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Abstract

Biometric verification refers to the automatic verification of a person’s identity based on
their behavioural and biological characteristics. Among various biometric modalities, the
face is one of the most widely used since it is easily acquirable in unconstrained environ-
ments and provides a strong uniqueness. In recent years, face recognition systems spread
world-wide and are increasingly involved in critical decision-making processes such as
finance, public security, and forensics. The growing effect of these systems on everybody’s
daily life is driven by the strong enhancements in their recognition performance.
The advances in extracting deeply-learned feature representations from face images

enabled the high-performance of current face recognition systems. However, the success
of these representations came at the cost of two major discriminatory concerns. These
concerns are driven by soft-biometric attributes such as demographics, accessories, health
conditions, or hairstyles.

The first concern is about bias in face recognition. Current face recognition solutions are
built on representation-learning strategies that optimize total recognition performance.
These learning strategies often depend on the underlying distribution of soft-biometric
attributes in the training data. Consequently, the behaviour of the learned face recognition
solutions strongly varies depending on the individual’s soft-biometrics (e.g. based on the
individual’s ethnicity).

The second concern tackles the user’s privacy in such systems. Although face recognition
systems are trained to recognize individuals based on face images, the deeply-learned
representation of an individual contains more information than just the person’s identity.
Privacy-sensitive information such as demographics, sexual orientation, or health status,
is encoded in such representations. However, for many applications, the biometric data
is expected to be used for recognition only and thus, raises major privacy issues. The
unauthorized access of such individual’s privacy-sensitive information can lead to unfair
or unequal treatment of this individual.
Both issues are caused by the presence of soft-biometric attribute information in the

face images. Previous research focused on investigating the influence of demographic
attributes on both concerns. Consequently, the solutions from previous works focused on
the mitigation of demographic-concerns only as well. Moreover, these approaches require
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computationally-heavy retraining of the deployed face recognition model and thus, are
hardly-integrable into existing systems.

Unlike previous works, this thesis proposes solutions to mitigating soft-biometric driven
bias and privacy concerns in face recognition systems that are easily-integrable in existing
systems and aim for more comprehensive mitigation, not limited to pre-defined demo-
graphic attributes. This aims at enhancing the reliability, trust, and dissemination of these
systems.

The first part of this work provides in-depth investigations on soft-biometric driven bias
and privacy concerns in face recognition over a wide range of soft-biometric attributes.
The findings of these investigations guided the development of the proposed solutions.
The investigations showed that a high number of soft-biometric and privacy-sensitive at-
tributes are encoded in face representations. Moreover, the presence of these soft-biometric
attributes strongly influences the behaviour of face recognition systems. This demon-
strates the strong need for more comprehensive privacy-enhancing and bias-mitigating
technologies that are not limited to pre-defined (demographic) attributes.
Guided by these findings, this work proposes solutions for mitigating bias in face

recognition systems and solutions for the enhancement of soft-biometric privacy in these
systems. The proposed bias-mitigating solutions operate on the comparison- and score-
level of recognition system and thus, can be easily integrated. Incorporating the notation
of individual fairness, that aims at treating similar individuals similarly, strongly mitigates
bias of unknown origins and further improves the overall-recognition performance of the
system.
The proposed solutions for enhancing the soft-biometric privacy in face recognition

systems either manipulate existing face representations directly or changes the represen-
tation type including the inference process for verification. The manipulation of existing
face representations aims at directly suppressing the encoded privacy-risk information in
an easily-integrable manner. Contrarily, the inference-level solutions indirectly suppress
this privacy-risk information by changing the way of how this information is encoded.
To summarise, this work investigates soft-biometric driven bias and privacy concerns

in face recognition systems and proposed solutions to mitigate these. Unlike previous
works, the proposed approaches are (a) highly effective in mitigating these concerns, (b)
not limited to the mitigation of concerns origin from specific attributes, and (c) easily-
integrable into existing systems. Moreover, the presented solutions are not limited to face
biometrics and thus, aim at enhancing the reliability, trust, and dissemination of biometric
systems in general.
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Zusammenfassung

Biometrische Verifizierung verweist auf die automatische Überprüfung der Identität einer
Person auf der Grundlage ihrer Verhaltens- und biologischen Merkmale. Unter den ver-
schiedenen biometrischen Modalitäten ist das Gesicht eine der am weitesten verbreiteten,
da es in einer unbeschränkten Umgebung leicht zu erfassen ist und gleichzeitig eine
starke Einzigartigkeit bietet. In den letzten Jahren haben sich Gesichtserkennungssysteme
weltweit verbreitet und werden auch zunehmend in kritische Entscheidungsprozesse wie
im Finanzwesen, der öffentlichen Sicherheit oder der Forensik einbezogen. Der wachsende
Einfluss dieser Systeme auf das tägliche Leben eines jeden Menschen wird durch die starke
Verbesserung ihrer Erkennungsleistung angetrieben.

Die Fortschritte bei der Extraktion von Feature-Repräsentationen mit tiefen neuronalen
Netzen aus Gesichtsbildern ermöglichten die hohe Leistungsfähigkeit der aktuellen Gesicht-
serkennungssysteme. Der Erfolg dieser Darstellungen kam jedoch auf Kosten zweier
wesentlicher diskriminierender Bedenken. Diese Bedenkenwerden durch soft-biometrische
Merkmale wie demographische Daten, Accessoires, Gesundheitszustände oder Frisuren
hervorgerufen.
Das erste Bedenken bezieht sich auf die Voreingenommenheit von Gesichtserken-

nungssystemen. Aktuelle Gesichtserkennungslösungen bauen auf Repräsentations-Lern-
strategien auf, die auf eine optimale Gesamterkennungsleistung ausgelegt ist. Solche
Lernstrategien hängen stark von der zugrundeliegenden Verteilung der soft-biometrischen
Attribute in den Trainingsdaten ab und beeinflussen daher stark die Erkennungsleistung
verschiedener Individuen abhängig von diesen Attributen.

Das zweite Bedenken betrifft die Privatsphäre der Benutzer in solchen Systemen. Obwohl
Gesichtserkennungssysteme darauf trainiert sind, Personen anhand von Gesichtsbildern zu
erkennen, enthalten die gelernten Repräsentationen einer Person mehr Informationen als
nur ihre Identität. Datenschutzrelevante Informationen wie demographische Daten, sex-
uelle Orientierung oder Gesundheitszustand der Person sind in solchen Darstellungen en-
thalten. Bei vielen Anwendungen wird jedoch davon ausgegangen, dass die biometrischen
Daten nur zur Erkennung verwendet werden, was große Probleme bezüglich der Privat-
sphäre aufwirft. Bei vielen Anwendungen wird jedoch erwartet, dass die biometrischen
Daten nur zur Erkennung verwendet werden. Das trotzdem solche datenschutzrelevanten
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Informationen enthalten sind wirft große Bedenken hinsichtlich der Nutzerprivatsphäre
auf. Der unbefugte Zugriff auf die datenschutzsensitiven Informationen einer Person kann
zu einer ungerechten oder ungleichen Behandlung dieser Person führen. Dieser unbefugte
Zugriff auf die sensiblen Daten einer Person kann zu einer unfairen oder diskriminierenden
Behandlung dieser Person führen.

Beide Bedenken werden durch das Vorhandensein von Informationen über soft-biome-
trische Attribute in den Gesichtsbildern verursacht. Frühere Forschungsarbeiten konzen-
trierten sich auf die Untersuchung des Einflusses demographischer Merkmale auf beide
Bedenken. Folglich fokussierten sich auch die Lösungen aus früheren Arbeiten nur auf die
Entschärfung der demographischen Bedenken. Darüber hinaus erfordern diese Ansätze
rechenintensive Trainings der eingesetzten Gesichtserkennungsmodelle und sind daher
nur schwer in bestehende Systeme integrierbar.

Im Gegensatz zu früheren Arbeiten werden in dieser Dissertation Lösungen zur Entschär-
fung soft-biometrisch bedingter Voreingenommenheit und Datenschutzbedenken in Gesicht-
serkennungssystemen vorgeschlagen, die leicht in bestehende Systeme integrierbar sind
und auf eine umfassendere Entschärfung abzielen, die sich nicht auf vordefinierte de-
mografische Merkmale beschränkt. Dadurch sollen die Zuverlässigkeit, das Vertrauen und
die Verbreitung dieser Systeme verbessert werden.

Der erste Teil dieser Arbeit bietet eingehende Untersuchungen zu der soft-biometrisch
bedingten Voreingenommenheit und Datenschutzbedenken bei der Gesichtserkennung
über ein breites Spektrum soft-biometrischer Merkmale. Die Erkenntnisse aus diesen
Untersuchungen dienten als Grundlage für die Entwicklung der Lösungsvorschläge.

Die Untersuchungen zeigten, dass eine hohe Anzahl von soft-biometrischen und daten-
schutzrelevanten Attributen in Gesichtsrepräsentationen enthalten ist. Darüber hinaus
beeinflusst das Vorhandensein dieser weich-biometrischen Attribute stark das Verhalten
der Gesichtserkennungssysteme. Dies zeigt den dringenden Bedarf an weiterführenden
Technologien zur Verbesserung der Privatsphäre und zur Verringerung von der system-
bedingten Voreingenommenheit, die nicht auf vordefinierte (demografische) Attribute
beschränkt ist.

Geleitet von diesen Erkenntnissen werden in dieser Arbeit Lösungen zur Entschärfung
von Voreingenommenheit in Gesichtserkennungssystemen und Lösungen zur Verbesserung
der soft-biometrischen Privatsphäre in diesen Systemen vorgeschlagen. Die vorgeschla-
genen Lösungen zur Minderung der Voreingenommenheit arbeiten auf der Vergleichs-
und Score-Ebene des Erkennungssystems und können daher leicht in bestehende Systeme
integriert werden. Durch die Integration der Notation der individuellen Fairness, die
darauf abzielt ähnliche Personen ähnlich zu behandeln, werden Voreingenommenheit un-
bekannter Herkunft stark abgeschwächt und die Gesamterkennungsleistung des Systems
zusätzlich verbessert.
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Die vorgeschlagenen Lösungen zur Verbesserung der soft-biometrischen Privatsphäre in
Gesichtserkennungssystemen basieren entweder auf der direkten Manipulation bestehen-
der Gesichtsrepräsentationen oder auf der Änderung des Darstellungstyps dieser Repräsen-
tationen einschließlich des Inferenzprozesses zur Verifizierung. Während die Manipulation
vorhandener Gesichtsrepräsentationen auf die direkte Unterdrückung der Privatsphäre
relevanten Informationen abzielt, unterdrücken die vorgeschlagenen Lösungen, die auf
der Inferenz-Ebene des Erkennungssystems arbeiten, indirekt diese Informationen, indem
sie die Art und Weise ändern, wie diese Informationen kodiert werden.

Zusammengefasst untersucht diese Arbeit soft-biometrisch bedingte Voreingenommen-
heit und Datenschutzbedenken in Gesichtserkennungssystemen und präsentiert Lösungen,
um diese zu entschärfen. Im Gegensatz zu früheren Arbeiten sind die vorgeschlagenen
Ansätze (a) hocheffektiv bei der Verminderung dieser Bedenken, (b) nicht auf die Ver-
minderung von Bedenken beschränkt, die nur von spezifischen Attributen ausgehen, und
(c) leicht in bestehende Systeme integrierbar. Außerdem sind die vorgestellten Lösungen
nicht auf die Gesichtsbiometrie begrenzt und zielen daher darauf ab, die Zuverlässigkeit,
das Vertrauen und die Verbreitung biometrischer Systeme im Allgemeinen zu verbessern.

xi





Acknowledgement

The achievements of the last three years would not have been possible without the support
of many people. First of all, I want to thank my Ph.D. supervisor Prof. Dr. Arjan Kuijper
for his scientific guidance, positive leadership, and for asking the right questions at the
right time. I would also like to express my gratitude to Prof. Dr. techn. Dieter W. Fellner
for his strong efforts at creating scientific excellence at Fraunhofer IGD.

A special thanks go to my colleague, supervisor, and friend Dr. Naser Damer for endless
hours of scientific discussions and valuable life lessons. He taught me a scientific mindset
and inevitable concepts such as the aura of logical distortion.

I would like to express my sincere appreciation to the former and the new head of our
department. Dr. Andreas Braun always provided me with open and direct feedback and
gave me this position. Florian Kirchbuchner pushed me to participate at the Software
Campus program and showed me his endless trust by giving me so much scientific freedom.
I would also like to thank all my friends and companions of Fraunhofer IGD. A special
thanks go to the members of SLBT, Fadi, Daniel, Meiling, Biying, Uschi, Conny, Andrea,
Saied, Julian, Naser, Olaf, Florian, Silvia, Andreas, Javier, Dirk, and Hildegerd. Even if the
pressure of an upcoming deadline was imminent, it was always fun with you. A big thanks
go also to Viola, Yaza, Aidmar, Alexa, Marius, Cong, Tanja, Timos, Vinh Phuc, Doreen,
Nils, and Steffen for creating a comfortable atmosphere at work.

During my PhD, I spend a great time at supervising students. But I guess I learned more
from them than they from me. With their endless enthusiasm and the will to extend the
research boundaries, we had a fun and productive time. Thank you, André, Paul, Mai Ly,
Moritz, Vicky, Adrian, Malte, Michael, Sebastian, Florian, Alexander, Christopher, Ines,
Lydia, Serif, and Kevin. A special thanks go to my longest and most dedicated students
for their years of trust. Thank you, Jonas, Daniel, Spyderman (Jan) and Marco.
My appreciation is extended to all whole biometrics and computer vision community.

Our research fields are developing fast and in many directions thanks to you. My warmest
thanks go to Kiran, Frøy, Vito, and Sudipta. Our talks were always fun but also more
valuable then you might expect.

Finally, I want to thank my family, friends, and especially Tanja for their continuous
support and encouragement. You are the mental pillars that keep my life in balance.

xiii





Contents

1. Introduction 1
1.1. Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1. Reliable Estimation of Soft-Biometrics . . . . . . . . . . . . . . . . . 2
1.1.2. Mitigation of Soft-Biometric Bias . . . . . . . . . . . . . . . . . . . 4
1.1.3. Enhancement of Soft-Biometric Privacy . . . . . . . . . . . . . . . . 4

1.2. Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2. Background 9
2.1. Biometrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1. Biometric Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.2. Soft-Biometrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2. Face Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.1. Milestones of Face Representations for Recognition . . . . . . . . . 15
2.2.2. Components of a Face Recognition System . . . . . . . . . . . . . . 16
2.2.3. Deep Face Recognition Models . . . . . . . . . . . . . . . . . . . . 18

2.3. Performance Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3.1. Evaluating Verification Performance . . . . . . . . . . . . . . . . . . 24
2.3.2. Evaluating Soft-Biometric Privacy-Preservation . . . . . . . . . . . . 28

2.4. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3. Investigation of Soft-Biometric Driven Bias and Privacy Concerns 31
3.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2. Preliminary Investigations . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2.1. Reliable Estimation of Soft-Biometrics . . . . . . . . . . . . . . . . . 32
3.2.2. MAAD-Face: A Massively-Annotated Face Dataset . . . . . . . . . . 46

3.3. Investigating Bias in Face Recognition . . . . . . . . . . . . . . . . . . . . . 62
3.3.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.3.2. Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.3.3. Experiments on Measuring Differential Performance . . . . . . . . 64
3.3.4. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

xv



3.3.5. Interim Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
3.4. Investigating Bias in Face Quality Assessment . . . . . . . . . . . . . . . . 84

3.4.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
3.4.2. Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
3.4.3. Evaluated Face Quality Assessment Solutions . . . . . . . . . . . . 86
3.4.4. Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 88
3.4.5. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
3.4.6. Interim Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

3.5. Analysing Soft-Biometric Characteristics in Face Templates . . . . . . . . . 98
3.5.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
3.5.2. Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
3.5.3. Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
3.5.4. Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 103
3.5.5. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
3.5.6. Interim Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

3.6. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4. Integrable Bias-Mitigation 115
4.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
4.2. Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
4.3. Mitigating Bias on Comparison-Level . . . . . . . . . . . . . . . . . . . . . 118

4.3.1. Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
4.3.2. Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 120
4.3.3. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
4.3.4. Interim Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

4.4. Mitigating Bias on Score-Level . . . . . . . . . . . . . . . . . . . . . . . . . 127
4.4.1. Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
4.4.2. Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 130
4.4.3. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
4.4.4. Interim Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

4.5. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

5. Enhancing Soft-Biometric Privacy 145
5.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
5.2. Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

5.2.1. Image-Level Solutions . . . . . . . . . . . . . . . . . . . . . . . . . 147
5.2.2. Template-Level Solutions . . . . . . . . . . . . . . . . . . . . . . . 147
5.2.3. Soft-Biometric Privacy and Cancelable Biometrics . . . . . . . . . . 149

xvi



5.3. Incremental Variable Elimination . . . . . . . . . . . . . . . . . . . . . . . 149
5.3.1. Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
5.3.2. Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 153
5.3.3. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
5.3.4. Interim Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

5.4. Similarity-Sensitive Noise Transformations . . . . . . . . . . . . . . . . . . 164
5.4.1. Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
5.4.2. Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 167
5.4.3. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
5.4.4. Interim Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

5.5. Negative Face Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
5.5.1. Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
5.5.2. Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 197
5.5.3. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
5.5.4. Interim Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

5.6. PE-MIU: Privacy-Enhancement via Minimum Information Units . . . . . . 210
5.6.1. Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
5.6.2. Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 216
5.6.3. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
5.6.4. Interim Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

5.7. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

6. Conclusion and Future Work 231
6.1. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
6.2. Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236

A. Appendix 239

B. Publications and Talks 255
B.1. Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
B.2. Invited Talks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260

C. Supervising Activities 261

D. Curriculum Vitae 263

Bibliography 267

xvii





1. Introduction

Biometric verification is defined as the automated recognition of individuals based on their
behavioural or biological characteristics [12]. In the last decades, biometric identification
and verification systems have increasingly gained importance for a variety of enterprise,
civilian, and law enforcement applications [SSW09]. Modern electronic passports [15]
and IDs [NH08] already contain biometric information of their legitimate holders, such as
face images, fingerprints, and iris scans. Among various biometric modalities, the face
is one of the most widely used. It is ubiquitous and also acquirable in unconstrained
environments. Face recognition systems provide a strong discriminative recognition
performance [Mas+18] that led to a world-wide spreading of these systems and a growing
effect on everybody’s daily life. Moreover, they are increasingly involved in critical decision-
making processes, such as in finance, public security, and forensics [WD18].

The high-performance of current face recognition systems is based on the advances in
extracting deeply-learned feature representations of face images [JNR16]. These deeply-
learned representations of faces, known as face templates, are characterized by high
compactness and strong identity discriminability. However, the success of these templates
came at the cost of two major discriminatory concerns:

Bias concerns -Many biometric solutions are built on representation-learning strate-
gies that optimize total recognition performance. Since these learning strategies
might be strongly dependent on the underlying distribution of the training data,
the performance of the learned solution is often depended on the training data
properties as well [GNH19b]. Consequently, this can lead to strong discriminatory
effects, e.g. in forensic investigations or law enforcement [Dam+18d].

Privacy concerns - The deeply-learned template of an individual contains more
information than just the individual’s identity. Privacy-sensitive information, such as
gender, age, ethnicity, sexual orientation, and health status, is deducible from such
a template [DER16]. Since for many applications, these templates are expected
to be used for recognition purposes only, this raises major privacy issues. The
unauthorized access of an individual’s privacy-sensitive information can lead to
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unfair or unequal treatment of this individual. Soft-biometric privacy aims to reduce
this kind of discriminatory concern.

Several political regulations point out the importance of the right to non-discrimination.
These include Article 14 of the European Convention of Human Rights, Article 7 of the
Universal Declaration of Human Rights, and Article 71 of the General Data Protection
Regulation (GDPR) [VB17]. These political efforts show the importance of mitigating
privacy and bias concerns in face recognition systems. Mitigating these concerns could
lead to more reliable and trusted face recognition systems [SSW09]. Moreover, it might
enhance the public acceptability of face recognition solutions and thus, enable an even
broader application of this technology [SP11].

1.1. Research Questions

Based on the current state-of-the-art, this thesis aims at mitigating soft-biometric driven
bias and privacy concerns in face recognition systems through a set of unsolved research
questions. These questions aim at reducing the discriminatory effects on the users of these
systems to make face recognition more reliable, trusted, and secure. To put these questions
into a broader perspective and to provide topic-specific answers, these are divided into
three groups based on their research area. The first group focuses on reliable estimations
of soft-biometric attributes, as these are the origin of the mentioned bias and privacy
concerns. The second group of questions focuses on investigating and mitigating soft-
biometric bias and the third group focuses on investigating and mitigating soft-biometric
driven privacy concerns in face recognition systems.
Figure 1.1 provides an overview of the research questions linked to the main contri-

butions of this work. The research questions and contributions in the blue area deal
with soft-biometric bias while the contributions and questions in the green area focus
on soft-biometric privacy. On the bottom left of the figure, a legend is shown providing
additional details on the contributions.

1.1.1. Reliable Estimation of Soft-Biometrics

To mitigate soft-biometric driven bias and privacy concerns, a tool is needed that is
able to reliably estimate soft-biometric attributes. Although the estimation performance
reported in previous works have highly increased over time and closely match human-level
[HOJ13; Han+15], these models tend to mispredict. This especially holds for predictions
under difficult circumstances (e.g. non-frontal pose, one-sided illumination), or when the
estimation model faces a sample belonging to a group that was under-represented in the
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Figure 1.1.: Overview of the key contributions of this work in relation to the correspond-
ing research questions. The green area indicates contributions in the field
of soft-biometric privacy while the blue area indicates contributions on the
enhancement of soft-biometric privacy.

training data. Current solutions on estimating soft-biometric attributes [DER16], including
prediction reliabilities, are based on softmax outputs of the deep learning networks. These
outputs are often interpreted as the model’s confidence scores. However, a higher value of
such a confidence score does not necessarily imply a higher probability that the classifier
is correct as shown in recent works [Guo+17; KL15; NYC14]. In this thesis, soft-biometric
driven bias and privacy concerns are analysed based on the prediction reliabilities of
soft-biometric attributes to develop efficient mitigation strategies. Consequently, the
first research question aims at accurate prediction reliabilities of soft-biometric attribute
estimates.

RQ1: How can the prediction confidence (reliability) of a neural network estima-
tor be determined beyond the probabilistic interpretations of the model’s softmax
output?
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1.1.2. Mitigation of Soft-Biometric Bias

Investigating bias Recent works have shown that commercial, as well as open-source
face recognition solutions, show strong differential performances (bias) based on the
user’s demographics [GNH19b]. Consequently, several solutions were proposed to miti-
gate demographic-bias. However, to deploy general non-discriminatory face recognition
systems, it is necessary to know the influence of a wide range of soft-biometric attributes
on face recognition. This refers to both, face recognition performance as well as the utility
estimate of a face image for recognition. Consequently, the second research question aims
at investigating the influence of specific soft-biometrics attributes on face recognition to
mitigate its discriminatory effects.

RQ2: How do specific soft-biometric attributes affect the behaviour of face recogni-
tion systems?

Mitigating bias Driven by the findings that the performances of face recognition systems
strongly vary depending on the user’s demographics, previous works proposed solutions
to mitigate demographic-bias in face recognition systems. However, these works focused
on (a) mitigating demographic-bias based on (b) representation-learning level approaches
[Dro+20]. (a) The focus of the mitigation of demographic-bias neglects the discriminatory
effects of other soft-biometric attributes on face recognition. (b) The focus of applying
representation-learning requires modifying the face recognition model and thus, results
in a high workload in real-life applications due to the necessity of a complete replacement
of all stored templates. Consequently, the third research question aims at the development
of more generalized and integrable bias-mitigating solutions in face recognition.

RQ3: How can soft-biometric bias of various origins in a face recognition system be
mitigated without the need for modifying the deployed face recognition model?

1.1.3. Enhancement of Soft-Biometric Privacy

Investigating privacy concerns Despite face representations being trained to enable
the recognition of individuals, previous works showed that more information than just the
identity is embedded within. They demonstrated that face templates contain informa-
tion about head pose [Par+17], image characteristics (such as quality [BJ18; Her+19],
viewpoint [Hil+18], and illumination [OTo+18]), demographics [DDB18; Ter+19d;
ÖAE16], and social traits [Par+19]. However, for many applications, the users do not
permit to have access to this information. Thus, the stored data should be exclusively used
for recognition purposes [MR17], and extracting such information without a person’s
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consent is considered a violation of their privacy [Kin13]. To develop efficient solutions to
mitigate soft-biometric privacy concerns, the knowledge about the information encoded
in face representations is required. Consequently, the fourth research question aims at
investigating what soft-biometric attributes are encoded in face representations.

RQ4: What (soft-biometric) information is stored in biometric face templates?

Mitigating privacy concerns Soft-biometric privacy aims at suppressing or hiding privacy-
risk information in face representations to prevent a function creep of encoded information.
This is further challenged by simultaneously maintaining a high recognition performance.
Previous works mainly tackled this problem by proposing image-level solutions that focus
on the suppression of pre-defined (demographic) attributes. However, most biometric
representations are stored in templates rather than images [SRB16] and templates offer
a less restricted way of encoding information. Moreover, many solutions are limited
to the suppression of pre-defined attributes and thus, are vulnerable to unconsidered
function creep attacks. Consequently, the fifth research question aims at the development
of easily-integrable privacy-enhancement solutions that provide more comprehensive
privacy-protection that are not limited to pre-considered attributes.

RQ5: How can soft-biometric privacy be enhanced without the need for modifying
the face recognition model?

1.2. Thesis Overview

After motivating and introducing the research focus of this work, an overview of the rest
of this thesis is given.
Chapter 2 provides the essential background information to understand the problems

and solutions of this work. This includes an introduction to biometric systems and soft-
biometrics. A more detailed look is given to face recognition. The historical development
of face representations for recognition is discussed, as well as the main components of a
face recognition system with a focus on the current deep-learning based face recognition
models. Finally, the performance metrics for the evaluation of biometric verification and
soft-biometric privacy-preservation are discussed.

Chapter 3 investigates the soft-biometric driven bias and privacy concerns in face recog-
nition. This chapter demonstrates the need for more generalized solutions and provides
key findings that guided the development of the proposed solutions. As a response to
RQ1, a novel reliability measure [Ter+19d] is proposed to quantify the confidence of the
model’s prediction. The proposed solution is based on stochastic forward passes through
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dropout-reduced neural networks and uses the centrality and dispersion of the network’s
predictions to derive accurate confidence statements about the model’s predictions. An-
swering RQ2, the influence of soft-biometric attributes on the (biased) behaviour of face
recognition systems is analysed. Therefore, the reliability measure from the answer on RQ1
is utilized to create the MAAD-Face database [Ter+20b]. MAAD-Face is a new face annota-
tion database that is characterized by a large number of high-quality attribute annotations.
This database is used to demonstrate that the behaviour of a face recognition system
is strongly affected by many soft-biometric attributes beyond demographics [Ter+21b;
Ter+20e]. The behaviour of a face recognition system refers to both, face recognition
performance as well as the utility estimate of a face image for recognition. Lastly, RQ4
is answered in the chapter by investigating what information is stored in face templates
[Ter+20a]. The question is answered by investigating the predictability of 113 attributes
from face templates at different difficulty-levels with the help of the reliability measure
of RQ1. Understandable statements about the stored attribute information are derived
by categorizing each attribute into one of three predictability classes demonstrating the
need for privacy-enhancing technologies and providing valuable findings for the efficient
mitigation of soft-biometric privacy concerns in face recognition.

Answering RQ3, Chapter 4 provides solutions for the efficient mitigation of bias in face
recognition. The proposed solutions operate on the comparison- and score-level of the
system and thus, can be easily integrated in existing systems. First, a supervised fair
template comparator [Ter+20i] is proposed that integrates two notations of fairness at
the comparison-level of the system by replacing the deployed similarity function with
a fairness-driven similarity model. Second, an unsupervised fair score normalization
approach [Ter+20f] is proposed that integrates the notation of individual fairness at the
score-level of the system by normalizing the comparison scores of the system to mitigate
bias of unknown origins and additionally improving the overall recognition performance.

Chapter 5 aims at answering RQ5 by providing four easily-integrable solutions to enhance
soft-biometric privacy of face recognition systems. The proposed solutions either manip-
ulate existing face templates directly or change the type of the identity-representation
including its inference for verification. The first type of proposed solutions, the template
manipulation approaches, either identifies and eliminates privacy-risk variables from the
face templates [Ter+19a] or build on geometric-inspired noise-injections [Ter+19b] to
enhance the soft-biometric privacy. The second type of proposed solutions works on the
inference-level of a recognition system. In negative face recognition [Ter+20c], the stored
(negative) templates contain only information that the individual does not have. For
verifying a person’s identity, the stored negative template is compared to an ordinary
(positive) template and the comparison score is based on a dissimilarity measure. PE-MIU
[Ter+20h] is a privacy-enhancing face recognition approach based on minimum informa-
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tion units. The approach exploits the structural differences between face recognition and
facial attribute estimation by creating templates in a mixed representation of minimal
information units. These representations contain the pattern of privacy-sensitive attributes
in a highly randomized form. Therefore, the estimation of these attributes becomes hard
for function creep attacks. During verification, these units of a probe template are assigned
to the units of a reference template by solving an optimal best-matching problem. This
allows our approach to maintain a high recognition ability. Unlike previous works, this
approach offers a strong and comprehensive privacy-enhancement without the need for
training.

Finally, Chapter 6 concludes this work by highlighting its contributions, practical benefits,
and key-findings. Moreover, an outlook for future research directions is given.

The contributions of this dissertation are described from the we-perspective, as they are
based on published papers.
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2. Background

The previous chapter presented a general motivation and an overview of the research
problems of this thesis. This chapter provides background information to facilitate a better
understanding of the problem and the later proposed solutions.

Section 2.1 gives a general introduction to biometric systems and soft biometrics. This
is elaborated with a focus on face biometrics in Section 2.2. The milestones of face
representations used for recognition are recaptured to show why all modern state-of-the-
art solutions on face recognition involve deep learning. Moreover, the different components
of a face recognition system are discussed as well as the core components for their training.
This provides the needed information to understand the proposed solutions. Section 2.3
presents evaluation metrics that are commonly used in the literature as well as in this
thesis. Finally, we will summarize the core statements of this chapter in Section 2.4.

2.1. Biometrics

Biometrics describes the science of establishing a person’s identity based on their be-
havioural or physical characteristics [JFR10; 12]. It derived from forensic investigations
[Rho56] and evolved into several applications scenarios regarding security and conve-
nience. The strong link between identities and individuals is used in security-based
applications, such as forensics or border control, or in convenience-based applications,
such as automatic log-in and smart home personalization [Dam18].
The goal of biometrics is identity authentication. Traditionally, this is achieved by

knowledge proofs of identity (such as passwords or PINs) and/or physical proofs of
identity (such as smartcards or keys). However, both proof of identity types may easily be
lost, forgotten, or forwarded to someone else. These things become difficult when facing
biometric characteristics [JFR10].
Knowledge- or physical-based proof of identity allows a perfect matching to validate

a user’s identity. For example, in a password-based system, a perfect match between
two alphanumeric strings is necessary to validate the claimed identity. Perfect matching
usually does not work for a biometric-based proof of identity due to
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• imperfect sensing conditions (such as various capturing devices and technologies),

• alterations in the individuals biometric characteristic (such as face ageing),

• changes in the ambient conditions (such as inconsistent illumination levels),

• and variations in the user-sensor interaction (such as different head poses).

The observed variability in the set of biometric features of an individual is known as intra-
class variations and the variability between the feature sets originating from different
individuals is referred to as inter-class variations [JFR10]. A set of biometric features is
known as a biometric template of an individual. Usually, these templates are generated by
minimizing the intra-class variations and maximizing the inter-class variations.

2.1.1. Biometric Systems

Operation Modes of Biometric Systems

A biometric system is a pattern recognition system operating on acquired biometric data
of individuals. Typically, biometric systems operate in three main modes: enrolment,
verification, and identification. In all modes, it extracts a feature set (template) from
the acquired data of an individual. Depending on the operation mode, it either stores
the template in a database as a reference or compares the template against one or more
templates that are already stored in the database [JRP04]. Figure 2.1 illustrates the three
main operation modes of a biometric system.
During enrolment, a subject is included in the database of the biometric system. The

enrolment step includes providing a trusted identity, capturing the biometric characteris-
tics, ensuring high quality of the capture, extracting a distinct template, and storing the
templates with the associated identity information in a database [Dam18].
In verification mode, the system validates the claimed identity of an individual by an

one-to-one comparison (e.g. "Is the biometric data from Peter?"). The identity can be
claimed by utilizing a smart card, a user name, or an identification number. The biometric
(probe) data of the individual is captured and used to create a template of the individual.
Then, this probe template is compared with the reference template of the claimed identity
stored in the database. The comparison results in a continuous comparison score that
measures the similarity between the probe and the reference templates. Depending on
the comparison score and its decision threshold, the decision of the biometric system
might be true or false. The claim is true and the user is genuine, or the claim is false and
the user is an imposter. The verification mode is typically used for positive recognition
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that aims to prevent multiple individuals using the same identity [JRP04; Way01]. In this
work, we will mainly focus on biometric verification.

In identification mode, the system aims to assign an identity to an unknown subject
based on its the captured biometrics (e.g. "Whose biometric data is this?") [Dam18]. It
aims to recognize an individual by comparing its template against all enrolled templates.
Therefore, the system performs a one-to-many comparison [JRP04]. The result of this
comparison might be a matched identity or an unidentified user. Identification is critical in
negative recognition applications that aims to prevent a single person from using multiple
identities.

Properties of Biometric Systems

In ISO/IEC 2382-37, biometric recognition is defined as the automated recognition of
individuals based on their behavioural or biological characteristics [12]. These biological
properties refer to anatomical and physiological characteristics. Anatomical characteristics
refer to the structure of a human body and physiological characteristics refer to their
function. Examples for physical or biological traits are face, fingerprint, hand and iris.
Behavioural modalities can be represented by keystroke, signature, gait, and voice. How-
ever, any human physiological or behavioural characteristic can be used as a biometric
characteristic as long as it satisfies the following seven properties [BPJ98; JRP04]:

• Universality: a biometric system aims to cover the whole population, which means
that every individual should have the biometric characteristic.

• Uniqueness: a biometric system aims to represent different individuals distinctively,
indicating that no pair of persons should be the same in terms of the characteristic.

• Permanence: the characteristic should be time-invariant and thus, the performance
of the system.

• Collectability: the biometric characteristic can be measured quantitatively.

• Performance: a biometric system aims at maximizing it recognition performance and
minimizing the computational workload.

• Acceptability: a biometric system is convenient for its users and provides high
usability.

• Circumvention: it is hard to fool the system, e.g. by presenting face biometric
samples.

11



Figure 2.1.: Illustration of the three main operation modes of a biometric system. During
the enrolmentmode an identity, and its biometric characteristic, is registered
in the database. The verificationmodes verify the claimed identity and in the
identification mode, an user’s characteristics are compared against multiple
stored identities [JRP04; Dam18].
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While the first four properties (universality, uniqueness, permanence, and collectabil-
ity) theoretically define the requirements for a biometric characteristic, the last three
(performance, acceptability, and circumvention) describe requirements that should be
additionally considered for biometric systems in practice.
These properties are associated differently for different biometric characteristics. This

was already discussed in [BPJ98] and is partially presented in Table 2.1. The table reflects
the perception of three biometric experts in 1998. For example, at this time, face biometrics
is characterized by a high universality (most people have a face), collectability (it can be
measured without strong user cooperation), and acceptability (we present our faces on a
daily basis). On the other hand, in 1998, it was assigned with medium permanence and low
uniqueness, performance, and circumvention. However, this has changed drastically within
the last years as we will show in Section 2.2. Current deep-learning based face recognition
solutions leverage hierarchical architecture to stitch together pixels into invariant face
representations [WD18]. These methods are able to find highly distinctive pixel-patterns
in faces and utilize these to produces high-performing face templates. Moreover, deep-
learning approaches are also used the enhance the circumvention of face recognition
systems, such as for presentation attack detection [RB17]. These recent advances have
made face recognition one of the most studied biometric modalities.

Table 2.1.: Comparison of biometric characteristics (H: high, M: medium, L: low) [BPJ98]
for different modalities. The data reflects the perception of three biometric
experts in 1998.
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2.1.2. Soft-Biometrics

Biometric data is usually used to recognize individuals. However, it is also possible to
deduce the attributes of an individual from the same data. For instance, gender, age,
ethnicity, hair color, eye color, height, and weight [WG13] can be deduced from data that
was collected for the purpose of biometric recognition.

While these attributes are not necessarily unique to an individual, they can be utilized
in a variety of applications, such as surveillance, forensics, and biometric data indexing.
Moreover, they can be used in combination with a primary biometric modality to improve
recognition performance. This probably led to these attributes being called soft-biometrics
[JDN04a; JDN04b; Nix+15].

Formally, soft-biometrics can be defined as follows. Soft-biometric traits are physical,
behavioural, or material accessories, which are associated with an individual, and which can
be useful for recognizing an individual. These attributes are typically gleaned from primary
biometric data, are classifiable in pre-defined human-understandable categories, and can be
extracted in an automated manner [Dan+11].

Soft-biometrics offer several benefits depending on the use-case. First, they allow
generating qualitative descriptions of an individual (e.g. young Asian male with blue eyes
and blond hair). This formulation can be easily understood by humans and therefore, this
bridges the semantic gap between human and machine descriptions of biometric data.
Second, some soft-biometrics, such as gender and ethnicity, can also be deduced from
low-quality data. This allows them to be used in a wider range of applications. Lastly,
they often can be collected easily since they require less or no cooperation of the observed
individual [DER16].

However, this also has serious consequences on the user’s privacy. For most biometric
systems, the stored data of an individual should be exclusively used for recognition
purposes. However, biometric data includes more information than needed for recognition.
Moreover, much of this information can also be deduced from biometric templates as we
will show in Section 3.5. Therefore, it is necessary to ensure that the stored biometric
templates are not used for function creep. This led to the development of soft-biometric
privacy-enhancing solutions that aim to suppress privacy-sensitive information (such as
gender, ethnicity, health conditions) from biometric templates. In Section 5, we will
discuss this topic in more details and provide several solutions to enhance soft-biometric
privacy in face recognition.
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2.2. Face Recognition

Face recognition is one of the most important topics in computer vision and pattern
recognition [WD18]. Among various biometric modalities, the face is one of the most
widely used, because it is ubiquitous and acquirable in unconstrained environments.
Moreover, it provides a strong and discriminative recognition performance [Mas+18] and
has been widely used in many areas, such as finance, public security, forensics, and daily
life [WD18].

Face recognition is inherently challenged by large intra-class variations due to the huge
facial variability in age [Ort+09], pose [Has+15], illumination [GB03], and expression
[LMZ06] (APIE). A big step towards solving the APIE problem in face recognition was done
by training deep convolutional neural networks on massive datasets. In 2014, DeepFace
[Tai+14] achieved state-of-the-art performance on the LFW benchmark [Hua+07] and
demonstrated an unconstrained face recognition performance that for the first time closely
matches human-level (DeepFace 97.35% accuracy vs. Humans 97.53% accuracy). In
2017, automated deep face recognition systems already scored above the median of
super-recognizers and forensic facial examiners [Phi+18]. Till today, the performance
and generalizability of face recognition systems are still improving [Wan+18b; Den+19].

2.2.1. Milestones of Face Representations for Recognition

In this section, we will provide an overview of the key works on face representation for
facial recognition. An overview of the milestone is presented in Figure 2.2.

In 1991, Turk and Pentland [TP91] proposed the Eigenface approach that started an era
of research on automated face recognition. The early solutions involve holistic approaches
that derive low-dimensional representations through specific assumptions of the underlying
data distribution [WD18]. These resulted in solution based on linear subspaces [BHK97;
MWP98], manifolds [He+05; Yan+07a; Yan+07b], and sparse representations [DHG12;
DHG18; Wri+09; ZYF11]. However, these holistic approaches are based on their prior
assumptions and thus, fail to address uncontrolled facial variations.

Therefore, face recognition solutions based on local-features are proposed in the early
2000s [WD18]. These approaches include Gabor filters [LW02], local binary patterns
(LBP) [AHP06], as well as their multi-level and high-dimensional extensions [Che+13;
DHG19; Zha+05]. This results in robust performances due to the invariance properties of
local filtering. However, templates based on handcrafted features does not provide the
required distinctiveness and compactness [WD18] needed for reliable face recognition.
In the 2010s, learning-based local descriptors were introduced for face recognition

[Cao+10; LPL14; Cha+15]. Although these shallow representations follow a learning-
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based strategy to enhance the distinctiveness and compactness, they can still not capture
complex non-linear facial appearance variations [WD18]. Moreover, no integrated solu-
tions were proposed that jointly addresses the problems of unconstrained face recognition,
such as lighting, pose, or expression. As a result, these approaches are not able to extract
identity-stable features in real-world scenarios.
However, in recent years, this changed drastically as deeply-learned features for face

recognition were introduced. In 2014, DeepFace [Tai+14], a 9-layer convolutional neural
network model, was proposed. It achieved state-of-the-art performance on the LFW
benchmark [Hua+07] and, for the first time, demonstrated a human-level performance
for unconstrained face recognition. From this point, face recognition research focused
on deep learning approaches and dramatically improved the performance. Exploiting
the strength of deep convolutional neural networks and large face image datasets, these
models were trained in an end-to-end fashion to produce face representations that contain
strong identity signals and provide significantly stronger robustness to APIE variations.
In 2017, automated deep face recognition systems already outperformed forensic facial
examiners [Phi+18] and in the following years, the general recognition power strongly
improved [Den+19].

2.2.2. Components of a Face Recognition System

A typical face recognition system consists of three modules: a preprocessing module P , a
template extraction module T , and a matching module M . In Figure 2.3, the locations of
these modules are shown in a face verification pipeline.

Preprocessing The preprocessing module P gets an image I as input and aims to process
the image such that facial features can be reliably estimated. Therefore, it consists of a
face detector that is used to localize faces in the input image. If no face or multiple ones
are detected, it may ask the user for another input.
Depending on the application of the face recognition system it may also consist of

sub-modules for face quality assessment (FQA) and presentation attack detection (PAD).
The FQA sub-module measures the utility of the input face for recognition. This aims to
ensure that only faces of high utility are enrolled or used for verification and thus, it aims
to reduce future recognition errors. The PAD sub-module recognizes if the captured face
is live or spoofed to avoid wrong decisions by a different type of presentation attacks.

Although face recognition shares similarities with generic object recognition, faces have
a well-structured shape and thus, can be better modelled than generic objects [Mas+18].
Consequently, strong domain knowledge can be utilized to ease the face representation
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Figure 2.2.: Milestones of face representation for recognition [WD18]. In the 1990s, face
recognition was based on holistic approaches. In the 2000s, handcrafted
local descriptors dominated the face recognition research, followed by local
feature learning. In 2014, DeepFace [Tai+14] achieved state-of-the-art and
human-like performance, shifting the research focus on deep learning.

learning. Therefore, the face image is scaled, rotated, translated, and cropped to ensure a
consistent alignment between all faces. This significantly simplifies the process of learning
and extracting distinctive facial features. The preprocessed image P (I) is then passed to
the template extractor.

Template extraction The template extractionmodule T gets as an input the preprocessed
face image P (I), extracts facial features from P (I), and outputs a corresponding face
template x = T (P (I)). With the era of deep learning, these templates (or embeddings)
are created with deep convolutional neural networks. Detailed information on the training,
model architectures, and working principles of these face recognition models are described
in Section 2.2.3. These models aim to extract identity related information of an individual
that is used for recognition. However, as we will show in Section 3.5, these templates also
encode privacy-sensitive information that is not necessary for recognition such as gender,
age, ethnicity, or accessories.
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Face matching In the matching module M , two faces are compared to determine if
they belong to the same identity or not. Therefore, the template of the preprocessed face
image of the probe xprobe = T (P (Iprobe)) is compared against an associated reference
template xref = T (P (Iref )) stored in the database. The comparison of both templates is
done with a similarity function

sim(T (P (Iprobe)), xref ) = s, (2.1)

and results in a comparison score s. Usually, the similarity function uses cosine similarity
or an (inverse) euclidean distance. Applying a threshold on the comparison score s results
in a genuine or imposter decision

D = M(T (P (Iprobe)), xref ), (2.2)

whether the images belong to the same identity or not.
Please note that (a) the similarity function can also be learned and (b) the comparison

score s can also be normalized. (a) refers to metric learning approaches that aim to learn
such a similarity function with specific properties. In Section 4.3, we will demonstrate
that by proposing a metric learning approach to mitigate ethnic-bias. (b) refers to score
normalization approaches that are usually used when combining multiple biometric traits
[Agg+08; Dam18]. However, in Section 4.4, we propose fair score normalization and
demonstrate that this can be adapted to be an effective bias-mitigation tool even for
single-trait biometrics.

2.2.3. Deep Face Recognition Models

Face recognition can be considered as a zero-shot learning task since, for most applications,
it is not possible to include candidate faces during training. Therefore, most works perform
transfer learning meaning that the network training is based on a closed pool of subjects
and is then used as a feature extractor on unseen faces. Despite that difficulty, a high
generalization is possible since human faces share a similar shape and texture [WD18].
Generally, deep face recognition solutions mainly differ on three aspects:

• the utilized network architecture that is trained for the task of recognizing faces,

• the loss function that guides the network training,

• and the utilized training data that reflects the inter- and intra-subject variations and
thus, builds the fundamentals of the training stage.

In the following, we will discuss each aspect.
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Figure 2.3.: Illustration of a face verification pipeline including the preprocessing, extrac-
tion, and matching modules. The score normalization in the matching mod-
uleM is optional and, for instance, can be used tomitigate bias as proposed
in Section 4.4.

