
Dissertation

Interactive Vegetation Rendering

ausgeführt
zum Zwecke der Erlangung des akademischen Grades

eines Doktors der technischen Wissenschaften

unter der Leitung von
Priv.-Doz. Dipl.-Ing. Dr.techn. Helwig Hauser

eingereicht
an der Technischen Universität Wien,

Fakultät für Technische Naturwissenschaften und Informatik,

von
Dipl.-Ing. Stephan Mantler,
Matrikelnummer 9325834,

Payergasse 1/17,
A-2340 Mödling, Österreich,

geboren am 1. Dezember 1974 in Wien.

Mödling, im März 2007.

http://www.eg.org
http://diglib.eg.org

INTERACTIVE

VEGETATION

RENDERING

STEPHAN MANTLER

MAY 8, 2007

If you want others to be happy,
practice compassion.

If you want to be happy,
practice compassion.

His Holiness the 14th Dalai Lama of Tibet

About the Author
Stephan Mantler, born 1974 in Vienna, received the degree of Dipl.-Ing. in Com-
puter Science from the Vienna University of Technology in 1998. Before joining
VRVis to pursue his doctorate, he has worked as a researcher and software devel-
oper for Imagination Computer Services GmbH, as a professional services spe-
cialist for Cable & Wireless Austria, and as an independent graphics software
developer for numerous media and arts projects.

This work was financially supported by the Austrian Research Fund (FWF) con-
tract no. P17260. The research was performed at VRVis, a research center partially
funded by the Austrian Kplus program.

Parts of this thesis are based on peer reviewed publications written by the au-
thor in collaboration with colleagues from VRVis and the Institute of Computer
Graphics at the Vienna University of Technology.

The following data sets were provided by other agencies and used with permis-
sion: SRTM elevation data courtesy of NASA/JPL. Landsat 7 global mosaic cour-
tesy of University of Maryland/i-cubed. NPHT terrain and vegetation data cour-
tesy of the Nationalpark Hohe Tauern administration. LIDAR scan data courtesy
of Sorin Popescu, Texas A&M University Spatial Sciences Laboratory.

Abstract
Vegetation poses a significant problem to computer graphics because the
geometric complexity of plants does not lend itself very well to tradi-
tional simplification approaches. This thesis presents new algorithms
that address these issues at different scales, for rendering individual plants
as well as entire landscapes.

For individual plants we introduce Displacement Mapped Billboard
Clouds, an extended version of the billboard cloud extreme simplification
approach. Billboard clouds have been successfully used to reduce the
geometric complexity of highly detailed models to a few planes, however
the resulting models are often unsuitable for viewing at closer distances.
The presented extension exploits shaders to improve the visual quality
of the resulting models.

Also, a method is introduced for quickly determining approximate
visible sets for point clouds, which are often used for rendering individ-
ual plants. Approximate visible sets allow a significant reduction in the
number of primitives to be rendered with only very little impact on vi-
sual quality.

For entire landscapes, displacement mapping shaders are explored to
enhance existing terrain models with vegetation. We also address the
issues involved with applying such techniques at a global scale, and
present the integration of our method in the open source World Wind
geospatial viewer.

Furthermore, we propose a way to enable early-Z acceleration meth-
ods on the GPU for shaders where this is not yet possible, and discuss the
handling of level of detail validity and criteria for time-critical rendering
of discrete and continuous levels of detail.

Kurzfassung
In der Computergrafik ist die interaktive Darstellung von Pflanzen nach
wie vor ein bedeutendes Problem. Deren organische Struktur besitzt oft-
mals eine sehr große geometrische Komplexität, die nur schlecht mit her-
kömmlichen Verfahren reduziert werden kann. Diese Arbeit präsentiert
neue Lösungsansätze sowohl für die Darstellung individueller Pflanzen
als auch für ganze Landschaften.

Zur Darstellung einzelner Pflanzen wurde eine Erweiterung des Bill-
board Cloud Verfahrens zur extremen Vereinfachung von polygonalen Mo-
dellen entwickelt. Dieses Verfahren reduziert beliebig komplexe Objek-
te auf sehr wenige Polygone; allerdings ist das Ergebnis oft nur für die
Betrachtung aus größeren Distanzen sinnvoll. Die von uns entwickel-
ten Displacement Mapped Billboard Clouds erlauben eine stark verbesserte
Darstellungsqualität, sodass die reduzierten Modelle über einen deutlich
größeren Bereich angezeigt werden können.

Weiters werden für individuelle Pflanzen oft punktbasierte Darstel-
lungsmethoden verwendet. Ein in dieser Arbeit vorgestelltes Verfahren
erlaubt ein rasches, approximatives Erfassen der sichtbaren Punktmen-
ge. In weiterer Folge kann diese reduzierte Punktmenge zur Darstellung
verwendet werden, wodurch eine deutlich schnellere Darstellung bei na-
hezu gleichbleibender Bildqualität erzielt wird.

Für das interaktive Rendering ganzer Landschaften wurde ein Ver-
fahren entwickelt, das auf Displacement Mapping Shader setzt um existie-
rende Terrainmodelle mit Vegetation darzustellen. Zusätzlich zu dem ei-
gentlichen Verfahren werden auch Probleme bei der Handhabung sehr
großer Gebiete diskutiert und entsprechende Lösungsansätze vorgestellt.
Als Beispiel für eine “global scale” Applikation wurde das Verfahren in
dem von der NASA entwickelten Geoinformationssystem World Wind in-
tegriert.

Darüber hinaus wird in dieser Arbeit ein erweiterter Ansatz zur Ver-
wendung von early-Z Beschleunigungsverfahren in Shadern präsentiert,
für die dies derzeit nicht möglich ist. Darüber hinaus präsentieren wir
ein zweistufiges Verfahren zur Gültigkeit von dynamisch erzeugten Im-
postors und Methoden zur zeitkritischen gemeinsamen Darstellung von
diskreten und kontinuierlichen LOD-Modellen.

Acknowledgements
This thesis would not have been possible without the valuable input and
feedback of my thesis advisor Helwig Hauser, who greatly contributed
to my formation as a researcher.

Also, my colleagues both at the VRVis Research Center and at the
Computer Graphics group of the Vienna University of Technology were
immensely helpful, most notably Stefan Jeschke, Michael Wimmer, Gerd
Hesina, Robert Tobler, Andreas Reichinger, Eike Umlauf and Toni Fuhr-
mann. They provided much of the knowledge and code libraries that
I could build upon. I would also like to thank my students Wolfgang
Berger and Bernd Leitner for their assistance with implementing my ideas,
often from rather vague specifications.

Many other research groups provided feedback, code and data that
were very helpful during the development of this work. Sorin Popescu
from Texas A&M University provided interesting details on LIDAR data
(and sample files!). I would also like to thank Oliver Deussen for several
inspiring conversations. Gabriel Seitlinger from the Hohe Tauern Na-
tional Park provided high resolution large scale data sets that became a
key component (and a major stress test for many components) of this the-
sis and also gave much appreciated feedback on the results. The NASA
Learning Technologies group originally created World Wind, which be-
came one of the key frameworks of this thesis. I am indebted to them and
the open source developers involved in the effort for supplying a great
foundation for my work.

Finally, my friends and family deserve much praise for their assis-
tance and understanding; they all have seen painfully little of me in the
last months. In particular, Ivonne Lange and Nicole Kolar both did an
outstanding job at keeping me (marginally) sane in rather stressful times.

kiwis don’t fly.

CONTENTS

Contents i

1 Introduction 1
1.1 Motivation . 2
1.2 Problems and Challenges . 3
1.3 Contributions . 5

2 The State of the Art 7
2.1 Overview . 8
2.2 Polygon-Based Algorithms . 9
2.3 Point Based Algorithms . 17
2.4 Image Based Algorithms . 23
2.5 Algorithms Summary and Conclusion 32

I Near Field Vegetation Rendering 37

3 Point Based Vegetation Rendering 39
3.1 Introduction . 39
3.2 Preprocessing . 41
3.3 Rendering . 44
3.4 Results . 45
3.5 Summary . 49

4 Vegetation Specific Billboard Clouds 51
4.1 Introduction . 51
4.2 The Original Billboard Cloud Algorithm 52
4.3 An Improved Simplification Algorithm 53
4.4 Results . 56
4.5 Summary . 56

5 Displacement Mapped Billboard Clouds 59

i

CONTENTS

5.1 Introduction . 59
5.2 Related Work . 61
5.3 Displacement Mapped Billboard Clouds 63
5.4 Results . 69
5.5 Summary . 73

II Far Field Vegetation Rendering 75

6 Landscape Rendering using GPU based Ray Casting 77
6.1 Introduction . 77
6.2 Related Work . 78
6.3 Preprocess: Enhancing Landscape Detail 80
6.4 Runtime: Interactive Landscape Rendering 85
6.5 World Wind Integration . 92
6.6 Results . 95
6.7 Summary . 98

III Levels of Detail and Impostor Validity 101

7 Fast and Precise Testing of Dynamic Impostor Validity using
a Two-Level Check 103
7.1 Introduction . 103
7.2 Efficiency of Impostor Error Metrics 104
7.3 A Two-Level Impostor Validity Test 105
7.4 Results . 108
7.5 Summary . 109

8 Time-critical rendering of discrete and continuous levels of
detail 111
8.1 Introduction . 111
8.2 Previous Work . 112
8.3 Mixed Level of Detail Selection 115
8.4 Test Application . 121
8.5 Discussion . 126
8.6 Summary . 128

IV Technical Aspects 129

9 An Early-Z Optimization for Displacement Mapping Shaders 131

ii

9.1 Introduction . 131
9.2 Z-Correct Per Pixel Displacement Mapping 132
9.3 Early-Z Optimizations . 133
9.4 Preserving the Validity of Early-Z Culling 135
9.5 A Proof of Concept Simulation 137
9.6 Summary . 138

V Summary and Conclusions 139

10 Summary 141
10.1 Key Contributions . 142
10.2 Research Outlook . 147

11 Conclusions 149

List of Figures 151

List of Tables 154

Bibliography 155

iii

C
H

A
P

T
E

R

1
INTRODUCTION

The beginning of knowledge is
the discovery of something we
do not understand.

Frank Herbert

Computer graphics - the science of producing images with the help
of computers - has evolved significantly since its beginnings, and contin-
ues to do so at a remarkable pace. It has become a very broad field and
encompasses, for example, applications as diverse as scientific visualiza-
tion, art and interactive computer games.

I this thesis, the term computer graphics is generally used for a more
specific area – interactive (or real-time) computer graphics: the computer
generated images are not static, but part of an interactive process such as
navigating through a scene. Furthermore, (attempted) realism is typically
implied in this context, such that the produced image resembles reality
as closely as technologically possible. If an abstract, more symbolic de-
piction is desired the term non-photorealistic (NPR) rendering is usually
used explicitly (but rarely implied; if an image is not explicitly described
as an NPR rendition, it should be seen as the author’s attempt at realism).

Today, even commodity personal computers come with graphics pro-
cessing units (GPUs) that are easily as powerful as the graphics super-
computers of a decade ago1.

1SGI Onyx2 RealityMonster (ca. 1997): 7.2GPixels/sec fill rate [Map02];

1

1. INTRODUCTION

This massive processing power has lead to the emergence of new
graphically intensive applications. Of course computer games have al-
ways been at the cutting edge of technology, but more ’serious’ applica-
tions such as route planners and even operating systems now exploit the
capabilities of modern graphics hardware.

1.1 Motivation
The availability of graphics processing power has lead to many new ap-
plications. Games continue to be a very important driving force in com-
puter graphics today, but new applications such as geographic informa-
tion tools, interactive maps and three-dimensional design applications
are becoming more common.

The development of three-dimensional geographic information tools
has been especially rapid, and has benefited from the increasing graphics
power just as much as from the common availability of the high band-
width required to access satellite imagery and other data, and of course
from the growing CPU power for data processing.

It is therefore now possible to view the entire globe interactively, often
at stunning detail. The satellite imagery used in Google Earth2, NASA
World Wind3 and Microsoft’s Virtual Earth4 covers the entire globe at
resolutions between 15m (Landsat 7 data) and up to 0.25m (USGS Urban
Area Orthoimagery). Such extremely high detail enables the user to nav-
igate much closer to the surface than previously possible, and it is quite
easy to identify individual buildings and small scale features.

However, as soon as the view is tilted to a larger perspective, the
flatness of the displayed data immediately becomes apparent (see Fig-
ure 1.1). Although satellite imagery is available at very high resolu-
tions, elevation data is only processed at a much lower resolution: the
widely used SRTM data has a resolution of 30-90 meters, and typical
high-resolution elevation models are approximately 10 meters. On the
other hand, satellite and aerial imagery is routinely available in resolu-
tions of up to a few centimeters.

Recent versions of Google Earth do provide (rudimentary) 3D models
in urban areas, but this is limited to areas where detailed information on
buildings is available. Research projects are under way to automatically

NVIDIA GeForce 8800GTX GPU (2007): 13.8GPixels/sec [Pol06]
2http://earth.google.com/
3http://worldwind.arc.nasa.gov/
4http://local.live.com/

2

http://earth.google.com/
http://worldwind.arc.nasa.gov/
http://local.live.com/

Problems and Challenges

Figure 1.1: Orthophotographic maps projected onto a terrain model be-
come apparently ’flat’ when viewed at low angles.

derive such information on a larger scale [ZKHK03], but even these will
be reasonably limited in scale.

The goal of this thesis, then, is to explore ways in which another
crucial ingredient can be added to interactive 3D mapping applications:
Vegetation.

1.2 Problems and Challenges
Since vegetation is a very broad term, this work specifically focuses on
the visualization of landscapes and associated vegetation. This includes
individual trees in urban environments as well as large large forested
areas.

Rendering vegetation is a substantially different task to other, more
’geometric’ objects. Many algorithms that work very well with ’techni-
cal’ objects fail when it comes to organic structures, or modify them in
an unrealistic way. Ultimately, computer graphics deals with (flat) poly-
gons, and while we are used to flat surfaces in our everyday life, the
human perception would immediately identify a hexagonal tree trunk as
unnatural and odd.

Given that a large tree easily has hundreds of thousands of leaves,
even a single detailed tree sufficiently detailed for closer inspection easily

3

1. INTRODUCTION

Figure 1.2: Comparison of applicable rendering function against view
distance and visible detail. red: full geometry; yellow: impostors; green:
shaders; blue: textures.

amounts to millions of polygons. Despite the huge performance of cur-
rent graphics hardware, this is not a trivial task to render interactively.
While a lot of research has been done on displaying individual plants
and small groups (with very good results), these methods typically do
not scale well to the thousands or even millions of trees present in a large
forest.

Memory Requirements and Object Management

Even managing such large numbers of objects is problematic, since a for-
est contains 10.000-30.000 trees per square kilometer (assuming approxi-
mately 30m2 per tree).

To explicitly model a large forest with trees sufficiently detailed to
inspect individual leaves, the required polygon count would grow well
into the billions. This is not only far too much to be rendered directly, it
also exceeds the memory capacity of most computer systems.

Therefore, a viable representation needs to be based on a lightweight
representation that can be used either directly for rendering or as a basis
for the generation of detailed geometric models (or, ideally, both).

Rendering Quality and Speed

Figure 1.2 compares various methods for vegetation rendering and their
applicable view distance: some methods exist for rendering close objects,
but they are only applicable to few objects and are therefore not suitable
for more distant parts of the scene. Similarly, simplified objects that work
well at a distance do not produce the detail required for near field ren-

4

Contributions

dering, and their performance also deteriorates when a great number of
objects must be displayed.

Ultimately, at the far end, features become small enough that a tex-
tured terrain is sufficient. To provide a seamless transition to simple tex-
tured meshes, algorithms are needed that are capable of rendering very
large landscapes at a better quality than just a textured mesh. They need
not work very well for medium or near distance (because there are al-
ready other algorithms that can be used there), but ideally it is possible
to transition smoothly to other representations.

Integration

As is evident from Figure 1.2, any approach to rendering is ideally suited
for a specific view range. It is therefore preferable to identify or design
methods that are in some way ’compatible’ with other approaches, in
that a smooth transition from one method to the other is possible.

This is especially true for interactively rendering many objects. If two
different acceleration methods are used - one for the near field, and one
for the far field - and each method renders a perfect image of the original
object, then a static image will be essentially flawless. However, for in-
teractive exploration there must be a means to go from one acceleration
method to the other. If this transition causes a slight blurring, this may
not be immediately visible for a single object. But if an entire forest is
displayed with such an approach, the blurred region of objects inside the
’transition zone’ may become evident during navigation.

1.3 Contributions
This thesis addresses the presented challenges with a number of new ap-
proaches and improvements of existing techniques. Although the main
body of the work focuses on landscape rendering, Part I also presents a
number of methods for individual objects.

Near Field Vegetation Rendering

New methods for rendering plants and small scale vegetation at medium
to close distances are presented in Part I. These chapters focus on point-
and image-based rendering techniques suitable for accelerating the ren-
dering of individual objects.

5

1. INTRODUCTION

Far Field Vegetation Rendering

Part II focuses on the ‘far field’, rendering entire landscapes through the
use of GPU based techniques. Chapter 6 introduces a new algorithm
for augmenting existing landscape renderers using GPU based methods.
It also demonstrates how the presented algorithms and future develop-
ments can be integrated in NASA World Wind, a large scale geospatial
viewing application.

Impostor Validity, Levels of Detail and Optimizations

In a more general context, detailed discussions of impostor validity and
level of detail rendering techniques have been included in Part III (Chap-
ters 7 and 8). Finally, a detailed technical analysis of early-Z behavior of
displacement mapping shaders, and a proposed hardware based opti-
mization that exploits the specific characteristics of these shaders, is pre-
sented in Chapter 9.

6

C
H

A
P

T
E

R

2
THE STATE OF THE ART IN

REAL-TIME RENDERING OF

VEGETATION

Computers in the future may
have only 1.000 vacuum tubes
and perhaps weigh only 1 1/2
tons.

Popular Mechanics, March
1949, p. 258

This chapter presents an overview of the current state of the art in
real-time rendering of vegetation. Given our goal to increase the over-
all realism of computer generated scenes, the selected algorithms focus
on realistic rendering of trees. There is of course research on achieving
non-realistic effects such as sketch outlines, hatched shading, etc., but
these methods are outside the scope of this summary (see, for example,
Deussen’s book for a good overview [Deu03]). Similar restrictions ap-
ply to approaches that cannot currently be rendered at interactive frame
rates, or only with clusters of PCs, such as Dietrich’s terrain guided ren-
derer [DMS06], although we do include methods that may be feasible in
the near future. In addition to presenting each algorithm, we will sum-
marize the advantages and drawbacks in a separate section.

7

2. THE STATE OF THE ART

2.1 Overview
Vegetation can be rendered using a very large number of generic and spe-
cific algorithms. It is therefore necessary to impose certain restrictions.
For example, since interaction is an important aspect of real-time com-
puter graphics, we will disregard methods that put severe constraints
on the viewpoints (or even keep it fixed) such as QuickTimeVR [Che95].
During the research of relevant papers, all publications were categorized
according to three dimensions:

Specificity Is the method universally usable (eg. z-Buffer, Hierarchical
Occlusion Maps, ...) or specific to vegetation rendering? This also
includes how closely the rendering method is tied to a specific plant
model (as opposed to only dealing with the resulting geometry).

Modeling vs. Rendering Does the publication deal mainly with model-
ing (ie. growth behavior, lighting simulation, ...) or rendering?

Realistic vs. Real-time Rendering Is the presented algorithm suitable for
real-time rendering? Does it attempt to produce the best possible
image, or does it trade quality for better performance?

Generally speaking, our main interest are methods that fall into the
latter end of each of these scales. Of course this categorization is not
always clearly possible, and there are certain interactions between the
categories. For example, some rendering algorithms require a specific
approach to modeling the object.

However, these dimensions allow us to somewhat narrow the subject.
For example, we have chosen to omit ’pure’ modeling papers that do not
deal with rendering at all. Also, nonspecific acceleration methods such
as the Hierarchical Z-Buffer [GK93] are typically well known in the com-
puter graphics community and are therefore outside the scope of this re-
port. We may include short references to these algorithms where applica-
ble, but for a more general overview of rendering acceleration methods,
we recommend eg. Moller’s book [MH02]. Also, Deussen has published
an excellent (although German) book on computer generated plants that
presents a thorough overview of many aspects, including modeling, of-
fline, real-time and non-photorealistic rendering of plants [Deu03].

Furthermore, Boudon et al. also published a detailed overview on
the subject, which includes a discussion of various modeling as well as
rendering approaches for trees [BMG06].

8

Polygon-Based Algorithms

In the following sections, our categorization of the rendering algo-
rithms is based on the main rendering primitive, and the presentation
is approximately chronological. This distinction is not always clear, and
hybrid methods will be described in the section of their main contribu-
tion. For example, practically all image based rendering methods require
geometry to render the derived images (which may be a single plane, but
can be significantly more complex).

2.2 Polygon-Based Algorithms
Polygonal and especially triangular models have traditionally been the
predominant rendering primitive in computer graphics. Recent devel-
opments in hardware acceleration have also focused on triangular data;
therefore this rendering primitive has a certain advantage when it comes
to real-time rendering.

Many polygonal rendering methods for vegetation apply generic ac-
celeration methods, such as triangle strips, to speed up rendering. Nu-
merous other algorithms for complex polygonal data can also be ap-
plied [GK93, WFP+01, SS01]. Furthermore, see Moller’s book [MH02]
for an overview of such methods.

Since the foliage represents the majority of a tree’s geometric com-
plexity, groups of leaves or small branches can be approximated as a sin-
gle, texture mapped polygon [Int02].

Simulation of Natural Scenes Using Textured Quadric
Surfaces

An early approach to rendering natural scenes was intro-
duced by Gardner in 1984 [Gar84], in which he discussed
the inevitable tradeoff between rendering performance
and image quality.

In this paper, textured quadric surfaces are presented
as a suitable primitive. At the time of writing, scan con-
version of primitives was performed in software, and quadrics provided
the simplest possible curved surfaces without having to resort to piece-
wise linear approximations. Quadrics could be scan converted directly,
without the additional overhead of converting them to polygonal ap-
proximations and rasterizing these. To allow for a greater variety of
shapes, clipping planes may be used to truncate the quadrics. Rendering
is performed entirely in software, and is based on the analysis of bound-

9

2. THE STATE OF THE ART

Figure 2.1: Simulation of Natural Scenes using Textured Quadric Surfaces Il-
lustration from Gardner [Gar84].

ary curves to produce spans of constant visibility. Textures are created on
the fly through an adapted Fourier expansion; the required parameters
were found through manual experimentation.

Although far from interactive at the time of writing (up to several
minutes per frame at 640x480 pixels), such a renderer could be expected
to run at adequate frame rates on current hardware.

Real-Time Design and Animation of Fractal Plants and
Trees

An early algorithm for real-time rendering of fractal
plants and trees has been introduced by Oppenheimer in
1986 [Opp86]. Due to the early time of their publication,
their paper discusses many aspects of fractal modeling
and self similarity that can now be presumed.

Natural trees are not strictly self similar; there is al-
ways some deviation in the symmetry due to environmental differences.
The greater the deviation of the tree parameters, the more random and
gnarled the tree will appear. The author defines the resulting tree as sta-
tistically self-similar to represent this fact. The fractal model used in this
system introduces a way to control the variance of these parameters.

10

Polygon-Based Algorithms

The resulting models are rendered using bump mapped polygonal
prisms. The branches emanating from a limb simply interpenetrate the
limb; several prisms are combined to approximate curvilinear shapes.
The resulting geometry is compiled into display lists to accelerate ren-
dering.

To further enhance the visual impression, a bump mapped texture
is applied to the tree limbs. This texture is procedurally generated by
adding fractal noise to a ramp, and then passing the result through a
sawtooth function. The function used in the original paper also wraps
seamlessly in u and v.

The rendering of leaves is not discussed in the paper; however sam-
ple screenshots in the paper by Oppenheimer do feature leaves and blos-
soms, so the algorithm can be adapted accordingly.

At the time of publication, the rendering of complex tree images could
take several hours to render; obviously trying to design a desired tree
at this rate is not very effective. The display list was therefore split
into static geometry display lists and (variable) transformation matrices.
These transformations could then be adjusted very efficiently to reflect
changed parameters.

Obviously, a similar approach could be used to support dynamic ef-
fects, such as wind or other forces.

Multiresolution Rendering of Complex Botanical Scenes

In their 1997 publication, Marshall and Fussel have pre-
sented a system for rendering very large collections of
randomly parameterized plants [MFC97]. Their mul-
tiresolution rendering system compiles plant models into
a hierarchical volume approximation based on irregular
tetrahedra. This partitioning creates a binary tree similar
to BSP trees, which can be traversed quite efficiently.

The plant model used by Marshall and Fussel allows plant informa-
tion to be stored at various levels of detail and memory usage. The gen-
eration of actual geometry for any subvolume can be delayed until it is
needed. This drastically reduces memory consumption and initialization
time, as the binary tree does not need to be built fully.

This compilation progress begins with a full tetrahedral volume as a
first approximation to an object, which is then further refined recursively
as needed to accommodate individual polygons. Depending on the ex-
act intersection of a given polygon with a tetrahedral volume, the result-
ing subvolumes are typically not tetrahedra themselves. There is some

11

2. THE STATE OF THE ART

freedom in partitioning these into sub-tetrahedra; the method chosen by
Marshall and Fussel chooses a subdivision depending on the aspect ratio
of the resulting tetrahedra in order to avoid sliver subvolumes.

At runtime, this subdivision is performed depending on the view
distance. For objects that are close to the viewer, explicit polygons are
generated, while objects that are hidden or further away are rendered
as groups of microsurfaces approximating the contents of the bounding
tetrahedra.

intermediate
contours

Figure 2.2: Modeling of Branched Structures using a Single Polygonal
Mesh: intermediate contour generation. Illustration adapted from
Lluch [LVF+01].

Modeling of Branched Structures using a Single
Polygonal Mesh

Lluch et al. observe that one of the main issues of render-
ing polygonal trees is that many growth models produce
disconnected meshes for each branch [LVF+01]; bifurca-
tions are often simplified as the interpenetration of such
meshes. If a single mesh could be obtained instead, this
would facilitate the application of multiresolution and
simplification methods.

The tree representation used in their proposal is based on sequences
of elliptical (or circular) contours; a library created by the same research
group is then used to obtain triangular meshes from two such contours.

However, bifurcations require special treatment, as they cannot be
represented as elliptical structures. To handle these sections, they have
developed an algorithm called refinement by intervals. Intermediate con-
tours are generated at regular intervals over the branching section until

12

Polygon-Based Algorithms

Figure 2.3: An Interactive Forest (Illustration from Giacomo [GCF01]. Red
discs are wind influence objects; red branches are selected for animation;
green ones transition between animated and static.

two separate elliptical sections have been reached. These intermediate
contours can then be used to generate appropriate polygonal representa-
tions.

The authors note that even though refinement by intervals causes a
significant increase in polygon count, the resulting continuous mesh can
easily be reduced by a decimation algorithm.

An Interactive Forest

An approach that focuses more on interaction and phys-
ically based and procedural animation was presented
by Giacomo et al. [GCF01]. Their system uses various
heuristics to approximate wind forces and simplify cal-
culations, and allows for levels of detail for calculation
and rendering. For a given level of detail, branches be-
low an associated threshold are considered solid and not included in the
calculations.

Procedural animation is used for wind force estimation, and a physi-
cally based can be seamlessly added to account for user interaction. Fig-
ure 2.2 displays a sample scene with several wind influence objects.

13

2. THE STATE OF THE ART

The tree model is comprised of a topological representation skeleton
nodes and a mesh that defines the actual geometry. Animation calcula-
tions are performed on the skeleton nodes and transferred to the mesh
for rendering. Leaf geometry is not considered.

View-Dependent Multiresolution Model for Foliage

Since the leaf canopy of trees contributes a huge num-
ber of polygons in tree models, Remolar et al. have pro-
posed a simplification method that specifically targets fo-
liage [RCRB03, RCB+02].

Traditional geometry simplification methods are typ-
ically not applicable, since leaves consist of many indi-
vidual polygons. Therefore, topology preserving algorithms will not
succeed, and non-preserving methods typically introduce a significant
change to the overall appearance.

The algorithm described in this paper succeeds in diminishing the
number of polygons in the crown, while maintaining overall appearance.
This is achieved by introducing a new method, the leaf collapse: Two
leaves are replaced with a new one that preserves an area similar to that
of the collapsed leaves.

In a preprocessing step, a multiresolution model is created from a se-
quence of leaf collapses. The resulting data structure is therefore created
bottom-up as a binary tree, with a polygonal representation of individual
leaves (the highest resolution) as the leaves, and the root nodes being the
polygons required for a minimum representation. Therefore, the result-
ing data structure is a ’forest’ of binary trees, ie. a list of disconnected
trees (see Figure 2.2).

Multiresolution plant models with complex organs

A very similar algorithm has been proposed by Zhang
et al. to allow a recursive simplification of more complex
shapes [ZBJ06]. To build their Hierarchical Union of [Plant]
Organs in a series of preprocessing steps, plant features
are first grouped according to leaf phyllotaxis, flower an-
thotaxis and petal distribution. A hierarchical simplifi-
cation is then performed by progressively merging two pairs of poly-
gons within each cluster until a final, representative quadrilateral is found
for each group. Finally, the process is repeated for these representative
quadrilaterals.

14

Polygon-Based Algorithms

Figure 2.4: Multiresolution plant models with complex organs (Illustration
from Zhang [ZBJ06]. Virtual garden consisting of 83 trees; original model
has 9.5 million triangles, the rendered multiresolution model has 1.2 mil-
lion. Rendering performance is 0.5 - 10fps.

At runtime, the desired pixel error is converted to a spatial error,
which in turn is used to select an adequate level within this hierarchy.

Rendering of branches is not discussed. The authors refer to another
paper ’in submission’ which does not appear to be publicly available at
the time of writing.

15

2. THE STATE OF THE ART

Ln

L0 9

6 5

11

4

13

3 10

1 0

12

2

14

8 7

(a) Example of the data structure used to represent foliage as a ’for-
est’ of binary trees. The top level nodes (12,13,14) represent the
lowest detail, while the leaf nodes (grey) contain the highest reso-
lution

a) b) c) d)

(b) Different uniform levels of detail of the same tree: (a) 13,420
polygons, (b) 1,558 polygons, (c) 472 polygons. In (d), they are
shown depending on the distance to the viewer.

(c) View-dependent levels of detail: Interest area is determined by
a plane; 18.406 polygons.

Figure 2.5: View-Dependent Multiresolution Model for Foliage (illustrations
from Remolar [RCRB03].

16

Point Based Algorithms

Figure 2.6: Procedural Multiresolution for Plant and Tree Rendering: A tree
generated at four different levels of detail (using 3252, 2103, 872 and 172
polygons; illustration from Lluch [LCV03]))

Procedural Multiresolution for Plant and Tree Rendering

Javier Lluch et al. propose another multiresolution
method based on parametric L-systems [LCV03]. Their
algorithm is based on a metric that quantifies the visual
relevance of the branches of a tree. This paper focuses on
the branch structures; leaves are not considered.

The level of detail algorithm operates on the under-
lying L-system, thus avoiding the generation of geometry that will not
be rendered. To capture the relevance of individual chains generated
from the L-system, an intermediate weighted tree data structure is created.
From this data structure, the multiresolution chain can then be generated.
In addition to the output of the L-system itself, the multiresolution chain
supports two new instructions: SAVE(id) and RESTORE(id). These can
be used to store and restore the current state for some unique identifier.

This allows the weighted tree to be stored as a reordered chain that is
sorted by the individual node weights. Higher weights (more important
nodes) are stored first; finer LODs can be added to any point of the tree
through the RESTORE(id) instructions.

