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Abstract
A challenging problem in computer-aided geometric design is the decomposition of a surface into four-sided
regions that are then represented by NURBS patches. There are various approaches published in the literature and
implemented as commercially available software, but all fall short in either automation or quality of the result.
At Raindrop Geomagic, we have recently taken a fresh approach based on concepts from Morse theory. This by
itself is not a new idea, but we have some novel ingredients that make this work, one being a rational notion of
hierarchy that guides the construction of a simplified decomposition sensitive to only the major critical points.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Boundary representations,
Hierarchy and geometric transformations

1. Introduction

This extended abstract is a brief description of the approach
to surface tiling recently taken at Raindrop Geomagic. We
define this problem in terms of input and output and an in-
formal discussion of constraints and properties.

Input: a piecewise smooth embedding of a surface in three-
dimensional Euclidean space.

Output: a face-to-face tiling of the surface into four-sided
NURBS patches.

The problem is made difficult by a number of often unspoken
assumptions, some of which are in the eye of the beholder.
One set of assumptions on the output arises from intended,
down-stream uses of the tiling. Another such set arises from
technical difficulties in generating a light-weight tiling (few
patches, small number of control points) that forms a good
approximation of the input surface and of its derivatives
[Far97]. There are also assumptions on the input, and ours
include that the surface be given by a piecewise linear ap-
proximation; the actual surface is not known. We also as-
sume that the input surface is the boundary of a member of
the class of mechanical shapes. It is better to leave it at that,
both for the reader and the writer, but it is important to keep
in mind that there are substantial gaps in the above problem
specification. Figure 1 illustrates the problem by showing an
example of the desired output, the boundary of an oil-pump

represented by a collection of NURBS patches. The solution
to the surface tiling problem developed at Raindrop Geo-
magic combines old and new ideas from various disciplines,
some of the more important ones from Morse theory. We fo-
cus here on the geometry and topology of the construction,
ignoring a substantial amount of interesting algorithmic and
numerical work. It should be clear that the author of this
extended abstract is deeply indebted to the people who did
the actual development at Raindrop Geomagic, both in the
Research Triangle Park, North Carolina, and in Budapest,
Hungary.

Figure 1: A NURBS representation of the boundary of an
oil-pump.
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2. Morse Theory Background

The central objects studied in Morse theory are a manifold
M (without boundary) and a smooth function f : M → R;
see [Mil63]. We simplify notation by assuming M is a 2-
manifold smoothly embedded in R

3 and distance is mea-
sured as the Euclidean length of shortest paths. We may
therefore think of the gradient at a point x ∈ M as a vec-
tor ∇ f (x) in R

3. It lies in the tangent plane of x and points
in the direction of locally steepest increase in function value.
The point is regular if ∇ f (x) 6= 0 and critical if ∇ f (x) = 0.
The typical picture one finds for critical points assumes the
function measures height (distance from a base plane), as be-
low. This leads to a convenient graphical representation but
is misleading since the more useful functions are not height
functions. A critical point x is non-degenerate if the Hessian

maximumminimum saddle

(the square matrix of second partial derivatives) is invert-
ible. There are only three types of non-degenerate critical
points on a 2-manifold, namely minima, saddles, and max-
ima, as illustrated above. A Morse function is a smooth func-
tion f : M → R for which

I. all critical points are non-degenerate;
II. critical points have pairwise different function values.

An important insight is that the Morse functions are dense
among the smooth functions on M. We can therefore think
of them as the class of generic smooth functions, in the sense
that they have generic local structure and every other smooth
function can be perturbed to a Morse function.

An integral line is a curve γ : R → M whose velocity vec-
tors agree with the gradient, γ̇(s) = ∇ f (γ(s)) for all s ∈ R.
Its image is im γ = {γ(s) | s ∈ R}. The curve starts at a
critical point, org γ = lims→−∞ γ(s), and ends at another,
dest γ = lims→∞ γ(s). Note, however, that the curve is open
and contains neither endpoint. Two integral lines are either
disjoint or the same. This suggests we define the descending
manifold of a critical point x as the set of points on integral
lines with destination x, together with the critical point itself,

D(x) =
[

dest γ = x

im γ ∪ {x}.