Architectures and Databases

The network architectures for deep face recognition usually followed the architecture
used in object detection [WD18]. Consequently, often used architectures are AlexNet
[San+16; SKP15], VGGNet [Mas+16; PVZ15], and ResNet [Zha+17; Liu+17]. One big
trend is the use of deeper networks. However, to enable face recognition on embedded
devices, the other trend is to minimize the model size while maintaining as much of its
recognition performance [Wu+18; Ge+19].

With the use of deep-learning technologies, a key aspect in developing face recognition
systems is the available training data. Although some companies have private face datasets
that contain millions of face images (Facebook [Tai+14]) or millions of subjects (Google
[SKP15]), the size of publicly available databases is on a significantly lower scale [Mas+18].
Typical datasets for training face recognition model are CASIA-WebFace [Yi+14], VGGFace
[PVZ15], VGGFace2 [Cao+18], and MS-Celeb-1M [Guo+16]. CASIA-WebFace [Yi+14]
contains around 500K images from 10K subjects. It was automatically collected by looking
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at celebrities. The MS-Celeb-1M [Guo+16] dataset contains 10M images from 100k
celebrities. It was collected by searching celebrity names in the Bing search engine and
retrieving the first 100 images. Since the collection of MS-Celeb-1M was without any
filtering, the dataset is strongly biased by label noise, duplicated images, and non-face
images [Mas+18]. Consequently, it is hard to use directly. VGGFace [PVZ15] compromises
around 2.6M faces of 2.6K individuals. The face images are mostly frontal and of high
quality. Later, the improved version VGGFace2 [Cao+18] was proposed. This dataset
contains 3.3M images of 9k subjects and additionally coves variations of pose, age, and
ethnicity.

Training data form the basis for face recognition performance. However, most databases
only cover a partial distribution of face data. Most large-scale datasets are often collected
online and consist of celebrities on formal occasions. Therefore, these images are highly
different than face images from daily life, surveillance, or security applications. Moreover,
demographic cohorts, such as gender, age, and ethnicity, are usually unevenly distributed
in these datasets [WD18]. This can lead to significant performance differences based on
the individual’s demographics. In Section 3.3, we demonstrate this problem and discuss it
in more details. Section 4 describes our proposed solutions for this problem.

Loss functions

The utilized loss function plays a major role in the performance of a face recognition
model. It guides the neural network training to extract discriminative facial features.
There are basically two ways of training deep face recognition neural networks. In the
first case, a multi-class classifier is trained to differentiate between training identities
[Tai+14; Wen+16; Liu+17; Wan+18b; Den+19], such as utilizing a softmax loss. In the
other case, face templates are directly learned, such as with triplet loss [SKP15; PVZ15].

Triplet Loss Solutions Solutions trained with triplet loss [SKP15; PVZ15] make use of
face triplets that consists of an anchor face image xa, an (positive) image of the same
identity xp, and an (negative) image of a different identity xn. Triplet loss aims at learning
face representations such that the euclidean distance between the anchor template and
the template of the positive sample is always smaller than the distance between the anchor
and the negative template (including a small margin α > 0).

||f(xai )− f(xpi )||
2
2 + α < ||f(xai )− f(xni )||22 (2.3)

Since the distance calibration takes place at the template-level, f(·) defines the network
function that maps the input image to the corresponding face template. This leads to the
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Figure 2.4.: Illustration of the triplet loss learning principle. The distance between an-
chor and positive sample is reduced, while the the distance between anchor
and the negative samples is enlarged.

following loss function

LTriplet =
1

N

N∑︂
i

max
{︁
0, ||f(xai )− f(xpi )||

2
2 − ||f(xai )− f(xni )||22 + α

}︁
, (2.4)

because f(·) only has to be modified for triplets that do not satisfied Equation 2.3. Triplet
loss guides a neural network to minimized intra-subject variations as well as maximize the
separation between different identities. This can be seen with networks such as FaceNet
[SKP15] and VGGFace [PVZ15]. However, this training procedure is not suitable on large
datasets since the number of possible triplet pairs grows exponentially and thus, the
selection of suitable (semi-hard) triplets becomes difficult.

Softmax Loss Approaches Softmax-based approaches aim at classifying on a closed-set
of identities during training and utilizes a previous layer as a feature extractor for unseen
faces. The traditional softmax loss

LSoftmax = − 1

N

N∑︂
i=1

log

(︄
eW

T
yi

xi+byi∑︁N
j=1 e

WT
j xi+bj

)︄
(2.5)

combines a softmax activation on the classification layer with a standard cross-entropy loss.
Here, xi ∈ Rd refers to the template of the ith of N training samples that belong to subject
yi. Wj ∈ Rd denotes the jth column of the weight matrix W ∈ Rd×n with n equals the
number of training identities. Moreover, bj ∈ Rn defines the bias term. Early approaches
that use this loss, such as DeepFace [Tai+14], doing well in separating training subjects,
but do not explicitly minimize the intra-subject variations.
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Center loss [Wen+16] tackled this issue by minimizing intra-subjects distances between
samples xi and their corresponding class-centroids cyi that determines the class center of
the deep features. This results in the center loss

LCenterloss = LSoftmax +
λ

2
LCenter, (2.6)

with

LCenter =
1

2

N∑︂
i=1

||xi − cyi ||22, (2.7)

and λ to balance between the two losses.
Other approaches are directly based on the softmax loss from Equation 2.5. For simplicity,

the bias terms can be fixed to bj = 0 and the individual weights can be normalized
||Wj || = 1 [Wan+18b; Liu+17]. Also the embedding ||xi|| can be rescaled to ||xi|| = r.
This allows to transform the statement W T

j xi + bi to

W T
j xi + bi

bi=0
= ||Wj || ||xi|| cos(θj)

||Wi||=1
= r cos(θj), (2.8)

where θj is the angle between weight Wj and the feature vector xi. This makes the
prediction only dependent on this angle and thus, the embeddings are distributed on a
hypersphere with radius r. These modifications lead to the SphereFace loss [Liu+17]

LSphereface = −
1

N

N∑︂
i=1

log

(︄
er cos(θyi )

er cos(θyi ) +
∑︁N

j=1,j ̸=yi
er cos(θyi )

)︄
. (2.9)

The SphereFace loss introduces the idea of an angular margin and thus, aims to learn
angularly discriminative features. Adding a cosine margin penalty to Equation 2.9 leads
to the loss function of CosFace [Wan+18b]

LCosFace = −
1

N

N∑︂
i=1

log

(︄
er cos(θyi )−m

er cos(θyi )−m +
∑︁N

j=1,j ̸=yi
er cos(θyi )

)︄
, (2.10)

which achieves a higher generalization due to the added margin principle and thus, a
higher performance. By shifting the margin penalty to the angular-level, the loss function
of ArcFace [Den+19]

LArcFace = −
1

N

N∑︂
i=1

log

(︄
er cos(θyi+m)

er cos(θyi+m) +
∑︁N

j=1,j ̸=yi
er cos(θyi )

)︄
, (2.11)
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(a) Softmax (b) SphereFace (c) CosFace (d) ArcFace

Figure 2.5.: Decision boundaries of different loss functions under a binary classification
case [Den+19]. The dashed lines represent the decision boundaries, while
the gray areas denote the decision margins.

is constructed. As the representations are distributed around each representation center on
the hypersphere of radius r, adding this additive angular margin penalty simultaneously
improves the inter-subject separability and the intra-subject compactness. This enhances
the distinctiveness of the obtained features as well as stabilises the training process
[Den+19].

These small differences between the loss functions still have a strong influence on
the achieved decision boundary as visualized in Figure 2.5. Softmax loss (Equation 2.5)
creates a linear decision boundary without a margin. SphereFace loss (Equation 2.9) and
CosFace loss (Equation 2.10) create a non-linear margin between the decision boundaries.
ArcFace loss (Equation 2.11) has a constant linear angular margin. This strongly affects
the recognition performance as shown in Table 2.2 on the LFW benchmark [Hua+07].

2.3. Performance Metrics

This section provides performance metrics that are usually used in the literature as well as
in this thesis. Section 2.3.1 derives biometrics verification performance measurements that
are also recommended in the international standard ISO/IEC 19795-1 [06]. Moreover,
two metrics are presented to evaluate subgroup-specific (biased) performance differences.
Section 2.3.2 provides the tools needed to investigate privacy-enhancing technologies.
This includes metrics to measure the success of function creep attacks as well as a proposed
metric to measure how beneficial it is to apply a certain privacy-enhancing technology.
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Table 2.2.: Overview of some deep face recognition approaches. The reported perfor-
mance refers to the accuracy on the LFW [Hua+07] benchmark. The training
face data contain information about (the number of images/the number of
identities/availability).

Year Name Loss Type Architecture Training Data Accuracy
2014 DeepFace [Tai+14] Softmax Alexnet Facebook 97.35%

(4.4M/4K/private)
2015 FaceNet [SKP15] Triplet GoogleNet-24 Google 99.63%

(500M/10M/private)
2015 VGGFace [PVZ15] Triplet VGGNet-16 VGGFace 98.95%

(2.6M/2.6K/public)
2016 CenterFace [Wen+16] Softmax LeNet-7 Multiple DB 99.28%

(0.7M/17K/public)
2017 SphereFace [Liu+17] Softmax ResNet-64 CASIA-WebFace 99.42%

(0.49M/10K/public)
2018 CosFace [Wan+18b] Angular Margin ResNet-64 CASIA-WebFace 99.33%

(0.49M/10K/public)
2019 ArcFace [Den+19] Angular Margin ResNet-100 MS-Celeb-1M 99.83%

(3.8M/85K/public)

2.3.1. Evaluating Verification Performance

As mentioned Section 2.1, biometric verification belongs to non-perfect matching. Two
samples of the same biometric characteristic of the same identity are not exactly the same
due to (a) imperfect sensing conditions, (b) changes in the individual’s physiological or
behavioural characteristics, (c) alternations of the ambient conditions, or (d) variations in
the user-sensor interaction. Consequently, the respond of a biometric recognition system
is a comparison sore s that quantifies the template similarity of both samples [JRP04].
Typically, a high score refers to a higher certainty that the samples belong to the same
individual.

Depending on the system’s decision threshold t, a comparison score below t refers to an
imposter pair (samples belong to different persons) and a comparison score equal or above
t refers to genuine pair (samples belong to the same person). The score distributions of
sample pair from the same and from different persons are called genuine and imposter
distributions. Figure 2.6a illustrates such a score distribution.

A biometric verification system can make two types of recognition errors:

1. It can mistake the biometric templates from two different individuals to be from the
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same one, a false match,

2. or, it can mistake the biometric templates from the same person to be from two
different persons, a false non-match.

In this work, we report the verification performance of a biometric system in terms of false
non-match rate (FNMR) at fixed false match rates (FMR). Both verification performance
measures are defined in the ISO standard [06]. The choice of the system threshold t defines
the trade-off between these two errors. Both errors, false match and false non-match,
are also often termed as false accept and false reject. Thus, the performance measure of
FNMR and FMR is equivalent to false rejection rate (FRR) and false acceptance rate (FAR)
[JRP04]. The FNMR is usually reported at a fixed FMR. The European Border Guard
Agency Frontex [Fro17] recommends the use of a decision threshold t such that the FMR
≤ 10−3. Another widely-used verification metric is the equal error rate (EER). The EER is
well known as a single-value indicator of the verification performance and equals the FMR
at the decision threshold t where FMR and FNMR are the same.

Mathematically, this can be defined as a hypothesis testing formulation. If the biometric
template of a captured individual is denoted is xprobe and the template of the claimed
identity stored in the database is denoted as xref , the null and alternative hypotheses are
[JRP04]

• Hgen: the templates xprobe and xref belong to the same individual

• Himp: the templates xprobe and xref belong to different individuals.

Consequently, the decisions are

• Dgen: the claimed identity is correct (gen)

• Dimp: the claimed identity is not correct (imposter).

To come to one of these decisions, a decision rule

D =

{︄
Dgen if s(xprobe, xref ) ≥ t

Dimp if s(xprobe, xref ) < t
(2.12)

is applied, which is dependent on the comparison score s(xprobe, xref ) of both templates
and the system’s decision threshold t. The hypothesis testing formulation inherently
contains both mentioned errors. The type 1 error describes a false match (Himp is true,
but the decision is Dgen). The type 2 error describes a false non-match (Hgen is true, but
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the decision is Dimp). The probability of both errors can be described as their conditional
probabilities

FMR = p(Dgen|Himp) (2.13)
FNMR = p(Dimp|Hgen). (2.14)

To evaluate the performance of a deployed biometric system, one must collect a set of
comparison scores of genuine and imposter comparisons coming from the system. The
verification performance of a biometric system

FMR =

∫︂ ∞

t
p(s(xprobe, xref )|Himp)ds (2.15)

FNMR =

∫︂ t

− inf
p(s(xprobe, xref )|Hgen)ds, (2.16)

can then be defined over the integrals of the genuine score distribution p(s(xprobe, xref )|Hgen)
and the score distribution p(s(xprobe, xref )|Himp) of the imposter. This is further visualized
in Figure 2.6a.

To investigate the system’s recognition performance at all decision thresholds, a receiver
operating characteristic (ROC) curve is an useful tool. An ROC curve plots the FMR (x-axis)
over 1-FNMR (y-axis) as shown in Figure 2.6b. Therefore, the performance of several
biometric systems can be compared for different applications. For instance, high security
application, such as border control, require a low FMR. In Figure 2.6b, the biometric
system 1 would be better suitable for such an application than the biometric system 2. On
the other hand, for applications that focus on convenience, such as automatic log-in, the
FNMR should be low and thus, usually higher FMR are taken into account. This kind of
applications would prefer the biometric system 2 in Figure 2.6b.

Measuring verification bias Biometric systems often possess an unintended biased in
form of different performances depending on e.g. the user’s demographics. To facilitate
a clear discussion on bias in biometric recognition systems, Howard et al. [JRP04]
defined the terms of differential performance and differential outcome. Differential
performance refers to the difference in the genuine or imposter distribution between
specific demographic groups independent of any decision threshold. Differential outcome
refers to the differences in the FMR or FNMR between different demographic groups
relative to a predefined decision threshold. Despite these definitions, the community often
refers to this as recognition bias. In this work, if we will focus on differential outcome.
To measure the performance differences of different ethnic subgroups in terms of the

differential outcome, the variation of the group-specific recognition performances have
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(a) Score distributions (b) ROC curves

Figure 2.6.: Evaluating biometric verification performances. On the left, score distribu-
tions of genuine and imposter comparisons are shown. ROC curves of two
biometric systems are shown on the right.

to be evaluated. This can be done with any measure of statistical dispersion, such as the
mean absolute deviation (MAD) or the standard deviation (STD). Given the FNMRs of
demographic groups G at a fixed FMR, each group specific performance (recognition error)
is denoted as REg for g ∈ G. The performance differences for the different demographic
groups can be evaluated e.g. using STD

STD(REg∈G) =
√︂

E[RE2]− (E[RE])2, (2.17)

or using MAD

MAD(REg∈G) = E[|RE− E[RE]|], (2.18)

where E[·] refers to the mean operation. Both measures describe a statistical dispersion of
the group-specific performance differences. MAD focuses more on the majority of groups,
while STD is more outlier-sensitive. Low MAD/STD values indicate that the recognition
performances between all groups are similar and thus, less biased. High MAD/STD values
indicate strong performance differences between the different groups. In this case, the
recognition system is strongly biased in terms of differential outcome.
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2.3.2. Evaluating Soft-Biometric Privacy-Preservation

Enhancing soft-biometric privacy describes a trade-off between the desired degradation
of the attribute estimation performance by function creep attackers and the desired
preservation of the recognition ability. Evaluation metrics for measuring the recognition
performance was already introduced in Section 2.3.1. In this section, we will first introduce
attribute estimation metrics that are needed for the evaluation of the function creep attacks.
Next, we will introduce a metric to jointly investigate the recognition-preservation as well
as attribute suppression.

Evaluating function creep attacks In the scenario of soft-biometric privacy, function
creep attackers aim to predict privacy-sensitive attributes from biometric templates. These
predictions come from the estimation models that are trained with the target labels on
the same kind of templates. A simple tool to measure the effectiveness of such an attack is
the standard accuracy. However, since training and test data are often highly unbalanced
regarding its attribute labels, the balanced accuracy is more suitable. This balanced
accuracy is equivalent to the standard accuracy definition with class-balanced sample
weights.

In order to evaluate the attribute suppression performance of a privacy-enhancing
approach, the suppression rate can be used. The suppression rate

sr = accorg − accmod

accorg
(2.19)

describes the reduction of the attribute-prediction accuracy of the unmodified (original)
templates accorg in comparison to the accuracy of the templates accmod with privacy-
enhancement. A higher suppression rate indicates an advanced privacy-improvement.

Evaluating the soft-biometric privacy trade-off Solutions on soft-biometric privacy aims
at degrading the attribute prediction performance of function creep classifiers while
preserving its utility for recognition. To evaluate if a privacy-enhancing methodology is
beneficial, we propose the privacy-gain identity-loss coefficient (PIC) [Ter+19b]. The PIC

PIC =
AE′ −AE

AE
− RE′ −RE

RE
, (2.20)

is defined by attribute prediction errors AE′ and AE and the verification errors RE′ and
RE with and without the privacy-preserving methodology. Positive values indicate that
the privacy gain is higher than the loss in the identity preservation performance. Since it
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Figure 2.7.: An illustration of an attribute-recognition plot. The attribute prediction er-
ror is shown over the recognition error for the unmodified baseline and the
different PETs. The attribute error refers to the most successful function
creep classifier. The size of the shaded area around a PET refers to its PIC.
Additionally, equipotential lines for different PIC-values are shown in grey.

measures how beneficial it is to apply the privacy transformation, a higher PIC indicates a
better trade-off and thus, a more beneficial privacy-enhancing technique.

To fully investigate the soft-biometric privacy trade-off, attribute-recognition plots are
an useful tool [Bor+20]. An example plot is shown in Figure 2.7. It plots a recognition
error (x-axis) over the attribute prediction error (y-axis). In the plot, the unmodified
baseline (Original) and different privacy-enhancing technologies (PETs) are represented.
The recognition error can be arbitrarily chosen. The attribute prediction error refers to
the prediction error of the most successful function creep estimator (FCE) that aims to
predict this attribute given the modified template. Each point represents a PET and the
area around represents its PIC value. This way it allows to jointly investigate the most
important factors for soft-biometric privacy enhancing technologies.
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2.4. Summary

This section discussed the background information that is needed to understand the
research topic of this work and its proposed solutions.

First, a general introduction to biometrics was given. This included the special properties
of a biometric system as well as soft-biometrics. Second, face biometrics was introduced
in details. It showed (a) the main components of a biometric system, (b) the key points to
train a deep face recognition model, and (c) why current state-of-the-art face recognition
approaches are solely based on deep learning. Third, performance metrics are described
to measure bias and privacy concerns in face recognition system. These concerns arise
from the use of deep learning techniques, as we will show in Section 3.
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3. Investigation of Soft-Biometric Driven
Bias and Privacy Concerns

3.1. Introduction

This chapter investigates soft-biometric driven bias and privacy concerns in face recognition.
The goal of the investigations is to analyse the vulnerabilities of these concerns. The
findings of this chapter are used afterwards in Chapter 4 and 5 to develop effective
mitigation solutions.
To enable such in-depth investigations, in Section 3.2 two preliminary works are pro-

posed. The first preliminary work is a novel reliability measure [Ter+19d] that is able to
accurately quantify the confidence of a model’s prediction. This answers RQ1 and is used
for the definition of predictability classes in Section 3.5 to answer RQ4. Moreover, it is used
in the second preliminary work. The second proposed preliminary work is MAAD-Face
[Ter+20b], a novel face database that is characterized by its large number of soft-biometric
attribute annotations. Using the novel reliability measure from RQ1 ensures a correctness
of these annotations. The MAAD-Face annotations database proposes the large amount of
high-quality attribute annotations needed for the investigation of soft-biometric driven
performance differences (bias) in face recognition systems (Section 3.3).

The investigations of soft-biometric driven bias and privacy concerns in face recognition
aim to answer RQ2 and RQ4. In Section 3.3, the influence of soft-biometric attributes on
the performance of face recognition systems is analysed. In Section 3.4, the influence of
soft-biometric attributes on face quality assessment is investigated [Ter+20e]. Together,
both investigations analyse of the effect of soft-biometric bias on the behaviour of face
recognition systems answering RQ2. Finally, Section 3.5 investigates which soft-biometric
attributes are stored in biometric face templates [Ter+20a] to answer RQ4.
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3.2. Preliminary Investigations

This section proposes two preliminary works that are needed for the investigations on the
soft-biometric driven bias and privacy concerns. In Section 3.2.1, a novel reliability measure
[Ter+19d] is presented and analysed on the example of age and gender estimation. This
reliability measure is needed in Section 3.5 to answer RQ4 and to provide reliable attribute
annotations needed in Section 3.2.2 for answering RQ2. Section 3.2.2 proposesMAAD-Face
[Ter+20b], a new face database that contains a large number of high-quality annotations.
These are required to analyse the influence of soft-biometric attributes on face recognition
systems [Ter+20e] in Section 3.3.

3.2.1. Reliable Estimation of Soft-Biometrics

Introduction

To investigate the bias and privacy concerns driven by soft-biometric attributes, a tool
is needed to reliably estimate these attributes. Although the estimation performance
reported in previous work has highly increased overtime and closely match human-level
[HOJ13; Han+15], these models tend to mispredict. This especially holds for predictions
under difficult circumstances (e.g. pose, illumination), or when the trained model faces a
sample belonging to a miss-represented group that was under-represented in the training
data.
Intuitive solutions for this problem include rejecting face images based on the quality

of the images [Han+15] or based on the model’s confidence scores. However, rejecting
low-quality face images does not take into account a potential model bias. While it
looks reasonable to use the model’s confidence scores, a higher confidence score does not
necessarily imply a higher probability that the classifier is correct as shown in recent work
[Guo+17; KL15; NYC14].

In practice, knowing the reliability of a prediction has several advantages. The reliability
scores allow us to discover and prevent model biases. If a model is not sure about the
decision (low reliability), it can reject the sample without a decision or ask another
model or a human operator to make the decision instead [Jia+18]. Especially in forensic
scenarios, having a reliability measure about the model decision is of great significance,
since the assessment of the strength of evidence is a central activity in forensic case work
[Zei+18]. Also for system monitoring tasks, having a reliability measure has great benefits.
During deployment, these measures allow monitoring the classifier to detect distributions
shifts and thus, it is possible to detect when the classifier is no longer as useful as it was
when first deployed.
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In this section, we propose a novel reliability measure [Ter+19d] and proof its effective-
ness on the example of age and gender estimation. This solution is able to make highly
accurate predictions and further stating the reliability of these predictions. By applying
multiple stochastic forward passes through a dropout-reduced network, a score set of
stochastic age and gender predictions are successfully created. Based on the centrality
and the dispersion of these scores, the reliability and thus, the model’s confidence about
the prediction is accurately specified.
We evaluate our solution on the Adience benchmark [EEH14] and show that our

proposed neural network architecture reaches and goes beyond state-of-the-art results.
Furthermore, we demonstrate that the proposed reliability measure correlates with the
age and gender classification performance and thus, demonstrating the effectiveness of
the proposed reliability measure.

Related Work

In recent years, many works were published solutions for age and gender estimation
from face. For age estimation, one of the first works was published by Kwon and Lobo
[KL99] in 1999. They evaluated an age group classification tasks between babies, young
adults, and senior adults, based on the ratios between hand-crafted features. Today,
most approaches replaced the hand-crafted features by convolutional neural network
(CNN) features, because these were able to capture the complex patterns needed for age
estimation tasks. These features enable a prediction performance which is even surpassing
human-level performance [HOJ13]. CNN-based solutions for age estimation tasks are
either focusing on age group classification [LH15; WGK15] or on age regression problems
[Hue+15; YLL14]. The presented solutions cover a wide range of mechanisms such as
domain-adaption [RTV18], cascade CNN’s [Che+16], autoencoders [ZBB18], and deep
regression trees [She+17].
Similar to age estimation, the first works on gender estimation started in the early

nineties. In 1991, Golomb et al. [GLS90] proposed a neural network to identify gender and
reported a gender decision performance comparable to humans. However, the investigation
contained only 90 subjects in a controlled environment and the whole preprocessing
was performed manually. Similar to age estimation, a pipeline consisting of feature
extraction and a stacked classifier was used in multiple works. The feature extraction part
utilized weber’s local descriptors (WLD) [Ull+12], local binary pattern (LBP) [Sha12],
and biologically inspired features (BIF) [HJ14]. More recent approaches are built on
CNN features. Wolfshaar et al. [WKW15] fine tuned a pre-trained CNN with a stacked
support vector machine (SVM), while Mansanet et al. [MAP16] proposed a local deep
neural network with a voting scheme for the local contributions.
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Most of the recent works exploit the fact that age and gender estimation tasks share
similar features. In [GM13], Guo et al. investigated the estimation of age, gender,
and ethnicity using canonical correlation analysis and partial least squares. Han et al.
[Han+15] demonstrated that age, gender and race estimation is a challenging problem
for machines and humans. They showed, on four different datasets, that the automated
attribute estimation closely matches human level performance. In [EEH14], a drop-out
SVM approach is used in combination with a robust face alignment technique. Considering
the over-sensitiveness on facial variations of CNN’s, Rodríguez et al. [Rod+17] proposed a
CNN-based feed-forward attention mechanism. This mechanism allows a deeper focus on
particular regions of the face image leading to more accurate predictions. In [Han+18],
Han et al. proposed a deep multi-task learning approach for face attribute estimation by
considering the attribute correlation and heterogeneity during the feature representation
learning.
So far, previous work solely focused on enhancing the age and gender estimation

performance by proposing new solutions for these tasks. However, these models still tend
to mispredict under difficult circumstances or due to model or data bias. Therefore, we
propose a solution that predicts the age and gender of a given face image and additionally
offers am accurately reliability measure for the prediction. Consequently, weak predictions
can be detected and rejected before the attribute prediction system can show an erroneous
behaviour.

Methodology

Our approach is built on dropout predictions. By applying multiple stochastic forward
passes through dropout-reduced networks, a stochastic set of age and gender class predic-
tions can be obtained. In [GG16], Gal et al. proofed theoretically that the use of dropout
predictions in NN can be interpreted as an approximation of the well known probabilistic
Gaussian process model. The proposed reliability measure quantifies the confidence of the
model by determining the centrality and the dispersion of the stochastic prediction set. A
high centrality and a low dispersion of the stochastic predictions indicate high confidence,
while a low centrality and a high dispersion characterize low confidence of the model’s
prediction.

The proposed network In Figure 3.1 the proposed NN architecture is shown. Given an
aligned and cropped face image, a pretrained FaceNet11 [SKP15] trained on MS-Celeb-1M
[Guo+16] was utilized. The FaceNet embedding of this image is extracted and passed to
11https://github.com/davidsandberg/facenet
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the proposed NN. The network consists of five layers. The 128-dimensional input layer is
followed by three fully connected hidden layer with 128, 16, and 128 dimensions. After
each layer batchnormalization [IS15] is applied with m = 0.99 and ϵ = 10−3. Further,
dropout [Sri+14] is applied on each layer with a dropout probability p = 33.5%. For the
activation functions, we choose leaky rectified linear units (leaky ReLU) with α = 0.1 in
order to enable the network to recognize non-linear behaviour. The last layer is split up
into two softmax layers, an 8-dimensional layer for the 8 age classes and a 2-dimensional
layer for both gender classes. The output of the softmax function with an input vector w
is given by

σj(w) =
exp(wj)∑︁C
c=1 exp(wc)

, (3.1)

and normalizes vector w into a probability distribution for C classes.

Figure 3.1.: Proposed neural network architecture: a 128-dimensional input layer is fol-
lowed by three hidden layer with 128, 16, and 128 dimensions. The last layer
is split up into two softmax layers, an 8-dimensional softmax age layer and
a 2-dimensional softmax gender layer. After every dense layer batchnormal-
ization is applied as well as dropout with a dropout probability of 33.5%. For
activation functions, leaky rectified linear units (leaky ReLU) are utilized with
α = 0.1.
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Reliabilitymeasure During deployment, the face image is aligned usingMTCNN [Zha+16]
and cropped. The resulting face image is passed into FaceNet [SKP15] to extract an
embedding. This embedding is used as an input for the proposed network. By apply-
ing dropout during the prediction, m = 100 stochastic forward passes are performed
to produce m different softmax outputs for the age and gender classes, denoted as
vi,j ∀ i ∈ {1, . . . ,m}, j ∈ {1, . . . , C}. Parameter C describes the number of classes for
age (C = 8) and gender (C = 2) classification. Computing the mean of all m softmax
outputs vi lead to an averaged softmax output v̄j . The predicted class ĉ of the NN is given
by the arguments of the maximum averaged softmax value

ĉ = argmax
j

v̄j = argmax
j

(︄
1

m

m∑︂
i=1

vi,j

)︄
. (3.2)

In order to develop a reliability measure that values the confidence of the model’s
predictions, we propose a novel reliability measure rel. This confidence measure takes
into account the probability interpretation of the softmax layer as well as the agreement
of the stochastic predictions. Given the outputs of the m stochastic forward passes of the
predicted class ĉ denoted as x = vi,ĉ, the proposed reliability measure

rel(x) =
1− α

m

m∑︂
i=1

xi⏞ ⏟⏟ ⏞
Measure of centrality

− α

m2

m∑︂
i=1

m∑︂
j=1

|xi − xj |⏞ ⏟⏟ ⏞
Measure of dispersion

, (3.3)

consists of two parts. The first part is a measure of centrality and computes the mean
of the m stochastic softmax outputs for the class. This aims at utilizing the probability
interpretation of the softmax output. A higher value can be interpreted as a high probability
that the prediction is correct. However, this assumes that the stochastic outputs follow a
Boltzmann distribution. Therefore, the second part, the measure of dispersion, quantifies
the agreement of the stochastic outputs x. It calculates the mean distances between all
score combinations of x. If all values in x are close to each other the measure of dispersion
is low. This illustrates a case of high agreement between the stochastic predictions and
can be interpreted as high confidence of the model. If the model has low confidence about
the prediction, the stochastic scores in x will vary in a wider range and the measure of
dispersion will be higher. The parameter α ∈ [0, 1] allows counterweighting the measure of
centrality and dispersion. Low values of α will focus more on the probability interpretation
of the softmax function, while high values will focus more on the variation of the stochastic
outputs.

For completeness, it should be mentioned that the measures of centrality and dispersion
can easily be replaced by other functions. For instance, centrality function can be replaced
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by a median, while the dispersion function can be replaced by a simple Gaussian variance.
However, this assumes x to be normally distributed.

Experimental Setup

Database - In order to evaluate the performance of our approach on face images under
real-world conditions, the Adience dataset [EEH14] was used. The dataset consists of over
26.5k images from over 2.2k different subjects. For the experiments, every sample was
considered that is labelled with a gender and an age group. The age groups consists of
eight classes (0-2, 4-6, 8-13, 15-20, 25-32, 38-43, 48-53, 60+). For both, age and gender
estimation, subject-exclusive 5-fold cross-validation is used to ensure comparability with
previous works. Figure 3.2 shows the data distribution over the different age and gender
cases.

Figure 3.2.: Instance distribution of the Adience dataset. The samples were grouped by
age and gender.

Investigations - The investigations in this work are separated into two parts. The first
part analyses the age and gender estimation performance to compare the proposed method
with state-of-the-art approaches. This includes confusion matrices of the proposed model
for the age and gender estimation task. The second part of the investigation aims at
analysing the effect of the prediction reliabilities. Therefore, the prediction performance is
shown over several reliability thresholds to measure the correlation between the reliability
and the prediction performance. To get a deeper understanding of the reliability effect, a
more detailed analysis is carried out over the different gender and age classes. Finally,
multiple sample images are shown for different age and gender reliabilities to visualize
the understanding of the model’s reliability.
Details about the methodology - Since age and gender share many facial features, the

network training was done by simultaneously optimizing the age and gender classification
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task (multi-task learning) using a categorical cross-entropy loss function

L(ya, ŷa, yg, ŷg) = −
2∑︂

i=1

yai log (ŷ
a
i )−

8∑︂
i=1

ygi log (ŷ
g
i ).

Here, ya and yg describe binary indicators if the age and gender class prediction was
correct, while ŷa and ŷg describe the predicted probabilities for the age and gender classes.
Using the adam optimization algorithm [KB14], the network was trained with a batch
size of 128 over 120 epochs. These training settings resulted in the most stable results.

To calculate the reliability of a prediction, the balance between the measure of centrality
and themeasure of dispersion have to be determined. For the sake of simplicity, we evaluate
the proposed solution for equally balanced weights (α = 0.5).

Results

Before we come to the evaluation of the main contribution, a novel reliability measure,
we show that the proposed NN solution is comparable with state-of-the-art approaches.
Therefore, Figure 3.3 shows the performance of our solution together with the best
performances reported by previous work. All solutions are reported on the Adience
benchmark. With a gender decision accuracy of about 90%, the proposed solution shows
comparable performance to previous work. For age classification, the proposed approach
is slightly superior to the best performing state-of-the-art model and reaches an age class
classification performance of (64.3± 2.2)%.
To get a deeper insight into the model behaviour, in Figure 3.4 and 3.5 the confusion

matrices for age and gender are shown. The confusion matrices are presented as in the
work from Rodríguez et al. [Rod+17]. For age, the model predicts the right age class in
most cases. Errors made by the model occur mainly by predicting an adjacent age class
resulting in a one-off age accuracy of 95.3%. It is noticeable that the age class (48-53)
show the weakest results. This can be explained by the bias induced by the number of
training samples since this age class contains the lowest number of training instances
(see Figure 3.2). Moreover, the age class (25-32) can be estimated with a performance
of 83.5%, which is significantly higher than other age classes. This is due to the fact that
this age class is overrepresented with 30.8% of all instances. Consequently, the model
optimized itself more on this age class further resulting in lower performance in adjacent
age classes.

In Figure 3.5, the confusion matrix for the gender classification tasks can be seen. The
results show that the model predicts female face images with slightly higher accuracy
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Figure 3.3.: Best reported performances from previous work and our approach. All re-
sults are reported based on the Adience benchmark.

Accuracy (%)

Model Age One-off age Gender
Eidinger [EEH14] 45.1± 2.6 80.7 ± 1.1 77.8 ± 1.3
Levi [LH15] 50.7 ± 5.1 84.7 ± 2.2 86.8 ± 1.4
Wolfshaar [WKW15] - - 87.2 ± 0.7
Chen [Che+16] 52.9 ± 6.0 88.5 ± 2.2 -
Liu [Liu+18] 60.2 ± 5.3 93.7 ± 2.3 -
Rodríguez [Rod+17] 61.8 ± 2.1 95.1 ± 0.0 93.0 ± 1.8
Rothe [RTV18] 64.0 ± 4.2 96.6 ± 0.9 -
Ours 64.3 ± 2.2 95.3 ± 1.5 89.8 ± 2.5

than male images, probably because the dataset contains 12% more female face images.
This yields to an overall gender decision performance of (89.8± 2.5)%.

Figure 3.6 shows the age and gender decision performance over all possible class
combinations. For age class classification (Figure 3.6a), the performance for male face
images is significantly higher than for female faces. Furthermore, the best performing
age class (25-32) is also the age class with the most provided training samples, while
the worst performing age class (48-53) is also the one with the least amount of training
samples. Considering the one-off age accuracies (Figure 3.6b), a performance in the
high nineties can be observed in most cases. Only the two oldest age classes show a
weaker performance, probably to a model bias to predict younger ages caused by the data
distribution of the training set. For gender classification (Figure 3.6c), a very high gender
recognition performance can be seen for instances of 15 years. In contrast, for lower age
classes, the gender decision performance is significantly lower. This is probably due to the
fact that gender-specific characteristics are more developed at older ages.
The average reliability values are shown for each age and gender class combination

in Figure 3.7. It is noticeable that the proposed reliability measure correlates with the
performance and the number of training samples. For instance, in Figure 3.7a, the lowest
reliability values for age estimation occur in the age classes (48-53) and (60-100). These
age classes show the least accuracies in age and one-off age estimation (Figure 3.6a and
3.6b). Moreover, these age classes have the lowest amount of training samples (Figure
3.2). The same can be observed for the highest reliability values, which appear in the
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Figure 3.4.: Age confusion matrix presented as in [Rod+17]. The table represents the
mean values over all cross-validation folds. Bold values indicate the class
accuracy.

Predicted

0-2 4-6 8-12 15-20 25-32 38-43 48-53 60+

Re
al

0-2 58.9 40.8 0.1 0.0 0.2 0.0 0.0 0.0
4-6 13.1 77.0 9.1 0.5 0.2 0.1 0.0 0.0
8-12 1.2 19.6 66.6 5.2 7.2 0.2 0.0 0.0
15-20 0.0 1.0 6.5 40.7 49.4 1.6 0.3 0.5
25-32 0.0 0.1 0.9 5.4 83.5 9.2 0.2 0.7
38-43 0.0 0.0 0.3 0.8 47.2 44.9 3.0 3.8
48-53 0.0 0.0 0.1 0.4 12.5 38.3 17.3 31.4
60+ 0.0 0.0 0.4 0.0 7.0 14.1 12.9 65.6

Figure 3.5.: Gender confusion matrix. The table represents the mean accuracies over all
cross-validation folds.

Predicted

Female Male
Real Female 91.7 8.3

Male 11.8 88.2

age classes (0-2) and (4-6). These age classes also show the highest performance in the
one-off accuracy (Figure 3.6b).
The reliability values for the task of gender estimation are shown in Figure 3.7b. Very

high reliabilities can be found for age classes with 15 years and older, while younger age
classes show significantly lower reliabilities. The same pattern can be found for the gender
decision accuracy in Figure 3.6c. Very high accuracies are achieved for age classes over
15 years, while the performance for lower ages is significantly lower.

These results demonstrate that the proposed reliability measure correlates with the
performance and thus, captures the confidence of the predictions.

One of the goals of this work is to show that utilizing the proposed reliability measure
for threshold leads to better predictions. In Figure 3.8, the age and gender estimation
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(a) Age accuracy per class

(b) One-off age accuracy per class

(c) Gender accuracy per class

Figure 3.6.: Age and gender decision performance for all possible class combinations.
The reported results are averaged accuracies over all cross-validation folds.

performance is shown for different reliability thresholds. The blue lines indicate the
attribute estimation performances, while the red line indicates the percentage of instances
which are over the threshold. The shaded areas represent the standard deviations over the
cross-validation folds. In all cases, the performance grows with a higher reliability thresh-
old. This indicates that the proposed reliability measure is able to value the confidence of
the model’s prediction.

The age classification performance is shown for different reliability thresholds in Figure
3.8a. Choosing a threshold that rejects 20% of the instances, results in a performance
increase from 64% to around 70%. Rejecting 50% of the instances with the lowest
reliabilities results in an age classification performance of over 75%. Figure 3.8b shows
the one-off age classification accuracy over different reliability thresholds. Selecting a
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(a) Age reliability per class

(b) Gender reliability per class

Figure 3.7.: Mean age and gender reliability values for all possible class combinations.
The reported reliabilities show the mean values over all cross-validation
folds.

threshold that rejects 20% of the instance changes the performance from 95.5% to 98%.
The influence of the reliability on the gender classification accuracy is shown in Figure
3.8c. Here, rejecting 20% of the lowest reliable instance lead to an performance increase
from 89.8% to over 95% and choosing a gender reliability threshold that rejects 50% of
the instances results of over 98.5%. This demonstrates that rejecting low reliable samples
from a biometric system is an effective approach to prevent the system from malicious
predictions.
In order to get a visual understanding of the model’s reliability, Figure 3.9 and 3.10

show some random sample images for three different reliabilities. In Figure 3.9 face
images are shown for three age reliabilities. The top row shows 10 random samples with a
maximum age reliability around rel ≈ 0.42. It can be seen that the model is very confident
to predict the age of a baby. This is probably due to the fact that these differ most visually
from the other age groups. Taking a look at the images with the highest age reliabilities,
over 90% of the images show babies. The middle row presents 10 random samples with an
average age reliability rel ≈ 0.14. These images are all of high quality and show mainly
young adults as it can be expected from Figure 3.7a. The bottom row presents 10 random
samples with a low age reliability of around rel ≈ 0. These images are often of bad quality,
show challenging illuminations and occlusions.
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(a) Age accuracy (b) One-off age accuracy

(c) Gender accuracy

Figure 3.8.: Age and gender accuracy for different reliability thresholds. Shaded areas
describe the standard deviations over the cross-validation folds. For age
and gender, their own reliability values and thresholds are used.

Figure 3.10 shows face images categorized for three gender reliabilities. The top
row shows 10 random samples with a high gender reliability of around rel ≈ 0.49, the
middle row presents 10 random samples with an average gender reliability of rel ≈ 0.38,
while the bottom row shows 10 random samples with a low gender reliability of around
rel ≈ 0.07. For the two upper rows, the gender can be determined easily. Only for the
average reliabilities (bottom row), some images show slightly challenging illuminations.
The bottom row presents samples where the classifier is least confident about the gender
and also for humans classifying the gender of these images is a challenging task.
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Figure 3.9.: Image samples of three different reliabilities for age estimation. The top
row shows 10 random samples with a high reliability rel ≈ 0.42. The middle
row contains 10 random samples of the average reliability rel ≈ 0.14. The
bottom row contains samples with the lowest age reliability rel ≈ 0.

Figure 3.10.: Image samples of three different reliabilities for gender estimation. The top
row shows 10 random samples with a high reliability rel ≈ 0.49. Themiddle
row contains 10 random samples of the average reliability rel ≈ 0.38. The
bottom row contains samples with the lowest gender reliability rel ≈ 0.07.
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Interim Conclusion

In this section, we proposed a novel and accurate measure to quantify the prediction
reliability of a neural network model. Based on multiple stochastic predictions from
dropout-reduced neural networks, the reliability of the model’s prediction is derived by
determining the centrality and the dispersion of these predictions. The experiments were
conducted on the publicly available Adience benchmark. We showed that the proposed
solution reaches and exceeds state-of-the-art performance. We further demonstrated
that the proposed reliability measure can provide high-quality confidence statements
about the predictions. Especially in forensic, these statements are of great significance,
since the assessment of the strength of evidence is a central activity in forensic case work.
During deployment, these statements can be further used to prevent malicious model
behaviour or to monitor the system by detecting distributions shifts. Our proposed solution
can be easily integrated into the many approaches that have been trained with dropout.
We will use the proposed reliability measure in Section 3.2.2 to guarantee the required
high-quality annotations for MAAD-Face dataset and in Section 3.5 to determine the
attribute predictability and thus, to determine which attributes are stored within biometric
face templates.
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3.2.2. MAAD-Face: A Massively-Annotated Face Dataset

Introduction

In order to analyse the influence of soft-biometric attributes on the behaviour of face
recognition systems, a database is required that contains a large number of soft-biometric
attribute labels of high quality. Recent face databases are specifically constructed for the
development of face recognition systems. Consequently, these contain large numbers of
faces under diverse settings but lack annotations.

In this section, we propose the MAAD-Face annotations dataset [Ter+20b]. MAAD-Face
is a novel face annotations database that is characterized by its large number of high-
quality face annotations. Utilizing our novel annotation-transfer pipeline, we transfer
the attribute labels from the source-databases (LFW [Hua+07] and CelebA [Liu+15])
to the target-database (VGGFace2 dataset [Cao+18]). The pipeline trains a massive
attribute classifier to accurately predict the attributes of the source-database. Since the
MAC makes use of prediction reliabilities [Ter+19d] from Section 3.2.1, the pipeline
neglects annotations of low-confident predictions. MAAD-Face consists of 3.3M faces of
over 9k individuals. With 123.9M attribute annotations of 47 different binary attributes,
it provides 15 and 137 times more attribute labels than CelebA and LFW. To analyse the
quality of the attribute annotations, three human evaluators investigated the correctness
of the labels of CelebA, LFW, and MAAD-Face. The results demonstrate the superiority
of the MAAD-Face annotations over the other databases. The MAAD-Face dataset is also
publicly available2.
To summarize, this section presents three main contributions:

1. A novel annotation transfer-pipeline is proposed that is able to transfer highly-
accurate attribute labels from source-databases to a target-database. We use this
pipeline to create MAAD-Face.

2. We propose the MAAD-Face annotations dataset based on VGGFace2 [Cao+18].
MAAD-Face is a new face annotations database consisting of 123.9M attribute
annotations of 47 different binary attributes. It provides 15 and 137 times more
labels than CelebA and LFW, while the attribute annotations are of higher quality.

3. A human evaluation of the annotation correctness of three large-scale annotation
face databases, LFW, CelebA, and MAAD-Face, is conducted. These demonstrate the
superiority of the MAAD-Face annotations over the other investigated databases.

2https://github.com/pterhoer/MAAD-Face
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The rest of this section is structured as follows. First, an overview of annotated face
datasets is provided. Second, a human evaluation of the annotation-correctness of three
relevant datasets is provided and discussed. Thrid, the label-transfer pipeline is explained
and how it is used to create MAAD-Face. Finally, the statistical properties of the MAAD-Face
annotation database are discussed.

Review of Annotated Face Datasets

In recent years, a number of face databases have been released. These mainly aimed
at providing a large dataset for developing face recognition solutions. With the use of
deep-learning techniques in face recognition, the required data for training these solutions
has grown strongly and thus, the sizes of face databases. However, less attention was
given to the estimation of facial attributes. These soft-biometric characteristics can be
of high importance in applications such as access control [DER16], human-computer
interaction [Ter+19d], and law enforcement [GZS07]. Current face databases only
provide insufficient numbers of training labels for training accurate solutions. Moreover,
these labels often lack in their correctness and thus, prevent the development of soft-
biometric solutions. In the following, we discuss popular face databases that also contain
attribute information.