2.3 Point Based Algorithms
Levoy and Whitted have introduced points as an efficient display primi-
tive in 1985 [LW85], and at the same time they were first used to render
vegetation [RB85]. Point primitives and vegetation therefore share an
interesting historical connection.

Until recently, further research on point based rendering has been
somewhat sporadic. However, recent publications have presented some
interesting general purpose algorithms [WFadH00, PZvBG00, ZSBP02],

17

2. THE STATE OF THE ART

and there have also been a number of more specialized methods that will
be presented in this section.

Approximate and Probabilistic Algorithms for Shading
and Rendering Structured Particle Systems

In his 1985 publication, William T. Reeves describes a
stochastic modeling system that has been used to render
forest images [RB85]. At the time of publication it was
clearly not a real-time system (five to ten hours of ren-
dering per image on a VAX 11/750), however the perfor-
mance of computer systems has increased dramatically
in the past two decades.

Each tree is drawn as a set of particles, line segments and small cir-
cles, representing branches and leaves respectively. These particles are
generated from a recursive representation in a preprocessing step.

To model self-shadowing, a probabilistic model based on the parti-
cle’s position and orientation has been implemented. External shadows
from other trees are also approximated through a probabilistic function.

Creation and Rendering of Realistic Trees

Weber and Penn’s classic paper on modeling and ren-
dering realistic trees also includes point based render-
ing [WP95]. Although their publication focuses mainly
on the procedural modeling aspect, they make use of
point and line primitives for leaves and branches, respec-
tively. The representation created from their model is not
explicitly converted to geometry, but interpreted at runtime.

When viewing the object at a close distance, full-resolution polygonal
geometry is created. For larger distances this representation is changed
to lines for stems and twigs, and points to render leaves. Heuristic equa-
tions are used to transition between these representations.

18

Point Based Algorithms

Interactive Visualization of Complex Plant Ecosystems

Deussen et al. have presented a system for interactively
rendering large plant populations by using point and line
primitives [DCSD02]. A hierarchical scene data structure
is used to support a coarser representation of distant re-
gions. Additionally, a visual importance factor can be
manually assigned to objects, which allows certain ob-
jects to be rendered at a higher quality than others.

Point and line representations of the polygonal input data is gener-
ated semi-automatically. The user needs to choose the primitive to be
used for each part of the plant and possibly assign the importance fac-
tor if required. Point and line data is then generated automatically and
stored in display lists. Point and line representations and the respective
polygonal data are reordered randomly (but in the same order for point
primitive and polygons) to avoid popping artifacts. Through the ran-
dom reordering, switching part of an object from polygonal to point or
line representation will not be localized to some area of the object, but is
distributed over the entire model (see Figure 2.3).

Rendering point data is performed by estimating the number of points
required for a faithful representation (ie. no holes and correct coverage).
Blending between polygonal and point data is supported by rendering
only part of the polygonal display list, and displaying the remainder as
point data. Since both lists are in the same order, the entire model will be
covered. For line data, the area covered by the entire line set is calculated
and compared to the triangle set it represents. Rendering then proceeds
similar to the point data.

Sequential Point Trees

The Sequential Point Trees proposed by Dachsbacher et
al. [DVS03] also provide a hybrid point and polygon
based system, but using a different approach for select-
ing the primitives to be rendered.

Point samples are first generated regularly on the
model; they are then grouped hierarchically according to
a geometrical error metric that describes how well the parent disc ap-
proximates its child nodes. The authors note that with the right parame-
ters their approach is equivalent to the QSplat algorithm [RL00].

After building this hierarchy, the nodes are converted to a sequential
representation by sorting all nodes by the disc radius rmax . This allows

19

2. THE STATE OF THE ART

(a) Assigning importance factors. left: default values. right: set-
ting a higher importance factor to the daisies, causing them to be
rendered as polygons.

k p-2k

6k-2p p

distance → 0

p>3k

k triangles
(3k coordinates)

rendered triangles k

3k

0

p-2k

p

6k-2p

0

p

prendered points

rendered vertices

k lines or 2k points
(2k coordinates)

p=3k 2k<p<2k p=2k p<2k

distance → ∞

(b) Blending polygonal and point based rendering based on the
available rendering budget.

Figure 2.7: Interactive Visualization of Complex Plant Ecosystems (illustra-
tion from Deussen [DCSD02].

Figure 2.8: Sample scene rendered using Sequential Point Trees [DVS03]

20

Point Based Algorithms

all further calculations to be restricted to a prefix of the list determined
by the view distance.

For a given view distance r , the nodes that actually need to be ren-
dered vary between radii mi n{r } and max{r }. This leads to the following
rendering algorithm: All points up to rmax are sent to the vertex shader.
This is very efficient, as a contiguous stream of vertices is sent. In the ver-
tex shader, each point is then tested against the [mi n{r },max{r }] bounds
and either passed to the fragment shader for rasterization or moved to
infinity (and effectively culled).

The authors note that their algorithm can be extended to also support
triangular primitives by regarding the triangle’s longest edge as its ra-
dius. However, due to the necessary resorting of triangles according to
their radius, triangle strips are torn apart and must be rendered as indi-
vidual triangles. As a result, this approach bears some resemblance to
the Randomized Z-Buffer introduced by Wand et al. [WFP+01].

Figure 2.9: Sample scene rendered using Deferred Splatting [GBP04]. The
scene contains approximately 2300 visible trees consisting of approxi-
mately 750k polygons each. It is rendered at 11fps.

21

2. THE STATE OF THE ART

Deferred Splatting

Guennebaud et al. have developed Deferred Splatting,
an algorithm that exploits various culling and level of de-
tail methods to reduce the number of points to be splatted
for highly complex geometry [GBP04]. Their technique is
based on GPU-based EWA splatting [GP03], which uses
a multi-pass approach to filter visible surface elements
(surfels). At first, a visibility splatting pass is used to pre-fill the z-buffer;
then the EWA splatting pass accumulates the filtered color values. Finally,
a normalization pass divides the color values by the number of contribut-
ing splats, resulting in the final color output.

This method has been extended to exploit the coherence between the
several passes as well as between consecutive frames. A low level point
selection pass is introduced after visibility splatting: surfels are rendered
with unique identifiers as color values; the resulting image is then read
back in and used as a selection for the EWA splatting pass as well as
the visibility pass of the next frame, thus effectively exploiting temporal
coherence. Potential "holes" due to disocclusions between consecutive
frames are filled by another visibility splatting pass only with surfels that
are potentially visible in the current, but hidden in the previous pass.
For efficiency, this decision is performed on groups of surfels rather than
individually.

Point-Based Rendering of Trees

Gilet et al. have presented a hybrid point and polygon-
based rendering approach that is based on a regular spa-
tial subdivision [GMN05]. This approach is quite simi-
lar to Sequential Point Trees [DVS03] with an additional
hierarchical subdivision. A block of vegetation (which
can be either a single tree or a group) is subdivided into
smaller cells. For each cell, a hierarchical clustering algorithm creates a
binary tree representation of point approximations and triangles.

At runtime, cells are visited individually. In addition to the projected
size of a cell, its view dependent position within the block is used to
determine its level of detail for rendering. It is assumed that front cells
mask those behind, and therefore cells closer to the viewer need to be
rendered at a higher level of detail than the (partially occluded) blocks in
the rear.

22

Image Based Algorithms

2.4 Image Based Algorithms
Due to the nature of image based algorithms, their performance is typi-
cally independent of object complexity and controlled by the output res-
olution alone. This makes them quite suitable for complex objects such as
vegetation. Most image-based rendering methods have been designed as
general purpose algorithms [CW93, DMBF96, Sch95, MB95, LH96, Sch98,
GGSC96, SLS+96, DSV98, DSSD99], and no experimental results with
vegetation are available. However many of these ideas have been trans-
ferred to more specific algorithms, and some even into commercial prod-
ucts [Bio03].

Rendering Trees from Precomputed Z-Buffer Views

An algorithm proposed by Max in 1995 uses precom-
puted z-buffer views to approximate arbitrary view-
points [MO95]. Their approach is similar to that of Chen
and Williams [CW93], but with a few enhancements.

Precomputed views are acquired through parallel
projection from a number of viewpoints generated
through a simple longitude/latitude sphere partitioning scheme.

Since there is little coherence between leaves in a tree, the reconstruc-
tion for an arbitrary viewpoint is performed on a per-pixel basis. This
typically leaves some pixels undefined where no information can be ex-
tracted from the available views. The authors have chosen to implement
multiple z-buffer layers to reduce these artifacts.

Dynamic shading and shadowing is supported by storing compressed
normal vector and material information for each pixel of the precom-
puted views. During the shading post-process, these values can be used
to compute diffuse and Phong shading. Shadows can be found by re-
constructing a z-buffer view for the light source and testing output pix-
els against this buffer. Since normal vector and material information is
available, shading can be applied in a post-processing step once for each
output pixel instead of each time pixel data is written to the output frame
buffer.

23

2. THE STATE OF THE ART

Hierarchical Image-Based Rendering using Texture
Mapping Hardware

Max et al. combine a hierarchical tree model with an
image based rendering method that supports hardware
acceleration [MDK99]. Although their rendering times
were not real-time at the time of publication, it may be
feasible with current graphics hardware.

Their approach precomputes multi-layered depth im-
ages containing color and normal information using standard z-buffer
hardware. Six orthogonal views are calculated for each level in the hier-
archy. Multiple depth layers are computed by using hardware z clipping
to partition the object into several slabs. To avoid excessive numbers of
textures, the number of inequivalent sub-objects in the hierarchy must be
limited.

Based on the object distance from the viewpoint, the hierarchical de-
scription is traversed until either the current level is a sufficient approx-
imation, or actual polygons need to be generated. During rendering, the
hierarchy is first traversed and a list of reprojection matrices accumulated
for each of the textures. All visible instances of a texture are then ren-
dered in order, thus significantly reducing texture swapping. Reprojec-
tion and rendering the depth images is performed similar to the method
presented by Schaufler [Sch98].

Interactive Vegetation Rendering with Slicing and
Blending

Jakulin combines traditional polygonal geometry render-
ing for the trunk and limbs of a tree with an image-based
rendering system for the crown [Jak00]. The crown is ren-
dered using multiple parallel layers (slices). The group of
slices for a specific view direction is called a slicing.

During preprocessing, several sets of these slices are
created from various viewpoints. For each slicing, the primitives (ie. in-
dividual leaves) are assigned to the closest slice (see Figure 2.4). Each
slice is then rendered to an individual texture.

At runtime, the two slicings closest to the actual view direction are
rendered simultaneously, using transparency and blending for transi-
tions as the view direction changes.

The goal of this algorithm was to accommodate architectural walk-
throughs and driving simulations, so viewing trees directly from above

24

Image Based Algorithms

or below the tree is not supported and leads to severe artifacts. Therefore,
all slices are perpendicular to the ground plane, and blending between
two sets provides sufficient coverage. However, this is not an inherent
limitation of the method, and the authors speculate that blending three
slicings would be appropriate for arbitrary viewpoints.

Image-Based Multiresolution Modeling for Real-Time
Foliage Rendering

Lluch et al. have proposed an interesting image-based
rendering approach for rendering foliage [LCV04]. Based
on an L-system tree model, they create a hierarchical data
structure that includes bounding boxes at each level.

All leaves within the bounding box are then projected
to each of the bounding box planes, and stored as impos-
tor textures. To increase visual realism, impostors are not only created
for the usual x =±1, y =±1 and z =±1 planes, but also for the main diag-
onals (x ± y = 0 etc.). The bounding box, and therefore also its impostors,
are oriented in the local coordinate system for each level.

Not all possible levels of recursion are visited during impostor cre-
ation. To reduce the spatial cost of the model representation, a threshold
based on the relative size of the branch (compared to the entire tree) can
be set.

At run time, the hierarchy is traversed until a suitable (distance based)
level of detail is reached. Appropriate viewing distances for each level
of the hierarchy are precomputed for better performance. If no suitable
impostor is available, the original (polygonal) geometry is used.

Drop and Resize of Billboards

Halper [Hal01] observes that when rendering large num-
bers of trees, the far field can be rendered similar to Re-
molar’s multiresolution foliage [RCRB03]. In his case,
trees are represented by billboards, and for the far field
some of these billboards are dynamically dropped and
the remainder resized accordingly. The author notes that
although some artifacts are visible depending on the amount of simplifi-
cation, the resulting image quality serves ell for interactive purposes.

25

2. THE STATE OF THE ART

(a) Each primitive of the crown is as-
signed to the closest slice.

(b) Multiple slicings are blended to cre-
ate a solid-looking rendering. Rectangu-
lar frames have been added to slice tex-
tures to aid visualization. Both slicings
have a discrepancy angle of about 30 de-
grees.

Figure 2.10: Interactive Vegetation Rendering with Slicing and Blending (il-
lustrations from Jakulin [Jak00].

26

Image Based Algorithms

(a) A billboard is recon-
structed from a given view di-
rection by combining the 3
closest images stored in the
sampled sphere of view direc-
tions.

(b) A billboard is recon-
structed from a given light
direction by combining the 3
closest images stored in the
sampled sphere of light di-
rections.

(c) T he complete B T F allows the recon-
struction of a billboard for given view and
light directions by combining up to 9 stored
images (in our implementation).

(a) Reconstructing billboards from view directions and light di-
rections.

� � �

� � �

LOD 1
HBT of generic

small branch

LOD 2
HBT of generic

large branch

LOD 3
HBT of generic

tree

� � � �� � � �

} �

} �

}�

� � � � � � �

Ray Tracer (n·m images)

Instantiated
to build a large
branch.

Geometry Scene Graph HBT LOD

Visibility cube-
maps of small
branch instances

Visibility cube-
maps of large
branch instances

Visibility cube-
maps of
tree instances

Instantiated
to build a tree.

Instantiated
to build a scene.

Scene

(b) Building the hierarchical data structures.

Figure 2.11: Interactive Rendering of Trees with Shading and Shadowing (il-
lustrations from Meyer [MNP01]).

27

2. THE STATE OF THE ART

Interactive Rendering of Trees with Shading and
Shadowing

The image-based rendering system proposed by Meyer et
al. provides a framework for rendering trees with com-
plex effects such as shading, self shadowing, and dy-
namic illumination [MNP01]. They combine a hierarchy
of bidirectional textures (HBT) to provide billboards for
each given observer and light directions with a hierarchi-
cal visibility structure for self-shadowing and cast shadows. This repre-
sentation is efficient for trees, as it is hierarchical and instancing is used
heavily.

Bidirectional texture functions (BTFs) are computed by associating a
billboard representation with each pair of view and light directions (see
Figure 2.4). Between 6 and 258 different view directions and light di-
rections are used. During rendering, an arbitrary configuration can be
approximated by interpolating 9 BTFs. These BTFs are associated to each
level in the hierarchy either by creating a new, unique BTF or through
instancing. During rendering, either BTF or the actual geometry is ren-
dered depending on the distance.

To support dynamic illumination, approximate visibility cube-maps
are computed for each level of the hierarchy. Since occlusion depends on
the position within the hierarchy, separate cube-maps need to be gener-
ated for all instances. Shadowing can then be computed during render-
ing by traversing the hierarchy of visibility cubemaps. Casting shadows
is supported through ’traditional’ shadow maps by rendering from the
light source.

Real-time Hardware Accelerated Rendering of Forests at
Human Scale

This rendering method proposed by Szijártó and
Koloszár uses a combination of geometry and image
based (impostor) rendering for vegetation [SK04]. The
trunks and branches are rendered as polygonal models,
and impostors with 2.5D depth information are used to
model the canopy.

The 2.5D data is used to provide correct depth in the near field, but the
authors note that their approach requires modification of depth within
the fragment shader, which incurs severe performance penalties on cur-
rent graphics hardware. The authors therefore propose to switch to a

28

Image Based Algorithms

simple alpha blending approach for more distant objects, where they
claim that resulting artifacts are visually indistinguishable, which is up
to five times faster.

The paper also presents details on optimizing their method for the
rendering of large forests, where individual impostors can be reused,
data packed into a texture atlases, and rendered in correct order to mini-
mize texture switching and similar state changes.

Rendering Forest Scenes in Real-Time

Decaudin and Neyret make use of volumetric textures to
render forest scenes in real-time [DN04]. This is based
on previous work by Neyret, where a similar volumetric
approach was used for off-line rendering of landscapes.

The original landscape surface is replicated to a num-
ber of parallel slices, which are then rendered using volu-
metric textures. Aperiodic tiling is used to minimize repetition artifacts,
and if the view direction is at grazing angles such that the slices are seen
nearly edge-on, they are slanted towards the view direction.

In their approach, shading is precomputed and stored in the volumet-
ric textures. This requires the tiles to be rendered at a specific orientation
and also precludes detailed terrain specific shading (such as slope de-
pendent), which is compensated by the authors by using an additional
Lambertian term.

Note that this precomputation allows tiles only to be used in one spe-
cific orientation. Also, additional tiles must be used for border regions to
avoid artifacts caused by trees overlapping the tile bounds.

Real-Time Rendering of Complex Photorealistic
Landscapes using Hybrid Level-of-Detail Approaches

The use of Billboard Clouds was introduced by Decoret et
al. [DDS03] and has been successfully adapted to render-
ing vegetation by Fuhrmann et al. [FUM05] as well as
Colditz et al. [CCDH05]. We will discuss the latter ap-
proach, as it also includes realistic lighting.

In a similar paper, the authors extend the billboard
cloud approach to use shell textures [DN04] for the far field [BCF+05]; this
far field rendering method is further discussed in the Section on Render-
ing Forest Scenes in Real-Time.

29

2. THE STATE OF THE ART

(a) Inside the forest.

(b) Low altitude view.

Figure 2.12: Real-time Hardware Accelerated Rendering of Forests at Human
Scale (illustrations from Szijarto [SK04]).

30

Image Based Algorithms

Figure 2.13: A forest scene of approximately 30000 trees, rendered in real
time using the approach by Decaudin and Neyret [DN04]

Essentially, the billboard clouds approximate an arbitrary collection
of individual polygons by a set of textured planes. In contrast to the orig-
inal BBC approach by Decoret which explicitly avoided any topological
information and considered triangles individually, Colditz et al. exploit
the hierarchy information available in their plant models to find better
local approximations. They also use k-means clustering instead of the
original dual space approach.

Normal vector information is stored in a separate texture and used
to approximate per-pixel illumination at runtime. Transitions between
discrete levels of detail are performed through alpha blending.

Volumetric reconstruction and interactive rendering of
trees from photographs

Reche-Martinez et al. observe that instead of explicitly
modeling trees, photographs of existing trees could be
used to create a volumetric representation which can then
be used directly for rendering [RMMD04].

Photographs are captured such that alpha matting can
be estimated to separate the tree from the background;
this is performed through a semi-automatic process. Colored markers on
the ground are used to calibrate the relative camera positions.

For volume rendering, the opacity of each voxel must be estimated.
Color is treated separately. For each pixel of each input image, the al-
pha mask value is considered as the result of an accumulation of opac-
ities in each voxel cell covered by the pixel. Using an absorption only

31

2. THE STATE OF THE ART

model, the transparency estimate of each voxel can be iteratively esti-
mated. The final outcome of the estimation process is a recursive grid of
low-frequency opacity values.

To capture fine detail of the tree, each volume cell is assigned a small
(4x4 or 8x8 pixels) billboard for each camera direction. Color estimation
for these billboards is non-trivial, since voxels may be partially occluded
by other cells in the input images. The authors present an importance
based heuristic that selects color values from the input images and re-
moves selected values to avoid blurring artifacts.

Rendering itself is a straightforward process. The hierarchy of vol-
ume cells is traversed back to front, and the billboards rendered at each
step: the two closest camera directions are selected and the associated
billboards blended accordingly.

Real-time rendering of plant leaves

Wang et al. have presented a framework for rendering
plant leaves with global illumination effects [WWD+05].
They use bidirectional reflectance functions (BRDFs)
and bidirectional transmittance distribution functions
(BTDFs) to capture the two main scattering behavior of
plant leaves: rough surface scattering on the surface, and
subsurface scattering inside the plant leaf. Their parametric BRDF and
BTDF models are fitted to data measured from actual leaves.

Also, an extension to the precomputed radiance transfer (PRT) ren-
dering algorithm is presented that also accounts for high-frequency sun-
light. To achieve this, incident radiance is decomposed into direct and in-
direct components. Low-frequency indirect lighting is calculated through
PRT. In a second pass, direct light is modeled through a light-visibility
convolution, ie. a map that encodes the sun (modeled as a disc light
source) as it is masked by components of the scene.

The authors note that other shadow mapping algorithms may be used,
but state that it is hard to do so accurately due to the complicated self-
occlusions involved in larger leaf assemblies.

2.5 Algorithms Summary and Conclusion
Table 2.1 summarizes the presented algorithms. It is certainly not pos-
sible to capture the intricate details of each method in one simple table,
especially since factors such as quality and performance are difficult to

32

Algorithms Summary and Conclusion

judge. Methods that did not run in real time a few years ago may be
feasible with current hardware, and algorithms that were formerly lim-
ited eg. by texture memory size can now run with significantly higher
quality.

The majority of algorithms is based on polygonal rendering, presum-
ably because triangles are the best supported primitive in current graph-
ics hardware. Image based methods also benefit from increased tex-
ture performance and typically use texture mapped polygons for ren-
dering as well, rather than doing more work in GPU fragment programs.
Point based systems have had some exposure since the early beginnings
of real-time rendering, but were never as widely accepted and used as
polygonal approaches. However, the works by Deussen [DCSD02], Dachs-
bacher [DVS03] and others show that they should not be completely ig-
nored.

In Table 2.1, checkmarks indicate that a certain feature is explicitly
supported by the algorithm. No checkmark denotes omitted in the cur-
rent state of development’ but should be generally feasible, possibly with
slight adaptations) or unknown, and a dash indicates that a feature ’con-
flicts with the intentions of this method’ (because, for example, an expen-
sive precalculation would become useless for animated geometry). For
the performance and quality ratings, an empty circle represents the low-
est rating, and full circles the highest. For older algorithms, we tried
to at least roughly estimate how well they would perform on current
computer hardware and how much they would benefit from its addi-
tional capabilities. Of course these are entirely subjective, but we feel
that they still provide a good overview of how these algorithms perform.
The same holds true for the depiction of applicable view distances, which
was derived from considerations on achievable image quality (in the near
field) and ability to render very large numbers of trees (in the far field).

supported geometry - Does the algorithm support full trees, or does it
only render branches or leaves? Algorithms that only deal with
one or the other need to be combined with suitable alternatives,
which may lead to visual discrepancies in the way levels of detail
are handled.

view dependent LOD - Is there integral support for distance or view di-
rection based levels of detail, such as multiresolution representa-
tions?

animation - Does the algorithm support dynamic scenes, eg. movement
of branches due to wind? Physical simulation is not required, but

33

2. THE STATE OF THE ART

it should be possible to add without major recalculations for each
frame.

dynamic lighting - Does the algorithm support dynamic lighting? Static
normal mapping is almost always possible, so we restrict this crite-
rion to more complex effects like self shadowing.

quality - How good is the image quality in comparison to other algo-
rithms with similar features?

performance - How fast is the algorithm?

memory requirements - How much memory does the algorithm con-
sume? This includes global memory requirements (needed once for
all instances, eg. impostor textures) as well as per-instance memory
consumption (if instancing is available). The rating is subjectively
based on a comparison with other algorithms.

Distance range - At which distances is the algorithm best used? At the
extreme near field, leaf details such as veins and edge structure
should be visible; the extreme far field requires the representation
of a very large number (106 to 107) of trees.

State Of The Art Summary

In a perfect world, an algorithm would support all the features in table
2.1, at a very high quality and in real time, over the entire range of view
distances. However, practically all current algorithms include some fea-
tures at the cost of others.

For example, approaches that only support branches or foliage will
be difficult to integrate if real-time animation is desired, and care must
be taken to coordinate level of detail methods if branches and foliage are
rendered separately. Image based approaches are also difficult to inte-
grate with animation, since they typically involve extensive preprocess-
ing and offline generation of textures which may need to be adjusted for
dynamic lighting or animation. A notable exception is [MNP01], which
does support dynamic lighting at the expense of significantly increased
memory demands and rendering overhead.

Referring to the distance ranges depicted in Table 2.1, it is apparent
that most rendering techniques focus on a ’moderate’ distance range,
where vegetation is both distant enough to allow a significant reduction
in detail, but not far enough that a very large number of plants needs

34

Algorithms Summary and Conclusion

D
es

cr
ip

ti
on

Le
a.

/
Br

./
Fu

ll
V

ie
w

de
p.

LO
D

A
ni

m
at

io
n

D
yn

.I
llu

m
.

Q
ua

lit
y

Pe
rf

or
m

an
ce

M
em

or
y

Distance range
farnear

Plant Leaves [WWD+05] L X # G#
Complex Botanical Scenes [MFC97] F X – X G# G# #
Complex Plant Ecosystems [DCSD02] F X – G# G#
Plant Models with Complex Organs [ZBJ06] F X – X G# G#
Point-Based Trees [GMN05] F X – G# G# G#
Procedural Multiresolution [LCV03] B X X G# #
Complex Photorealistic Landscapes [CCDH05] F – – X G# G# #
Fractal Plants and Trees [Opp86] B X X # #
Single Polygonal Mesh [LVF+01] B X G# G#
Volumetric Reconstruction [RMMD04] F X – – #
Interactive Forest [GCF01] B X X X G# G# #
Forests at Human Scale [SK04] F – – G# G#
Realistic Trees [WP95] F X X G# G# G#
Shading and Shadowing [MNP01] F X – X G#
Hierarchical Image-Based Rendering [MDK99] L X – G# G#
Structured Particle Systems [RB85] F – X G# # #
Image-Based Multiresolution [LCV04] F X – – G# G# G#
Sequential Point Trees [DVS03] F X – G# G#
Deferred Splatting [GBP04] F X – G# G# G#
View-Dependent Multiresolution [RCRB03] L X – X G# G#
Forest Scenes in Real-Time [DN04] F – – – G# G#
Slicing and Blending [Jak00] F – G# #
Precomputed Z-Buffer Views [Max96] L – X G# G# G#
Drop and Resize [Hal01] F X – – G# G#
Textured Quadric Surfaces [Gar84] F – # #

Table 2.1: Summary of the presented algorithms, roughly sorted by view
distance range. Checkmarks indicate available features; Circles represent
low (empty), medium (half filled) and high (filled) quality, performance
and memory consumption.

35

2. THE STATE OF THE ART

to be displayed. The algorithms presented by Decaudin [DN04] and
Halper [Hal01] extend their applicable range well beyond most other al-
gorithms, but require special care to handle bordering regions ([DN04])
or do not support illumination ([Hal01]).

In contrast to rendering methods for other types of scenes, where
graphics hardware fill-rate or bandwidth limitations are usually the per-
formance bottleneck, many of the more realistic methods described above
have significant CPU overheads. Obviously, this does not apply to all the
algorithms, but the ratio of CPU limited approaches seems to be higher
than in other areas.

Further Research Opportunities

Once again looking at Table 2.1, it is apparent that real-time animation
is not easily implemented in most state of the art algorithms. However,
“real” trees are hardly ever perfectly still since even a very light breeze
will cause individual leaves or small twigs to move. This is often also
visible at a larger scale if wind blows over the canopy of an entire forest.
Therefore, such motion effects should be incorporated even for far field
rendering methods.

Also, the handling of large scenes with very high detail quickly be-
comes problematic. If a multiresolution renderer requires a top-down
approach (ie. lower levels of detail are generated from higher levels),
that effectively results in the (temporary) creation of the full scale of the
entire scene. A better approach would be bottom-up, such that the ex-
plicit generation of geometry or other data is avoided unless necessary
for rendering.

Procedural modeling approaches are probably best suitable for such
an approach (and partially incorporate it), but once the system needs to
go beyond individual trees and collect them into larger groups, existing
systems typically resort to tileable base data, which has its own problems.
For example, border tiles and repetition artifacts are typically clearly vis-
ible, or require special attention.

At a closer scale, a variety of rendering methods exist but they are
mostly self-contained and no obvious transitions exist between them.
Therefore it is desirable to investigate how existing approaches could be
adapted to allow seamless blending to other methods.

In summary, we believe that ultimately the goal should be an uniform
approach that allows a seamless transition from viewing a forest canopy
on the horizon to inspecting a single leaf.

36

P
A

R
T

I
NEAR FIELD
VEGETATION
RENDERING

37

C
H

A
P

T
E

R

3
POINT BASED

VEGETATION RENDERING

This ‘telephone’ has too many
shortcomings to be seriously
considered as a means of
communication. The device is
inherently of no value to us.

Western Union internal memo,
1876

3.1 Introduction
The natural structure of vegetation usually results in an immensely com-
plex geometry. However, at typical viewing distances, leaves and other
small parts are often smaller than a single pixel. Therefore, rendering
these leaves as individual quadrilaterals (maybe even textured) is waste-
ful. Consequently clustering techniques (groups of leaves are approx-
imated by a single polygon) or image based techniques with a similar
strategy are usually employed [Int02, MNP01, Jak00]. Point based and
hybrid techniques have been also explored [WP95, DCSD02].

The point based approach allows for nearly seamless transitions to
other levels of detail and is therefore a good choice for intermediate rep-

39

3. POINT BASED VEGETATION RENDERING

resentations. However, since point sample clouds are a very large num-
ber of independent and disjoint samples, traditional occlusion based ac-
celeration methods such as backface culling or spatial schemes can not
be applied easily. Still, the large number of samples necessitates some
means of simplification in order to achieve real-time rendering perfor-
mance.

This chapter discusses a preprocessing step to determine the exact
visible set for a number of views; at runtime the visible sets of the three
closest matches to the actual view are combined for rendering. Point
budgets can be assigned, so that distant objects are rendered with less
detail.

Point Based Rendering of Vegetation

Rendering vegetation with point based approaches has several advan-
tages over other methods. Points show no inherent connectivity, making
it easier to approximate the intricate structure of a canopy. They can be
easily managed within display lists and sorted by importance for adap-
tive levels of detail or blending with more detailed representations.

Hybrid point and polygon based approaches were first used for ren-
dering vegetation by Weber and Penn [WP95]; later a much more flexible
system was presented by Deussen et al. [DCSD02]. These approaches
are preferable because polygonal data is useful at close distances, where
purely point based approaches tend to ‘fall apart’ (see Figure 3.1).

Although these systems provide view distance based levels of detail,
they do not use the view direction for further data reduction methods
and rely on orientation independent methods for LOD generation. On
the other hand, some point based rendering systems do exploit the cur-
rent view direction for backface culling and splat size estimation [RL00].
However, when leaves are approximated through individual point sam-
ples, there is no continuous surface or solid, making backface culling
inadequate.

Another method for rendering point based data is to use a random-
ized approach [Uni, WFadH00]. In this case, a (possibly view dependent)
heuristic selects arbitrary samples from the data set. Special care must be
taken to make sure that holes and artifacts do not occur, for example by
using a poisson disc distribution function.

The presented approach uses a number of precalculated view depen-
dent visible sets to create an approximate visible set for arbitrary view
directions. These visible sets are created in a hardware accelerated pre-
process and combined dynamically at runtime.

40

Preprocessing

Figure 3.1: A point based tree falls apart when viewed from to close up.

Figure 3.2: Identifying closest available view directions. For an arbitrary
viewpoint (red arrow), the three closest precalculated directions (blue
arrows) are identified and rendered. Light gray arrows symbolize addi-
tional precalculated directions not used for this viewpoint.

3.2 Preprocessing

Visible set determination can be performed very efficiently in hardware.
First, a number of views is generated by selecting points on the unit
sphere. Since trees cannot usually be viewed from directly underneath,
this can also be constrained to a hemisphere. Our implementation em-
ploys a simple tetrahedron subdivision scheme to generate view direc-
tions.

