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Abstract

In this paper, we propose a simple yet effective scheme (named DHTC) for HDR (high dynamic range) texture

compression based on the popular LDR (low dynamic range) texture compression scheme – S3TC/DXTC. In the

proposed scheme, the original HDR texture is first pre-processed with adaptive color transform and local dynamic

range reduction. Then a color distribution linearization process and a joint-channel texture coding process are

applied iteratively to generate the compressed HDR texture at 8 bpp. These techniques lead to near lossless visual

quality comparable to and even better than the state-of-the-art HDR texture compression schemes. Since DHTC

is built upon the ubiquitous DXTC, dedicated DHTC hardware design only needs moderate extension on current

hardware. Furthermore, the proposed DHTC format is not only suitable for HDR textures, but also LDR textures

with alpha channels. We believe this paper provides a unique solution to meet all the practical requirements for

HDR and LDR texture compression.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Texture

1. Introduction

HDR imaging technologies are bringing us to a new era of
recording and reproducing the real world. While traditio-
nal low dynamic range (LDR) images only contain device-
referred pixels in a very limited color gamut, HDR images
provide the real radiance values of natural scenes. By using
HDR textures, more accurate lighting and post-processing
are enabled, resulting in unprecedented reality in rende-
ring [War94, Deb98, CTHD01]. Thus, supporting HDR tex-
tures has become the trend in designing both graphics hard-
ware and APIs. At the same time, LDR textures continue to
be indispensable to efficiently support the decal maps that do
not usually require an expanded dynamic range.

The main problem of using textures is their large size.
LDR textures in typical 24 bpp raw RGB format just con-
sume too much storage and bandwidth. The situation is even
worse for HDR textures which are usually in half-floating or
floating point format and cost 2 or 4 times more space than
the raw LDR textures. Huge texture size limits the frame rate

† This work has been done while the author was with Mirosoft Re-
search Asia as an intern.

and scene complexity in real-time rendering. Texture com-
pression (TC) techniques can effectively reduce the memory
storage and bandwidth requirements at some computational
cost. For LDR textures, many compression schemes have be-
en devised, some of which, such as the de facto standard
DXTC (S3TC), have been widely supported by commodity
graphics hardware. The common idea behind these practical
LDR TC schemes is to use color (joint-channel) quantizati-
on for the texels within a small block. Thus the correlations
among different color channels can be efficiently utilized,
and the decoding process is also very fast.

On the other hand, HDR TC is a relatively new rese-
arch topic with only a limited number of contributions so
far [MCHAM06,MCHAM07,RAI06,RAI08,WWS∗07]. In
general, the existing HDR TC schemes, aiming at either fu-
ture hardware implementation or current hardware accom-
modation, achieve good quality at a compressed rate of 8 bpp
or 16 bpp, and make real-time HDR rendering affordable for
commodity rendering systems. However, all these schemes
share the common idea to compress luminance and chromi-
nance information independently. The separate-channel co-
ding framework, which divides the limited bit budget into lu-
minance bits and chrominance bits statically and leaves the
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cross-channel correlation unused, constrains them to achieve
higher compression ratio or better visual quality.

A novel HDR TC scheme is proposed in this paper. Our
basic idea is to convert the HDR compression problem into
an LDR-like compression problem, by utilizing the locali-
ty property within each texture block. More specifically, we
carefully design some pre-processing units to handle special
issues of HDR textures, such as the expanded dynamic ran-
ge, non-linear texel color distribution, etc., to make LDR TC
techniques (specifically, the DXTC linear fitting approach in
this paper) an effective compression kernel. To differentiate
from other schemes, we name the proposed scheme DXTC-

based HDR Texture Compression or DHTC in short.

