constrained
point distributions: a variant of Lloyd’s method”. In: ACM Trans. Graph. 28.3.

Barlas, Gerassimos [2014]. Multicore and GPU Programming: An integrated approach.
Elsevier.

Barnard, Stephen T. [1983]. “Interpreting perspective images”. In: Artificial Intelligence
21.4, pp. 435–462.

Barron, Jonathan T and Ben Poole [2016]. “The fast bilateral solver”. In: European
Conference on Computer Vision. Springer, pp. 617–632.

Baum, Seth [2017]. “A survey of artificial general intelligence projects for ethics, risk,
and policy”. In: Global Catastrophic Risk Institute Working Paper, pp. 17–1.

Belcour, Laurent, Cyril Soler, Kartic Subr, Nicolas Holzschuch, and Fredo Durand
[2013]. “5D Covariance tracing for efficient defocus and motion blur”. In: ACM
Trans. Graph (Proc. SIGGRAPH) 32.3, p. 31.

Bernstein, Gilbert Louis, Chinmayee Shah, Crystal Lemire, Zachary Devito, Matthew
Fisher, Philip Levis, and Pat Hanrahan [2016]. “Ebb: A DSL for Physical Simulation
on CPUs and GPUs”. In: ACM Trans. Graph. 35.2.

Bhat, Pravin, Brian Curless, Michael Cohen, and C Zitnick [2008]. “Fourier analysis
of the 2D screened Poisson equation for gradient domain problems”. In: ECCV,
pp. 114–28.

114 Bibliography

Bhat, Pravin, C Lawrence Zitnick, Michael Cohen, and Brian Curless [2010]. “Gra-
dientshop: A gradient-domain optimization framework for image and video
filtering”. In: ACM Trans. Graph. 29.2.

Bowers, John, Rui Wang, Li-Yi Wei, and David Maletz [2010]. “Parallel Poisson disk
sampling with spectrum analysis on surfaces”. In: ACM Trans. Graph. 29.6.

Bowles, Huw, Kenny Mitchell, Robert W. Sumner, Jeremy Moore, and Markus Gross
[2012]. “Iterative Image Warping”. In: Computer Graphics Forum 31.2, pp. 237–246.
ISSN: 1467-8659.

Bresnahan, Timothy F. and M. Trajtenberg [1995]. “General purpose technologies
‘Engines of growth’?” In: Journal of Econometrics 65.1, pp. 83 –108.

Chaitanya, Chakravarty R. Alla, Anton S. Kaplanyan, Christoph Schied, Marco Salvi,
Aaron Lefohn, Derek Nowrouzezahrai, and Timo Aila [2017]. “Interactive Recon-
struction of Monte Carlo Image Sequences Using a Recurrent Denoising Autoen-
coder”. In: ACM Trans. Graph. 36.4.

Chen, Jiawen, Sylvain Paris, and Frédo Durand [2007]. “Real-time edge-aware image
processing with the bilateral grid”. In: ACM Trans. Graph. (Proc. SIGGRAPH) 26.3,
p. 103.

Chen, Shenchang Eric and Lance Williams [1993]. “View Interpolation for Image
Synthesis”. In: SIGGRAPH, pp. 279–88.

Chen, Zhonggui, Zhan Yuan, Yi-King Choi, Ligang Liu, and Wenping Wang [2012].
“Variational blue noise sampling”. In: IEEE Trans. Vis Comp. Graph. 18.10, pp. 1784–
96.

Cheng, Chao-Chung, Chung-Te Li, and Liang-Gee Chen [2010]. “An Ultra-Low-Cost
2D-to-3D Video Conversion System”. In: SID 41.1, pp. 766–9.

Chiu, Kenneth, Peter Shirley, and Changyaw Wang [1994]. “Graphics Gems IV”. In:
ed. by Paul S. Heckbert. Chap. Multi-jittered Sampling, pp. 370–374.

Christensen, Per, Andrew Kensler, and Charlie Kilpatrick [2018]. “Progressive Multi-
Jittered Sample Sequences”. In: Comp. Graph. Forum (Proc.s of EGSR) 37.4.

Cleary, Anne, Denis Connolly, and Neil McKenzie [2014]. Metaperceptual Helmets.
URL: ❤tt♣ ✿ ✴ ✴ ✇✇✇ ✳ ❝♦♥♥♦❧❧② ✲ ❝❧❡❛r② ✳ ❝♦♠ ✴ ❍♦♠❡ ✴ ❤❡❧♠❡ts ✳ ❤t♠❧ [visited on
03/14/2019].

Cook, Robert L [1986]. “Stochastic sampling in computer graphics”. In: ACM Trans.
Graph. 5.1, pp. 51–72.

Cook, Robert L., Thomas Porter, and Loren Carpenter [Jan. 1984]. “Distributed Ray
Tracing”. In: SIGGRAPH Comput. Graph. 18.3, pp. 137–45.

Cook, Robert L., Loren Carpenter, and Edwin Catmull [1987]. “The Reyes Image
Rendering Architecture”. In: SIGGRAPH Comp. Graph. 21.4, pp. 95–102.

Cozman, F. and E. Krotkov [1997]. “Depth from scattering”. In: CVPR, pp. 801–806.
Crow, Franklin C [1984]. “Summed-area tables for texture mapping”. In: ACM SIG-

GRAPH Computer Graphics 18.3, pp. 207–12.
Csáji, Balázs Csanád [2001]. “Approximation with artificial neural networks”. In:

Faculty of Sciences, Etvs Lornd University, Hungary 24, p. 48.
Dabov, Kostadin, Alessandro Foi, Vladimir Katkovnik, and Karen Egiazarian [2006].

“Image denoising with block-matching and 3D filtering”. In: Proc. SPIE. Vol. 6064.
30.

Dahm, Ken and Alexander Keller [2017]. “Learning Light Transport the Reinforced
Way”. In: CoRR abs/1701.07403.

Dammertz, Sabrina and Alexander Keller [2008]. “Image synthesis by rank-1 lattices”.
In: Monte Carlo and Quasi-Monte Carlo Methods 2006. Springer, pp. 217–236.

Darrell, T. and K. Wohn [1988]. “Pyramid based depth from focus”. In: CVPR, pp. 504–
509.

http://www.connolly-cleary.com/Home/helmets.html

Bibliography 115

De Goes, Fernando, Katherine Breeden, Victor Ostromoukhov, and Mathieu Desbrun
[2012]. “Blue noise through optimal transport”. In: ACM Trans. Graph. 31.6.