41

3. POINT BASED VEGETATION RENDERING

The entire data set is then rendered from each view, but instead of
using the original color information each leaf is rendered with a unique
color. Individual leaves are rendered as single point primitives. To avoid
unwanted artifacts, the data set is rendered without antialiasing, atten-
uation, or lighting. The frame buffer is then read back and each pixel’s
value is used to identify the visible sample at this point.

If occlusion queries are supported on the graphics hardware, reading
back the frame buffer can be avoided: The data set is first rendered in full
as before. It is then re-rendered in chunks of n samples with occlusion
query enabled, and the depth test set to ’less or equal’. If no pixels have
been updated, the entire chunk was invisible and can be discarded. Oth-
erwise it is subdivided and processed recursively to identify all visible
samples.

Sample Identification

To be correctly identified after the frame buffer has been read back in,
each sample needs to be assigned an unique color. For simplicity, we
use the sample’s array index in the data set. Of course, 8-bit RGB colors
effectively limit the maximum number of samples that can be identified
in a single pass to 224 −1.

However, this limit can be easily avoided by using multiple partitions
of 224−2, reserving the value 224−1 for the background (no sample) and 0
for any samples not within the current partition. The preprocessing step
then needs to render the entire set more than once, until all samples have
been covered.

LOD Estimation

By rendering samples with more than one pixel and by re-rendering the
same view from varying distances, a level of detail estimation can be ob-
tained as follows: For each pixel that has been covered by a certain id,
the contribution of the corresponding sample is increased by one. Af-
ter all distances have been covered, samples with zero contribution are
discarded, and the remaining samples are sorted by descending contri-
bution. This way, leaves which are visible from all distances end up with
the highest contribution count and will be rendered even if the total num-
ber of points to be rendered exceeds the allocated budget.

42

Preprocessing

(a) (b)
S2

S1

Figure 3.3: Perspective Occlusion. Splat S1, although visible from view-
point (a), is occluded by splat S2 when viewed from viewpoint (b) as it is
seen at a slightly different angle.

Alternative LOD Generation

Even though it is tempting to assume that samples which are visible at
larger distances are also visible at a closer range, this is not always cor-
rect for perspective projection. Such samples may be obscured if perspec-
tive views are rendered from varying distances, rather than at different
scales. Figure 3.3 illustrates this difference. However, a similar error is
incurred from approximating the view direction; there may be samples
that should be visible from the actual viewpoint but were not detected in
any of the three views.

Stems and Branches

If desired, stems and branches can be included in this system. This is par-
ticularly useful if the tree has been generated automatically and includes
a great number of small twigs. We have implemented this by assigning a
separate range of identifier values to polygons; the sample identification
process only requires minor changes to accommodate this. Although the
resulting polygonal data does not lend itself very well to triangle striping
or similar acceleration schemes, it greatly reduces the data to be rendered
while still maintaining good visual quality.

Alternative LOD Method

As an alternative to sorting samples by contribution alone, they can be
arranged by view distance first. The advantage of sorting samples by
decreasing distance is precise control over how many points need to be
rendered: an upper bound is the splat count for the next (closer) view (see
Figure 3.4). Interpolation could be used for smooth transition between
view distance steps, although ideally this should not be necessary, as the

43

3. POINT BASED VEGETATION RENDERING

View Distance

(closest) 12345
(2.4)

Current View Distance

Figure 3.4: Sorting point samples by distance. For the current view dis-
tance, all point samples up to and including view distance ’2’ would be
rendered.

closer view does already provide coverage for all visible samples. We
have therefore chosen not to implement smooth transitions as they are
already quite unobtrusive.

A straightforward implementation of this method would require stor-
ing additional information for each sample, or searching through the
previously determined (greater) distances to determine if this sample
has been seen already (obviously, each sample should be rendered only
once). However, this time consuming step can be avoided:

Each view direction is rendered from various distances, beginning
with the greatest distance. Samples that have already been visible at an
earlier iteration are not assigned their original id, but simply rendered
with the reserved background id. They will therefore still correctly ob-
scure other samples, but remain invisible to the following sample identi-
fication process.

3.3 Rendering
During rendering, the three closest view directions are determined for
each object. This can be done naively by finding the dot product of the
actual view vector and the vector stored for each view direction. A more
efficient method would be to precompute the three closest views in a
cube map or similar lookup table.

Next, the number of samples to be rendered is found as a function of
object distance and the total number of samples for this view direction.
The samples can then be rendered efficiently as a single vertex array. For
the original algorithm, since samples are ordered by contribution more
important (ie. highly visible) data is guaranteed to be rendered even if
only few samples are displayed. The alternative method always renders

44

Results

Figure 3.5: 400 instances of the reduced “Oak” model, interactively ren-
dered from an arbitrary viewpoint with individual orientation and color
bias for each instance.

a sufficient number of point samples through the use of a distance based
lookup table for the appropriate sample count.

Rendering Multiple Instances

If a model is reused several times, for example to produce a group of
trees, a slight variation in color and texture will greatly enhance the vi-
sual quality. However, this is not easily possible since sample data - in-
cluding color information - is stored in vertex array for efficient render-
ing. For color variation, this array would either have to be copied and
modified for each instance, or walked through “by hand” and each sam-
ple rendered individually. In both approaches, the advantage of using a
vertex array is lost.

We circumvent this problem by reusing the same vertex array, includ-
ing color information. The variation of appearance is achieved by ad-
justing light source color and intensity instead, which can be regarded as
adding an individual per-instance bias (see Figure 3.5).

3.4 Results

We have implemented preprocessing and rendering of the leaves of var-
ious models of trees; the tree models were generated through an algo-
rithm similar to the one proposed by Weber and Penn [WP95]. Lighting
was precalculated by ray casting through a regular volume grid; the den-

45

3. POINT BASED VEGETATION RENDERING

0

12

4

8
Pe

rc
en

t V
is

ib
le

(Time)
0.0

1.5

0.5

1.0

(Time)

Figure 3.6: Percentages of visible leaves (point samples, left) and
branches (ie. triangles, right) for tree “Oak” (total points 91054, triangles
52076). Note different scales on graphs.

sity of each cell was estimated through a heuristic function based on the
number of enclosed leaves.

Figure 3.9 displays the preprocessing results for one particular tree
model. 26 views were generated through a regular subdivision scheme,
and the total and relative count of visible samples found with the orig-
inal algorithm. This model only contains a dense set of leaves and no
polygonal stems or branches. Loading the original data set (10 MB) and
preprocessing took about 35 seconds on an 1.4GHz Intel Pentium 4 with
GeForce4 graphics. The total number of samples for all views is 86265,
each consisting of a vector and color information, for 15 bytes/sample
and 1.3MB total per tree model. Data structure overhead is about 20 bytes
per view direction. If polygonal data is stored as well, it can be estimated
with an additional 45 bytes/triangle. For comparison, Meyer et al. report
“a few tens of Megabytes” for their method, and a preprocessing time of
about 75 minutes using an Onyx2 Infinite Reality.

A visual comparison of the original and reduced models is shown in
Figure 3.10. Although different splats may be rendered for the full and
reduced models (Figure 3.10c, the actual pixel value difference is quite
small, as illustrated in Figure 3.10d.

In Figure 3.6, a complete tree model has been preprocessed with the
alternative, distance-sorting algorithm. Each column represents a partic-
ular view direction, and the individual view distances are stacked from
distant (bottom) to close-up (top). The left graph displays point sam-
ples (ie. leaves), and the right graph represents triangular data (ie. stem
and branches). In this case, the total time for I/O and preprocessing was
about three minutes. The total data file size is about 12MB.

The model, an oak-like tree, has a much less dense leaf cover than
the “Balsam” model, and therefore also a higher percentage of visible

46

Results

Figure 3.7: Reduced “Oak” model, interactively rendered from an arbi-
trary viewpoint using 3 out of 70 precalculated view directions.

0

2

4

6

8

10

12

14

Pe
rc

en
t V

is
ib

le

(Time)

Figure 3.8: Percentage of total bandwidth used over time for a number
of views.

leaves in comparison. A number of things can be seen in these graphs:
For some view directions, there are distance steps that do not reveal any
new samples. This may be in part due to the use of the OpenGL Point
Parameter extension to adjust the point size according to distance.

Figure 3.7 shows the oak model rendered from an arbitrary view-
point. Three out of 70 view directions have been rendered, resulting in

47

3. POINT BASED VEGETATION RENDERING

view visible pct. view visible pct.
1 4236 2.19% 2 6882 3.56%
3 6606 3.41% 4 4197 2.17%
5 6665 3.44% 6 4324 2.23%
7 4310 2.23% 8 6560 3.39%
9 6099 3.15% 10 5520 2.85%
11 7275 3.76% 12 5213 2.69%
13 6451 3.33% 14 5592 2.89%
15 4103 2.12% 16 6015 3.11%
17 3608 1.86% 18 3594 1.86%
19 5282 2.73% 20 3845 1.99%
21 5630 2.91% 22 4304 2.22%
23 5891 3.04% 24 6489 3.35%
25 6815 3.52% 26 5482 2.83%

total 26 140988 72.82%

Figure 3.9: Preprocessing results for tree “Sasafras” (total points 193608,
splat size 4 pixels, viewport 600∗600).

a total of 22897 points (25.15%) and 763 polygons (1.47%). Assuming
that triangles are three times as expensive as points to send to the graph-
ics pipeline, the relative bandwidth usage can therefore be estimated at
10.19%. Figure 3.8 tracks this value over time as the viewpoint is moved
about the model. As can be seen, it drops significantly - to less than 0.3%
- as the view distance increases.

Due to the nature of our algorithm, overdraw can be almost com-
pletely avoided while still providing guaranteed bounds on visual fi-
delity. This mostly depending on how many view samples have been
generated, as well as any other parameters such as point size. Conse-
quentially, these cannot be changed dynamically and need to be chosen
carefully at the preprocessing step.

Also, since our implementation only uses the view direction and po-
sition for visibility determination, the camera’s field of view is one of
these fixed parameters. While this may be an acceptable solution for
most cases, a more flexible solution may be desirable to achieve better
visual quality if these parameters do need to be changed dynamically.

48

Summary

(a) Reduced model (b) Full model (c) Splat diff. (d) Pixel value diff.

(a) Reduced model rendered from an arbitrary viewpoint with 19460 point
samples (10.05% of the original size).

(b) Full model, from the same viewpoint (193608 point samples).

(c) Splat differences: Red pixels show where a different splat is rendered in
front by the full model.

(d) Color coded pixel value differences between reduced and full models.

Figure 3.10: “Sasafras” tree model, comparison between reduced and full
models.

3.5 Summary

We have presented a new algorithm for view direction based data reduc-
tion of disjoint point sample clouds. Our method is fast (using commonly
available hardware acceleration), memory efficient, and easily adaptable
to other data with similar properties. Preliminary results have been pre-
sented, illustrating a large savings in memory, preprocessing and render-
ing load.

The benefit of this method is that it can handle objects and static ob-
ject groups where traditional occlusion based algorithms fail due to high
complexity.

Obviously, this algorithm is not inherently restricted to point sample
clouds and can be easily generalized to other data such as disjoint poly-
gons or entire objects (which can be approximated as bounding spheres
or bounding boxes for speed).

Furthermore, the polygonal stems could also be identified by the same
process. This would lead to a fully usable tree rendering model. To im-
prove near field rendering quality, the preprocessing step can be per-

49

3. POINT BASED VEGETATION RENDERING

formed with polygonal leaves. By counting the pixels covered by each
leaf, an immediate metric is obtained for selecting the appropriate level
of detail for each leaf: more than a few pixels: polygonal; only few pixels:
point; zero: discard. Each view would then consist of several arrays: a
stem list, a polygonal leaves list, and the original point sample list.

50

C
H

A
P

T
E

R

4
VEGETATION SPECIFIC

BILLBOARD CLOUDS

A life spent making mistakes is
not only more honorable, but
more useful than a life spent
doing nothing.

George Bernard Shaw

4.1 Introduction

For rendering vegetation at medium view distances, image based system
are frequently used [Int02, DDS03, CCDH05]. In these systems, detailed
geometry such as a group of leaves is represented as a single textured
polygon. Therefore, these approaches provide a good tradeoff between
rendering quality and performance as long as the flatness of the repre-
sentative polygon does not become apparent.

One significant drawback of such approaches is the identification of
suitable representative planes. Automatic placement methods are typi-
cally coupled with a procedural representation of the tree model [Int02],
making them unsuitable in the general case where this information is not
available.

51

4. VEGETATION SPECIFIC BILLBOARD CLOUDS

z

yx

θ

ρ

φ
Hough

Transform

θ

ρ

φ

(a) primal space (b) dual space

Figure 4.1: A plane in primal space (a) is transformed to a point in dual
space (b) via the Hough transform.

However, the billboard clouds introduced by Decoret [DDS03] does
not rely on such information. Dubbed an extreme model simplification
method, an arbitrary polygonal input model is automatically simplified
to a minimum set of planes that are automatically placed within the
model. A similar approach by Andujar et al. [ABC+04] is difficult to
apply to vegetation models, as it requires volume inside/outside tests,
which are difficult to decide on non-manifold geometry.

4.2 The Original Billboard Cloud Algorithm
The goal of extreme model simplification is to find a minimal set of planes
such that each polygon of the original model can be projected onto a valid
plane. A plane is valid if it is closer to each vertex of the polygon than
the error threshold ε; this threshold then represents the validity domain of
a vertex.

In their billboard cloud generation algorithm, Decoret et al. [DDS03]
formulate this simplification problem as a clustering problem in a dual
space constructed by the Hough transform [DH72]. In this space, planes
map to individual points in a three-dimensional coordinate system that
represents the two plane angles θ,φ and the distance ρ from the origin of
the plane (see Figure 4.1).

Conversely, a point in primal space can be defined as the intersec-
tion of all planes passing through that point, and maps to a sheet (or
height field) in dual space. Also, the validity domain of a point – essen-
tially a sphere of radius ε in primal space – is the same sheet translated
up/down by ε along the ρ axis. Finally, the validity domain of a face is
the intersection of the validity domains of its vertices.

52

An Improved Simplification Algorithm

For clustering, the dual space is represented as a discrete volume. The
validity of each face of the original model is accumulated in this volume,
and a greedy selection algorithm iteratively selects the best representa-
tive planes from the volume until all faces have been simplified to at
least one plane.

As the final step of BBC generation, plane textures are generated by
projecting the faces of the input model to their respective simplifying
planes. Alternatively, faces can be projected to all planes within their
validity region. This results in a more dense representation, which may
be more desirable depending on the input model.

4.3 An Improved Simplification Algorithm

If this algorithm is directly applied to trees, the representation is often
inadequate because the visual importance of the different features of a
tree is not evident in the geometry.

For example, a large threshold is usually required to obtain sufficient
data reduction rates but also leads to undesirable artifacts. One typical
case is the entire trunk geometry being simplified to a single plane and
thus becoming invisible if this plane is viewed at a grazing angle. Also,
the context-free simplification results in artifacts such as loss of continu-
ity and plane orientations that are mathematically correct, but visually
unsatisfactory.

In addition to the methods presented below we have observed that
much better results can be obtained by separating foliage and branches
and simplifying them separately, using different parameters for each part.

Vertex Welding

During the simplification process, vertices are projected onto the sup-
porting planes. This leads to discontinuities if polygons sharing a vertex
are projected onto different planes, as the projected points usually do not
coincide, leaving a visible gap (see Figure 4.2(b)).

These artifacts can be reduced (although not eliminated entirely) by
a process called vertex welding. The first time a vertex is projected onto
a simplifying plane, it is permanently moved to the projected location in
world space, slightly distorting the other connected polygons. This ef-
fectively moves the projected locations on the various supporting planes
of the other polygons closer together. Mathematically, the worst case
world space distance between two projections onto simplifying planes is

53

4. VEGETATION SPECIFIC BILLBOARD CLOUDS

(a) (c)(b)

Figure 4.2: Palm tree stem: (a) polygonal model, (b) normal billboard
cloud, (c) billboard cloud with vertex welding.

(a) (b) (c)

cardboard
plane

center of
gravity

primary
plane

coverage >80%

almost no
coverage

Figure 4.3: “Cardboard” plane construction to avoid edge-on artifacts of
trunks.

2ε without vertex welding (if the projections are on opposite ends of the
validity domain of the original vertex), and ε with vertex welding (since
subsequent projections must lie within the validity domain of the relo-
cated vertex). Figure 4.2 shows a Palm tree as the original model, and a
comparison of ‘plain’ billboard clouds and with vertex welding enabled.

Cardboard Planes

For vegetation, relatively large values of ε (typically 10-15% of the bound-
ing sphere radius) are required to simplify the mode to a few tens of
polygons or less. The resulting models still retain a good visual repre-
sentation of the original model, but the large ε do cause some problems

54

Results

(a) (b) (c) (d)

Figure 4.4: Tree models without (a, c) and with (b, d) view dependent
penalty to avoid horizontal planes.

with branches. Figure 4.3(a) shows how the entire palm trunk is simpli-
fied to a single plane and becomes invisible when this plane is viewed
edge-on.

To avoid these artifacts, branches and leaves are simplified separately.
Leaves are reduced with the traditional approach, and for branches an
automatic cardboard plane construction is performed: one a simplifying
plane has been found, orthogonal planes are tested for their coverage
of the simplified geometry. If a plane is found that covers a signifi-
cant amount of the simplified geometry, it is included in the constructed
model, effectively constructing a crosswise impostor (see Figure 4.3).

View-dependent Penalty

Since one of the main applications of simplified vegetation is a walk-
through scenario, the resulting models need to work well when viewed
at eye height. However, due to the regular structure of trees the simpli-
fying planes are often nearly horizontal. Figures 4.4(a,c) demonstrate the
resulting artifacts.

To avoid these problems, a view direction dependent penalty can be
assigned to simplifying planes. In our implementation, this penalty is
weighted by the normal direction of the plane, making near horizon-
tal planes less likely to be chosen during clustering and plane selection.
However, other weighting schemes could easily be added, for example
for models that are only viewed from a certain direction.

As demonstrated in Figure 4.4, the resulting models require slightly
more planes (11 vs. 8) but are visually much more pleasing.

55

4. VEGETATION SPECIFIC BILLBOARD CLOUDS

(a) (b) (c)

(d) (e)
tree ε faces billboards preproc. time (s) approx. trees / sec

a 10.0 108783 12 342 143000
b 12.0 159160 14 403 122000
c 12.5 20547 13 62 132000
d 6.5 7292 8 25 214000
e 6.5 169781 21 496 81000

Figure 4.5: Polygonal tree models and billboard clouds representations,
together with creation and rendering statistics. In the above table, the
error threshold ε is given as a percentage of the bounding sphere radius.

4.4 Results
Figure 4.5 presents a visual comparison of various tree models and their
billboard cloud representations. In addition, the table in the same fig-
ure shows the error threshold used and various creation and runtime
statistics for each of the models. The rendering performance (rightmost
column) of this table clearly shows that billboard clouds are a viable ap-
proach to rendering large numbers of trees, supporting up to 200.000 ren-
dered instances per second in a moderately optimized framework. This
figure can very likely be further improved through the use of a texture
atlas and similar techniques.

Furthermore, Figures 4.6 and 4.7 show how the models are integrated
in a typical urban visualization framework. At the distances shown, the
visual impression of the billboard cloud models is quite at its limits. As
an abstract notion of vegetation is desired it is still sufficient, but in many
cases a more realistic impression is desirable. One approach for render-
ing more detailed models that is directly linked to the presented billboard
clouds will be described in the next chapter.

4.5 Summary
Billboard clouds are a very flexible approach to simplifying highly com-
plex models. No information other than the input geometry is required.
Therefore they are easily applicable to vegetation models, which are of-

56

Summary

Figure 4.6: Improved billboard trees in an urban setting.

Figure 4.7: Walkthrough scenario with improved billboard trees.

57

4. VEGETATION SPECIFIC BILLBOARD CLOUDS

ten created using third party tools where it would be very difficult to
integrate additional information, or guarantee properties such as water
tightness.

However, the original algorithm suffers several drawbacks when di-
rectly applied to vegetation. The growth pattern of trees results in a bias
towards horizontal planes, which are undesirable in walkthrough appli-
cations, and small detail may be simplified to a single plane and therefore
vanish for certain view directions.

We have presented several extensions to the original algorithm that
address these issues. The resulting models can be rendered very effi-
ciently, are visually pleasing at moderate view distances and have been
successfully used in landscape and urban visualization applications.

58

C
H

A
P

T
E

R

5
DISPLACEMENT MAPPED

BILLBOARD CLOUDS

The most exciting phrase to
hear in science, the one that
heralds new discoveries, is not
“Eureka!” but “That’s funny...”.

Isaac Asimov

5.1 Introduction
Based on the observations made in Chapter 4, it becomes obvious that a
slightly more detailed representation of vegetation is desirable. Ideally,
such a representation would be compatible with the simpler billboard
clouds to allow a seamless transition depending on the current view dis-
tance. In this chapter, we will focus on an extension of the image-based
billboard clouds approach that addresses these goals.

To reiterate, billboard clouds represent a part of a scene as a collection
of arbitrarily placed and oriented texture mapped planes to which the
original geometry is projected. Therefore, the represented part of a scene
can be observed from all sides. But below a minimum viewing distance
the visual quality deteriorates. While the quality of BBCs is sufficient
for medium to distant parts of a scene, the “flatness” of the individual

59

5. DISPLACEMENT MAPPED BILLBOARD CLOUDS

Figure 5.1: Screen shot from our interactive test application, simultane-
ously displaying full geometry (396.000 faces) for close trees, DMBBCs
in the middle distance and BBCs for the far field.

planes becomes very noticeable when viewing them at closer distances
or at grazing angles. This effect is independent of the texture resolution
and cannot be easily avoided: switching to full geometry earlier defeats
the purpose of BBCs as this leads to a much higher geometry load, while
substituting a different BBC with a higher accuracy typically leads to no-
ticeable popping artifacts. This restricts the usefulness of the BBC tech-
nique for scene parts close to the viewer.

We introduce displacement mapped billboard clouds (DMBBCs) to over-
come these problems. The main idea of DMBBCs is to augment every
plane of a BBC using a structure similar to a displacement map in order
to better represent the original geometry. In essence, the BBC planes ap-
proximate the rough object structure, whereas the displacement map rep-
resents fine details, leading to a much lower geometric error. However,
in contrast to surface detail typically approximated with displacement
maps, the geometry projected to a BBC plane is not necessarily continu-
ous. We therefore introduce thick displacement maps and a novel hardware
ray tracing algorithm that can trace through holes in the representation,
thus providing a more plausible approximation of the original object.
The ray tracing algorithm makes use of several acceleration techniques
that are new for hardware ray tracing.

Impostors based on DMBBCs allow for fast rendering of complex
scenes with high image quality even for close objects. In particular, the
artifacts typically associated with billboard clouds are avoided through
the use of additional parallax and visual depth, while no additional ge-
ometric complexity is introduced. The new representation allows for

60

Related Work

seamless blending with traditional billboard clouds, so that distant scene
parts can be rendered as fast as possible. DMBBCs can be rendered en-
tirely on graphics hardware.

In addition to being applicable to vegetation, DMBBCs are also suit-
able for objects containing curved surfaces, where traditional billboard
clouds typically fail to provide a sufficiently high image quality.

5.2 Related Work

For a comprehensive overview of impostor techniques (including simple
planar impostors, layered depth images and textured depth meshes), we refer
the reader to a recent state-of-the-art report by Jeschke et al. [JWP05].
Since DMBBCs are based on the billboard cloud technique, we refer to
the original work by Decoret [DDS03] as well as Chapter 4 for a detailed
discussion of this method.

Texture-based surface descriptions

As an early approach, bump mapping [Bli78] solely relies on shading, pro-
viding no correct silhouettes nor parallax effects. Several more recent
methods enrich surfaces with geometric details that are stored in tex-
ture maps. For instance, parallax mapping by Kaneko [KIK+01] (with its
various extensions [Wel04, MM05, Tat06]) simulate the appearance of a
height field by shifting the texture coordinates within a texture depend-
ing on the viewing angle. Note that these techniques are hardly applica-
ble for our purpose because a billboard cloud typically contains empty
areas in the texture which cannot be represented in this way.

Surfaces with a certain depth can also be represented using ray cast-
ing on the GPU. Hirche et al. [HEGD04] were the first who defined a vol-
ume on a surface. They extruded the triangles along the vertex normals
which results in prisms. Every prism is decomposed into three tetrahe-
drons. The ray casting is then applied to every tetrahedron by calcu-
lating the entrance and exit point and linearly sampling and evaluating
a heightfield between them. The first hit point with the heightfield de-
termines the position, and the color is read from a color texture. This
technique supports correct object silhouettes, self-occlusions, interpen-
etrations, and even shadowing. Later Dufort et al. [DLP05] extended
the work to semi-transparent data and Porumbescu et al. [PBFJ05] dis-
cussed the mapping in a broader way. Note that the idea of Hirche et
al. is most closely related to our technique: the ray casting step is imple-

61

5. DISPLACEMENT MAPPED BILLBOARD CLOUDS

Figure 5.2: Left: billboard rectangle with its according validity region.
Right: billboard box. Darker shaded regions show the rendered primi-
tives together with the displayed contents. Note the difference between
the flat rectangle and the volumetric contents of the box.

mented entirely in graphics hardware and allows for interactive frame
rates, which makes the basic idea perfectly suitable for our DMBBCs. The
main conceptual difference is that instead of prisms, DMBBC primitives
are boxes which we can directly use for ray casting and we will allow the
ray casting step to discover holes in the representation. We also acceler-
ated the ray sampling process by using sphere tracing [PF05]. Cone step
mapping [Dum06] or an enhanced version based on safety zones by Kolb
et al. [KRS05] are further alternatives.

More recently, Policarpo et al. [POC05] applied ray casting to the orig-
inal polygons of a mesh and implicitly defined a thick surface inside the
object. While this works considerably faster than Hirche’s method, sil-
houettes are still defined by the mesh geometry. They extended their
work to better discover silhouettes and to support multiple height val-
ues per texel position [PO06]. However, their algorithm is based on the
assumption of a continuous surface with well defined “inside” and “out-
side” values, which do not exist in the context of DMBBCs. The same
applies to the work of Wang et al. [WWT+03a, WTL+04] who use mas-
sive preprocessing in order to reduce the cost for intersection searching at
runtime. Please note that most of the presented techniques are explained
in more detail in a book of Watt and Policarpo [WP05].

62

Displacement Mapped Billboard Clouds

Figure 5.3: DMBBC representation of a chestnut tree consisting of 8 bill-
board boxes.

5.3 Displacement Mapped Billboard Clouds

DMBBC definition

As mentioned earlier, a billboard rectangle in a BBC is used to represent all
model parts that are closer to the rectangle than a user-defined validity
threshold ±ε. This validity threshold effectively represents a cuboid vol-
ume around the billboard rectangle, the billboard box (see Figure 5.2). The
billboard box exactly defines the convex hull of the volume representing
a DMBBC.

For a DMBBC, instead of simply projecting the model parts onto the
rectangle and storing one color value, we store volumetric information,
the so-called volumetric displacement function. At each texel (u, v), fuv (w)
gives an opacity value for the height w along the rectangle normal, and
an optional color value. For now, we assume that f is stored as a 3D
texture with equidistant samples in w . Figure 5.3 shows the billboard
boxes of a tree model.

63

5. DISPLACEMENT MAPPED BILLBOARD CLOUDS

Basic rendering algorithm

For displaying contents of a billboard box, we use a GPU ray-casting al-
gorithm which determines the intersection of the viewing ray with the
contained volumetric displacement function. The entry points of the
viewing rays are interpolated from the corners of the billboard box by
rendering the faces of the billboard box with interpolated (u, v, w) coor-
dinates. The direction of the rays in texture space vtangent can simply be
calculated through an affine transformation of the world space view di-
rection vworld, defined by the local tangent frame u,v,w:

vtangent =
 ux uy uz

vx vy vz

wx wy wz

×vworld

The ray casting itself samples linearly along the ray in texture space
(using a user-defined sampling rate) until an intersection is found, just
like many previous methods described in Section 5.2. The search stops
if either the ray leaves the box (which can be easily determined using
the texture coordinates) so that the fragment can be discarded, or it in-
tersects an opaque texel in the volumetric displacement function. In the
latter case, the color value at the current position defines the output color.
To optionally shade the current pixel, a normal can be read from an ac-
cording map and used to apply an illumination model, as was already
shown for BBCs [DDS03]. Note that the shader needs to output the
correct depth value of the intersection point in order to correctly solve
visibility between potentially overlapping billboard boxes. This is also
straightforward and details are omitted here.

DMBBC generation

For generating the DMBBCs, we assume that the billboard rectangles to-
gether with the error value ε are already given. The rectangles can be ob-
tained using any suitable billboard cloud algorithm; we have employed
the variant described in Chapter 4. The extents of a billboard box are de-
fined by a rectangle together with ε. The (u, v) texture resolution of the
rectangle (defined by Decoret through the closest distance that the impos-
tor should be valid for [DDS03]) is also valid for the box. Now given the
original geometric model, we need to calculate and store the volumetric
displacement function fuv (w). There are several ways how to represent
this function. One obvious choice is to represent it volumetrically as a 3D
texture. However, if the high memory consumption of this approach is

64

Displacement Mapped Billboard Clouds

(a) Original meshes (b) BBC models (tree: 16 rectangles; car:
31 rectangles)

(c) Volumetric DMBBCs: the volumetric
data is stored as 3D texture, resulting in
good visual quality but relatively high
memory requirements.

(d) Shell DMBBCs: only one value per
(u, v) position is stored. The tree still
looks good except for the trunk, but the
car shows many cracks and misses details
at the front.

(e) Thick shell DMBBCs: two values per
(u, v) define an interval. The tree is dis-
torted by many incorrect “slabs”, but the
jaguar model looks better than with a
shell DMBBC.

Figure 5.4: Original, BBC, and DMBBC renderings of two models.

not acceptable, the Shells and Thick Shells presented below are two other
methods that significantly reduce the memory requirements while often
providing a sufficiently high image quality.

Volumetric Representation

The highest DMBBC quality can be achieved by sampling the volumet-
ric displacement function in a 3D texture. The resolution (sampling in-
terval) of the texture in w-direction should be chosen so that the voxels
are approximately cubic, which effectively generalizes the concept of tex-

65

5. DISPLACEMENT MAPPED BILLBOARD CLOUDS

ture resolution to 3D in the sense that a texel defines the smallest repre-
sentable feature. The 3D texture is then filled by rasterizing the triangles
of the original model into these voxels, and collecting for each voxel its
normal vector and color information. If multiple polygons occupy the
same voxel, this data can be either averaged with equal weights (this was
used to generate Figure 5.4, c), or, if inside/outside information is avail-
able, the outside sample can be preferred. We currently do this step in
software, but a GPU-based implementation (eg. by rendering the model
into each of the volume slices) would be straightforward if preprocess-
ing time becomes an issue. The software approach requires between sev-
eral seconds and a few minutes per billboard box, depending on the size
of the original mesh. At runtime, the ray casting algorithm has to test
whether the 3D texture contains an object part at the current sampling
position or not, indicated by either a special color or by using the alpha
channel.

Although the obtained image quality is relatively high as also shown
in Figure 5.4, c, the memory consumption is also high due to the typically
large amount of empty texels. If the model should be dynamically illumi-
nated at runtime, normal vectors can also be stored for every texel, again
by averaging the normals of all surfaces that fall into a voxel or by select-
ing any of them. However, note that this further increases the required
memory even though normals can be stored with lower texture resolu-
tion and/or compressed to only 2 bytes per normal at the expense of
slightly reduced output image quality. However, if certain assumptions
about the input model can be made, the following two sections present
ways how memory can be saved with little impact on the quality.

Shell Representation

If we assume that the volumetric displacement function contains only
one occupied region (voxel) for each (u, v) texel, then fuv (w) can be more
efficiently represented by a single displacement value. This dramatically
reduces memory requirements. We call this a shell DMBBC.