In the following, we will first describe our compression
framework, which enable us to make a joint-channel bit al-
location and remove cross-channel correlations. Under the
framework, we present the proposed DHTC texture format.
HDR textures in DHTC format are of near lossless visual
quality at a compressed rate of 8 bpp. In particular, DHTC
preserves much higher fidelity than the state-of-the-art HDR
TC schemes in tricky areas, especially the areas with rich
colors. Since DHTC is built upon the ubiquitous DXTC, de-
dicated DHTC hardware design only needs moderate exten-
sion on current hardware. Furthermore, the proposed DHTC
format also support compression of LDR textures with alpha
channels. Thus we arrive at a unified compressed format for
HDR textures, LDR textures and alpha maps, using the same
set of decoding logic based on the existing DXTC hardware.

2. Related Work

2.1. LDR Texture Compression

LDR TC was introduced to rendering systems to reduce sto-
rage and bandwidth consumption [BAC96,KSKS96,TK96].
Beers et al. [BAC96] address a few key issues in TC al-
gorithm design, including random accessibility, decoding
speed, and the tradeoff between compression rate and visual
quality. A simple vector quantization (VQ) method with a
compression ratio of 35:1 is also proposed. However, in the
VQ scheme, two memory accesses are needed to decode a
single texel, which doubles the memory bandwidth cost.

Compared to VQ, the local palette approach provides mo-
re practical LDR TC methods, e.g., the de facto standard
DXTC (S3TC) [INH99]. In DXTC, textures are divided into
4x4 independent blocks. Each block stores two 16-bit base
colors (both in RGB565 format) and sixteen 2-bit color indi-
ces. The base colors and other two interpolated colors form
a block palette based on which a best matched color index is
selected for each texel.

Methods to further improve LDR TC performance ha-
ve been also attempted. In PVR-TC [Fen03], a high fre-
quency but low precision modulation signal blends with
two low-pass signals of the original texture to generate per-

texel colors. Due to the continuity of the low frequency si-
gnals, block artifacts can be effectively alleviated. iPACK-
MAN [SAM05], as part of the OpenGL ES API, divides each
4x4 block into two 2x4 or 4x2 sub-blocks, each with one ba-
se color. And the luminance values are refined with modifiers
in a modifier table pointed by the per-texel indices. Thanks
to the fine granularity block division, iPACKMAN preserves
better luminance detail than DXTC.

In summary, the local palette based LDR TC schemes pro-
vide highly compact textures with good enough quality for
most graphics applications. They apply joint-channel com-
pression to small texture blocks to efficiently exploit the lo-
cal similarity. Although these schemes cannot be directly ap-
plied in HDR TC, the experience gained and techniques de-
veloped are instrumental in HDR TC scheme design.

2.2. HDR Texture Compression

The first usable HDR texture formats come from fixed
rate pixel-wise HDR image encoding. A detailed over-
view of these formats is given by Ward [War05]. Howe-
ver, pixel-wise encoding methods cannot leverage the cross-
pixel correlation and still have to spend tens of bits per
pixel. Later, advanced HDR image [WS04, XPH05] and
video [MKMS04, MEMS06] compression techniques with
much higher compression ratio are developed. But the lack
of random accessibility makes them unsuitable for HDR tex-
tures.

Analogous to LDR TC, block-wise compression methods
have been proposed with a typical block size of 4x4. Wang
et al. [WWS∗07] present a 16 bpp scheme aiming at current
generation GPUs. When encoding one block, they first con-
vert texels in RGB space to LUVW space. And then data in
LUVW channels are quantized and packed into two DXT5
blocks. While their scheme enables HDR rendering and nati-
ve texture filtering on existing programmable graphics hard-
ware, it only provides a relatively low compression ratio.

A simple 8 bpp solution is proposed by Roimela et
al. [RAI06]. After color transform, luminance and chromi-
nance signals are separately encoded. Luminance blocks in
high dynamic range are compressed via predictive coding,
leveraging the bit pattern property of floating point numbers.
The chrominance values, which fall into the range of [0, 1],
are down sampled and uniformly quantized. In their later
work [RAI08], Roimela et al. apply predictive coding for
chrominance channels and achieve even better quality while
still keeping the decoding very simple.