ColorFeret [Phi+00] consists of 14.1k images of 1.2k different individuals with different
poses under controlled conditions. The dataset includes a variety of face poses, facial
expressions, and lighting conditions. Each image contains labels of the individual’s gender,
ethnicity, head pose, age, glasses, and beard. In total, ColorFeret provides around 183k
soft-biometric labels.
The Adience dataset [EEH14] consists of over 26.5k images of over 2.2k different

individuals in unconstrained environments. In total, the dataset provides around 263k
annotations for gender and age. These labels that were manually labelled.
The Morph dataset [RT06b] contains 55.1k frontal face images of more than 13.6k

individuals. For each image, it provides information about the person’s gender, ethnicity,
age, beard, and glasses. 80.4% of the faces belong to the ethnicity black, 19.2% to white,
and 0.4% to others. The individual’s age varies from 16-77 years. 79.4% of the faces are
within an age-range of [20, 50]. In total, the Morph database provides over 0.5M labels for
soft-biometric attributes.
VGGFace [PVZ15] and VGGFace2 [Cao+18] are two databases from the University

of Oxford. VGGFace [PVZ15] contains 2.6M images from 2.6k individuals and provides
information about the head pose (frontal, profile). VGGFace2 [Cao+18] contains faces
from over 9k subjects with over 3M images. The dataset contains a large variety of pose,
age, and ethnicity. Over 40% of the face are frontal and over 50% are half-frontal. Most
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images belong to individuals over 18 years old and around 40% belong to the age group
of [25, 34]. For each image, gender annotations are available. A subset of 30k images of
celebrities was additionally labelled with 10 further attributes about the individual’s hair,
beard, glasses, and hat. In total, VGGFace2 provides 3.6M labels about the person’s face.
Labeled Faces in the Wild (LFW) [Hua+07] contains 13.2k images of 5.7k different

identities form unconstrained environments. It contains variability in pose, lighting,
expression, and demographics. With 74 binary attributes, it provides a large diversity on
binary attribute annotations. However, as we show in Section 3.2.2, the correctness of
these labels are often weak (72% accuracy compared to human annotations). In total,
LFW provides over 0.9M attribute labels.
The CelebFaces Attributes Dataset (CelebA) [Liu+15] contains over 202k images of

10.0k different subjects. It covers large pose variations and background clutter and
provides rich annotations for 40 binary attributes. In total, CelebA provides over 8M labels
for soft-biometric attributes.

In this section, we propose the MAAD-Face database [Ter+20b]. Using our novel label-
transfer technique we are able to create highly accurate face annotations building upon
VGGFace2. Consequently, it contains over 3.3M face images from over 9.1k different
subjects with a large variety of poses, ages, and ethnicities. MAAD-Face provides labels
for 47 binary attributes. In total, it consists of over 123.9M attribute annotations, which is
over 15 times higher than the second-largest face annotation dataset. Moreover, its label
quality is significantly higher than related databases, such as LFW and CelebA, as we will
show in the following Section 3.2.2.

Evaluating Label-Correctness of Related Face Datasets

We evaluate the quality of attribute labels from three face datasets, LFW, CelebA, and
MAAD-Face. The quality refers to the correctness of the labels compared to the annotations
of human evaluators. The label-correctness of each attribute in LFW, CelebA, and MAAD-
Face was manually evaluated by three human evaluators. For each attribute, the evaluators
got 50 positively-labelled and 50 negatively-labelled images. These were randomly chosen.
Then, each evaluator was asked to carefully label these images for the given attribute.
This led to over 16k manually annotated labels3. The manually annotated labels are used
to compute the accuracy, precision, and recall for each attribute of database. The accuracy
refers to the percentage of correct labels, where the ground truth is determined by the
human evaluators. Precision is defined as the number of true positives over the number of
3Please note that this only represents a small fraction of all labels and additionally reflects the subjective
opinion of the three evaluators. Therefore, the results should not be considered as absolute values but
should rather be used as indicators.
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Table 3.1.: Statistics of related face annotation databases. Distinctive attributes refer to
the number of attributes that are labelled while the number of labels refers to
the total number of (attribute) annotations in the database. The correctness
of the attribute annotations (see Section 3.2.2) are shown for the most rele-
vant databases, LFW, CelebA, and MAAD-Face, since these contain labels for
a high number of distinct attributes. In total, MAAD-Face provides the highest
number of attribute annotations. Moreover, MAAD-Face additionally provides
labels of much higher quality than related databases.

Attribute labels

Database Num. of
subjects

Num. of
images

Distinctive
attributes

Number of
labels Accuracy Precision Recall

ColorFeret 1.2k 14.1k 13* 0.2M
Adience 2.3k 26.6k 10* 0.3M
Morph 13.6k 55.1k 10* 0.6M
VGGFace 2.6k 2.6M 1 2.6M
VGGFace2 9.1k 3.3M 11 3.6M
LFW 5.7k 13.2k 74 0.9M 0.72 0.61 0.84
CelebA 10.0k 0.2M 40 8.0M 0.85 0.83 0.89
MAAD-Face 9.1k 3.3M 47 123.9M 0.91 0.87 0.94

true and false positives. In our context, precision refers to "What proportion of positive
labelled-samples in the database is also positively-labelled by the human evaluators?".
Recall is defined as the number of true positives over the number of true positives and false
negatives. In our context, recall refers to "What proportion of positive labels annotated
by the human evaluators are identified correctly?". Tables 3.3, 3.4, and 3.2 present the
results for this analysis on LFW, CelebA, and MAAD-Face.

LFW For LFW (Table 3.3), many attributes show a very weak performance and thus, a
low correlation with the annotations of the human evaluators. Young age group labels
(baby, child, youth) are close to a random accuracy and additionally often have a small
precision. This is also observed e.g. for frowning, chubby, curly hair, wavy hair, bangs,
goatee, and square face. Moreover, labels for attractive man are mostly placed on female
faces. In general, there is a big mismatch between the labels of LFW and the annotations
of the human evaluators. The accuracy for most attributes is below 80% and only 5 out of
76 attributes have an accuracy of over 90%. Over all attributes this leads to an accuracy
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of 72%, a precision of 61%, and a recall of 84%. The high gap between the low precision
and the relatively high recall indicates that there are a lot of falsely positive annotated
labels in LFW.

CelebA The attribute performance for CelebA is shown in Table 3.4. It has labels for 40
binary attribute, which is a lower number then LFW. However, these annotations are of
much higher quality. Only 2 attributes have an accuracy of less than 70% and 14 attributes
even reach over 90%. Over all attributes, the accuracy is 85%, the precision is 83%, and
the recall is 89%. Similar to LFW, there is a tendency that most of the wrong labels are
within in the positives.

MAAD-Face Table 3.2 shows the attribute performance of MAAD-Face. MAAD-Face
has labels for 47 binary attributes. In the evaluation against the human annotations, 3
attributes reach a performance of below 70%. However, also 34 attributes reach over 90%
accuracy with the majority of close to 100%. Over all attributes, this leads to an accuracy
of 91%, a precision of 87%, and a recall of 94%.

Summary In Table 3.1 the properties of the investigated databases are shown including
the overall performance of our annotation-correctness study. Although LFW provides the
highest number of binary attributes, it provides the lowest number of attribute labels with
the lowest annotation qualities. Only 72% of the investigated labels match the annotations
of the human evaluators. CelebA consists of 40 binary labels with a total of 8.0M attribute
annotations. Moreover, with an accuracy of 85%, the quality of these annotations is
significantly higher. In terms of the number of labels and label-quality, MAAD-Face
exceeds the other databases. It provides 47 binary attributes with a total of 123.9M
labels. This is 15 times higher than CelebA and 137 times higher than LFW. Moreover,
the labels quality (in terms of accuracy, precision, and recall) is significantly higher than
the other databases. 91% of the MAAD-Face labels match the annotations of human
evaluators. Consequently, MAAD-Face provides significantly more and higher-quality
attribute annotations.

Labels-Transfer Pipeline

We will present one of the main contributions of this work, a novel label-transfer pipeline
that is able to create highly reliable and accurate attribute annotations. We will explain this
pipeline based on the example of the MAAD-Face annotations database. The MAAD-Face
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database that was created by transferring the labels of CelebA and LFW on the images of
VGGFace2.

An overview of the proposed label-transfer pipeline is shown in Figure 3.11. The
pipeline consists of five steps that aim to transfer the labels of source-databases to the
target database.

1. A massive attribute classifier (MAC) is trained on the training-part of the source-
datasets. Besides making predictions about the estimated labels of a given image,
the MAC is able to additionally providing a reliability statement that states the
model’s prediction confidence for each label.

2. The MAC predicts the labels on the test-part of the source-datasets including the
prediction reliabilities.

3. Based on this performance, the reliability threshold for each attribute is determined.
Moreover, a performance-reliability mapping is calculated that allows assigning an
attribute reliability with its expected correctness (performance).

4. The MAC predicts the attribute labels as well as the corresponding reliabilities for
each image in the target-dataset. Predicted labels below the attribute threshold will
be rejected to guarantee a high-quality of the transferred source annotations.

5. Finally, the source annotations (with their reliabilities) are aggregated using the
corresponding performance-reliability mapping. If the source annotations for an
image produces different labels, the label is used as the target label that has the
higher expected correctness.

In the following, we describe how (a) the MAC training procedure is conducted on the
source-datasets, (b) the prediction reliability statements of the MAC are calculated, and
(c) how this results in the final labels for target-database.

Massive Attribute Classifier (MAC) To transfer the labels for each attribute from source
databases to a target database, we (a) train a MAC jointly on all attributes of a source-
database to make use of a shared embedding space and (b) construct the MAC such that
it is able to produce accurate reliability measures for each attribute-label prediction.
The MAC is a neural network that is trained to predict the attributes of the source-

dataset. The network architecture is chosen to maximize the prediction accuracy. As it
will be demonstrated in Section 3.2.2, the only requirement for the MAC is trained with
at least one dropout-layer [Sri+14]. We will need this layer to determine the reliability of
a prediction. Each source-database is subject-exclusively divided into an 80% training set
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Figure 3.11.: Overview of the proposed label-transfer pipeline. For each source dataset,
(1) a MAC is trained on the training part of a source dataset. (2) The MAC
produces predictions and prediction reliabilities on the test set. (3) These
are used to determine the reliability thresholds per attribute and to calculate
the performance-reliability mapping. (4) The MAC and the reliability thresh-
olds are used to create (source) attribute annotations for the target dataset.
Finally, (5) the source annotations fromeach source dataset are aggregated
using the corresponding performance-reliability mappings to construct the
final target labels for the target dataset.

and a 20% test set. A separate MAC is trained for each source-training set. To construct
MAAD-Face, we use VGGFace2 as the target-database and CelebA and as source-databases
for training two MACs.

In the following, we describe the structure and the training details of the MAC, as well
as the data cleaning process used. As we demonstrated in Section 3.2.2, many labels of
LFW are wrongly assigned. To prevent a confusion of the MAC trained on these labels, we
filter out labels that are wrongly assigned with a high probability.

MAC training Generally, the training of the MAC can vary and should be task and data-
dependent. In order to prepare the MAC for our label-transfer pipeline, it needs to be
trained with at least one dropout-layer [Sri+14] and consists of a soft-max layer as the
output.
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For the construction of MAAD-Face, we build the MAC on the templates of face images.
As shown in [Ter+20a], one can easily and accurately predict many attributes from such
templates. Based on these results, we trained a neural network model on FaceNet [SKP15]
embeddings to jointly predict multiple attributes of the source-database. However, a MAC
can also be trained end-to-end or by fine-tuning an existing network. The utilized network
structure follows the one used in [Ter+20a]. It consists of two initial layers, the input layer
of size nin and the second dense layer of size 512. The size of the utilized face embedding
is denoted by nin and for our FaceNet model4 refers to 128 dimensions. Starting from the
second layer, each attribute a has an own branch consisting of two additional layers of
size 512 and n

(a)
out, where n

(a)
out refers to the number of classes per attribute. Each layer has

a ReLU activation, except for the output-layers. These have softmax activations. Moreover,
Batch-Normalization [IS15] and dropout [Sri+14] (pdrop = 0.5) is applied to every layer.
The dropout allows to generalize the performance but also enables us to derive reliability
statements about the predictions as we will describe in Section 3.2.2. The training of the
MAC was done in a multi-task learning fashion by applying a categorical cross-entropy
loss for each attribute branch and use an equal weighting between each of these attribute-
related losses. For the training, an Adam optimizer [KB14] was used with e = 200 epochs,
an initial learning rate α = 10−3, and a learning-rate decay of β = α/e. The parameter
choices followed [Ter+20a]. The batch size b was chosen according to the amount of
available training data, b = 1024 for CelebA and b = 16 for LFW.

Cleaning training attribute labels For the label-transfer pipeline, this step is only neces-
sary if a source-database consists of attribute annotations of low quality. As we demon-
strated in Section 3.2.2, this is the case for LFW. However, the quality of the input data
of a model is important for the quality of its output data [Gei+20]. Therefore, in this
section, we will describe a label-cleaning process that was used on the LFW dataset.
While in CelebA the attributes are of binary nature, the labels in LFW originate from

the prediction probabilities of a binary classifier [Hua+07]. Therefore, these labels are
continuous and measure the degree of the attribute [Kum+09; Kum+11]. Positive values
represent "true" labels and negative values represent "false" labels. However, using the
prediction probabilities of a binary classifier does not necessarily reflect the correctness of
the prediction as shown in recent works [Guo+17; KL15; NYC14]. Consequently, a wide
range of the LFW labels centred around a value of zero is unreliable.

To ensure that our MAC learns on meaningful LFW-labels, we manually removed these
centred labels as described in [Ter+20a]. Therefore, we assigned an upper and lower
score threshold for each attribute. Images with a score over the upper threshold are
4https://github.com/davidsandberg/facenet
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assigned as true, images with a score under the lower threshold are assigned as false,
images with scores within the range are rejected. The upper and lower thresholds for
one attribute are manually determined by moving potential thresholds away from zero.
At each potential threshold, ten images with the closest attribute scores are investigated.
Here, the original LFW labels of the images are manually investigated for correctness. If
only eight or fewer attributes are investigated as correct, the potential threshold is further
moved away from the starting point and the procedure is repeated. If a potential threshold
returns images with 9 or more correct labels, it is chosen as the limit. Repeating this over
all attributes will result in a lower and an upper threshold for each of these attributes. By
binaryzing the scores with these upper and lower thresholds, reduces the amount of labels
by 51,7%. However, it also ensures an error-minimizing data basis of the MAC. Thus, it
allows us to train the MAC on meaningful and mostly correctly labelled data.

Deriving reliability statements To ensure that the target-database will only get annota-
tions of high quality, the prediction reliability is additionally estimated for each prediction
(target-label). Therefore, we follow the methodology described in Section 3.2.1 [Ter+19d]
to enable our MAC to accurately state its own prediction confidence (reliability). To derive
the reliability statement additionally to an attribute prediction, m = 100 stochastic for-
ward passes are performed. In each forward pass, a different dropout-pattern is applied,
resulting in m different softmax outputs v(a)i for each attribute a. Given the outputs of the
m stochastic forward passes of the predicted class ĉ denoted as x(a) = v

(a)
i,ĉ , the reliability

measure is given as

rel(x(a)) =
1− α

m

m∑︂
i=1

x
(a)
i −

α

m2

m∑︂
i=1

m∑︂
j=1

|x(a)i − x
(a)
j |,

with α = 0.5, following the recommendation in [Ter+19d]. The first part of the equation
is a measure of centrality and utilizes the probability interpretation of the softmax output.
A higher value can be interpreted as a high probability that the prediction is correct. The
second part of the equation is the measure of dispersion and quantifies the agreement
of the stochastic outputs x. In [Ter+19d], this was shown to be an accurate reliability
measure.

Attribute label generation We combine the MAC models of the source-datasets and the
reliability measure to create high-quality target annotations. First, we will describe how
to set the reliability thresholds for each attribute and MAC. Then, we will describe how
this can be used to create the annotations on the target-dataset.
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Defining reliability thresholds For each source-database, a MAC modelM was already
trained on the training-part as described in Section 3.2.2. Now, the MAC predicts the
source-annotations on the test-part including the prediction reliabilities. Moreover, the
MAC repeats this step on the target-database. For each attribute a of the source-database,
the reliability threshold thr(a)Source is chosen such that the (balanced) prediction accuracy
of a is over accmin% and at least dmin% of the target-samples are over this threshold.
Consequently, accmin defines the quality of the target-labels while dmin define the amount
of the labels in the target-database. If an attribute does not acomplish this requirement,
the attribute is discarded.

For the creation of MAAD-Face, we set accmin = 90% and dmin = 50% to receive a large
number of high-quality annotations. This results in manually chosen reliability thresholds
thr(a)CelebA and thr(a)LFW for each attribute a ∈ A.

Creating target-labels After defining the reliability thresholds for each MAC and at-
tribute a ∈ A, we can create the target-annotations. Therefore, each MAC computes its
predictions pSource and prediction reliabilities rSource on the target-dataset. The prediction
True is defined as 1, the prediction False is defined as -1. If an attribute-prediction p

(a,i)
Source

for an image i has a prediction-reliability below the threshold r
(a,i)
Source < thr(a)Source, the

annotation is set to 0 (undefined). In this case, the MAC is not confident enough about its
prediction and rejecting these predictions guarantee high-quality remaining labels. For
each source-dataset, this procedure results in a set of labels lSource for the target dataset
images. Finally, this set of labels have to be combined to create the target-annotations. If
an attribute just appears in one of the source-datasets, the source-labels lSource are directly
used for the target-dataset. If an attribute appears in multiple source-datasets, we have to
decide which label to use as the target-annotation. In this case, the reliability rSource is
mapped back to the performance of the test set acc(rSource) and the label assigned with
the highest map-back performance is used for the target-annotation. Please note that
such a decision can not be made based on the reliability-level only since the range of
the reliability values vary between each MAC. Mapping back the reliability values to the
test-set performances allow an aligned comparison of the label-quality.

Algorithm 1 summarizes the label generation procedure. The inputs are the predictions
{pSource}, the corresponding reliabilities {rSource}, the reliability thresholds {thrSource},
as well as a set of all attribute A. The output of the algorithm is the annotations lTarget of
the target-dataset. The transfer function transforms the predictions pSource into the source-
labels lSource based on the prediction reliabilities rSource and the corresponding attribute
reliability thresholds thrSource. If an attribute appears in multiple source databases, the
highest function maps back the reliability to the test-set performance acc(r

(a,i)
Source) and
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returns the label l(a,i)Source with the highest map-back performance.
The last step (obtainPlausability) performs a plausibility check including required

corrections, given the target labels lTarget, the attributesA, and the corresponding attribute
classes. For each attribute, at maximum one class can be true. For instance, for the
attribute gender, either the class male or female can be true. A list of the attributes with
the corresponding classes is shown in Table 3.2. Due to this restriction, we set all attribute
class labels for an image i to undefined (0) if more than one attribute class showed true
before. This aims at maintaining high-quality labels.

Algorithm 1 - Label Generation
Input: {pSource}, {rSource}, {thrSource},A
Output: Target-dataset labels lTarget
1: for a ∈ A do
2: for each source dataset do
3: l

(a)
Source ← transfer(p(a)Source, r

(a)
Source, thr

(a)
Source)

4: end for
5: end for
6: lMAAD = zeros(|A|, |I|)
7: for a ∈ A do
8: for i ∈ I do
9: l

(a,i)
Target ← highest({l(a,i)Source}, {acc(r

(a,i)
Source)})

10: end for
11: end for
12: lTarget ← obtainPlausibility(lTarget,A)
13: return lTarget

MAAD-Face Statistics

The biggest advantage of MAAD-Face is its large number of high-quality attribute labels.
Since it builds on the VGGFace2 database, it consists of over 9.1k identities with over
3.3M face images of various poses, ages, and illuminations. MAAD-Face has labels for 47
distinctive attributes with a total of 38.3M labels. On average 37.5± 3.7 labels are defined
per image. Figure 3.12 shows the label distribution of MAAD-Face for all 47 attributes.
For each attribute, green indicates the percentage of positive labels, red indicates the
percentage of negatively labelled images, and grey represents the percentage of images
with undefined labels. Some attributes have a low number of positive labels, such as
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Figure 3.12.: Label distribution of the proposed databaseMAAD-Face. For each of the 47
attributes, green indicates the percentage of positive labels, red indicates
the percentage of negatively labelled images, and grey represents the per-
centage of images that have an undefined label for the attribute.

Mustache (16.6k) or Goatee (9.2k) and instead, a higher number of undefined labels. This
way, we can ensure high correctness of the labels as explained in Section 3.2.2 (accuracy
Mustache 98%, accuracy Goatee 95%). In total, this leads to MAAD-Face having 23.1%
positive, 56.6% negative, and 20.3% undefined labels. A list of all attributes with the
correctness analysis was already discussed with Table 3.2 in Section 3.2.2. The high
quality of the attribute labels is also observable in Figure 3.13. There, five random sample
images are shown with their corresponding attribute labels.

Interim Conclusion

This section presented three contributions: (1) A novel annotation transfer pipeline is
proposed that allows to transfer attribute labels of high accuracy from multiple source-
datasets to a target-dataset. This pipeline is used to create MAAD-Face. (2) MAAD-Face is
a novel face annotations database that provides over 3.3M faces with 123.9M annotations
of 47 different attributes. To the best of our knowledge, MAAD-Face is the publicly
available database that provides the largest number of attribute annotations. (3) The
correctness of the attribute labels of three relevant annotated face databases, CelebA,
LFW, and MAAD-Face are evaluated. This evaluation was performed manually by three
human evaluators and demonstrated that the attribute annotations of MAAD-Face are of
significantly higher quality than related databases. In the next section, MAAD-Face will
be used to analyse the influence of soft-biometric attributes on face recognition systems.
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Figure 3.13.: Samples images from MAAD-Face with the corresponding 47 attribute-
labels.
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Table 3.2.: Attribute label quality analysis of MAAD-Face. Main source describes from
which dataset most of the labels are transferred from.

Main source Category Attribute Class Accuracy Precision Recall
CelebA Demographics Gender Male 0.99 0.98 1.00
CelebA Age Young 0.99 1.00 0.98
LFW Middle Aged 0.93 0.98 0.89
LFW Senior 0.97 0.96 0.98
LFW Race Asian 0.90 0.88 0.92
LFW White 0.89 1.00 0.82
LFW Black 0.94 0.90 0.98
CelebA Skin Rosy Cheeks Rosy Cheeks 0.99 0.98 1.00
LFW Shiny Skin Shiny Skin 0.77 0.84 0.74
CelebA Hair Hairstyle Bald 0.96 0.92 1.00
CelebA Wavy Hair 0.99 1.00 0.98
CelebA Receding Hairline Receding Hairline 0.77 0.54 1.00
CelebA Bangs Bangs 0.98 0.96 1.00
CelebA Sideburns Sideburns 0.93 0.88 0.98
CelebA Haircolor Black Hair 0.98 0.96 1.00
CelebA Blond Hair 1.00 1.00 1.00
CelebA Brown Hair 0.97 0.94 1.00
CelebA Gray Hair 0.95 0.90 1.00
CelebA Beard Beard No Beard 0.98 1.00 0.96
CelebA Mustache 0.98 0.98 0.98
CelebA 5 o Clock Shadow 0.97 0.94 1.00
CelebA Goatee 0.95 0.90 1.00
LFW Face Geometry Face Shape Oval Face 0.81 0.90 0.76
LFW Square Face 0.80 0.78 0.81
LFW Round Face 0.69 0.56 0.76
CelebA Double Chin Double Chin 0.94 0.88 1.00
CelebA High Cheekbones High Cheekbones 0.92 0.92 0.92
CelebA Chubby Chubby 0.94 0.88 1.00
LFW Forehead visibility Obstructed Forehead 0.91 0.94 0.89
LFW Fully Visible Forehead 0.80 0.75 1.00
LFW Periocular Brown Eyes Brown Eyes 0.68 0.44 0.85
LFW Bags Under Eyes Bags Under Eyes 0.68 0.40 0.91
CelebA Bushy Eyebrows Bushy Eyebrows 0.95 0.94 0.96
CelebA Arched Eyebrows Arched Eyebrows 1.00 1.00 1.00
LFW Mouth Mouth Closed Mouth Closed 0.84 0.80 0.87
CelebA Smiling Smiling 0.95 1.00 0.91
LFW Big Lips Big Lips 0.70 0.50 0.83
CelebA Nose Nose type Big Nose 0.97 0.98 0.96
LFW Pointy Nose 0.88 0.88 0.88
CelebA Accessories Heavy Makeup Heavy Makeup 0.98 0.98 0.98
CelebA Wearing Hat Wearing Hat 0.92 0.84 1.00
CelebA Wearing Earrings Wearing Earrings 0.83 0.70 0.95
LFW Wearing Necktie Wearing Necktie 0.91 0.84 0.98
CelebA Wearing Lipstick Wearing Lipstick 0.95 0.90 1.00
LFW Eyeglasses No Eyewear 0.98 0.98 0.98
CelebA Eyeglasses 0.90 0.80 1.00
CelebA Other Attractive Attractive 1.00 1.00 1.00

Total 0.91 0.87 0.94
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Table 3.3.: Attribute label analysis of LFW based on the ground truth of three human
evaluators. The annotation quality is reported in terms of accuracy, precision,
and recall.

Class Acc Precision Recall
Male 0.89 0.96 0.84
Asian 0.86 0.74 0.97
White 0.74 0.98 0.66
Black 0.91 0.84 0.98
Baby 0.54 0.08 1.00
Child 0.55 0.10 1.00
Youth 0.56 0.14 0.88
Middle Aged 0.67 0.90 0.62
Senior 0.87 0.94 0.82
Black Hair 0.78 0.88 0.73
Blond Hair 0.91 0.84 0.98
Brown Hair 0.70 0.60 0.75
Bald 0.74 0.50 0.96
No Eyewear 0.91 0.98 0.86
Eyeglasses 0.91 0.88 0.94
Sunglasses 0.86 0.72 1.00
Moustache 0.84 0.72 0.95
Smiling 0.87 0.80 0.93
Frowning 0.61 0.22 1.00
Chubby 0.53 0.16 0.62
Blurry 0.69 0.90 0.63
Harsh Lighting 0.64 0.92 0.59
Flash 0.73 0.66 0.77
Soft Lighting 0.75 0.66 0.80
Outdoor 0.83 0.82 0.84
Curly Hair 0.51 0.02 1.00
Wavy Hair 0.50 0.08 0.50
Straight Hair 0.60 0.78 0.54
Receding Hairline 0.75 0.62 0.84
Bangs 0.54 0.08 1.00
Sideburns 0.61 0.40 0.69
Fully Visible Forehead 0.79 1.00 0.70
Partially Visible Forehead 0.82 0.80 0.83
Obstructed Forehead 0.62 0.24 1.00
Bushy Eyebrows 0.64 0.42 0.75
Arched Eyebrows 0.79 0.80 0.78
Narrow Eyes 0.69 0.46 0.85

Class Acc Precision Recall
Eyes Open 0.73 0.96 0.66
Big Nose 0.75 0.54 0.93
Pointy Nose 0.80 0.82 0.79
Big Lips 0.73 0.56 0.85
Mouth Closed 0.86 0.82 0.89
Mouth Slightly Open 0.79 0.88 0.75
Mouth Wide Open 0.93 0.88 0.98
Teeth Not Visible 0.86 0.78 0.93
No Beard 0.69 1.00 0.62
Goatee 0.62 0.24 1.00
Round Jaw 0.77 0.76 0.78
Double Chin 0.66 0.34 0.94
Wearing Hat 0.69 0.40 0.95
Oval Face 0.59 0.78 0.57
Square Face 0.55 0.12 0.86
Round Face 0.81 0.72 0.88
Color Photo 0.57 1.00 0.54
Posed Photo 0.64 0.32 0.89
Attractive Man 0.62 0.26 0.93
Attractive Woman 0.75 0.50 1.00
Indian 0.65 0.32 0.94
Gray Hair 0.89 0.94 0.85
Bags Under Eyes 0.75 0.76 0.75
Heavy Makeup 0.88 0.76 1.00
Rosy Cheeks 0.63 0.30 0.88
Shiny Skin 0.66 0.44 0.79
Pale Skin 0.82 0.90 0.78
5 o Clock Shadow 0.59 0.18 1.00
Strong Nose-Mouth Lines 0.86 0.88 0.85
Wearing Lipstick 0.81 0.64 0.97
Flushed Face 0.61 0.28 0.82
High Cheekbones 0.81 0.70 0.90
Brown Eyes 0.44 0.46 0.44
Wearing Earrings 0.79 0.58 1.00
Wearing Necktie 0.76 0.66 0.83
Wearing Necklace 0.61 0.22 1.00
Total 0.72 0.61 0.84
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Table 3.4.: Attribute label analysis of CelebA based on the ground truth of three human
evaluators. The annotation quality is reported in terms of accuracy, precision,
and recall.

Class Acc Precision Recall
5 o Clock Shadow 0.85 0.74 0.95
Arched Eyebrows 0.89 0.92 0.87
Attractive 0.81 0.74 0.86
Bags Under Eyes 0.80 0.80 0.80
Bald 0.84 0.68 1.00
Bangs 0.75 0.50 1.00
Big Lips 0.73 0.84 0.69
Big Nose 0.79 0.86 0.75
Black Hair 0.87 0.96 0.81
Blond Hair 0.94 0.94 0.94
Blurry 0.88 0.78 0.98
Brown Hair 0.90 0.88 0.92
Bushy Eyebrows 0.81 0.78 0.83
Chubby 0.83 0.66 1.00
Double Chin 0.76 0.58 0.91
Eyeglasses 0.96 0.92 1.00
Goatee 0.93 0.94 0.92
Gray Hair 0.98 0.98 0.98
Heavy Makeup 0.90 0.92 0.88
High Cheekbones 0.88 0.86 0.90
Male 1.00 1.00 1.00
Mouth Slightly Open 0.90 0.88 0.92
Mustache 0.95 0.94 0.96
Narrow Eyes 0.86 0.82 0.89
No Beard 0.91 1.00 0.85
Oval Face 0.62 0.92 0.58
Pale Skin 0.85 0.92 0.81
Pointy Nose 0.83 0.94 0.77
Receding Hairline 0.66 0.38 0.86
Rosy Cheeks 0.78 0.70 0.83
Sideburns 0.84 0.88 0.81
Smiling 0.94 0.92 0.96
Straight Hair 0.83 1.00 0.75
Wavy Hair 0.82 0.66 0.97
Wearing Earrings 0.93 0.88 0.98
Wearing Hat 1.00 1.00 1.00
Wearing Lipstick 0.91 0.90 0.92
Wearing Necklace 0.86 0.80 0.91
Wearing Necktie 0.85 0.72 0.97
Young 0.75 0.52 0.96
Total 0.85 0.83 0.89

61



3.3. Investigating Bias in Face Recognition

3.3.1. Introduction

Recent works [Orc16; AZN18; FPO02; Phi+11; BG18; Gar+16] showed that current face
recognition solutions possess demographic-biases leading to discriminatory performance
differences based on the user’s demographics. Driven by these findings, several approaches
were proposed to mitigate demographics-bias in face recognition technologies. This was
achieved through adversarial learning [GLJ19; Lia+19], margin-based approaches [WD19;
Hua+18], data augmentation [Wan+19; Kor+19; Yin+19], metric-learning [Ter+20i],
or score normalization [Ter+20f]. However, the strong research focus on demographic-
bias does only tackle a minor proportion of all possible discriminatory effects. Without
knowing the influence of all facial attributes on the face recognition performance, an
accurate and non-discriminatory face recognition system might not be possible.

This section is based on Terhörst et al. [Ter+21b] and aims at the necessity of investi-
gating the face recognition bias based on a wide range of attributes beyond demographics
to answer RQ2. To be precise, we analyse the performance differences of two popular face
recognition models (FaceNet [SKP15] and ArcFace [Den+19]) with regard to 47 attributes.
The experiments are conducted on the MAAD-Face5 database [Ter+20b; Cao+18] from
Section 3.2.2. It consists of over 3.3M face images with over 120M high-quality attribute
annotations. For the experiments, several decision thresholds are taken into account to
cover a wide range of applications. To prevent misinterpretations of the results origin from
testing data with (a) unbalanced label distributions or (b) attribute correlations, we (a)
introduce control groups to derive a validity value for the recognition performance in the
presence of a specific attribute and (b) analyse the pairwise correlations of the attribute
annotations. While (a) allows us to quantify results that arise from unbalanced testing
data and prevent falsified statements about the attribute-related bias, (b) emphasize if an
attribute bias might originate from a different (correlated) attribute. Besides a detailed
analysis, we present a visual summary that states the performance difference between
samples with and without a specific attribute over the validity of the results. This aims to
present the results in a compact and simply understandable manner.

The results support the findings of previous works stating that face recognition systems
have to deal with demographic-biases. However, the results demonstrate that also many
of the non-demographic attributes strongly affect the recognition performance, such
as accessories, hairstyles and -colors, face shapes, or facial anomalies. Investigating
two face recognition models that differ only in the loss function used during training,
we showed the effect of the underlying training principles on recognition. While the
5https://github.com/pterhoer/MAAD-Face
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triplet-loss based FaceNet model showed attribute-related performance differences that
are relatively constant on several decision thresholds, the angular margin based ArcFace
model showed performance differences that are often dependent on the used decision
threshold. The many performance differences affected by attributes could be explained
through the attribute’s relation to the visibility of a face, the temporal variability, and
the degree of abnormality. However, our experiment also reveals many surprising results
that future work have to address. Our findings strongly demonstrate the need for further
advances in making face recognition systems more robust, explainable, and fair. This
section demonstrates the strong need for the development of generalized bias-mitigating
face recognition solutions motivating the proposed solutions in Chapter 4.

3.3.2. Related Work

The phenomena of bias in face biometrics were found in several disciplines such as
presentation attack detection [Fan+20], the estimation of facial characteristics [Ter+19d;
DDB18], and the assessment of face image quality [Ter+20g]. In general, one of the main
reason for bias might be the induction of non-equally distributed classes in training data
[Kor+19; Hua+18] that leads to differences in the recognition performance and thus,
might have an unfair impact, e.g. on specific subgroups of the population. Previous works
on bias in face recognition [Dro+20] mainly focused on the influence of demographics.
However, in Section 3.5 we demonstrated that more (non-demographic) characteristics are
stored in face templates that might have an impact on the face recognition performance.
In the following, we will shortly discuss related works on estimating bias in face biometrics.
A overview of related work on bias-mitigation is shown in Section 4.2.

Estimating Bias in Face Recognition

In recent years, several works have been published that demonstrated the influence of
demographics on commercial and open-sources face recognition algorithms. Studies
[JBS15; MYM18; DNJ18; Sri+19b] analysing the impact of age demonstrated a lower
biometric performance on faces of children. Studies [Ver+19; AZB20; AB20] analysing the
effect of gender on face recognition showed that the recognition performance of females
is weaker than the performance on male faces. Experiments without unbalanced data
distributions and with an unbalanced towards female faces resulted in similar results
[AZB20]. In [AB20], experiments with a PCA-decomposition showed that females faces
are intrinsically more similar than male ones. Research analysing the impact of the user’s
ethnicity showed faces of ethnicities which were under-represented in the training process
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perform significantly weaker. The same was found for darker-skinned cohorts in general
[Kri+20].

More recent studies [Kla+12; Sri+19a; Coo+19; HT19; Cav+19; HSV19a; Rob+20;
GNH19b; Bal+20] focused on jointly investigating the effects of user demographics on face
recognition. These studies showed that the effects lead to an exponential face recognition
error increase when facing the same biased race, gender, and age factors [HSV19a].
Particular attention deserves the Face Recognition Vendor Test (FRVT) [GNH19b], a large-
scale benchmark of commercial algorithms analysing the face recognition performance
with regards to demographics. They consistently elevated false positives for female subjects
and subjects at the outer ends of the age spectrum.

How This Work Contributes to State-of-the-Art

So far, the majority of research in estimating bias in face recognition focused on demo-
graphic factors, such as age, gender, and race. However, to achieve a generally accurate
and fair face recognition model, it is necessary to know all potential origins of performance
differences. Therefore, this section aims at closing this knowledge gap by analysing the
performance differences on a much wider attribute range than previous works. More
precisely, this work investigates the influence of 47 attributes on the face recognition
performance of two popular face embeddings.

3.3.3. Experiments on Measuring Differential Performance

Database and Considered Attributes

To get reliable statements on the effect of different attributes on face recognition, we
need a database that (a) provides a high number of face images with (b) many attribute
annotations of (c) high quality. For the experiments, we choose the publicly available
MAAD-Face6 database [Ter+20b; Cao+18] since this database fulfils our experimental
requirements. MAAD-Face provides over 120M high-quality attribute annotations of 3.3M
face images of over 9k individuals. It provides annotations for 47 distinct attributes of
various kinds such as demographics, skin types, hair-styles and -colors, face geometry,
annotations for the periocular, mouth, and nose area, as well as annotations for accessories.
An exact list of the annotation attributes can be obtained from Table 3.5 and 3.6. The
attribute annotations proofed to have a higher quality than comparable face annotation
databases [Ter+20b].

6https://github.com/pterhoer/MAAD-Face
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Face Recognition Models

For the experiments, we use two popular face recognition models, FaceNet [SKP15] and
ArcFace [Den+19]. To create a face embedding for a given face image, the image has to be
aligned, scaled, and cropped. Then, the preprocessed image is passed to a face recognition
model to extract the embeddings. For FaceNet, the preprocessing is done as described
in [KS14]. To extract the embeddings, a pretrained model7 was used. For ArcFace, the
image preprocessing was done as described in [Guo+18] and a pretrained model8 is used,
which is provided by the authors of ArcFace. Both models use a ResNet-100 architecture
and were trained on the MS1M database [Guo+16]. The identity verification is done by
comparing two embeddings using cosine-similarity.

Evaluation Metrics

The face verification performance is reported in terms of (a) false non-match rates (FNMR)
at a fixed false match rate (FMR) and (b) equal error rates (EER). The EER equals
the FMR at the threshold where FMR = 1−FNMR and is well known as a single-value
indicator of the verification performance. The used error rates are specified for biometric
verification evaluation in the international standard [16]. In the experiments, the face
verification performance is reported on three operating points to cover a wide range of
potential applications. This includes EER, as well as, the FNMR at 10−3 and 10−4 FMR
as recommended by the best practice guidelines for automated border control of the
European Boarder Guard Agency Frontex [Fro17]. For each operating point and attribute,
the verification performance is computed on all samples with positive and all samples
with negative annotations. This will allow to compare the performance differences of face
embeddings regarding binary attributes, such as bald vs non-bald faces.

Control Groups

During the experiments, the number of testing samples with positive and negative labels
might be significantly different. To prevent misleading conclusions from such unbalanced
annotation distributions, we introduce positive and negative control groups for each
attribute. For each attribute, six positive and negative control groups are created by
randomly selecting samples from the database. This control group creation is done such
that the synthetic control groups have the same number of samples as their positive and
negative counterparts.
7https://github.com/davidsandberg/facenet
8https://github.com/deepinsight/insightface
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Comparing the verification performance of the positive and negative control groups
allow us to state the validity of our (real) attribute performance. If the performances of
the negative and positive control groups is very similar, the (real) attribute recognition
performance is treated as valid. In this case, the unbalanced testing data distribution
shows no effect on the performance. If the relative performance of the control groups differ
strongly, the recognition performance might be significantly affected from unbalanced
distribution of the positively and negatively annotated samples. Consequently, the (real)
attribute recognition performance might be affected as well and statements about the
influence of this attribute on the recognition are of low validity. In the experiments, the
validity val of an attribute a

val(a) = 1−
err

(+)
control(a)

err
(−)
control(a)

, (3.4)

is defined over the relative performance differences between the control groups. The terms
err

(+)
control(a) and err

(−)
control(a) represent the recognition errors of the positive (+) and the

negative (−) control groups of attribute a. For the experiments, we consider attributes
with a validity of < 0.9 as not valid. However, we will also present the performance
differences with the corresponding validity values such that the readers are able to choose
more suitable validity threshold for their applications.

Investigations

To analyse the influence of different attributes on the recognition performance of two
popular face recognition models, the investigations are divided into five parts.

1. A correlation analysis between the attribute annotations is performed to emphasizes
if an attribute bias might originate from correlated attribute annotations.

2. For each attribute, the recognition performance of its positively- and negatively-
labelled attribute groups are compared to investigate the influence of this attribute
on the recognition performance. The results are discussed in the context of the
corresponding validity values to avoid misinterpretations occurring from unbalanced
testing data.

3. A visual summary is provided that relates the impact of the attributes on the face
recognition systems to the validity of the results. This aims at providing an compact
and easily-understandable overview of the findings of this work.
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4. We discuss possible explanations causing the performance differences and highlight
behaviours of the face recognition systems that remain unclear.

5. Lastly, we use the observations to derive future research challenges for face recogni-
tion systems.

3.3.4. Results

Investigating the Correlation of Attribute Annotations

To understand the quality of the used labels and potential biases in the attribute space,
Figure 3.14 shows a selection of specific attribute-label correlations. The attributes are
chosen to show the 15 most positive and negative pairwise correlations. It can be seen that
Wearing Lipstick, Wearing Earrings, Heavy Makeup, Young, and Attractive correlates highly
positively with Arched Eyebrows, Wavy Hair, and Rosy Cheeks. In contrast, these attributes
correlates negatively with Square Face, Male, and Bags Under Eyes. These correlations have
to be considered when comparing the performance differences for the different attributes.
However, the correlation matrix also approves the quality of some labels that semantically
excludes each other. For instance, 5 o Clock Shadow negatively correlates with No Beard
and Eyeglasses negatively correlates with No Eyewear.

The Impact of Facial Attributes on Recognition

The main contribution of this work is an analysis of the effect of 47 distinct attributes on
two popular face recognition models. This aims at investigating model biases. For each
attribute, the face verification performance is calculated on positively-labelled samples, as
well as on negatively-labelled samples. This is done on three operating points as explained
in Section 3.3.3. The relative performance between the positive and negative groups allows
to investigate potential biases of the face recognition model towards the analysed attribute.
To determine if performance differences result from unbalanced data distributions we
introduced control groups as explained in Section 3.3.3.
In Tables 3.5, 3.6, 3.7, 3.8, 3.9 and 3.10 the performance of the positive and negative

class is shown for each attribute. The performance of the annotated data is referred as
Real while the performance of the control groups is referred as Control. The relative
performance (Rel. Perf.) shows the relative performance difference between the positive
and negative attribute classes. If the relative performance between the control classes are
below 10% (val ≥ 0.9), the result is considered as valid (green highlighting). Otherwise,
the result is considered as not valid indicated by a grey highlighting. Positive values for
the relative performance of an attribute represents a positive effect of the attribute on
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Figure 3.14.: Compressed annotation correlations of the used MAAD-Face database.
The attributes are chosen such that the 15 most positive and negative pair-
wise are visible. Green indicate positive correlations, while red indicate a
negative correlation. The correlation is based on the Pearson coefficient.
When interpreting the results fromSection 3.3.4 highly-correlated attributes
should be considered to prevent misinterpretations.

the face recognition performance. Negative values indicate a negative influence of the
attribute on the recognition performance. In the following, we present the results of our
study on bias on FaceNet and ArcFace embeddings.

Biases in FaceNet Embeddings The results of our attribute-related study on perfor-
mance differences of the FaceNet model are shown in Table 3.5, 3.6 and 3.7.

Previous works focused on performance differences affected by the user’s demographics.
The results on FaceNet confirms the observations of these works. Demographics strongly
affect the recognition performance. One of the strongest impacts on FaceNet is observed for
ethnicities. For the investigated FaceNet model, Asian and Black faces lead to significantly
lower recognition rates than White faces. Also Young ones perform significantly weaker
than e.g. Middle-aged faces. Concerning gender, we observe that Male face perform better
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then Female ones. These finding are intensively discussed in previous works [AZB20;
AB20]. However, the experimental results show that there are many more aspects that
strongly affect the recognition performance.
One factor leading to performance differences is the user’s hair. While Bald faces and

Receding Hairlines lead to a improved recognition performance, Wavy Hair styles or Bangs
are observed to degrade the performance. This can be explained by the visibility of the
face. In general, Wavy Hair and Bangs are more likely to cover parts of the face while Bald
faces or faces with Receding Hairlines do not occlude part of the faces.

A contrarily observation can be made for facial hair. Faces with No-Beard perform worse
than faces with a beard, such as a 5 o Clock Shadow. A reason for this can be that people
might consider their beard as a part of their identity and preserve it such that it can
be used for recognition. However, it also have to be considered that this performance
difference might come from the correlation of beards with male faces.

Also the color of the hair has an impact on the FaceNet embeddings. While Blond Hair
shows a strongly degraded face recognition performance, Gray Hair leads to the strongest
performances.
The results indicate that the shape of a face only have a minor impact on the face

recognition performance. For Oval Faces, no significant differences to non-oval faces could
be observed. Although, a positive effect on the recognition performance is shown for
Square Faces, in Section 3.3.4 a strong correlation between Square Face and Male was
shown. This might explain the behaviour.
Faces with High Cheekbones, Double Chins, and Chubby faces also perform better for

FaceNet features than the inverted counterparts. Probably because these properties provide
additional information that can be used for recognition. In contrast to this, an Obstructed
Forehead strongly degrades the recognition performance while a Fully Visible Forehead
provides additional (uncovered) information that supports the recognition process.

Anomalous properties in the periocular area, such as Bags Under Eyes, Bushy Eyebrows,
or Arched Eyebrows, lead to better recognition rates compared to face images without
these attributes. The same goes for Big Nose and Pointy Nose.