The displacement value represents the distance of the original sample
to the billboard rectangle. Again, the same problem occurs as for the 3d
texture case: if multiple model parts map to the same (u, v) position, one
has to decide wether to average over all height values, color values and
normals or to just select one of them. Note that for shell DMBBCs this
issue is quite apparent since we deal with the whole thickness ε and not
only with the thickness of one 3D texel as was the case for volumetric
textures.

66

Displacement Mapped Billboard Clouds

In contrast to pure displacement maps, which represent surfaces, the
geometry contained in a billboard box is not guaranteed to be contigu-
ous. Therefore, a ray needs to be able to trace through holes in the repre-
sentation. On the other hand, continuous surfaces should not be pierced.
We solve this by assigning a user-defined thickness (therefore “shell” rep-
resentation) to the samples. If this thickness is chosen too small, holes
will appear in continuous surfaces, if it’s too large, the model will look
very blocky. At runtime, the ray casting algorithm tests whether the cur-
rent sampling position is within the thickness distance to the displaced
sample so that it can be assumed to be hit by the ray. Currently we adapt
the thickness manually using visual inspection. It might also be defined
as the standard derivation over all acquired texel positions.

A shell DMBBC basically needs the same amount of memory as a
BBC, except that along with the color information an additional displace-
ment value per (u, v) position must be stored. On the other hand, the
overall image quality is typically lower compared to the 3D texture ap-
proach. Figure 5.4 d shows an example for this where the introduced er-
ror is not too apparent for a largely unstructured model (here a tree) but
becomes too obvious for an object with continuous surfaces and wrinkled
details (here a car). The latter problem is caused by the global “thickness”
value that on the one hand has to ensure that continuous surfaces appear
closed but on the other hand should also preserve small details. The next
section presents a method that overcomes this problem.

Thick Shell Representation

A more accurate representation of the volumetric displacement function
is the thick shell DMBBC representation, which stores two height values
per (u, v) position. The interval between the two values represents the
part of the volume that is occupied by the model. We have simply stored
the lowest and the highest displacement values for generating Figure 5.4
e, but other options might also be possible. Consequently, at runtime the
ray caster tests if the current w value is within the stored interval at the
current (u, v) position in order to determine if the model is hit.

There are many possibilities to balance image quality and memory
requirements in the actual memory layout of a thick shell. It would for
example be possible to store colors and normal vectors separately for
the lower and higher interval boundaries and to linearly interpolate be-
tween the resulting output color values at runtime depending on the ac-
tual height. However, in order to save memory, for generating Figure 5.4
e we simply stored one additional height value compared to the shell

67

5. DISPLACEMENT MAPPED BILLBOARD CLOUDS

DMBBC approach. This works well for relatively thin objects such as the
trunk of a tree where the color can typically be assumed to be identical for
both sides. This also saves almost 50% memory. However, as Figure 5.4,
c also shows, while the jaguar model looks considerably less cracky com-
pared to shell DMBBCs (see Figure 5.4, d), the chestnut shows many in-
correct “slabs” because neighboring leaves and branches are merged into
one billboard box. This makes this technique much less useful for highly
unstructured models like vegetation.

Rendering optimizations

Rendering Acceleration Using Distance Functions

GPU-based ray casting can become very costly since it is linear in the
number of texels the ray projects to in each texture rectangle. In order to
increase rendering speed without reducing the image quality we adapted
an approach by Donnelly et al. [PF05], which is based on distance func-
tions. Please note that it works similarly for all presented DMBBC vari-
ants.

In the preprocessing step, a so-called 3D distance texture is created.
The (u, v) dimensions of this texture are the same as for the billboard
boxes. The w dimension can be chosen as a tradeoff between fast inter-
section calculation and required memory. For every 3D position in the
distance texture, the closest Euclidean distance to the next non-empty el-
ement within the billboard box (defined by the 3D texture, the shell, or
the thick shell) is stored. Texels that lie within a non-empty region have a
distance of zero. Note that the distances define spherical regions around
every texel.

At runtime, instead of using uniform sampling, we read the distance
texture for the current texel and either stop (if the value is 0) or move
along the ray to the border of the distance region and repeat. Therefore,
the distance function can be used to efficiently skip large empty parts in
a billboard box without missing an intersection. Also, since the traversal
automatically stops within occupied voxels, the main loop of the traver-
sal is very efficient, only consisting of a texture lookup and two arith-
metic operations. By using this technique we obtained speedup factors
between 2 to 10 for typical objects.

68

Results

Blending between Representations

One problem when rendering different representations for an object at
different viewing distances is to stage a smooth transition between those
representations to avoid noticeable popping artifacts which inevitably
draws the observer’s attention to any visual differences. Due to the con-
struction of the underlying billboard cloud, it is possible to calculate
at which distance the maximum displacement ε encoded in a DMBBC
projects to less than one display pixel. Behind this distance rendering
can simply be switched to regular BBCs for faster performance, without
being too much noticeable.

However, if the transition should occur at closer distances (typically
for performance reasons) a blending can be applied between the DMBBC
and its corresponding BBC in the following way: the displacement (i.e.,
the height of the billboard box) is linearly reduced to zero before switch-
ing, thus flattening the billboard box to the according billboard rectangle,
similar to the geomorphing approach for terrain rendering [Hop98]. This
provides a seamless transition between the two representations and re-
quires only to dynamically adjust the size of the box and the according
world-to-texture-space-matrix.

Note that we do not blend between the original geometric model and
the DMBBC, as visual artifacts should be quite reduced due to the simi-
larity of the DMBBC with the geometric model.

5.4 Results

We have implemented the variants of the DMBBC algorithm described in
the previous sections as HLSL Shader Model 3.0 pixel shader and tested
them with a number of objects. All of the following tests were performed
on an Pentium D PC running at 3.2GHz with 1GB of RAM and an ATI
Radeon X1900 XT graphics card, running Windows XP.

Figure 5.4 provides a visual comparison of various models rendered
as geometry, BBCs, and DMBBCs, and Table 5.1 provides details for these
models. The dragon model was chosen because its billboard cloud rep-
resentations are typically visually unpleasant due its curved surface, and
the DMBBC representation offers a vastly improved representation. The
chestnut tree is one of the target applications of the DMBBC algorithm.
billboard cloud representations are frequently used for trees, and we
show that DMBBCs can provide a higher quality by eliminating the edge-
on artifacts which are quite visible for trees (e.g., see Figure 5.4).

69

5. DISPLACEMENT MAPPED BILLBOARD CLOUDS

Figure 5.5: Left: BBCs of the hippo, moped and Buddha. Right: the
according DMBBCs.

70

Results

faces ε (DM)BBC generation time (s)
model original rects/boxes BBC DMBBC
hippo 31583 10 10 130 303
moped 56882 5 22 834 1014
chestnut 159160 20 8 358 806
jaguar 188844 4 31 1129 2146
buddha 865792 10 8 1692 1794
dragon 871414 4 31 2799 2934

Table 5.1: Original and BBC/DMBBC figures for various models.

memory requirements (MB)
volumetric shell thick shell

model BBC DMBBC DMBBC DMBBC
hippo 0.37 12.2 0.76 0.93
moped 0.42 18.2 0.59 0.76
chestnut 1.85 17.25 2.67 3.1
jaguar 0.62 100 2.43 3.27
buddha 0.59 3.22 0.89 1.15
dragon 1.76 10.3 3.18 3.88

Table 5.2: Continuation of Table 5.1: memory requirements for the dif-
ferent representations, including normal data and distance textures for
rendering acceleration.

The comparison of various models rendered as BBC and DMBBC in
Figure 5.5 illustrates how the DMBBC representation manages to pre-
serve the general shape of the models more closely.

Concerning memory requirements, Table 5.2 shows statistics about
the test models. While the volumetric DMBBC needs considerably more
memory than the BBC, the shell and thick shell variants store the data
more memory efficient. Also note that a complex BBC still does not reach
the visual quality of the according DMBBC, although it occupies even
more memory. In general the tradeoff between a high image quality and
low memory consumption must be made for a particular application.

The rendering speed of DMBBCs is fully determined by the pixel ren-
dering power of the graphics hardware. DMBBCs therefore trade CPU
and/or vertex processing power as well as CPU/GPU bandwidth for
pixel processing speed. For Figure 5.6, we created BBC and volumetric
DMBBC representations for the willow tree model with an error thresh-

71

5. DISPLACEMENT MAPPED BILLBOARD CLOUDS

 0

 200

 400

 600

 800

 1000

 0 250 500 750 1000 1250 1500 1750 2000

fra
m

e
ra

te
 (1

/s
ec

)

view distance (units)

full geometry, 396950 faces
bbc, e=10%, 18 planes

dmbbc, 18 boxes

Figure 5.6: Frame rate vs. distance for full geometry, BBC and DMBBC
representations of the willow tree model. Note that the top line (BBC)
implies significant visual artifacts; rendering the BBC representation is
therefore only useful once the visual error becomes sufficiently small (1
pixel at approximately 1300 units).

old of 20%. We then measured the average rendering time of a single
such model for a number of viewpoints at distances from 500 to 5000
units in 20 unit increments. Furthermore, we performed the same test
with the BBC representation of the same model, with the same error
threshold as for the DMBBC, and the original geometry. Please note
that the distance where the projected error threshold of the BBC becomes
smaller than one pixel is at approximately 1300 units.

It can be observed that the frame rates for the full geometry and the
BBC model are independent of the distance (and therefore independent
of the screen size), leading to the conclusion that the GPU is certainly not
fill rate limited for these models. The significantly lower performance of
the visually equivalent BBC model is caused by the abundance of texture
state changes required to render them—while the full geometry only uses
two textures, the BBC representation requires a separate texture for each
rectangle, causing a much larger overhead even if they are packed into

72

Summary

larger texture atlases.
On the other hand, the rendering performance of a DMBBC model

is highly dependent on the viewing distance. The lower performance of
the more complex DMBBCs is mostly caused by pixel shader overdraw—
since the renderer modifies depth information, no early culling may be
performed and the full shader must be evaluated for each of the billboard
boxes. It can be seen that although the initial performance is very low,
the DMBBC renderer surpasses the performance of the original geome-
try rather quickly. Figure 5.6 illustrates that the DMBBC representation is
ideally suited for accelerating rendering at moderate distances, and pro-
vides a good transition from full geometry to BBC representations. Also
note that the rendering speed is practically equal for the three DMBBC
variants we have presented, because the ray casting loop is almost iden-
tical.

Furthermore, since the performance of pixel processing within the
GPU is increasing rapidly with each generation of GPUs (and GPU band-
width less quickly by far), it can be expected that the slope of the DMBBC
curves in Figure 5.6 will become larger, shifting the break-even point
closer to the viewer.

5.5 Summary

We have introduced displacement mapped billboard clouds, an image-
based rendering primitive for complex objects. DMBBCs complement
traditional billboard clouds for near to medium distances, where the vi-
sual shortcomings of BBCs are especially apparent and distracting. The
main advantage of DMBBCs is that they allow an image-based repre-
sentation to be used at closer distances than ordinary BBCs, leading to
significantly higher rendering speeds than with the original geometry,
while still providing good image quality. The improved image quality
is due to the geometric detail added by image-based primitives, which
also capture discontinuous geometry using so-called volumetric distance
functions . The high rendering speed owes to the fact that a DMBBC is
displayed entirely by modern graphics hardware with a fast ray casting
algorithm. Conventional shading and shadowing techniques like normal
maps and shadow mapping for realistic illumination can still be used
with the new technique. In addition, different objects can intersect each
other, while the representations look still correct.

The scale of volumetric DMBBCs reaches from a purely volumetric
representation (i.e., one billboard box for the whole model) to an al-

73

5. DISPLACEMENT MAPPED BILLBOARD CLOUDS

most purely geometric representation (large number of very thin billboard
boxes). In other words, DMBBCs smoothly fill the gap between image-
based and geometry-based representations.

In terms of future work, one interesting question is how to optimally
simplify an object for displacement-mapped rendering. In our imple-
mentation we used the classical error metric of Decoret et al. [DDS03]
based on the distance ε of a scene part to the rectangle it is mapped to.
Although the displacement map practically eliminates the error mea-
sured by this metric, keeping the offsets small is still desirable in or-
der to reduce overdraw in the output image. However, other metrics
could adapt to the special characteristics of the DMBBC algorithm. For
instance, while in shell DMBBCs, pixels can only adequately represent
one surface piece, this does not hold true for the volumetric approach.
New metrics can also be based on other optimization criteria, like using
fewer boxes or making best use of memory by minimizing the number
of empty pixels in every box.

74

P
A

R
T

II
FAR FIELD

VEGETATION
RENDERING

75

C
H

A
P

T
E

R

6
INTERACTIVE LANDSCAPE

RENDERING USING GPU BASED

RAY CASTING

If at first the idea is not absurd,
then there is no hope for it

Albert Einstein

6.1 Introduction

Interactively exploring large landscapes has recently become quite popu-
lar. The most widely known examples for publicly available viewers are
probably Google Earth1 and NASA World Wind2; other well known ap-
plications are Microsoft’s Virtual Earth3, Autodesk Map 3D4, 3DGeo5 and
many more. These systems use images and height data obtained from
laser range scanners, GPS data, and satellites to generate and render a

1http://earth.google.com/
2http://worldwind.arc.nasa.gov/
3http://local.live.com/
4http://www.autodesk.de/map
5http://www.3dgeo.de/

77

http://earth.google.com/
http://worldwind.arc.nasa.gov/
http://local.live.com/
http://www.autodesk.de/map
http://www.3dgeo.de/

6. INTERACTIVE LANDSCAPE RENDERING

textured terrain mesh. Much work has been spent to also represent ver-
tical structures like building facades in the representation, because such
structures are typically not immediately available in the acquired data.
On the other hand, to the author’s best knowledge, vegetation has not
been faithfully represented in such systems so far, although this obvi-
ously would contribute to a more realistic look.

We present a method for increasing the realism of vegetation render-
ing in landscape visualization systems. Since in most of the above sys-
tems the terrain is internally stored as height map, we directly render the
landscape from this height map data using a GPU ray casting approach.
We will demonstrate the following advantages of such a strategy com-
pared to traditional mesh-based representations:

• Output sensitivity, i.e., performance depends on the number of ren-
dered pixels rather than on the complexity of the landscape.

• It is possible to easily "refine" the landscape for a more realistic rep-
resentation. This means that special surfaces in the landscape can
be modeled with higher realism without the need for complex op-
erations like remeshing the scene. An example for this is enhanced
vegetation realism: given an input heightfield and an according
color map, the technique extracts a special vegetation heightfield
from the color data. During the terrain exploration this heightfield
is rendered “on top” of the terrain thus providing parallax and oc-
clusions like a real forest canopy. However, please note that height
field data inherently becomes visible as such when viewed nearby,
and the presented technique is merely thought for distant render-
ing only, as is typically the case for landscape explorations.

• Local and global illumination calculations like shadow mapping
and ambient occlusion can be easily and quickly performed at run-
time and changed dynamically. Furthermore, by exploiting natural
implications about the data such as the appearance of trees, stones,
glaciers etc., shadow behavior, and light interactions within a land-
scape, a fairly good image quality can be achieved.

6.2 Related Work
The presented work is most closely related to terrain rendering and here
specifically height field rendering. For a review of vegetation rendering
techniques, see Chapter 2.

78

Related Work

Height Field Rendering

Techniques such as bump and normal mapping have been in use to simu-
late the mesostructure of surfaces for many years [Bli78]. However, they
lack parallax and self-occlusions within the surface. Consequently, en-
hanced techniques like parallax mapping [KIK+01] (optionally with off-
set limiting [Wel04]) and parallax occlusion mapping [Tat06] were devel-
oped that simulate the appearance of a heightfield by shifting the tex-
ture coordinates within a texture, depending on the view angle. Unfor-
tunately, these techniques still cannot display correct object silhouettes in
all cases.

Kajiya and Kay [KK89] (and later Neyret [Ney98]) first used ray cast-
ing of 3D texture maps in order to display fur and other complex sur-
face structures. Recent advances in programmable shaders and increas-
ing GPU performance have allowed implementations with various opti-
mizations that run directly on graphics hardware. As an example, relief
mapping proposed by Policarpo et al. [POC05] provides believable paral-
lax effects within a surface, but does not render correct silhouettes. This
is often not a problem for rendering object surface mesostructure. How-
ever, for landscape rendering, the undulating nature of the terrain would
result in visual artifacts without correct silhouettes. To overcome this
problem, Oliveira and Policarpo [OP05] proposed a method that uses
quadrics to better approximate height fields on curved surfaces. This
method relies on a preprocessing step that computes a quadric approx-
imation of the surface for each vertex and stores its coefficients as ad-
ditional vertex parameters. Unfortunately, the proposed approximation
only works for smooth surfaces, i.e., it fails at sharp edges, and also re-
quires the storage of additional per-vertex data, making it difficult to in-
corporate in existing systems.

Most existing methods that do produce correct silhouettes are based
on rendering tetrahedra or prisms instead of the original surface to avoid
visual artifacts. Examples for tetrahedra-based algorithms are the meth-
ods by Hirche [HEGD04], Porumbescu [PBFJ05], and Dufort, [DLP05].
Methods based on prisms have been proposed by Wang et al. [WTL+04].
Unfortunately, rendering prisms or tetrahedra significantly increases the
polygon count and (even worse) overdraw.

A GPU implementation of a ray casting renderer for (terrain) height
fields has also been proposed by Qu et al. [QQZ+03]. Although it lacks
the acceleration methods proposed in other works, this approach is the
most similar to our method.

79

6. INTERACTIVE LANDSCAPE RENDERING

a

Ortho
Photo

Topograhic
Map

Canopy
Proxy

Texture

b c

d

Digital
Elevation

Map

Resampled
Elevation

Map

Vegetation
Cover
Map

Combined
Elevation

Map
Elevation

Map
+Accel.

Aerial
Photographic
Interpretation

a: Identification of Arboreous Regions and Vegetation Cover Map generation.
b: Elevation Data Resampling.

c: Height Map Texture Creation.
d: Calculation of Ray Casting Acceleration Data.

Figure 6.1: Overview of the preprocessing steps. See text for details.

6.3 Preprocess: Enhancing Landscape Detail

The goal of the preprocess component is to enhance the realism of a land-
scape model by adding surface detail in dependence on the represented
surface.

There are several possible forms of input data. A DEM (digital eleva-
tion map) which contains the height values of the surface obtained, for
instance, from SRTM (Shuttle Radar Topography Mission) or LIDAR (Laser
Imaging Detection And Ranging, a time-of-flight based range laser scan-
ning method) data. Along with the DEM there may either exist aerial
photographic maps, topographic maps, and/or aerial photographic in-
terpretation data. Note that we assume that these maps are already reg-
istered to the DEM.

The idea is to use the additional information to modify the elevation
and/or photographic map in order to increase the realism in the scene.
For the scope of this thesis, the focus is add detail for arboreous regions
which constitute a special challenge due to their canopy structure. The
goal of the preprocess is to create a combined elevation map from the vari-
ous existing data sources (refer to Figure 6.1): by exploiting the available
information, a vegetation cover map is generated that identifies arbore-
ous regions. This map is then used to augment the original DEM with

80

Preprocess: Enhancing Landscape Detail

Figure 6.2: Left: Sample aerial image interpretation data. Individual
shades of grey depict different land cover types (grass, forests, road, wa-
ter, etc). Actual data is detailed enough to differentiate between domi-
nant plant species. Right: Corresponding orthophotography, with sur-
face type boundaries overlaid.

a generic displacement map (called canopy proxy texture) in order to ge-
ometrically enhance the forest canopy. The resulting combined elevation
map represents both the terrain and its vegetation cover.

Please note that the basic idea to augment the original scene with a
proxy appearance is also applicable to other surfaces like water, rocks,
grass, glaciers and so on. Depending on the level of detail within the
classification, this can be done generically (water, grass, rock or trees), or
at a highly specific level (mixed forest, dominant species larch, 60% closed).
In the latter case the proxy geometry can be varied at a much finer scale
than if only a rough distinction is available.

The following sections describe the individual steps for generating
the combined elevation map, including the identification of arboreous
regions, resampling terrain elevation data to an appropriate level and
combining terrain elevation with a suitable canopy proxy model to the
combined elevation map. A schematic overview of these preprocessing
steps is also depicted in Figure 6.1.

Identification of Arboreous Regions

Arboreous regions must be identified in order to generate the vegeta-
tion cover map. This can be done through a number of means. If aerial
photographic interpretation or other GIS data is available, this typically
already contains the required information. Each region within the infor-

81

6. INTERACTIVE LANDSCAPE RENDERING

(a) (b)

(c) (d)

x

Figure 6.3: Hardware accelerated vegetation coverage map creation. (a)
original map; (b) vegetation areas selected; (c) after dilation; (d) dilated
and eroded map. In this example, 2 passes of 3x3 filter kernels were
used for the dilate and erode stages. A subsequent blur would greatly
diminish the remaining artifacts.

mation database is assigned a classification ID, through which properties
such as primary and secondary plant species, height and density can be
queried. Figure 6.2 shows an example of aerial image interpretation data
and the corresponding orthophotography from which the data was de-
rived.

If no such data is available, the information can be extracted man-
ually or (semi-) automatically from a given photographic and/or topo-
graphic map. For example, there are a number of methods for automati-
cally deriving trees and other features [SH01, GL03]. If the input data is
a topographic map instead of photographic material, the forested areas
designated in the map can of course also be used in a similar fashion.
Figure 6.6 shows an example of vegetation data derived purely from a
1:50,000 scale topographic map. In this example, the arboreous regions

82

Preprocess: Enhancing Landscape Detail

were identified through color thresholding and smoothed through a mor-
phological close (dilation followed by erosion) operation to combine re-
gions separated eg. by height lines. Figure 6.3 illustrates this process.

This simplistic approach could be easily replaced by algorithms that
also identify additional features from the map [AS99, MLK+04]. For ex-
ample, this could be used to automatically place buildings in the model
or select water surfaces for a differentiated surface shading model. In our
case, the resulting vegetation cover map contains values between 0 for non
arboreous regions and 1 for regions identified as forests.

Canopy Proxy Models and Height Map Texture Creation

Since the vegetation cover map only describes the presence of vegetation
on the map but does not capture the undulating canopy surface typi-
cally seen in forests, we use a separate canopy proxy model to achieve
this effect. This canopy proxy is essentially a generic, tileable patch of
canopy height data based on a LIDAR scan of a deciduous forest. For
large areas, we propose a tileable, non-repeating solution such as Wang
tiles [CSHD03]. Although we only use one canopy proxy because our
vegetation cover map does not identify individual species, the identifi-
cation preprocess could be extended, allowing the use of several distinct
canopy proxies for different surfaces, e.g., for deciduous or coniferous
forests, or bushes.

In the ray casting step, the combined local height of the terrain and
the canopy is required to calculate exact ray-canopy intersection points.
To provide this information, the tileable canopy proxy model is multi-
plied with the vegetation cover map, and the resulting vegetation height
added to the local terrain height and stored in the final texture.

An important issue in this context is the (vertical) map resolution. The
DEM typically stores height values between 0 and 2000 meters (for high
mountains even more), resulting in a vertical resolution of approximately
8 meters for an 8 bit map. Because this is clearly too coarse for modeling
a forest canopy (for an example see Figure 6.4), the map is extended to 16
bit resolution before it is modulated with the proxy map.

Furthermore, since digital elevation data is typically available in res-
olutions of approximately 10-25 meters at best, it needs to be resampled
at a higher (horizontal) resolution to capture individual trees in a canopy
with sufficient detail. We have found 0.75 to 1.5 meters to be sufficient
for this task. Note that bilinear filtering should be used for this step in
order to preserve a smooth surface.

One might argue that we could have used two separate textures for

83

6. INTERACTIVE LANDSCAPE RENDERING

Figure 6.4: Visual artifacts as a result of insufficient vertical resolution.

the DEM and canopy proxy map and combine them in the fragment
shader at runtime in order to save memory. In fact our first prototype
system implemented this approach but the resulting shader was signif-
icantly (about 4 times) slower than using a single 16-bit texture. We at-
tribute this to having to access two 8-bit textures per ray casting step.
Although the total data per access is the same for two 8-bit textures as
for one 16-bit texture, accessing a second texture apparently results in
much worse cache coherence. Furthermore, the inner loop of the shader
becomes more complex (2 texture + 12 arithmetic operations compared
to 1 texture + 9 arithmetic operations, a 40% increase). Although this ap-
proach significantly increases the required memory, we do not expect this
to be an issue for large scale terrain rendering, because such applications
typically already support dynamic texture loading and unloading.

Hardware accelerated preprocessing

The identification of arboreous regions - especially from topographic maps
- can be performed on the GPU very quickly. Given a topographic map
and a color key that identifies the specific regions (typically a shade of
green), the vegetation cover map can be calculated in a few passes, each
rendered to an off-screen texture that is used as input for the next step.
The individual steps are essentially the same as illustrated in Figure 6.3.

84

Runtime: Interactive Landscape Rendering

The dilate and erode passes may be performed multiple times to sim-
ulate a larger filter kernel that would exceed the maximum number of
allowed texture accesses in a single pixel shader program. Similarly, the
3x3 filter kernel can be decomposed into two passes of a 3x1 and 1x3
filter, respectively. 6 Similarly, the combined elevation maps and accel-
eration data structure can also be created very efficiently on the GPU.
Specifically, the safety zones introduced by Kolb et al. [KRS05] can easily
be produced by a sequence of dilations operating on the individual color
channels.

6.4 Runtime: Interactive Landscape Rendering

Given the DEM, enhanced with the canopy geometry as described in Sec-
tion 6.3, the goal is to interactively display the landscape with realistic
illumination. The rendering algorithm is based on per pixel ray casting
using the GPU.

Due to its high resolution (at 0.5m resolution, a 1km2 area amounts
to 2000x2000 samples, or roughly 8 million triangles) it is not practical
to directly convert it to a triangular mesh for rendering. Of course any
number of geometric reduction algorithms could be applied to create a
less detailed representation. However, retaining full detail is typically
desirable, eg., to identify outliers and systematic errors from the data ac-
quisition process. We therefore propose to render a very coarse approxi-
mation as a convex hull, and to ’fill in’ details as needed through an exact
ray casting algorithm. Furthermore, the presented pixel shader approach
allows an easy adaptation to different rendering styles and illumination
methods (just by slightly changing the shader program). Note that this
would be much more tedious with a fully geometric representation.

Choice of Rendering Primitives

At runtime a low-polygon approximation of the terrain is sent to the
graphics card. The generated pixel fragments are used as starting points
for ray casting within the pixel shader. The ray caster then uses the
canopy map to derive exact visibility and optionally compute surface
color and illumination.

6Note, however, that morphological operations are not commutative. For a dilation
operation D and erosion operation E , the sequences D,D,E ,E and D,E ,D,E yield differ-
ent results. The optimal combination depends on the input image and requires some
experimentation.

85

6. INTERACTIVE LANDSCAPE RENDERING

Since the geometric representation of the terrain is only used to create
the fragments for the pixel shader ray caster, it can be relatively coarse. In
fact, even rendering a simple plane in front of the camera would be suf-
ficient for this task. On the other hand, the geometry defines the starting
point for the ray caster in the map. It is desirable to generate a starting
point close to the landscape surface so that an intersection of the viewing
ray with the surface can be found quickly. Many landscape exploration
systems already use geometric levels of detail for the terrain, and fortu-
nately these approximations always results in starting points close to the
surface.

Since the geometry must encompass the terrain as well as the vegeta-
tion on top of it, an appropriate vertical offset is necessary. This can be
easily performed in the vertex shader, which also allows a smooth tran-
sition to other rendering methods that are not based on displacement
mapping by progressively reducing the vertical offset and thickness of
the rendered vegetation according to the view distance. Once the verti-
cal offset is zero, the ray casting step can be skipped and the surface is
rendered using traditional texture mapping.

Basic Algorithm: Per Pixel Ray Casting

We use a ray casting step that intersects the viewing ray against the com-
bined elevation map, quite similar to the algorithms described in previ-
ous work [QQZ+03, HEGD04, POC05]. Every vertex is assigned a 2D
texture coordinate for the combined elevation map. The per fragment
2D texture coordinate (generated during the hardware rasterization) is
the starting point for the ray casting algorithm in texture space. For sim-
plicity, we define the landscape in world space over a (x, y) plane and z
points up. The 2D direction in texture space is then simply defined by
the (x, y) coordinates of the viewing ray in world space. Beginning with
the starting point, the ray caster compares the value (the height) in the
combined elevation map with the respective z value of the viewing ray
at that position. If the ray is lower than stored height, an intersection with
the heightfield occurred and the ray caster stops. Otherwise, the next po-
sition along the ray is evaluated using a user-defined distance from the
current position. This process is repeated for a user-defined number of
steps. If the surface has not been hit, the fragment is clipped in order to
provide correct landscape silhouettes.

86

Runtime: Interactive Landscape Rendering

view raylight ray

tile B

skirt

tile A view ray

Figure 6.5: Avoiding artifacts at tile boundaries. Top: Vertical ’skirts’
(dashed) must be added to account for view rays entering the tile below
the top surface. Bottom: Some data (dashed) is replicated between tiles
to allow for illumination calculations across tile boundaries.

Rendering Quality Considerations

Per-pixel displacement mapping algorithms are often associated with
rendering artifacts such as texture distortion and/or incorrect silhou-
ettes. For correct ray casting of a displacement map on arbitrary objects,
the ray would need to be distorted appropriately to capture the curva-
ture of the object. This problem is typically solved by using a piecewise
linear (or, in the case of Oliveira’s work [OP05], quadric) approximation
for each individual triangle of the object. Triangles of the original mesh
are rendered as prisms or tetrahedra to guarantee continuity and to avoid
artifacts due to missed intersections. The use of these primitives also al-
lows the computation of the exit point of a ray from the current prism or
tetrahedron. By knowing both the start and exit point, the number of ray
casting steps required for full coverage can be easily computed.

In our case, object curvature issues are obviated, because the displace-
ment map stores absolute height information relative to a ground plane,
i.e. the original mesh can be regarded as a plane with zero curvature.
Therefore, no conversion to prisms or tetrahedra is required. However,
given a very large terrain the number of ray casting steps required for full
coverage of the terrain may be excessively large. To avoid this problem,
we subdivide the terrain into tiles that are rendered individually. Each
tile has a vertical boundary ’skirt’ to avoid missed intersections, which
can be directly compared to using prisms on a per-triangle level. Fortu-

87

6. INTERACTIVE LANDSCAPE RENDERING

view raycurrent texel

safe
intersections

unsafe
intersection

15 513 13

Figure 6.6: Ray casting acceleration. In addition to the local height (=1
texel safety zone), two safety zones (brighter green boxes) are stored for
each texel. The maximum step size is determined by the largest box that
is not intersected in its floor.

nately, similar skirts are also used in many tile based terrain rendering
techniques to hide T vertices and other tiling artifacts [Ulr02, NAS], and
such geometry could be re-used directly for our approach.

Also note that the distance between two ray casting steps as well as
the overall number of steps provide simple means for balancing render-
ing speed and image quality.