Munkberg et al. [MCHAM06] give another 8 bpp HDR
TC scheme. They transform RGB channels to LogYuv co-
lor space. Adaptive quantization is used in luminance enco-
ding in either uniform mode or non-uniform mode for each
block. For chrominance channels, horizontal or vertical sub-
sampling is applied at first. Then some pre-defined shape
patterns are used to fit the block chrominance distribution in
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Figure 1: Our HDR texture compression framework.

the 2D chrominance plane. Based on the above scheme, a
new compression mode is worked out to enhance the quality
of textures with rich colors [MCHAM07]. The new mode al-
locates more bits to chrominance channels and avoids chro-
minance down-sampling. However, multiple modes with dif-
ferent bit layouts in a single format may complicate the de-
coding logic design.

The above 8 bpp block-based schemes are considered to
be the state of the art in HDR TC. In general, they ha-
ve achieved very good quality at a relatively low com-
pressed rate. But they also have some disadvantages. First,
they take no consideration on the compatibility with the
existing LDR texture formats and hardware. Second, their
separate-channel compression can hardly lead to a proper lu-
minance/chrominance bit allocation suitable for every block,
and leaves the cross-channel correlation unused.

3. Framework

To extend DXTC to HDR texture compression, we face two
main challenges. First, DXTC is designed for 8-bit RGB
channels and cannot directly handle HDR textures with the
expanded bit depth. Second, the linear fitting approach used
in DXTC is based on the local linearity assumption in LDR
RGB space. But this assumption does not always hold for
HDR contents during the compression process.

In previous work, researchers also tried to adapt DXTC to
HDR textures [RAI06,MCHAM06,WWS∗07]. But all these
efforts fail to generate satisfactory results. It is mainly becau-
se the HDR contents are not properly processed for DXTC.
We demonstrate a carefully designed DXTC-based HDR TC
scheme can achieve comparable and even better performan-
ce than the state of the arts. Figure 1 depicts the propo-
sed HDR TC framework, where HDR textures are processed
block by block independently. First, we adaptively transform
RGB texels into luminance and chrominance space. Then
the transformed values in floating point format are quantized
to integer levels with local dynamic range reduction. Final-
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Figure 2: Chrominance value distribution in [0, 1].

ly, joint channel compression coupled with point translation
helps to generate the compressed HDR textures.

3.1. Adaptive Color Transform

In HDR TC, a color transform is usually performed to ag-
gregate the high dynamic range values into one component.
A typical HDR color transform is as follows [MCHAM06]:

Y = ∑
t∈{r,g,b}

wtCt

St =
wtCt

Y
, t ∈ {r,g,b}

(1)

Here Y is the luminance channel. {St} are chrominance
channels corresponding to R, G and B. {wt} are constant
weights. Note that only the luminance channel as well as
two out of the three chrominance channels has to be stored
in the compressed textures to avoid redundancy. For instan-
ce, Sb does not need to be stored but RGB values still can be
recovered via the inverse transform:

R = Sr ×Y/wr

G = Sg ×Y/wg

B = (Y −wrR−wgG)×Y/wb

(2)

However, for a lossy compression scheme, this exposes
channel B to accumulated quantization errors, and someti-
mes these errors can be relatively very large. We define an
error accumulative channel as one of the R, G, and B chan-
nels whose corresponding chrominance channel is not sto-
red. Ideally, to best control the relative error, we should al-
ways assign the channel with largest value as the error ac-
cumulative channel, which can be indicated by a per-pixel
color transform mode (Ch_mode) as:

Ch_mode ≡ m = argmax
t∈{r,g,b}

{St} (3)

Here the dominant chrominance channel Sm will not be en-
coded. This will guarantee the values of the two encoded
chrominance channels fall in the range of [0, 0.5] and the
relative accumulative error can be well controlled.
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Figure 3: An example comparing different UV coding methods in our scheme. From left to right: Original; Linear UV encoding;

Log UV encoding; Adaptive linear/log UV encoding. Note that we avoid most banding artifacts in the rightmost result.