Devito, Zachary, Michael Mara, Michael Zollhöfer, Gilbert Bernstein, Jonathan Ragan-
Kelley, Christian Theobalt, Pat Hanrahan, Matthew Fisher, and Matthias Niessner
[2017]. “Opt: A Domain Specific Language for Non-Linear Least Squares Opti-
mization in Graphics and Imaging”. In: ACM Trans. Graph. 36.5.

Didyk, Piotr, Tobias Ritschel, Elmar Eisemann, Karol Myszkowski, and Hans-Peter
Seidel [2010a]. “Adaptive Image-space Stereo View Synthesis”. In: Proc. VMV,
pp. 299–306.

Didyk, Piotr, Elmar Eisemann, Tobias Ritschel, Karol Myszkowski, and Hans-Peter
Seidel [2010b]. “Perceptually-motivated Real-time Temporal Upsampling of 3D
Content for High-refresh-rate Displays”. In: Comp. Graph. Forum (Proc. Eurograph-
ics) 29.2, pp. 713–22.

Didyk, Piotr, Tobias Ritschel, Elmar Eisemann, Karol Myszkowski, Hans-Peter Seidel,
and Wojciech Matusik [2012]. “A Luminance-Contrast-Aware Disparity Model
and Applications”. In: ACM Trans. Graph. (Proc. SIGGRAPH Asia) 31.6.

Didyk, Piotr, Pitchaya Sitthi-Amorn, William T. Freeman, Frédo Durand, and Wojciech
Matusik [2013]. “Joint View Expansion and Filtering for Automultiscopic 3D
Displays”. In: ACM Trans. Graph. (Proc. SIGGRAPH Asia) 32.6.

Dobkin, David P., David Eppstein, and Don P. Mitchell [Oct. 1996]. “Computing the
Discrepancy with Applications to Supersampling Patterns”. In: ACM Trans. Graph.
15.4, pp. 354–76.

Dong, Zhao, Thorsten Grosch, Tobias Ritschel, Jan Kautz, and Hans-Peter Seidel
[2009]. “Real-time Indirect Illumination with Clustered Visibility”. In: VMV,
pp. 187–196.

Donoho, David L, Iain M Johnstone, Jeffrey C Hoch, and Alan S Stern [1992]. “Maxi-
mum entropy and the nearly black object”. In: Journal of the Royal Statistical Society:
Series B (Methodological) 54.1, pp. 41–67.

Durand, Frédo, Nicolas Holzschuch, Cyril Soler, Eric Chan, and François X Sillion
[2005]. “A frequency analysis of light transport”. In: ACM Trans. Graph. (Proc.
SIGGRAPH) 24.3, pp. 1115–26.

Dutré, Philip, Eric P Lafortune, and Yves Willems [1993]. “Monte Carlo light tracing
with direct computation of pixel intensities”. In: Proc. Computational Graphics and
Visualisation Techniques, pp. 128–37.

Egan, Kevin, Yu-Ting Tseng, Nicolas Holzschuch, Frédo Durand, and Ravi Ramamoor-
thi [2009]. “Frequency analysis and sheared reconstruction for rendering motion
blur”. In: ACM Trans. Graph. (Proc. SIGGRAPH) 28.3.

Eigen, David, Christian Puhrsch, and Rob Fergus [2014]. “Depth map prediction
from a single image using a multi-scale deep network”. In: Advances in neural
information processing systems, pp. 2366–2374.

Elek, Oskar, Pablo Bauszat, Tobias Ritschel, Marcus Magnor, and Hans-Peter Seidel
[2014]. “Spectral Ray Differentials”. In: Proc. EGSR 33.4.

Eslami, SM Ali, Danilo Jimenez Rezende, Frederic Besse, Fabio Viola, Ari S Morcos,
Marta Garnelo, Avraham Ruderman, Andrei A Rusu, Ivo Danihelka, Karol Gregor,
et al. [2018]. “Neural scene representation and rendering”. In: Science 360.6394,
pp. 1204–1210.

Farbman, Zeev, Raanan Fattal, and Dani Lischinski [2011]. “Convolution pyramids”.
In: ACM Trans. Graph. 30.6, pp. 175–1.

Fattal, Raanan [Aug. 2008]. “Single Image Dehazing”. In: ACM Trans. Graph. 27.3,
72:1–72:9.

116 Bibliography

Fattal, Raanan [2011]. “Blue-noise point sampling using kernel density model”. In:
ACM Trans. Graph. 30.4.

Filippini, Heather R and Martin S Banks [2009]. “Limits of stereopsis explained by
local cross-correlation”. In: J Vis. 9.1.

Flavell, John H, Barbara A Everett, Karen Croft, and Eleanor R Flavell [1981]. “Young
children’s knowledge about visual perception: Further evidence for the Level
1–Level 2 distinction.” In: Developmental psychology 17.1, p. 99.

Fleming, Roland W, Ron O Dror, and Edward H Adelson [2003]. “Real-world illumi-
nation and the perception of surface reflectance properties”. In: Journal of vision
3.5, pp. 3–3.

Flynn, Michael J [1972]. “Some computer organizations and their effectiveness”. In:
IEEE transactions on computers 100.9, pp. 948–960.

Galić, Irena, Joachim Weickert, Martin Welk, Andrés Bruhn, Alexander Belyaev, and
Hans-Peter Seidel [2008]. “Image compression with anisotropic diffusion”. In: J
Math. Imaging and Vision 31.2, pp. 255–69.

Garg, Ravi, Vijay Kumar BG, Gustavo Carneiro, and Ian Reid [2016]. “Unsupervised
CNN for single view depth estimation: Geometry to the rescue”. In: European
Conference on Computer Vision. Springer, pp. 740–756.

Georgiev, Iliyan and Marcos Fajardo [2016]. “Blue-noise Dithered Sampling”. In: ACM
SIGGRAPH 2016 Talks.

Gerace, Adam, Andrew Day, Sharon Casey, and Philip Mohr [2013]. “An exploratory
investigation of the process of perspective taking in interpersonal situations”. In:
Journal of Relationships Research 4.

Gershun, Andreı̄ [1939]. “The light field”. In: Journal of Mathematics and Physics 18.1-4,
pp. 51–151.

Gibson, K. B., S. J. Belongie, and T. Q. Nguyen [2013]. “Example based depth from
fog”. In: Proc. ICIP, pp. 728–32.