The reason that Smiling and a Mouth Closed lead to an improvement in the recognition
performance might be explainable through the issue of facial expressions. In [Dam+18d],
the opposite effect was already shown by demonstrating that crazy faces result in compa-
rably low comparison scores.
Interestingly, accessories have a strong influence on the recognition performance of

FaceNet. Wearing Hat, Wearing Earrings, or Eyeglasses degrade the face recognition
performance significantly and might be explained by the fact that these accessories cover
discriminative parts of the face. However, manually checking some images of MAAD-Face
does not support this hypothesis. Consequently, we conclude that FaceNet produces
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less-reliable embeddings when facing such attributes.

Biases in ArcFace Embeddings The results of our attribute-related study on perfor-
mance differences of the ArcFace model are shown in Table 3.8, 3.9 and 3.10.

Previous works focused on performance differences affected by the user’s demographics.
The results on ArcFace partly confirms the observations of these works. Demographics
sometimes have a strongly effect the recognition performance. For the investigated ArcFace
model, Young faces perform weaker than Middle-aged or Senior faces. Interestingly, the
intensively discussed gender bias is strongly dependent on the used decision threshold.
Especially for lower FMRs the performance differences betweenMale and Female increases.
Concerning the ethnic-bias on the ArcFace model, we are not able to confirm the observa-
tions from previous works. For White faces, the performance is significantly higher than
for non-white faces. For Asian and Black faces, a strong degradation in the recognition
performance can be observed. However, we have to consider this results as not valid, since
we can observe strong performance differences on the control groups. This indicates that
these results are strongly influenced by the unbalanced training data.
Similar to FaceNet, the user’s hair shows to have a significant impact on the face

recognition performance. While, Receding Hairlines, Wavy Hair and Sideburns supports the
recognition process, faces with Bangs show a strong degradation. Again, the performance
differences on ArcFace show to be threshold-dependent. For Wavy Hair, the positive effect
on face recognition vanishes for lower FMRs, and for Bangs, the negative effect increases
drastically for higher security settings.
Also the color of the user’s hair have an impact on the recognition performance. Gray

Hair performs significantly above average, while Black Hair performs significantly below
average. Blond Hair and Brown Hair lead to performance differences depending on the
decision threshold. For high FMRs, Blond Hair improves the recognition performance,
while for lower FMRs, the recognition performance changes to below-average. For faces
with Brown Hair, the positive effect on recognition vanishes for lower FMRs.

The effect of wearing a beard on the performance of ArcFace is similar to FaceNet.
Having No Beard decreases the recognition performance and having a beard, such as a 5 o
Clock Shadow, enhances the recognition. These effects magnify for lower FMRs.

On contrast to FaceNet, the face shape determines the recognition performance of
ArcFace. Both, Oval Faces and Square Faces have positive effect on the recognition per-
formance, which is dependent on the utilized decision threshold. Round Faces show a
strongly degraded recognition. However, a large fraction of this performance differences
can be explained by the unbalanced data distribution and thus, we have to neglect the
results for Round Faces.
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Similar to FaceNet, High Cheekbones, Double Chin, Chubby, and a Fully Visible Forehead
lead to improved face recognition performances. While a Fully Visible Forehead refers to
no partial occlusions of the face that might negatively infer, the other attributes provide
anomalous points that might help for recognition.
Surprisingly, faces with Brown Eyes perform drastically weaker than faces with non-

brown eyes. For Bags Under Eyes, Bushy Eyebrows, and Arched Eyebrows, an improved face
recognition performance can be observed. These attributes can be treated as anomalies
and thus, can support the recognition process. The same goes for Big Nose and Pointy
Nose.

Interestingly, a Smiling Face strongly enhanced the face recognition performance. This
might be explained by (a) the fact that many training databases contain Smiling faces
and (b) Smiling faces often appear on posed photos.

Similar to FaceNet, accessories have a strong impact on the performance differences of
ArcFace. While having Heavy Makeup, such as Wearing Lipstick, improves the recognition,
faces with Eyeglasses or Wearing Hat lead to strong degradations in the face recognition
performance. A reason for this might be that people wearing Heavy Makeup perceive this is
part of their identity and will wear this makeup more permanently. Consequently, a person
in the training data might either have no or only Heavy Makeup images. On the other side,
people tend to change their Eyeglasses or (Wearing) Hats more frequently. Moreover, these
attributes might lead to partial occlusions of the face leading to less identity-information
available and thus, to a degraded face recognition performance.
Lastly, the results show that the recognition performance is higher on faces that are

perceived as Attractive compared to faces that are labelled as not attractive. However,
this might be explained by the positive correlation with attribute that showed the same
positive effect, such as Lipstick, Heavy Makeup, and Arched Eyebrows.

Summary

To provide an overview of the findings, Figure 3.15 shows the relative performance
differences on FaceNet and ArcFace features based on the investigated attributes. The
shown relative performance is based on the FMR at 10−3 FNMR as recommended by the
European Boarder Guard Agency Frontex [Fro17]. The validity describes the performance
difference between the positive and negative attribute-related control groups as shown
in Equation 3.4. An attribute performance with a validity of less then 90% is considered
as not valid (grey area) since the unbalanced data annotations might affect the reported
performance. The red area indicates that the recognition performance of the positive
attribute class is significantly weaker than the performance of the negative class. In
contrast, the green area indicates a significant improvement of recognition performance of
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Table 3.5.: FaceNet - Part 1/3. Face recognition performance based on several at-
tributes.

Category Attribute Class EER FNMR@FMR=10−3 FNMR@FMR=10−4

Real Control Real Control Real Control
Demographics Male Positive 6.64% 6.49% 33.28% 32.51% 53.64% 52.44%

Negative 7.87% 6.46% 42.47% 32.40% 62.55% 52.32%
Rel. Perf. 15.56% -0.42% 21.63% -0.35% 14.24% -0.21%

Young Positive 6.91% 6.46% 39.39% 32.39% 60.37% 52.30%
Negative 5.73% 6.47% 28.93% 32.37% 48.97% 52.18%
Rel. Perf. -20.58% 0.12% -36.19% -0.08% -23.27% -0.22%

Middle_Aged Positive 5.41% 6.33% 28.77% 31.70% 48.75% 51.25%
Negative 6.96% 6.48% 36.77% 32.52% 57.70% 52.45%
Rel. Perf. 22.29% 2.33% 21.74% 2.52% 15.52% 2.28%

Senior Positive 6.01% 6.23% 30.26% 31.19% 50.52% 50.52%
Negative 6.69% 6.49% 34.19% 32.54% 54.58% 52.53%
Rel. Perf. 10.16% 3.93% 11.50% 4.16% 7.44% 3.82%

Asian Positive 11.16% 5.91% 69.46% 29.52% 88.48% 48.20%
Negative 6.33% 6.49% 31.91% 32.55% 51.27% 52.54%
Rel. Perf. -76.30% 8.88% -117.66% 9.33% -72.58% 8.28%

White Positive 5.97% 6.48% 31.28% 32.51% 50.15% 52.50%
Negative 7.51% 6.44% 46.82% 32.16% 69.44% 51.94%
Rel. Perf. 20.54% -0.56% 33.18% -1.11% 27.79% -1.07%

Black Positive 8.85% 6.02% 52.50% 30.20% 73.61% 49.32%
Negative 6.61% 6.49% 33.47% 32.54% 53.34% 52.52%
Rel. Perf. -33.98% 7.14% -56.89% 7.19% -37.99% 6.09%

Skin Rosy_Cheeks Positive 1.29% 5.46% 3.76% 26.05% 9.46% 42.72%
Negative 7.36% 6.48% 37.03% 32.51% 57.65% 52.47%
Rel. Perf. 82.42% 15.80% 89.86% 19.87% 83.59% 18.59%

Shiny_Skin Positive 6.08% 6.41% 36.43% 32.05% 57.46% 51.83%
Negative 7.90% 6.47% 41.33% 32.37% 62.43% 52.29%
Rel. Perf. 23.06% 0.85% 11.86% 0.99% 7.97% 0.88%

Hair Bald Positive 5.10% 6.13% 30.52% 30.69% 52.37% 49.93%
Negative 6.70% 6.49% 34.13% 32.54% 54.47% 52.52%
Rel. Perf. 23.89% 5.55% 10.59% 5.70% 3.85% 4.94%

Wavy_Hair Positive 7.55% 6.46% 40.97% 32.29% 60.69% 52.10%
Negative 6.82% 6.48% 34.23% 32.50% 54.84% 52.48%
Rel. Perf. -10.68% 0.34% -19.69% 0.65% -10.65% 0.73%

Receding Positive 4.93% 6.43% 26.02% 32.06% 44.95% 51.75%
Hairline Negative 7.35% 6.47% 39.92% 32.46% 61.12% 52.43%

Rel. Perf. 32.90% 0.74% 34.82% 1.23% 26.46% 1.29%
Bangs Positive 6.82% 6.34% 45.53% 31.63% 69.28% 51.14%

Negative 6.43% 6.49% 32.02% 32.54% 51.86% 52.52%
Rel. Perf. -5.99% 2.25% -42.17% 2.79% -33.59% 2.62%

Sideburns Positive 6.68% 6.46% 34.33% 32.34% 54.08% 52.23%
Negative 6.75% 6.49% 35.47% 32.52% 55.96% 52.46%
Rel. Perf. 1.04% 0.43% 3.24% 0.53% 3.35% 0.44%

Black_Hair Positive 7.13% 6.42% 42.35% 32.06% 65.73% 51.73%
Negative 6.20% 6.48% 32.46% 32.49% 52.06% 52.47%
Rel. Perf. -15.04% 1.02% -30.47% 1.34% -26.26% 1.40%

Blond_Hair Positive 9.63% 6.34% 52.00% 31.66% 71.71% 51.18%
Negative 6.45% 6.48% 32.63% 32.52% 52.96% 52.48%
Rel. Perf. -49.35% 2.17% -59.37% 2.66% -35.41% 2.48%

Brown_Hair Positive 7.40% 6.45% 39.73% 32.26% 59.12% 52.06%
Negative 6.19% 6.47% 35.13% 32.41% 57.09% 52.30%
Rel. Perf. -19.52% 0.26% -13.08% 0.49% -3.55% 0.48%

Gray_Hair Positive 5.32% 6.29% 26.00% 31.50% 44.11% 50.99%
Negative 6.72% 6.49% 34.60% 32.54% 55.25% 52.52%
Rel. Perf. 20.83% 3.05% 24.83% 3.20% 20.17% 2.90%
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Table 3.6.: FaceNet - Part 2/3. Face recognition performance based on several at-
tributes.

Category Attribute Class EER FNMR@FMR=10−3 FNMR@FMR=10−4

Real Control Real Control Real Control
Beard No_Beard Positive 7.20% 6.48% 37.97% 32.49% 58.83% 52.44%

Negative 6.13% 6.40% 31.07% 31.94% 51.01% 51.60%
Rel. Perf. -17.53% -1.38% -22.20% -1.74% -15.33% -1.62%

Mustache Positive 6.45% 4.93% 50.77% 22.55% 73.71% 36.74%
Negative 6.90% 6.48% 35.54% 32.52% 56.12% 52.49%
Rel. Perf. 6.41% 23.94% -42.88% 30.68% -31.34% 30.01%

5_o_Clock Positive 6.16% 6.38% 30.98% 31.87% 50.01% 51.53%
Shadow Negative 7.49% 6.48% 39.91% 32.46% 60.86% 52.39%

Rel. Perf. 17.78% 1.54% 22.37% 1.83% 17.83% 1.64%
Goatee Positive 2.59% 4.69% 18.78% 20.11% 38.17% 32.98%

Negative 6.92% 6.49% 35.49% 32.54% 56.11% 52.55%
Rel. Perf. 62.59% 27.63% 47.09% 38.19% 31.97% 37.24%

Face Oval_Face Positive 8.14% 6.40% 45.16% 31.97% 64.96% 51.64%
Geometry Negative 8.26% 6.46% 45.11% 32.30% 67.44% 52.08%

Rel. Perf. 1.45% 1.01% -0.11% 1.00% 3.68% 0.84%
Square_Face Positive 6.32% 6.48% 31.37% 32.49% 51.25% 52.44%

Negative 7.81% 6.47% 41.51% 32.43% 61.90% 52.38%
Rel. Perf. 19.13% -0.12% 24.42% -0.16% 17.20% -0.12%

Round_Face Positive 16.53% 4.52% 88.11% 19.03% 93.33% 31.40%
Negative 5.31% 6.49% 27.06% 32.52% 45.05% 52.46%
Rel. Perf. -211.14% 30.27% -225.65% 41.49% -107.17% 40.14%

Double_Chin Positive 5.45% 6.44% 26.28% 32.15% 44.43% 51.85%
Negative 7.09% 6.48% 38.20% 32.51% 59.43% 52.46%
Rel. Perf. 23.05% 0.71% 31.20% 1.10% 25.24% 1.18%

High Positive 5.99% 6.46% 33.69% 32.27% 53.73% 52.10%
Cheekbones Negative 8.10% 6.47% 41.66% 32.41% 62.29% 52.32%

Rel. Perf. 26.11% 0.20% 19.13% 0.43% 13.73% 0.43%
Chubby Positive 5.11% 6.38% 26.98% 31.81% 47.76% 51.48%

Negative 6.85% 6.49% 36.65% 32.54% 57.76% 52.49%
Rel. Perf. 25.35% 1.62% 26.38% 2.23% 17.31% 1.92%

Obstructed Positive 8.85% 6.11% 60.01% 30.67% 80.51% 49.92%
Forehead Negative 6.02% 6.49% 31.14% 32.52% 50.70% 52.50%

Rel. Perf. -46.87% 5.75% -92.69% 5.69% -58.79% 4.91%
Fully_Visible Positive 5.47% 6.48% 28.25% 32.46% 47.36% 52.35%
Forehead Negative 7.82% 6.45% 44.34% 32.28% 66.70% 52.09%

Rel. Perf. 30.01% -0.43% 36.29% -0.55% 28.99% -0.49%
Periocular Brown_Eyes Positive 7.54% 6.48% 42.04% 32.44% 63.89% 52.36%

Negative 6.12% 6.36% 33.59% 31.83% 52.03% 51.50%
Rel. Perf. -23.28% -1.81% -25.15% -1.94% -22.78% -1.67%

Bags_Under_Eyes Positive 5.90% 6.45% 31.51% 32.31% 52.50% 52.16%
Negative 8.03% 6.47% 42.47% 32.42% 62.85% 52.31%
Rel. Perf. 26.47% 0.36% 25.79% 0.37% 16.48% 0.29%

Bushy_Eyebrows Positive 5.66% 6.47% 29.86% 32.36% 49.67% 52.29%
Negative 7.26% 6.48% 37.79% 32.51% 58.28% 52.45%
Rel. Perf. 22.03% 0.23% 21.00% 0.44% 14.77% 0.31%

Arched_Eyebrows Positive 5.99% 6.46% 33.71% 32.28% 52.99% 52.06%
Negative 7.59% 6.48% 38.64% 32.47% 59.96% 52.40%
Rel. Perf. 21.10% 0.37% 12.75% 0.58% 11.62% 0.64%
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Table 3.7.: FaceNet - Part 3/3. Face recognition performance based on several at-
tributes.

Category Attribute Class EER FNMR@FMR=10−3 FNMR@FMR=10−4

Real Control Real Control Real Control
Mouth Mouth Positive 5.25% 5.99% 27.84% 29.97% 46.77% 48.87%

Closed Negative 7.05% 6.41% 46.08% 32.00% 68.38% 51.71%
Rel. Perf. 25.49% 6.53% 39.60% 6.34% 31.60% 5.50%

Smiling Positive 6.08% 6.44% 34.06% 32.17% 53.51% 51.91%
Negative 8.67% 6.46% 47.88% 32.36% 70.12% 52.23%
Rel. Perf. 29.86% 0.28% 28.87% 0.58% 23.68% 0.61%

Big_Lips Positive 6.79% 6.45% 39.95% 32.33% 61.39% 52.19%
Negative 6.97% 6.47% 34.09% 32.44% 53.99% 52.36%
Rel. Perf. 2.58% 0.32% -17.20% 0.31% -13.72% 0.31%

Nose Big_Nose Positive 6.28% 6.42% 36.68% 32.04% 59.22% 51.82%
Negative 8.40% 6.48% 46.15% 32.43% 67.05% 52.32%
Rel. Perf. 25.23% 0.90% 20.52% 1.20% 11.67% 0.94%

Pointy_Nose Positive 6.04% 6.48% 32.67% 32.48% 51.66% 52.44%
Negative 7.80% 6.46% 43.90% 32.32% 65.97% 52.22%
Rel. Perf. 22.56% -0.33% 25.57% -0.49% 21.69% -0.42%

Accessories Heavy Positive 6.25% 6.46% 35.96% 32.31% 55.91% 52.17%
Makeup Negative 7.08% 6.49% 34.76% 32.52% 54.97% 52.48%

Rel. Perf. 11.70% 0.46% -3.44% 0.62% -1.71% 0.59%
Wearing Positive 9.01% 6.24% 55.58% 31.23% 77.17% 50.65%
Hat Negative 6.05% 6.49% 30.40% 32.54% 49.86% 52.55%

Rel. Perf. -48.74% 3.78% -82.84% 4.03% -54.77% 3.60%
Wearing Positive 7.54% 6.46% 41.92% 32.35% 61.83% 52.25%
Earrings Negative 6.78% 6.48% 33.84% 32.49% 54.34% 52.45%

Rel. Perf. -11.15% 0.25% -23.89% 0.43% -13.79% 0.37%
Wearing Positive 3.99% 6.36% 19.72% 31.65% 37.81% 51.23%
Necktie Negative 7.53% 6.48% 41.03% 32.52% 62.50% 52.47%

Rel. Perf. 47.05% 1.88% 51.93% 2.65% 39.51% 2.37%
Wearing Positive 6.74% 6.46% 38.36% 32.37% 58.49% 52.29%
Lipstick Negative 7.01% 6.49% 34.54% 32.51% 54.78% 52.49%

Rel. Perf. 3.91% 0.39% -11.05% 0.44% -6.78% 0.39%
No_Eyewear Positive 5.77% 6.48% 29.39% 32.53% 48.75% 52.51%

Negative 6.64% 6.11% 37.21% 30.64% 63.01% 49.90%
Rel. Perf. 13.10% -6.09% 21.03% -6.16% 22.63% -5.24%

Eyeglasses Positive 7.79% 6.33% 43.15% 31.57% 65.99% 51.15%
Negative 5.70% 6.49% 29.16% 32.54% 48.78% 52.52%
Rel. Perf. -36.65% 2.51% -47.99% 3.00% -35.27% 2.61%

Other Attractive Positive 6.27% 6.45% 36.28% 32.31% 56.11% 52.10%
Negative 7.05% 6.49% 34.77% 32.51% 54.96% 52.50%
Rel. Perf. 11.16% 0.51% -4.35% 0.61% -2.09% 0.77%
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Table 3.8.: ArcFace - Part 1/3. Face recognition performance based on several at-
tributes.

Category Attribute Class EER FNMR@FMR=10−3 FNMR@FMR=10−4

Real Control Real Control Real Control
Demographics Male Positive 3.98% 3.98% 7.07% 7.22% 9.71% 10.17%

Negative 3.82% 3.96% 7.99% 7.20% 12.33% 10.13%
Rel. Perf. -4.35% -0.38% 11.54% -0.38% 21.24% -0.37%

Young Positive 3.74% 3.97% 7.30% 7.20% 11.08% 10.14%
Negative 3.70% 3.95% 6.32% 7.17% 8.52% 10.11%
Rel. Perf. -0.86% -0.46% -15.42% -0.46% -30.08% -0.28%

Middle_Aged Positive 3.01% 3.81% 5.05% 6.93% 6.93% 9.80%
Negative 4.07% 3.98% 7.79% 7.22% 11.36% 10.17%
Rel. Perf. 26.14% 4.05% 35.20% 4.04% 39.04% 3.56%

Senior Positive 2.95% 3.62% 4.52% 6.58% 6.15% 9.38%
Negative 4.02% 3.98% 7.47% 7.24% 10.62% 10.18%
Rel. Perf. 26.60% 9.02% 39.44% 9.09% 42.13% 7.87%

Asian Positive 7.99% 3.29% 16.68% 6.01% 22.59% 8.69%
Negative 3.73% 3.98% 6.75% 7.23% 9.61% 10.18%
Rel. Perf. -114.49% 17.22% -147.13% 16.84% -134.94% 14.60%

White Positive 3.27% 3.98% 5.84% 7.23% 8.55% 10.18%
Negative 5.80% 3.91% 11.69% 7.10% 16.03% 10.01%
Rel. Perf. 43.50% -1.66% 50.08% -1.87% 46.66% -1.74%

Black Positive 5.72% 3.40% 10.90% 6.21% 15.02% 8.95%
Negative 3.85% 3.98% 7.06% 7.23% 10.11% 10.18%
Rel. Perf. -48.63% 14.53% -54.43% 14.16% -48.64% 12.08%

Skin Rosy_Cheeks Positive 0.98% 2.91% 1.17% 5.12% 1.31% 7.47%
Negative 4.39% 3.98% 8.33% 7.23% 11.77% 10.16%
Rel. Perf. 77.61% 26.88% 85.99% 29.13% 88.86% 26.51%

Shiny_Skin Positive 3.50% 3.93% 6.33% 7.13% 9.27% 10.04%
Negative 4.17% 3.96% 8.13% 7.18% 11.89% 10.11%
Rel. Perf. 16.14% 0.61% 22.13% 0.72% 22.04% 0.73%

Hair Bald Positive 2.79% 3.50% 4.48% 6.38% 6.07% 9.14%
Negative 4.01% 3.98% 7.43% 7.23% 10.62% 10.18%
Rel. Perf. 30.40% 12.13% 39.77% 11.78% 42.83% 10.21%

Wavy_Hair Positive 3.03% 3.95% 6.34% 7.17% 10.28% 10.09%
Negative 4.35% 3.97% 7.92% 7.23% 10.82% 10.17%
Rel. Perf. 30.46% 0.73% 19.95% 0.84% 4.96% 0.80%

Receding Positive 3.03% 3.92% 4.68% 7.12% 6.13% 10.04%
Hairline Negative 4.10% 3.97% 8.20% 7.22% 12.25% 10.15%

Rel. Perf. 26.21% 1.18% 42.90% 1.28% 49.98% 1.17%
Bangs Positive 4.03% 3.80% 8.79% 6.91% 13.94% 9.78%

Negative 3.83% 3.98% 6.77% 7.23% 9.42% 10.17%
Rel. Perf. -5.11% 4.43% -29.80% 4.44% -47.96% 3.89%

Sideburns Positive 3.72% 3.97% 6.51% 7.21% 9.10% 10.13%
Negative 3.98% 3.97% 7.62% 7.22% 11.10% 10.16%
Rel. Perf. 6.58% 0.08% 14.56% 0.12% 18.07% 0.30%

Black_Hair Positive 5.12% 3.92% 9.85% 7.11% 13.47% 10.01%
Negative 3.48% 3.97% 6.36% 7.21% 9.28% 10.15%
Rel. Perf. -47.25% 1.28% -54.86% 1.46% -45.17% 1.38%

Blond_Hair Positive 3.09% 3.81% 7.38% 6.92% 12.43% 9.76%
Negative 4.09% 3.98% 7.34% 7.23% 10.16% 10.18%
Rel. Perf. 24.53% 4.22% -0.57% 4.25% -22.38% 4.07%

Brown_Hair Positive 3.24% 3.96% 6.46% 7.18% 10.26% 10.10%
Negative 4.12% 3.97% 7.59% 7.20% 10.59% 10.14%
Rel. Perf. 21.36% 0.35% 14.93% 0.26% 3.11% 0.36%

Gray_Hair Positive 2.68% 3.76% 4.01% 6.82% 5.40% 9.67%
Negative 4.07% 3.98% 7.57% 7.23% 10.77% 10.17%
Rel. Perf. 34.09% 5.58% 47.01% 5.70% 49.87% 4.97%
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Table 3.9.: ArcFace - Part 2/3. Face recognition performance based on several at-
tributes.

Category Attribute Class EER FNMR@FMR=10−3 FNMR@FMR=10−4

Real Control Real Control Real Control
Beard No_Beard Positive 4.13% 3.98% 8.10% 7.23% 11.93% 10.18%

Negative 3.31% 3.89% 5.61% 7.06% 7.90% 9.95%
Rel. Perf. -25.05% -2.23% -44.32% -2.49% -50.91% -2.28%

Mustache Positive 4.89% 2.63% 9.62% 4.61% 13.54% 6.68%
Negative 4.06% 3.98% 7.62% 7.23% 10.97% 10.17%
Rel. Perf. -20.46% 33.85% -26.25% 36.24% -23.41% 34.31%

5_o_Clock Positive 2.96% 3.90% 4.94% 7.06% 7.08% 9.96%
Shadow Negative 4.24% 3.96% 8.55% 7.20% 12.68% 10.14%

Rel. Perf. 30.18% 1.74% 42.23% 1.97% 44.16% 1.75%
Goatee Positive 1.18% 2.46% 1.68% 4.00% 2.67% 5.89%

Negative 4.08% 3.98% 7.67% 7.23% 11.03% 10.18%
Rel. Perf. 71.16% 38.16% 78.13% 44.74% 75.83% 42.12%

Face Oval_Face Positive 2.73% 3.90% 5.69% 7.07% 9.65% 9.97%
Geometry Negative 5.40% 3.96% 11.10% 7.19% 15.61% 10.12%

Rel. Perf. 49.55% 1.59% 48.72% 1.67% 38.22% 1.39%
Square_Face Positive 3.73% 3.97% 6.37% 7.22% 8.68% 10.16%

Negative 4.13% 3.97% 8.61% 7.21% 13.02% 10.14%
Rel. Perf. 9.65% 0.03% 25.96% -0.10% 33.37% -0.15%

Round_Face Positive 7.04% 2.30% 22.68% 3.89% 35.87% 5.53%
Negative 3.17% 3.98% 5.30% 7.22% 7.43% 10.16%
Rel. Perf. -122.46% 42.18% -328.09% 46.22% -383.05% 45.63%

Double_Chin Positive 3.34% 3.93% 5.32% 7.12% 7.00% 10.04%
Negative 4.08% 3.98% 7.84% 7.23% 11.50% 10.17%
Rel. Perf. 18.22% 1.23% 32.24% 1.43% 39.15% 1.29%

High Positive 3.34% 3.95% 5.96% 7.17% 8.63% 10.10%
Cheekbones Negative 4.28% 3.97% 8.60% 7.20% 12.70% 10.13%

Rel. Perf. 21.87% 0.48% 30.76% 0.42% 32.08% 0.34%
Chubby Positive 3.70% 3.87% 6.11% 7.01% 7.86% 9.90%

Negative 3.90% 3.97% 7.37% 7.22% 10.79% 10.17%
Rel. Perf. 5.18% 2.62% 17.14% 2.85% 27.15% 2.58%

Obstructed Positive 5.48% 3.51% 13.03% 6.39% 20.40% 9.17%
Forehead Negative 3.52% 3.97% 6.10% 7.21% 8.56% 10.15%

Rel. Perf. -55.61% 11.62% -113.74% 11.37% -138.28% 9.66%
Fully_Visible Positive 3.30% 3.97% 5.47% 7.21% 7.49% 10.15%
Forehead Negative 4.64% 3.95% 9.98% 7.16% 15.06% 10.06%

Rel. Perf. 28.85% -0.46% 45.15% -0.70% 50.30% -0.86%
Periocular Brown_Eyes Positive 4.69% 3.97% 9.13% 7.21% 12.88% 10.14%

Negative 2.63% 3.85% 5.36% 6.98% 8.73% 9.85%
Rel. Perf. -78.48% -2.96% -70.17% -3.28% -47.51% -2.92%

Bags_Under_Eyes Positive 3.78% 3.96% 6.37% 7.19% 8.48% 10.11%
Negative 3.87% 3.96% 8.17% 7.19% 12.63% 10.12%
Rel. Perf. 2.20% 0.13% 22.05% 0.01% 32.84% 0.10%

Bushy_Eyebrows Positive 3.51% 3.96% 6.05% 7.19% 8.28% 10.11%
Negative 4.00% 3.97% 7.81% 7.22% 11.58% 10.17%
Rel. Perf. 12.35% 0.20% 22.54% 0.54% 28.46% 0.60%

Arched_Eyebrows Positive 3.21% 3.94% 6.08% 7.15% 9.29% 10.05%
Negative 4.42% 3.97% 8.38% 7.23% 11.79% 10.17%
Rel. Perf. 27.52% 0.81% 27.46% 1.05% 21.20% 1.14%
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Table 3.10.: ArcFace - Part 3/3. Face recognition performance based on several at-
tributes.

Category Attribute Class EER FNMR@FMR=10−3 FNMR@FMR=10−4

Real Control Real Control Real Control
Mouth Mouth Positive 3.06% 3.37% 5.40% 6.13% 7.70% 8.85%

Closed Negative 3.88% 3.90% 7.79% 7.08% 11.93% 9.99%
Rel. Perf. 21.21% 13.69% 30.62% 13.38% 35.48% 11.39%

Smiling Positive 3.35% 3.94% 5.93% 7.14% 8.48% 10.05%
Negative 4.62% 3.96% 9.65% 7.19% 14.57% 10.12%
Rel. Perf. 27.32% 0.56% 38.59% 0.71% 41.81% 0.65%

Big_Lips Positive 4.15% 3.94% 8.12% 7.17% 11.91% 10.10%
Negative 3.88% 3.97% 7.00% 7.22% 9.84% 10.16%
Rel. Perf. -6.93% 0.78% -16.08% 0.75% -21.01% 0.63%

Nose Big_Nose Positive 4.39% 3.90% 7.89% 7.07% 10.48% 9.95%
Negative 3.90% 3.95% 8.62% 7.18% 13.58% 10.10%
Rel. Perf. -12.67% 1.49% 8.52% 1.51% 22.80% 1.46%

Pointy_Nose Positive 3.15% 3.97% 5.84% 7.22% 8.86% 10.16%
Negative 5.28% 3.96% 10.46% 7.18% 14.62% 10.11%
Rel. Perf. 40.44% -0.43% 44.19% -0.63% 39.44% -0.49%

Accessories Heavy Positive 3.08% 3.96% 5.79% 7.20% 9.00% 10.13%
Makeup Negative 4.32% 3.97% 8.02% 7.22% 11.14% 10.16%

Rel. Perf. 28.75% 0.18% 27.75% 0.24% 19.27% 0.32%
Wearing Positive 5.51% 3.66% 12.28% 6.62% 18.45% 9.44%
Hat Negative 3.71% 3.98% 6.53% 7.23% 9.14% 10.18%

Rel. Perf. -48.79% 8.09% -88.01% 8.45% -101.94% 7.29%
Wearing Positive 3.25% 3.95% 6.64% 7.17% 10.59% 10.10%
Earrings Negative 4.08% 3.98% 7.33% 7.23% 10.10% 10.17%

Rel. Perf. 20.23% 0.83% 9.44% 0.80% -4.92% 0.78%
Wearing Positive 2.72% 3.82% 3.84% 6.92% 4.72% 9.79%
Necktie Negative 4.25% 3.97% 8.52% 7.22% 12.68% 10.16%

Rel. Perf. 35.95% 4.00% 54.94% 4.24% 62.77% 3.73%
Wearing Positive 3.28% 3.96% 6.38% 7.19% 9.93% 10.11%
Lipstick Negative 4.27% 3.98% 7.85% 7.23% 10.83% 10.18%

Rel. Perf. 23.21% 0.40% 18.74% 0.57% 8.25% 0.65%
No_Eyewear Positive 3.64% 3.98% 6.39% 7.23% 8.92% 10.18%

Negative 3.86% 3.50% 6.62% 6.35% 8.99% 9.12%
Rel. Perf. 5.75% -13.57% 3.42% -13.84% 0.82% -11.60%

Eyeglasses Positive 4.60% 3.79% 9.13% 6.88% 13.03% 9.75%
Negative 3.68% 3.98% 6.45% 7.23% 8.99% 10.18%
Rel. Perf. -25.08% 4.88% -41.53% 4.89% -44.86% 4.24%

Other Attractive Positive 2.95% 3.96% 5.49% 7.19% 8.60% 10.10%
Negative 4.30% 3.97% 8.02% 7.22% 11.14% 10.17%
Rel. Perf. 31.44% 0.20% 31.57% 0.47% 22.82% 0.65%
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(a) FaceNet

(b) ArcFace

Figure 3.15.: Visual summary on the performance differences affected by each attribute.
Figure 3.15a visualizes the results for FaceNet, while Figure 3.15b visualizes
the results for ArcFace. The relative performance is based on the recogni-
tion performance on the positively-labelled data versus the performance
of negatively-labelled data. The validity is based on the performance differ-
ences of the control groups. Validity values below 0.9 (more than 10% per-
formance differences between the control groups) are considered as not
valid (grey area) and are not shown in this figure. The red areas indicate
an attribute-related bias that leads to a degraded face recognition perfor-
mance for faces with the specific attribute. Green areas indicate that faces
possessing a specific attribute enhances the recognition performance. It
can be observed that the majority of the investigated attributes strongly
affects the recognition performance.
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the positive attribute class over the negative class. If an attribute has only a minor effect
on the recognition performance, the relative performance is close to 0% (yellow area).

FaceNet vs ArcFace The main difference between FaceNet and ArcFace are the un-
derlying training-principles. FaceNet uses triplet-loss learning [SKP15] that aims solely
at minimizing the intra-class variations while maximizing the inter-class variations. In
contrast, ArcFace introduces an angular large-margin principle [Den+19] that additionally
aims at enhancing the robustness of recognition model. The utilized training principle
together with the used network structure and the training data determines the recognition
behaviour. This includes the effect of performance differences appearing when certain
attributes of the face are present. Since the used FaceNet and ArcFace models share the
same network structure and training data, the observed performance differences might
arise from the training principles.

The Effect of Attributes on Recognition It turns out that the majority of the investigated
attributes strongly affect the recognition performance of both, FaceNet and ArcFace. For
FaceNet, many faces that are perceived as Attractive or make use of Heavy Makeup do
not show to alter the recognition performance. The same goes for Oval Faces and faces
with Sideburns. For ArcFace, Blond Hair, Big Nose, Big Lips, Wearing Earrings, and Young
faces show only a minor effect on the recognition performance. However, especially for
ArcFace the used decision threshold (here for a FMR of 10−3) determines the performance
difference. For both recognition models, the majority of the investigated attributes strongly
affect the recognition performance. Some of the observations might be explainable.

• Demographics: Recent works [HSV19a; Rob+20; GNH19b; Bal+20] extensively
discussed the impact of demographic attributes on face recognition. Our results
support the findings from previous works. We observe an improved recognition
performance for the attributes Middle Aged, Senior, White, and Male. Contrarily, a
degraded recognition performance is observed for Young, Asian, Black, and Female
faces. For FaceNet, the observed performance differences are stronger than for
ArcFace. Moreover, we could not show that Asian or Black faces performance weaker
than White faces on ArcFace, since the data unbalance lead to a low validity for our
results.

• Visibility-related attributes: We observe that attributes that indicate a fully visible
face lead to an improved face recognition performance. This includes the attributes
Fully Visible Forehead, Receding Hairline, No Eyewear, and Bald. In contrast, attributes
that might lead to small partial occlusions of the face lead to significantly degraded
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recognition performances. For FaceNet, this includes faces with an Obstructed
Forehead, Bangs, and Wavy Hair. For ArcFace, this includes samples with Eyeglasses
or Bangs.

• Temporary attributes: For faces with temporary attributes, such as for accessories,
a degraded face recognition performance can be observed. This includes Wearing
Hat, Wearing Earrings, Wearing Lipstick, and Eyeglasses. Beside a partial-occlusion of
small parts of the face, these attributes are non-permanent and can quickly change
the appearance of the face.

• Anomalous characteristics: It turns out that conspicuous characteristics that is
only possessed by a small proportion of the population lead to strongly enhanced
recognition performances. This includes Arched Eyebrows, Big Nose, Pointy Nose,
Bushy Eyebrows, Double Chin, and High Cheekbones.

• Facial expressions: Faces that are Smiling or that have their Mouth Closed perform
above average for face recognition. Contrary, faces with non-neutral expressions
lead to degraded face recognition performances. This bias might come from the
data utilized for training that usually contains neutral or smiling faces and was
discussed in more details by previous works [CBF06; CBF05].

While these attribute-dependent performance differences might be explainable, the
reason for the impact of other attributes on recognition is currently unclear.

• Colors: The results demonstrate strong performance differences based on the user’s
hair- and eyecolor. For FaceNet, faces with Blond Hair, Black Hair, and Brown Hair
show strongly degraded recognition performances. In contrast, faces with Gray Hair
lead to an improved recognition. For ArcFace, Gray Hair also strongly improves the
recognition performance while Black Hair decreases it. The performance differences
for Blond Hair and Brown Hair strongly varies dependent on the used decision
threshold. For instance, for high FMRs, Blond Hair has a positive effect on recognition,
for a lower FMR (e.g. 10−4) the same attribute changes to a negative effect. The
same can be observed for eyecolors. Faces with Brown Eyes perform weaker than
faces from the opposite group. The performance differences of these attributes does
not reflect the distribution of the training data and thus, might arise from a different
origin.

• Beard: As we discussed before, attributes that might induce a partially occluded
face lead to a degraded face recognition performance. Although, beards cover parts
of the face that should lead to a degraded performance, the results demonstrate the
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opposite. Faces with No Beard perform below-average, while faces with e.g. a 5 o
Clock Shadow achieve much higher recognition rates.

• Wearing Necktie: Unlike other accessories, Wearing Necktie improved the face
recognition performance drastically. We assume that this results from a data col-
lection bias induced by the correlation with hidden factors, such as environment.
Persons wearing a necktie often have to present themselves in public (e.g. celebrities)
and thus, photos are often taken with frontal poses and full lightning. However, the
high validity and the strong performance differences makes it hard to argue in this
direction.

• Antagonistic Behaviour: Some attributes result in performance differences of the
opposite direction depending on the used training-principle (triplet-loss vs angular
margin loss). For instance, faces with Wavy Hair lead to a negative performance on
FaceNet and to positive performance on ArcFace. Also the attributes Attractiveness,
Heavy Makeup, and Oval Faces negatively affect the face recognition performance on
FaceNet, but show some strong positive impacts on the recognition performance of
ArcFace.

As mentioned earlier, the resulting performance of a face recognition model is mainly
determined by its loss-function, its network architecture, and the utilized training data.
Since both investigated models have the last two points in common, the observed differ-
ences in the performance might arise from the underlying training principles. Generally,
we observe that the large angular margin loss from ArcFace leads to a significantly stronger
overall recognition performance compared to FaceNet. The loss aiming to enhance the
model robustness also shows a clearly visible effect on the attribute-related performance
differences. On ArcFace, slightly less attributes negatively affect the recognition perfor-
mance than on FaceNet. However, the performance differences that origins from the
affected (biased) attributes are still of high impact. A remarkable observation is the
fact that the performance differences remain relatively constant over several decision
thresholds for FaceNet, while for ArcFace the performance differences often significantly
vary for different decision thresholds. This can be observed for instance for faces with
Bangs, Blond Hair, or a Double Chin.

Future challenges for face recognition The observations of the experiment point out
some critical issues of current face recognition solutions in terms of robustness, fairness,
and explainability.
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• Need for robustness: Face recognition systems need to become more robust against
partial occlusions (from accessories or hair), facial expressions (beyond neutral and
smiling faces), and temporary attributes that might change the daily appearance of
a face. This can greatly enhance the applicability in more real-life scenarios.

• Need for fairness: Face recognition systems need to enhance the user-fairness. We
observed performance differences based on the user-demographics (demographic-
bias), anomalous characteristics (such as pointy noses, bushy eyebrows, and high
cheekbones), beard types, and accessories. This can lead to discriminative decisions
of face recognition systems that several political regulation, such as the GDPR [VB17],
try to prevent.

• Need for explainability: Face recognition models need to explain themselves. Why
do colors/face shapes/beards/accessories lead to performance differences? Why can
we observe an antagonistic behaviour between the two different learning principles
for some attributes? In order to enhance the model transparency and to enable
efficient model-debugging, future work have to elaborate on the explainability of
face recognition models.

3.3.5. Interim Conclusion

The growing effect of face recognition systems on everybody’s daily life, including critical
decision-making processes, shows the need of non-discriminative face recognition solu-
tions. Previous works focused on estimating and mitigating demographic-bias. However,
to deploy non-discriminatory face recognition systems it is necessary to know which
performance differences appear in the presences of certain facial attributes beyond demo-
graphics. Driven by this need, this section analysed the performance differences on two
popular face recognition models concerning 47 different attributes to answer RQ2. To
prevent misleading statements of attribute biases, we consider attribute correlations and
minimize the effect of unbalanced testing data via control group based validity values. We
investigated the effect of two different learning-principles on the performance differences
originating from facial attributes. The results show that, besides demographics, many
attributes strongly affect the recognition performance of both investigated face recognition
models, FaceNet and ArcFace. While for FaceNet the observed performance differences
originated by several attributes remain relatively constant, these differences strongly
depend on the used decision threshold for ArcFace. We provided explanations for many
observed performance differences. However, the reason for some observations remain
unclear and have to be addressed by future work. The findings of this work strongly
demonstrate the need for further advances in making face recognition systems more robust,
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explainable, and fair. The results of this section show the strong demand for generalized
bias-mitigating solutions. In Chapter 4, easily-integrable solutions are presented that fulfil
this need.
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3.4. Investigating Bias in Face Quality Assessment

3.4.1. Introduction

RQ2 aims at investigating the influence of soft-biometric attributes on the behaviour of face
recognition systems. In the previous section, we demonstrated that the performance of
face recognition systems is highly different depending on the user’s soft-biometrics. In this
section, we analyse the influence of soft-biometric attributes on face quality assessment
since this also determines the behaviour of a face recognition system. The study is based on
the work from Terhörst et al. [Ter+20e]. In general, biometric sample quality is defined as
the utility of a sample for the purpose of recognition [Her+19; Phi+13; Gao+07; BJ18]
and is crucial for many applications. Recent work [Ter+20g] has shown that the accuracy
and the robustness of face quality estimation can be enhanced drastically by adapting the
face quality assessment algorithm to the deployed face recognition model. However, this
can lead to biased face quality assessment algorithms as well.
There are several political regulations to prevent discriminatory decisions. Article 14

of the European Convention of Human Rights and Article 7 of the Universal Declaration
of Human Rights ensure people the right to non-discrimination. Also, the General Data
Protection Regulation (GDPR) [VB17] aims at preventing discriminatory effects (article
71). Despite these political efforts, several works [Phi+11; BG18; Orc16; AZN18; FPO02;
Gar+16] showed that open-source [Orc16; Ser+20] as well as commercial [BG18] face
recognition solutions, are strongly biased towards different demographic groups. The more
accurate terms of “differential performance” and “differential outcome” were presented in
[HSV19b] to avoid the unintended interpretation of bias by policy makers and statisticians.
Based on these terms, a number of recent works are supporting the notion of differential
performance in face recognition systems [GNH19b; Coo+19].

Face quality assessment solutions can possess intended and unintended kinds of biases,
e.g. non-demographic and demographic bias. While non-demographic bias enhances the
quality estimation process without discriminative consequences, transferring demographic
bias unintentionally to face quality assessment algorithms can have a serious impact on
society. During the enrolment of an individual or for quality-based fusion approaches (e.g.
in surveillance scenarios), face quality assessment is needed. Consequently, a transferred
bias to the quality estimation will directly increase discriminative decisions of such quality-
based subsystems.

Moreover, in the operation, face quality estimation can be used as a separate processing
step [20] and can be trained while having in mind a face recognition system different
than the one used in the field. Therefore, having a biased quality estimation can add to
the bias of the face recognition system, as it might have different biases.
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In this section, we present a detailed analysis of the correlation between bias in face
recognition systems and the corresponding face quality assessment. To the best of our
knowledge, this is the first work analysing this relation. The experiments were con-
ducted on two publicly available datasets under diverse image capturing conditions. The
correlation analysis was done using two different face recognition solutions with four
state-of-the-art face quality assessment algorithms from academia and industry. Investi-
gating different head poses, ethnicities, and age classes, we found degraded performances,
and thus biases, towards certain subclasses for both face recognition systems. The experi-
ments demonstrated a strong correlation between face recognition bias and face quality
assessment. Face images from the classes affected by the bias were estimated with lower
quality values than unbiased images. Consequently, the bias is transferred to the quality
assignment process.
The goal of this work is to point out that current face image quality assessment ap-

proaches have to deal with similar bias-related problems than in face recognition. We
specify that the quality of a face image points out a biased ground of a faulty decision.
Especially in a controlled environment, such as ABC gates where the image is of good
quality, a low face quality must alarm the operator to a high probability of a faulty decision,
whether a false match or a false non-match, which might require manual inspection. This
faulty decision can be a bias issue given the controlled capture conditions.

3.4.2. Related Work

Several standards have been proposed to insure face image quality by constraining the
capture requirements, such as ISO/IEC 19794-5 [11] and ICAO 9303 [15]. In these stan-
dards, quality is divided into image-based qualities (such as illumination, occlusion) and
subject-based quality measures (such as pose, expression, accessories). These mentioned
standards influenced many face quality assessment approaches that have been proposed
recently.