In practice, we cannot afford the per-pixel Ch_mode over-
head. Thus in the proposed scheme, we use a per-block
Ch_mode instead as below:

Ch_mode = argmax
t∈{r,g,b}

{ ∑
i∈{all texels in a block}

S
(i)
t } (4)

The per-block mode still capture the main idea of adapti-
ve color transform, with the help of which the inverse color
transform can be performed correctly, in a similar form as
(2). Since the texels in a block share the same Ch_mode, the
data range of the two encoded chrominance channels (noted
as U and V ) becomes [0, 1]. But in fact, because of the lo-
cal similarity, very few texels are of UV values larger than
0.5 after adaptive color transform. Figure 2 shows the UV

distribution in our statistics.

To facilitate the following compression steps (especially
the log encoding), we limit the transformed YUV values wi-
thin tractable ranges. Channel Y is clamped into the range
[2−15, 216], while channels UV are clamped into the range
[2−11, 1]. The clamping helps us avoid negative and near
zero values as the input, and involves little visual artifact.

3.2. Local Dynamic Range Reduction

After adaptive color transform, values in luminance and
chrominance channels are still in floating point format which
are much harder to compress than integers. Hence in this sta-
ge we would like to quantize the floating point values into
tractable integer levels. Similar floating point to integer con-
version exists in the well studied tone mapping operations.
However, after tone mapping, the dynamic range of the ori-
ginal HDR images is shrunk irreversibly. In order to preserve
the original dynamic range and keep the accuracy as much as
possible, we leverage the locality property within each tex-
ture block, and map floating point data to integers with local
dynamic range reduction.

Luminance channel Y contains most of the HDR data. In
HDR images, a luminance dynamic range of 4 orders of ma-
gnitude is common [War05]. We refer this as the frame (glo-

bal) dynamic range. However, in texture compression, we
do not manipulate texels in the whole frame all together, but
divide and conquer textures block by block. We find the lu-
minance dynamic range within a small block (i.e. the local
dynamic range) seldom exceeds 2 orders. To reduce the lu-
minance dynamic range, we first uniformly quantize the glo-
bal luminance (ranging from 2−15 to 216) into 32 levels in
log2 space. These levels serve as the anchor points, from
which we select the luminance upper and lower bounds for
each block. The bounds help to map absolute luminance in
global high dynamic range into relative values in local low
dynamic range. Then we can use 8-bit log encoding (i.e. li-
near quantization in log2 space) to handle the local dynamic
range with desired accuracy.

As for the chrominance channels UV , adaptive color
transform has significantly reduced the local dynamic range.
Given the distribution in Figure 2, we have to find a suitable
method to quantize UV values. Linear encoding minimizes
absolute error and accounts for the error visibility, but may
introduce huge relative error to texels with highly saturated
colors. Considering HDR textures may be tone mapped at
high exposures or used for lighting calculation, such artifact
is unacceptable. In contrast, log encoding can best control
the relative errors in all R, G, and B channels, and the quan-
tization steps become coarser and coarser towards 1.0, which
accords to the data distribution. Although log encoding ge-
nerates good results for most cases, it may suffer from ban-
ding artifacts in some regions with smooth color variation.
In our scheme, we adopt both linear encoding and log enco-
ding for chrominance channels to avoid the above worst ca-
ses. For each block, 8-bit linear encoding and log encoding
are alternatively selected by a UV coding mode, to minimi-
ze the reconstructed relative error. Figure 3 gives an example
comparing different UV coding methods in our scheme.

3.3. Joint Channel Compression

After local luminance and chrominance dynamic range re-
duction, now we have 8-bit-depth data in all channels, which
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Figure 4: An example of point translation. (a) Texel distribution of a typical HDR texture block in RGB space; (b) The distri-

bution after color transform and local dynamic range reduction in local YUV space; (c) The reshaped distribution after point

translation. Blue diamonds denote texels in the 3D spaces, and red points are their projection in the bottom plane.

H
H

HHM_idx

T_idx
0. 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15.