Göransson, Jhonny and Andreas Karlsson [2007]. “Practical post-process depth of
field”. In: GPU Gems 3, pp. 583–606.

Gortler, Steven J, Radek Grzeszczuk, Richard Szeliski, and Michael F Cohen [1996].
“The lumigraph”. In: Siggraph. Vol. 96. 30, pp. 43–54.

Goy, Michael [2013]. American cinematographer manual. Vol. 10. Am. Cinemat.
Grant, Adam M and James W Berry [2011]. “The necessity of others is the mother of

invention: Intrinsic and prosocial motivations, perspective taking, and creativity”.
In: Academy of management journal 54.1, pp. 73–96.

Green, Peter J [1984]. “Iteratively reweighted least squares for maximum likelihood
estimation, and some robust and resistant alternatives”. In: J Royal Stat. Soc. B,
pp. 149–92.

Guttmann, M., L. Wolf, and D. Cohen-Or [2009]. “Semi-automatic stereo extraction
from video footage”. In: Proc. ICCV.

Haeberli, Paul and Kurt Akeley [1990]. “The accumulation buffer: hardware support
for high-quality rendering”. In: SIGGRAPH Comp. Graph. 24.4, pp. 309–18.

Halton, John H [1964]. “Algorithm 247: Radical-inverse quasi-random point se-
quence”. In: Communications of the ACM 7.12, pp. 701–702.

Harris, Julie M and Laurie M Wilcox [2009]. “The role of monocularly visible regions
in depth and surface perception”. In: Vision research 49.22, pp. 2666–2685.

Hasselgren, Jon and Tomas Akenine-Möller [2006]. “An efficient multi-view rasteriza-
tion architecture”. In: Proc. EGSR, pp. 61–72.

Heck, Daniel, Thomas Schlömer, and Oliver Deussen [2013]. “Blue noise sampling
with controlled aliasing”. In: ACM Trans. Graph. (Proc. SIGGRAPH) 32.3, p. 25.

Bibliography 117

Heckbert, Paul S. [1986]. “Filtering by Repeated Integration”. In: Proc. SIGGRAPH.
ACM, pp. 315–321. ISBN: 0-89791-196-2.

Heide, F., G. Wetzstein, R. Raskar, and W. Heidrich [2013]. “Adaptive Image Synthesis
for Compressive Displays”. In: ACM Trans. Graph. (Proc. SIGGRAPH) 32.4, pp. 1–
11.

Heide, Felix, Steven Diamond, Matthias Niessner, Jonathan Ragan-Kelley, Wolfgang
Heidrich, and Gordon Wetzstein [2016]. “ProxImaL: Efficient Image Optimization
Using Proximal Algorithms”. In: ACM Trans. Graph. 35.4.

Hermosilla, Pedro, Tobias Ritschel, Pere-Pau Vázquez, Àlvar Vinacua, and Timo
Ropinski [2018]. “Monte Carlo Convolution for Learning on Non-uniformly Sam-
pled Point Clouds”. In: ACM Trans. Graph (Proc. SIGGRAPH Asia) 37.5.

Hicks, JS and RF Wheeling [1959]. “An efficient method for generating uniformly
distributed points on the surface of an n-dimensional sphere”. In: Comm. ACM
2.4, pp. 17–19.

Hinton, Geoffrey E and Ruslan R Salakhutdinov [2006]. “Reducing the dimensionality
of data with neural networks”. In: science 313.5786, pp. 504–507.

Hoiem, Derek, Alexei A. Efros, and Martial Hebert [2005]. “Automatic photo pop-up”.
In: ACM Trans. Graph. 24.3, pp. 577–584.

Howard, I.P. and B.J. Rogers [2012]. Perceiving in Depth. Oxford Psychology Series.
Huang, Xiaojun, Lianghao Wang, Junjun Huang, Dongxiao Li, and Ming Zhang

[2009]. “A Depth Extraction Method Based on Motion and Geometry for 2D to 3D
Conversion”. In: Proc. IITA. Nanchang, China, pp. 294–298.

Hullin, Matthias, Elmar Eisemann, Hans-Peter Seidel, and Sungkil Lee [2011]. “Physically-
based real-time lens flare rendering”. In: ACM Trans Graph. (Proc. SIGGRAPH Asia)
30.4, p. 108.

Igehy, Homan [1999]. “Tracing ray differentials”. In: Proc. SIGGRAPH. ACM, pp. 179–
186.

Itakura, Shoji [2004]. “Gaze-following and joint visual attention in nonhuman ani-
mals”. In: Japanese Psychological Research 46.3, pp. 216–226.

Ito, Atsushi, Salil Tambe, Kaushik Mitra, Aswin C Sankaranarayanan, and Ashok Veer-
araghavan [2014]. “Compressive epsilon photography for post-capture control in
digital imaging”. In: ACM Trans. Graph. 33.4, p. 88.

Jiang, Min, Yahan Zhou, Rui Wang, Richard Southern, and Jian Jun Zhang [2015].
“Blue noise sampling using an SPH-based method”. In: ACM Trans. Graph. 34.6.

Kailkhura, Bhavya, Jayaraman J Thiagarajan, Peer-Timo Bremer, and Pramod K
Varshney [2016]. “Stair blue noise sampling”. In: ACM Trans. Graph. 35.6.

Kajiya, James T [1986]. “The rendering equation”. In: ACM SIGGRAPH computer
graphics. Vol. 20. 4. ACM, pp. 143–150.

Kalantari, Nima Khademi and Pradeep Sen [2013]. “Removing the noise in Monte
Carlo rendering with general image denoising algorithms”. In: Comp. Graph. Forum
32.2, pp. 93–102.

Kallweit, Simon, Thomas Müller, Brian Mcwilliams, Markus Gross, and Jan Novák
[2017]. “Deep Scattering: Rendering Atmospheric Clouds with Radiance-predicting
Neural Networks”. In: ACM Trans. Graph. 36.6.

Kane, D., P. Guan, and M.S. Banks [2014]. “The Limits of Human Stereopsis in Space
and Time”. In: J Neurosc. 34.4, pp. 1397–408.

Karsch, K., Ce Liu, and Sing Bing Kang [2014]. “Depth Transfer: Depth Extraction
from Video Using Non-Parametric Sampling”. In: IEEE PAMI 36.11.

Keller, Alexander [1997]. “Instant Radiosity”. In: Proc. SIGGRAPH 1997. ACM Press/Addison-
Wesley Publishing Co., pp. 49–56.