Ray Casting Acceleration

Our per-pixel ray caster is based on the acceleration scheme proposed
by Kolb et al. [KRS05]. For every texel, a so-called safety zone is defined,
being the largest height value within a user-defined radius around that
texel (see Figure 6.6). The safety zones for all texels are computed and
stored in a preprocess. At runtime, the minimum height of a ray within
the radius of the current texel is computed using some simple (and fast)
math. If this minimum height of the ray within the radius is above the
maximum height, it is guaranteed that the ray does not intersect the
height field within the current safety zone and the next sampling point
can be placed just outside the zone instead using a constant distance as
described above. It is also possible to precompute multiple safety zones
per pixel and to evaluate them in parallel at runtime by exploiting the
vector arithmetic of graphics hardware. As an example, in Figure 6.6 the

88

Runtime: Interactive Landscape Rendering

view raystart position

subsequent
steps

Figure 6.7: In cone step mapping, the ray step distance is determined
by intersection with cones of free volume that are centered on the height
field. If the height field includes narrow openings, the cone opening an-
gles are small and performance decreases significantly. Compare Fig. 6.6.

ray intersects the two inner safety zones (the height of the current texel
as well as the first (5 texel) safety zone) at their sides (blue dots, respec-
tively) whereas the second (13 texel) safety zone is intersected through
the floor (red dot). Therefore, the largest safe step size is determined by
the medium box (left blue dot). Although Kolb et al. use three paral-
lel safety zones, experiments showed that the performance gain of two
safety zones is hardly lower compared to three zones, so we only used
4 and 32 texel safety zones. The last component was then used for the
illumination calculation.

The choice of ray casting acceleration scheme is heavily dependent
on the features of the elevation data. Since forests often include narrow
paths and other gaps of open space, cone-based acceleration schemes (for
example, Cone Step Mapping [Dum06]) may lead to bad performance in
these cases (see Figure 6.7). This is especially true when viewing a scene
at near horizontal angles.

Similarly, volumetric approaches such as Donnelly’s Distance Func-
tions [Don05] are either very coarse (if a low vertical resolution is used),
leading to a small maximum step distance, or require very large amounts
of texture memory as well as significant preprocessing.

89

6. INTERACTIVE LANDSCAPE RENDERING

Illumination Calculation

In some situations it might be desirable to relight the scene, for instance,
when the sun should be simulated over a whole day. In order to get de-
cent lighting, we first experimented with recovering local normal vector
information and calculating diffuse illumination in addition to ambient
occlusion and self shadowing. Unfortunately, this resulted in a quite un-
realistic, ’plastic’ look of the forest. We attribute this to the fact that the
reflectance properties of forest canopies are hard to capture with a dif-
fuse reflection model, and just using an ambient solution seems to be the
best compromise if short of using a BRDF from measured data [MUN91].
Consequently, the color read from the orthophoto map (or, respectively,
topographic map) at the intersection between view ray and elevation
map is defined as base color.

In order to shadow the scene, the ray casting approach allows for a
simple and efficient shadow computation which avoids implementing
shadow mapping or shadow volumes [AMCH+04]. Beginning from the
intersection between view ray and elevation, a ray is constructed to the
light source (several light sources are of course also possible, requiring an
individual ray to every light). The ray casting process is then basically
performed as was described above for the visibility calculation. If the
ray intersects the scene, the current pixel is in shadow. Otherwise, it is
lit. Unfortunately, we have found that in the case of forests and trees,
this produces very hard shadows that look not quite natural. Instead,
we accumulate shadowing over several steps similar to ray casting of
volumetric data [KH84] and in the spirit of the deep shadow map technique
by Lokovic and Veach [LV00]. To also capture the contribution of distant
scene parts (such as distant mountains), the step size is increased linearly,
such that at close range, occluders are finely sampled and cast darker
shadows whereas more distant occluders have a smaller contribution to
the final shadowing. This results in visually pleasing shadowing, and the
diminishing contribution can be likened to a pseudo ambient occlusion
solution (where more distant occluders are outweighed by a dominating
ambient illumination). See also Figure 6.14.

Also note that typical orthophotographic maps already contain shad-
ows, which must be removed beforehand. Premoze et al. [PTS99] discuss
efficient methods for this task. Figure 6.15 shows an example for such
renderings.

When rendering tiled landscape data, care must be taken to avoid vi-
sual discontinuities at tile boundaries. This can be seen as the inverse
problem of ray casting across tiles (which was solved by adding bound-

90

Runtime: Interactive Landscape Rendering

Figure 6.8: Artifacts from incorrect shadowing across tiles. Left: regular
tiles (no overlap). Note that no shadows are cast across tile boundaries.
Right: tiles overlap as described in the text to produce correct shadows.
Very small tiles (64x64) have been used for illustration.

ary skirts to provide additional input data). Here, the intersection point
is found on the local tile, but the light ray should sample a neighboring
tile for shadowing (see Figure 6.8). To account for this, we propose to
produce overlapping tiles such that local influences of neighboring tiles
can still be captured (see Figure 6.5, bottom).

Tiling artifacts are not completely avoided by this approach, but they
are greatly reduced since distant occluders already contribute less to our
illumination heuristic.

In some cases, the additional boundary data could also be used to
reduce the artifacts described in the discussion on rendering quality con-
siderations, but typically vertical skirts must still be used to avoid gaps
between tiles with different mesh resolutions.

Other Surface Types

The existing land cover information, or even simple topographic maps,
can be used to differentiate between multiple surface types. We encode
this surface type information in one channel of the combined elevation
map. After the correct intersection point has been determined using the
GPU ray caster, the local surface type can then be used to decide which
kind of surface should be rendered. As an example, we use this informa-
tion to switch between a "plain" renderer (directly using the topographic

91

6. INTERACTIVE LANDSCAPE RENDERING

Figure 6.9: Land cover data derived from aerial photography is used
to switch between different surface shading models. Left: plain topo-
graphic map. Right: Land cover dependent shading. Notice reflections
on lake, surface color changes and sparse vegetation.

map), a "tree canopy" representation (adding a green tint to vegetation),
and a "water shader" for rivers and lakes (which calculates reflections).
See Figure 6.4 for a visual comparison of the original topographic map
and a rendering based on different surface types.

Note that care must be taken to disable linear interpolation when
reading the local surface type from a texture, or exact texel coordinates
must be used. Otherwise the interpolation will likely result in incorrect
return values.

6.5 World Wind Integration

To demonstrate how our method can be integrated in an existing geospa-
tial viewing application, we have adapted the NASA World Wind viewer
for this purpose.

NASA World Wind

The World Wind application was developed by the NASA Learning Tech-
nologies group and initially released in 2004. It is a geospatial viewer that
enables the user to interactively explore Earth and other planets such as
the Moon, Venus or Mars (see Figure 6.5).

World Wind was designed to render geospatial imagery from Blue
Marble and Landsat datasets in combination with terrain data derived
from the Shuttle Radar Topography Mission (SRTM). In addition, the
standard viewer incorporates a series of additional layers such as USGS

92

World Wind Integration

Figure 6.10: The World Wind application

topographic maps of the United States and aerial images down to 0.25m
resolution for urban areas.

The development model of World Wind is extremely open; source
code is freely available, and any developer is free to build upon it and
create custom variants of the application. Naturally, commit access to
the source code repository is restricted. Even without source code de-
velopment tools, user defined layers can be easily incorporated via XML
configuration files.

Geospatial Data in World Wind

Although World Wind excels at rendering geospatial raster data, sup-
port for vector information is available and can be used to draw bound-
aries and place names. Since our interest lies in terrain rendering, our
discussion will focus mostly on how geospatial images are handled in
World Wind, although any real-world application will of course incorpo-
rate vector features.

In World Wind, the globe is constructed from a small number of base
tiles. Each of these tiles is dynamically subdivided in a quadtree hierar-
chy (dubbed QuadTiles in World Wind). The collection of such hierarchies
and its individual nodes is called a QuadTileSet in World Wind. The sub-
division level is determined at runtime to keep the screen space error
below a given threshold (see Figure 6.5). The hierarchy supports out of

93

6. INTERACTIVE LANDSCAPE RENDERING

Level 0 Level 1 Level 2

Level 0
Level 1
Level 2
Level 3
Level n

36 degrees
18 degrees
9 degrees
4.5 degrees

50 tiles
200 tiles
800 tiles
3200 tiles

Figure 6.11: In World Wind, the globe is internally stored as a quadtree
data structure

core data, i.e. higher detail subdivision levels are only loaded as needed
for rendering. This applies to both image and elevation data.

The data can be fetched from disk or over the network via WMS (Web
Mapping Service) requests. World Wind itself does not handle georef-
erenced data and instead relies on the data to be properly formatted to
match the quadtree subdivision. This is implicit to the WMS requests,
and external tools exist to prepare arbitrary image data accordingly.

At runtime, layers are rendered sequentially and may occlude each
other. For each layer, the QuadTile hierarchy is traversed until either
the screen space error is sufficiently small, or no data is available at the
requested level. This may be either due to inadequate resolution of the
available data, or because the required terrain and texture data has not
yet been fully loaded.

The original World Wind renderer supports a few basic features such
as layer opacity and dynamic illumination (and, naturally, texturing al-
though only a single texture unit is typically used).

Only two adaptations were required to integrate our method: The
rendering pipeline was extended to support programmable shaders, and
the tile management system was changed to allow multiple textures per
QuadTile such that the various maps could be made available to the
shader.

Preprocessing via Proxy Servers

Since our goal is to provide detailed landscape rendering capabilities on
a global scale, preprocessing and storage of the additional data required

94

Results

for our renderer is not an adequate option. The data would consume
several gigabytes of disk space and take several hours to preprocess.
Therefore, we have chosen to implement a system that creates the re-
quired maps on demand through a proxy tile server. This minimizes the
changes to the existing application, reduces the bandwidth required by
the client application (since only the completed maps need to be down-
loaded), and allows multiple clients to share the preprocessing cache of
the proxy tile server.

Since most servers do not have adequate GPU support for hardware
accelerate preprocessing, our proxy server uses a purely CPU based ap-
proach. Depending on the server load, requests for uncached tiles require
up to several seconds.

6.6 Results

We have implemented our method as a C# / Managed DirectX appli-
cation using HLSL shader model 3.0 shaders. Screen shots and perfor-
mance figures were taken on a 3.2GHz Pentium D PC with 1 GB RAM
and an ATI Radeon X1900 XTX GPU with 512MB DDR3 memory.

For performance evaluation, we acquired sample data of a 3.5km x
3.5km section of the Nationalpark Hohe Tauern (Hohe Tauern national park,
NPHT) in Austria. A digital elevation model, topographic map data
and an aerial photography interpretation was available for the entire
area, whereas the orthophotographic data at hand only covered the in-
ner 2.5km x 2.5km subset. The original DEM data had a resolution of
10m (350x350 texels) and the orthophotographic data was provided at a
resolution of 1.25m (2000x2000 texels).

Our canopy proxy texture was derived from a LIDAR scan of a 500m
x 500m coniferous forest. The scan data was converted to an elevation
map with 0.5m resolution (1000x1000 texels) and afterwards manually
converted into to a large, tileable texture. The output resolution of our
canopy proxy was 2048x2048 texels for the entire area (1.7m resolution),
which was also the resolution of the combined elevation map.

The aerial photography interpretation included a detailed classifica-
tion including vegetation density, dominant and subdominant species
and underlying terrain structure. In theory this could be used to syn-
thesize a highly detailed combined elevation map that also differentiates
between various tree species, coppice, rocks and grassland. However
since we only had a single canopy proxy texture we simplified the clas-
sification to only discern between arboreous and other areas.

95

6. INTERACTIVE LANDSCAPE RENDERING

Although aerial photography interpretation is based on orthophoto-
graphic data, the identified areas did not correspond exactly to the pro-
vided orthophoto. We attribute this to the interpretation being a par-
tially manual process, such that small border details may be missed or
consciously omitted. Similarly, the topographic map is an even stronger
abstraction of reality where the correspondence of identified forests to
’reality’ is an even coarser approximation.

For the evaluation of our integration in the World Wind viewer, we
have chosen to integrate the entire data set for the Hohe Tauern national
park. In total, the orthophotographic and aerial image interpretation
data covers approximately 1700km2. In addition, we obtained the com-
plete ÖK50 1 : 50000 scale Austrian topographic map set, allowing very
large scale testing of our automatic vegetation extraction methods.

Visual Quality

The main benefit of our rendering method is the visual detail provided
by the forest canopy. Effects such as correct parallax are hard to capture
in screen shots, however for example Figure 6.6 shows how a terrain tex-
tured with a topographic map can be visually enriched.

Figure 6.12 displays (from left to right) the same view rendered as
a plain textured landscape, with textured with illumination, and with
our approach. The benefits of adding vegetation to the rendering are
clearly visible. In Figures 6.12 and 6.17, slight misregistration artifacts
between the orthophoto and the forest canopy can be observed. This is
a result of the approximate nature of the (manual) aerial photographic
interpretation used for these models, which did not capture the exact
forest boundaries.

In Figure 6.18, the orthophotographic information was embedded in a
larger area and additional topographic data was used to create a canopy
model that covers both the detailed orthophoto and the surrounding
area. This is a versatile means of providing a meaningful setting for de-
tailed landscape data.

Examples for dynamic illumination are also presented in Figures 6.14
and 6.15. For Figure 6.15, the original orthophoto contained illumination
information which was removed manually. Of course this is not practical
for larger areas, however automatic algorithms exist for this task [PTS99].

The possibility of adjusting the performance vs. quality tradeoff of
our approach is illustrated in Figure 6.16. The left image is rendered
with 30 ray casting steps and exhibits some artifacts near the horizon as
depicted in the magnified inset, where no intersection could be detected

96

Results

Figure 6.12: Rendering a landscape with orthophotographic data. Left:
textured and unlit. Center: textured and lighted. Right: The new GPU
ray casting approach.

with the limited number of intersection tests. On the right, a higher step
count (70) is used, capturing the missing intersections and providing a
much higher visual quality.

Performance Evaluation

To evaluate the rendering performance of the proposed method, we de-
fined a camera path through the terrain and calculated average frame
rates for various parameter values. Note that frame rate variance was
low because the performance mostly depends on the number of rendered
pixels which was constantly high. All frame rates were measured with
the application running full screen at 1280x1024 pixels. Given the output
sensitivity of our approach, smaller screen sizes (e.g. in a windowed ap-
plication) have correspondingly higher performance. For example, we
achieved an average frame rate of 15.4 frames per second (fps) in full
screen mode for 90 view ray intersection steps + 30 shadow ray inter-
section steps, and in windowed mode (640x480 pixels) with the same
parameters the application ran at 24fps.

The lowest setting that produced visually acceptable results in full
screen mode used 30 steps for intersection calculation, and 10 steps for
shadowing accumulation (see Table 6.1). With a 2048x2048 texels com-
bined elevation map, we achieved an average frame rate of 35fps. In
contrast, a very high setting (70 intersection steps) still ran at 30fps. Only
after adding significantly more shadowing accumulation steps (70 + 30),
the frame rate dropped to approximately 22fps.

We did also experiment with higher resolution canopy proxy maps
and combined elevation maps (0.85m, 4096x4096 texels). However, this
did hardly improve the visual quality while causing a significantly re-
duced rendering performance (see Table 6.1) due to an increased number

97

6. INTERACTIVE LANDSCAPE RENDERING

2048x2048 4096x4096
10 20 30 10 20 30

30 35.4 29.0 24.1 25.3 20.7 19.1
50 32.2 27.0 22.6 23.1 19.1 16.2
70 30.1 26.0 21.9 22.1 18.4 15.5
90 29.8 25.1 21.7 21.5 18.0 15.4

(down : intersection steps. across : shadow steps)

Table 6.1: Average frames per second for 2048x2048 texels and 4096x4096
texels combined elevation maps with various values for ray casting in-
tersection and shadow accumulation steps.

of necessary ray casting steps in order to calculate the view ray/elevation
map intersection point. In addition, higher resolution elevation maps in-
crease the time required for preprocessing (between 80 and 180 seconds).
However, the required time can still be called fairly short, and our pre-
processing code leaves much room for further optimizations if prepro-
cessing time becomes an issue.

6.7 Summary
We have demonstrated an interactive technique for realistic rendering
of landscape data. The work focussed on enhanced representations for
vegetation without the need to model each plant individually. Instead,
the approach combines a generic tileable canopy proxy model with land-
scape specific information to create a height map that can be rendered
directly on the GPU. Although it may be possible to achieve a compara-
ble approximation of vegetation by creating a purely geometric approx-
imation (ie. a suitably fine, adaptively tesselated mesh), our solution
has several advantages over such an approach. Its integration into exist-
ing terrain rendering frameworks is quite straightforward, only requir-
ing one additional texture and the vertex and pixel shader. Changing the
appearance of the rendition is very simple by adapting the shader pro-
gram. Also, the presented approach requires a fairly short preprocessing
time and the ray casting shader implementation is relatively simple.

In comparison to other existing methods for rendering vegetation on
large landscapes, our approach requires little preprocessing, is mostly in-
dependent of the terrain rendering system, provides shading and shad-
owing, and achieves interactive frame rates even for large scenes.

98

Summary

Figure 6.13: Topographical Maps as usually displayed in World Wind,
compared to our rendering

Figure 6.14: Example for dynamic coloring and illumination of a scene
derived from a topographic map.

Figure 6.15: Dynamic illumination of orthophotographic data

99

6. INTERACTIVE LANDSCAPE RENDERING

Figure 6.16: Artifacts caused by too few ray casting steps (left) and the
same scene rendered with a higher number of steps (right)

Figure 6.17: (left) Visualization derived from orthophotos, aerial image
interpretation and digital elevation model. (right) close-up view.

Figure 6.18: examples of an orthophotographic image embedded in a
larger model, with continuous canopy information.

100

P
A

R
T

III
LEVELS OF DETAIL AND

IMPOSTOR VALIDITY

101

C
H

A
P

T
E

R

7
FAST AND PRECISE TESTING OF

DYNAMIC IMPOSTOR VALIDITY

USING A TWO-LEVEL CHECK

All science is either physics or
stamp collecting.

Ernest Rutherford

7.1 Introduction
Impostors are becoming an integral part of many current real-time render-
ing systems. Complex objects are rendered to textures, which are then
displayed instead of the original models. This often results in significant
rendering speedups. A popular option is to generate impostors dynami-
cally at runtime for the viewer location. If the viewer moves too far away
from this location, the impostor becomes invalid (when the visual differ-
ence to the original model exceeds some threshold), and it is updated.
Because rendering the object to a texture is a rather slow operation, it is
highly desirable to update impostors as seldom as possible. The validity
of the impostors is determined by an error metric, which typically esti-
mates the geometric error introduced by the impostor compared to the
original object [Sch95].

103

7. IMPOSTOR VALIDITY

The hierarchical image cache that was concurrently presented by Schau-
fler and Stürzlinger [SS96] and Shade et al. [SLS+96] combines dynamic
impostors with a hierarchical scene organization (for instance, an octree).
A dynamic impostor is generated for hierarchy nodes where a speedup
is expected. While the leaf nodes are generated directly from the orig-
inal (geometric) representation, higher nodes are composed recursively
from the impostors of their child nodes. The technique takes advantage
of the fact that lower nodes are always valid longer, since parallax move-
ment is higher for higher nodes. Consequently, for many output images,
only the impostors for higher nodes need to be updated from their child
impostors, which is much faster than generating them from the original
geometry. Rendering the scene is done by traversing the hierarchy and
displaying the highest available impostors the hierarchy, so that subtree
traversal can be skipped. The hierarchical image cache provides fast ren-
dering of very complex scenes, as long as the viewpoint is not changed
too rapidly.

Having a correct and fast test whether an impostor is valid is crucial:
on the one hand, it should be accurate in order to avoid unnecessary im-
postor updates (this is a costly operation). On the other hand, the compu-
tational cost for the test should be reasonably low. These demands apply
especially for the hierarchical image cache, because its overall efficiency
strongly depends on the number of impostor updates, and numerous
impostors must be tested every frame. Therefore, we introduce a two-
level validity test. The first stage provides a fast conservative estimate
for impostor validity. If the first stage fails (i.e., the impostor cannot be
classified as definitively valid), a second stage performs an exact valid-
ity test in order to avoid updates for valid impostors. In addition, for
the hierarchical image cache, the first (conservative) stage can be used
to quickly determine the validity of all impostors in a subtree, which
may significantly increase the efficiency of the impostor update traversal.
This means the advantage of the two-level test is that both the overhead
required to check for validity and the number of impostor updates per
frame are reduced.

7.2 Efficiency of Impostor Error Metrics

Evaluating the exact screen-space error of an impostor is prohibitively
expensive, since every vertex of the original object would have to be pro-
jected onto the screen for each new viewpoint (which is ass slow as ren-
dering the object directly). Thus, impostor error metrics typically use the

104

A Two-Level Impostor Validity Test

bounding box or sphere of the original object to provide a conservative,
but faster estimate. In the following, we will analyze the costs of the
two-level metric compared to the standard metric.

For a metric m, we define tm as the time spent evaluating the metric,
and im as the fraction of the total number of impostors it classifies as
invalid. The total number of impostors in the scene is n, and tu is the
time required to update an impostor. We then define the cost cm of a
metric m as the time spent on evaluating the metric plus the time for the
impostor updates:

cm = n · (tm + im) · tu) (7.1)

The cost of a metric can be reduced by making its evaluation cheaper, or
by reducing the number of impostors it classifies as invalid. In contem-
porary systems, the time required to update an impostor is very large
compared to the time spent on evaluating the metric (tu À tm). At the
same time, the extent of common scenes is constantly growing, which
means that the impostor metric has to be evaluated very often. Since far
away impostors are updated less often than nearby ones, fewer impos-
tors have to be updated with increasing scene extent. That means we
require a metric that is both fast to evaluate and as precise as possible.

7.3 A Two-Level Impostor Validity Test
Instead of using a single metric, we propose to use a two-stage evaluation
scheme. The first stage m1 is a fast test that classifies the impostor as
valid or uncertain. The second (more costly) stage m2 uses a more precise
error calculation to resolve uncertain cases. Ideally, most cases will be
resolved by the first check alone. The performance of such a two-level
metric can then be described as the time for evaluating m1 plus the time
for evaluating m2 on the uncertain cases plus the time for updating the
impostors:

cm1+m2 = n · (tm1 + im1 · tm2 + im2 · tu). (7.2)

The cost difference between the two-level metric and using only the sec-
ond stage alone is:

cm2 − cm1+m2 = n · (tm2 · (1− im1)− tm1) (7.3)

Note that this gain in cost neither depends on the impostor update time
nor on the total rendering time. The two-level scheme is desirable when
the gain is positive, or:

tm2 · (1− im1) > tm1 (7.4)

105

7. IMPOSTOR VALIDITY

This basically says that the two-level scheme is better if the first stage is
faster on all impostors than the second stage on the certain impostors.

Construction of the Metric

For the first stage, we exploit the fact that changes of the viewpoint posi-
tion are rather small in consecutive frames. This allows the establishment
of a Guaranteed Valid Volume (GVV), which is a simple volume (in our case
a sphere) that contains those viewpoints the current impostor is guaran-
teed to be valid for. The main assumption is that once such a volume
has been found, it is very likely that it will contain the viewpoint for the
next few frames. The construction of this sphere is based on the error
metric proposed by Schaufler [Sch95]. Since this metric is rotationally
symmetric along the view direction, the construction can be done in 2D
as is illustrated in Figure 7.1: translation and move-in error thresholds
are constructed as the (circular) set of equiangular points defined by the
maximum distance between the original and impostor model. The GVV
radius can then be found from the distance of the current viewpoint to
the closest of these circles. Note that due to the symmetry of the con-
struction and since only the relative position of v ′ to v is important, only
three radii need to be calculated.

The radii of the translation and move-in error thresholds can be deter-
mined easily as depicted in Figure 7.1a. From the central angle theorem
follows that φ= ε, and

r = d

2sin ε
(7.5)

As second level of the metric, we simply use the error metric of Schau-
fler [Sch95]. When using the same construction scheme as described,
parts of the calculations can be shared between the two metrics, which
improves the overall efficiency.

Metric Evaluation for Impostor Update

The scheme for runtime evaluation is straightforward: if the viewpoint is
still in the GVV, the impostor is definitively valid. Otherwise, the second
stage is performed to return a more accurate result. If the impostor is in-
valid, it is updated and the GVV is recalculated for the current viewpoint
and the new impostor. If the result is a valid impostor, only the GVV is
recalculated according to the new viewpoint, so that the first stage will

106

A Two-Level Impostor Validity Test

c
εφ

d

p’

p

r

(a) Radius construction detail.

Figure 7.1: GVV radius construction

v‘
v

ct

cm

cm’

v‘
v

ct

cm

cm’

(a) GVV construction overview. v : Original (im-
postor) view point; v ′: current view point; cm:
; ct : translation error threshold; cm,cm′: move-
in error thresholds (compare Figures 5,6 in Schau-
fler [Sch95]).

107

7. IMPOSTOR VALIDITY

Two_Level_Impostor_Update()
begin

if object cannot be rendered from impostor then
set to render geometry;

else
if viewpoint is inside the GVV then

no update necessary;
else

if precise metric fails then
Update_Impostor();

end
Update_GVV();

end
end

end
Algorithm 1: two-level impostor validity test.

hopefully be sufficient for the following frames. The steps are summa-
rized in Algorithm 1.

The GVV can also be used efficiently for the hierarchical evaluation
scheme used in the hierarchical image cache: the validity of each node
depends on the GVV of its own impostor and on the GVV of its child
nodes. A GVV of a node is then defined as a sphere that completely lies
within the intersection of the GVVs of all child nodes and the GVV of
the current node. Beginning with the leaf nodes, a GVV can easily be
generated for each intermediate node from the respective child nodes.

During hierarchy traversal for the impostor update, the node GVV
can be used to quickly decide whether all impostors of a given sub-tree
are guaranteed to be valid or the child nodes have to be traversed. If the
node GVV test fails, it is always possible to update it so that it contains
the current viewpoint. Algorithm 2 summarizes the hierarchical version
of the two-level impostor update.

7.4 Results

We have measured timings for both a single level evaluation (just using
the precise error metric) and our two-level metric in a scene containing
65536 objects for 4500 frames of a pre-recorded walkthrough. On aver-
age, im1 = 5.7% of the impostors (3728) were classified as uncertain by the
first stage and thus needed to be evaluated more precisely. From these

108

Summary

Hierarchical_Impostor_Update(node n)
begin

if viewpoint is in node GVV then
no update necessary;

else
for for all child nodes c do

Hierachical_Impostor_Update(c)
end
if at least one child node updated then

Update_Impostor(n);
else

if precise metric fails then
Update_Impostor(n);

end
end
Update_GVV(n);

end
end

Algorithm 2: Evaluation for hierarchical impostors using the two-level
error metric.

3728 impostors, the second stage classified only im2 = 1.1% (39 impostors)
as actually requiring an update.

The two-level metric needs tm1 = 5.7ms per 10.000 impostors for the
first stage, and tm2 = 8.6ms per 10.000 impostors that make it to the sec-
ond stage. If only the second stage is used, it requires t ′m2

= 15.9ms per
10.000 impostors. This is significantly higher because the second stage
cannot reuse calculations from the first stage here (as was mentioned in
Section 7.3). For this example, the average frame time including render-
ing was 124.1ms, and the same walkthrough with just the second stage
enabled 160.0 ms, which is a factor of 1.29 (see Figure 7.2).

7.5 Summary

We presented a new two-level evaluation scheme for impostors that is
both fast and precise. It can be efficiently used for individual impostors
as well as for hierarchically organized impostors, namely the hierarchi-
cal image cache. Results showed a frame rate increase of 29% compared
to using an exact error metric only, with exactly the same rendering re-
sults. A theoretical background on error metric performance was also

109

7. IMPOSTOR VALIDITY

0

50

100

150

200

250

300

350

1 501 1001 1501 2001 2501 3001 3501 4001 4501
Frame #

To
ta
lt
im

e
(m

se
c)

Figure 7.2: Times needed for evaluating 65536 impostors with different
error metrics. From top to bottom: Schaufler’s metric (second stage only),
first stage of the two-level metric, second stage of the two-level metric.

presented, showing that the improvement gained by a two-level metric
is independent of rendering systems or hardware specific characteristics.
Only the relative performance of the error metrics and the quality of the
result of the metric of the first level are relevant.

110

C
H

A
P

T
E

R

8
TIME-CRITICAL RENDERING OF

DISCRETE AND CONTINUOUS

LEVELS OF DETAIL

In My Egotistical Opinion,
most people’s C programs
should be indented six feet
downward and covered with
dirt.

Blair P. Houghton

8.1 Introduction

Time-critical rendering ensures guaranteed frame rates even for scenes
with very high complexity. Therefore it provides a convenient frame-
work for real-time rendering applications. Typically a time-critical frame-
work mainly consists of a level of detail (LOD) selection method, that
chooses the most valuable representation for visible objects not exceed-
ing the available rendering budget.

We present a time-critical rendering approach that combines discrete
and continuous LOD selection and we demonstrate its benefits in a ter-

111

8. TIME-CRITICAL RENDERING OF LEVELS OF DETAIL

rain flyover application. Our LOD selection method is based on an it-
erative optimization method over mixed (discrete and continuous) vari-
ables, which essentially combines previously used approaches for dis-
crete and smooth LOD selection. In this context the notion of discrete
level of detail is not restricted to static LOD representations, but extends
to hierarchical or even view-dependent level of detail representations as
well. Hence our approach addresses real-time rendering of environments
with large 3D models (in terms of complexity and geometric extent) com-
bined with many small, but complex objects in particular. The latter
models are represented by view-independent levels of detail. Further
we describe an extension to this basic LOD selection method to handle a
huge number of objects with smooth representations.

The main motivation for this work is the real-time display of a terrain
model with added dense vegetation. The terrain is rendered as a coarse
view-dependent LOD, whereas each tree in the vegetation is displayed
as smooth level of detail. We employ point based representations of pro-
cedurally generated trees for this task.

8.2 Previous Work

Most work on rendering acceleration techniques focuses on improving
the frame rate while maintaining a controlled image quality. We aim on
real-time rendering that guarantees a user given frame rate regardless of
the complexity of the scene. The rendering process of every frame has to
meet strict timing constraints and the goal of the rendering framework
is to attain the best visual quality with the available rendering time. In
the following sections, we will discuss previous work on time-critical
rendering of various models and level of detail approaches.

Discrete Level of Detail Management

Most scene graph libraries use distance based or screen size based LOD
switching to accelerate rendering of complex scenes. The rendering time
for each frame depends on the scene content, the viewing parameters
and the LOD switching threshold, but it can be arbitrarily large. In terms
of optimization these methods maximize the frame rate subject to con-
trolled image quality. Whenever a guaranteed interactive frame rate is
needed, the role of frame rate and image quality must be exchanged:
maximize the image quality that is achievable subject to controlled ren-
der time.

112

Previous Work

Funkhouser and Séquin formulated this optimization task as a multi-
ple choice knapsack problem (MCKP) [FS93], which is known to be NP-
hard, and used an approximation method to select the appropriate LOD
for each object to be rendered. The importance of every object and the ac-
curacy of every LOD depend on the viewing parameters, thus the MCKP
must be solved for every frame.

Solving the MCKP needs a certain amount of time, which may affect
the rendering performance on a uniprocessor computer. Funkhouser and
Séquin used a dual processor solution for rendering: one processor se-
lects the representations for the next frame and the other processor feeds
the graphics pipeline.

This approach has one major disadvantage: visible objects may be
completely missing if the allowed rendering time is not long enough to
draw at least the coarsest representation of every visible object. Both
Mason and Blake [MB97] and Maciel and Shirley [MS95] utilized a hi-
erarchical level of detail approach and used variations of the MCKP to
select appropriate representations for every frame. Mason and Blake’s
approximation method of their extended MCKP can be seen as a top
down greedy traversal of the LOD hierarchy and guarantees half opti-
mality, whereas Maciel and Shirley’s heuristics don’t provide such lower
bounds. An extensive discussion of LOD management approaches can
be found in Mason’s Ph.D. thesis [Mas99].

Since in our implementation the selection of discrete levels of detail
is based on Mason and Blake’s work, we describe their idea briefly. Ba-
sically their LOD selection performs a sequence of so called increment
steps as long as the rendering budget constraint is not violated. An incre-
ment step replaces a currently selected representation by the most valu-
able successor nodes in the LOD hierarchy. A converse decrement step
is also introduced, which replaces least rated successor nodes with their
parent. The root node (representing the entire scene at the coarsest level)
is the initially selected representation. Additionally Mason and Blake ex-
ploited frame–to–frame coherence using the LOD assignment for the pre-
vious frame as starting point for a sequence of increment and decrement
steps. Since our approach does currently not exploit frame–to–frame co-
herence and therefore starts from scratch at every frame, our method per-
forms only increment steps.