0. 1 1 1 1 2 2 2 2 4 4 4 4 8 8 8 8

1. -1 -1 -1 -1 -2 -2 -2 -2 -4 -4 -4 -4 -8 -8 -8 -8

2. 2 3 4 5 4 6 8 10 8 12 16 20 16 24 32 40

3. -2 -3 -4 -5 -4 -6 -8 -10 -8 -12 -16 -20 -16 -24 -32 -40

4. 3 5 7 9 6 10 14 18 12 20 28 36 24 40 56 72

5. -3 -5 -7 -9 -6 -10 -14 -18 -12 -20 -28 -36 -24 -40 -56 -72

6. 4 7 10 13 8 14 20 26 16 28 40 52 32 56 80 104

7. -4 -7 -10 -13 -8 -14 -20 -26 -16 -28 -40 -52 -32 -56 -80 -104

Table 1: The modifier table used in DHTC.

is very similar to the input data in LDR TC. Intuitively, we
can directly apply DXTC here to further compress the inte-
ger levels. However, this will result in large distortion due
to the non-linear pre-processing operations mentioned abo-
ve. As we know, HDR textures also possess a local linearity
property in RGB space that meets the underlying assumpti-
on of DXTC [WWS∗07]. However, after the adaptive color
transform and local dynamic range reduction, texels in the
local YUV color space do not hold the linearity property any
more, as shown in Figure 4 (a) and (b).

In the proposed scheme, we want to take advantage of
DXTC, while avoiding the linear approximation of the non-
linearly distributed texels. To solve this problem, we intro-
duce a novel technique named point translation to help res-
hape the texel distribution (see Section 3.4). Then in the joint
channel compression stage, we can simply apply DXTC to
further compress the 8-bit integer levels. For each block, we
select two base colors (X0Y0Z0, X1Y1Z1) that can be seen
as two end points of a line segment in the local YUV space.
The end points and the trisection points of the line segment
form a local palette. The texels within the block are mapped
to the nearest palette colors (indicated by 2-bit color indices
C_idx) as their approximations.

3.4. Point Translation

Obviously, if we can force the texels within a block to re-
distribute along a line, DXTC scheme should work effective-

ly even after the previous non-linear pre-processing steps.
Our basic idea is to shift the points (i.e. texels) in the local
YUV space, until they are closely along a line. Note that we
cannot afford to indicate a free translation in the 3D space,
which will cost too many bits. Considering the variation of
block chrominance is usually very small, we can assume li-
near fitting still works for the chrominance channels. Hence,
we just need to translate the points along Y axis to get a de-
sired distribution, as shown in Figure 4 (c).

Our solution is to use a modifier table to perform the point
translation. We offline design a constant modifier table con-
taining 16 table entries, in which each entry contains 8 modi-
fiers, as shown in Table 1. In the compressed HDR textures,
we only need to store per-block table entry indices (T_idx)
and per-texel modifier indices (M_idx), which address the
proper modifier for each texel:

modifier = mod_table[T _idx][M_idx] (5)

In the table design, we consider both the performance and
the implementation efficiency. First, we calculate the typical
translation ranges of local texture blocks based on a large set
of HDR images. These ranges are clustered into 16 catego-
ries, corresponding to 16 table entries (T_idx). Second, gi-
ven a fixed translation range within each entry, we uniform-
ly set the modifiers, corresponding to 8 entry items (M_idx).
Thus, the modifier table can be formulized to be a function
of T_idx and M_idx as below:

modifier = (−1)(M_idx&1) ×2(T _idx>>2)×

[1+(T _idx&3+1)× (M_idx >> 1)]
(6)

In our testing, the compression performance is not sensitive
to the modifier table definition as long as it covers all trans-
lation ranges.

The modifiers actually serve as the translation vectors.
It can be seen that the modifier table covers a broad range
translations, from short distances to long distances. And the
point translation is performed as follows:

Ytrans = Clamp[0,255]{Yint +modifier} (7)
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Figure 5: DHTC texture format and decoding logics. (a) Bit layout of DHTC format; (b) DHTC decoding logic for HDR

textures; (c) DHTC decoding logic for LDR textures with alpha channels.