The first generation of face quality assessment algorithms defines quality metrics based
on image quality factors [Gao+07; Fer+12; Was+17; ZG17; Phi+13; Aba+14; HSM06;
AHB12; DVS14]. However, these approaches have to consider every possible factor
manually, and since humans may not know the best characteristics for face recognition
systems, recent research focuses on learning-based approaches.
End-to-end learning approaches for face quality assessment were first presented in

2011. Aggarwal et al. [Agg+11] proposed an approach for predicting the face recognition
performance using a multi-dimensional scaling approach to map space characterization
features to genuine scores. In [Won+11], a patch-based probabilistic image quality
approach was designed to work on 2D discrete cosine transform features and trains a
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Gaussian model on each patch. In 2015, a rank-based learning approach was proposed by
Chen et al. [Che+15]. They define a linear quality assessment function with polynomial
kernels and train weights based on a ranking loss. In [KLR15], face quality assessment
was performed based on objective and relative face image qualities. While the objective
quality metric refers to objective visual quality in terms of pose, alignment, blurriness,
and brightness, the relative quality metric represents the degree of mismatch between
training face images and a test face image. Best-Rowden and Jain [BJ18] proposed an
automatic face quality prediction approach in 2018. They proposed two methods for
quality assessment of face images based on (a) human assessments of face image quality
and (b) quality values from similarity scores. Their approach (b) is based on support
vector machines applied to deeply learned representations. In 2019, Hernandez-Ortega
et al. proposed FaceQnet [Her+19], which adapts the quality label generation from
Best-Rowden [BJ18] and applies it to fine-tune a face recognition neural network to
predict face qualities in a regression task. Stochastic embedding robustness (SER-FIQ) is
a novel face image quality measurement concept proposed in [Ter+20g]. Their method
determines the embedding variations generated from random subnetworks of the deployed
face recognition model. The magnitude of these variations define the robustness and thus,
the quality. Their method avoids the need for training and further allows to take into
account the decision patterns of the deployed face recognition model.

So far, the best quality estimates were achieved when the systems adapt to the utilized
face recognition model. However, there is a risk of transferring the face recognition bias
towards the quality assessment. Therefore, this work analyses the correlation between
face quality assessment and face recognition bias. To the best of our knowledge, this is
the first work that analyses this relationship and its implications on the real use of the
technology.

3.4.3. Evaluated Face Quality Assessment Solutions

Face quality assessment aims at estimating the usability of an image for the purpose of
recognition [Her+19; Phi+13; Gao+07; BJ18]. For our correlation study between face
quality and face recognition bias, we choose the four of the latest face quality assessment
approaches from academia and industry. These approaches will be shortly discussed in
the following.

COTS COTS [Neu19] refers to an commercial off the shelf industry product from Neu-
rotechnology, the used version is published in 2019. Unfortunately, it only provides the
application and does not provide any information about its working principles. However, in

86



[Ter+20g], the authors show that COTS predicted quality synchronise well with FaceNet
[SKP15] performance, and to a much lower degree with ArcFace [Den+19] performance.

Best-Rowden In 2018, Best-Rowden and Jain [BJ18] presented two approaches to face
quality estimation, with and without human assessments. We evaluate their approach
based on quality labels coming from comparison scores, because the features and compar-
ison scores are matcher dependent and thus, it adapts to the deployed face recognition
model. They define a quality label for query j of subject i as

zij =
(︁
sGij − µI

ij

)︁
/σI

ij , (3.5)

where sGij is the genuine score and µI
ij and σI

ij are the mean and the standard deviation
of the imposter scores. They use the face embeddings of the deployed face recognition
model and, based on these features, they train a support vector regressor to estimate the
quality score of an input image. Following their methodology, we train this approach
on the MORPH [RT06b] dataset. The hyperparameters are determined beforehand by a
5-fold cross-validation on this dataset.

FaceQnet FaceQnet [Her+19] by Hernandez-Ortega et al. was published in 2019. They
adapted the idea of using the comparison score labels (see Equation 3.5) from Best-Rowden
et al. and combined them with a ResNet-based deep neural network structure. Their
approach is based on FaceNet embeddings and is trained on VGGFace2 [Cao+18]. In
[Ter+20g], it was shown that even if the approach was trained on FaceNet embeddings,
FaceQnet shows better synchronisation with ArcFace [Den+19] performance, indicating
some overfitting on FaceNet [SKP15] embeddings. For our experiments, we used the
pretrained FaceQnet model9 provided by the authors.

SER-FIQ Stochastic embedding robustness (SER) is a face image quality (FIQ) estimation
concept presented in [Ter+20g], which avoids the use of inaccurate quality labels. They
defined face image quality based on the robustness of deeply learned features. Calculating
the variations of embeddings coming from random subnetworks of the deployed face
recognition model, their solution defines the magnitude of these variations as a robustness
measure, and thus, image quality. Given an input image I and the deployed face recogni-
tion modelM, their method applies m = 100 different dropout patterns [Sri+14] to the
neural network. This results in m random subnetworks ofM. Each of these networks
9https://github.com/uam-biometrics/FaceQnet
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produces a stochastic embedding xi. The quality

q(I) = 2σ
(︂
− 2

m2

∑︂
i<j

d(xi, xj)
)︂
, (3.6)

of an input I is then defined as the sigmoid of the negative mean Euclidean distance
d(xi, xj) between all stochastic embedding pairs. A greater variation between the stochas-
tic embeddings indicates a lower robustness of the representation and thus, a lower sample
quality q. Lower variations between the stochastic embeddings indicate a high robustness
in the embedding space and are considered as a high sample quality q. Since it can be
directly applied on the deployed face recognition model, it completely avoids any training
and further adapts to the decision patterns of the model. The authors showed that this
concept leads to significantly better quality estimations than previous work. We follow
their procedure that applies the dropout pattern repetitively on the last layer of the face
recognition network. A more detailed explanation of SER-FIQ is presented in the appendix
Section A.

3.4.4. Experimental Setup

Database To evaluate the correlation between face quality assessment and bias in
face recognition systems under controlled and unconstrained conditions, we conducted
experiments on the two publicly available datasets, ColorFeret [Phi+00] and Adience
[EEH14]. ColorFeret [Phi+00] consists of 14k images of 1.2k different individuals with
different poses under controlled conditions. The dataset further includes a variety of face
poses, facial expressions, and lighting conditions. The Adience dataset [EEH14] consists
of over 26.5k images of over 2.2k different individuals in an unconstrained environment.
Both databases contain information about identity, gender and age. ColorFeret also
provides labels regarding the subject’s ethnicities and head posses. In the experiments,
this information is used to investigate how face quality assessment algorithms affect the
recognition performance under diverse circumstances.

The investigated face quality assessment solutions are based on three databases, MORPH
[RT06b], VGGFace2 [Cao+18], and MS1M [Guo+16]. MORPH [RT06b] contains 55k
frontal face images of more than 13k individuals. 80.4% of the faces belong to the ethnicity
black, 19.2% to white, and 0.4% to others. The individual’s age vary from 16-77 years.
79.4% of the faces are within an age-range of [20, 50]. The VGGFace2 [Cao+18] database
contains faces from over 9k subjects with over 3 million images. The dataset contains a
large variety of pose, age, and ethnicity. Over 40% of the face are frontal and over 50%
are half-frontal. Most images belong to individuals over 18 years old and around 40%
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belong to the age group of [25, 34]. The MS1M [Guo+16] contains over 100k subjects
with 10 million images. The faces cover a large variance of age. Over 50% of the faces
belong to white subjects. The faces are mostly frontal. This information will be used to
discuss the influence of the training data on quality predictions.

Evaluation metrics In order to evaluate the face quality assessment performance, we
follow the methodology by Grother et al. [GT07] using error versus reject curves. These
curves show the verification error-rate (y-axis) achieved when unconsidering a certain
percentage of face images (x-axis). Based on the predicted quality values, these unconsid-
ered images are these with the lowest predicted quality and the error rate is calculated on
the remaining images. Error versus reject curves indicate good quality estimation when
the verification error decreases consistently when increasing the ratio of unconsidered
images.
In order to prove that a face recognition system is biased towards some classes, the

verification error is reported for all classes. The verification error is reported in terms
of false non-match rate (FNMR) at fixed false match rates (FMR). The FMR is reported
at 0.1% FMR threshold as recommended by the best practice guidelines for automated
border control of European Border Guard Agency Frontex [Fro17]. To show the correlation
between face quality assessment and biased face verification performance, the proportion
of subgroups is continuously analysed over quality thresholds. The proportion of biased
subgroups will decrease fast if the face quality assessment algorithm assigns them lower
quality values than unbiased subgroups. To get a deeper understanding of the correlation
between biased and quality, quality distributions for the different subgroups are illustrated.
These allow validating shifts and separations between biased and unbiased subgroups.

Face recognition networks To get the face embedding for a given face image, the image
has to be aligned, scaled, and cropped. Then, the preprocessed image is passed to a face
recognition model to extract the embeddings. In this work, we use two face recognition
models, FaceNet [SKP15] and ArcFace [Den+19]. For FaceNet, the preprocessing is done
as described in [KS14]. To extract the embeddings, a pretrained model10 was used. For
ArcFace, the image preprocessing was done as described in [Guo+18] and a pretrained
model11 is used, which is provided by the authors of ArcFace. Both models were trained
on the MS1M database [Guo+16]. The output size is 128 for FaceNet and 512 for ArcFace.
The identity verification is done by comparing two embeddings using cosine-similarity.

10https://github.com/davidsandberg/facenet
11https://github.com/deepinsight/insightface
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Investigations This work aims at investigating the correlation between face recognition
bias and face quality estimation. This is done using two popular face embeddings, FaceNet
[SKP15] and ArcFace [Den+19]. Since the face quality assessment performance strongly
influences the interpretation of the correlation analysis, the quality estimation performance
is analysed in the first step. The second step aims at demonstrating that there is bias in
the utilized face recognition systems. Therefore, the face verification performance of these
systems is analysed based on poses, ethnicities, and age classes. After the bias between
these classes is identified, the correlation between the face quality assessment and the
face recognition bias is investigated in the third step. Moreover, the separability in the
quality space of the biased and unbiased classes is analysed.

3.4.5. Results

(a) ColorFeret - FaceNet (b) ColorFeret - ArcFace (c) Adience - FaceNet (d) Adience - ArcFace

Figure 3.16.: Face quality assessment performance on ColorFeret and Adience using
two face embeddings, FaceNet and Arcface. The FNMR is reported at a
FMR of 0.1%. The plots are at different scales, but show similar quality as-
sessment behaviours.

Face quality assessment performance Figure 3.16 shows the face quality assessment
performance for the four discussed solutions. The performance is reported in terms of
FNMR at FMR of 0.1% as recommended by the European Border Guard Agency Frontex
[Fro17]. It can be seen that COTS shows a better quality estimation performance under
constrained scenarios (Figure 3.16a and 3.16b). The approach of Best-Rowden shows
a better quality prediction performance on ArcFace embeddings than on FaceNet. This
might be because Best-Rowden was trained on a frontal face database and ArcFace is
more robust to these variations. FaceQnet uses the same kind of training labels than
Best-Rowden, but trained a deep learning model to make more advanced predictions. This
approach shows a solid performance in all cases. Similar to the results from [Ter+20g],
SER-FIQ shows the best performance in all scenarios. This is probably because this method
exploits the decision patterns of the deployed model is therefore able to estimate how
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robust the model is about the input.

Table 3.11.: Face verification performance within certain subgroups. The FNMR is eval-
uated at two FMR thresholds for two face recognition models. In each cate-
gory, at least one subgroup shows a significantly higher error rate indicating
a strong bias in the face embeddings.

FaceNet ArcFace

Classes 0.1%FMR 1%FMR 0.1%FMR 1%FMR

Co
lo
rF
er
et
Po

se

Frontal 0.40% 0.00% 0.00% 0.00%
Half 1.78% 0.15% 0.07% 0.04%
Profile 30.95% 10.14% 12.29% 7.55%
Rotated 0.07% 0.03% 1.39% 0.00%

Et
hn

ic
ity

White 10.79% 3.41% 2.55% 1.80%
Asian 33.90% 12.06% 6.63% 4.19%
Black 31.34% 16.54% 6.41% 3.66%
Others 12.15% 6.29% 3.53% 2.08%

All 16.22% 3.92% 4.15% 2.98%

Ad
ie
nc

e
Ag

e

[0,2] 80.02% 59.88% 18.81% 9.73%
[4,6] 63.95% 36.80% 13.19% 6.46%
[8,12] 37.16% 17.27% 9.92% 4.79%
[15,20] 89.78% 52.51% 10.30% 6.15%
[25,32] 28.37% 4.58% 5.31% 4.81%
[38,43] 16.48% 4.07% 2.68% 2.07%
[48,53] 20.94% 5.85% 1.92% 1.39%
[60,100] 11.32% 2.97% 1.67% 0.66%

All 55.99% 16.28% 5.99% 3.24%

Identifying biases in pose, ethnicity, and age In order to identify biased classes in the
two utilized face embeddings, Table 3.11 shows the face verification performance at two
decision thresholds for FaceNet and ArcFace embeddings. The performance is evaluated
over four different head poses, four ethnicities, and eight age classes. In the case of poses,
all poses show very low error rates, with the exception of the profile view. Here, the error
rates are more than 10 times higher than the next highest class. This shows that there is a
strong bias towards profile face images. In the case of ethnicities, face images of white
individuals show the smallest error rate, followed by the class others. For the ethnicities
asian and black, the error rates are strongly increased and thus, indicate a strong ethnic
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bias. This might come from a training process that mainly involved face images of white
individuals. In the cases of the age classes, there are higher error rates among young
people (below 7 years) compared to older individuals. This bias might come from the lack
of appropriate training material as well as the fact that faces at this age are not yet fully
developed.

Over all three attributes pose, ethnicity, and age, ArcFace shows significantly lower error
rates than FaceNet. However, for both face embeddings, it is demonstrated that there
exists high biases towards certain classes.

(a) Pose - COTS (b) Pose - Best-Rowden (c) Pose - FaceQnet (d) Pose - SER-FIQ

(e) Ethnicity - COTS (f) Ethnicity - Best-
Rowden

(g) Ethnicity - FaceQnet (h) Ethnicity - SER-FIQ

(i) Age - COTS (j) Age - Best-Rowden (k) Age - FaceQnet (l) Age - SER-FIQ

Figure 3.17.: Analysis of the proportion of subgroups for FaceNet embeddings. The pose
(a-d), ethnicities (e-h), and age (i-l) proportions are shown when applying
several quality thresholds.

The correlation study - bias versus quality In order to analyse which kind of images
will be assigned low face image qualities, Figure 3.17 and 3.18 show an analysis of
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(a) Pose - COTS (b) Pose - Best-Rowden (c) Pose - FaceQnet (d) Pose - SER-FIQ

(e) Ethnicity - COTS (f) Ethnicity - Best-
Rowden

(g) Ethnicity - FaceQnet (h) Ethnicity - SER-FIQ

(i) Age - COTS (j) Age - Best-Rowden (k) Age - FaceQnet (l) Age - SER-FIQ

Figure 3.18.: Analysis of the proportion of subgroups for ArcFace embeddings. The pose
(a-d), ethnicities (e-h), and age (i-l) proportions are shown when applying
several quality thresholds.

the proportion of subclasses remaining when applying several quality thresholds. An
unbiased face quality estimator will result in a stable proportion of subclasses over different
quality thresholds. A biased estimator will cause classes effected by the bias to shrink,
since these classes are mainly assigned with low quality values. To get a more detailed
understanding of the correlation between quality scores and affected classes, Figure 3.19
show quality score distributions for the different subclasses. Based on the experiment
before, we observed bias to frontal poses, at asian and black ethnicities and to face images
of individuals below 7 years.

COTS The industry product COTS from Neurotechnology shows a very strong perfor-
mance in filtering profile face images. This can be observed with FaceNet and ArcFace
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embeddings. The score distributions further show high peaks around the lowest quality
values for profile images indicating a weak recognition performance for this pose. For
age, the number of samples of biased age classed affected by the bias are reduced with
higher quality thresholds. The score distributions of the class [0,2] and [4,6] are shifted
towards lower qualities. Consequently, the quality assessment is biased towards age. For
ethnicity, the proportions for the different classes mainly stagnates. Furthermore, in the
corresponding score distributions the distributions show a large overlap in both cases.
Consequently, the face quality is mainly biased towards pose and age.

Best-Rowden The approach from Best-Rowden shows biased decision towards ethnicity
and age. For different head poses, the quality predictions do not differ and the quality
distributions are very similar. This can be explained by training on the frontal face database
MORPH. For FaceNet embeddings, a slightly biased behaviour is seen for asian and black
faces. For ArcFace embeddings, a strong bias towards black faces is observable. Despite
training the approach on a database with 80.4% black ethnics, the major influence comes
from the utilized embeddings that were used for the training. Both embeddings were
trained on MS1M, a database with mainly white ethnicities. For age, it can be observed
that age classes under 12 years are getting lower quality estimates.

FaceQnet FaceQnet [Her+19] shows a bias in all three investigated cases. For pose
and age, the method reduces the number of samples of the classes affected by the bias
showing that also the quality assessment posses the same bias. This is support by the
quality distributions in Figure 3.19. The profile distribution is clearly separated and the
distributions for young individuals (till 12 years) are shifted towards smaller quality values.
For ethnicity, the number of samples from the classes effected by bias increases on FaceNet
as well as ArcFace embeddings. Moreover, the quality score distributions strongly overlap
and assign the asian distributions to the highest qualities. The age-bias can be explained by
the used training database VGGFace2, which consists of mainly young adults. However, this
does not explain the quality prediction differences for pose and ethnicity, since VGGFace2
contains more non-frontal than frontal images and contains a large variance of ethnics.
The resulting bias can be better explained by the utilized embeddings. The FaceQnet
model was trained on comparison scores from FaceNet embeddings based on the MS1M
dataset. MS1M contains mostly frontal faces of white adults.

SER-FIQ SER-FIQ shows the best face quality assessment performance in all investigated
cases, since it directly measures the quality based on the deployed face recognition model.
Therefore, it is able to consider the model decision patterns including biased decisions.
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This effect can be observed in all evaluated cases for face quality assessment. In all of these
cases, the classes affected by the bias are strongly reduced with a growing quality threshold,
while the ratio of the classes with a good face verification performance increases. This can
be observed for frontal head poses, asian and black faces, and faces from individuals below
7 years. The quality score distributions in Figure 3.19 further strengthen the suspicion of
bias. In all cases, the distributions are clearly separated from each other. Consequently,
SER-FIQ adapts to the bias from the deployed face recognition model, which arises from
the unbalanced MS1M training data. For non-demographic attributes, a potential bias
transfer fulfils the task of quality estimation in a non-discriminative manner. However,
for demographic attributes, SER-FIQ exactly fulfils the utility definition of face quality
estimation including a discriminating bias transfer. Future works have to come up with a
solution to this problem.

Summary For all evaluated face quality assessment algorithms, biased quality estimates
are observed. We point out that if the face quality assessment approach is trained on face
embeddings, the major influence of the quality estimation bias was observed to originate
from the face embeddings, not the data for training the quality assessment algorithms.
It was shown that the classes that are affected by face recognition bias are also getting
lower quality assignments. The utility definition of face quality assessment causes this bias
transfer and future work have to come up with a solution to this problem. This (a) might
be a development of face quality assessment solution that does not adapt demographic
bias or (b) strengthen the focus on bias mitigating face recognition models, since an
unintended bias transfer will not happen with an unbiased face recognition model.

3.4.6. Interim Conclusion

Current definitions of face quality assessment are based on the suitability of a face
image for the task of face recognition. Optimizing this suitability estimation can be
achieved when the face quality assessment is built on the deployed face recognition.
This leads to more robust and accurate quality predictions as recent work has shown.
However, this can lead to an unintended bias transfer towards the face quality assessment
including its discriminatory effects on the society. In this section, we presented a profound
investigation between face recognition bias and face quality estimation. The experiments
were conducted on two publicly available databases and involved four state-of-the-art
face quality assessment algorithms from academia and industry and two widely-used face
recognition systems. The results showed that face image quality highly correlates with
demographic, as well as non-demographic, bias by demonstrating that current face quality
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assessment methods already adapted the bias. Consequently, every enrolment process,
as well as quality-based fusion approach, possess the bias as well. The current definition
of face quality allows this bias transfer. The ethical questions concerning fairness and
discrimination that arises with this definition, however, have to be discussed by future work.
Possible solutions for this problem include (a) a development of face quality assessment
approach that, by design, prevents a demographic bias transfer or (b) a strong focus on
bias-mitigating face recognition models, since an unintended bias transfer will not happen
with an unbiased face recognition model.
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(a) Pose - COTS (b) Ethnics - COTS (c) Age - COTS

(d) Pose - Best-Rowden -
FaceNet

(e) Ethnics - Best-Rowden
- FaceNet

(f) Age - Best-Rowden -
FaceNet

(g) Pose - Best-Rowden -
ArcFace

(h) Ethnics - Best-Rowden
- ArcFace

(i) Age - Best-Rowden - Ar-
cFace

(j) Pose - FaceQnet (k) Ethnics - FaceQnet (l) Age - FaceQnet

(m) Pose - SER-FIQ -
FaceNet

(n) Ethnics - SER-FIQ -
FaceNet

(o) Age - SER-FIQ -
FaceNet

(p) Pose - SER-FIQ - Arc-
Face

(q) Ethnics - SER-FIQ - Arc-
Face

(r) Age - SER-FIQ - ArcFace

Figure 3.19.: Quality score distributions for several poses (left), ethnicities (middle), and
age classes (right). The quality scores are shown for the different face
quality assessment approaches. While COTS and FaceQnet work on im-
age level, Best-Rowden and SER-FIQ are applied on FaceNet and ArcFace
features.
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3.5. Analysing Soft-Biometric Characteristics in Face Templates

3.5.1. Introduction

In this chapter RQ4 "What information is stored in biometric face templates?" is answered
and is based on the work of Terhörst et al. [Ter+20a]. This aims at demonstrating the
need for enhancing soft-biometric privacy in face recognition systems and further provides
key-insights for the development of more effective solutions in Chapter 5.

The advances of deep neural representations lead to high-performing face recognition
solutions [GNH18]. Due to the achieved performance, face recognition systems spread
world-wide and increasingly affect our daily life [Dam+18d]. Despite that these face
representations are trained to enable recognition of individuals, previous works showed
that more information than just the identity is embedded. They demonstrated face
templates contain information about head pose [Par+17], image characteristics (such as
quality [BJ18; Her+19], viewpoint [Hil+18], and illumination [OTo+18]), demographics
[DDB18; Ter+19d; ÖAE16], and social traits [Par+19]. However, for many applications,
the users do not permit to have access to this information. Thus, the stored data should
be exclusively used for recognition purposes [MR17], and extracting such information
without a person’s consent is considered a violation of their privacy [Kin13]. This problem
is known as soft-biometric privacy [MR17] and solutions are either build on image- [OR14;
MRR19; MRR20] or template-level [Ter+19a; Ter+20c; Ter+20h; Bor+20].
Since the knowledge about encoded attributes in face template is required to develop

more advanced bias-mitigating solutions [GLJ19; Lia+19; Ter+20i; Ter+20f; Yin+19]
and more comprehensive privacy-enhancing technologies, in this section, we investigate
the predictability of 113 attributes from face templates at different difficulty-levels. We
jointly trained a massive attribute classifier (MAC) with a high number of attributes to take
advantage of a shared feature space. The MAC is modified such that it is able to accurately
state its prediction reliability [Ter+19d]. This allows us to make predictions at two
reliability levels and thus, to derive more fine-grained statements about the predictability
of attributes in face templates. The experiments were conducted on two publicly available
databases, CelebA [Liu+15] and LFW [Hua+07], and on two popular face embeddings,
FaceNet [SKP15] and ArcFace [Den+19]. To derive understandable statements about the
stored attribute information, we categorized each attribute into one of three predictability
classes: easily-predictable, predictable, and hardly-predictable. The results show that
39 attributes are assigned to the easily-predictable class and 74 of the 113 investigated
attributes are at least predictable. Despite that face templates are learned to be robust
to non-permanent factors, the results demonstrate that especially these attributes are
easily-predictable. This includes information about age, hairstyles, haircolors, beards, and
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accessories, such as makeup, lipstick, and glasses.

3.5.2. Related Work

The development of deep neural network representations for faces led to strong perfor-
mance boosts for face recognition [GNH18]. However, since these representations are
derived from black-box models, it is not clear which kind of information is stored in these
representations.

In 2017, Parde et al. [Par+17] investigated face representations in terms of head position
and source of the image. The results demonstrated that the investigated representations
contain accurate information of the yaw and pitch of a face and about whether the
input-face origins from a still image or a video frame. They suggest that image-quality
information might be available in these features as well. This hypothesis was proofed to
be correct [Ter+20g; BJ18; Her+19]. In [Ter+20g; BJ18; Her+19], face image quality
was successfully predicted based on face embeddings.

In [Par+19], Parde et al. analysed if face representations retain information in faces
that supports social-trait inferences. In their experiments, they investigated 11 social
traits such as talkative, assertive, shy, quiet, warm, artistic, efficient, careless, impulsive,
anxious, and lazy. They trained linear classifiers to predict these human-assigned social
trait profiles and demonstrated that these traits can be determined from face embeddings
to a high degree. The best-predicted traits were impulsive, warm, and anxious.
Hill et al. [Hil+18] analysed the representations of caricature faces. They examined

the organization of viewpoint (0°, 20°, 30°, 45°, 60°), illumination (ambient vs spotlight),
gender (male vs female), and identity in the embedding space. Their results showed that
the utilized face recognition model creates a highly organized, hierarchical, similarity
structure in which information about face identity and imaging characteristics coexist.
These results were summarized by O’Toole et al. [OTo+18]. They reviewed what proper-
ties are known about the face space and ground them in the context of previous-generation
face recognition algorithms.
In [ZSL16a; ZSL16b] Zhong et al. demonstrated that the use of various mid-level

representations from face recognition networks leads to highly accurate facial attribute
estimation performances. This indicates that also high-level representations, such as face
recognition templates, might contain a significant amount of facial attribute information.
In [DDB18; Ter+19d; Bou+19; ÖAE16], it is shown that demographic attributes such as
gender, age, and race can be derived from face templates.
So far, previous works showed that head pose, image characteristics (such as quality,

source of the image, viewpoint, illumination), demographic attributes (gender, age, race),
and social traits (e.g. impulsive, warm, and anxious) can be found in face templates.
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In contrast to previous work that investigated only specific characteristics, in this section,
we analyse a wide range of attributes (up to 113) in face representations. Moreover, we
analyse the predictability of these attributes under different levels of prediction reliabilities.
This allows us to state more generally which attributes are encoded in face templates.

3.5.3. Methodology

This section aims at analysing the set of soft-biometric information that is stored in face
templates. To do so, we train a classifier to jointly predict these attributes. If the classifier
can successfully predict these, we conclude that these attributes are stored in the face
templates. However, this only allows us to answer the question of what information is
embedded. A statement about what information is not included is not possible, because
the reverse conclusion is not necessarily logical. If an estimator is not able to learn the
pattern of an attribute, it does not imply that the pattern does not exist. The classifier
might just not be able to deal with the complexity of the attribute pattern or the data
variability and representation might be low.

To answer RQ4, the following three subsections explain the different steps of the
investigation methodology. In Section 3.5.3, we will first explain the classifier training
procedure that allows a joint prediction of a large number of attributes. Learning these
attributes in a multi-task learning approach will enhance the performance, since many
attributes share similar features. In Section 3.5.3, we explain how this classifier can
accurately state its predictions confidence. This prediction confidence determines the
quality of a prediction and enables us to derive predictability classes in Section 3.5.3.
These predictability classes allow us to generalize our findings into easily understandable
statements.

Massive attribute classifier (MAC)

To investigate what attribute-information is stored in face templates, we train a classifier
model to predict multiple attributes. If the classifier can correctly predict these attributes
given face templates, we can draw conclusions about what attributes are encoded in the
investigated representation.

Therefore, we trained a neural network model to jointly predict multiple attributes given
face templates of the training set. Due to the large number of predicted attributes, we
refer to this model as the massive attribute classifier (MAC). To find an optimal network
structure for our MAC, we evaluated multiple models with various number of dense layers
and layer sizes. To be precise, we evaluated random network structures with 1-3 initial
layers and 1-3 branch layers that connects the last initial layer with the the softmax layers
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of each attribute. For each layer a size of 128, 256, and 512 was evaluated. We choose
the structure with the most stable results as the layout of our MAC. However, despite the
large variations in the investigated network structures, we observed that, in most cases,
the predicted performance per attribute only varies within a range of 1-2%.

The chosen MAC-network consists of two initial layers, the input layer of size nin and the
second dense layer of size 512. Here, nin refers to the size of the utilized face embedding.
Starting from the second layer, each attribute a has an own branch consisting of two
additional layers of size 512 and n

(a)
out, where n

(a)
out refers to the number of classes per

attribute. Each layer has a ReLU activation, except for the output-layers, which have
softmax activations. Moreover, Batch-Normalization [IS15] and dropout [Sri+14] with
a dropout-probability of pdrop = 0.5 is applied to every layer. The dropout allows to
generalize the performance, but also enables us to derive reliability statements about the
predictions (described in Section 3.5.3). The training of the MAC was done in a multi-task
learning fashion by applying a categorical cross-entropy loss for each attribute branch and
use an equal weighting between each of these attribute-related losses. For the training, an
Adam optimizer [KB14] was used with e = 200 epochs, an initial learning rate α = 10−3,
and a learning-rate decay of β = α/e. These parameter choices are guided by [Ter+19d].
The batch size b was chosen according to the amount of data available, b = 1024 for
CelebA and b = 16 for LFW.

Reliability statements

To derive statements about the predictability of an attribute in a face template, we use
prediction reliabilities to simulate close-to-optimal classifier circumstances. Therefore, we
follow the methodology in [Ter+19d; Ter+19c] to enable our MAC to state its prediction
confidence (reliability). Following this approach, we trained the MAC with dropout. To
derive a reliability statement additionally to an attribute prediction, m = 100 stochastic
forward passes are performed. In each forward pass, a different dropout-pattern is applied,
resulting in m different softmax outputs v(a)i for each attribute a. Given the outputs of the
m stochastic forward passes of the predicted class ĉ denoted as x(a) = v

(a)
i,ĉ , the reliability

measure is given as

rel(x(a)) =
1− α

m

m∑︂
i=1

x
(a)
i −

α

m2

m∑︂
i=1

m∑︂
j=1

|x(a)i − x
(a)
j |,

with α = 0.5, following the recommendation in [Ter+19d]. The first part of the equation
is a measure of centrality and utilizes the probability interpretation of the softmax output.
A higher value can be interpreted as a high probability that the prediction is correct. The
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second part of the equation is the measure of dispersion and quantifies the agreement
of the stochastic outputs x. In [Ter+19d], this was shown to be an accurate reliability
measure.
We use this reliability measure to simulate more idealistic circumstances. For each

attribute, we calculate the prediction and corresponding reliability of each instance. Then
we take the predictions of 100% and 50% of the highest reliabilities to evaluate the
performance. This performance refers to the ratio of considered predictions (RCP) of
100% and 50%. The performance at 100% RCP refers to the general performance of the
whole dataset. The performance at 50% RCP refers to the performance on the predictions
with 50% of the highest reliabilities. Consequently, this refers to the performance based
on the prediction on which the MAC is most confident about. The unconsidered 50% of
the predictions might contain factors of variances (such as blur, non-frontal head poses)
that lead to unstable, and thus inaccurate, attribute estimates.

Predictability classes

To derive more understandable statements about which attribute information is stored in
a face template, we categorize each attribute into one of three predictability classes:

• Easily-predictable (++): an attribute is categorized as easily-predictable if, and
only if, the balanced accuracy at 100% RCP is above 90%. This means that highly
accurate predictions are possible even under non-ideal circumstances such as bad
illuminations and non-frontal head poses.

• Predictable (+): an attribute is categorized as predictable if, and only if, the
balanced accuracy at 100% RCP is under 90%, but the balanced accuracy at 50%
RCP is above 90%. This indicates that highly accurate predictions are possible under
close-to-optimal conditions, since it only takes into account 50% of the most confident
MAC predictions.

• Hardly-predictable (0): an attribute is categorized as hardly-predictable if the
balanced accuracy is below 90% at both, 100% and 50% RCP. Even under close-to-
optimal circumstances, the MAC is not able to reach high accuracies. Consequently,
the attribute patterns might be too complex for the MAC to handle or it does not
exist a meaningful pattern for this attribute.

While the first two categorizes (Easily-predictable and Predictable) allow making confident
statements about the amount of attribute information in face templates, the same does
not apply for the third category (Hardly-predictable). The last category only states that
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Figure 3.20.: Sample images from CelebA (top row) and LFW (bottom row)

the classifier is not able to accurately learn the pattern, but this might be due to several
reasons: (1) the pattern does not exist, (2) the pattern does exist, but it is too complex
for the model to learn, or (3) the pattern does exists but the amount of data and its
representation is not appropriate for the classifier to learn. Consequently, for the third
case, we can not determine if the attribute pattern exists.

3.5.4. Experimental Setup

Databases

For the analysis of the face space, we chose the Labeled Faces in the Wild (LFW) [Hua+07]
and the CelebFaces Attributes (CelebA) [Liu+15] datasets because of their large and
rich attribute annotations. The large number of different soft-biometric labels allows to
deeply investigate which of these attributes are encoded in face templates. Figure 3.20
shows sample images from both datasets. The CelebA dataset [Liu+15] is a large-scale
dataset with more than 200k images of over 10k celebrities. It covers large variations in
pose and background. Moreover, each image is labelled with 40 binary attributes. LFW
[Hua+07] contains over 13k images from over 5k individuals and exhibits variability in
pose, lighting, focus, resolution, facial expression, age, gender, race, accessories, make-up,
occlusions, background, and photographic quality. The face images are 250x250 pixels
and mostly in color. Each image is annotated with up to 73 attributes.

The attribute labels of both databases [Hua+07; Liu+15] cover a wide range of charac-
teristics such as the person’s demographics, skin, hair, beard, face geometry, periocular
area, mouth, nose, accessories, and environment.

Cleaning attribute labels

In contrast to CelebA, where the attribute labels are of binary nature, in LFW, the labels
come from the prediction probabilities of a binary classifier [Hua+07]. Each label value
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measures the degree of the attribute and thus, are continuous [Kum+09; Kum+11].
E.g. for the attribute male, a higher label score indicates that the person appears more
masculine than a person with a lower label score. Consequently, the top rank images for
an attribute represent the label true, while the lowest rank images indicate the label false.
A value around zero means that the corresponding attribute has little meaning on this
image.

To make sure that our MAC performs well when training on LFW, we manually converted
the continuous attribute labels to binary labels. Therefore, we assigned an upper and
lower score threshold for each attribute. Images with a score over the upper threshold
are assigned as true, images with a score under the lower threshold are assigned as false,
images with scores within the range are assigned as undefined. The upper and lower
thresholds for one attribute are manually determined by moving potential thresholds away
from zero. At each potential threshold, ten images with the closest attribute scores are
investigated. Here, the original LFW labels of the images are manually investigated for
correctness. If only eight or fewer attributes are investigated as correct, the potential
threshold is further moved away from the starting point and the procedure is repeated.
If a potential threshold returns images with 9 or more correct labels, it is chosen as the
limit. Repeating this over all attributes will result in a lower and an upper threshold for
each of these attributes. By binaryzing the scores with these upper and lower thresholds,
we ensure an error-minimizing data basis of the MAC. This allows us to train and test on
meaningful and correctly labelled data.

Please note that the label-cleaning process reduces the amount of used labels by 51,7%
that might induce a bias in our evaluation. To avoid biased conclusions that might result
from this process, we evaluate on another binary labelled database. After the label-
cleaning, we found 15 attribute labels of either a low number of positively and negatively
labelled samples (<100). These are listed in Table 3.12 with the number of positively and
negatively labelled samples in the test and training set. We will mark these attributes (in
grey) in the following investigations to consider their low expressiveness during the face
analysis.

Evaluation metrics

In this work we derive what information is contained in the face templates based on
prediction accuracies. In machine learning, accuracy is defined by the ratio of the number
of correct predictions to the total number of predictions [Mur13]. To be robust to attribute-
imbalances, we report the prediction performance in terms of balanced accuracy. This
refers to the standard accuracy with class-balanced sample weights [KND15].

The train/test data is defined by dividing the databases in a 70%/30% subject-exclusive

104



Table 3.12.: Train/test sample distribution on LFW for selected attributes that are found
insufficient for a meaningful attribute analysis after label-cleaning. Pos and
Neg refers to the number of positively and negatively labelled samples for
the train and test set. The listed 15 attributes are found to be insignificant
for the analysis due to a low number of samples in either the positive or
negative class.

Train Test

Attribute Pos Neg Pos Neg
Color Photo 8806 29 3772 24
Mouth Slightly Open 674 109 315 57
Round Face 9 588 3 250
Goatee 20 3346 10 1557
Baby 23 9137 15 3913
Bangs 89 5238 44 2080
Bald 114 4413 47 1953
Big Lips 101 751 48 318
Sunglasses 74 8583 50 3631
Partially Visible F. 124 1501 55 601
Mouth Wide Open 107 6593 56 2925
Double Chin 154 172 57 136
Harsh Lighting 113 914 62 487
Outdoor 173 510 63 243
Teeth Not Visible 125 2209 66 1089

split. To analyse the prediction performance of an estimator under more ideal circum-
stances, we chose a classifier for the attribute prediction task that is additionally able to
accurately state its prediction confidence. For each face template, this classifier predicts the
associated attributes and their prediction reliabilities. To get the prediction performance
under more ideal circumstances, for each attribute, only the predictions with 50% of the
highest reliabilities are considered for the balanced accuracy. This balanced accuracy
refers to a ratio of considered predictions (RCP) of 50%. Since this relates to the MAC
prediction confidence, the balanced accuracy should be higher at lower RCP-levels.
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Face template extraction

In this work, we utilize two widely-used face recognition models, FaceNet [SKP15] and
ArcFace [Den+19]. We use pre-trained models trained on the MS1M database [Guo+16]
for both networks, FaceNet12 and ArcFace13. To get the face template for a given face
image, the image has to be aligned, scaled, and cropped. For FaceNet, the preprocessing
is done as described in [KS14]. For ArcFace, we follow the preprocessing as described in
[Guo+18]. The preprocessed image is passed to a face recognition model to extract the
embeddings. The output size is 128 for FaceNet and 512 for ArcFace.

Investigations

This works aims at understanding what kind of soft-biometric information is stored in
face templates. Therefore, our investigations are divided into three parts:

1. We validate the attributes labels of both datasets by studying the correlations between
the attributes.

2. We analysing what attributes are contained in face representations by investigating
the attribute prediction performances on both datasets and face embeddings. To
get a more complete perspective on the problem, the prediction performances on
different confidence-levels of the classifier are investigated.

3. We obtain an overview of which kind of information is encoded in face templates by
categorizing each attribute into one of three predictability classes based on their
two-level prediction performances.

3.5.5. Results

This section is divided into three subsections, each focusing on one investigation point:
(1) analysis of the attribute correlation, (2) investigation of the attribute predictability,
and (3) summarize findings.

Attribute-correlation analysis

To understand the quality of the labels and potential biases in the attribute labels, Figure
3.21 shows a selection of attribute-label correlations. The attributes are chosen to show
12https://github.com/davidsandberg/facenet
13https://github.com/deepinsight/insightface
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(a) CelebA (b) LFW

Figure 3.21.: Label-correlation for CelebA and LFW. The attributes are chosen to show
the 15 most positive and negative pairwise correlations. The attribute-
correlation for LFW is shown after the label-cleaning process. Green in-
dicate positive correlations, while red indicate a negative correlation. The
correlation is based on the Pearson coefficient.

the 15 most positive and negative pairwise correlations. For CelebA, the correlation in
Figure 3.21a shows that the large majority of male faces in the database do not wear
lipstick, earrings, and makeup. These attributes mostly belong to female faces. Moreover,
it shows some biases in the database labels. The majority of male faces have a beard.
If a face is labelled as attractive, it belongs to a young female face most likely wearing
accessories and makeup. However, this figure also approves the quality of some labels,
e.g. No Beard negatively correlates with all kinds of beards such as Sideburns, Goatee, and
Mustache.

Figure 3.21b shows the attribute correlation for LFW. It shows that the attributes Heavy
Makeup, Wearing Lipsticks, Wearing Earrings, and Wearing Necklace belongs together with
Youth and Attractive Woman, Smiling, and High Cheekbones. Moreover, this set of attributes
does not correlate with a Receding Hairline and Male. Nevertheless, it also approves the
quality of other labels such as No Eyewear (negatively correlates with Eyeglasses) and
Curly Hairs (negatively correlates with Straight Hair).
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Attribute-analysis of the face space

100% RCP (hard) refers to the use of all samples under the given circumstances. 50%
RCP (easy) refers to the 50% the predictions of which the classifier is most sure about its
correctness. In Table 3.13 the prediction performance is shown for CelebA including the
assigned predictability classes. Two general observations are made. First, the performance
at the 50% RCP-level is always higher than for 100% RCP showing that MAC learned
reliable predictions on the dataset. Second, even if the prediction performance on FaceNet
(FN) and ArcFace (AF) is very similar, the performance on FN is always slightly higher.
This can be explained by ArcFace’s margin-principle during training that distorts the
feature space more incoherently and thus, makes it harder for pattern learning. In total,
many of CelebA attributes can be predicted with high accuracy from face templates.
This includes demographic characteristics such as gender, characteristics of the person’s
hairstyle, haircolor, and beard. Moreover, the deeply encoded features also contain
highly-detailed information about the person’s accessories, such as necklace and earrings.

Table 3.14 shows the same evaluation setting on the LFW database. The grey highlights
refer to results with limited significance since the label-cleaning process eliminated many
samples with low-quality labels. The low number of train- and testing-samples explains
some of the weak performance such as for Baby, Sunglasses, and the Mouth category.
However, comparing the results of LFW with the results of CelebA (Table 3.13) shows
similar performances on attributes which occur in both datasets, such as demographic
attributes, haircolors, face geometry etc. Consequently, our label-cleaning process removed
low-quality attribute-labels but did not result in a large bias of the data. Due to the
entangled patterns encoded in the templates some attributes, such as Bold, Bangs, and
Goatee, are easy to learn and thus, achieve high performances. Generally, the prediction
performance using ArcFace embeddings is significantly weaker than using FaceNet. ArcFace
embeddings contain more complex attribute patterns and for the experiments on LFW less
data was available for training, since we manually filtered low-quality labels. Consequently,
it can be expected that with more training data the performance on ArcFace is better.
Nevertheless, similar to CelebA, many attributes can be predicted with high accuracies
from the templates only. This goes for demographic attributes such as gender, age, and
race, as well as for hairstyle, haircolor, beard, and accessories. Moreover, characteristics
about the face geometry such as face shape, double chin, and forehead visibility can be
determined. Factors that do not belong to the person, such as lighting conditions and
blurriness, can not be predicted reliably with the MAC. It is interesting to note that the high
predictability of Attractive woman can be explained by the high correlation to accessories.
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Table 3.13.: Prediction performance on CelebA: the performance is based on FaceNet
(FN) and ArcFace (AF) embeddings and is reported in terms of balanced
accuracies at two difficulty scenarios: 100%RCP (hard) and 50%RCP (easy).
++,+, and 0 state the assigned predictability class.

100% RCP 50% RCP

Attribute FN AF FN AF

D
em

o Male++ 98.9% 98.4% 99.9% 99.9%
Young+ 85.5% 83.6% 96.4% 94.5%

Sk
in Pale Skin0 76.0% 71.9% 87.1% 83.0%

Rosy Cheeks+ 83.4% 78.2% 96.3% 81.7%

H
ai
rs
ty
le

Bald++ 95.7% 94.0% 100.0% 100.0%
Bangs++ 91.7% 89.3% 99.4% 98.3%
Receding Hairline+ 85.4% 82.5% 96.4% 94.2%
Sideburns++ 92.8% 92.1% 90.0% 99.7%
Straight Hair0 68.6% 70.7% 79.9% 82.0%
Wavy Hair0 74.4% 76.6% 86.4% 89.4%

H
ai
rc
ol
or Black Hair+ 83.7% 81.5% 96.6% 94.3%

Blond Hair++ 91.9% 90.1% 99.3% 98.3%
Brown Hair+ 76.5% 75.9% 90.1% 88.3%
Gray Hair++ 93.0% 91.1% 99.6% 98.8%

Be
ar
d

5 o Clock Shadow+ 86.9% 85.8% 99.6% 99.0%
Goatee++ 93.4% 91.8% 97.2% 98.9%
Mustache++ 92.2% 89.7% 100.0% 98.8%
No Beard++ 92.1% 90.8% 99.4% 99.0%

Fa
ce

G
eo

. Chubby+ 86.5% 83.1% 96.5% 95.4%
Double Chin+ 86.6% 82.9% 96.9% 95.4%
High Cheekb.+ 78.5% 72.2% 91.6% 82.6%
Oval Face0 63.4% 61.9% 70.8% 68.1%

Pe
rio

cu
la
r Arched Eyebrows+ 79.8% 77.0% 93.3% 89.5%

Bags Under Eyes0 72.1% 70.7% 80.6% 80.7%
Bushy Eyebrows+ 83.4% 78.5% 95.9% 91.9%
Narrow Eyes0 66.5% 60.7% 75.4% 66.7%

M
ou

th Big Lips0 74.6% 68.8% 86.4% 78.7%
Mouth Slightly Open0 74.5% 67.5% 86.5% 76.5%
Smiling+ 80.1% 71.7% 92.9% 82.1%

N
os
e Pointy Nose0 71.7% 69.3% 83.1% 78.9%

Big Nose0 77.4% 75.8% 88.1% 87.1%

Ac
ce
ss
or
ie
s

Eyeglasses++ 97.3% 90.6% 99.8% 98.7%
Heavy Makeup++ 90.1% 88.7% 99.2% 98.5%
Wearing Earrings+ 79.2% 77.0% 94.8% 91.6%
Wearing Hat++ 95.4% 92.8% 99.4% 99.0%
Wearing Lipstick++ 92.8% 91.4% 99.4% 98.7%
Wearing Necklace0 71.8% 71.4% 86.9% 84.2%
Wearing Necktie+ 83.7% 82.1% 98.5% 98.0%

O
th
er Blurry0 74.3% 68.2% 85.2% 78.4%

Attractive+ 79.6% 77.9% 92.4% 89.6%
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Table 3.14.: Prediction performance on LFW: the performance is based on FaceNet (FN)
and ArcFace (AF) embeddings and is reported in terms of balanced accura-
cies at two difficulty scenarios: 100% RCP (hard) and 50% RCP (easy). ++,+,
and 0 state the assigned predictability class. Grey highlighting refers to re-
duced expressiveness due to limited data after the label-cleaning process.