118 Bibliography

Keller, Alexander [2006]. “Myths of computer graphics”. In: Monte Carlo and Quasi-
Monte Carlo Methods 2004. Springer, pp. 217–243.

Kellnhofer, Petr, Piotr Didyk, Tobias Ritschel, Belen Masia, Karol Myszkowski, and
Hans-Peter Seidel [2016]. “Motion Parallax in Stereo 3D: Model and Applications”.
In: ACM Transactions on Graphics (Proc. SIGGRAPH Asia 2016) 35.6.

Kensler, Andrew [2013]. Correlated multi-jittered sampling. Tech. rep. Pixar Technical
Memo.

Kettunen, Markus, Marco Manzi, Miika Aittala, Jaakko Lehtinen, Frédo Durand, and
Matthias Zwicker [2015]. “Gradient-domain path tracing”. In: ACM Trans. Graph.
34.4, p. 123.

Kirk, David [2007]. “NVIDIA CUDA software and GPU parallel computing architec-
ture”. In: ISMM. Vol. 7, pp. 103–104.

Knill, David C and Whitman Richards [1996]. Perception as Bayesian inference. Cam-
bridge University Press.

Knutsson, Hans and C-F Westin [1993]. “Normalized and differential convolution”.
In: CVPR, pp. 515–23.

Kolb, Craig, Don Mitchell, and Pat Hanrahan [1995]. “A realistic camera model for
computer graphics”. In: SIGGRAPH, pp. 317–24.

Koller, Daphne and Nir Friedman [2009]. Probabilistic graphical models: Principles and
techniques. MIT press.

Konrad, Janusz, Meng Wang, and Prakash Ishwar [2012]. “2D-to-3D image conversion
by learning depth from examples”. In: CVPR, pp. 16–22.

Kontkanen, Janne, Jussi Räsänen, and Alexander Keller [2006]. “Irradiance filtering
for Monte Carlo ray tracing”. In: Proc. MC QMC, pp. 259–272.

Kopf, Johannes, Daniel Cohen-Or, Oliver Deussen, and Dani Lischinski [2006]. “Recur-
sive Wang tiles for real-time blue noise”. In: ACM Trans. Graph. (Proc. SIGGRAPH)
25.3.

Kopf, Johannes, Michael F. Cohen, Dani Lischinski, and Matt Uyttendaele [2007].
“Joint Bilateral Upsampling”. In: ACM Trans. Graph. (Proc. SIGGRAPH) 26.3.

Kopf, Johannes, Fabian Langguth, Daniel Scharstein, Richard Szeliski, and Michael
Goesele [2013]. “Image-based rendering in the gradient domain”. In: ACM Trans.
Graph. (Proc. SIGGRAPH) 32.6.

Krähenbühl, Philipp and Vladlen Koltun [2011]. “Efficient Inference in Fully Con-
nected CRFs with Gaussian Edge Potentials”. In: NIPS, pp. 109–117.

Kraus, Martin and Magnus Strengert [2007]. “Depth-of-Field Rendering by Pyramidal
Image Processing”. In: Comp. Graph Forum. Vol. 26. 3, pp. 645–54.

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton [2012]. “ImageNet Classifi-
cation with Deep Convolutional Neural Networks”. In: NIPS, pp. 1097–105.

Kulla, Christopher, Alejandro Conty, Clifford Stein, and Larry Gritz [Aug. 2018].
“Sony Pictures Imageworks Arnold”. In: ACM Trans. Graph. 37.3, 29:1–29:18. ISSN:
0730-0301.

Lafferty, John D., Andrew McCallum, and Fernando C. N. Pereira [2001]. “Conditional
Random Fields: Probabilistic Models for Segmenting and Labeling Sequence
Data”. In: Proc. ICML, pp. 282–289.

Lagae, Ares and Philip Dutre [2008]. “A Comparison of Methods for Generating
Poisson Disk Distributions”. In: Computer Graphics Forum 27.1, pp. 114–129.

Landy, Michael S., Laurence T. Maloney, Elizabeth B. Johnston, and Mark Young
[1995]. “Measurement and modeling of depth cue combination: In defense of
weak fusion”. In: Vis. Res. 35.3, pp. 389–412.

Bibliography 119

Lang, Manuel, Alexander Hornung, Oliver Wang, Steven Poulakos, Aljoscha Smolic,
and Markus Gross [2010]. “Nonlinear disparity mapping for stereoscopic 3D”. In:
ACM Trans. Graph. (Proc. SIGGRAPH) 29.4.

Lang, Manuel, Oliver Wang, Tunc Aydin, Aljoscha Smolic, and Markus Gross [2012].
“Practical temporal consistency for image-based graphics applications”. In: ACM
Trans. Graph. (Proc. SIGGRAPH) 31.4.

Lee, Sungkil, Gerard Jounghyun Kim, and Seungmoon Choi [2008]. “Real-Time Depth-
of-Field Rendering Using Point Splatting on Per-Pixel Layers”. In: Comp. Graph.
Forum 27.7, pp. 1955–62.

Lee, Sungkil, Elmar Eisemann, and Hans-Peter Seidel [2009]. “Depth-of-field ren-
dering with multiview synthesis”. In: ACM Trans. Graph. (Proc. SIGGRAPH Asia).
Vol. 28. 5. ACM, p. 134.

Lee, Sungkil, Elmar Eisemann, and Hans-Peter Seidel [2010]. “Real-time lens blur
effects and focus control”. In: ACM Trans. Graph (Proc. SIGGRAPH) 29.4.

Lehtinen, Jaakko, Timo Aila, Jiawen Chen, Samuli Laine, and Frédo Durand [2011].
“Temporal Light Field Reconstruction for Rendering Distribution Effects”. In: ACM
Trans. Graph. 30.4.

Lehtinen, Jaakko, Tero Karras, Samuli Laine, Miika Aittala, Frédo Durand, and Timo
Aila [2013]. “Gradient-domain metropolis light transport”. In: ACM Trans. Graph.
(Proc. SIGGRAPH) 32.4, p. 95.

Li, Bo, Chunhua Shen, Yuchao Dai, Anton Van Den Hengel, and Mingyi He [2015].
“Depth and surface normal estimation from monocular images using regression
on deep features and hierarchical CRFs”. In: Proc. CVPR, pp. 1119–1127.