Yint is the original luminance value, while Ytrans is the lumi-
nance value after point translation. Both are 8-bit integers.

In summary, the proposed HDR TC framework is com-
posed of all the above modules as shown in Figure 1. First,
the adaptive color transform not only aggregates most HDR
information into the luminance channel but also reduces the
accumulative errors. Then the transformed floating point tex-
el values are mapped to integer levels without losing the high
dynamic range by using local dynamic range reduction. Fi-
nally, the integer values are efficiently compressed via joint
channel compression along with point translation, resulting
in a very compact representation of the original textures.

4. Implementation

Under the proposed framework, we design a novel compres-
sed texture format (DHTC format) suitable for both HDR
and LDR contents. In the following we first present the bit
layout of DHTC format, and then describe our HDR texture
encoding and decoding process, as well as the accommoda-
tion for LDR textures with alpha channels.

4.1. Bit Layout

In DHTC format, textures are divided into 4x4 blocks that
are compressed and decompressed independently. There are
128 bits in each block, resulting in a compressed rate of
8 bpp. One compressed texture block comprises of two parts,
a DXT1 block and an extension block, each with a 64-bit
budget. The bit layout is depicted in Figure 5 (a).

4.2. HDR Texture Compressor

The HDR texture encoder follows exactly the flowchart in
Figure 1. The first two stages are straightforward. First of
all, Ch_mode is determined for each block per equation (4),

and the adaptive color transform is performed per equation
(1). In the local dynamic range reduction module, the block
luminance bounds are quantized to 5-bit global base lumas,
L0 and L1, and log encoding is carried out in channel Y .
For chrominance channels UV , either log encoding or linear
encoding is performed to minimize the reconstruction error.
Note that the 1-bit UV coding mode is implicit in the mutual
order of L0 and L1 as shown in Figure 5 (a).

The joint channel compression and point translation sta-
ges take most of the encoding time. Although we have re-
duced the point translation from 3D space to 1D along Y

axis, enumerating all the possible translations would cost too
much time. In our implementation, we first project the texels
to the UV plane, where the DXTC linear fitting is perfor-
med and the base chrominance values (Y0Z0 and Y1Z1) as
well as the color indices (C_idx) are figured out. The fixed
color indices specify the relative position of each texel and
much simplify the calculation followed. We then enumera-
te modifier table entries (T_idx), and find out the best base
luminance values (X0, X1) and modifiers (M_idx) with mi-
nimal square error.

Since the encoding process is performed offline, its speed
is not much an issue as that of decoding. When considering
joint channel compression and point translation together, we
find it is a complex optimization problem. A full search al-
gorithm or more sophisticated approximation methods will
definitely generate better results. In this paper, we just show
that a simple encoder described above has already demon-
strated very good performance. Further encoder optimizati-
on will be investigated in the future work.

4.3. HDR Texture Decompressor

Figure 5 (b) shows a possible HDR texture decoding logic
for DHTC format. First of all, the DXT1 block is sent to a
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mPSNR (dB) Log[RGB] RMSE HDR-VDP >75% error

Textures
Our

Munkberg Munkberg Roimela Wang
Our

Munkberg Munkberg Roimela Wang
Our

Munkberg Roimela
2007 2006 2008 2007 2007 2006 2008 2007 2007 2008

BigFogMap 51.0 51.9 51.7 50.4 46.3 0.06 0.06 0.06 0.07 0.14 0.00 0.00 0.00
Cathedral 39.7 40.0 38.9 34.3 35.8 0.17 0.17 0.20 0.35 0.36 0.10 0.02 0.03
Memorial 46.8 46.5 46.1 41.7 38.0 0.14 0.13 0.14 0.31 0.69 0.01 0.00 0.00