If x is a minimum then D(x) = {x}. If x is a saddle then D(x)
is an open curve consisting of x and the images of two in-
tegral lines on the two sides. If x is a maximum then D(x)
is an open disk consisting of x and a circle of images of in-
tegral lines. By construction, the descending manifolds are
pairwise disjoint and together they cover M. They also form
a complex, in the sense that the boundary of each descend-
ing manifold is the union of (lower-dimensional) descend-

ing manifolds. We call the collection of descending mani-
folds the Morse complex of f . If we collect integral lines
with common origin we get the dual collection of ascending
manifolds, the Morse complex of − f .

3. Work-flow

We divide the construction of the tiling into three stages:

Stage 1. construct a curve network to decompose the sur-
face into the regions of a simplified Morse complex;

Stage 2. extract the feature skeleton, a cleaned-up and lo-
cally widened version of the curve network;

Stage 3. refine the decomposition into quadrangles, eventu-
ally replacing each by a four-sided NURBS patch.

Stage 1 requires a function on the surface. We experiment
with a suite of basis functions, which includes approxima-
tions of different notions of curvature for piecewise linear
surfaces. We get best results by defining f as a weighted sum
of the basis functions and allow the user to create this mix in-
teractively, driving the selection by giving positive and neg-
ative examples (points on and off the desired feature skele-
ton). Once obtained, this weighted sum can be used for a
family of similar surfaces.

Stage 1: Simplified Morse Complex. Given f : M→R, we
construct a piecewise linear version of its Morse complex.
To describe what this means, we note that M is represented
by a triangulation and f is specified at the vertices and ex-
tended by linear interpolation. In this setting, we use lower
links of vertices to distinguish between critical and regular
points. Most of the subtleties in the construction arise from a

Figure 2: A simplified Morse complex decomposition with
curves running through strips obtained by widening the de-
scending 1-manifolds.

proper interpretation of Conditions I and II of a Morse func-
tion and the occasional simulation of these properties when
they are violated. The Morse complex has a region for every
maximum, even if it is barely noticeable and perhaps just an
artifact of the piecewise linear representation of the function.
We therefore simplify the fine complex by cancelling critical
points in pairs. This can be done in the order of increasing
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persistence [ELZ02], but other measures of importance may
also be used. To illustrate this construction, Figure 2 shows a
simplified Morse complex obtained for a curvature approxi-
mating function.

Stage 2: Feature Skeleton. By construction, the curves (de-
scending 1-manifolds) of the Morse complex follow ridges
defined by f . They coincide with what we would intuitively
refer to as ridges of the surface only if f is chosen accord-
ingly. These ridges are round, somewhere on the scale be-
tween sharp and flat. A sharp ridge is well represented by a
curve, possibly after using numerical methods to improve its
layout. A round ridge, however, is more appropriately repre-

Figure 3: A network of curve- and vertex-blends computed
from the descending 1-manifolds of the simplified Morse
complex.

sented by a curve-blend, covering a strip obtained by widen-
ing the curve on both sides, as shown in Figure 3. Widening
the curves cannot be done without growing the vertices into
little patches, which we refer to as vertex-blends. Indeed, we
need a variety of different types to accommodate connec-
tions to sharp curves as well and curve-blends with different
scales of roundness [VaHo98].

Stage 3: Patch Layout. In this final stage, we decide on the
exact layout of the quadrangles and we fit NURBS patches
to the resulting surface pieces. We start with the longitudinal
boundaries delimiting the curve-blends. This layout can be
decided with the help of a mix of basis functions, as illus-
trated in Figure 4. Using the widths of the incident curve-
blends, we can now decide on the types and boundaries of
the vertex-blends. Once all boundaries of curve- and vertex-
blends are determined, we can decompose them into quad-
rangles. Next, we decompose each region of the simplified
Morse complex into quadrangles, making sure that neigh-
boring quadrangles share entire edges. Finally, we decide on
the number of control points to be used for each quadrangle
and we fit NURBS patches to approximate the surface.

Figure 4: Mixing basis functions to place longitudinal
boundaries of curve-blends. The dots represent positive and
negative examples placed by the user to learn an appropriate
weighted sum of basis functions.

4. Discussion

The author believes that the Morse theory approach works
well for the surface tiling problem because it provides a good
match for the challenges posed by the subtlety and ambigu-
ity of surface shapes. In most cases, no one particular tiling
is obviously the right one. To find a good solution it is im-
portant to use a mechanism that switches with ease between
alternative solutions following accumulated preference with-
out sacrificing internal consistency.
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