Multiresolution Level of Detail Management

If the object representation allows smooth levels of detail, a similar op-
timization problem can be formulated, where the discrete variables are

113

8. TIME-CRITICAL RENDERING OF LEVELS OF DETAIL

replaced by continuous ones. Gobbetti and Bouvier [GB99, GB00] ap-
plied optimization techniques for solving non-linear constrained systems
to time-critical rendering of multiresolution meshes. They partitioned
the available frame time into the time available to the LOD selection
procedure and the actual rendering time. Their LOD selection method
proceeds incrementally by successively improving the current solution.
Thus, this method can be interrupted at any time returning a suboptimal,
but feasible solution.

Their LOD selection procedure is not applicable to scenes with a large
number of multiresolution objects, since they assign one variable to every
object.

Wimmer and Schmalstieg [WS98] describe a direct (non iterative) so-
lution for smooth LOD selection using Lagrange multipliers, but they
take only the rendering budget constraint into account and ignore poten-
tial constraints on maximal object resolutions. Therefore their approach
works well only for objects with virtually unbounded resolution.

Schmalstieg and Fuhrmann [SF99] implemented a LOD selection pol-
icy for hierarchical and deformable multiresolution models and applied
their method to character animation and terrain rendering.

Point based Rendering

The use of point based primitives for rendering was first introduced by
Levoy and Whitted [LW85]. They observed that with the growing com-
plexity of computer generated scenes, classical modeling primitives such
as triangles become less appealing. Using points as a rendering prim-
itive bears several advantages, such as being able to render arbitrarily
complex geometry with a standardized rendering algorithm.

Pfister et al. [PZvBG00] and Rusinkiewicz et al. [RL00] almost simul-
taneously published new point based systems that used additional infor-
mation, such as surface normals and texture data, for each point sample.
However, the method introduced by Pfister was aimed at high fidelity,
whereas Rusinkiewicz was more interested in handling huge amounts of
data. The goal was to interactively visualize laser scans of up to 2 billion
samples at interactive frame rates. Therefore, they designed a hierarchi-
cal data structure that allowed lower resolutions to be displayed even
while additional data was still being read in.

Recently Cohen et al. [CAZ01] and Chen and Nguyen [CN01] com-
bined polygonal and point based rendering by exploiting a hybrid repre-
sentation of the entire scene. This is different to our approach, since we
represent one object either point based or polygonal.

114

Mixed Level of Detail Selection

Terrain Visualization

Recent work on large scale terrain visualization with regular height-
fields was done for instance by Hoppe [Hop98] and Lindstrom and Pas-
cucci [LP01]. Both approaches employ a smooth level of detail frame-
work and the required resolution is calculated from the allowed screen
space error. This threshold can be adaptively refined during the anima-
tion to match the desired frame rate.

If the scene database consists of several LOD hierarchies (e.g. terrain
augmented with vegetation), the adjustment of resolutions of different
parts is no longer unique. Therefore we utilize a predictive model of the
visual quality and rendering cost to calculate the appropriate resolution
for each scene component.

Our terrain visualization system is based on the Styrian Flyover project
(Kofler et al. [KGG98]), which uses a quad-tree representation of the dig-
ital elevation model and the ground texture. During rendering the deter-
mination of the required resolution is based on the distance to the virtual
camera.

The quadtree representation can be regarded as a coarse variant of
view dependent multiresolution meshes (e.g. view dependent progres-
sive meshes, VDPM [Hop97]). Even with smoother view dependent pro-
gressive meshes our method described in Section 8.3 remains the same,
since the current level of detail of a VDPM consists of a (discrete) set of
nodes in the VDPM representation.

The chunked LOD approach [Ulr02] is conceptually similar to our
method, but optionally uses a pre-simplified terrain mesh and hides vi-
sual artifacts near patch boundaries by rendering additional vertical tri-
angles.

8.3 Mixed Level of Detail Selection

In every iteration, our algorithm performs either a greedy refinement
step of discrete levels of detail or a gradient ascent step for smooth rep-
resentations. The ratio of (estimated) visual benefit to rendering cost is
used to select the step to perform. The iteration stops when the available
rendering budget is exhausted, the highest level of detail of visible ob-
jects is attained or the time available to the optimization procedure itself
is completely spent. In any case the obtained assignment of resolution
for every object is feasible.

Since our application contains a huge number of smoothly represented

115

8. TIME-CRITICAL RENDERING OF LEVELS OF DETAIL

objects and therefore a very large set of continuous resolutions has to be
determined, we utilize a hierarchical arrangement to accelerate the LOD
selection procedure.

Problem Formulation

We consider the LOD selection problem for discrete and continuous vari-
ables. A set of representations {Ri } of discrete objects and a set of objects
{Xi } with smooth levels of detail are given. For each discrete represen-
tation R j we introduce a boolean variable r j : we set r j = 1, if the LOD
selection chooses R j for rendering in the next frame and r j = 0 otherwise.
Additionally we associate a continuous variable xi with each Xi , that de-
notes the chosen resolution for rendering Xi .

For every representation a pair of functions is given: the first function
(the benefit) estimates the effect on the visual quality if an object is ren-
dered at a given resolution; the other one estimates the corresponding
cost of drawing (i.e. rendering time) the object at the desired resolution.
For discrete objects we denote these two functions by bene f i td (Ri ,ri)
and costd (Ri ,ri) respectively. For objects with continuous resolutions
these functions have the resolution xi as the argument and are written
as bene f i tc (Xi , xi) and costc (Xi , xi). Obviously these functions also de-
pend on the current viewing parameters, but for convenience we will
not expose this dependency explicitly.

The task of the LOD selection method is to choose r j and xi :

max
∑

j
bene f i td (R j ,r j) + ∑

i
bene f i tc (Xi , xi) such that (8.1)∑

j
costd (R j ,r j) + ∑

i
costc (Xi , xi) ≤ T

r j ∈ {0,1}

xi ∈ [0,1]

We restrict the resolution xi to the range [0,1], where xi = 1 represents the
maximal resolution assigned to a multiresolution object. There are usu-
ally additional constraints related to r j which encode the LOD hierarchy
(details can be found in Mason and Blake [MB97]).

We aggregate the xi into one vector~x and denote the total cost caused
by rendering smooth representations by

costc (~x) =∑
i

costc (Xi , xi). (8.2)

116

Mixed Level of Detail Selection

Similarly we define the total benefit of rendering the smooth levels of
detail at resolution ~x as

bene f i tc (~x) =∑
i

bene f i tc (Xi , xi). (8.3)

Terminology

We require some additional notation to express the algorithm and its
derivation in a compact manner. For any current assignment of smooth
variables ~x and an arbitrary search direction ~a (with ‖~a‖ = 1) we define
the directional cost function

�cost c (t) := costc (~x + t ~a) (8.4)

and (by the chain rule) we have

d �cost c

d t
= (~a, ∇~xcostc (~x + t ~a)) (8.5)

(We denote the inner product of ~a and ~b by (~a,~b).) Similarly, we in-
troduce the directional benefit function

b̂c (t) = bene f i tc (~x + t ~a). (8.6)

Again, we will need the derivative in the following sections:

db̂c

d t
= (~a, ∇~xbene f i tc (~x + t ~a)). (8.7)

These functions depend on ~x and ~a as well; for clarity we omit these
arguments since they are clear from the context.

Optimization Method

Our method is an interleaved combination of Mason and Blake’s [MB97]
increment steps for discrete LODs and gradient ascent steps for smooth
representations. The optimization method works iteratively: Given a
current assignment of discrete and continuous resolutions for each ob-
ject, one of three cases may occur:

1. The rendering budget or the time available to LOD selection is ex-
hausted and the procedure terminates with the current solution.

2. The discrete variables and therefore the total benefit and costs are
increased.

117

8. TIME-CRITICAL RENDERING OF LEVELS OF DETAIL

3. The smooth resolutions are raised, thus increasing both the total
benefit and cost.

In every iteration, the algorithm decides either to increase the discrete
or continuous variables. If the discrete variables are already at the high-
est resolution or increasing every possible discrete representation causes
violation of the constraint, the algorithm tries to enhance the smooth rep-
resentations.

On the other hand, if the smooth levels are already at the highest res-
olution, only improving the discrete resolutions is considered by the al-
gorithm.

If both improvement steps are feasible, then the algorithm compares
the added benefit to added cost ratio of the best discrete improvement
with the slope of the benefit function along the search direction. More
formally we denote the added benefit obtained by the increment step
as ∆bene f i td and the corresponding cost as ∆costd . The quantities to
compare are

sl oped = ∆bene f i td

∆costd
(8.8)

and

sl opec = db̃c

dcost
(costc (~xi)), (8.9)

where

b̃c (cost) = b̂c (�cost−1
c (cost)). (8.10)

Applying the chain rule we obtain

db̃c

dcost
(costc (~xi)) = db̂c

d t
(0)

1

(~a, ∇~xcostc (~xi))
. (8.11)

(Recall that b̂c implicitly depends on the current assignment~x and the
current search direction ~a.)

If sl oped > sl opec , then incrementing the discrete LODs is certainly
favorable. Otherwise the smooth variables are increased and the new
solution ~xnew is set according to

~xnew =~x + topt ~a. (8.12)

118

Mixed Level of Detail Selection

benefit

cost

Q
P

R

Figure 8.1: Determination of topt . The dashed line corresponds to a dis-
crete increment step, whereas the solid curve illustrates b̃c . P represents
the location in the benefit/cost space after the discrete increment step, Q
corresponds to the optimal increase of the continuous resolutions and R
depicts the added result.

Selection of the Search Direction

Essentially the search direction ~a is the gradient of bc (~x). If xi is already
saturated (xi = 1), then ai = 0. To avoid too small steps because of re-
peated saturation of smooth variables, approaching the boundary xi ≤ 1
can be penalized by a barrier term, e.g.:

ai = max

{
0,

∂b

∂xi
(~x)− ε

1−xi

}
, (8.13)

where ε is a small constant.

Line Search

Given the search direction ~a, ~x + t ~a leaves the feasible region for some
tmax > 0. If db̃c /dcost > sl oped at tmax , then topt = tmax , since raising the
continuous resolutions along the search direction ~a gives always better
values.

Otherwise we determine topt ∈ (0, tmax) such that

db̃c

dcost
(�cost c (topt)) = sl oped . (8.14)

Thus, we increase the values of the smooth variables as long as this is
preferable over the discrete incremental step. The graphical explanation
is given in Figure 8.1.

119

8. TIME-CRITICAL RENDERING OF LEVELS OF DETAIL

Continuous Variable Hierarchy

The optimization procedure described above turns out to be not suffi-
ciently scalable because the number of continuous variables is unnec-
essarily large for certain viewpoints. Although the time used for LOD
selection can be amortized over several frames, there is an even better
option available. We observe that (nearly) identical resolutions are often
assigned to spatially close multiresolution objects. Therefore we aug-
ment view frustum culling for smooth objects with a hierarchical gener-
ation of continuous variables corresponding to multiresolution objects.
We assume that smooth objects are organized in some spatial hierarchy
(e.g. to speed to up view frustum culling).

Consider Equation 8.1 augmented with the following additional con-
straints:

x1 = x2 = . . . = xn (8.15)

These constraints ensure that the continuous variables always have the
same value. The optimal value of this tightened problem yields a non-
optimal assignment of smooth LODs, but this loss in optimality can be
predicted. If the estimated loss is smaller than some threshold θ, we
replace the n smooth variables by only one, namely x, and set xi = x/n.
Additionally we replace the upper bounds on xi with x ≤ n. Note that
the benefit and cost is still expressed in terms of Xi and xi , e.g.∑

i
bene f i tc (Xi , xi) = n bene f i tc (Xi , x/n). (8.16)

Otherwise we relax constraint 8.15 and replace it by one of the following
four constraints:

x1 = . . . = xn/4 (8.17)
xn/4+1 = . . . = xn/2

xn/2+1 = . . . = x3n/4

x3n/4+1 = . . . = xn

These groups of variables correspond to child nodes in a quad-tree struc-
ture, in which the smooth objects are organized. For each of these con-
straints we estimate the loss in the corresponding optimization problem
and compare it with an appropriate threshold θ/4. If the loss is too large,
the corresponding group of variables is recursively subdivided (i.e. the
quad-tree node is replaced by its children) until the loss is small enough
or the original variables are reached.

120

Test Application

8.4 Test Application

Our test application consists of a terrain flyover scenario showing a large
part of the Styrian province. The data set and terrain visualization sys-
tem is taken from the Styrian flyover project (Kofler et al. [KGG98]). The
complete height field consists of 2049× 2049 samples covering a region
of about 120 × 120km2. The corresponding texture has a resolution of
4096× 4096. Both the height field and the associated texture fit entirely
into main memory.

About 1.4 million trees are placed on a jittered grid into the terrain
according to the forest regions found by image classification of the satel-
lite image. The heights of these trees are exaggerated to have a closer
match between the resolution of the ground texture and the vegetation.
The type of tree was selected randomly, but spruces are more likely in
higher terrains. In valleys and other lower parts the forest is a mixture of
various conifers and broad-leafed trees.

The digital elevation model and the ground texture are organized in
a quad-tree data structure as it is commonly used in terrain visualization
systems (for example, the Styrian Flyover project [KGG98] or TerraVision
II [RLIB99]). This quad-tree forms the discrete LOD hierarchy. Every
triangulated patch in the hierarchy consists of 33×33 vertices and 64×64
texels. A repeating noise texture is combined with the ground texture to
simulate small details on the ground.

The trees are grouped into sets of at most 64 spatially close, individual
trees and the appropriate resolution is determined for these groups. A
quad-tree hierarchy is employed again to speed up view frustum culling
and to allow faster LOD selection.

Implementation Details

Tree Generation

In the current system, the tree generation itself is based on the algorithm
by Weber and Penn [WP95]. Tree models are generated offline and stored
on disk in an intermediate format, storing geometric information for each
stem or branch as well as leaf locations. Upon startup of the test applica-
tion, the desired trees are read in and the branch information is added as
a list. The leaf positions are converted into a K-d-tree and reorganized as
linear vertex and color array (using a top-down breadth first traversal).
Each model is only read in once, and instances can be made by setting
up the OpenGL transformations as required.

121

8. TIME-CRITICAL RENDERING OF LEVELS OF DETAIL

Point based Tree Rendering

The point based renderer is called separately for each tree, giving the ren-
dering system fine control over the fidelity of each tree instance. Each tree
is rendered with the assigned number of splats by drawing an appropri-
ate fraction of all point samples generated for the template. Optionally
the size of the rendered point primitives is adjusted to avoid holes in
trees represented by a small number of splats.

Benefit and Cost Heuristics

Predicting the cost of rendering a representation is based on a model of
the graphics pipeline. The cost of rendering a splatted representation
consists of two parts: the setup time (e.g. to transform and scale the tem-
plates) and the variable time directly proportional to the number of ren-
dered splats. Since the setup time becomes significant when at least one
splat is assigned to an instantiated tree, the cost function is a piecewise
linear graph:

costc (Xi , xi) =
{

(cspl at + ctr ee) Nspl at s xi if ni < Ntr ees

cspl at Nspl at s xi + (cspl at + ctr ee) Ntr ees otherwise.
(8.18)

Here cspl at denotes the rendering time for one splat and ctr ee denotes the
cost for individual tree setup, e.g. for transformation of the tree proto-
type to the final tree position. Since all objects are instances of the same
model, the cost function costc is actually independent of Xi . Both values
are determined by a benchmarking procedure. On our hardware cspl at

is 0.0775µs and ctr ee is 1.385µs. Our optimization procedure is able to
handle this piecewise linear cost function correctly.

Since our polygonal objects (patches of a regular digital elevation
model) consist of long triangle strips, we estimate the rendering cost as

costd (Ri ,n) = cver tex n, (8.19)

where n is the number of sent vertices in the triangle strip and cver tex

is again an empirically measured combined cost for vertex and triangle
processing (determined as 0.06µs on our hardware). Again, since our
test application does not use models with different characteristics (with
or without texturing, or with shaders of varying complexity) our cost
function costd is actually independent of the model Ri .

The benefit function for discrete and smooth objects is a product of an
importance factor times an accuracy estimator. The importance is pro-
portional to the projected screen area of the object. The benefit associated

122

Test Application

with a group of Ntr ees trees is chosen as

bene f i tc (Xi , xi) = k S
Ntr ees

64

√
xi

Ntr ees
, (8.20)

where S is again the estimated screen size and xi is the assigned resolu-
tion (in the range [0, Ntr ees]). Recall that Ntr ees

64 denotes the relative density
of trees in one group containing at most 64 trees. k is a weighting con-
stant currently set to 50.

The benefit assignment for terrain patches is essentially the same: For
the quad-tree nodes at level d the benefit bene f i td is set to

S
√

4d /4dmax = S 2d−dmax , (8.21)

where S is the estimated screen size in pixels and dmax is the height of
the terrain quad–tree. Note that 4d /4dmax is the ratio of texels displayed
at level d to the number of texels is the full resolution terrain texture.

Estimating Benefit Loss

Let Xi , i ∈ {1, . . . ,n} be a set of objects with smooth LODs. If xi is the res-
olution assigned to Xi , and using the benefit functions defined in Equa-
tion 8.20, the total benefit is

∑
ci
p

xi for suitable ci (essentially propor-
tional to the estimated screen size). Our goal is the estimation of the
maximal benefit loss caused by replacing the assigned resolutions xi by
the mean

∑
xi /n. Further we assume that

∑
xi is bounded by the available

budget X . Overall we search for the solution of

max
∑

ci
p

xi − ∑
ci

√
X

n
such that (8.22)∑

xi = X the budget is limited∑
ci = C the screen extent is bounded

xi , ci ≥ 0

The maximum is attained if c1 = C and ci = 0 for i > 1. This implies that
x1 = X and xi = 0 for i > 1. In this case the error is

C
p

X

(
1− 1p

n

)
. (8.23)

This observation can be used to guide the process of splitting continu-
ous variables. The recursive procedure to associate continuous variables

123

8. TIME-CRITICAL RENDERING OF LEVELS OF DETAIL

Function SplitVar
Input: Node, X , depth d , tree height dmax , a threshold ε

S ← screen coverage of Node

if k S
p

X

(
1− 1p

2dmax−d

)
< ε

2dmax−d then

{Estimated benefit loss is small (compare Equation 8.23).}
Associate a continuous variable with Node

else
{Solve the continuous LOD selection problem for the children
C hi ldi of Node, and obtain X1, . . . , X4 as estimators for total
resolution assigned to C hi ldi . The solution can be directly
calculated using Lagrange multipliers.}
Si ← screen coverage of C hi ldi

Xi ← X S2
i /

∑
S2

j
for i = 1 to 4 do

Call SplitVar(C hi ldi , Xi , d +1, ε) recursively
end for

end if
Algorithm 3: Determination of the required granularity of smooth vari-
ables

with groups of smooth LOD representations is given in Algorithm 3. In-
stead of using the same total resolution X (which can be computed from
the available rendering budget), we estimate the assigned maximal res-
olution for every child node. Since this estimator is only an approxima-
tion, there is no guaranteed upper bound in the total loss.1

Occlusion Culling and Small Detail Culling

With the general availability of hardware supported occlusion tests it is
reasonable to exploit this feature for large model visualization. In our
framework a fixed portion (5%) of the frame budget is optionally used to
render the terrain and subsequently the nodes in the vegetation hierarchy
are tested for visibility. When the user navigates at very low altitudes,
much of the vegetation in the far field is culled and higher resolutions
can be assigned to trees in the near field.

1Strict error bounds can be derived for logarithmic benefit functions. We still use
the square root, since we observed better visual quality with this benefit function in
general.

124

Test Application

(a) Viewing the far field. (b) A birds eye view.

Figure 8.2: Views of the terrain with a rendering budget of 40ms. The
minimum size of point splats is 2 pixels.

In order to avoid expensive transformations to position the tree tem-
plates we perform small detail culling for groups of trees, which have a
very small estimated screen size. This is performed in combination with
view frustum culling. The remaining nodes (collections of trees accord-
ing to the quadtree hierarchy) are passed to the LOD selection procedure.

If the point budget assigned to a group of trees is not sufficient to
display each tree with at least one splat, only the corresponding fraction
of the group is rendered. Thus, we obtain a smoother transition between
culled vegetation and still displayed groups.

Results

We performed several measurements on a standard PC with 1.8GHz pro-
cessor and an ATI Radeon 9700 graphics card. Figure 8.3 displays the
actual rendering time and the time spent in LOD selection (with and
without the continuous variable hierarchy acceleration technique). The
allowed rendering budget was set to 40ms. With these settings our LOD
selection procedure required about 20ms at maximum. If the rendering
budget is increased to 80ms, less than 30ms are spent in LOD assignment.
Figure 8.2 shows screen shots from our demonstration application with
a constant rendering budget of 40ms.

125

8. TIME-CRITICAL RENDERING OF LEVELS OF DETAIL

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 100 200 300 400 500 600

tim
e

in
 m

ill
is

ec
s

frame no

actual rendering time
fast LOD selection method

non−hierarchical LOD selection

Figure 8.3: LOD selection and actual rendering times for a flyover path.
The rendering budget was 40ms per frame. The solid line depicts ac-
tual frame times (combined hierarchical LOD selection and rendering).
Note, that the frame times are close to the target frame time of 40ms. The
dashed lines represent the time spent solely for LOD selection indicating
the performance difference between hierarchical and non-hierarchical
LOD selection.

8.5 Discussion

Polygonal Multiresolution Objects

Instead of a point-based representation of trees a polygonal multiresolu-
tion approach to display vegetation can be used [RCB+, RCRB03]. The
multiresolution models are stored compactly as a sequence of mesh re-
finements (as in Bouvier and Gobbetti’s Totally Ordered Meshes [BG01])
and the displayed mesh at the desired resolution is extracted on demand
for rendering. Since mesh extraction can be performed in an incremen-
tal manner, the total time to generate actual models is proportional to
the maximal requested resolution (assuming that one mesh refinement
operation takes constant time).

Typically the metric to select the necessary resolution for polygonal
multiresolution meshes is based on geometric deviation from the origi-
nal model. In order to apply our level of detail selection method a contin-
uous (and differentiable) approximation can be employed or an entirely
heuristic metric for multiresolution meshes must be applied (similar to
Gobbetti’s Time-critical Multiresolution Scene Rendering [GB99]).

126

Discussion

Terrain Representation

Our terrain rendering approach is a relatively coarse, view dependent
method. Smoother representations are view-dependent simplification
approaches [Pup98, LE97, Hop98] for irregular terrain meshes and re-
stricted triangulations [DWS+97, Paj98, LP01] for regular heightfields. To
avoid too many decision within our LOD selection procedure, a tradeoff
between smooth appearance and computational complexity is necessary.
The fine grained terrain representation can be reduced by collapsing sev-
eral refinement operations into one larger mesh update.

Objective Function

Our level of detail selection procedure maximizes the sum of benefits for
visible objects (with discrete or continuous levels of detail), such that the
available budget is not exceeded [FS93]. If the benefit functions are not
carefully chosen, the solution for this objective function is susceptible to
the following artifacts:

• The budget is not distributed uniformly to all regions of the dis-
played image. The LOD assignment procedure sometimes compen-
sates low resolution in one part of the image with high resolution
in some other region.

• Changing the view parameters slightly may cause completely dif-
ferent resolutions, which disturbs the impression of a smooth ani-
mation.

Using smoother level of detail representations decreases those artifacts.
The first item can be specifically addressed by choosing a different ob-
jective function: maximize the minimum accuracy (or alternatively mini-
mize the maximum deviation) of all visible objects. Designing an efficient
LOD selection procedure for this objective function and the evaluation of
the resulting visual quality is future research.

Achieving smooth animations with visual coherence between succes-
sive frames is important for high visual quality. Using intra-frame LOD
selection methods, temporal artifacts occur usually if an object repre-
sented by few discrete levels enters or leaves the viewing frustum. Re-
stricting the change in resolution between successive frames implies a re-
laxation of the budget constraint, since both objectives cannot be satisfied
simultaneously in general. Inter-frame LOD selection methods could be
an option, but appear currently too expensive to be incorporated.

127

8. TIME-CRITICAL RENDERING OF LEVELS OF DETAIL

8.6 Summary
We presented a time-critical LOD management method that incorporates
discrete and continuous levels of detail. Our approach combines approx-
imation methods for discrete LOD selection with gradient ascent meth-
ods to choose an appropriate multiresolution representation. A terrain
flyover application comprises the current test bed for our LOD manage-
ment procedure.

In this work our main focus is the LOD selection method and we are
aware that both terrain rendering and drawing of vegetation can be sub-
stantially enhanced. Especially our prototype of the point based vegeta-
tion renderer can be highly accelerated. Nevertheless our work demon-
strates the prospects of mixed resolution objects within a time-critical
framework.

We intent to utilize this approach in an urban visualization applica-
tion, which aims on the real-time photorealistic presentation of an exist-
ing city. Further we will refine the terrain rendering engine and work
on improvements on the drawing of vegetation. Additionally occlusion
culling in terrain environments would significantly increase the accuracy
of our LOD selection.

128

P
A

R
T

IV
TECHNICAL ASPECTS

129

C
H

A
P

T
E

R

9
AN EARLY-Z OPTIMIZATION FOR

DISPLACEMENT MAPPING SHADERS

In theory, there is no difference
between theory and practice.
In practice, there is.

Jan L.A. van de Snepscheut

9.1 Introduction

Early z-testing is an important optimization employed by current graph-
ics hardware that tries to avoid the cost of executing expensive pixel
shaders for invisible pixels. The early z-test is also widely employed
to mask computations in general purpose GPU computations [HLB+05],
and to stop iterative shader execution in GPU ray-casting [KW03].

Recently, approaches that modify the depth value on a per-pixel ba-
sis are becoming more and more common to ensure correct intersections
if the pixel shader modifies the displayed geometry. Particularly well-
known examples are per-pixel displacement mapping techniques such
as relief mapping [POC05], parallax occlusion mapping [Tat06], or view-
dependent displacement mapping [WWT+03b].

131

9. EARLY-Z OPTIMIZATION

A general implementation problem of early z-testing is not only that
the depth value of a pixel is not known before shader execution when it is
modified by the shader, but also when and how the corresponding hier-
archical z buffer [GK93] is updated. Therefore early z-testing is currently
disabled when shaders modify depth values.

We propose a slight modification to current graphics hardware, or the
respective drivers, that would allow depth-modifying pixel shaders to
benefit from early z-testing and thus considerably increase performance.
Although we use depth correct displacement mapping pixel shaders as
an example, our proposed modification also applies to any other shaders
that calculate depth values in a similar manner.

9.2 Z-Correct Per Pixel Displacement Mapping

Per-pixel displacement mapping is an enhancement of the bump map-
ping and normal mapping techniques for adding surface detail without
creating additional geometry. It captures perspective effects such as self
occlusion and motion parallax, which is desirable for modeling surface
mesostructure with more apparent depth.

The main component of per-pixel displacement mapping techniques
is a ray casting algorithm implemented in the pixel shader which adjusts
texture coordinates to displace the intersection of the viewing ray with
a hypothetical surface, often represented as a height map [POC05, Tat06,
OBM00]. The surface represented by the height map can be either above
the polygon face ("push up"), or below ("push down") as illustrated in
Figure 9.1. Note that in the "push up" case, the hypothetical surface is
always closer to the viewer than the actual geometry (ie. the rendered
polygon), and conversely for the "push down" method: here the hypo-
thetical surface is always further away than the geometry.

If the fragment shader does not modify the depth value according to
the displacement, the interpolated depth value is used instead, which
leads to artifacts in the case of intersections.

Although conceptually the pixel shader modifies an interpolated depth
value, this value is only available to the shader in OpenGL (and not in
DirectX), and the depth value returned by the pixel shader is typically
calculated independently. We therefore use the term ’depth modifying’
more generally to refer to pixel shaders that calculate depth in a way that
is predictable from the interpolated depth value.

132

Early-Z Optimizations

v

v

polygon face

original texture coordinate

intersection with height field

final texture coordinate

height field

Figure 9.1: Basic Displacement Mapping. Left: "push up"; Right: "push
down" approach.

(from Policarpo [POC05])

Figure 9.2: Writing correct depth values allows correct intersection of a
displacement mapped polygon with other objects.

9.3 Early-Z Optimizations

Modern graphics hardware includes an initial test of the depth value of
the current fragment against the contents of the Z buffer, possibly dis-
carding occluded fragments before performing lighting and texturing
calculations. For maximum effectiveness of this early culling accelera-
tion it is generally recommended to draw a scene in front-to-back or-
der [Hud05], or to perform an additional pass to mask out areas where
shader evaluation is not needed [STM05].

Two variants of Early-Z optimizations are possible. It is generally
preferable to perform the entire read-modify-write Z buffer update in
parallel to the shader execution. However this is only possible if the
fragment will not be discarded at a later stage to avoid invalidation of the
Z buffer. In practice, this problem occurs with alpha testing and shaders
that possibly discard fragments using texkill instructions [NVI05]. In this
case a culling only test can still be performed, with the actual Z buffer
update at a later stage.

The performance gain of early culling increases with the complexity
of the shader, making it highly desirable for rendering complex shaders
and large scenery. However, if the shader modifies the fragment depth

133

9. EARLY-Z OPTIMIZATION

Triangle
Setup

Pixel
Shading

Scissor
Test

Depth
Test

Vertex
Shader

Alpha
Test

Depth
Test

Alpha
Blending

Logical
Ops

Stencil
Test

Figure 9.3: Schematic of the OpenGL shader pipeline with Early Depth
Testing (after Anderson [AIK+05]). Red path is taken with early Z accel-
eration; the blue path is taken if early Z is disabled.

value, early-Z optimization is no longer possible as the final depth is not
known before fragment shader execution. It must be evaluated first - ex-
ecuting the full shader and performing all texture lookups - and only
then a decision can be made whether the fragment can be safely dis-
carded. Since this is independent of the actual contents of the z buffer,
it is roughly equivalent to the worst-case scenario of rendering back to
front.

In the case of depth correct displacement mapping, the final depth is
not yet known before shader execution. Therefore it is impossible to per-
form Z buffer updates in advance; our discussion thus focuses on enabling
early Z-buffer culling for displacement mapping.

Other Hardware Considerations

For maximum performance, current GPU architectures include a wide
range of optimization and acceleration techniques such as hierarchical
Z-buffer schemes and parallel processing of multiple fragments. One
important example is parallel processing, as modern GPUs typically pro-
cess groups of four pixels simultaneously. Pixel processing pipelines are
evaluated in lockstep: if one fragment is invalidated early (e.g. through
texkill), the pipeline for this fragment cannot be refilled immediately and
stalls until all pixels of the group have been processed [ATI05, Was05].
Therefore, early clipping only provides a significant speedup if the entire
group of pixels can be discarded.

134

Preserving the Validity of Early-Z Culling

Comparison Function Fragment accepted if ...
NEVER (never)
LESS z f r ag ment < zbu f f er

LEQUAL z f r ag ment ≤ zbu f f er

EQUAL z f r ag ment = zbu f f er

NOTEQUAL z f r ag ment 6= zbu f f er

GEQUAL z f r ag ment ≥ zbu f f er

GREATER z f r ag ment > zbu f f er

ALWAYS (always)

Table 9.1: DirectX and OpenGL Depth Comparison Functions (function
names taken from OpenGL; DirectX uses nearly identical descriptions.)

9.4 Preserving the Validity of Early-Z Culling

To further complicate the problem, modern GPU hardware supports sev-
eral depth comparison functions that can be used to accept or reject frag-
ments [SA03, Mic05]; the available modes have been summarized in Ta-
ble 9.1.