100% RCP 50% RCP

Attribute FN AF FN AF

Male++ 98.3% 83.9% 99.5% 94.2%
Baby0 55.1% 49.9% 50.0% 50.0%
Child0 68.8% 57.5% 75.8% 52.4%
Youth+ 79.9% 70.5% 93.1% 79.8%
Middle Aged+ 88.4% 74.0% 95.2% 82.9%
Senior++ 99.6% 83.9% 100.0% 88.4%
Asian++ 95.5% 66.2% 100.0% 69.6%
White++ 97.4% 73.6% 99.4% 81.4%
Black++ 95.3% 63.2% 98.3% 53.6%

D
em

og
ra
ph

ic
s

Indian+ 85.2% 50.2% 92.5% 54.7%

Rosy Cheeks0 67.2% 58.8% 73.0% 64.3%
Shiny Skin0 82.1% 67.9% 89.7% 75.6%
Pale Skin0 68.0% 62.9% 79.9% 67.2%Sk

in

Flushed Face0 66.5% 55.5% 77.5% 52.3%

Curly Hair0 69.0% 61.7% 77.8% 68.7%
Wavy Hair++ 95.0% 80.5% 99.7% 83.3%
Straight Hair0 67.5% 59.8% 76.8% 65.5%
Receding Hairline+ 83.3% 73.0% 93.5% 84.9%
Bald++ 93.6% 75.8% 97.9% 75.0%
Bangs++ 97.0% 64.1% 100.0% 50.0%H

ai
rs
ty
le

Sideburns++ 98.9% 84.1% 99.7% 89.2%

Black Hair++ 90.4% 65.6% 96.5% 61.5%
Blond Hair++ 95.2% 71.7% 98.8% 55.6%
Brown Hair+ 81.5% 71.9% 91.9% 82.7%

H
ai
rc
ol
or

Gray Hair++ 98.8% 88.4% 100.0% 93.9%

No Beard++ 98.1% 83.9% 100.0% 92.1%
Mustache++ 98.5% 79.7% 99.3% 78.1%
5 o Clock Shadow++ 96.5% 83.8% 99.6% 92.4%Be

ar
d

Goatee++ 94.5% 70.0% 100.0% 100.0%

Oval Face+ 82.7% 71.6% 95.4% 75.8%
Square Face++ 99.1% 89.1% 100.0% 96.3%
Round Face+ 84.2% 49.6% 100.0% 50.0%
Round Jaw0 70.6% 60.8% 81.1% 58.4%
Double Chin++ 91.5% 81.1% 100.0% 88.7%
High Cheekbones+ 79.9% 73.3% 90.4% 81.8%
Chubby+ 85.5% 74.3% 98.0% 79.4%
Obstructed Forehead+ 85.9% 65.0% 99.9% 61.3%
Partially Visible F.+ 85.2% 65.9% 94.0% 50.0%

Fa
ce

G
eo

m
et
ry

Fully Visible F.+ 85.9% 71.8% 95.4% 82.2%

100% RCP 50% RCP

Attribute FN AF FN AF

Pe
rio

cu
la
r

Eyes Open0 60.4% 54.4% 63.6% 54.8%
Brown Eyes+ 82.1% 64.0% 92.8% 66.8%
Bags Under Eyes+ 87.2% 73.7% 95.4% 83.5%
Narrow Eyes0 77.1% 66.2% 86.3% 74.1%
Bushy Eyebrows++ 96.3% 83.8% 99.1% 91.7%
Arched Eyebrows+ 85.3% 71.6% 94.5% 76.8%

Mouth Closed0 73.2% 64.0% 83.9% 72.4%
Mouth Slightly Open0 73.8% 61.8% 83.0% 65.1%
Mouth Wide Open0 66.6% 50.8% 59.9% 50.0%
Teeth Not Visible0 70.0% 65.2% 75.3% 58.3%
Smiling0 72.0% 67.9% 81.3% 75.9%M

ou
th

Big Lips+ 87.6% 57.3% 98.0% 57.8%

Big Nose+ 84.5% 71.6% 93.6% 81.5%
Pointy Nose++ 96.5% 71.5% 100.0% 71.3%

N
os
e

Nose-Mouth Lines0 70.0% 61.7% 80.7% 71.6%

Heavy Makeup++ 96.7% 69.9% 99.0% 57.1%
Wearing Hat+ 87.2% 67.9% 96.9% 53.8%
Wearing Earrings++ 91.7% 73.3% 97.9% 72.9%
Wearing Necktie+ 84.6% 72.8% 93.5% 75.2%
Wearing Necklace+ 83.7% 74.1% 92.1% 82.5%
Wearing Lipstick++ 98.5% 75.9% 99.5% 74.0%
No Eyewear++ 95.5% 86.1% 98.2% 90.3%
Eyeglasses++ 96.1% 90.0% 98.4% 95.6%

Ac
ce
ss
or
ie
s

Sunglasses0 71.6% 50.8% 62.4% 50.0%

Blurry0 61.4% 57.2% 66.3% 58.6%
Harsh Lighting0 76.0% 61.3% 89.1% 57.9%
Flash0 78.3% 58.3% 88.3% 51.5%
Soft Lighting0 65.7% 60.2% 72.3% 66.1%

En
vi
ro
nm

en
t

Outdoor0 77.2% 60.8% 81.9% 65.9%

Frowning0 78.3% 72.4% 88.8% 79.5%
Color Photo0 72.8% 54.0% 75.0% 60.0%
Posed Photo0 76.0% 60.7% 80.9% 63.0%
Attractive Man0 74.4% 65.0% 85.1% 74.2%O

th
er
s

Attractive Woman++ 95.3% 75.1% 100.0% 71.4%
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Summary

From 113 investigated attributes, we found that 39 attributes belong to easily-predictable,
35 belong to predictable and 39 to hardly-predictable. To obtain a more general overview
of the encoded information in face templates, Table 3.15 summarizes the categories of
the attributes in the three predictability classes. The assignment of the categories to
the individual attributes is shown in Table 3.14. Providing a more complete view of the
problem, this table also includes findings from related works. Since the face templates
are trained with the purpose of recognition, it seems logical that categories such as Face
Geometry, Periocular Area, Nose, and Mouth are easily-predictable. Surprisingly, this is not
the case. Instead, non-permanent factors such as Hairstyle, Haircolor, Beard, Accessories,
Head Pose, and Social Traits are easily-predictable. Modern face recognition systems aim
to be robust against these factors and still, these factors are strongly present in face
templates.

For many applications, the user of a face recognition system solely provides his biometric
data for recognition. To prevent a function creep of his data, face templates should
contain only identity-related information. However, the experiment showed that many
privacy-sensitive attributes are encoded in face templates. This raises a major privacy
risk. Consequently, future works might analyse the reason for this rich encodings and find
solutions to preserve privacy in face recognition systems.

Table 3.15.: Categorized summary of the predictability classes including findings of re-
lated works.
Easily-predictable Predictable Hardly-predictable
Demographics Face Geometry Skin
Hairstyle Periocular Mouth
Haircolor Nose Environment
Beard Image Quality [BJ18]
Accessories
Head Pose [Par+17]
Social Traits [Par+19]

3.5.6. Interim Conclusion

The success of current face recognition systems is based on the advances of deeply-learned
templates. Recent works have shown that demographics, image characteristics, and social
traits are encoded in these templates. This can lead to biased decisions in face recognition
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systems and raises major privacy issues. In many applications, these templates are expected
to be used for recognition purposes only and deducing information that is not required
for recognition is considered as a violation of their privacy. The knowledge of the encoded
information in face templates is necessary to develop effective bias-mitigating and privacy-
preserving technologies. The main contribution of this section is an analysis of what
information is stored in face templates. This aims at answering RQ4. More precisely, 113
attributes are analyses towards their predictability from face templates. The experiments
were conducted on two popular face templates under two difficulty-levels. To facilitate the
understandability of the results, each attribute was further categorized into one of three
predictability classes. Results reveal that about one third of the analysed attributes are
easily-predictable, another third is predictable, and one third is hardly-predictable. Despite
that face recognition templates are trained to be robust against non-permanent factors,
the results demonstrate that especially these attributes are accurately predictable from
face templates. In the Chapters 4 and 5, the knowledge of this analysis is used to develop
comprehensive bias-mitigating and privacy-preserving solutions for face recognition.
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3.6. Summary

In this chapter, soft-biometric driven bias and privacy concerns in face recognition systems
were investigated. Therefore, two preliminary works were introduced before analysing
these issues in more detail. First, a novel reliability measure [Ter+19d] was proposed
that allows to accurately quantify a model’s prediction reliability. This measure is used on
further investigations and aims at answering RQ1. Second, a large-scale face annotations
dataset, MAAD-Face [Ter+20b], was proposed with the use of the novel reliability measure.
MAAD-Face contains a large number of high-quality attribute annotations associated with
the face images. Unlike related databases, this allows analysing face recognition bias over
a wide range of soft-biometric attributes.
Answering RQ2, the influence of soft-biometric attributes on the behaviour of face

recognition systems was analysed [Ter+21b]. Previous works showed that the perfor-
mance of face recognition systems is strongly dependent on the user-demographics. Our
investigations demonstrated that a wide range of soft-biometrics attributes strongly affects
the recognition performance. Moreover, we demonstrated that this biased behaviour also
appears in the quality assessment of face images [Ter+20e]. Consequently, bias-mitigating
solutions are needed for face recognition systems that are not limited to the pre-defined
demographic attributes. In Chapter 4, approaches are proposed to solve this problem.
Answering RQ4, it was investigated what information is stored in biometric face tem-

plates [Ter+20a]. This aims at analysing soft-biometric privacy concerns in face recogni-
tion. Previous works showed that pose, image characteristics, demographics, and social
treats are embedded in biometric face templates. We investigated a wider range of soft-
biometric attributes that might be stored in face embeddings. Using a massive attribute
classifier and the proposed reliability measure, 113 attributes were analysed and assigned
with a predictability class. It was shown that many soft-biometric attributes are embedded
in face templates. Although face templates are learned to be robust to non-permanent
factors, the results demonstrate that especially these are easily-predictable. However,
the stored data should be exclusively used for recognition purposes and extracting such
information without consent is considered as a violation of their privacy. Consequently,
soft-biometric privacy-enhancing solutions for this problem are needed and proposed in
Chapter 5.
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4. Integrable Bias-Mitigation

4.1. Introduction

Face recognition systems are spreadingworldwide and have a growing effect on everybody’s
daily life. Moreover, these systems are involved in critical decision-making processes, such
as in forensics and law enforcement [Dam+18d]. However, current biometric solutions
are based on deeply-learned features that are mainly optimized for maximum accuracy
[JNR16]. Consequently, many biometric systems show a strong biased performance, such
as for certain demographics [Orc16; AZN18; FPO02; Phi+11; BG18; Gar+16; Dro+20].

To prevent discriminatory decisions, several regulations were introduced, such as Article
14 of the European Convention on Human Rights and Article 7 of the Universal Declara-
tion of Human Rights. These aim to ensure individuals the right to non-discrimination.
Moreover, the General Data Protection Regulation (GDPR) [VB17] aims at preventing
discriminatory effects (article 71). Despite these regulatory efforts, several works [Phi+11;
BG18; Orc16; AZN18; FPO02; Gar+16] showed that open-source [Orc16], as well as
commercial [BG18] face recognition systems, are strongly biased towards different demo-
graphics.
Previous works tried to solve this problem by learning less-biased face embeddings

[GLJ19; Lia+19; WD19; Hua+18; Wan+19; Kor+19; Yin+19]. However, this kind of
approaches require a computationally expensive replacement of every template in the
database and can not be integrated into existing systems that only store the face templates
of enrolled individuals. Consequently, more integrable solutions are needed.

In this chapter, we propose two bias-mitigating solutions that operate beyond template-
level. More precisely, we propose bias-mitigating solution on comparison- and score-level.
This allows an easy integration of these solutions into existing face recognition systems
without the need for a full database replacement. Section 4.2, provides a summary of
related works on bias-mitigation in face recognition including the proposed approaches.
Afterwards, the proposed solutions are presented chronologically in the following sections.

• Section 4.3: Fair Template Comparison (FTC) [Ter+20i] is the first bias-mitigating
solution that works on the comparison-level of a biometric system. Replacing the
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systems similarity function by a fairness-driven network that is trained with a
novel penalization term allows reducing bias in the decision process. The proposed
penalization term allows to include the notation of individual and group fairness
during training. This forces the score distributions of different ethnicities to be
more similar. The results showed that especially the notation of individual fairness
leads to bias reduction rates between 15.35% and 52.67%, while it preserves a high
recognition ability.

• Section 4.4: Fair Score Normalization (FSN) [Ter+20f] is the first bias-mitigation
approach that operates on the score-level of a biometric system. In contrast to
previous works, this unsupervised solution is specifically designed to jointly reduce
the effect of bias of unknown origins and enhances the overall recognition perfor-
mance. FSN builds on the notation of individual fairness and thus, aims at treating
similar individuals similarly. The results demonstrate that the proposed solution
mitigates bias by up to 82.7%. Moreover, it mitigates bias more consistently than
existing works and, in contrast to these approaches, enhances the overall recognition
performance by 53.2% at an FMR of 10−3 and by 82.9% at an FMR of 10−5.

4.2. Related Work

The phenomena of bias in biometrics was found in several disciplines such as presentation
attack detection [Fan+20] and the estimation of facial characteristics [Ter+19c; Ter+19d;
DDB18]. In face biometrics, bias might be induced by non-equally distributed classes in
training data [Kor+19; Hua+18]. Klare et al. [Kla+12] showed that the performance of
face recognition algorithms is strongly influenced by demographic attributes. In [BG18;
Orc16], the authors came to the same conclusions for commercial and open-sources face
recognition algorithms. They demonstrated that the person’s gender and ethnicity strongly
determines their face recognition performance.

These findings motivated research towards mitigating demographic-bias in face recogni-
tion approaches. For more unbiased face recognition, Zhang and Zhou [ZZ10] formulate
the face verification problem as a multiclass cost-sensitive learning task and demonstrated
that this approach can reduce a different kind of faulty decisions of the system. In 2017,
range loss [Zha+17] was proposed to learn robust face representations that can deal
with long-tailed training data. It is designed to reduce overall intrapersonal variations
while enlarging interpersonal differences simultaneously. Recent works published in 2019
aimed at mitigating bias in face recognition through adversarial learning [GLJ19; Lia+19],
margin-based approaches [WD19; Hua+18], data augmentation [Wan+19; Kor+19;
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Yin+19], metric-learning [Ter+20i], or score normalization [Ter+20f].
In [GLJ19], Gong, Liu, and Jain proposed de-biasing adversarial network. This network

consists of one identity classifier and three demographic classifiers (gender, age, race)
and aims at learning disentangled feature representations for unbiased face recognition.
Liang et al. [Lia+19] proposed a two-stage method for adversarial bias mitigation. First,
they learn disentangled representations by a one-vs-rest mechanism and second, they
enhance the disentanglement by additive adversarial learning.

Also margin-based approaches were proposed to reduce bias in face recognition systems.
In [WD19], Wang et al. applied reinforcement learning to determine a margin that
minimizes ethnic bias. Huang et al. [Hua+18] proposed a cluster-based large-margin
local embedding approach to reduce the effect of local data imbalance and thus, aims at
reducing bias coming from unbalanced training data.
Finally, data augmentation methods were presented for fairer face recognition. In

[Wan+19], Wang et al. proposed large margin feature augmentation to balance class
distributions. Kortylewski et al. [Kor+19] proposed a data augmentation approach with
synthetic data generation and Yin et al. [Yin+19] proposed a center-based feature transfer
framework to augment under-represented samples.
So far, previous work mainly focused on learning less-biased face representations.

However, mitigating the bias of a real face recognition system with one of these approaches
will require a computationally expensive template-replacement of the whole database.
Furthermore, it requires that for every enrolled individual a face image is additionally
stored to the persons face template. For many face recognition systems, this is not the case
[Dey+14; SRB16]. Consequently, more easily-integrable solutions are needed. Therefore,
we propose two bias-mitigating solutions that work beyond template-level.

In [Ter+20i], we propose the first bias-mitigating face recognition approach that
operates on the comparison-level. Learning a fairness-driven comparison metric, our
solution includes the notations of individual and group fairness into the system’s decision
process. The results demonstrate that especially the notation of individual fairness is able
to effectively reduce ethnic bias.
In [Ter+20f], we propose the first bias-mitigating face recognition on the score-level

of a biometric system. Our novel fair score normalization approach aims at treating
similar individuals more similarly and thus, more fairly. In contrast to previous works, this
unsupervised solution jointly (a) reduces the biases of unknown origins and (b) enhance
the overall recognition performance.
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4.3. Mitigating Bias on Comparison-Level

In this section, we propose the first bias-mitigating face recognition approach that operates
on the comparison-level of a biometric recognition system [Ter+20i]. Previous works
solely focused on learning less-bias face templates. However, integrating one of these
approaches in existing systems is a computationally expensive task that further requires
stored face images for each enrolled identity. Consequently, we propose a fair template
comparison approach that aims at mitigating ethnic-bias in a face recognition system.

Our contribution is a fairness-driven neural network model that is used to determine if
two face templates belong to the same identity or not. This fair comparator is trained
with two novel loss functions that introduce two fairness criteria into the decision process:
individual and group fairness. While individual fairness aims to treat similar individuals
similarly, group fairness extends this statement to groups of individuals. The novel loss
functions force the score distributions of individuals belonging to different ethnics to
be similar and thus, it reduces the performance differences of different ethnics. The
experiments were conducted on two publicly available databases, ColorFeret and Labelled
Faces in the Wild. These databases contain ethnicity labels of up to 4 classes. The results
demonstrated that our proposed approaches are able to maintain a high recognition
rate, while significantly reducing the performances differences between the demographic
subgroups. While the loss function based on group fairness is able to achieve bias reduction
rates of up to 41.22%, introducing individual fairness to the fairness-driven neural network
reaches bias reduction rates of up to 52.67%.

4.3.1. Methodology

The main idea of this work is to learn a similarity function that treats individuals of
different ethnicities similarly and thus, reduces its verification performance differences
between different ethnics. To achieve this goal, we propose two novel loss functions that
allow to learn a less biased similarity function. Each of these loss functions incorporates a
different fairness criteria to the model. This results in a bias-mitigating neural network
that is able to produce fair comparison scores given two biased face embeddings. The
fairness definitions that we incorporate into the models are group and individual fairness.
While individual fairness aims at treating similar individuals similarly, the definition of
group fairness extends this statement to the context of groups of individuals.
In this work, we transfer these fairness definitions into a similarity learning approach

that forces the score distributions of different and same ethnicities to be similar. This idea
is adapted from Berk et al. [Ber+17] who build these two criteria into linear classification
and regression models. Let S be a training set of biased face embeddings and E is a set
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of ethnicities that appear in S. Then, Sg describes a set of samples that belong to the
ethnicity g ∈ E . Since we want to learn a fair similarity function model, the input of the
model is given by the absolute difference of the embeddings xi,j = |ei − ej | of sample i
and j. The | · | operator ensures that the model is invariant to input permutations. For
each sample pair xi,j , y ∈ {−1, 1} describes its target output relation, where 1 represents
a genuine pair and −1 represents an imposter pair.

The fair template comparison model is trained with the following loss

L = (1− λ)H(y) + λ f(y, ŷ) + γ l2. (4.1)

The binary cross-entropy function H(ŷ) ensures that the model is learning to differentiate
between genuine and imposter pairs. Our novel fair penalization term f(y, ŷ) either
incorporates group or individual fairness into the model training. The fairness parameter
λ ∈ [0, 1] controls the trade-off between learning the most accurate (and thus, the most
biased) comparison score decisions from H(y) and focusing on a fair treatment of the
different demographic subgroups. A high fairness parameter λ will force the model to
focus more on fulfilling the fairness criteria. The last term of the loss function γ l2 describes
a simple l2 regularization to prevent overfitting.
The novel fair penalization term f(y, ŷ) either manipulates the model to learn a deci-

sion pattern that meets the requirements of group fairness or individual fairness. The
penalization term for group fairness is given by

fG =

(︄ ∑︂
i,j∈E

1

|Si| · |Sj |
∑︂

(ŷk,yk)∈Si

(ŷl,yl)∈Sj

δ(yk, yl)(ŷk − ŷl)

)︄2

, (4.2)

where the delta function

δ(yk, yl) =

{︄
1 if yk = yl

0 if yk ̸= yl
(4.3)

ensures that genuine and imposter pairs are treated separately. In total, fG computes the
mean (comparison score) prediction differences per genuine and imposter pair and per
ethnic pair combination. There values are further considered quadratically to keep convex-
ity. If the model overestimates a pair xi,j , it is still able to compensate by underestimating
a pair of the same ethnic combination.
The penalization term for individual fairness is given by

fI =
∑︂
i,j∈E

1

|Si| · |Sj |
∑︂

(ŷk,yk)∈Si

(ŷl,yl)∈Sj

δ(yk, yl)(ŷk − ŷl)
2. (4.4)
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As in Equation 4.2, Equation 4.4 computes the mean score differences between the
predictions of different groups. However, this time the prediction differences are taken
into account quadratically. This strongly forces the score distributions of the same and
different ethnicities pairs to be similar without the option to compensate. Therefore,
individual fairness forces a bias reduction in a more strictly manner than group fairness.
It should be mentioned that this formulation of fairness penalization is not restricted to
ethnic bias.

4.3.2. Experimental Setup

Databases

In order to evaluate the ethnic performance differences (ethnic bias) under constrained and
less-constrained capturing conditions, we conducted experiments on two publicly available
datasets, ColorFeret [Phi+00] and Labeled Faces in the Wild (LFW) [Hua+07]. ColorFeret
[Phi+00] consists of 11,283 images of 944 different individuals with different poses under
controlled conditions. To ensure a more balanced distribution with a significant number
of images per ethnicity, we have aggregated the ethnicities into Black, White, Asian and
Other. The LFW dataset [Hua+07] contains more than 13,142 web images of 5,721
individuals. Both datasets include labels about the person’s ethnicity, as shown in Figure
4.1. For the experiments, a subject-exclusive 3-fold cross-validation setting is utilized.

Table 4.1.: A summary of the used datasets, ColorFeret and LFW. The number of images
and identities is shown in total and per ethnicity.

Databases

ColorFeret LFW

Ethnicity Images Identities Images Identities
White 7,050 618 10,955 4,650
Black 882 78 762 416
Asian 2,629 225 1,425 655
Other 722 73 - -
Total 11,283 944 13,142 5,721
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Evaluation metrics

In this work, the face verification performance is measured in terms of true acceptance rate
(TAR) at a fixed false acceptance rate (FAR). We follow the FAR thresholds as recommended
by the best practice guidelines for automated border control of European Border Guard
Agency Frontex [Fro17]. The equal error rate (EER) is well known as a single-value
indicator of the verification performance and equals the FAR at the threshold where FAR
= 1-TAR. To measure the performance differences of different ethnic subgroups, we use
the mean absolute deviation (MAD)

MAD(TAR) = E [TAR− E [TAR]] (4.5)

at a fixed FAR threshold. The MAD computes the mean of the absolute deviation of the TAR
of each ethnic subgroup towards the mean TAR E[TAR] over all subgroups. Consequently,
it measures the performance differences (in terms of TAR) between the ethnic subgroups
and thus, we will refer to this as a measure of bias. A low MAD indicates that all ethnicities
have similar performances (low ethnic bias), while higher MAD show strong differences
between the verification performances of the ethnic subgroups (high ethnic bias).

Face verification pipeline

In order to verify the identity of an individual, its face template is computed from the
given face image and compared against the template of the claimed identity that is stored
in the database. This results in a comparison score which is used to verify if the two faces
belong to the same identity.

To create the face template form a given face image, first, the image is aligned, scaled,
and cropped as described in [KS14]. Second, the preprocessed image is forwarded
to a FaceNet [SKP15] model. This model outputs a 128-dimension face embedding
representing the identity properties of the face images. In this work, we use a pretrained
model1 that was developed on the MS1M database [Guo+16].

Traditionally, the decision if two face templates come from the same identity or not, is
calculated with the cosine similarity of these templates that acts as the comparison score.
In our experiments, we refer to this as the "baseline" approach. Our approach offers a
fairness-driven neural network approach that replaces the cosine similarity to mitigate
bias in the comparison process.

1https://github.com/davidsandberg/facenet
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Fairness-driven neural network training

The fairness-driven neural network that we use in this work consists of an 128-dimensional
input layer followed by an 256-dimensional and two 512-dimensional intermediate layers.
The output of the network is a binary layer with sigmoid activation. All intermediate
layers possess a ReLU activation function [NH10] and dropout [Sri+14] (with p = 0.3)
is applied to these layers. The network was trained with a batchsize of b = 200 over 50
epochs using an Adam optimizer [KB14] with a learning rate of 10−3. The distribution of
genuine and imposter pairs, as well as the distribution between ethnicities, it kept at the
same level per batch to avoid issues that may appear with unbalanced data.

Investigations

To the best of our knowledge, this is the first work that aims at mitigating bias of face
recognition at the comparison-level. Consequently, the contribution of this work is not
fairly comparable to previous works. In order to still be able to make a fair analysis of the
bias-mitigation performance, we compare different variants of our approach against the
popular baseline that utilizes the cosine-similarity. The variants of our approach include
two different fairness criteria for the loss function (group and individual fairness) as well
as different values of the fairness trade-off parameter λ.
The investigations in this work is divided into two steps. First, the intra-ethnic face

verification performances are analysed to show that there are significant performance
differences for the utilized FaceNet features. Second, the baseline and the proposed
approaches are analysed in compared in terms of verification maintainability and the
reduction of the ethnic bias.

4.3.3. Results

In order to demonstrate that the verification performances differ between different demo-
graphic subgroups, Figure 4.1 shows the verification performances over all individuals
(All) as well as the performances on every intra-class ethnicity. On both databases, a large
deviation in the demographic-specific performances can be observed. This motivates the
need for a bias-mitigating approach in the face recognition pipeline.

Figures 4.2 and 4.3 show ROC-curves and bias reduction plots for the baseline and the
variations of our proposed approach on both databases. While the ROC curves (Figure 4.2a,
4.2c, 4.3a, 4.3c) allow a detailed investigation of the verification performance, the MAD
plots (Figure 4.2b, 4.2d, 4.3b, 4.3d) allow simultaneous analysis of the bias reduction.
The plots for the ColorFeret database (Figure 4.2) show that for fairness parameters
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(a) ColorFeret (b) LFW

Figure 4.1.: Verification performance (ROC curves) on ColorFeret and Adience: the per-
formance is shown on the whole dataset (all) and for every intra-ethnicity ex-
periment. The recognition performance between different ethnic sub-groups
differs significantly.

of λ = {0.4, 0.5, 0.6}, the verification performances of our approach stay close to the
verification performance of the biased baseline. This holds for both fairness criteria, group
(Figure 4.2a) and individual fairness (Figure 4.2c). On the other hand, in Figures 4.2b
and 4.2d, it can be observed that the performances differences (bias) is reduced. The
same can be observed for the LFW dataset in Figure 4.3. Here, the results for the fairness
parameters of λ = {0.80, 0.85, 0.90} are shown. Figures 4.3a and 4.3c demonstrate that
the verification performance is well preserved for both fairness criteria. In Figures 4.3b
and 4.3d, it is noticed that the performance differences between the ethnic subgroups
(ethnic bias) are reduced as well.

In order to quantitatively evaluate the bias reduction of our proposed approach, Table 4.2
shows the bias reduction on both databases and fairness criteria for three FAR thresholds.
The bias reduction is measured in terms of MAD at these FAR thresholds. The choice
of the FAR thresholds follows the best practice guidelines for automated border control
of the European Border and Coast Guard Agency Frontex [Fro17]. It can be seen that
ethnicity-based performance differences (bias) are significantly reduced in most cases. For
all FAR thresholds and on both databases, the loss based on individual fairness shows a
higher bias mitigation than the approach based on group fairness. For individual fairness,
our proposed solution achieves bias reduction rates of 10.48% to 25.06% on ColorFeret
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and 15.35% to 52.67% on LFW. This demonstrates that our individual-fairness-based
solution is able to significantly mitigate bias, while it preserves very high verification rates
as shown before.

Table 4.2.: Bias reduction performances for different FAR on ColorFeret and LFW. The re-
duction ismeasured inMAD@FAR. The benefits of our proposed approaches
are shown for group fairness and individual fairness. The showed perfor-
mances reflect fairness parameters of λ = 0.5 and λ = 0.9.

Bias reduction at FAR of

Database Fairness Criteria 10−5 10−4 10−3

ColorFeret Group 4.06% 15.28% -1.03%
Individual 10.48% 27.46% 25.06%

LFW Group 6.98% 8.20% 41.22%
Individual 15.35% 16.39% 52.67%

4.3.4. Interim Conclusion

In this section, we successfully introduced fair template comparison for mitigating ethnic-
bias in face recognition systems. Previous works proposed solutions that aim at mitigating
bias only at the template-level of a biometric system. However, integrating this approach
into existing systems requires a complete face image collection of all enrolled identities
whose face templates have to be replaced at high computational costs. In this section,
we propose a fair face template comparator that was trained with a novel loss function.
This loss function is able to incorporate two different fairness criteria in the comparison
process: group and individual fairness. The experiments were conducted on two publicly
available databases labelled with up to four different ethnicities. For both fairness criteria,
the proposed solution is able to significantly reduce the ethnic bias, while maintaining high
recognition rates. The results demonstrate that our solution based on individual fairness
is able to achieve high bias reduction rates between 15.35% and 52.67%. Unlike previous
works that solely aim at learning less biased face representations, our solution is the first
work to provide a bias-mitigating solution at the comparison-level of face recognition
systems. Moreover, this solution is not restricted to the mitigation of ethnic bias. However,
this approach still requires annotated training data to mitigate the bias and affects the
overall recognition performance of the system.
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(a) CF - ROC - Group (b) CF - MAD - Group

(c) CF - ROC - Individual (d) CF - MAD - Individual

Figure 4.2.: ROC curves (a,c) and bias reduction plots (b,d) on ColorFeret. The perfor-
mance of the original FaceNet embeddings are shown (Baseline) as well as
the proposed comparison approaches based on group fairness (Group) and
individual fairness (Individual). The bias reduction plots show the MAD of
the performance of different ethnics over different FAR.
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(a) LFW - ROC - Group (b) LFW - MAD - Group

(c) LFW - ROC - Individual (d) LFW - MAD - Individual

Figure 4.3.: ROC curves (a,c) and bias reduction plots (b,d) on LFW. The performance of
the original FaceNet embeddings are shown (Baseline) as well as the pro-
posed comparison approaches based on group fairness (Group) and indi-
vidual fairness (Individual). The bias reduction plots show the MAD of the
performance of different ethnics over different FAR.
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4.4. Mitigating Bias on Score-Level

Previous works on bias-mitigating face recognition proposed solutions to produced less-
biased templates. To avoid the need for storing additional face images for each enrolled
individual and the high computational workload when integrating one of these approaches
into existing systems, we proposed an easily-integrable solution in Section 4.3. However,
also this solution (a) requires annotated training data, (b) mitigates only the bias of the
annotated attributes, and (c) negatively affects the overall face recognition performance.

In this section, we propose a novel and unsupervised fair score normalization [Ter+20f]
approach that mitigates bias in face recognition systems. Unlike previous works, our
solution jointly

a) works with unlabelled training data,

b) effectively mitigates bias of unknown origins,

c) and strongly enhances the overall recognition performance.

Its theoretical motivation is based on the notation of individual fairness [Dwo+12],
resulting in a solution that treats similar individuals similarly and thus, more fairly. The
proposed approach clusters samples in the embedding space such that similar identities
are categorized without the need for pre-defined demographic classes. For each cluster, an
optimal local threshold is computed and used to develop a score normalization approach
that ensures a more individual, unbiased, and fair treatment. The experiments are
conducted on three publicly available datasets captured under controlled and in-the-wild
conditions and on two face embeddings. To justify the concept of our fair normalization
approach, we provide a visual illustration that demonstrates (a) the suitability of the
notation of individual fairness for face recognition and (b) the need for more individualized
treatment of face recognition systems. Experiments were conducted on three publicly
available datasets captured under controlled and in-the-wild circumstances. The results
demonstrate that our solution reduces demographic biases, e.g. by up to 82.7% in the
case when gender is considered. Moreover, it mitigates the bias more consistently than
existing works. In contrast to previous works, our fair normalization approach enhances
the overall performance by up to 53.2% at a false match rate of 10−3 and up to 82.9% at
a false match rate of 10−5. Additionally, it is easily integrable into existing recognition
systems and not limited to face biometrics.
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4.4.1. Methodology

The goal of this work is to enhance the fairness of existing face recognition systems in
an easily-integrable manner. In this work, we follow the notation of individual fairness
[Dwo+12]. This notation emphasizes that similar individuals should be treated similarly.
We transfer this idea to the embedding and score level to propose a novel fair group-based
score normalization method, without the need for pre-defined demographic groups. The
proposed approach is able to treat all identities more individually and therefore, increase
the group-related, as well as the total, recognition performance.

Fair group score normalization

Our proposed solution is presented assuming a set of face embeddingsX = (Xtrain ∪Xtest)
with the corresponding identity information y = (ytrain ∪ ytest), both partitioned into test
and training set.

Training phase During training phase, a k-means cluster algorithm [HW79] is trained
on Xtrain to split the embedding space into k clusters (k = 100 in our experiment). For
each cluster c ∈ {1, . . . , k}, an optimal threshold for a false match rate of 10−3 is computed
using the genuine and imposter scores of cluster c

genc = {sij | ID(i) = ID(j), i ̸= j, ∀ i ∈ Cc, } (4.6)
impc = {sij | ID(i) ̸= ID(j), ∀ i ∈ Cc, } . (4.7)

The genuine score set genc of cluster c includes the all comparison scores of samples i
and j that come from the same identity (ID(i) = ID(j)), where at least one sample lies
within cluster c (i ∈ Cc). Conversely, the imposter score set impc of cluster c is defined
as all comparison scores sij from different identity pairs (ID(i) ̸= ID(j)) where at least
one sample lies within cluster c (i ∈ Cc). The local threshold for each cluster c is denoted
as thr(c). Furthermore, the threshold for the whole training set Xtrain is calculated and
denoted as the global threshold thrG.

Operation phase During the operation phase, the normalized comparison score ŝij
should be computed to determine if sample i and j belong to the same identity. Firstly,
the corresponding clusters for both samples are computed. The cluster thresholds for
sample i and j are denoted as thri and thrj . Secondly, these cluster thresholds, as well as
the global threshold thrG, are used to calculate the normalized score

ŝij = sij −
1

2
(∆thri +∆thrj) , (4.8)
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where

∆thri = thri − thrG, (4.9)

describes the local-global threshold difference for sample i.

Discussion

The goal of this score normalization approach is to introduce individual fairness in a
biometric system and thus, reduce the discriminatory behavior of face recognition systems.
The notation of individual fairness emphasizes that similar individuals should be treated
similarly. We incorporate this statement in our normalization method using clustering
and local thresholds. Clustering in the embedding space identifies similar individuals and
local cluster thresholds enable approximately individual treatment.
The choice of the individuality parameter k defines the number of clusters for our fair

score normalization and is crucial for the recognition performance. A small k (e.g. k = 2)
refers to a less individual normalization of the score, while a very large k reduces the
number of samples per clusters and thus, the quality of the local thresholds.

How does fair normalization affect different sample pairs?

In the following, we discuss how the proposed fair normalization approach affects biased
and unbiased genuine and imposter pair comparisons.
Biased genuine pair - Assuming that an identity I, with samples i and j, belongs to a

biased group, their comparison score sij = 0.4 will be low. Since this is lower than the
global threshold thrG = 0.6, the decision for this genuine pair will be falsely made towards
imposter. Since these samples belong to a biased cluster, the recognition performance
within is low and so are the local thresholds thri = thrj = 0.3. The low local thresholds
lead to a negative local-global threshold difference ∆thri = ∆thrj = 0.3 − 0.6 = −0.3
and thus, the normalized comparison score ŝij = 0.4 − 1

2(−0.3 − 0.3) = 0.7 increases.
Since ŝ = 0.7 > thrG = 0.6, the system now comes to the correct genuine decision with
the proposed normalization method.

Unbiased genuine pair - Assuming that an identity I, with samples i and j, belongs to an
unbiased group, their comparison score sij = 0.9 will be high. Since these samples belong
to an unbiased cluster, the performance within is high and so are the local thresholds thri =
thrj = 0.7. The low local thresholds leads to a positive ∆thri = ∆thrj = 0.9− 0.6 = +0.2
and thus, the normalized comparison score ŝij = 0.9− 1

2(0.2+ 0.2) = 0.7 increases. Since
ŝ = 0.7 > thrG = 0.6, the system still come to the correct genuine decision.
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Imposter pair - For imposter pairs (i, j), three situations have to be considered depending
cluster-correspondence of the two samples. The first one refers to the case in which one of
the two samples belong to a cluster with a low local threshold, while the other belongs to
one with a large local threshold. In this case, our normalization approach is only marginally
changing the comparison score. Therefore, the verification decision is unchanged.
In the second case, both samples belong to clusters with high local thresholds. Conse-

quently, the score is highly reduced and thus, the probability for a false match decreases.
The third case is the most critical, where both samples belong to clusters with low

local thresholds. If both samples belong to different clusters, then their embeddings are
dissimilar and will result in a low comparison score. Consequently, the risk of a false
match is low. If both samples belong to the same cluster, their embeddings are similar and
thus, there is a high risk of a false match. However, our method is especially optimized for
exactly this (critical) case, since the local thresholds are computed based on intra-cluster
performance. Consequently, the false acceptance rate with our normalization is lower or
equal than the unnormalized case.

Main error - The main error that can appear with the normalization approach happens at
the border of two adjacent clusters with high differences in the local thresholds. Comparing
similar samples at the border of these clusters might lead to overcorrections of the scores.
However, Figure 4.4 showed that this is rarely the case. Moreover, this can be prevented
by a sufficient choice of k, since k determines the number of clusters and a larger number
of clusters lead to more fine-grained local thresholds of adjacent clusters.

4.4.2. Experimental Setup

Databases In order to evaluate the face recognition performance of our approach under
controlled and unconstrained conditions, we conducted experiments on the public avail-
able Adience [EEH14], ColorFeret [Phi+00], and Morph [RT06a] datasets. ColorFeret
[Phi+00] consists of 14,126 images from 1,199 different individuals with different poses
under controlled conditions. Furthermore, a variety of face poses, facial expressions, and
lighting conditions are included in the dataset. The Adience dataset [EEH14] consists
of over 26.5k images from over 2.2k different subjects under unconstrained imaging
conditions. Morph [RT06a] contains 55,134 images from 13,618 subjects. The ages range
from 16 to 77 with a median of 33 years. While Adience contains additional information
about gender and age, ColorFeret and Morph also provide labels regarding the subject’s
ethnicities. The distribution of these attributes in the databases is shown in Table 4.3. In
the experiments, this information is used to investigate the face recognition performance
for several demographic groups.
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Table 4.3.: Attribute distribution of the images in the used databases.
Database

Attribute Class Adience ColorFeret Morph
Gender Male 51.6% 64.6% 84.6%

Female 48.4% 35.4% 15.4%
Age <20 40.0% 1.4% 17.2%

20-30 33.2% 34.9% 28.1%
30-40 15.9% 27.9% 28.3%
40+ 10.9% 35.8% 26.4%

Ethnicity Asian - 23.3% 0.4%
Black - 7.6% 77.2%
White - 62.6% 19.2%
Other - 6.5% 3.2%

Evaluation metrics In this work, we will report the recognition performances in terms
of false non-match rate (FNMR) at fixed false match rates (FMR). As recommended by
the European Border Guard Agency Frontex [Fro17], we will use FMR thresholds of 10−3

and smaller. To evaluate the amount of demographic bias in the recognition performance,
the recognition performance is evaluated within all subgroups and the standard deviation
(STD) of these group-specific performances is reported. A low STD refers to a more
unbiased attribute performance since the performances of the different attribute classes
are similar. In contrast, a high STD refers to a biased attribute performance with strong
performance differences between the attribute classes.

Workflow details For the comparison of two samples, both face images get aligned,
scaled, and cropped. Then, the preprocessed images are passed into a face recognition
model resulting in a face template for each image. The comparison of two embeddings
is done using cosine-similarity. In this work, we use FaceNet2 [SKP15] and VGGFace3
[PVZ15]. Both models were trained on MS-Celeb-1M [Guo+16]. Moreover, the prepro-
cessing for FaceNet was done based on [Kin09] and for VGGFace, the preprocessing follows
the methodology described in [Zha+16]. For all experiment scenarios, subject-disjoint
5-fold cross-validation is utilized and in each iteration, all possible positive and negative
2https://github.com/davidsandberg/facenet
3https://github.com/ox-vgg/vgg_face2
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face combinations pairs are evaluated.

Baseline approaches We evaluate our fair score normalization approach in comparison
with two bias-mitigating works [Ter+20i; Sri+19b] that, just as our solution, act beyond
template-generation and thus, are easily-integrable as well. In [Ter+20i], a fair template
comparison (FTC) approach is proposed aiming at mitigating ethnic-bias. For our experi-
ments, we trained the model with λ = 0.5. This choice is based on the recommendation
of [Ter+20i]. In [Sri+19b], base normalization and score-level fusion (SLF) strategies
are investigated for mitigating bias in face recognition systems. We use their best working
approach, namely min-max normalization with a simple sum-fusion rule, as an additional
baseline in our experiments combining both utilized face embeddings.

Investigations The investigations of this work are divided into four parts:

1. We first visually demonstrate the need for more individual treatment in face recogni-
tion systems. Moreover, we show that our approach is able to treat similar individuals
more similarly.

2. We investigate the effect of the individuality parameter k over a wide parameter
range since this critically affects the effectiveness of the proposed approach.

3. We investigate the bias-mitigation performance of the unmodified baseline, our
normalization approach, and state-of-the-art approaches. Therefore, the intra-class
verification performance is investigated for different demographic attributes and the
attribute-bias is measured and compared.

4. We finally investigate the overall verification performance to prove that, unlike
previous works, our approach enhances the overall performance while mitigating
demographic-bias.

4.4.3. Results

Visual demonstration of the need for individuality

Since our approach is based on the idea of individual fairness, we first want to visually
demonstrate why this notation is suitable for face recognition. Figure 4.4 shows an t-SNE
visualization of the embedding space for the dataset Adience. The t-SNE algorithm maps
the high-dimensional embedding space into a two-dimensional space such that similar
samples in the high-dimension space lie closely together in two dimensions. Furthermore,
each sample is colored based on the local thresholds computed by the proposed approach.
Two observations can be made from this figure:
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Figure 4.4.: Visualizations of the Adience FaceNet embeddings using t-SNE [MH08].
Each individual is represented as a point and each point is colored based
on its optimal local threshold thrk. The formation of several clusters with
similar local thresholds shows that our approach is able to identify similar
individuals and to treat them similarity. The large variation of optimal local
thresholds (0.3 - 0.7) demonstrates the need for this more individual, and
thus fair, treatment.

1. There are several clusters with similar local thresholds in the embedding space.
Consequently, our proposed approach is able to identify similar identities and to
treat them similarly (through similar local thresholds).

2. The optimal thresholds for each cluster vary significantly from 0.3 to 0.7. This
widespread of optimal local thresholds demonstrates the need for a more individual,
and thus fair, treatment.

The choice of the individuality parameter k

In this section, we analyse the sensitivity of the individuality parameter k and justify
our choice for k = 100. Figure 4.5 shows verification performances of the proposed fair
normalization over different individuality parameters k on all datasets and both face
embeddings. Moreover, the unnormalized baseline is shown. For k = 1, the normalization
does not change the scores and thus, the same performance is observed with and without
the normalization. For k ≥ 1, the verification performance increases, since our fair score
normalization approach leads to more individual treatment of each sample. This can
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be observed in all cases (a,b,c,e,f), except for Figure 4.5d. In this case, the clustering
algorithm produces clusters of unequal sizes leading to performance degradation. However,
this still lies within the standard deviation of the unnormalized case. Moreover, this still
leads to a strong bias-mitigation, as we will see in Section 4.4.3. If k is large, the number of
samples per cluster decreases. Since these are necessary to determine the local thresholds,
the quality of these decreases. This leads to unreliable thresholds and thus, inaccurate
recognition performances. For all datasets and both embeddings, this performance drop
can be observed for large k. However, individuality parameters around k ≈ 100 show a
generally stable performance. Therefore, we choose k = 100 for our experiments.