Room 48.1 48.6 48.1 44.0 34.1 0.09 0.08 0.09 0.15 0.71 0.01 0.01 0.00
Desk 41.5 40.3 39.7 28.4 21.3 0.17 0.22 0.25 1.26 2.92 0.03 0.01 0.00
Tubes 35.7 35.7 32.2 27.0 29.1 0.32 0.28 0.43 0.81 0.81 0.87 1.25 1.20

Average 43.8 43.8 42.8 37.6 34.1 0.16 0.16 0.20 0.49 0.94 0.17 0.22 0.21

Table 2: Objective quality comparisons. Left: mPSNR results, at the same exposure ranges as Munkberg 2007 [MCHAM07];

Middle: Log[RGB] RMSE results; Right: HDR-VDP above 75% probability visible artifacts (texels in percentages), under the

global adaptation luminance at about 10 cd/m2. Note that HDR-VDP does not take chrominance distortions into account.

PSNR Map1 Map2 Map3 Map4 Map5 Map6 Map7 Map8 Map9 Map10 Map11 Map12 Average

Our 49.2 53.6 54.4 56.4 46.3 47.5 40.2 47.1 47.3 44.9 45.0 41.9 47.8

DXT5 48.6 54.8 57.1 61.2 45.3 45.2 39.0 46.1 44.2 42.9 43.8 40.2 47.4

Table 3: Alpha map compression results (in PSNR). We use the DXT5 codec in ATI’s Compressonator.

DXT decoder, and the 8-bit integer levels of the three chan-
nels are recovered. At the same time, the table entry index
and modifier index are used to look up the desired modifier
in the modifier table. The modifier is then added to channel
Y to compensate point translation. In the next, the inverse
process of local dynamic range reduction is carried out in
the global HDR recovery module, including luminance log
decoding and chrominance log or linear decoding. Note that
log decoding is a combination of linear decoding and exp2
operation. Finally, based on the color transform mode, the
inverse color transform is carried out and the RGB values of
the desired texel is reconstructed.

Apparently, a hardware DHTC HDR texture decoder on-
ly needs moderate extension based on the DXT decoder.
The inverse color transform involves one addition, two tri-
channel multiplications, and a MUX to reorder signals based
on Ch_mode. The global HDR recovery module includes
one tri-channel uniform dequantization and one tri-channel
exponentiation operation at most. We try our best to make
the three channels share the same operations at the same ti-
me to further accelerate the decoding process. In summary,
the decoder is simple and the decoding should be very fast.

4.4. LDR Texture Codec

The proposed DHTC format can also be used in compressing
LDR textures with alpha channels. Given a raw RGBA LDR
texture, we first compress RGB channels with DXTC and
pack them into the DXT1 block in DHTC format. And then,
the alpha channel is compressed into the extension block by
using the following alpha coding method similar as the LDR
TC scheme iPACKMAN [SAM05].

First, we divide each 4x4 alpha block into two sub-blocks,

either 4x2 or 4x2, indicated by one bit of Ch_mode. In each
sub-block, a 5-bit base alpha (L0 or L1) plus a proper modi-
fier approximates the original alpha value. Per-block T_idx

and per-texel M_idx still indicate the desired modifier in the
modifier table (Table 1). The other bit of Ch_mode determi-
nes whether the alpha block use 8 modifiers or 6 modifiers.
For the 8-modifier block, all the modifiers in the selected
modifier table entry are valid, while for the 6-modifier block,
only the first 6 modifiers are valid, plus two special alpha va-
lues 0 and 255. This trick is similar as DXT5 alpha coding.

A possible DHTC decoding logic for LDR RGBA textures
is shown in Figure 5 (c). Most functional modules are shared
with the HDR decoding logic in Figure 5 (b), and we only
need to add two MUXs to select the base alpha value and
handle the 8-modifier/6-modifier cases.

5. Results

In this section, we demonstrate that DHTC, no matter whe-
ther used for HDR TC or LDR TC, is superior to the state
of the arts. Thus, we arrive at a unified compressed format
suitable for HDR textures, LDR textures and alpha maps.