By observing how the "push up" and "push down" approaches to dis-
placement mapping affect the depth value of a fragment, it becomes ob-
vious that in some cases the depth comparison results for the initial and
modified depth values will be the same. For example, the default depth
comparison is LESS (z f r ag ment < zbu f f er). Since a "push down" displace-
ment mapping shader only increases the depth value, a fragment rejected
with the initial depth value can never be a false negative. It can only turn
out that the adjusted depth value is pushed ’behind’ the z buffer value,
i.e. zzi ni t i al < zbu f f er < z f i nal . This can be captured if the depth compari-
son is repeated for the final depth value.

Similar considerations can be made for the other comparison func-
tions and "push up" displacement mapping.

The EQUAL comparison function requires a slightly different change,
as a failed test for equality does not sufficiently constrain the value range
of the depth of a fragment to ensure that the adjusted value cannot pos-
sibly be accepted. To achieve this, it is necessary to perform a signed
test for equality, i.e. to determine if the adjusted value can potentially be
accepted; the GEQUAL and LEQUAL functions can be used to perform
this test for push up and push down displacement mapping respectively.

135

9. EARLY-Z OPTIMIZATION

Early-Z reject possible for ...
Comparison Function Push Up Push Down
LESS ¯ •
LEQUAL ¯ •
EQUAL ◦ ◦
NOTEQUAL
GEQUAL • ¯
GREATER • ¯

• directly applicable
◦ requires modified depth test
¯ must test against max displaced value

Table 9.2: Applicability of early-Z depth tests to displacement mapping
functions

Testing for Maximum Displacement

So far, the presented tests are only based on the depth value of the base
polygon. However, in most displacement mapping techniques the max-
imum displacement is also known. This provides an additional oppor-
tunity for early-Z culling for the cases that cannot be resolved from the
base depth alone, eg. "push up" displacement mapping with LESS (ie.
z f i nal < zbu f f er < zi ni t i al).

To achieve this, an additional API call would be required to specify
the maximum displacement value. This could possibly be performed
through the z biasing mechanism, depending on the exact implementa-
tion within the graphics hardware. However, in this case ’normal’ z bi-
asing would no longer be available, so a dedicated solution is preferable.

Table 9.2 summarizes how the depth comparison functions can sup-
port early-z culling of displacement mapping shaders. In Figure 9.3, our
proposed change requires a path that passes through both depth tests
with an optional arithmetic operation for testing against the maximum
displacement. The first depth test would only either discard the current
fragment or pass it on, without any updates to the depth buffer. The
optional arithmetic operation should preferably be performed with the
depth buffer value instead of the interpolated depth value, since this
would preserve the interpolated value for use in the pixel shader. The
remainder of the pipeline could be left unchanged.

136

A Proof of Concept Simulation

1

25

ov
er

d
ra

w

Figure 9.4: "Boxes" test scene (left) and resulting overdraw (right). In this
image, 344318 pixels were drawn with 1351011 fragments (392% over-
draw). Performance was 11.1fps rendering Front to Back, and 6.9fps Back
to Front.

9.5 A Proof of Concept Simulation

Because the proposed early-z culling is not yet available in current GPU
systems, we decided to implement a proof of concept simulation. To
simulate the effect of early z-testing, it is necessary to discard fragments
before the evaluation of the pixel shader, which is currently not possible
with shaders that modify depth.

A simulation can still be performed by using a shader that does not
modify depth. Because the disabled early z optimization is similar to the
worst case (rendering back to front), one can render the same scene front-
to-back and back-to-front and compare render times; the latter case effec-
tively circumvents early z optimization and causes the fragment program
to be evaluated for all objects, which is just what happens when a shader
disables early z-testing. This could also be achieved by enabling stencil
or alpha testing, but we decided to use the rendering order due to its ease
of implementation in our framework.

This simulation is not fully accurate, because drawing back to front
results in additional write operations that should not be performed, since
occluded fragments are culled after shader evaluation. Additionally, the
shader does not modify depth, such that Z-buffer writes can be opti-
mized by the GPU. However, given the large cost of the displacement
mapping fragment shader (which executes a few hundred instructions
per fragment) the contribution of these operations to the total frame time
is small. Performance comparisons showed that the difference intro-
duced by the additional write operations was less than 1%.

Table 9.3 summarizes the frame times for various test scenes (see
also Figure 9.4). The rendered scenes use a pixel shader based displace-
ment mapping technique loosely based on Tatarchuk’s Parallax Occlu-

137

9. EARLY-Z OPTIMIZATION

Scene Back to
Front

Front to
Back

Rel.
Perf.

(no early-z) (with early-z)

Boxes 6.9 11.1 160%
Spheres 5.7 7.6 133%
Hippos 3.7 4.7 127%
Buddha 8.8 9.8 111%
Dragon 1.5 1.8 120%

Table 9.3: Performance comparison for various test scenes (NVIDIA
GeForce 7800GTX). Back to Front rendering simulates rendering without
early-Z acceleration; Front to Back rendering simulates rendering with
early-Z.

sion Mapping [Tat06] to display a number of complex objects. The per-
formance gain depends on the shader evaluation cost and the overall
depth complexity; both vary with the model and the viewpoint used for
rendering, explaining the variation in Table 9.3. However, on average a
30% speedup was observed.

9.6 Summary
We have presented a possible adaptation to the current GPU render-
ing pipeline which would significantly increase performance for shaders
which modify depth values in a predictable way. Given the increas-
ing desire for realism, such shaders can be expected to become stan-
dard in modern applications and video games. The required change
adds very little complexity to the rendering pipeline and could possi-
bly be performed at the driver or firmware level. We have also demon-
strated through a simulation that significant performance gains could be
expected for this method.

Our understanding of the exact inner workings of current graphics
hardware is based on the manufacturers’ technical presentations. Unfor-
tunately these often present a conceptual view and differ from the actual
hardware implementation. We are currently working on additional tests
to shed some more light on these aspects, such as the exact impact of
pixel grouping on early culling performance.

138

P
A

R
T

V
SUMMARY AND
CONCLUSIONS

139

C
H

A
P

T
E

R

10
SUMMARY

Research is to see what
everybody else has seen,
and to think what nobody else
has thought.

Albert Szent-Györgi

Due to the high complexity of vegetation and the necessity to span
from close up views to very distant terrain, rendering landscapes is still
a challenge. Despite the large increases in rendering performance with
each new generation of graphics hardware, such scenes will remain too
complex to be rendered in a straightforward manner for some time to
come.

Even a single plant requires a very large amount of geometry to be
displayed faithfully, and the structure of plants does not lend itself very
well to the usual simplification and abstraction schemes. Therefore, “nor-
mal” geometric simplification algorithms such as Hoppe’s Progressive
Meshes [Hop96] or Garland and Heckbert’s Quadric Error Metrics [GH97]
often produce visually unsatisfactory results.

A number of specialized algorithms have been proposed that address
the specific nature of plant models and that are often restricted to just
rendering leaves or only the branches. These algorithms can be roughly
categorized by the general method of approximation used: point based
(reducing small detail to single points, often hierarchically), image based

141

10. SUMMARY

(rendering planar impostors with precalculated views of the approxi-
mated geometry) and polygon based (using different geometry accord-
ing to view distance).

An analysis of these algorithms is presented in Chapter 2; in particu-
lar, Table 2.1 gives a rough comparison of various features and applicable
view distances. Most of the distance ranges are in the center range, such
that they do not provide sufficient detail to be viewed at closer distances,
and also run into problems when vast numbers of trees need to be dis-
played in the very far field.

10.1 Key Contributions

This thesis presents a number of approaches for rendering vegetation ef-
ficiently that are aimed at “filling the gap” between previously existing
algorithms and facilitate the development of an environment that sup-
ports efficient rendering vegetation across a wide range of distances.

Recent developments in GPU architecture have resulted in much more
per-fragment processing power, but traditional approaches to rendering
vegetation have mostly relied on geometric simplification alone. As a re-
sult, these systems are mostly vertex bound - the resulting performance
being mostly determined by the number of vertices to be processed - and
the fragment processors was mostly unused.

Much of the presented work is designed to exploit these capabili-
ties by offloading geometric complexity to the pixel shader. Ideally, this
would lead to a system where the rendering load is equally distributed
over all stages of the rendering pipeline – CPU processing, vertex trans-
formation, and fragment processing.

The presented contributions can be categorized in three different ar-
eas: Near field rendering of individual plants, far field rendering of land-
scapes, and technical aspects not directly related to vegetation, but im-
portant for the algorithms used elsewhere in this thesis. In this thesis,
the following contributions are made to these areas:

Billboard Clouds for Vegetation Rendering

The Billboard Clouds (BBCs) extreme model simplification method intro-
duced by Decoret [DDS03] is a highly versatile approach for reducing ar-
bitrary models. In this method, supporting planes are placed such that all
geometry of the original model can be projected onto these planes under
a guaranteed maximum error. The original method makes no assump-

142

Key Contributions

tions regarding the structure of the model and allows arbitrary plane
placements; when applied to vegetation this may lead to unsatisfactory
results, mostly due to planes viewed at grazing angles.

We propose a number of improvements to the original algorithm that
addresses these issues [FUM05]. For example, introducing a penalty for
nearly horizontal planes leads to more upright plane placement, a better
representation when viewing the model in walkthrough situations. Also,
the automatic placement of orthogonal supporting planes captures stems
and thick branches much better than if only a single plane was used,
which would cause the stem to disappear entirely when viewed edge on.

Displacement Mapped Billboard Clouds

For the near field rendering of individual plants, Displacement Mapped
Billboard Clouds (DMBBCs, Chapter 5) are ideally suited to transition be-
tween the commonly used billboard clouds [DDS03] and more detailed
approaches. Billboard clouds are essentially a collection of textured pla-
nar surfaces that capture the entire model within a given error bound.
This works quite well at a sufficient distance, but at closer ranges the
planarity of the primitives used in this approach become quite apparent.

DMBBCs avoid these artifacts by rendering a volumetric representa-
tion instead of simple planes. This is performed on the GPU through a
ray casting fragment program. This intermediate transition can be eas-
ily blended to ‘regular’ billboard clouds by reducing the thickness of the
volume. Also, the volumetric rendering results in a more detailed rep-
resentation that is acceptable for closer view distances than regular bill-
board clouds.

The creation of DMBBCs is a straightforward extension of the bill-
board cloud generation method; in addition to the ‘normal’ textures the
vertical offset of each fragment from the supporting plane is stored in
a separate plane. Various alternatives are available for handling multi-
ple vertical offsets per position, such as a full volumetric representation,
vertical spans or individual fragments.

GPU based Landscape Rendering

For adding vegetation to very large landscapes, it is desirable to use
methods that have minimal interference with existing terrain rendering
algorithms. Chapter 6 demonstrates a GPU based ray casting approach
that is highly suitable approach for rendering vegetation detail at a very
large scale, and can be readily incorporated into existing geospatial view-

143

10. SUMMARY

ing applications. The integration into NASA World Wind, a widely used
planet-scale geospatial viewing application, is also discussed in the same
chapter.

This rendering method uses a Combined Elevation Map (CEM) that en-
codes both the terrain and vegetation data suitable for ray casting. The
CEM is created in a preprocessing step, using an existing elevation model
and arbitrary information on vegetation coverage. This vegetation data
can be extracted semi-automatically from topographic maps, or georef-
erenced GIS data can be used if available.

At runtime, the rendered geometry is only used as a starting point
for a GPU-based ray casting of the combined elevation map. Therefore,
the terrain can be rendered at relatively coarse levels. After the correct
intersection point has been found, local land coverage information can be
used to choose the correct shading model. For example, the surface color
can be modulated based on vegetation height, and ray cast reflections
can be calculated for water surfaces.

Since large landscapes necessarily require tiling multiple textures, the
presented method includes solutions for avoiding artifacts at tile bound-
aries. The correct initial intersection can be guaranteed by using vertical
skirts at tile boundaries, but this is not sufficient if illumination or re-
flections should be cast as they may extend further into the neighboring
tile. We propose to use overlapping textures to reduce these ‘secondary’
artifacts.

Fast Approximate Visible Sets

Point based representations are often used as an intermediate representa-
tions of geometric models [DCSD02], and for very dense clouds of point
samples such as those obtained through laser range scans. Since point
samples do not include any inherent visibility or occlusion information,
it is usually necessary to render the entire data set even if this results in
considerable overdraw.

In Chapter 3, we present an approach to quickly determine view de-
pendent approximate visible set of points, which can be used to signif-
icantly reduce the amount of data to be rendered. Although these sets
are only an approximation, errors are typically small and – especially for
rendering vegetation – produce little visible artifacts.

In a preprocessing step, for each view direction a number of nearby
views is rendered. Point samples are drawn with an unique identifier
encoded in their color values. The resulting image can then be read back
and scanned for the identifiers that remained visible. This information

144

Key Contributions

is stored for all nearby views and combined to produce the approximate
visible set for this view direction.

At runtime, the approximate visible sets for the closest available view
directions are combined, such that smooth transitions between different
sets are possible. Only a fraction of the total number of points is rendered
for arbitrary view positions, resulting in a significant speedup.

Early-Z Optimization

GPU based fragment shaders are being increasingly used for rendering
surface detail. In many cases of such shaders it is necessary to change
the output depth (z) value in addition to color to produce correct inter-
sections between objects.

However, this collides with Early-Z culling, an acceleration method
employed in modern graphics hardware in which a fragment is discarded
before executing the fragment program if it is hidden according to the z-
buffer. Obviously, this is not possible if the fragment shader modifies
the z value, since this may result in previously hidden (and thus culled)
fragments becoming visible. Therefore, currently graphics drivers dis-
able this acceleration if a shader is detected that modifies z values.

However, many shaders that modify z values in a very predictable
way, such that this culling could still be employed. Most displacement
mapping shaders use an ‘outer shell’ geometry to produce starting points
for ray casting, such that the modified z values can be guaranteed to be
larger than the original value. Therefore, previously occluded fragments
are still hidden in all cases, and the Early-Z acceleration could remain
enabled.

Also, if maximum displacement bounds are known (which is also of-
ten the case), the applicable range of Early-Z could be further extended
to include other rendering modes and more general fragment programs.

In Chapter 9, we describe in detail how the various approaches to
rendering displacement maps and the rendering modes of OpenGL and
DirectX could be extended to provide Early-Z in as many cases as possi-
ble. Many of the proposed changes are very likely only driver changes,
requiring no changes to GPU hardware and may therefore be also appli-
cable to existing systems.

Contributions in Context

Table 10.1 summarizes the vegetation specific contributions of this thesis
in the context of the state of the art algorithms presented in Chapter 2.

145

10. SUMMARY

D
es

cr
ip

ti
on

Le
a.

/
Br

./
Fu

ll
V

ie
w

de
p.

LO
D

A
ni

m
at

io
n

D
yn

.I
llu

m
.

Q
ua

lit
y

Pe
rf

or
m

an
ce

M
em

or
y

Distance range
farnear

Plant Leaves [WWD+05] L X # G#
Complex Botanical Scenes [MFC97] F X – X G# G# #
Complex Plant Ecosystems [DCSD02] F X – G# G#
Point Based Vegetation Rendering (Chp. 4) F X – G# G#
Plant Models with Complex Organs [ZBJ06] F X – X G# G#
Point-Based Trees [GMN05] F X – G# G# G#
Procedural Multiresolution [LCV03] B X X G# #
Complex Photorealistic Landscapes [CCDH05] F – – X G# G# #
Displacement Mapped Billboard Clouds (Chp. 5) F X – G# G# G#
Vegetation Specific Billboard Clouds (Chp. 4) F X – G# G#
Fractal Plants and Trees [Opp86] B X X # #
Single Polygonal Mesh [LVF+01] B X G# G#
Volumetric Reconstruction [RMMD04] F X – – #
Interactive Forest [GCF01] B X X X G# G# #
Forests at Human Scale [SK04] F – – G# G#
Realistic Trees [WP95] F X X G# G# G#
Shading and Shadowing [MNP01] F X – X G#
Hierarchical Image-Based Rendering [MDK99] L X – G# G#
Structured Particle Systems [RB85] F – X G# # #
Image-Based Multiresolution [LCV04] F X – – G# G# G#
Sequential Point Trees [DVS03] F X – G# G#
Deferred Splatting [GBP04] F X – G# G# G#
View-Dependent Multiresolution [RCRB03] L X – X G# G#
Forest Scenes in Real-Time [DN04] F – – – G# G#
Slicing and Blending [Jak00] F – G# #
Precomputed Z-Buffer Views [Max96] L – X G# G# G#
Drop and Resize [Hal01] F X – – G# G#
Textured Quadric Surfaces [Gar84] F – # #
GPU Based Ray Casting (Chp. 6) F X – X G# G# G#

Table 10.1: Contributions of this thesis in the context of the previous state
of the art. See also Table 2.1.

146

Research Outlook

10.2 Research Outlook
Referring to Table 2.1 as well as the presented algorithms, it is apparent
that algorithms exist to render vegetation over a very wide range of view
distances. However, several aspects remain that deserve further investi-
gation:

Data size Perhaps the most prominent issue is still the amount of data
to be handled for large landscapes. Although algorithms exist that
avoid the management of explicit plant positions for large areas,
these data must be created dynamically as the viewer approaches.
Also, the synthesized positions and vegetation features must corre-
late visually with the implicit representations, but still exhibit suf-
ficient variation to avoid obvious repetitions.

Animation Only very few algorithms support animation of vegetation,
an important aspect that greatly enhances the realism of natural
scenes. This problem is further complicated because it is even more
difficult to transition between rendering methods in a way that
does not disturb animation.

Illumination The same problem can be said to exist for dynamic illumi-
nation, which is also only supported by a limited number of algo-
rithms. Also, a better illumination model for very large areas would
greatly enhance the visual quality of the far field. Bidirectional re-
flectance distribution functions of forest canopies have been mea-
sured for remote sensing purposes, and it would be a promising
goal to integrate such models in an interactive rendering system.

In summary, interactive rendering of vegetation has improved signif-
icantly since its early days. However, additional research is required for
creating dynamic scenes as well as building new approaches to manag-
ing very large areas of vegetation.

147

C
H

A
P

T
E

R

11
CONCLUSIONS

I may not have gone
where I intended to go,
but I think I have ended up
where I needed to be.

Douglas Adams

With the increasing popularity of geospatial viewers such as Google
Earth and World Wind, it can be expected that the inclusion of vegetation
in these applications will remain an worthwhile topic in the near future.
Most current applications that do include vegetation are typically limited
to relatively small areas, and solutions that work well on a very large - or
even global - scale have yet to be found. Although we believe that this
work is one step in this direction, much remains to be done.

Solutions for very large scales are only feasible if generic models are
used; however these must be converted to explicit geometry at some
point to accommodate close up views. A visually unobtrusive transition
is necessary between these representations, which is surprisingly diffi-
cult to achieve. For example, explicit instances must be placed at specific
locations, and the geometry may include local variations. These features
must blend well with the necessarily generic model used for the far field,
such that its general shape is retained and trees do not appear to sud-
denly grow out of the canopy as the viewer comes closer. Non-repetitive
tiling approaches (such as Wang tiles [CSHD03]) are helpful, but require

149

11. CONCLUSIONS

special care for boundary regions that do not coincide with tile bound-
aries.

This problem also includes illumination calculations. Although the
reflectance behavior of a forest is mainly determined by its leaf canopy,
this is extremely difficult to model. BRDF functions of various species
of trees have been estimated for remote sensing purposes, but it is not
known if this data has been incorporated in a rendering framework. Il-
lumination is also problematic at the very near scale. Inside a forest,
the complex interaction of scattering and translucency is quite hard to
model. Methods exist for individual plant leaves and small plants [WWD+05],
but the interaction within an entire canopy is fare more complex.

Additionally, the ground inside a forest typically abounds with leaves,
broken twigs, and undergrowth. Such detail is often added manually in
existing applications, but it would be preferable to create such detail al-
gorithmically.

A successful solution will likely combine several approaches to ren-
dering vegetation at different distances. Ultimately, we believe that such
a solution will have to be tightly coupled with a plant growth simulation,
such that generic representations for far field renderings can be easily
transitioned to individual models for the near field.

In closing, we believe that it will remain impossible to beat a walk
through a real forest for a long time to come.

150

LIST OF FIGURES

1.1 Flatness of orthophotographic maps 3
1.2 Comparison of rendering functions and view distances 4

2.1 Simulation of Natural Scenes using Textured Quadric Surfaces 10
2.2 Modeling of Branched Structures using a Single Polygonal Mesh 12
2.3 Simulation of Natural Scenes using Textured Quadric Surfaces 13
2.4 Multiresolution plant models with complex organs 15
2.5 View-Dependent Multiresolution Model for Foliage 16
2.6 Procedural Multiresolution for Plant and Tree Rendering 17
2.7 Interactive Visualization of Complex Plant Ecosystems 20
2.8 Sequential Point Trees . 20
2.9 Deferred Splatting . 21
2.10 Interactive Vegetation Rendering with Slicing and Blending . . 26
2.11 Interactive Rendering of Trees with Shading and Shadowing . . 27
2.12 Real-time Rendering of Forests at Human Scale 30
2.13 Rendering Forest Scenes in Real Time 31

3.1 A point based tree falls apart when viewed from to close up. . . 41
3.2 Identifying closest available view directions 41
3.3 Perspective Occlusion . 43
3.4 Sorting point samples by distance 44
3.5 400 instances of the reduced “Oak” model 45
3.6 “Oak” tree, visible leaves and branches 46
3.7 Reduced “Oak” model from arbitrary viewpoint 47
3.8 Bandwidth used over time for a number of views 47
3.9 Preprocessing results for “Sasafras” tree 48
3.10 “Sasafras” tree, reduced and full models comparison 49

4.1 A plane in primal and dual space 52
4.2 Vertex welding: Palm tree stem example 54
4.3 “Cardboard” plane construction . 54

151

LIST OF FIGURES

4.4 Models with and without view dependent penalties. 55
4.5 Polygonal and billboard cloud models and statistics 56
4.6 Improved billboard trees in an urban setting. 57
4.7 Walkthrough scenario with improved billboard trees. 57

5.1 Screen shot showing full geometry, DMBBCs and BBCs 60
5.2 Billboard rectangle and DMBBC box. 62
5.3 DMBBC representation of a chestnut tree 63
5.4 Original, BBC, and DMBBC renderings of two models. 65
5.5 Hippo,moped and Buddha BBC and DMBBC models 70
5.6 Frame rates for full geometry, DMBBCs and BBCs 72

6.1 Overview of the preprocessing steps 80
6.2 Sample aerial image interpretation data 81
6.3 Hardware accelerated vegetation coverage map creation 82
6.4 Visual artifacts as a result of insufficient vertical resolution. . . 84
6.5 Avoiding artifacts at tile boundaries 87
6.6 Ray casting acceleration . 88
6.7 Cone step mapping . 89
6.8 Artifacts from incorrect shadowing across tiles. Left: regular

tiles (no overlap). Note that no shadows are cast across tile
boundaries. Right: tiles overlap as described in the text to
produce correct shadows. Very small tiles (64x64) have been
used for illustration. 91

6.9 Augmentation based on Land Cover Data 92
6.10 The World Wind application . 93
6.11 World Wind’s quadtree data organization 94
6.12 Rendering a landscape with orthophotographic data 97
6.13 Topographic maps and automatically derived representation . 99
6.14 Dynamic coloring and illumination of topographic maps 99
6.15 Dynamic illumination of orthophotographic data 99
6.16 Artifacts caused by too few ray casting steps 100
6.17 Visualization derived from orthophotos and close-up view . . . 100
6.18 Orthophotography embedded in a larger model 100

7.1 GVV radius construction . 107
7.2 Timings for various error metrics 110

8.1 Determination of topt . 119
8.2 Views of the terrain with a rendering budget of 40ms 125
8.3 LOD selection and actual rendering times for a flyover path . . 126

152

9.1 Basic Displacement Mapping . 133
9.2 Better intersections by writing correct depth values 133
9.3 OpenGL shader pipeline with Early Depth Testing 134
9.4 Test scene and resulting overdraw 137

153

LIST OF TABLES

2.1 Summary of the presented algorithms 35

5.1 Original and BBC/DMBBC figures for various models. 71
5.2 Continuation of Table 5.1: memory requirements 71

6.1 Average frame rates for various ray casting parameters 98

9.1 DirectX and OpenGL Depth Comparison Functions 135
9.2 Applicability of early-Z tests to displacement mapping 136
9.3 Performance comparison for various test scenes 138

10.1 Contributions in context of state of the art 146

154

BIBLIOGRAPHY

[ABC+04] Carlos Andújar, Pere Brunet, Antoni Chica, Isabel Navazo, Jarek Rossignac, and Alvar Vinacua.
Computing maximal tiles and application to impostor-based simplification. Computer Graphics
Forum, 23(3):401–410, September 2004. 52

[AIK+05] Michael Hugh Anderson, Ann Chris Irvine, Nidish Ramachandra Kamath, Chun Yu,
Dan Minglun Chuang, Yshi Tian, and Yingyong Qi. Graphics pipeline and method having
early depth detection. US Patent Application Publication No. US 2005/0195198 A1, 2005. 134

[AMCH+04] Tomas Akenine-Moeller, Eric Chan, Wolfgang Heidrich, Jan Kautz, Mark Kilgard, and Marc
Stamminger. Real-time shadowing techniques. In SIGGRAPH ’04: ACM SIGGRAPH 2004
Course Notes, page 27, New York, NY, USA, 2004. ACM Press. 90

[AS99] Patrice Arrighi and Pierre Soille. From scanned topographic maps to digital elevation models.
In D. Jongmans, E. Pirard, and P. Trefois, editors, Proc. of Geovision’99: International Symposium
on Imaging Applications in Geology, pages 1–4. Université de Liège, Belgium, May 1999. 83

[ATI05] ATI Technologies Inc. Radeon X1800 shader architecture whitepaper. Technical report, ATI
Technologies Inc., 2005. 134

[BCF+05] Stephan Behrendt, Carsten Colditz, Oliver Franzke, Johannes Kopf, and Oliver Deussen. Re-
alistic real-time rendering of landscapes using billboard clouds. In Computer Graphics Forum,
volume 24, pages 507–516, 2005. 29

[BG01] Eric Bouvier and Enrico Gobbetti. TOM: Totally ordered mesh a multiresolution structure for
time critical graphics applications. International Journal of Image and Graphics, 1(1):115–134, 2001.
126

[Bio03] Bionatics. Bionatics homepage. web page, 2003. http://www.bionatics.com/. 23

[Bli78] James F. Blinn. Simulation of wrinkled surfaces. In SIGGRAPH ’78: Proceedings of the 5th annual
conference on Computer graphics and interactive techniques, pages 286–292, New York, NY, USA,
1978. ACM Press. 61, 79

[BMG06] Frédéric Boudon, Alexandre Meyer, and Christophe Godin. Survey on computer representa-
tions of trees for realistic and efficient rendering. Rapport de recherche 2301, LIRIS, Université
Claude Bernard Lyon 1, 2006. 8

[CAZ01] Jonathan D. Cohen, Daniel G. Aliaga, and Weiqiang Zhang. Hybrid simplification: combin-
ing multi-resolution polygon and point rendering. In VIS ’01: Proceedings of the conference on
Visualization ’01, pages 37–44, Washington, DC, USA, 2001. IEEE Computer Society. 114

[CCDH05] Carsten Colditz, Liviu Coconu, Oliver Deussen, and Hans-Christian Hege. Real-time rendering
of complex photorealistic landscapes using hybrid level-of-detail approaches. In E. Buhmann,
P. Paar, I. Bishop, and E. Lange, editors, Trends in Real-Time Landscape Visualization and Participa-
tion, pages 97–106. Wichmann Verlag, 2005. 29, 35, 51, 146

155

BIBLIOGRAPHY

[Che95] Shenchang Eric Chen. Quicktime VR - an image-based approach to virtual environment navi-
gation. In Robert Cook, editor, SIGGRAPH 95 Conference Proceedings, Annual Conference Series,
pages 29–38. ACM SIGGRAPH, Addison Wesley, August 1995. held in Los Angeles, California,
06-11 August 1995. 8

[CN01] Baoquan Chen and Minh Xuan Nguyen. Pop: a hybrid point and polygon rendering system for
large data. In VIS ’01: Proceedings of the conference on Visualization ’01, pages 45–52, Washington,
DC, USA, 2001. IEEE Computer Society. 114

[CSHD03] Michael F. Cohen, Jonathan Shade, Stefan Hiller, and Oliver Deussen. Wang tiles for image and
texture generation. In SIGGRAPH ’03: ACM SIGGRAPH 2003 Papers, pages 287–294, New York,
NY, USA, 2003. ACM Press. 83, 149

[CW93] Shenchang Eric Chen and Lance Williams. View interpolation for image synthesis. In James T.
Kajiya, editor, SIGGRAPH 93 Conference Proceedings, Annual Conference Series, pages 279–288.
ACM SIGGRAPH, Addison Wesley, August 1993. ISBN 0-201-51585-7. 23

[DCSD02] Oliver Deussen, Carsten Colditz, Marc Stamminger, and George Drettakis. Interactive visual-
ization of complex plant ecosystems. In IEEE Visualization ’02, October 2002. 19, 20, 33, 35, 39,
40, 144, 146

[DDS03] Xavier Decoret, Fredo Durand, and Francois X. Sillion. Billboard clouds. In SCG ’03: Proceedings
of the nineteenth annual symposium on Computational geometry, pages 376–376, New York, NY,
USA, 2003. ACM Press. 29, 51, 52, 61, 64, 74, 142, 143

[Deu03] Oliver Deussen. Computergenerierte Pflanzen. Springer Verlag, 2003. 7, 8

[DH72] Richard O. Duda and Peter E. Hart. Use of the hough transformation to detect lines and curves
in pictures. Commun. ACM, 15(1):11–15, 1972. 52

[DLP05] Jean-François Dufort, Luc Leblanc, and Pierre Poulin. Interactive rendering of meso-structure
surface details using semi-transparent 3d textures. In Proc. Vision, Modeling, and Visualization
2005, pages 399–406, November 2005. 61, 79

[DMBF96] William J. Dally, Leonard McMillan, Gary Bishop, and Henry Fuchs. The delta tree: An object-
centered approach to image-based rendering. Technical Report AIM-1604, Artificial Intelligence
Laboratory, Massachusetts Institute of Technology, 1996. 23

[DMS06] Andreas Dietrich, Gerd Marmitt, and Philipp Slusallek. Terrain guided multi-level instancing
of highly complex plant populations. In Proceedings of the 2006 IEEE Symposium on Interactive
Ray Tracing, pages 169–176, September 2006. 7

[DN04] Philippe Decaudin and Fabrice Neyret. Rendering forest scenes in real-time. In Rendering
Techniques (Eurographics Symposium on Rendering - EGSR), pages 93–102, june 2004. 29, 31, 35,
36, 146

[Don05] William Donnelly. Per-Pixel Displacement Mapping With Distance Functions, pages 123–136.
Addison-Wesley, 2005. 89

[DSSD99] Xavier Decoret, François Sillion, Gernot Schaufler, and Julie Dorsey. Multi-layered impostors
for accelerated rendering. In Computer Graphics Forum (Proc. Eurographics ’99), pages 61–73.
Eurographics, Blackwell Publishers, September 1999. ISSN 1067-7055. 23

[DSV98] Lucia Darsa, Bruno Costa Silva, and Amitabh Varshney. Walkthroughs of complex environ-
ments using image-based simplification. Computers & Graphics, 22(1):55–69, 1998. 23

[Dum06] Jonathan Dummer. Cone step mapping: An iterative ray-heightfield intersection algorithm.
http://www.mganin.com/lonesock/ConeStepMapping pdf, 2006. 62, 89