Li, Tzu-Mao, Miika Aittala, Frédo Durand, and Jaakko Lehtinen [2018]. “Differentiable
Monte Carlo Ray Tracing through Edge Sampling”. In: ACM Trans. Graph. (Proc.
SIGGRAPH Asia) 37.6, 222:1–222:11.

Lin, Jingyu, Xiangyang Ji, Wenli Xu, and Qionghai Dai [2013]. “Absolute Depth
Estimation From a Single Defocused Image”. In: IEEE Trans. Image Processing 22.11,
pp. 4545–4550.

Linnainmaa, Seppo [1970]. “The representation of the cumulative rounding error
of an algorithm as a Taylor expansion of the local rounding errors”. In: Master’s
Thesis, Univ. Helsinki.

Lippman, Andrew [1980]. “Movie-maps: An application of the optical videodisc to
computer graphics”. In: ACM SIGGRAPH. Vol. 14. 3, pp. 32–42.

Lischinski, Dani and Ari Rappoport [1998]. “Image-based rendering for non-diffuse
synthetic scenes”. In: Rendering Techniques’ 98. Springer, pp. 301–314.

Liu, Fayao, Chunhua Shen, Guosheng Lin, and Ian Reid [2016]. “Learning depth
from single monocular images using deep convolutional neural fields”. In: IEEE
transactions on pattern analysis and machine intelligence 38.10, pp. 2024–2039.

Liu, Xueting, Xiangyu Mao, Xuan Yang, Linling Zhang, and Tien-Tsin Wong [2013].
“Stereoscopizing cel animations”. In: ACM Trans. Graph. (Proc. SIGGRAPH Asia)
32.6, p. 223.

Lloyd, Stuart [1982]. “Least squares quantization in PCM”. In: IEEE Trans. Inf. Theory
28.2, pp. 129–37.

Lochmann, Gerrit, Bernhard, Tobias Ritschel, Stefan Müller, and Hans-Peter Seidel
[2014]. “Real-time Reflective and Refractive Novel-view Synthesis”. In: Proc. VMV,
pp. 9–16.

Lucas, Bruce D and Takeo Kanade [1981]. “An iterative image registration technique
with an application to stereo vision.” In: IJCAI 81, pp. 74–679.

120 Bibliography

Ma, Wei-Ying and B.S. Manjunath [2000]. “EdgeFlow: A technique for boundary
detection and image segmentation”. In: IEEE Trans. Image Processing 9.8, pp. 1375–
1388.

Mark, William R., Leonard McMillan, and Gary Bishop [1997]. “Post-rendering 3D
Warping”. In: Proc. i3D.

Marlow, Phillip J, Juno Kim, and Barton L Anderson [2012]. “The perception and
misperception of specular surface reflectance”. In: Current Biology 22.20, pp. 1909–
1913.

Maximov, Maxim, Tobias Ritschel, and Mario Fritz [2018]. “Deep Appearance Maps”.
In: arXiv preprint arXiv:1804.00863.

McCool, Michael and Eugene Fiume [1992]. “Hierarchical Poisson disk sampling
distributions”. In: Proc. Graphics interface. Vol. 92, pp. 94–105.

McCool, Michael D [1999]. “Anisotropic diffusion for Monte Carlo noise reduction”.
In: ACM Trans. Graph. 18.2, pp. 171–94.

McCorduck, Pamela [2009]. Machines who think: A personal inquiry into the history and
prospects of artificial intelligence. AK Peters/CRC Press.

McGuire, Morgan, Padraic Hennessy, Michael Bukowski, and Brian Osman [2012].
“A reconstruction filter for plausible motion blur”. In: i3D, pp. 135–42.

McMillan, Leonard [1997]. “An Image-Based Approach to Three-Dimensional Com-
puter Graphics”. PhD thesis. University of North Carolina at Chapel Hill.

Merkle, P., Y. Morvan, A. Smolic, D. Farin, K. Müller, P. H. N. de With, and T. Wie-
gand [2009]. “The effects of multiview depth video compression on multiview
rendering”. In: Signal Processing: Im. Commun. 24.1-2.

Michaelis, M. and G. Sommer [1994]. “Junction classification by multiple orientation
detection”. English. In: Proc. ECCV, pp. 101–8.

Miksik, Ondrej, Daniel Munoz, J Andrew Bagnell, and Martial Hebert [2013]. “Effi-
cient temporal consistency for streaming video scene analysis”. In: Proc. ICRA,
pp. 133–9.

Mitchell, Don P. [1992]. “Ray Tracing and Irregularities of Distribution”. In: In Third
Eurographics Workshop on Rendering, pp. 61–69.

Mitchell, Scott A., Mohamed S. Ebeida, Muhammad A. Awad, Chonhyon Park, Anjul
Patney, Ahmad A. Rushdi, Laura P. Swiler, Dinesh Manocha, and Li-Yi Wei [2018].
“Spoke-Darts for High-Dimensional Blue-Noise Sampling”. In: ACM Trans. Graph.
37.2.

Müller, Thomas, Brian McWilliams, Fabrice Rousselle, Markus Gross, and Jan Novák
[2018]. “Neural Importance Sampling”. In: arXiv:1808.03856.

Mulligan, Jeffrey B and Albert J Ahumada [1992]. “Principled halftoning based on
human vision models”. In: Human Vision, Visual Processing, and Digital Display III.
Vol. 1666.

Munkberg, Jacob, Karthik Vaidyanathan, Jon Hasselgren, Petrik Clarberg, and Tomas
Akenine-Möller [2014]. “Layered Reconstruction for Defocus and Motion Blur”.
In: Comp. Graph. Forum 33.4, pp. 81–92.

Murata, H., Y. Mori, S. Yamashita, A. Maenaka, S. Okada, K. Oyamada, and S. Kishi-
moto [1998]. “A Real-Time 2-D to 3-D Image Conversion Technique Using Com-
puted Image Depth”. In: SID 29.1, pp. 919–23.

Nalbach, Oliver, Tobias Ritschel, and Hans-Peter Seidel [2014]. “Deep Screen Space”.
In: I3D. ACM.

Nalbach, Oliver, Elena Arabadzhiyska, Dushyant Mehta, H-P Seidel, and Tobias
Ritschel [2017]. “Deep Shading: Convolutional Neural Networks for Screen Space
Shading”. In: Comp. Graph. Forum 36.4, pp. 65–78.