Analysis of the demographic-bias

Our fair normalization approach aims at mitigating biased recognition decisions of un-
known origins. This section analyses this aspect. In Table 4.4, the intra-class recognition
performance (in terms of FNRM@10−3FMR) is shown for several demographic classes
with and without our normalization approach. Tables 4.5 and 4.6 use this information to
measure the attribute-specific bias in the recognition performances and compares it with
previous works. For most attribute classes, the intra-class recognition performance with
our fair normalization approach leads to strong enhancements of up to 58%. However, for
some classes the recognition performance decreases. This happens when an intra-class
recognition performance is much stronger for one class compared to the other classes
for this attribute. Since our fair normalization approach aims at enhancing fairness, and
thus reduces the performance differences between the different attribute classes, (a) weak
classes have to be improved or (b) strong classes have to be adjusted. For instance, the
second case happens in ColorFeret for age and ethnicity. The age classes [31-40] and
[40+] and white ethnicities perform outstanding well without our normalization and they
get adjusted to more closely match the performance of the other attribute classes.
The effectiveness of the proposed normalization approach is shown in Table 4.5 on

FaceNet features and in Table 4.6 on VGGFace features. Additionally, a comparison with
related works is presented. Here, the bias of an attribute is determined by its standard
deviation of the attribute performances. Moreover, the bias reduction rates are shown.
Positive values indicate a strong bias-mitigation and vice versa. Please note that the
gender-bias on Adience using VGGFace features is already very low and consequently
leads to an increase of gender-specific bias on all investigated approaches. SLF [Sri+19b]
achieves high bias reduction rates in some cases. However, in 7 out of the 16 cases, it even
increases the class-biases. FTC [Ter+20i] also increases the class-biases in many cases.
Just the ethnic-bias is consistently reduced. This might relate to the choice of the fairness
parameter λ = 0.5 which is recommended in [Ter+20i] and optimized to the mitigation
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of ethnic-bias. For our approach, the biases from various origins are consistently mitigated
and bias reduction rates of up to 82.7% are achieved.

The global face recognition performance

This section investigates the overall face recognition performance of our bias-mitigation
approach and previous works. Tables 4.7 and 4.8 show the verification performance
of FaceNet and VGGFace features on three databases at three decision thresholds. The
performance is reported for the unmodified baseline (Base), for our fair normalisation
approach (Ours) and previous works (SLF [Sri+19b] and FTC [Ter+20i]). Bias-mitigation
often comes at the cost of a decreasing recognition performance. This can be seen for SLF
and FTC. For example, the overall recognition performance of SLF on FaceNet features
decreases in every case on the Morph dataset. For FTC, the performance decreases in
most cases as well. In contrast, our proposed approach significantly enhances the global
recognition performance by up to 82.9%, while effectively mitigating bias. Just in one out
of 17 cases, the performance slightly decreases due to the failed clustering as discussed in
Section 4.4.3.

4.4.4. Interim Conclusion

Despite the progress achieved by current face recognition systems, recent works showed
that biometric systems impose a strong bias against subgroups of the population. Conse-
quently, there is an increased need for solutions that increase the fairness of such systems.
Previous works focused on learning bias-mitigated face representations. However, these
solutions are often hardly-integrable and degrade the overall recognition performance. In
this work, we propose a novel fair score normalization approach to mitigate bias from
recognition systems. Our unsupervised score normalization approach is easily-integrable
into existing systems and significantly enhances the system’s overall recognition perfor-
mance. Integrating the idea of individual fairness, our solution aims at treating similar
individuals similarly. The experiments were conducted on three publicly available datasets
captured under various conditions and on two kinds of face embeddings. The results show
that the proposed approach significantly reduces demographic-bias, e.g. it mitigates ethnic-
bias by 17.4-32.8%. Additionally, it mitigates bias more consistently over demographic
domains than related works and strongly enhances the overall recognition performance,
e.g. by 16.4-82.90% on the Morph benchmark. In contrast to related works, our method
jointly achieves the following points: it (a) does not need additional soft-biometric labels
during training or inference time, (b) can be easily integrated into existing face recognition
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systems, (c) enhances the total face recognition performance, and (d) leads to a consistent
bias-mitigation. Moreover, it is, by design, not limited to face biometrics.
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(a) Adience - FaceNet (b) Adience - VGGFace

(c) ColorFeret - FaceNet (d) ColorFeret - VGGFace

(e) Morph - FaceNet (f) Morph - VGGFace

Figure 4.5.: Analysis of the verification performance at an FMR of 10−3 based on the indi-
viduality parameters k. The proposed normalization approach (blue) is com-
pared to the unnormalized baseline (orange). The analysis includes three
datasets and two face embeddings. The shaded areas represent the stan-
dard deviation over the 5 cross-validation folds. Individuality parameters
around k ≈ 100 show a generally a stable performance improvement.
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Table 4.4.: Intra-class recognition performance of our approach: the performance is
shown in terms of FNMR@10−3 FMR for FaceNet and VGGFace embeddings.
The unnormalised (unnorm.) and normalized (norm.) performance within
each attribute class is reported with the corresponding performance change
(PC). In many cases, the proposed normalization approach enhances fair-
ness by strongly improving the performance of under-performing classes. In
other cases, the approach leads to a performance adaptation to minimize
the performance differences between the groups, leading to more fair recog-
nition decisions as shown in Tables 4.5 and 4.6.

FaceNet VGGFace

DB Attribute Class Unnorm. Norm. PC Unnorm. Norm. PC

Ad
ie
nc

e

Gender Male 0.5129 0.2600 49.3% 0.4636 0.4462 3.8%
Female 0.3837 0.2823 26.4% 0.4703 0.4985 -6.0%

Age 0-2 0.7764 0.7641 1.6% 0.7861 0.7753 1.4%
4-6 0.6069 0.5838 3.8% 0.7327 0.7417 -1.2%
8-12 0.4327 0.3804 12.1% 0.4527 0.4769 -5.3%
15-20 0.7677 0.4890 36.3% 0.4358 0.4242 2.7%
25-32 0.2264 0.1540 32.0% 0.3174 0.3049 3.9%
38-43 0.1766 0.1631 7.6% 0.2670 0.3002 -12.4%
48-53 0.2253 0.1398 37.9% 0.2859 0.3018 -5.6%
60-100 0.1224 0.1140 6.9% 0.2468 0.2451 0.7%

Co
lo
rF
er
et

Gender Male 0.1635 0.1424 12.9% 0.2252 0.2421 -7.5%
Female 0.2167 0.1891 12.7% 0.2732 0.2704 1.0%

Age 10-20 0.2118 0.1818 14.2% 0.2912 0.2873 1.3%
21-30 0.1506 0.1071 28.9% 0.2059 0.2070 -0.5%
31-40 0.1452 0.1459 -0.5% 0.1842 0.2208 -19.9%
40+ 0.0933 0.1212 -29.9% 0.1701 0.2034 -19.6%

Ethnicity Asian 0.3177 0.2553 19.6% 0.3099 0.3170 -2.3%
Black 0.2489 0.2361 5.1% 0.4120 0.3736 9.3%
White 0.1089 0.1282 -17.7% 0.2085 0.2228 -6.9%
Other 0.1424 0.1417 0.5% 0.2217 0.2112 4.7%

M
or
ph

Gender Male 0.0059 0.0031 47.5% 0.0463 0.0362 21.8%
Female 0.0364 0.0153 58.0% 0.1220 0.1062 13.0%

Age <20 0.0056 0.0034 39.3% 0.0648 0.0585 9.7%
20-29 0.0039 0.0019 51.3% 0.0461 0.0398 13.7%
30-39 0.0081 0.0041 49.4% 0.0495 0.0404 18.4%
40+ 0.0137 0.0064 53.3% 0.0586 0.0472 19.5%

Ethnicity African 0.0037 0.0036 2.7% 0.0431 0.0389 9.7%
Asian 1.0000 0.8036 19.6% 1.0000 1.0000 0.0%
European 0.0069 0.0077 -11.6% 0.0888 0.086 3.2%
Hispanic 0.0062 0.0057 8.1% 0.0396 0.0431 -8.8%
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Table 4.5.: Analysis of the bias reduction of the proposed approach (Ours) in compari-
son with two previous works (SLF [Sri+19b] and FTC [Ter+20i]) on FaceNet
features. The bias is measured in terms of STD of the class-wise FNMRs at
an FMR of 10−3. Unlike both previous works, our proposed approach miti-
gates bias effectively and consistently.

Bias (STD) Bias reduction

Database Attribute Baseline SLF [Sri+19b] FTC [Ter+20i] Ours
Adience Gender 0.0646 68.5% -44.9% 82.7%

Age 0.2515 11.9% 45.9% 8.9%
ColorFeret Gender 0.0266 -8.4% -85.7% 12.2%

Age 0.0420 12.8% -56.6% 32.5%
Ethnicity 0.0833 34.9% 5.9% 32.8%

Morph Gender 0.0216 -25.9% -18.0% 60.0%
Age 0.0043 4.3% -28.4% 56.2%
Ethnicity 0.4972 0.4% 24.5% 19.8%

Table 4.6.: Analysis of the bias reduction of the proposed approach (Ours) in compari-
son with two previous works (SLF [Sri+19b] and FTC [Ter+20i]) on VGGFace
features. The bias is measured in terms of STD of the class-wise FNMRs at
an FMR of 10−3. Unlike both previous works, our proposed approach miti-
gates bias effectively and consistently.

Bias (STD) Bias reduction

Database Attribute Baseline SLF [Sri+19b] FTC [Ter+20i] Ours
Adience Gender 0.0262 -112.7% -135.1% -79.2%

Age 0.1935 -0.9% 100.0% 2.0%
ColorFeret Gender 0.0142 -21.0% -81.3% 41.0%

Age 0.0339 -47.0% -237.1% 27.8%
Ethnicity 0.0673 25.0% 39.3% 17.4%

Morph Gender 0.0503 49.2% -25.0% 5.8%
Age 0.0084 20.4% -108.7% 1.6%
Ethnicity 0.3756 -31.9% 3.8% 20.4%

139



Table 4.7.: Investigation of the overall recognition performance of the proposed ap-
proach (Ours) in comparison with two previous works (SLF [Sri+19b] and FTC
[Ter+20i]) on FaceNet. The FNMR is shown at different FMR thresholds. Base
refers to the unmodified FaceNet and VGGFace performance. Even while
making the recognition process fairer, in contrast to previous work, our ap-
proach consistently improves the global recognition performance.

Adience ColorFeret Morph

10
−
3
FM

R Base 0.4481 0.1460 0.0062
SLF [Sri+19b] 0.4438 1.0% 0.1229 15.8% 0.0095 -53.8%
FTC [Ter+20i] 0.7109 -58.6% 0.1406 3.7% 0.0081 -30.3%
Ours 0.2694 39.9% 0.1343 8.0% 0.0029 53.2%

10
−
4
FM

R Base 0.7651 0.3299 0.0219
SLF [Sri+19b] 0.6840 10.6% 0.2381 27.8% 0.0318 -45.4%
FTC [Ter+20i] 0.9160 -19.7% 0.3406 -3.2% 0.0285 -30.1%
Ours 0.4800 37.3% 0.2517 23.7% 0.0121 44.7%

10
−
5
FM

R Base 0.9324 0.5403 0.0576
SLF [Sri+19b] 0.8074 13.4% 0.3658 32.3% 0.0768 -33.3%
FTC [Ter+20i] 0.9791 -5.0% 0.6009 -11.2% 0.0743 -28.9%
Ours 0.6813 26.9% 0.3979 26.4% 0.0371 35.6%
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Table 4.8.: Investigation of the overall recognition performance of the proposed ap-
proach (Ours) in comparison with two previous works (SLF [Sri+19b] and FTC
[Ter+20i]) on VGGFace. The FNMR is shown at different FMR thresholds.
Base refers to the unmodified FaceNet and VGGFace performance. Even
while making the recognition process fairer, in contrast to previous work, our
approach consistently improves the global recognition performance.

Adience ColorFeret Morph

10
−
3
FM

R Base 0.5201 0.2107 0.0465
SLF [Sri+19b] 0.4438 14.7% 0.1229 41.7% 0.0095 79.5%
FTC [Ter+20i] 0.7579 -45.7% 0.4941 -134.5% 0.0681 -46.6%
Ours 0.4430 14.8% 0.2203 -4.6% 0.0363 21.9%

10
−
4
FM

R Base 0.7404 0.3635 0.1180
SLF [Sri+19b] 0.6840 7.6% 0.2381 34.5% 0.0318 73.0%
FTC [Ter+20i] 0.9780 -32.1% 0.8225 -126.3% 0.1809 -53.3%
Ours 0.6281 15.2% 0.3474 4.4% 0.0987 16.4%

10
−
5
FM

R Base 0.8782 0.5804 0.2171
SLF [Sri+19b] 0.8074 8.1% 0.3658 37.0% 0.0768 64.6%
FTC [Ter+20i] 0.9976 -13.6% 0.9765 -68.3% 0.3463 -59.5%
Ours 0.7685 12.5% 0.4778 17.7% 0.0371 82.9%
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4.5. Summary

Large-scale face recognition systems are spreading worldwide and are increasingly in-
volved in critical decision-making processes, such as in forensics and law enforcement.
Consequently, these systems also have a growing effect on everybody’s daily life. However,
many current biometric solutions are mainly optimized for maximum recognition accuracy
[JNR16] and perform significantly different depend on an individual’s demographics
[Orc16; AZN18; FPO02; Phi+11; BG18; Gar+16]. This means that, for example, specific
demographic groups can be falsely identified as black-listed individuals more frequently
than other groups. Consequently, there is an increased need that guarantees fairness for
biometric solutions [BG18; GF16; Zem+13] to prevent discriminatory decisions.
From a political perspective, there are several regulations to ensure people the right

to non-discrimination, such as Article 7 of the Universal Declaration on Human Rights,
Article 14 of the European Convention of Human Rights, and the General Data Protection
Regulation (GDPR) [VB17]. Previous works on bias-mitigating face recognition focused
on template-level solutions. Due to the difficulty of integrating these approaches into
existing face recognition systems, more easily-integrable solutions are needed to ensure
non-discrimination in biometric systems. Consequently, in this Chapter, we proposed two
bias-mitigating face recognition solutions that operate beyond template-level and thus,
are easily-integrable.

In Section 4.3, we proposed Fair Template Comparison (FTC) [Ter+20i], the first bias-
mitigating face recognition solution that works on the comparison-level of a biometric
system. It replaces the system’s similarity function by a fairness-drivenmodel that is trained
with a novel penalization term. The proposed penalization term allows to include the
notation of individual and group fairness during training that forces the score distributions
of different ethnicities to be more similar. The results demonstrate that our FTC approach
based on individual fairness is able to effectively reducing ethnic-bias while maintaining a
large fraction of the recognition performance.
In Section 4.4, we proposed the main contribution of this chapter, Fair Score Normal-

ization (FSN) [Ter+20f]. FSN is the first bias-mitigating face recognition approach that
operates on the score-level of a biometric system. It builds on the notation of individual
fairness and thus, aims at treating similar individuals similarly. This is achieved by cluster-
ing training samples in the embedding space and computing optimal local thresholds for
each cluster. If the comparison score of two samples is calculated, it normalizes this score
based on the optimal local thresholds of the clusters that are associated with the samples.
This ensures a more individual, unbiased, and fair treatment. The results on three publicly
available databases demonstrate that our solution mitigates bias by up to 82.7%. Moreover,
it reduces the bias more consistently than existing works and additionally enhances the
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overall recognition performance by 53.2% at an FMR of 10−3 and by 82.9% at an FMR
of 10−5. In contrast to previous works, our proposed FSN solution jointly (a) operates
on unlabelled training data, (b) effectively mitigates bias of unknown origins, and (c)
strongly improves the overall recognition performance of the system.
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5. Enhancing Soft-Biometric Privacy

5.1. Introduction

The face is one of the most used biometric modalities [Dam+18d; Wan+18a]. A typical
face recognition system contains feature representations (templates) for each enrolled
individual. To verify a subject’s identity, a template of this subject’s probe is computed
and compared against the template of the claimed identity [PKB16]. However, as we
demonstrated in Section 3.5, more information than just the person’s identity can be
deduced from these templates. This includes information about an individual’s gender,
age, ethnicity, hair style, accessories, sexual orientation and health status [DER16]. Many
applications are not permitted by the users to have access to this information. Thus,
the stored data should be exclusively used for recognition purposes [MR17; Erk+09].
Consequently, extracting such information without a person’s consent is considered a
violation of their privacy [Kin13].

In order to prevent this kind of function creep, soft-biometric privacy aims at suppress-
ing or hiding privacy-risk information in face biometrics. This is further challenged by
simultaneously maintaining a high recognition performance. Previous works proposed
privacy-enhancing solutions based on supervised [Mir+18; MR17; OR14] and unsuper-
vised approaches [Ter+19b; Ter+20c]. While unsupervised approaches show a more
comprehensive but weaker privacy-enhancement, supervised approaches are limited to the
suppression of pre-defined attributes and thus, are vulnerable to unconsidered function
creep attacks.
In this chapter, we propose four approaches to enhance soft-biometric privacy in face

templates. Section 5.2 provides a summary of related works on soft-biometric privacy
including the proposed solutions. Next, these proposed solutions are presented chrono-
logically in the following sections.

• Section 5.3: Incremental Variable Elimination (IVE) [Ter+19a] is a supervised
approach that incrementally determines and eliminates the highest privacy-risk
variables in face templates based on decision-tree ensembles. Contrary to previ-
ous works, IVE is able, by design, to suppress binary, categorical, and continuous
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attributes.

• Section 5.4: Similarity-Sensitive Noise Transformations (SSNT) [Ter+19b] are
an unsupervised privacy-enhancing face recognition approaches that inject geometric-
inspired noise to templates. This aims at achieving a more comprehensive soft-
biometric privacy-enhancement not limited to pre-considered attributes. Moreover,
the reduction of the recognition performance is directly controlled by SSNT.

• Section 5.5: Negative Face Recognition (NFR) [Ter+20c] is an unsupervised
approach to improve soft-biometric privacy for face recognition. While ordinary
(positive) face templates contain information of the person’s identity, negative face
templates provide random complementary information about this individual. Storing
only negative templates in the database, prevents function creep attackers from
successfully predicting privacy-sensitive attributes. For verification, the positive
template of an individual is compared with the stored negative template of the
claimed identity by measuring the dissimilarity.

• Section 5.6: Privacy-EnhancingMinimum Information Units (PE-MIU) [Ter+20h]
is the main contribution of this chapter. It is a training-free approach to prevent
function creep attackers from successfully predicting privacy-sensitive informa-
tion from face templates. PE-MIU exploits the structural differences between face
recognition (use-case) and facial attribute estimation (attack scenario) by creating
templates in a mixed representation of minimal information units (MIU). These
representations contain patterns of privacy-sensitive attributes in a highly random-
ized form. Therefore, the estimation of these attributes becomes hard for function
creep attacks. During verification, the units of a probe template are assigned to the
units of a reference template by solving an optimal best-matching problem. The
results demonstrate that on both, maintaining recognition rates and suppressing
attribute information, the proposed MIU-based approach consistently outperforms
state-of-the-art approaches.

The source-code for each contribution is available under the following link1.

5.2. Related Work

In the context of face biometrics, privacy has been studied from two perspectives. The first
kind focuses on preserving facial characteristics such as gender, age, and expression while
1https://github.com/pterhoer/PrivacyPreservingFaceRecognition
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de-identifying face images [Gro+06; JYL15; MPS18; NSM05]. The second kind aims at
preventing the estimation of these facial attributes while maintaining its recognition ability
[MR17]. In this chapter, we will focus on the latter case. This is known as soft-biometric
privacy [Ter+19a; Bor+20]. Solutions on soft-biometric privacy either operate on image-
or template-level.

5.2.1. Image-Level Solutions

Since face recognition is based on images of faces, it is a straightforward step to en-
hance privacy at the image-level. Solutions for this problem are based on image fusion,
perturbations, and adversarial learning.

In 2011, Suo et al. [Suo+11] proposed an approach that flips the estimated gender by
decomposing the face image and replacing the facial components with similar parts of the
opposite gender. This aims at suppressing the gender of the face image. Othman and Ross
presented a different approach [OR14] where they proposed a face morphing methodology
that iteratively morphs two images and therefore, suppresses gender information at
different levels. However, this resulted in morphed images with significant artefacts.

In [Roz+19] and [Roz+16], adversarial images created by using a fast flipping attribute
technique showed that it was able to fool their network in predicting binary facial attributes.
An incremental flipping approach was proposed by Mirjalili et al. [MR17] with the use of
perturbations. In [Chh+18], imperceptible noise was used to suppress k attributes at the
same time. However, this noise is trained to suppress attributes from only one specific
neural network classifier and consequently, does not generalize to other classifiers.
In [Mir+18; MRR18; MRR19], Mirjalili et al. proposed semi-adversarial networks

consisting of a convolutional autoencoder, a gender classifier, and a face matcher. It
enhances the soft-biometric privacy on image-level. The autoencoder perturbs the input
face image such that it minimizes gender classifier performance while trying to preserve
the performance of the face matcher. Training these supervised approaches require a large
amount of data with the corresponding privacy-sensitive labels. Moreover, it is limited
to the attribute of gender. To overcome this limitation, the authors proposed PrivacyNet
[MRR20], a semi-adversarial network extension to suppress multiple attributes. However,
this approach is still limited at suppressing pre-defined attributes and thus, it is vulnerable
to unseen function creep attacks.

5.2.2. Template-Level Solutions

Recent privacy-enhancing solutions [Ter+19a; Ter+19b; MFV19; Ter+20c; Bor+20;
Ter+20h] operate on template-level since most biometric data is stored in templates
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rather than images [Dey+14; SRB16]. Moreover, templates offer a less restricted way
of encoding information allowing the development of more effective privacy-enhancing
approaches. Due to these reasons, the four proposed solutions of this chapter operate on
template-level. In contrast to image-level solutions, the following works consider a more
critical and challenging scenario of a function creep attacker that knows and adapts to
the system’s privacy-mechanism.

In 2019, we proposed an incremental variable elimination (IVE) approach [Ter+19a] to
eliminate privacy-risk features from the face templates. Morales et al. [MFV19] proposed
SensitiveNet, a neural network that was trained via a modified triplet loss to suppress
attribute information. In 2020, Bortolato et al. [Bor+20] proposed PFRNet, an autoen-
coder approach that learns privacy-enhancing face representations disentangling identity
from attribute information. Since these supervised approaches require privacy-sensitive
attribute labels during training, their privacy-protection is limited to the suppression of
these pre-defined attributes.
More comprehensive privacy-protection is provided by unsupervised methodologies

because these approaches have a more generalized goal of encoding information that
does not apply attention mechanisms to single characteristics. In 2019, we proposed
similarity-sensitive noise transformations [Ter+19b], more precisely cosine-sensitive
noise (CSN) and euclidean-sensitive noise (ESN) transformation. These transformations
apply specific noise-injections to the face templates that alter the identity information
in a controlled manner while hiding the attribute patterns under noise. In [Ter+20c],
we proposed negative face recognition (NFR). While ordinary (positive) face templates
contain information of the person’s identity, negative face templates provide random
complementary information about this individual. Storing only negative templates in the
database, prevents function creep attackers from successfully predicting privacy-sensitive
attributes.

While these unsupervised approaches provide a more comprehensive privacy-protection
not limited to pre-defined attributes, it is harder to reach high suppression rates while
maintaining a high recognition rate as well. In [Ter+20h], we finally proposed a privacy-
enhancing solution based on minimum information units (PE-MIU) that overcomes this
problem. This training-free approach exploits the structural differences between face
recognition (use-case) and the estimation of facial characteristics by function creep attacker
(attack-case). In contrast to the attack case which requires exactly one input template, in
the use-case of face recognition two templates are given. In this approach, the availability
of two templates is used to make the estimation of privacy-sensitive attributes a difficult
task. This is achieved by representing the template of an identity in a randomized fashion
of template blocks. Due to this kind of representations, function creep attackers can only
use minimum information units for their attacks, while for face recognition we can exploit
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the second template to align, and thus compare, both representations.

5.2.3. Soft-Biometric Privacy and Cancelable Biometrics

The privacy-issue in biometrics can also be seen from the perspective of cancelable biomet-
rics. Similar to soft-biometric privacy, cancelable biometrics approaches apply one-way
functions to transform biometric data [PRC15; MK19; AK20] and store the transformed
data [Cas+17]. However, the solutions from both areas target different goals. In can-
celable biometrics, the privacy-preservation comes from the computational difficulty to
recover the original biometric from the transformed one [PRC15]. The transformed repre-
sentations aim to achieve irreversibility, revocability, and unlinkability [PS17]. In contrast
to this, soft-biometric privacy does not aim at revocability and non-linkability. It aims
at suppressing soft-biometric information in biometric data while maintaining a high
recognition ability [MRR18; Ter+19b].

5.3. Incremental Variable Elimination

In this section, we propose IVE [Ter+19a], an incremental variable eliminations algorithm
that aims at enhancing the soft-biometric privacy of face templates. Our approach is
based on decision tree ensembles that allow deriving an importance measure for each
privacy-risk variable. In each incrementation step of our solution, the ensemble is trained
to predict a sensitive attribute, determine the most important variables of this ensemble,
and eliminate these attributes. This allows suppressing sensitive attributes to a high
degree.

The challenge of soft-biometric privacy describes a trade-off between maintaining recog-
nition performance and suppressing private attribute estimations. Therefore, we analysed
the recognition performance and investigated the soft-biometric attribute estimation per-
formance on the publicly available ColorFeret database [Phi+00]. Unlike previous work,
we designed our experiments in the context of an attacker who knows about the used
privacy mechanism.

The experiments show that, in many cases, IVE is able to suppress gender and age to a
high degree while maintaining a high recognition performance. Especially for function
creep attacks with high confidence, IVE shows a significant sensitive attribute suppression.
The main contribution of this section is a privacy-preserving solution that

i) is able to suppress binary, categorical, and continuous attributes;

ii) works on the biometric template level; and
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iii) considers a more challenging attack scenario of an attacker that adapts to the systems
privacy mechanism.

So far, previous work proposed several solutions to preserve soft-biometric privacy in
face representations. However, all solutions limited their contribution to binary attribute
suppression. Moreover, their privacy-preservation approaches were restricted on image
level and only consider attacks which do not know about the systems privacy mechanism.
In this work, we

i) present an approach that we used to suppress binary and categorical attributes;

ii) use them on biometric templates, since most biometric representations are stored in
form of templates rather than images [Dey+14; SRB16]; and

iii) further investigate the privacy performance in a more critical and challenging scenario
than previous work, viz. in the context of a function creep attacker that adapts his
attack to the systems privacy mechanism.

5.3.1. Methodology

Improving soft-biometric privacy aims at suppressing soft-biometric attributes such that
function creep attackers would not be able to make reliable estimations of these attributes.
In this work, we propose an incremental variable elimination algorithm that aims at
suppressing privacy-sensitive attributes in face representations. This approach is based
on decision tree ensembles by exploiting the fact that they can be used to derive an
importance measure for each variable. By incrementally learning these ensembles and
eliminating the high privacy-risk variables, it allows to suppress privacy-sensitive attributes
while approximately preserving the recognition ability of the biometric templates. On
overview of IVE is illustrated in Figure 5.1. Since this solution is based on tree ensembles,
it allows a better generalizability even with less amount of data. This is critical because the
main goal is to prevent the storage of a large amount of privacy-sensitive data. Contrary to
previous work, the training time of this solution is short and works for binary, categorical,
and continuous attributes. In the following, the two building blocks for IVE are introduced,
the decision tree construction and the variable importance measure.

Tree construction and splitting

A decision tree represents a tree structure T that produces a random output variable y ∈ Y
from a random input vector x ∈ X . This tree consists of internal and terminal nodes.
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Figure 5.1.: Overview of the proposed incremental variables elimination approach. On
the embeddingsX a decision tree ensemble is trained to predict the privacy-
sensitive attribute. The decision tree ensemble allows to derive importance
statements imp(Xm) about each variablem. Then thene highest privacy-risk
variables are determined and eliminated from X. These steps are repeated
ns times.

Each internal node t is labelled with a binary test on a variable. The branches of this
node represent the outcomes of this test, leading to nodes tL and tR. Each terminal node
represents a predicted class label with the best guess value of the output variable y.
To construct a tree, a recursive procedure over a training set is done. This procedure

determines, at each node t, the split st for which the partition of the Nt node samples into
tL and tR maximizes

∆i(s, t) = i(t)− pL i(tL)− pR i(tR). (5.1)

The variables pL =
NtL
Nt

and pR =
NtR
Nt

describe the proportion of samples that traversed
the tree to the left and right child nodes, while i(t) is an arbitrary node impurity measure
of a node t. The proportion of samples that belongs to class c of all samples that traverse
through node t are given by pc(t) [Lou+13]. In our case, we choose the gini impurity

i(t) = IG(t) = 1−
∑︁

c pc(t)
2, (5.2)

as the node impurity measure. We use ensemble methods to reduce the variance, because
a single tree typically suffer from the high variance problem.
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Variable importance measure

The mentioned node impurity measure i(t) (eq. 5.2) of a node t can be utilized to derive
an importance measure for each variable Xm. This importance measure is given by

imp(Xm) =
1

NT

∑︂
T∈T

∑︂
t∈T :v(st)=Xm

Nt

N
∆i(s, t), (5.3)

and describes the total decrease in node impurity, weighted by the proportion of samples
reaching that node and averaged over all trees T ∈ T in the ensemble of size NT . The
inner sum goes over all nodes t in the tree T , where the split st was performed on the
variableXm. The variable importance measure uses the fact that variables found at the top
of the trees contribute to the final prediction decision of a larger fraction of input samples.
Therefore, this expected fraction can be utilized to estimate the relative importance of a
feature given a decision tree model [Lou+13].

Incremental variable elimination (IVE)

The variable importance measure imp(Xm) (eq. 5.3) offers the opportunity to develop a
variable elimination procedure that allows to suppress privacy-sensitive attributes in face
representations. The idea is to train a decision tree ensembleM to predict a soft-biometric
attribute y and utilize this learned tree ensemble to estimate the importance of each
variable. Due to the tree structure and degree of randomness in the trees, the model will
focus more on some features in the upper levels of the trees. Therefore, the importance
estimations for variables appearing at the bottom levels are inaccurate. In order to find
and eliminate the ns × ne truly most important variables, the procedure of training the
model, determining the ne most important variables, and eliminating these, have to be
repeated incrementally. Here, ns and ne describes the number of incremental steps and
the number of variable eliminations per step.

The IVE approach is explained in Algorithm 2. As an input, it takes the two algorithm
parameters ns and ne, the training modelM, and the data (X, y). The algorithm performs
ns steps. In each step, it trains the decision tree ensemble modelM using the training
data X and its corresponding label y. Then, it estimates the importance for each variable
using Equation 5.3 and determines the ne most important variables. Here, the function
findHighest(ne, varimp) returns the ne variablesXm with the highest variable importance
imp(Xm). Next, function eliminateV ar(X, idxcur) eliminates the variable inX that are of
highest importance for the trained model. The whole algorithm returns a list of eliminated
variables vare that we use to enhance the privacy of the biometric templates. By simply
eliminating the variables vare from an unseen representation, the degree of information
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Algorithm 2 - IVE (ns, ne,M, X, y)
Input: number of steps ns, number of eliminations ne, train modelM, data matrix X,

and labels y
Output: List of eliminated variables vare
1: vare ← empty list
2: for i← 1, ns do
3: model←M.train(X, y)
4: varimp ← empty list
5: for all variables Xm do
6: varimp ← varimp + (Xm, imp(Xm))
7: end for
8: idxcur ← findHighest(ne, varimp)
9: X, y ← eliminateV ar(X, idxcur)

10: vare ← vare + idxcur
11: end for
12: return vare

about the sensitive attribute y can be reduced and thus, it prevents function-creep attackers
from reliable estimations.

5.3.2. Experimental Setup

Database - For the experiments, we utilized the ColorFeret database [Phi+00], because it
contains high resolution (512x768 pixels) face images with the corresponding information
about identity, gender, and age. The database consists of 14,126 images from 1,199
different individuals with different poses under controlled conditions including a variety of
face poses, facial expressions, and lighting conditions. To eliminated variabilities induced
by the pose variation, we focused on frontal images and reduced the age categories to
four (20, 30, 40, 50 years) to create a balance on the age labels. Around 64% of these
samples are of male subjects, while the remaining 36% show female subjects.

Evaluation metrics - Only mention the evaluation metrics and refer to the background
chapter Enhancing the soft-biometric privacy is about degrading the attribute estimation
performance while preserving the recognition ability. For evaluating the recognition
performance, we report our results in the widely used equal error rate (EER) metric. This
metric gives the false acceptance rate at a threshold where it equals the false rejection
rate. The attribute evaluation part of this work is about classifying gender and age
classes. We report our results in terms of correct overall/female/male classification rate
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(COCR/CFCR/CMCR). The CFCR/CMCR describes the percentage of all correctly classified
female/male samples, while the COCR represents the general accuracy.
Workflow details - For preprocessing, we aligned the face images using Dlib [Kin09]

and cropped them to 256x256 pixels. Afterwards, the images were reshaped to 112x96
pixels and normalized such that the pixel values are within a range of [-1,1]. These
cropped, reshaped, and normalized images were passed to the pretrained SphereFace
network [Liu+17] to extract a 512-dimensional embedding. For the experiments, these
embeddings were used and normalized using z-score scaling. All results are reported in
terms of 10-fold cross-validation. First, the proposed IVE algorithm is trained and used
to eliminate variables (ns = 100, ne = 5). Then, the base estimators are trained and
evaluated on the reduced templates. For tuning the hyperparameters of these estimators,
20 steps of Bayesian optimization was applied.

Investigations - In this section, we investigate the proposed incremental variable elimi-
nation (IVE) algorithm for the purpose of enhancing soft-biometric privacy. The algorithm
is based on a tree ensemble and thus, we evaluated two common decision tree ensemble
methods, random forest (RF) and gradient boosting trees (GB). In order to analyse the
effect of IVE towards the attribute suppression, we chose 8 widely used classifiers for the
attribute prediction.
To evaluate the identity preservation of IVE, the recognition performance is analysed

over the number of important variables eliminated. The estimation performance of the
soft-biometric attributes gender and age was further analysed over the same number of
eliminations. This aims at analysing the attribute suppression ability of IVE. In order to
develop a deeper understanding of the effect of IVE on different base estimators, their
decision performance is analysed for each attribute class separately. Some applications
need high confidence that the current instance is correctly classified to the attribute class
of interest. In order to simulate such an scenario, the true positive rate (TPR) of the female
and male classes was evaluated at a fixed false positive rate (FPR) of 5%.

5.3.3. Results

In the context of soft-biometrics, privacy preservation describes a complex trade-off
between identity preservation and the suppression of soft-biometric attributes. In the
beginning, we present a visually aided analysis of the gender separability and the effect
of IVE with RF. This visualization was done by utilizing t-distributed stochastic neighbor
embedding (t-SNE) with 750 randomly chosen samples and can be seen in Figure 5.2.
Without any variable eliminations (ns × ne = 0), the female and male clusters are very
well separated. With more important variables eliminated, this clear separation partially
breaks and with ns × ne = 500 out of 512 possible eliminations, the two classes become
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randomly distributed.

Figure 5.2.: Visualizing the effect of IVE for different numbers of eliminated variables
(ns × ne). For the visualization, the t-distributed stochastic neighbour em-
bedding (t-SNE) were utilized with 750 randomly chosen samples. The blue
and green markers indicate female and male samples.

In order to evaluate the identity preservation ability of IVE, Figure 5.3 shows the
recognition performance over the number of eliminated variables ne × ns for two tree
ensemble methods. Without IVE, the EER lies around (3.1 ± 0.1)%. With IVE, the EER
grows to around 4% with 300 eliminations. The recognition error grows exponential with
further eliminations.

Figure 5.4 shows the total gender decision performance over the number of eliminated
variables. Both tree ensembles lead to a very similar base estimator behaviour. This is
due to the fact that both ensembles cause similar variable eliminations. In most cases,
eliminating more variables lead to a lower gender estimation performance and eliminating
themost important 300 to 400 variables lead to a significant performance decrease, because
the classifiers can not find reliable indications for a class. Two exceptions are logistic
regression and support vector machines with RBF-kernel. These are able to maintain high
performance over many eliminations and drops down heavily around 400 eliminations to
random behaviour.
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Figure 5.3.: Recognition performance in terms of equal error rate (EER) over the number
of eliminated variables. The variable importance for the elimination deci-
sions were determined by the tree ensembles random forest (RF) and gradi-
ent boosting trees (GradientBoosting).

In order to develop a deeper understanding of the effect of IVE, Figure 5.5 shows the
decision performance divided by each gender. For both ensemble methods, the CMCR
drops significantly towards 0% with a growing number of eliminated variables, while the
CFCR remains at high values. This indicates that IVE causes the base estimators to always
predict the same class.

For many applications, the trustworthiness of the attribute predictions must be reliable
as explained in Section 5.3.2. To take this into account in the analysis, Figure 5.6 shows
the true positive rate (TPR) of the female and male samples at a fixed false positive rate
(FPR) of 5%. It can be seen that the classifications rate drop per gender class is very steep
and 200 to 300 variable eliminations are enough to cause a random behaviour for most
estimators. Again LogReg and SVM(RBF) are two exceptions which needed 400 variable
eliminations in order to cause a random behaviour and thus, an optimal privacy protection
for this attribute.

Previous work only considered suppression of binary attributes. In this work, we further
analyse the effect of IVE on a categorical attribute such as age classes. Figure 5.7 shows
the classification accuracy for the age classes dependent on the number of eliminated
variables. For both ensemble methods, two observations can be made: first, the accuracies
are considerably lower than in the case of gender estimation. This is probably because in
this case, more possible outcomes are available and age estimation from face is generally
a harder problem than gender estimation. Second, with a growing number of eliminations
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(a) RF (1) (b) RF (2)

(c) GradientBoosting (1) (d) GradientBoosting (2)

Figure 5.4.: Gender suppression performance in terms of correct overall classification
rate (COCR) considering eight base estimators. The black line indicate a
random classifier behaviour.

the performance decrease is more flat than in the binary case. This has two reasons:
firstly, the overall performance is lower and thus, there is less space for a steeper decrease.
Secondly, this might indicate that the age information in the SphereFace representation
is more evenly distributed than in the gender case and thus, more variables have to be
eliminated to suppress this attribute.
In Figure 5.8 and 5.9, the age estimation performance is shown for the different age

classes. Due to similar learned tree structures, the behaviour of the base estimators on
the eliminations is similar. Furthermore, high prediction accuracy of young ages (20)
can be observed, while adjacent age groups show a worse performance. This is probably
because the age group of around 20 years is overrepresented in the database. With a
growing number of important variable eliminations, the performance of the age classes
30-50 years will decrease, while the performance of the 20 years class will remain very
high. Consequently, IVE forces the classifiers to only predict the majority class.

To summarize the main results, Table 5.1 shows the effect of IVE for a Gradient Boosting
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Tree. It shows the recognition performance, as well as the gender and age estimation
performance over the number of eliminated variable ns×ne. The estimations performance
is shown for two widely used classifier, RF and SVM. With more eliminated variables, the
estimation performance drops, while the recognition performance is only slightly affected.

Table 5.1.: Overview of IVE performance for Gradient Boosting: the recognition perfor-
mance [%] is shown over the number of eliminated variables ns × ne , as well
as the gender and age COCR [%] for two classifiers.

ns × ne
Recognition

EER
Gender COCR Age COCR

RF SVM RF SVM
0 3.1 89.8 94.8 57.0 68.7

100 3.5 84.9 94.8 56.2 67.6
200 3.8 77.9 94.0 50.1 65.7
300 4.0 73.8 92.3 50.6 62.3
400 4.5 70.5 86.4 47.9 58.8
500 12.3 61.5 64.7 42.9 47.5

5.3.4. Interim Conclusion

In this section, we successfully present the incremental variable elimination (IVE) al-
gorithm to enhance the privacy of face templates. By incrementally eliminating the
most important variables from the face templates, we are able to incrementally suppress
sensitive attributes while maintaining the templates recognition ability. We conducted
the experiments on a publicly available database in the context of attackers with prior
knowledge about the systems privacy mechanism. Comparisons with eight base estimators
showed that in many cases, our IVE solution was successfully able to suppress gender
and age to a high degree with a neglectable loss in the recognition performance. It was
shown that in many cases, IVE forces the base estimators to always predict the same
class. Especially investigating estimations at a high confidence level showed a significant
performance drop. Unlike previous work, training of IVE does not require a large amount
of privacy-sensitive labelled data and is able, by design, to suppress binary, categorical, and
continuous attributes. However, this approach is limited to the suppression of pre-defined
attributes.
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(a) RF-female (1) (b) RF-female (2)

(c) GradientBoosting-female (1) (d) GradientBoosting-female (2)

(e) RF-male (1) (f) RF-male (2)

(g) GradientBoosting-male (1) (h) GradientBoosting-male (2)

Figure 5.5.: Gender suppression performance per gender considering eight base classi-
fiers.
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(a) RF-female (1) (b) RF-female (2)

(c) GB-female (1) (d) GB-female (2)

(e) RF-male (1) (f) RF-male (2)

(g) GB-male (1) (h) GB-male (2)

Figure 5.6.: Female and male gender suppression performance for high confident esti-
mations. The results report the true positive rates of the female and male
instances at a fixed false positive rate of 5%.
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(a) RF (1) (b) RF (2)

(c) GB (1) (d) GB (2)

Figure 5.7.: Age class suppression performance over the number of eliminated variables
ne × ns.
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(a) RF-20 (1) (b) RF-20 (2)

(c) RF-30 (1) (d) RF-30 (2)

(e) RF-40 (1) (f) RF-40 (2)

(g) RF-50 (h) RF-50

Figure 5.8.: Age suppression performance per age group. IVE was applied based on
random forest.
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(a) GradientBoosting-20 (b) GradientBoosting-20

(c) GradientBoosting-30 (d) GradientBoosting-30

(e) GradientBoosting-40 (f) GradientBoosting-40

(g) GradientBoosting-50 (h) GradientBoosting-50

Figure 5.9.: Age suppression performance per age group. IVE was applied based on
gradient boosting trees.
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5.4. Similarity-Sensitive Noise Transformations

Previous works on the enhancement of soft-biometric privacy require a large amount of
data with privacy-sensitive annotations. However, (a) this annotated data is often not
available in large quantities and (b) this limits the privacy-enhancement to pre-defined
attributes. In Section 5.3, we proposed an approach is able to enhance the user’s privacy
with less annotated data. However, the limitation on pre-defined attributes makes it
vulnerable to unknown attacks. Therefore, in this section, we propose and investigate
similarity-sensitive noise transformations and dimensionality reduction techniques, to
suppress soft-biometric information in face representations. Unlike previous work, in
this section, we propose and analyse unsupervised techniques that do not require this
information.

The challenge of soft-biometric privacy describes a trade-off between maintaining the
recognition performance and suppressing the private attribute estimation. Therefore, we
performed a comprehensive investigation on the publicly available ColorFeret database.
This includes an analysis of the recognition performance and an investigation of the
soft-biometrics attribute estimation performance. For these attributes, we analysed the
binary attribute of gender and the continuous attribute of age. While gender is a widely
studied soft-biometric attribute, a continuous attribute like age was never investigated
in the soft-biometric privacy literature. Further, we investigated scenarios in which an
attacker has and has not prior knowledge about the used privacy mechanism. The results
show that such an informed attacker is able to make significantly better predictions
than an attacker without this prior knowledge. This also holds in the context of noisy
face representations. Here, applying similarity-sensitive noise transformations lead to
a weaker estimation performance and to less confident predictions. Furthermore, we
investigated how the applied methods affect the prediction performance of different kind
of estimators. In order to measure the benefits of the privacy-preserving methods, an
evaluation metric was proposed which captures the trade-off between the privacy gain and
the identity preservation loss. The experiments show that the proposed cosine-sensitive
noise transformation has a very promising privacy gain without significantly changing the
recognition performance.

In this section, we develop a methodology which works in an unsupervised manner,
and thus, requires no prior knowledge about soft-biometric attributes that should be
suppressed [Ter+19b]. Unlike previous works, we evaluate our approach on binary and
continuous attributes and consider scenarios in which the attacker has prior knowledge
about the privacy mechanism.
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5.4.1. Methodology

Enhancing soft-biometric privacy aims at suppressing soft-biometric attributes so that
function creep attackers can not make reliable estimations. In this work, we want to
investigate solutions for this problem that can be deployed without the explicit knowledge
of the private attributes. Therefore, we propose an unsupervised approach based on
similarity-sensitive noise transformations. These proposed transformations add noise
to a feature representation v⃗ ∈ Rn so that the privacy of this data is enhanced in an
unsupervised manner. The advantage of these noise transformations is that the noise level,
and thus the impact of the noise, can be controlled in terms of similarity. Therefore, the
effect on the recognition performance can be estimated and limited. In this work, we
suggest two variants of similarity-sensitive noise transformations. The euclidean-sensitive
noise transformation interprets a representation v⃗ as a point in a n dimensional space
and moves this point to the n− 1 dimensional sphere around v⃗ with radius r. The cosine-
sensitive noise transformation interprets the representation v⃗ as a vector and creates a
vector which lies on the n − 1 dimensional cone around vector v⃗ with an fixed cosine
similarity of Θ.

Euclidean-sensitive noise - Given a vector v⃗ ∈ Rn with ||v⃗||= 1, the euclidean-sensitive
noise transformation returns a point x⃗ which lies on the n− 1 dimensional sphere with
radius r around v⃗. To ensure that these randomly generated points on the sphere follow
a uniform distribution, Marsaglia’s algorithm [Mar72] is used. Creating a randomized
vector z⃗ in which each component

zi ∼ N (0, 1), (5.4)

is gaussian distributed, allows to directly compute a random point

x⃗ = v⃗ +
r

||z⃗ ||
z⃗, (5.5)

on the n−1 dimensional sphere around v⃗ with radius r. A three-dimensional visualization
of this sphere is shown in Figure 5.10a. This transformation ensures that the euclidean
distance between the untransformed vector v⃗ and transformed vector x⃗ remains at r and
thus, the recognition loss is restricted.