[DVS03] Carsten Dachsbacher, Christian Vogelgsang, and Marc Stamminger. Sequential point trees. In
SIGGRAPH ’03: ACM SIGGRAPH 2003 Papers, pages 657–662, New York, NY, USA, 2003. ACM
Press. 19, 20, 22, 33, 35, 146

156

[DWS+97] Mark A. Duchaineau, Murray Wolinsky, David E. Sigeti, Mark C. Miller, Charles Aldrich, and
Mark B. Mineev-Weinstein. ROAMing terrain: Real-time optimally adapting meshes. In IEEE
Visualization ’97, October 1997. 127

[FS93] Thomas A. Funkhouser and Carlo H. Séquin. Adaptive display algorithm for interactive frame
rates during visualization of complex virtual environments. In SIGGRAPH 93 Conference Pro-
ceedings, pages 247–254, 1993. 113, 127

[FUM05] Anton L. Fuhrmann, Eike Umlauf, and Stephan Mantler. Extreme model simplification for
forest rendering. In E. Galin and P. Poulin, editors, Proceedings of the 2005 Eurographics Workshop
on Natural Phenomena. The Eurographics Association, 2005. 29, 143

[Gar84] Geoffrey Y. Gardner. Simulation of natural scenes using textured quadric surfaces. In SIG-
GRAPH 1984, Conference Proceedings. ACM Press / ACM SIGGRAPH, 1984. 9, 10, 35, 146

[GB99] Enrico Gobbetti and Eric Bouvier. Time-critical multiresolution scene rendering. In David
Ebert, Markus Gross, and Bernd Hamann, editors, IEEE Visualization ’99, pages 123–130, San
Francisco, 1999. 114, 126

[GB00] E. Gobbetti and E. Bouvier. Time-critical multiresolution rendering of large complex models.
In Journal of Computer-Aided Design, pages 785–803, 2000. 114

[GBP04] Gaël Guennebaud, Loïc Barthe, and Mathias Paulin. Deferred splatting. Comput. Graph. Forum,
23(3):653–660, 2004. 21, 22, 35, 146

[GCF01] Thomas Di Giacomo, Stéphane Capo, and François Faure. An interactive forest. In Marie-
Paule Cani, Nadia Magnenat-Thalmann, and Daniel Thalmann, editors, Eurographics Workshop
on Computer Animation and Simulation (EGCAS), pages 65–74. Springer, sept. 2001. Manchester.
13, 35, 146

[GGSC96] Steven J. Gortler, Radek Grzeszczuk, Richard Szeliski, and Michael F. Cohen. The lumigraph. In
Holly Rushmeier, editor, SIGGRAPH 96 Conference Proceedings, Annual Conference Series, pages
43–54. ACM SIGGRAPH, Addison Wesley, August 1996. held in New Orleans, Louisiana, 04-09
August 1996. 23

[GH97] Michael Garland and Paul S. Heckbert. Surface simplification using quadric error metrics. In
Turner Whitted, editor, SIGGRAPH 97 Conference Proceedings, Annual Conference Series, pages
209–216. ACM SIGGRAPH, Addison Wesley, August 1997. ISBN 0-89791-896-7. 141

[GK93] Ned Greene and Michael Kass. Hierarchical Z-buffer visibility. In James T. Kajiya, editor, SIG-
GRAPH 93 Conference Proceedings, Annual Conference Series, pages 231–238. ACM SIGGRAPH,
Addison Wesley, August 1993. ISBN 0-201-51585-7. 8, 9, 132

[GL03] Francois Gougeon and Don Leckie. Forest information extraction from high spatial resolution
images using an individual tree crown approach. PFC Information Report BC-X-396, Canadian
Forest Service, 2003. 82

[GMN05] Guillaume Gilet, Alexandre Meyer, and Fabrice Neyret. Point-based rendering of trees. In
E. Galin and P. Poulin, editors, Eurographics Workshop on Natural Phenomena, 2005. 22, 35, 146

[GP03] Gael Guennebaud and Mathias Paulin. Efficient screen space approach for Hardware Acceler-
ated Surfel Rendering . In Vision, Modeling and Visualization , Munich, 19/11/03-21/11/03, pages
485–495. IEEE Signal Processing Society, novembre 2003. 22

[Hal01] Nick Halper. Drop and resize with billboards. Web page, 2001. http://isgwww.cs.uni-
magdeburg.de/ nick/billboards/billboards.html. 25, 35, 36, 146

[HEGD04] Johannes Hirche, Alexander Ehlert, Stefan Guthe, and Michael Doggett. Hardware accelerated
per-pixel displacement mapping. In GI ’04: Proceedings of the 2004 conference on Graphics inter-
face, pages 153–158, School of Computer Science, University of Waterloo, Waterloo, Ontario,
Canada, 2004. Canadian Human-Computer Communications Society. 61, 79, 86

157

BIBLIOGRAPHY

[HLB+05] Mark Harris, David Luebke, Ian Buck, Naga Govindaraju, Jens Krüger, Aaron Lefohn, Tim
Purcell, and Cliff Woolley. A survey of general-purpose computation on graphics hardware.
Siggraph 2005 Course Notes, 2005. 131

[Hop96] Hugues Hoppe. Progressive meshes. In Holly Rushmeier, editor, SIGGRAPH 96 Conference Pro-
ceedings, Annual Conference Series, pages 99–108. ACM SIGGRAPH, Addison Wesley, August
1996. held in New Orleans, Louisiana, 04-09 August 1996. 141

[Hop97] Hugues Hoppe. View-dependent refinement of progressive meshes. In Turner Whitted, edi-
tor, SIGGRAPH 97 Conference Proceedings, Annual Conference Series, pages 189–198. ACM SIG-
GRAPH, Addison Wesley, August 1997. ISBN 0-89791-896-7. 115

[Hop98] Hugues Hoppe. Smooth view-dependent level-of-detail control and its application to terrain
rendering. In VIS ’98: Proceedings of the conference on Visualization ’98, pages 35–42, Los Alamitos,
CA, USA, 1998. IEEE Computer Society Press. 69, 115, 127

[Hud05] Richard Huddy. Directx graphics performance: Getting every bit you can. Technical report,
ATI Technologies Inc., 2005. 133

[Int02] Interactive Data Visualization, Inc. Speedtree product homepage. web page, 2002.
http://www.idvinc.com/speedtree/. 9, 39, 51

[Jak00] A. Jakulin. Interactive vegetation rendering with slicing and blending. In A. de Sousa and J.C.
Torres, editors, Proc. Eurographics 2000 (Short Presentations). Eurographics, August 2000. 24, 26,
35, 39, 146

[JWP05] Stefan Jeschke, Michael Wimmer, and Werner Purgathofer. Image-based representations for
accelerated rendering of complex scenes. In Y. Chrysanthou and M.Magnor, editors, EURO-
GRAPHICS 2005 State of the Art Reports, pages 1–20. EUROGRAPHICS, The Eurographics As-
sociation and The Image Synthesis Group, August 2005. 61

[KGG98] Michael Kofler, Michael Gervautz, and Michael Gruber. The styria flyover - lod management for
huge textured terrain models. In F.-E.Wolter and N.M.Patrikalakis, editors, Computer Graphics
International, Hannover, Germany, June 1998. IEEE Computer Society. CGI’98. 115, 121

[KH84] James T. Kajiya and Brian P Von Herzen. Ray tracing volume densities. In SIGGRAPH ’84:
Proceedings of the 11th annual conference on Computer graphics and interactive techniques, pages
165–174, New York, NY, USA, 1984. ACM Press. 90

[KIK+01] T. Kaneko, M. Inami, N. Kawakami, Y. Yanagida, T. Maeda, T. Takahei, and S. Tachi. Detailed
shape representation with parallax mapping. In Proceedings of ICAT 2001, pages 205–208, 2001.
61, 79

[KK89] J. T. Kajiya and T. L. Kay. Rendering fur with three dimensional textures. In SIGGRAPH ’89:
Proceedings of the 16th annual conference on Computer graphics and interactive techniques, pages
271–280, New York, NY, USA, 1989. ACM Press. 79

[KRS05] Andreas Kolb and Christof Rezk-Salama. Efficient empty space skipping for per-pixel displace-
ment maps. In Proceedings of the VMV 2005 Conference, 2005. 62, 85, 88

[KW03] J. Krüger and R. Westermann. Acceleration techniques for GPU-based volume rendering. In
Proceedings of IEEE Visualization 2003, pages 287–292, 2003. 131

[LCV03] Javier Lluch, Emilio Camahort, and Roberto Vivó. Procedural multiresolution for plant
and tree rendering. In AFRIGRAPH ’03: Proceedings of the 2nd international conference on Computer
graphics, virtual Reality, visualisation and interaction in Africa, pages 31–38, New York, NY, USA,
2003. ACM Press. 17, 35, 146

[LCV04] Javier Lluch, Emilio Camahort, and Roberto Vivó. An image-based multiresolution model for
interactive foliage rendering. In WSCG, pages 507–514, 2004. 25, 35, 146

158

[LE97] David Luebke and Carl Erikson. View-dependent simplification of arbitrary polygonal envi-
ronments. In Turner Whitted, editor, SIGGRAPH 97 Conference Proceedings, Annual Conference
Series, pages 199–208. ACM SIGGRAPH, Addison Wesley, August 1997. ISBN 0-89791-896-7.
127

[LH96] Marc Levoy and Pat Hanrahan. Light field rendering. In Holly Rushmeier, editor, SIGGRAPH
96 Conference Proceedings, Annual Conference Series, pages 31–42. ACM SIGGRAPH, Addison
Wesley, August 1996. held in New Orleans, Louisiana, 04-09 August 1996. 23

[LP01] Peter Lindstrom and Valerio Pascucci. Visualization of large terrains made easy. In VIS ’01:
Proceedings of the conference on Visualization ’01, pages 363–371, Washington, DC, USA, 2001.
IEEE Computer Society. 115, 127

[LV00] Tom Lokovic and Eric Veach. Deep shadow maps. In SIGGRAPH ’00: Proceedings of the 27th
annual conference on Computer graphics and interactive techniques, pages 385–392, New York, NY,
USA, 2000. ACM Press/Addison-Wesley Publishing Co. 90

[LVF+01] Javier Lluch, M.J. Vicent, S. Fernandez, C. Monserrat, and Roberto Vivo. Modelling of branched
structures using a single polygonal mesh. In IASTED International Conference on Visualization,
Imaging, and Image Processing, 2001. 12, 35, 146

[LW85] Marc Levoy and Turner Whitted. The use of points as display primitives. Technical Report
TR85-022, Department of Computer Science, University of North Carolina - Chapel Hill, Octo-
ber 1 1985. 17, 114

[Map02] Ian Mapleson. Sgi graphics performance comparison tables. Web Page, 5 2002. 1

[Mas99] Ashton E. W. Mason. Predictive Hierarchical Level of Detail Optimization. PhD thesis, University
of Cape Town, 1999. 113

[Max96] Nelson Max. Hierarchical rendering of trees from precomputed multi-layer Z-buffers. In Xavier
Pueyo and Peter Schröder, editors, Rendering Techniques ’96 (Proceedings of the Eurographics Work-
shop on Rendering 96), pages 165–174. Eurographics, Springer-Verlag Wien New York, June 1996.
ISBN 3-211-82883-4. 35, 146

[MB95] Leonard McMillan and Gary Bishop. Plenoptic modeling: An image-based rendering system.
In Robert Cook, editor, SIGGRAPH 95 Conference Proceedings, Annual Conference Series, pages
39–46. ACM SIGGRAPH, Addison Wesley, August 1995. held in Los Angeles, California, 06-11
August 1995. 23

[MB97] Ashton E. W. Mason and Edwin H. Blake. Automatic hierarchical level of detail optimization
in computer animation. Computer Graphics Forum, 16(3):C191–C199, 1997. 113, 116, 117

[MDK99] Nelson Max, Oliver Deussen, and Brett Keating. Hierarchical image-based rendering using
texture mapping hardware. In Eurographics Workshop on Rendering 1999, pages 57–62, 1999. 24,
35, 146

[MFC97] Dana Marshall, Donald Fussell, and A. T. Campbell III. Multiresolution rendering of complex
botanical scenes. In Wayne A. Davis, Marilyn Mantei, and R. Victor Klassen, editors, Graphics
Interface ’97, pages 97–104. Canadian Human-Computer Communications Society, 1997. 11, 35,
146

[MH02] Tomas Möller and Eric Haines. Real-Time Rendering, Second Edition. A. K. Peters Limited, 2002.
8, 9

[Mic05] Microsoft Corporation. MSDN DirectX 9 documentation library, 2005. 135

[MLK+04] Takaharu Miyoshi, Weiqing Li, Kazufumi Kaneda, Hideo Yamashita, and Eihachiro Nakamae.
Automatic extraction of buildings utilizing geometric features of a scanned topographic map.
In ICPR ’04: Proceedings of the Pattern Recognition, 17th International Conference on (ICPR’04) Vol-
ume 3, pages 626–629, Washington, DC, USA, 2004. IEEE Computer Society. 83

159

BIBLIOGRAPHY

[MM05] Morgan McGuire and Max McGuire. Steep parallax mapping. In I3D 2005 Poster, 2005. 61

[MNP01] Alexandre Meyer, Fabrice Neyret, and Pierre Poulin. Interactive rendering of trees with shading
and shadowing. In Workshop on Rendering, Eurographics. Springer-Verlag Wien New York, July
2001. 27, 28, 34, 35, 39, 146

[MO95] Nelson Max and Keiichi Ohsaki. Rendering trees from precomputed Z-buffer views. In Pro-
ceedings of the 6th Eurographics Workshop on Rendering, 1995. 23

[MS95] Paulo W. C. Maciel and Peter Shirley. Visual navigation of large environments using textured
clusters. In Pat Hanrahan and Jim Winget, editors, 1995 Symposium on Interactive 3D Graphics,
pages 95–102. ACM SIGGRAPH, ACM Press, April 1995. ISBN 0-89791-736-7. 113

[MUN91] Scott N. Martens, Susan L. Ustin, and John M. Norman. Measurement of tree canopy architec-
ture. Journal of Remote Sensing, 12:1525–1545, 1991. 90

[NAS] NASA. World wind homepage. http://worldwind.arc.nasa.gov/. 88

[Ney98] Fabrice Neyret. Modeling, animating, and rendering complex scenes using volumetric textures.
IEEE Transactions on Visualization and Computer Graphics, 4(1):55–70, 1998. 79

[NVI05] NVIDIA Corporation. Nvidia gpu programming guide. Technical report, NVIDIA Corporation,
2005. 133

[OBM00] Manuel M. Oliveira, Gary Bishop, and David McAllister. Relief texture mapping. In Kurt
Akeley, editor, SIGGRAPH 2000 Conference Proceedings, Annual Conference Series, pages 359–
368. ACM SIGGRAPH, Addison Wesley, July 2000. 132

[OP05] Manuel Oliveira and Fabio Policarpo. An efficient representation for surface details. Technical
Report RP-351, Instituto de Informática UFRGS, 2005. 79, 87

[Opp86] Peter Oppenheimer. Real time design and animation of fractal plants and trees. In David C.
Evans and Rusell J. Athay, editors, Computer Graphics (SIGGRAPH ’86 Proceedings), pages 55–64,
August 1986. 10, 35, 146

[Paj98] Renato Pajarola. Large scale terrain visualization using the restricted quadtree triangulation.
VIS ’98: Proceedings of the conference on Visualization ’98, pages 19–26, 1998. 127

[PBFJ05] Serban D. Porumbescu, Brian Budge, Louis Feng, and Kenneth I. Joy. Shell maps. In SIGGRAPH
’05: ACM SIGGRAPH 2005 Papers, pages 626–633, New York, NY, USA, 2005. ACM Press. 61,
79

[PF05] Matt Pharr and Randima Fernando. GPU Gems 2: Programming Techniques for High-Performance
Graphics and General-Purpose Computation (Gpu Gems). Addison-Wesley Professional, 2005. 62,
68

[PO06] Fabio Policarpo and Manuel M. Oliveira. Relief mapping of non-height-field surface details.
In SI3D ’06: Proceedings of the 2006 symposium on Interactive 3D graphics and games, pages 55–62,
New York, NY, USA, 2006. ACM Press. 62

[POC05] Fábio Policarpo, Manuel M. Oliveira, and João L. D. Comba. Real-time relief mapping on arbi-
trary polygonal surfaces. In SI3D ’05: Proceedings of the 2005 symposium on Interactive 3D graphics
and games, pages 155–162, New York, NY, USA, 2005. ACM Press. 62, 79, 86, 131, 132, 133

[Pol06] Darren E. Polkowski. Geforce 8800: Here comes the DX10 boom. Web page, 11 2006. 2

[PTS99] Simon Premoze, William B. Thompson, and Peter Shirley. Geospecific rendering of alpine ter-
rain. In Dani Lischinski and Gregory Ward Larson, editors, Rendering Techniques ’99, Proceedings
of the Eurographics Workshop in Granada, Spain, June 21-23, 1999, pages 107–118. Springer, 1999.
90, 96

160

[Pup98] Enrico Puppo. Variable resolution triangulations. In WADS ’97: Selected papers presented at the
international workshop on Algorithms and data structure, pages 219–238, New York, NY, USA, 1998.
Elsevier Science Inc. 127

[PZvBG00] Hanspeter Pfister, Matthias Zwicker, Jeroen van Baar, and Markus Gross. Surfels: Surface ele-
ments as rendering primitives. In Kurt Akeley, editor, SIGGRAPH 2000 Conference Proceedings,
Annual Conference Series, pages 335–342. ACM SIGGRAPH, Addison Wesley, 2000. 17, 114

[QQZ+03] Huamin Qu, Feng Qiu, Nan Zhang, Arie Kaufman, and Ming Wan. Ray tracing height fields.
In Proceedings of Computer Graphics International 2003, pages 202–209, Los Alamitos, CA, USA,
2003. IEEE Computer Society. 79, 86

[RB85] William T. Reeves and Ricki Blau. Approximate and probabilistic algorithms for shading and
rendering structured particle systems. In SIGGRAPH 85, Conference Proceedings, Annual Con-
ference Series. ACM SIGGRAPH, 1985. 17, 18, 35, 146

[RCB+] Inmaculada Remolar, Miguel Chover, Oscar Belmonte, José Ribelles, and Cristina Rebollo. Ge-
ometric simplification of foliage. 126

[RCB+02] Immaculada Remolar, Miguel Chover, Oscar Belmonte, Jose Ribelles, and Cristina Rebollo.
Real-time tree rendering. Technical report, Departamento de Lenguajes y Sistemas Informati-
cos, Universitat Jaume I, Campus de Riu Sec, E-12080 Castellon, Spain, 2002. Informe Tecnico
DLSI 1/3/2002. 14

[RCRB03] Immaculada Remolar, Miguel Chover, Jose Ribelles, and Oscar Belmonte. View-dependent
multiresolution model for foliage. In Journal of WSCG (WSCG’2003 Proceedings), February 2003.
14, 16, 25, 35, 126, 146

[RL00] Szymon Rusinkiewicz and Marc Levoy. QSplat: A multiresolution point rendering system for
large meshes. In Kurt Akeley, editor, SIGGRAPH 2000 Conference Proceedings, Annual Confer-
ence Series, pages 343–352. ACM SIGGRAPH, Addison Wesley, July 2000. 19, 40, 114

[RLIB99] Martin Reddy, Yvan Leclerc, Lee Iverson, and Nat Bletter. Terravision ii: Visualizing massive
terrain databases in vrml. IEEE Comput. Graph. Appl., 19(2):30–38, 1999. 121

[RMMD04] Alex Reche-Martinez, Ignacio Martin, and George Drettakis. Volumetric reconstruction and
interactive rendering of trees from photographs. In SIGGRAPH ’04: ACM SIGGRAPH 2004
Papers, pages 720–727, New York, NY, USA, 2004. ACM Press. 31, 35, 146

[SA03] Mark Segal and Kurt Akeley. The opengl graphics system: A specification. Technical report,
Silicon Graphics, Inc., 2003. 135

[Sch95] Gernot Schaufler. Dynamically generated impostors. In Dieter W. Fellner, editor, GI Workshop
on Modeling, Virtual Worlds,, pages 129–135, November 1995. 23, 103, 106, 107

[Sch98] Gernot Schaufler. Per-object image warping with layered impostors. In George Drettakis and
Nelson Max, editors, Rendering Techniques ’98 (Proceedings of the Eurographics Workshop on Ren-
dering 98), pages 145–156. Springer-Verlag Wien New York, June 1998. 23, 24

[SF99] Dieter Schmalstieg and Anton L. Fuhrmann. Coarse view-dependent levels of detail for hi-
erarchical and deformable models. Technical report, Vienna University of Technology, 1999.
114

[SH01] Bernd-Michael Straub and Christian Heipke. Automatic extraction of trees for 3d-city models
from images and height data. Automatic Extraction of Man-Made Objects from Aerial and Space
Images, III:267–277, 2001. 82

[SK04] Gabor Szijártó and József Koloszár. Real-time hardware accelerated rendering of forests at
human scale. In WSCG, pages 443–450, 2004. 28, 30, 35, 146

161

BIBLIOGRAPHY

[SLS+96] Jonathan Shade, Dani Lischinski, David Salesin, Tony DeRose, and John Snyder. Hierarchi-
cal image caching for accelerated walkthroughs of complex environments. In Holly Rushmeier,
editor, SIGGRAPH 96 Conference Proceedings, Annual Conference Series, pages 75–82. ACM SIG-
GRAPH, Addison Wesley, August 1996. held in New Orleans, Louisiana, 04-09 August 1996.
23, 104

[SS96] Gernot Schaufler and Wolfgang Stürzlinger. A three-dimensional image cache for virtual reality.
Computer Graphics Forum (Proc. Eurographics ’96), 15(3):227–235, September 1996. ISSN 0167-
7055. 104

[SS01] Randolf Schultz and Heidrun Schumann. Automatic Instancing of Hierarchically Organized
Objects. In Spring Conference on Computer Graphics 2001, Conference Proceedings, Budmerice, Slo-
vakia, 2001. 9

[STM05] Pedro V Sander, Natalya Tatarchuk, and Jason L. Mitchell. Explicit early-z culling for efficient
fluid flow simulation and rendering. Technical report, ATI Application Research Group, 2005.
133

[Tat06] Natalya Tatarchuk. Dynamic parallax occlusion mapping with approximate soft shadows. In
Proceedings of Symposium on Interactive 3D Graphics and Games, pages 63–69, 2006. 61, 79, 131,
132, 138

[Ulr02] Thatcher Ulrich. Rendering massive terrains using chunked level of detail control. In SIG-
GRAPH 2002 Course Notes CD-ROM. Association for Computing Machinery, ACM SIGGRAPH,
August 2002. Course 35. 88, 115

[Uni] Gevorg Grigoryan University. Probabilistic surfaces: Point based primitives to show surface
uncertainty. 40

[Was05] Scott Wasson. Nvidia’s geforce 7800 gtx graphics processor. Technical report, The Tech Report,
LLC, 2005. 134

[Wel04] Terry Welsh. Parallax mapping with offset limiting: A per pixel approximation of uneven
surfaces. Technical report, Infiscape Corporation, 2004. 61, 79

[WFadH00] Michael Wand, Matthias Fischer, and Friedhelm Meyer auf der Heide. Randomized point sam-
pling for output-sensitive rendering of complex dynamic scenes, 2000. 17, 40

[WFP+01] Michael Wand, Matthias Fischer, Ingmar Peter, Friedhelm Meyer auf der Heide, and Wolfgang
Straßer. The randomized z-buffer algorithm: Interactive rendering of highly complex scenes.
In Eugene Fiume, editor, SIGGRAPH 2001, Computer Graphics Proceedings, pages 361–370. ACM
Press / ACM SIGGRAPH, 2001. 9, 21

[WP95] Jason Weber and Joseph Penn. Creation and rendering of realistic trees. In Robert Cook, edi-
tor, SIGGRAPH 95 Conference Proceedings, Annual Conference Series, pages 119–128. ACM SIG-
GRAPH, Addison Wesley, August 1995. held in Los Angeles, California, 06-11 August 1995. 18,
35, 39, 40, 45, 121, 146

[WP05] Alan Watt and Fabio Policarpo. Advanced Game Development with Programmable Graphics Hard-
ware. A. K. Peters, Ltd., Natick, MA, USA, 2005. 62

[WS98] Michael Wimmer and Dieter Schmalstieg. Load balancing for smooth lods. Technical report,
Vienna University of Technology, 1998. 114

[WTL+04] Xi Wang, Xin Tong, Stephen Lin, Shi-Min Hu, Baining Guo, and Heung-Yeung Shum. Gener-
alized displacement maps. In Alexander Keller and Henrik Wann Jensen, editors, Rendering
Techniques, pages 227–234. Eurographics Association, 2004. 62, 79

[WWD+05] Lifeng Wang, Wenle Wang, Julie Dorsey, Xu Yang, Baining Guo, and Heung-Yeung Shum. Real-
time rendering of plant leaves. In SIGGRAPH ’05: ACM SIGGRAPH 2005 Papers, pages 712–719,
New York, NY, USA, 2005. ACM Press. 32, 35, 146, 150

162

[WWT+03a] Lifeng Wang, Xi Wang, Xin Tong, Stephen Lin, Shimin Hu, Baining Guo, and Heung-Yeung
Shum. View-dependent displacement mapping. In SIGGRAPH ’03: ACM SIGGRAPH 2003
Papers, pages 334–339, New York, NY, USA, 2003. ACM Press. 62

[WWT+03b] Lifeng Wang, Xi Wang, Xin Tong, Steve Lin, Shimin Hu, Baining Guo, and Harry Shum. View-
dependent displacement mapping. In Proceedings of SIGGRAPH 2003, pages 334–339, 2003. 131

[ZBJ06] Xiaopeng Zhang, Frédéric Blaise, and Marc Jaeger. Multiresolution plant models with complex
organs. In VRCIA ’06: Proceedings of the 2006 ACM international conference on Virtual reality
continuum and its applications, pages 331–334, New York, NY, USA, 2006. ACM Press. 14, 15, 35,
146

[ZKHK03] Christopher Zach, Andreas Klaus, Markus Hadwiger, and Konrad Karner. Accurate dense
stereo reconstruction using graphics hardware, 2003. 3

[ZSBP02] Wenting Zheng, Hanqiu Sun, Hujun Bao, and Qunsheng Peng. Rendering of virtual environ-
ments based on polygonal and point-based models. In VRST’02, Conference Proceedings, Hong
Kong, 2002. ACM Press / ACM SIGGRAPH. 17

163

CURRICULUM VITAE

Name Dipl.-Ing. Stephan Mantler
Date of birth December 1, 1974 in Vienna, Austria
Address Payergasse 1/17

A 2340 Mödling
Austria
step@stephanmantler.com

Education
1981-1985 Elementary school, VS Auhofstrasse, Vienna
1985-1989 High school, Goethe-Gymnasium, Astgasse, Vienna
1989-1993 High school, BRG XV, Diefenbachgasse, Vienna. Graduation

with honors.
1993-1998 Studies of computer science at Vienna University of

Technology. Masters Thesis Dynamic Load Balancing in Dis-
tributed Virtual Environments.

1999-2006 Studies of sports science at University of Vienna
2006 state certified swimming instructor (with distinction)

Employment History

1995-2001 numerous freelance projects
1998-1999 software developer, Imagination Computer Software GmbH
2000-2001 systems engineer, Cable & Wireless Austria
2001-2006 Austrian trade license for IT services and consulting
2002-2003 Junior researcher, VRVis Zentrum für Virtual Reality und

Visualisierung Forschungs-GmbH
2003-2004 Temporary research assistantship, Department of Robotics,

University of Duisburg, Germany
2004- back at VRVis
2005- External lecturer, FH Technikum Wien, Vienna

165

PREVIOUS PUBLICATIONS

Stephan Mantler. Dynamic Load Balancing in Distributed Virtual Environments.
Masters Thesis, 1998.

Paolo Petta, Alexander Staller, Robert Trappl, Stephan Mantler, Zsolt Szalavari,
Thomas Psik, and Michael Gervautz. Towards Engaging Full-Body Interaction.
In Proceedings of the 8th International Conference on Human-Computer Interaction
(HCI International ’99), 1999.

Kurt Hofstetter, Barbara Doser, Rainer Haslwandter, Stephan Mantler and oth-
ers. The sunpendulum Book of Documents. 2002. Self published.

Christopher Zach, Stephan Mantler and Konrad Karner. Time-critical Render-
ing of Discrete and Continuous Levels of Detail. In Proceedings of the ACM Sym-
posium on Virtual Reality Software and Technology (Hong Kong, China, November
11 - 13, 2002).

Stephan Mantler and Anton L. Fuhrmann. Fast Approximate Visible Set De-
termination for Point Sample Clouds. In Proceedings of the Workshop on Virtual
Environments 2003 (Zurich, Switzerland, May 22 - 23, 2003).

Stephan Mantler and Anton L. Fuhrmann. The State of The Art in Real-Time
Rendering of Vegetation. VRVis Technical Report TR-2003-027. 2003.

Stephan Mantler and Anton L. Fuhrmann. Point Based Rendering of Massive
Data Sets: A Case Study. In Proceedings of the Computer Graphics international
(Cgi’04) - Volume 00 (June 16 - 19, 2004).

Stephan Mantler, Gerd Hesina, Stefan Maierhofer, and Robert F. Tobler. Real-
Time Rendering of Vegetation and Trees in Urban Environments. In Proceedings
of the CORP’2005 Conference (Vienna, Austria, 2005).

Stephan. Mantler, Markus Hadwiger and Christian Sigg. Saving the Z-Cull Op-
timisation. In submission.

167

BIBLIOGRAPHY

Stephan Mantler and Stefan Jeschke. Interactive Landscape Visualization Us-
ing GPU Ray Casting. In Proceedings of the 4th international Conference on Com-
puter Graphics and interactive Techniques in Australasia and Southeast Asia (Kuala
Lumpur, Malaysia, November 29 - December 02, 2006).

Stephan Mantler, Stefan Jeschke and Michael Wimmer. Displacement Mapped
Billboard Clouds. 2006. VRVis Technical Report TR-2006-030; poster presented
at I3D Symposium 2007.

168

	Contents
	Introduction
	Motivation
	Problems and Challenges
	Contributions

	The State of the Art
	Overview
	Polygon-Based Algorithms
	Point Based Algorithms
	Image Based Algorithms
	Algorithms Summary and Conclusion

	Near Field Vegetation Rendering
	Point Based Vegetation Rendering
	Introduction
	Preprocessing
	Rendering
	Results
	Summary

	Vegetation Specific Billboard Clouds
	Introduction
	The Original Billboard Cloud Algorithm
	An Improved Simplification Algorithm
	Results
	Summary

	Displacement Mapped Billboard Clouds
	Introduction
	Related Work
	Displacement Mapped Billboard Clouds
	Results
	Summary

	Far Field Vegetation Rendering
	Landscape Rendering using GPU based Ray Casting
	Introduction
	Related Work
	Preprocess: Enhancing Landscape Detail
	Runtime: Interactive Landscape Rendering
	World Wind Integration
	Results
	Summary

	Levels of Detail and Impostor Validity
	Fast and Precise Testing of Dynamic Impostor Validity using a Two-Level Check
	Introduction
	Efficiency of Impostor Error Metrics
	A Two-Level Impostor Validity Test
	Results
	Summary

	Time-critical rendering of discrete and continuous levels of detail
	Introduction
	Previous Work
	Mixed Level of Detail Selection
	Test Application
	Discussion
	Summary

	Technical Aspects
	An Early-Z Optimization for Displacement Mapping Shaders
	Introduction
	Z-Correct Per Pixel Displacement Mapping
	Early-Z Optimizations
	Preserving the Validity of Early-Z Culling
	A Proof of Concept Simulation
	Summary

	Summary and Conclusions
	Summary
	Key Contributions
	Research Outlook

	Conclusions
	List of Figures
	List of Tables
	Bibliography