Bibliography 121

Oliver, Deussen, Hiller Stefan, Van Overveld Cornelius, and Strothotte Thomas [2001].
“Floating Points: A Method for Computing Stipple Drawings”. In: Computer Graph-
ics Forum 19.3, pp. 41–50.

Orzan, Alexandrina, Adrien Bousseau, Pascal Barla, Holger Winnemöller, Joëlle
Thollot, and David Salesin [2013]. “Diffusion curves: a vector representation for
smooth-shaded images”. In: Comm. ACM 56.7, pp. 101–8.

Ostromoukhov, Victor, Charles Donohue, and Pierre-Marc Jodoin [2004]. “Fast hierar-
chical importance sampling with blue noise properties”. In: ACM Trans. Graph.
23.3, pp. 488–95.

Öztireli, A Cengiz and Markus Gross [2012]. “Analysis and synthesis of point distri-
butions based on pair correlation”. In: ACM Trans. Graph. 31.6.

Penrose, Roger [1999]. The Emperor’s New Mind: Concerning Computers, Minds, and the
Laws of Physics. Popular Science Series. OUP Oxford.

Pentland, Alex Paul [1987]. “A New Sense for Depth of Field”. In: IEEE PAMI 4.
Pérez, Patrick, Michel Gangnet, and Andrew Blake [2003]. “Poisson image editing”.

In: ACM Trans. Graph (Proc. SIGGRAPH) 22.3, pp. 313–18.
Perrier, Hélène, David Coeurjolly, Feng Xie, Matt Pharr, Pat Hanrahan, and Vic-

tor Ostromoukhov [2018]. “Sequences with Low-Discrepancy Blue-Noise 2-D
Projections”. In: Comp. Graph. Forum (Proc. Eurographics) 37.2.

Pharr, Matt, Wenzel Jakob, and Greg Humphreys [2016]. Physically based rendering:
From theory to implementation. Morgan Kaufmann.

Piaget, J and B Inhelder [1969]. “The psychology of the child Basic Books”. In: Inc
New York.

Pilleboue, Adrien, Gurprit Singh, David Coeurjolly, Michael Kazhdan, and Victor
Ostromoukhov [2015]. “Variance analysis for Monte Carlo integration”. In: ACM
Trans. Graph. 34.4.

Potmesil, Michael and Indranil Chakravarty [1981]. “A lens and aperture camera
model for synthetic image generation”. In: ACM SIGGRAPH Computer Graphics
15.3, pp. 297–305.

Premože, Simon, Michael Ashikhmin, Jerry Tessendorf, Ravi Ramamoorthi, and Shree
Nayar [2004]. “Practical rendering of multiple scattering effects in participating
media”. In: Proc. EGWR, pp. 363–74.

Qi, Charles R, Hao Su, Kaichun Mo, and Leonidas J Guibas [2017]. “Pointnet: Deep
learning on point sets for 3d classification and segmentation”. In: CVPR.

Qin, Hongxing, Yi Chen, Jinlong He, and Baoquan Chen [2017]. “Wasserstein Blue
Noise Sampling”. In: ACM Trans. Graph. 36.5.

Ramanarayanan, Ganesh, James Ferwerda, Bruce Walter, and Kavita Bala [2007].
“Visual equivalence: Towards a new standard for image fidelity”. In: ACM Transac-
tions on Graphics (TOG). Vol. 26. 3. ACM, p. 76.

Raskar, Ramesh [2009]. “Computational photography: Epsilon to coded photogra-
phy”. In: Emerging Trends in Visual Computing, pp. 238–253.

Reinert, Bernhard, Tobias Ritschel, Hans-Peter Seidel, and Iliyan Georgiev [2016].
“Projective Blue-Noise Sampling”. In: Comp. Graph. Forum 35.1, pp. 285–95.

Ren, Peiran, Yue Dong, Stephen Lin, Xin Tong, and Baining Guo [2015]. “Image Based
Relighting Using Neural Networks”. In: ACM Trans. Graph. 34.

Richardt, Christian, Carsten Stoll, Neil Dodgson, Hans-Peter Seidel, and Christian
Theobalt [2012]. “Coherent Spatiotemporal Filterung, Upsampling and Rendering
of RGBZ Videos”. In: Comp. Graph. Forum 31.2.

Robinson, Alan E. and Donald I. A. MacLeod [2013]. “Depth and luminance edges
attract”. In: Journal of Vision 13.11.

122 Bibliography

Robinson, D and C Atcitty [1999]. “Comparison of quasi-and pseudo-Monte Carlo
sampling for reliability and uncertainty analysis”. In: Proc. AIAA Probabilistic
Methods.

Rosado, Gilberto [2007]. “Motion blur as a post-processing effect”. In: GPU gems 3,
pp. 575–81.

Roy, Anirban and Sinisa Todorovic [2016]. “Monocular depth estimation using neural
regression forest”. In: Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 5506–5514.

Rumelhart, David E, Geoffrey E Hinton, and Ronald J Williams [1985]. Learning
internal representations by error propagation. Tech. rep. California Univ. San Diego
La Jolla Inst. for Cognitive Science.

Russell, Stuart, Daniel Dewey, and Max Tegmark [2015]. “Research priorities for
robust and beneficial artificial intelligence”. In: Ai Magazine 36.4, pp. 105–114.

Russell, Stuart J and Peter Norvig [2016]. Artificial intelligence: A modern approach.
Malaysia; Pearson Education Limited.

Saxena, Ashutosh, Min Sun, and Andrew Y. Ng [2009]. “Make3D: Learning 3D Scene
Structure from a Single Still Image”. In: PAMI 31.5, pp. 824–40.

Schmaltz, Christian, Pascal Gwosdek, Andres Bruhn, and Joachim Weickert [2010].
“Electrostatic Halftoning”. In: Comp. Graph. Forum.

Scott, David W [1979]. “On optimal and data-based histograms”. In: Biometrika 66.3,
pp. 605–610.

Secord, Adrian [2002]. “Weighted voronoi stippling”. In: Proc. NPAR, pp. 37–43.
Sen, Pradeep and Soheil Darabi [2012]. “On filtering the noise from the random

parameters in Monte Carlo rendering.” In: ACM Trans. Graph. (Proc. SIGGRAPH)
31.3, pp. 18–1.

Shade, Jonathan, Steven Gortler, Li-wei He, and Richard Szeliski [1998]. “Layered
depth images”. In: Proc. SIGGRAPH, pp. 231–42.