5.1. HDR TC Quality Comparison

We compare DHTC with existing HDR TC methods
on the same set of test images used by Munkberg et
al. [MCHAM07]. The objective comparison results are li-
sted in Table 2. According to the three error measurements,
it is obvious that Munkberg et al.’s method in 2007 and our
scheme are of much better quality than others’. Recall that
Munkberg et al. define two compression modes with diffe-
rent bit layouts, which makes the decoder design more com-
plicated.
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Figure 6: Coding high contrast blocks. Top row: Original at different exposures. Bottom row: Our compressed at the same

exposures. (Part of texture “Tubes”)

Based on our observation, reconstructed textures with
mPSNR more than 40 dB are visually near lossless. In gene-
ral, Munkberg et al.’s methods as well as ours have obtained
high enough visual fidelity. However, recall that in all the
previous HDR TC schemes, the limited bit budget is stati-
cally divided into luminance bits and chrominance bits, and
thus they can hardly guarantee an optimal bit allocation for
each block. Most likely visible artifact will occur in regions
with rich colors. In contrast, our method is able to adaptively
allocate bits among different blocks and color channels, thus
it avoids large distortions. Two examples are shown in Fi-
gure 8. The example textures are part of texture “Desk” and
“Cathedral”. Clearly, our method provides much better visu-
al quality. Note that the other methods [MCHAM07,RAI08]
preserve the luminance information very well for both tex-
tures (under HDR-VDP metric in Table 2), which implies
more bits should be spent in the chrominance channels.

There also exist some hard cases for DHTC. Recall that
we assume the local dynamic range is usually within 2 orders
so that 8-bit encoding is sufficient within a block. Although
only about 0.7% blocks are of local luminance contrast hig-
her than 100:1 in our statistics, DHTC cannot provide fine
precision for these blocks. An extreme case with local dy-
namic range more than 30000:1 is shown in Figure 6. In ad-
dition, DHTC still use linear fitting to handle chrominance
channels, and provide only 4 chrominance values per block.
This simple approach works well for most HDR textures, but
may result in visible artifact in texture regions with frequent
color changes (See Figure 3 for example).

5.2. Alpha Channel Coding

Inherited from the embedded DXT1 block, DHTC format for
HDR textures may contain 1-bit alpha information to sup-

Figure 7: HDR alpha blending. Left: compressed HDR tex-

ture with 1-bit alpha; Middle & right: blended scenes.

port HDR alpha blending. The mutual order of the both ba-
se colors indicates whether or not a single transparent color
exists in the block palette. A blending example is shown in
Figure 7.

As described in Section 4.4, DHTC format for LDR textu-
res can also support 8-bit alpha channel coding. We select 12
alpha maps from an Xbox360 game as a test suite, and com-
pare DHTC alpha coding with the de facto standard DXT5
alpha coding. The comparison results are listed in Table 3.
For most testing cases, DHTC provides superior quality.

6. Conclusions

In this work, we have presented a new scheme for HDR tex-
ture compression, namely DHTC, based on the ubiquitous-
ly adopted DXTC technique. We introduce some techniques,
such as adaptive color transform, local dynamic range reduc-
tion, and point translation, to fully take advantages of DXTC
to achieve higher compression efficiency. When evaluated
under different error metrics, our scheme is always compa-
rable to or outperforms the state of the arts. More important-
ly, hardware implementation of a DHTC decoder only needs
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moderate extension on existing hardware. Further, we de-
monstrate that the proposed DHTC format is able to handle
LDR textures with alpha channels, with no need to re-design
special LDR decoding pipeline. We believe this paper provi-
des a unique solution to meet all the practical requirements
for HDR and LDR texture compression, and many HDR re-
lated applications can benefit from our research.
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Figure 8: Visual comparison at different exposures. We show the close-up of two HDR texture regions with rich colors. Left

column: Original; Middle left column: DHTC; Middle right column: Munkberg 2007; Right column: Roimela 2008.
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