Shirley, Peter et al. [1991]. “Discrepancy as a quality measure for sample distributions”.
In: Proc. Eurographics, pp. 183–194.

Shreiner, Dave, Graham Sellers, John Kessenich, and Bill Licea-Kane [2013]. OpenGL
programming guide: The Official guide to learning OpenGL, version 4.3. Addison-
Wesley.

Sibbing, D., T. Sattler, B. Leibe, and L. Kobbelt [2013]. “SIFT-Realistic Rendering”. In:
Proc. 3DV.

Silberman, Nathan, Derek Hoiem, Pushmeet Kohli, and Rob Fergus [2012]. “Indoor
Segmentation and Support Inference from RGBD Images”. In: ECCV.

Simard, Patrice, Léon Bottou, Patrick Haffner, and Yann LeCun [1999]. “Boxlets: a
fast convolution algorithm for signal processing and neural networks”. In: NIPS,
pp. 571–7.

Singh, Gurprit and Wojciech Jarosz [2017]. “Convergence Analysis for Anisotropic
Monte Carlo Sampling Spectra”. In: ACM Trans. Graph. (Proc. SIGGRAPH) 36.4.

Sobol, Ilya M [1994]. A primer for the Monte Carlo method. CRC press.
Soler, Cyril, Kartic Subr, Frédo Durand, Nicolas Holzschuch, and François Sillion

[2009]. “Fourier depth of field”. In: ACM Trans. Graph. 28.2, p. 18.
Steinberger, Markus [2013]. “Dynamic Resource Scheduling on Graphics Processors”.

PhD thesis.
Stone, John E, David Gohara, and Guochun Shi [2010]. “OpenCL: A parallel program-

ming standard for heterogeneous computing systems”. In: Computing in science &
engineering 12.3, p. 66.

Stratton, George M [1897]. “Vision without inversion of the retinal image.” In: Psycho-
logical review 4.4, p. 341.

Bibliography 123

Subr, Kartic and Jan Kautz [2013]. “Fourier analysis of stochastic sampling strategies
for assessing bias and variance in integration”. In: ACM Trans. Graph. 32.

Sun, Xin, Guofu Xie, Yue Dong, Stephen Lin, Weiwei Xu, Wencheng Wang, Xin Tong,
and Baining Guo [2012]. “Diffusion curve textures for resolution independent
texture mapping.” In: ACM Trans. Graph. (Proc. SIGGRAPH) 31.4, pp. 74–1.

Suykens, Frank and Yves D Willems [2001]. “Path differentials and applications”. In:
Proc. EGSR. Springer, pp. 257–268.

Szeliski, Richard [1990]. “Bayesian modeling of uncertainty in low-level vision”. In:
IJCV 5.3, pp. 271–301.

Szeliski, Richard [2010]. Computer vision: Algorithms and applications. Springer.
Tam, Wa James, Carlos Vázquez, and Filippo Speranza [2009]. “Three-dimensional TV:

A novel method for generating surrogate depth maps using colour information”.
In: Proc. SPIE.

Tao, Michael W., Sunil Hadap, Jitendra Malik, and Ravi Ramamoorthi [2013]. “Depth
from Combining Defocus and Correspondence Using Light-Field Cameras”. In:
ICCV, pp. 673–680.

Tomasi, Carlo and Roberto Manduchi [1998]. “Bilateral filtering for gray and color
images”. In: Int Conf. Comp. Vis. Pp. 839–846.

Torborg, Jay and James T Kajiya [1996]. “Talisman: Commodity realtime 3D graphics
for the PC”. In: Proc. SIGGRAPH, pp. 353–63.

Torralba, Antonio [2009]. “How many pixels make an image?” In: Visual Neuroscience
26 [01], pp. 123–131.

Ulichney, Robert A [1988]. “Dithering with blue noise”. In: Proc. IEEE 76.1, pp. 56–79.
Vaidyanathan, Karthik, Jacob Munkberg, Petrik Clarberg, and Marco Salvi [2015].

“Layered light field reconstruction for defocus blur”. In: ACM Trans.Graph. 34.2,
p. 23.

Valencia, Sergio Aguirre and Ramon M Rodriguez-Dagnino [2003]. “Synthesizing
stereo 3D views from focus cues in monoscopic 2D images”. In: Electronic Imaging
2003, pp. 377–388.

Van Waveren, JMP [2016]. “The asynchronous time warp for virtual reality on con-
sumer hardware”. In: Proceedings of the 22nd ACM Conference on Virtual Reality
Software and Technology. ACM, pp. 37–46.

Vedula, Sundar, Simon Baker, Peter Rander, Robert Collins, and Takeo Kanade [1999].
“Three-dimensional scene flow”. In: ICCV. Vol. 2, pp. 722–729.

Vogel, Christoph, Konrad Schindler, and Stefan Roth [2015]. “3D Scene Flow Esti-
mation with a Piecewise Rigid Scene Model”. In: Int. J Comp. Vis. 115.1, pp. 1–
28.

Wachtel, Florent, Adrien Pilleboue, David Coeurjolly, Katherine Breeden, Gurprit
Singh, Gaël Cathelin, Fernando De Goes, Mathieu Desbrun, and Victor Ostro-
moukhov [2014]. “Fast tile-based adaptive sampling with user-specified Fourier
spectra”. In: ACM Trans. Graph. 33.4.

Walter, Bruce, Sebastian Fernandez, Adam Arbree, Kavita Bala, Michael Donikian,
and Donald P Greenberg [2005]. “Lightcuts: a scalable approach to illumination”.
In: ACM Transactions on graphics (TOG). Vol. 24. 3. ACM, pp. 1098–1107.

Wandell, Brian A. [1995]. Foundations of vision. Sinauer Associates.
Wang, Zhou, Alan Conrad Bovik, Hamid Rahim Sheikh, and Eero P Simoncelli [2004].

“Image quality assessment: from error visibility to structural similarity”. In: IEEE
Trans. Image Proc. 13.4, pp. 600–612.

Ward, B., Sing Bing Kang, and E.P. Bennett [2011]. “Depth Director: A System for
Adding Depth to Movies”. In: IEEE Comp. Graph. and App. 31.1.

124 Bibliography

Wei, Li-Yi and Rui Wang [2011]. “Differential domain analysis for non-uniform
sampling”. In: ACM Trans. Graph. 30.4.

Westover, Lee [1989]. “Interactive volume rendering”. In: Proceedings of the 1989 Chapel
Hill workshop on Volume visualization. ACM, pp. 9–16.

Widmer, S, D Pajak, A Schulz, K Pulli, J Kautz, M Goesele, and D Luebke [2015].
“An adaptive acceleration structure for screen-space ray tracing”. In: Proc. HPG,
pp. 67–76.

Yamada, K. and Y. Suzuki [2009]. “Real-time 2D-to-3D conversion at full HD 1080P
resolution”. In: IEEE ISCE, pp. 103–6.

Yan, Dong-Ming, Jian-Wei Guo, Bin Wang, Xiao-Peng Zhang, and Peter Wonka [2015a].
“A survey of blue-noise sampling and its applications”. In: J Comp. Sci. and Tech.
30.3, pp. 439–52.

Yan, Ling-Qi, Soham Uday Mehta, Ravi Ramamoorthi, and Fredo Durand [2015b].
“Fast 4D Sheared Filtering for Interactive Rendering of Distribution Effects”. In:
ACM Trans. Graph. 35.1, p. 7.

Yang, Lei, Yu-Chiu Tse, Pedro V. Sander, Jason Lawrence, Diego Nehab, Hugues
Hoppe, and Clara L. Wilkins [2011]. “Image-based Bidirectional Scene Reprojec-
tion”. In: ACM Trans. Graph. 30.6, 150:1–150:10.

Yang, Zhiyong and Dale Purves [2003]. “A statistical explanation of visual space”. In:
Nature Neuroscience 6.6, pp. 632–640.

Yellott, John I [1983]. “Spectral consequences of photoreceptor sampling in the rhesus
retina”. In: Science 221.4608, pp. 382–5.

Yu, Xuan, Rui Wang, and Jingyi Yu [2010]. “Real-time Depth of Field Rendering via
Dynamic Light Field Generation and Filtering”. In: Comp. Graph. Forum. Vol. 29. 7,
pp. 2099–107.

Zhang, Guofeng, Wei Hua, Xueying Qin, Tien-Tsin Wong, and Hujun Bao [2007].
“Stereoscopic video synthesis from a monocular video”. In: IEEE TVCG 13.4.

Zhang, L., C. Vazquez, and S. Knorr [2011]. “3D-TV Content Creation: Automatic
2D-to-3D Video Conversion”. In: IEEE Trans. Broadcasting 57.2, pp. 372–83.

Zheng, Quan and Matthias Zwicker [2018]. “Learning to Importance Sample in
Primary Sample Space”. In: arxiv:1808.07840.

Zhou, Kun, Qiming Hou, Zhong Ren, Minmin Gong, Xin Sun, and Baining Guo [2009].
“RenderAnts: interactive REYES rendering on GPUs”. In: ACM Trans. Graph. (Proc.
SIGGRAPH). Vol. 28. 5, p. 155.

Zhou, Yahan, Haibin Huang, Li-Yi Wei, and Rui Wang [2012]. “Point sampling with
general noise spectrum”. In: ACM Trans. Graph. 31.4, p. 76.

Zhou, Zhi-Hua [2017]. “A brief introduction to weakly supervised learning”. In:
National Science Review 5.1, pp. 44–53.

Zwicker, Matthias, Hanspeter Pfister, Jeroen Van Baar, and Markus Gross [2001].
“Surface splatting”. In: Proc. SIGGRAPH, pp. 371–8.

Zwicker, Matthias, Wojciech Matusik, Frédo Durand, Hanspeter Pfister, and Clifton
Forlines [2006]. “Antialiasing for automultiscopic 3D displays”. In: SIGGRAPH
Sketches.

	Introduction
	Motivation
	Contributions
	Outline

	Background and Previous Work
	Mathematical Background
	Differential Operators
	Integral Transforms
	Sparse Approximations
	Radial Basis Functions
	Bayesian Statistics
	Monte Carlo Integration

	Parallel Visual Computing
	Massively Parallel Computing
	Data-parallel Operations

	Depth Perception
	Stereopsis
	Spatio-temporal Disparity Sensitivity
	Computational Models of Depth Perception

	View Synthesis
	Light Transport and Rendering
	Image-based Rendering

	Sampling
	Pattern Properties
	Pattern Generation
	Projective Subspaces

	Artificial Intelligence
	Overview
	Optimization
	Classical Planning
	Machine Learning
	Probabilistic Reasoning

	Deep Point Correlation Design
	Introduction
	Overview
	Point Pattern Agendas
	Notation
	Point Correlation
	Spectrum
	Differential Domain
	Radial Mean
	Anisotropy
	Swizzle
	Metrics

	Point Patterns via Iterated Filtering
	Architecture
	Filters
	Training
	Discussion

	Results
	Spectral and Differential Analysis
	Monte Carlo Integration Convergence Analysis
	Scalability
	Applications

	Conclusion

	Minimal Warping: Planning Incremental Novel-view Synthesis
	Introduction
	Overview
	Input and Output
	Minimal Warping
	Pipeline

	Distribution Flow
	Domain and Mapping
	Flow Components
	Representing Distribution Flow

	Minimal Warping
	Sample Planning
	Tiling and Batching
	Warping
	Aggregation

	Results and Discussion
	Qualitative Results
	Quantitative Results
	Discussion
	Limitations

	Conclusion

	Laplacian Kernel Splatting
	Introduction
	Overview
	Background
	Point-spread Functions
	Laplacian Rasterization

	Pre-calculation: PSF Sampling
	PSF Model
	Sample Placement
	Sample Generation
	Pre-filtering
	Sparsification

	Runtime: PSF Splatting
	Sample Storage
	Sample Splatting
	Integration
	Fast Track

	Results and Discussion
	Qualitative Results
	Quantitative Results
	Analysis
	Limitations

	Conclusion

	Perceptual Real-time 2D-to-3D Conversion Using Cue Fusion
	Introduction
	Overview
	Pre-processing
	Disparity Priors
	Scene Classification

	Depth Cues
	Defocus
	Aerial Perspective
	Vanishing Points
	Static Occlusions
	Motion
	User Input

	Cue Fusion
	Unary Estimate
	Prior
	Robust Estimate
	Pairwise Estimate

	Stereo Image Generation
	Evaluation
	Cue Influence Analysis
	Validating Plausible Disparity
	Perceptual Comparison Study
	Quantitative Evaluation

	Conclusion

	Conclusion
	Summary and Discussion
	Algorithmic Combinations
	Future Work
	Closing Remarks

	Bibliography - Own Work
	Bibliography