Cosine-sensitive noise - In this work, we propose the cosine-sensitive noise transfor-
mation. This transformation creates a point x⃗ on a n− 1 dimensional cone with angle θ
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around vector v⃗. A three-dimensional visualization can be seen in Figure 5.10b. In order
to sample such a point x⃗ on this cone, a randomized vector

z⃗ =
z0⃗ + v⃗

||z0⃗ ||+ ||v⃗ ||
, (5.6)

has to be created that is uniformly distributed around vector v⃗. Here, z0⃗ ∈ Rn is a vector
with gaussian distributed components (z0,i ∼ N (0, 1)). A vector x⃗′ can then be created by
a linear combination of v⃗ and z⃗

x⃗′ = µv⃗ + λz⃗. (5.7)

The parameters µ and λ can be determined by setting two conditions. The first condition
aims at normalizing x⃗′

||x⃗′|| = 1, (5.8)

which leads for an expression for λ

λ(µ) = ±
√︁
µ2 [(v⃗ · z⃗)2 − 1] + 1− µ(v⃗ · z⃗). (5.9)

The second condition aims at restricting the cosine similarity between v⃗ and z⃗. Fixing this
similarity to be Θ

Θ = cos(θ) = cos(v⃗, x⃗) (5.10)

=
v⃗ · x⃗

||v⃗|| · ||x⃗||
= v⃗ · x⃗ = µ+ λ(µ) (v⃗ · r⃗), (5.11)

controls the cosine similarity between v⃗ and x⃗ and it makes the system of equations
solvable. Here, θ describes the angle between v⃗ and x⃗, This leads to a solution for
parameter µ

µ =
±(v⃗ · z⃗)

√︁
Θ2[(v⃗ · z⃗)2 − 1]− (v⃗ · z⃗)2 + 1

(v⃗ · z⃗)2 − 1
+ Θ. (5.12)

In the last step, the length of the vector x⃗′ is changed randomly, since this does not affect
the cosine similarity between v⃗ and x⃗

x⃗ = z · x⃗′ where z ∼ U(1, 100). (5.13)

Here, the random variable z is drawn from a uniform distribution in the range of 1 to 100,
which is an arbitrary choice. The transformation v⃗ → x⃗ ensures that the angle, and thus
the cosine similarity, between these vectors is fixed at θ. As an advantage, this leads to a
restricted recognition loss, which can be controlled easily, while perturbing other patterns
in the noise-prone face representation.
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(a) Euclidean-sensitive noise (b) Cosine-sensitive noise

Figure 5.10.: Visualization of the geometric noise sampling principles for a given vector
v⃗ in three dimensions.

5.4.2. Experimental Setup

Database - For the experiments we utilized the ColorFeret database [Phi+00], because it
contains high resolution (512x768 pixels) face images with the corresponding information
about identity, gender, and age. The database consists of 14,126 images from 1,199
different individuals with different poses under controlled conditions. Further, a variety of
face poses, facial expressions, and lighting conditions are included in the dataset. For the
experiments, we focused on frontal images. Around 40% of these images are of female
subjects, while the age varies from 10 to 70 years. An age distribution of the database can
be seen in Figure 5.11.

Figure 5.11.: Age distribution of the used database.

Evaluation metrics - In Section 5.4.3, the results and discussions will be divided into four
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parts, which all analyse a different aspect of the problem. For each aspect a characteristic
evaluation metric is used. For the identity preservation part, the comparison of two
biometric template are done using cosine similarity (eq. 5.10) and we report our results in
the widely used equal error rate (EER) metric. This metric gives the false acceptance rate
at a threshold where it equals the false rejection rate. For the gender classification task,
most results are reported in the total gender decision accuracy, which is slightly biased to
the majority class of male. In the age estimation part, the mean absolute error (MAE)

MAE =
1

n

n∑︂
i=1

|yi − xi|, (5.14)

is used to evaluate the regression performance. It measures the average of the absolute
different between the predicted values xi and the true ages yi. In order to evaluate if
the privacy enhancing method is beneficial, we propose the privacy-gain identity-loss
coefficient (PIC).

PIC =
AE′ −AE

AE
− RE′ −RE

RE
(5.15)

This value is defined by the attribute prediction errors AE and AE′ and the recognition
errors RE and RE′ before and after the privacy enhancing transformation. It measures
the difference of the relative error increase of the attribute estimation and the recognition
performance. Positive values indicate that the privacy gain is higher than the loss in the
identity preservation performance and thus, measures how beneficial it is to apply the
privacy transformation.
Workflow details - For preprocessing, we aligned the face images using Dlib [Kin09]

and cropped them to 256x256 pixels. Afterwards, the images were reshaped to 112x96
pixels and normalized such that the pixel values are within a range of [-1,1]. These
cropped, reshaped, and normalized image were given to the pretrained SphereFace
network [Liu+17] to extract a 512 dimensional embedding.

For the experiment, these embeddings were used and normalized using z-score scaling.
After this scaling, the dimensionality reduction is performed, followed by the similarity-
sensitive noise transformation. In order to train and test the soft-biometric estimators, a
5-fold cross validation was performed. In each fold, 33% of the data was randomly chosen
and used for testing. The rest was used for training. For tuning the hyperparameters of
the estimators, 20 steps of Bayesian optimization was applied.
Investigations - In this work, we investigate the effect of the proposed similarity-

sensitive noise transformation and dimensionality reduction techniques on unsupervised
privacy preservation for face images. For the dimensionality reduction task, we investigate
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the effect of employing linear principle component analysis (PCA) [TB99], non-linear
kernelized PCA (KernelPCA) [SSM99] and independent component analysis (ICA) [HO00].
For the similarity-sensitive noise transformations, we will analyse the effect of cosine- and
euclidean-sensitive noise, described in Section 5.4.1. The investigation of the privacy-
enhancing solutions is divided in four subsections analysing different aspects of the
problem: (1) recognition performance, (2) gender estimation performance, (3) age
estimation performance, (4) trade-off discussion.

(1) In Subsection 5.4.3, the identity preservation performance of the solutions is consid-
ered. Improving the privacy causes a decrease in the identity preservation performance.
In this part, the influence of the solutions on the recognition performance is investigated.
The genuine and imposter matching score distributions are analysed for different noise
settings and the effect of the dimensionality reduction methods are investigated in terms
of EER. Finally, the two aspects, dimensionality reduction and noise level, are jointly
analysed.

(2) The goal of soft-biometric privacy-preserving methods is to prevent attackers from
reliably estimate private attributes from biometrics templates. In Subsection 5.4.3, the
estimation performance of various classifier and similarity-sensitive noise transformations
are analysed for the binary attribute of gender. In order to obtain generalized conclusions,
three different kind of binary classifiers are used for the experiments [Ped+11]. For
a linear classifier, logistic regression is used, while for learning a non-linear decision
boundary, a support vector machine (SVM) is applied with a gaussian kernel. To also
consider ensemble methods, the random forest was included in the pool of classifiers. In
the experiments, the gender decision performance of the classifiers were evaluated in
the context of dimensionality reduction and similarity sensitive noise transformation. In
order to understand the effect of these methods on the estimations, the matching score
distributions were evaluated, as well as the classification performance for the female and
male class respectively. Further, the gender decision performance was investigated in a
scenario with and without prior knowledge about the privacy-mechanism of the system.
Since some applications require very reliable decisions, the true positive rate (TPR) of
the female and male classes was evaluated at a fixed false positive rate (FPR) of 5%.
This simulates an application which has to be 95% sure about the decision made by the
classifier.

(3) Besides the binary attribute of gender, we also investigate the estimation performance
of the continuous attribute of age, which contains more degrees of freedom and thus,
changes the properties of the problem. The results for this investigations are shown in
Subsection 5.4.3. The MAE of the age prediction was evaluated for different dimensionality
reduction methods and noise levels. Further, directed estimation error distributions were
calculated, in order to understand the effect of the noise transformations on the regressor
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estimations.
(4) Soft-biometric privacy consists of a trade-off between privacy-gain and the recog-

nition loss. In Subsection 5.4.3, an investigation on this trade-off was done. In order to
figure out in which cases it is beneficial to employ the privacy-preserving solutions and to
measure its value. Therefore, PIC curves are calculated for gender and age to evaluate the
dimensionality reduction techniques and the similarity-sensitive noise transformations.
This leads to clear application recommendations.

5.4.3. Results

In the context of soft-biometrics, privacy preservation describes a complex trade-off
between the recognition performance and the possibility of the unauthorized estimation
of soft-biometric attributes. To start, we present a visually aided analyses of the attribute
separability and the effect of the similarity-sensitive noise transformations. This will be
done in the following.

In Figure 5.12, the SphereFace representations of 750 randomly chosen identities from
the ColorFeret database where visualized via t-distributed stochastic neighbour embedding
(t-SNE) [MH08]. The colouring was done based on their gender (top row) and based
on their age (bottom row). In (a), it can be seen that the data can be clearly separated
into female and male samples. Introducing similarity-sensitive noise to the data partially
breaks this separability. For cosine-sensitive noise (b), a lot of samples are arranged in a
circle, while the rest is clustered in the center. This is probably due to the random nature
of the cosine-sensitive noise transformation which also changes the length of the resulting
vectors. At this state, it is hard to identify a decision boundary to separate the two classes.
In (c), euclidean-sensitive noise was introduced. Even if a separability is still visible, the
boundary becomes blurred and a layer is formed in which it is not clear which samples
belongs to which gender.

For the same two-dimensional representations, also the age of the identities was made
visible in Figure 5.12 (d)-(f). There, red markers indicate persons aged 20 years and
younger, while blue markers represent persons that are 50 and more years old. The
clusters of the two extreme cases can be distinguished, while the age groups between
this cases are found around these clusters. In (e), cosine-sensitive noise was introduced
to the data with the already described centering effect. Inside of this centered cluster,
the age structure is still noticeable. Introducing euclidean-sensitive noise to the face
representations (f) leads to a small blurring of the age boundaries.
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(a) Gender - Identity (b) Gender - Cosine (Θ = 0.7) (c) Gender - Euclidean (r = 20)

(d) Age - Identity (e) Age - Cosine (Θ = 0.7) (f) Age - Euclidean (r = 20)

Figure 5.12.: Visualization of gender and age structures of the ColorFeret database with
andwithout the presence of noise. For the plot 750 samples were randomly
chosen and visualized using t-distributed stochastic neighbour embedding.

Investigate recognition performance

Soft-biometric privacy must go ahead with an preserved identity performance, in order to
ensure the intended functionality of the biometrics system. Therefore, in this subsection,
the recognition performance is analysed in the context of the proposed similarity-sensitive
noise transformations and dimensionality reduction techniques.
In Figure 5.13, generic matching score distributions are shown for the case without

noise (a) and for the cases with noise (b)-(c). The overlap between the genuine and
imposter score distributions already indicates that introducing noise leads to a small loss
in the recognition performance to enhance privacy.
In Figure 5.14, the effect of the dimensionality reduction methods and the similarity-

sensitive noise transformations is shown in more details. In (a), the equal error rate (EER)
is shown over the number of dimensions for three different dimensionality reduction
methods. For 128 dimensions, the EER is close to the EER of the original SphereFace
representation (3.2%). This error rate grows with a decreasing number of dimensions.
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(a) Identity (b) Cosine - Θ = 0.7 (c) Euclidean - r = 20

Figure 5.13.: Score distributions for the recognition task. The SphereFace embeddings
were used for the comparisons with and without the presence of noise.

In (b), the recognition performance is shown in the context of cosine-sensitive noise. For
the reduction to 128 dimensions, the EER is plotted over the noise level, where Θ = 1
indicates a representation vector that is just randomly changed in length. Further, the
EER for the original representation (Identity) is plotted. For all cases, the recognition
error grows with an increasing noise level. Here, PCA and KernelPCA show a very similar
behaviour, probably because neural network representations tend to be entangled, which
makes it easier for dimensionality reduction. ICA shows a promising EER without noise,
but the independent component structure turned out to be more sensitive to the noise
than the other methods.
Introducing noise on the original representations shows to have the least impact in

terms of EER, because the variations induced by the noise can spread in more dimensions.
In (c), the same was done for euclidean-sensitive noise transformations. Here, at a radius
of r = 0, all methods perform nearly equally good, since the noise at this point does not
change anything. Again, with a growing noise level, the EER grows as well, while the
original representation is most robust against the noise in terms of EER. It is noticeable
that the recognition performance of ICA drops heavily when euclidean-sensitive noise is
introduced. This is because the ICA fails to converge during training when this kind of
noise is applied.
In order to investigate the influence of similarity-sensitive noise transformations and

dimensionality reduction techniques together on the recognition performance, Figure 5.15
shows two parameter space plots for the two similarity-sensitive noise methods on PCA.
Here, red areas indicate a low EER, while a high EER is represented by blue areas. Higher
dimensions can tolerate a greater noise level without loosing much performance, while in
lower dimensions, the applied noise has a strong effect on the recognition rates.
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(a) Dimensionality reduction (b) Cosine-sensitive noise - 128 di-
mensions

(c) Euclidean-sensitive noise - 128
dimensions

Figure 5.14.: Recognition performance for different dimensionality reduction techniques
and similarity-sensitive noise transformations. The "Identity" label refers to
the original SphereFace representation.

Summary - recognition performance: In summary of the recognition performance
evaluation, the face representations can be reduced to 64 dimensions without substantially
loosing to much discriminability. However, lower dimensional representations tend to
be more susceptible to introduced noise. Therefore, higher dimensions are favoured. In
terms of similarity-sensitive noise, noise values in the range of Θ ∈ [0.7, 1] for cosine and
r ∈ [0, 20] for euclidean are reasonable. This limits the EER increase to a maximum of
50%, which still leads to a relative low absolute EER.

Investigate binary gender estimation

The main essence of soft-biometric privacy is to suppress the possibility of an unauthorized
estimation of soft-biometric attributes from a biometric template. One of the most discussed
attributes in related literature is gender. In this subsection, the influence of dimensionality
reduction and similarity-sensitive noise transformations on achieving this goal is analysed.
In Figure 5.16, the gender estimation performance of three dimensionality reduction

methods is shown for three binary classifiers. Even without the presence of noise, the
classification performance is decreasing with less number of dimensions. However, this
effect is insignificantly small and is generally independent of the used classifier and the
unsupervised dimensionality reduction method.
In order to analyse the classifier behaviour in the context of similarity-sensitive noise,

Figure 5.17 shows the score distributions for female and male samples that are learned
from three different classifiers. In all cases, it can be observed that the overlap between
the classes grows when noise is introduced. Further, the peaks of the two classes come
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(a) Cosine-sensitive noise (b) Euclidean-sensitive noise

Figure 5.15.: Recognition performance for different dimensions and sampling values for
PCA and cosine-/euclidean-sensitive noise transformations.

(a) PCA (b) KernelPCA (c) ICA

Figure 5.16.: Evaluation of the gender estimation performance for different dimension-
ality reduction scenarios.

closer to each other in the noise-prone scenarios.
To investigate the effect of the similarity-sensitive noise in two different knowledge level

attacks, Figure 5.18 presents the gender decision performance for cosine- and euclidean-
sensitive noise and different dimensionality reduction methods. Further, the scenario of
an informed and uninformed attacker was simulated. The solid lines represent a scenario
of an attack without knowledge about the privacy/noise mechanism (only the classifier
testing was done on the noise-prone data), while the dashed lines represent an attacking
scenario in which the attacker has prior knowledge about the privacy mechanism (classifier
training and testing was done on noise-prone data).

In the top row (a)-(c) of Figure 5.18, the effect of cosine-sensitive noise can be observed.
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It can be seen that at the minimum noise level (Θ = 1), high gender accuracies of over 90%
can be achieved. The best performance was reached by the logistic regression approach.
The entangled feature maps of the original representation favours linear approaches,
which are more robust to outliers.

In all cases with and without dimensionality reduction, an increasing noise level resulting
in a lower gender estimation performance is observed. For PCA 128 and ICA 128, this
loss is even bigger than in the original representations, since the influence of the noise is
stronger in lower dimensions. A very significant observation is that, in nearly all cases, an
informed attacker is able to make much better predictions than an attacker without prior
knowledge. This is significant since all previous works exclusively consider the later case.
In general, it can be seen that cosine-sensitive noise transformation is an promising

tool for preserving privacy. Even at the minimum noise level, where just the length of the
vectors are randomly changed, the loss of the gender decision performance is significant.
This especially holds for classifiers like random forest or support vector machines which
are very dependent on the absolute values of the features.
In the bottom row (d)-(f) of Figure 5.18, the effect of the euclidean-sensitive noise

is observed. At the minimum noise level, equivalent to the noiseless representation, all
classifiers show a very high gender decision performance. In (d), SVM shows the best
gender decision performance with close to 95% accuracy. However, it also shows the
most significant drop in accuracy when the noise level is increased. In (d) and (e), it
can be observed that all classifiers loose performance while increasing the noise level.
Considering the effect of different types of attackers, again an informed attacker is able to
achieve higher estimation performances in all cases. In (f), the same effect as in Section
5.4.3 can be seen. When introducing euclidean-sensitive noise, ICA fails to converge.
Consequently, the data representations become more meaningless and the performance
drops.
In order to understand the behaviour of the classifiers more deeply in the context of

similarity-sensitive noise and attacking scenarios with and without prior privacy knowl-
edge, Figure 5.19 shows the performance of female and male samples. To be more precise,
it shows the probability to correctly classify a given female/male sample. In the top row
(a)-(d), the gender decision performances for cosine-sensitive noise transformations are
shown. For the original representation (a)-(b), for the logistic regression classifier both
the correct female and male classification rate (CFCR/CMCR) drops with growing noise
level. For random forest the CMCR remains the same for different noise levels. However,
the CFCR drops significantly. An even more extreme behaviour can be observed at the
SVM performance. Due to its sensitivity to the absolute feature values, it achieves a very
high CMCR over 95% while the CFCR is close to 20%.

In the bottom row (e)-(h) of Figure 5.19, the gender decision performance for euclidean-
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sensitive noise is shown. At the minimum noise level (r = 0), the correct classification
performance is high for both female and male samples. For logistic regression the CFCR
and the CMCR decreases with higher noise level as expected. For random forest, the
CMCR remains high, however, the CFCR drops significantly when the noise is introduced.
Regardless of these results, the behaviour of the SVM is quite unusual. In the scenario
of an uninformed attacker, higher noise levels lead to states in which the SVM estimates
all samples as males. Compared to the case of an informed attacker, where both correct
classification performances decrease, the RBF-kernel SVM probably learned a spherical
decision boundary with the female class in the center. Consequently, adding euclide-
an-sensitive noise shifts the samples in the outer male regions. In the dimensionality
reduction cases, the influence of the noise is stronger on the gender decision performance.
Therefore, the change of the CFCR and the CMCR is stronger.

For many applications, the trustworthiness of the soft-biometric predictions must be
reliable. Therefore, in Figure 5.20, the true positive rate (TPR) of the female and male
classes are shown at a fixed false positive rate (FPR) of 5%. This simulates an application
in which the estimation must be 95% sure that the sample has a female or male origin.
In the top row (a)-(d), the results are shown for cosine-sensitive noise for the original
representation and for the PCA representation reduced to 128 dimensions. For logistic
regression, at this confident level the TPR drops severely with increasing noise level. A
stronger performance drop is seen for random forest. For both, informed and uninformed
attack scenarios, the TPR loss is high. However, the TPR of the attacker with prior
knowledge is significantly higher than in the uninformed scenario. Same for SVM, a
performance decrease with growing noise level can be observed. Nevertheless, in the
uninformed attacker scenario, the performance for the confident female estimation is very
low, while the performance for the confident male estimation is relatively high. In an
informed attacking scenario, this behaviour is better compensated.

The confidence performance results for the euclidean-sensitive noise are shown in the
bottom row (e)-(h). Increasing the noise level leads to a reduction in the female/male TPR
for all cases using the original face representations. This TPR reduction is significantly
higher in the PCA reduced representations.

Figure 5.21 shows the parameter space of the number of dimensions over the noise levels
in order to analyse the effect of dimensionality reduction together with the similarity-
sensitive noise. Here, dark red areas represent high accuracies, while dark blue regions
indicate a very low gender decision accuracy. For every plot, PCA was used as the dimen-
sionality reduction method. In (a)-(b), the parameter space is shown for logistic regression.
It is noticed that a low number of dimensions and a high noise level lead to a weak gender
estimation performance. Further, the noise level is more important for the performance
reduction. In (c)-(d), the parameter space is shown for random forest. The best gender
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decision performance can be found at the minimum noise level in lower dimensions, while
the lowest performance can be found at high noise values. The parameter space plots
for euclidean-sensitive noise transformation are shown in (e)-(h). In (e)-(f), these are
given for logistic regression. As before, a low number of dimensions and a high noise level
lead to a weak gender estimation performance and vice versa. Comparing an uninformed
attack scenario (e) with an informed attacker (f),the estimations in the second case have
a higher minimum boundary and therefore, leads to better gender estimations. In (g)-(f),
the parameter space plots are given for random forest. Again, the greatest reduction in
the gender decision performance is given at low dimensions and high noise levels.
Summary - gender estimation: This subsection evaluated the gender decision perfor-

mance in the context of soft-biometric privacy preservation. It was shown that logistic
regression leads to the highly accurate predictions, because the linear classifiers work well
with entangled embeddings like the used SphereFace representations. This high accuracy
can be even achieved in very low dimensions, since the used dimensionality reductions
methods works in an unsupervised manner. A high correlation between the noise level
and the loss in the gender decision performance can be observed when introducing noise
to the face representations. This lead to a higher privacy level. A significant factor for the
performance loss appears to be the prior knowledge about the privacy-mechanism. It is
demonstrated that an informed attacker can make significantly more accurate predictions
than an uninformed attacker. Finally, the reliability of the gender estimation performance
is investigated. In a scenario in which the classifier is set to be 95% sure that a true
estimate is correct, increasing the noise level leads to a strong drop in the estimation
performance.

Investigate continuous age estimation

Previous works evaluated their privacy-preserving solutions solely on binary attributes.
However, continuous attributes might behave different in these solutions. Therefore, in this
subsection, we discuss the influence of dimensionality reduction and similarity-sensitive
noise on the continuous attribute of age.

In Figure 5.22, the age estimation performance is analysed. In the top row (a)-(c), the
results for three different regressors are shown in the context of cosine-sensitive noise.
Generally, for increased noise level the MAE is increasing too. Furthermore, it is very
conspicuous that the errors for the scenario of an informed attacker is significantly lower
than the errors in an uninformed attacking scenario. Errors are generally higher in the
cases with dimensionality reduction for the same noise levels than in the cases without
dimensionality reduction. The SVM showed the most stable results over the evaluation
settings and noise levels.
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In the bottom row (d)-(f) of Figure 5.22, the age estimation performance is discussed
for the euclidean-sensitive noise. Again, an increased noise-level leads to higher MAE.
The MAE in the context of dimensionality reduction showed to become higher than in the
context without dimensionality reduction. The noise-free representations (r = 0) have
the lowest MAE of about 6 (years). Comparing the two noise sampling methods shows
that, in general, cosine-sensitive noise leads to higher MAE.

In order to discuss the effect of the noise on the age estimation in more details, Figure
5.23 shows the directed age estimation error distributions for the three regressors in two
different attacking scenarios. Negative x-values indicate that the regressor underestimates
the age, while positive x-values indicate that it overestimates the ages. In the top row
(a)-(c), the scenario of an uninformed attacker (without prior knowledge) is shown,
while the bottom row (d)-(e) shows the scenario on attacker with prior knowledge.
For ridge regression, introducing similarity-sensitive noise to the data leads to more
uniformly distributed curves. Therefore, the prediction errors are high. For random forest,
introducing noise leads to distribution shifts to the left and thus, the regressor will suffer
on underestimation. The distributions for SVM show a remarkable behaviour. When noise
is introduced to the data, the directed error distributions splits in four peaks. This happens
because, in this case, the SVM only make predictions in the narrow range of 29 to 36
years, while the other regressors produces outputs in a range of 20 to 50 years. Therefore,
the similarity-sensitive noise leads to oversimplification.
To jointly investigate the noise-influence and the dimensionality reduction on the age

estimation performance, Figure 5.24 shows the parameter space plots for PCA and ridge
regression. Red areas represent a high MAE and blue areas indicate low MAE. In (a) and
(b), the age estimation performance is shown for cosine-sensitive noise with and without
prior knowledge, while (c) and (d) show the same for euclidean-sensitive noise. In all
cases, a high number of dimensions and a high noise level leads to higher MAE. Further,
a clear difference between the precision of an informed and an uninformed attacker is
observed, since the MAE magnitudes in the uninformed attacking scenario are much
higher.
Summary - age evaluation: In this subsection, the age estimation performance was

investigated in the context of privacy preservation. Support vector regression showed to
produce the most accurate predictions in general. To enhance the privacy, noise trans-
formations were introduced to the face representations, which lead to higher estimation
errors and thus, a higher privacy protection level. Especially cosine-sensitive noise showed
a significantly higher MAE increase than the euclidean-sensitive noise. Comparing the
two attacking scenarios, an informed attacker will produces estimations with less errors.
Finally, we investigated the directed estimation error distributions to analyse the effect of
the noise on the regressors predictions. For a linear regressor like ridge regression, the
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predictions become more uniformly distributed. For ensemble methods like random forest,
a distribution shift is observed, which leads to an underestimation trend. Introducing
noise to the support vector regressor leads to predictions in very narrow range of 7 years
and thus, the noise pushes the regressor to oversimplification.

When is it beneficial to introduce noise?

So far, we have discussed the effect of the proposed similarity-sensitive noise transfor-
mations and the dimensionality reduction techniques on recognition, gender estimation
and, age estimation performance. In this subsection, we gather this information together
and investigate the conditions where the privacy gain and the recognition loss trade-off is
beneficial. In section 5.4.2, we introduced the metric PIC to measure the gain in privacy
versus the loss in recognition performance.

In Figure 5.25, this trade-off is analysed for the gender attribute. The top row (a)-
(c) shows the results for cosine-sensitive noise with and without a PCA dimensionality
reduction to 128 dimensions under both attacking scenarios. In (a) and (b), the same is
demonstrated for the original face representations. The proposed cosine-sensitive noise
shows a high benefit (in terms of PIC) over the whole evaluated parameter range. This
even holds in the case of an attack who has prior knowledge about the privacy mechanism.

In (c) and (d) of Figure 5.25, the same evaluation was done on PCA reduced representa-
tions. Here, the same high PIC values can be observed. However, at Θ ≈ 0.7 the trade-off
between privacy gain and recognition loss cancel each other and it becomes unfavourable.

The bottom row (e)-(h) of Figure 5.25 show the results for euclidean-sensitive noise. In
(e) and (f), there is a benefit when logistic regression or Random Forest are used. However,
if SVM is used the PIC is around zero. For the reduced representations (g)-(h), the most
noise parameter values are beneficial. One exception is random forest. In this case, for a
higher noise level the PIC becomes negative.
In Figure 5.26, the privacy gain identity preservation loss trade-off is shown for the

age attribute under two different attacking scenarios. The top row (a)-(d) shows the PIC
behaviour for the cosine-sensitive noise. For the original representations (a)-(b),Θ ≥ 0.7 is
always beneficial, even in the case in which an attack knows about the privacy mechanism.
For the reduced representations (c)-(d), positive PIC coefficients can be obtained for
Θ ≥ 0.9 for all evaluated regressors. The bottom row (e)-(h) shows the PIC behaviour for
the euclidean-sensitive noise. Here, the privacy gain recognition loss trade-off is mostly
negative and thus, it is not recommended to employ this strategy in a biometric system.

Summary - PIC evaluation: In summary of the PIC evaluation, the trade-off between the
privacy gain and the identity preservation loss was investigated for the binary attribute
of gender and the continuous attribute of age. It turned out that the PIC results for the
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dimensionality reduction methods were very diverse. For some estimators, they proofed to
be very beneficial, but since the influence of the noise on lower dimensional data is higher,
it is unfavourable in general. While the euclidean-sensitive noise showed more positive
results for suppressing gender, it turned out to be not useful for continuous attributes
like age. However, the proposed cosine-similarity noise showed some promising results.
For gender estimation as well as for age estimation, high PICs between 1 and 4 can be
observed. Even in the case of an informed attacker, who has prior knowledge about the
privacy mechanism, cosine similarity in the range of Θ ∈ [0.7, 1] showed always a highly
beneficial trade-off between the privacy gain and the recognition loss.

5.4.4. Interim Conclusion

In this work, the proposed similarity-sensitive noise transformations and dimensionality
reduction techniques were successfully evaluated for the task of enhancing privacy. Unlike
previous work, these solutions can be employed without sensitive user information and
further, offer a privacy enhancement for more than one privacy-sensitive attribute, even
unknown ones. The similarity-sensitive noise transformations inject geometrical-inspired
noise to a face representation and can be controlled in terms of template similarity. This
has the advantage that the loss in recognition performance can be restricted with regard
to the applied noise level.
Soft-biometric privacy is determined by a trade-off between preserving identity and

suppressing the possibility of an unauthorized estimation of private attributes. Therefore,
we conducted a comprehensive investigation on a publicly available database. This included
an analysis of the recognition performance, as well as the performance for estimating the
soft-biometric attributes gender and age.

We evaluated two scenarios of attackers, with and without prior knowledge about the
privacy mechanism, and showed that an informed attacker is able to perform significantly
better predictions. We found out that higher noise levels lead to lower prediction accuracies.
Further, if highly reliable estimations are required, the proposed similarity-sensitive noise
leads to a clear drop in estimation performance. In order to better understand how the
noise transformations affect different kinds of estimators, the prediction behaviour of
three kinds of classifiers and regressors were analysed. For instance, we showed that
introducing noise to the face representations leads to oversimplified SVM predictions.
Finally, we defined the PIC measure, which evaluates the trade-off between the privacy
gain and the loss of identity preservation. Evaluating the proposed cosine-sensitive noise
transformation leads to high PICs and thus, to a clear deployment recommendation. This
even holds in scenarios in which the attacker knows about the utilized privacy mechanism.
However, strong privacy-enhancements can not be achieved without a strong degradation
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of the recognition performance.
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(a) Logistic Regression - Identity (b) Logistic Regression - Cosine
(Θ = 0.7)

(c) Logistic Regression - Euclidean
(r = 20)

(d) Random Forest - Identity (e) Random Forest - Cosine (Θ =
0.7)

(f) Random Forest - Euclidean (r =
20)

(g) SVM - Identity (h) SVM - Cosine (Θ = 0.7) (i) SVM - Euclidean (r = 20)

Figure 5.17.: Score distributions for both gender classes. The classifiers were trained
on the transformed data, simulating an attacking scenario in which prior
knowledge about the privacy mechanism is available.
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(a) Cosine - Identity (b) Cosine - PCA 128 (c) Cosine - ICA 128

(d) Euclidean - Identity (e) Euclidean - PCA 128 (f) Euclidean - ICA 128

Figure 5.18.: Gender estimation performance on three different representations and two
attacking scenarios. The top row (a)-(c) presents the effect of the cosine-
related noise, while the bottom row (d)-(f) presents the effect of euclidean-
related noise. The performance for uninformed attackers are shown in
solid lines, while attackers with prior knowledge about the privacy mech-
anism are illustrated in dashed lines.
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(a) Cosine - Identity (b) Cosine - Identity

(c) Cosine - PCA 128 (d) Cosine - PCA 128

(e) Euclidean - Identity (f) Euclidean - Identity

(g) Euclidean - PCA 128 (h) Euclidean - PCA 128

Figure 5.19.: Gender estimation performance in terms of correct female/male classifica-
tion rate (CFCR/CMCR). Dashed lines indicate an attack with prior knowl-
edge about the privacy mechanism.
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(a) Cosine - Identity (b) Cosine - Identity

(c) Cosine - PCA 128 (d) Cosine - PCA 128

(e) Euclidean - Identity (f) Euclidean - Identity

(g) Euclidean - PCA 128 (h) Euclidean - PCA 128

Figure 5.20.: Gender estimation performance for the gender classes female and male
in a reliability scenario. Reported are the true positive rate (TPR) at a fixed
false positive rate (FPR) of 5%. The dashed lines indicate the reliable clas-
sification performance of an informed attacker.
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(a) Cosine - Logistic Regression
no prior knowledge

(b) Cosine - Logistic Regression
with prior knowledge

(c) Cosine - Random Forest
no prior knowledge

(d) Cosine - Random Forest
with prior knowledge

(e) Euclidean - Logistic Regression
no prior knowledge

(f) Euclidean - Logistic Regression
with prior knowledge

(g) Euclidean - Random Forest
no prior knowledge

(h) Euclidean - Random Forest
with prior knowledge

Figure 5.21.: Joint investigation of PCA dimensionality reduction and similarity-sensitive
noise transformation for two different classifier and two attacking scenar-
ios.
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(a) Cosine - Identity (b) Cosine - PCA 128 (c) Cosine - ICA 128

(d) Euclidean - Identity (e) Euclidean - PCA 128 (f) Euclidean - ICA 128

Figure 5.22.: Analysis of the age estimation performance in the context of dimensional-
ity reduction and similarity-sensitive noise. The dashed lines indicate the
performance of an attacker which exploits the knowledge about the sys-
tems privacy mechanism.
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(a) Ridge - no prior knowledge (b) Random Forest - no prior knowl-
edge

(c) SVM - no prior knowledge

(d) Ridge - with prior knowledge (e) Random Forest - with prior
knowledge

(f) SVM - with prior knowledge

Figure 5.23.: Directed age estimation error distributions for three different estimators in
the context of similarity-sensitive noise (Cosine: Θ = 0.7, Euclidean: r =
20) and without (Undistributed). The top row (a)-(c) refers to an attacker
without prior knowledge about the privacy mechanism, while the bottom
row (d)-(f) refers to an attacking scenario in which an attacker is exploiting
this information.
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(a) Cosine
no prior knowledge

(b) Cosine
with prior knowledge

(c) Euclidean
no prior knowledge

(d) Euclidean
with prior knowledge

Figure 5.24.: Joint investigation of dimensionality reduction with PCA and similarity-
sensitive noise transformations for the task of age estimation. In (a) and
(c), uninformed attacker do the ridge regression, while in (b) and (d), the
attacker knows about the privacy mechanism.
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(a) Identity - Cosine
no prior knowledge

(b) Identity - Cosine
with prior knowledge

(c) PCA 128 - Cosine
no prior knowledge

(d) PCA 128 - Cosine
with prior knowledge

(e) Identity - Euclidean
no prior knowledge

(f) Identity - Euclidean
with prior knowledge

(g) PCA 128 - Euclidean
no prior knowledge

(h) PCA 128 - Euclidean
with prior knowledge

Figure 5.25.: PIC curves for the binary attribute of gender. Cosine-sensitive (a)-(d) and
euclidean-sensitive (e)-(h) noise transformations are considered in differ-
ent contexts of attacking scenarios and representations.
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(a) Identity - Cosine
no prior knowledge

(b) Identity - Cosine
with prior knowledge

(c) PCA 128 - Cosine
no prior knowledge

(d) PCA 128 - Cosine
with prior knowledge

(e) Identity - Euclidean
no prior knowledge

(f) Identity - Euclidean
with prior knowledge

(g) PCA 128 - Euclidean
no prior knowledge

(h) PCA 128 - Euclidean
with prior knowledge

Figure 5.26.: PIC value curves for the continuous attribute of age. Cosine-sensitive (a)-
(d) and euclidean-sensitive (e)-(h) noise transformations are considered in
different contexts of attacking scenarios and representations.
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5.5. Negative Face Recognition

Previous works proposed privacy-enhancing solutions that (a) are limited to the sup-
pression of single pre-defined attributes [Mir+18; MR17; OR14] or (b) provide a more
comprehensive privacy-enhancement [Ter+19b] as shown in Section 5.4. While solutions
from (a) are vulnerable to unconsidered function creep attacks, approach from (b) show
either a weak suppression or recognition performance.
In this section, we propose negative face recognition (NFR) [Ter+20c], a novel un-

supervised face recognition approach that performs comparisons of face templates in a
complementary (negative) fashion. While ordinary positive templates describe individuals
how they actually are, negative templates stores only random complementary information
about the individual. This suppresses privacy-sensitive information in the template and
thus, prevents function creep attackers from easily extracting this information. In order
to forecast and guarantee a certain recognition performance, we provide a theoretical
reasoning of our solution and further demonstrate its correctness empirically.
Soft-biometric privacy is challenged by maintaining a high recognition performance

while achieving a high suppression performance for privacy-sensitive attributes. There-
fore, we analyse both aspects on two publicly available databases under controlled and
uncontrolled circumstances. The evaluation of the attribute suppression performance is
done on three soft-biometric attributes: gender, age, and race. Unlike most of the previous
works, we design our experiments in the context of a function creep attacker who knows
and adapts to the used privacy mechanism.
The experiments show that our proposed approach is able to reach 2-4 times higher

suppression rates than previous works under different attack mechanisms and attributes
while maintaining significantly higher recognition performances. In the uncontrolled
scenario, our solution fully retains the recognition performance while reaching suppression
rates of up to 36%.

5.5.1. Methodology

Enhancing the soft-biometric privacy aims at preventing function creep attackers from
reliably estimating privacy-risk characteristics. This problem is further challenged by
simultaneously maintaining a high recognition ability. To solve these issues, we propose
negative face recognition. While in usual face recognition systems, the used templates
describe the properties of an individual, our negative templates only contain complemen-
tary information and thus, describe properties that a person does not have. We store
only negative (reference) templates in a database and comparing it with positive (probe)
templates by calculating their dissimilarity. Due to the complementary nature of the

192



compared templates, a high dissimilarity indicates that the templates belong to the same
subjects and vice versa. Since the stored negative templates only contain some random
complementary information, it prevents function creep attackers from successfully de-
ducing privacy-sensitive information. Further, it allows a more generalized soft-biometric
privacy-protection that is, unlike previous works, not limited to the suppression of a
pre-defined characteristic. It is further a promising candidate for template protection, as
shown in a similar approach [Zha+18] for iris. It provides noninvertability, revocability,
and nonlinkability, which are the key properties of template protection. However, the
template protection applicability is out of the scope of this work.
Since the idea of this work is to store only random complementary information of an

individual in the database (in form of negative templates), the next section describes
the enrolment process. This is followed by a section of the adapted verification process
because the template comparison within our approach is dealing with complementary
template versions.

Enrolment phase

In the enrolment phase, given a face image I, the corresponding face embedding x is
extracted from I. Then, this embedding is transformed in the negative domain resulting
in a negative template t− , which is stored in the database. The generation of a negative
template t− from a face embedding x is done in three steps: First, the face embedding
x is enlarged to get a higher-dimensional version v. Second, v is discretized to create
a positive template t+, and third, a negative template t− is generated from its positive
complement by replacing each feature entry with a random value that does not match the
original entry.

Embedding enlargement In the first step, the given face embedding x is transformed
into a higher-dimensional space while maintaining its recognition ability. Therefore, a
face recognition model, called enlargement-network, is trained to take the used face
embedding x as an input and outputs the higher-dimensional face embedding v of size
L. The network and its training are described in Section 5.5.2. The enlargement step is
necessary because (a) the genuine/imposter decision is based on the dissimilarity between
a positive and a negative template and (b) the negative template generation is based on a
randomized process. If a positive and a negative template belong to different subjects,
but are of low dimensionality, there is a higher chance that the negative template is very
dissimilar from the positive one. For increased dimensionalities, the positive and the
negative templates share more similar feature entries and thus, increases the similarity.
In terms of positive-negative template comparison, a high similarity indicates an imposter
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comparison. Consequently, high dimensional templates are needed for negative face
recognition to reduce the recognition errors from the randomization process.

Embedding discretization In the second step, the enlarged embedding v is feature-wise
discretized into k bins. The k bins were chosen beforehand on the enlarged training data
using a quantile strategy that divides each feature range into k bins such that every bin
contains an approximately equal number of samples. Following this binning ranges, each
feature entry of v is replaced with the value l ∈ K = {1 . . . , k} of its corresponding bin.
This results in a discretized positive template t+ ∈ KL. Discrete features are required for
the feature-wise computation of complementary feature sets that is needed in the next
step of the negative template generation.

Negative template generation The third step replaces each feature entry of the positive
template t+ with a random value from the complementary feature set. This results in a
negative template that contains facial properties that the person does not possess and
thus, it is hard to estimate the soft-biometrics of that individual. Given a positive template
t+ ∈ KL, a negatively associated template t− is generated feature-wise. This is done by
replacing each feature entry of t+ with a randomly chosen value from K that does not
match the original entry. To be precise, for each component i the negative representation
t
(i)
− ∈ K \ {t

(i)
+ } is given by a randomly chosen value from the complement set K \

{︂
t
(i)
+

}︂
.

This results in the negative template t−. In the last step of the enrolment, the negative
template t− is stored in the database associated with the enrolled identity.

Verification phase

In the verification phase, an individual claims an identity and the negative (reference)
template of the claimed identity is loaded from the database. This negative template
is then compared with the positive (probe) template from the captured individual. In
order to verify a person’s identity with our negative face recognition approach, (1) the
positive probe template and the negative reference template have to be allocated and (2)
the templates are compared against each other to determine a comparison score. This
comparison score is used to make a verification decision.

Template allocation Given an input face image from an individual, first, its embeddings
(Section 5.5.1) have to be computed and second, discretized (Section 5.5.1) to obtain the
positive (probe) template t+. The negative (reference) template t− is loaded from the
database. The positive and the negative template can then be compared.
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Positive-negative template comparison In order to compute a comparison score be-
tween the positive and the negative template t+ and t−, we utilize a normalized hamming-
like distance

NHD(t+, t−) = 1− 1

|t+|

|t+|∑︂
i=1

δ
(︂
t
(i)
+ , t

(i)
−

)︂
. (5.16)

The delta function δ(a, b) returns 1 if a equals b and 0 otherwise. The size of the templates
is defined by |t+| = L. The NHD measures the dissimilarity of t+ and t− and, due to the
complementing nature of positive and negative templates, it can be directly utilized as
a comparison score. Since the positive template defines properties of the corresponding
individual, while the negative template describes properties that the individual does
not contain, a larger (NHD) distance represents a higher probability that the templates
originate from the same subject and vice versa.
In the case that a negative template tA− was generated from the positive template tA+

By the construction of negative templates, tA+ and tA− have the maximum dissimilarity.
The bigger the difference between the positive templates of the probe and the reference,
the lower is the dissimilarity. This is because only feature-level errors in the positive
domain can produce features in the negative domain that collide with the corresponding
features in the positive domain. As long as the positive templates from probe and ref
are reasonably similar, the positive-negative template comparison is highly dissimilar,
indicating a genuine pair. This explains the recognition performance of the negative
templates.

About the gain of privacy

Our negative face recognition approach makes a face recognition system less vulnerable
to function creep attacks in cases where attackers get access to the stored data. Since
only negative templates are stored, the information about an individual is limited to the
deeply-encoded description of complementary nature. This enables our solution to offer a
more comprehensive privacy-protection that is not limited to single pre-defined attributes.
However, in the case of function creep attackers getting access to multiple negative

templates that were created from the same positive templates, a statistical analysis might
enable a reconstruction of the positive template. Consequently, in this special case, a
reconstruction and thus, a reliable privacy-sensitive attribute estimation might be possible.
To prevent this attack strategy, we recommend the use of differently-trained enlargement-
networks for different databases. This prevents the generation of negative templates from
the same positive template and thus, circumvent this statistical analysis-based attack
strategy even in the case of attackers getting access to multiple negative face databases.
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Theoretical foundation

Since our approach is based on a randomized process in the template generation, we
provide a statistical reasoning for the negative-positive comparison performance. Given a
theoretical or empirical score distribution of genuine and imposter scores, this allows to
predict the negative face recognition performance including the probabilities of falsely
rejected and falsely accepted subjects. Consequently, optimal hyperparameters can be
chosen, as well as large-scale experiments can be simulated, without the computational
costs for sophisticated experiments.

Given two positive templates tA+, tB+ ∈ KL with a distance of,

HD(tA+, tB+) =
|t+|∑︂
i=1

δ
(︂
t
(i)
+ , t

(i)
−

)︂
= D, (5.17)

then, the probability of this distance in the negative domain,

HD(tA−, tB+) = D′ with D′ ∈ [L−D,L] (5.18)

follows a Bernoulli distribution and is given by,

Pr
[︁
D′|D

]︁
=

(︃
D

µ(D′)

)︃(︃
k − 2

k − 1

)︃µ(D′)(︃ 1

k − 1

)︃D−µ(D′)

. (5.19)

The Bernoulli distribution can be assumed, since only entries of equal values contribute to
the distance and the state of this entries is given by a fixed probability. The number of
bins in this equation is described by k = |K| and µ(D′) is given by

µ(D′) = D′ − (L−D) , (5.20)

the number of entries that have to be flipped to the same entry in order to achieve the
determined distance of D′ − D. Based on our negative template generation principle
(Section 5.5.1), colliding bin labels tA+ and tB+ in the positive domain, will not collide
in the negative domain and thus, will contribute to the distance. In order to achieve a
distance of HD(tA−, tB+) = D′ in the negative domain, µ(D′) bin labels have to be flipped
such that they will contribute to the distance calculation. The probability for such a single
flip is given by k−2

k−1 and thus, the collision probability is given by 1
k−1 .

Given two positive templates tA+, tB+ with a distance of HD(tA+, tB+) = D, then Equation
5.19 gives the probability for the two templates to have a hamming distance of D′ if one
of the templates is in the negative domain.

196



5.5.2. Experimental Setup

Databases

In order to evaluate and compare our approach under both controlled and uncontrolled
conditions, we conducted experiments on the public available ColorFeret [Phi+00] and
Adience [EEH14] databases. ColorFeret [Phi+00] consists of 14,126 images from 1,199
different individuals with different poses under controlled conditions. A variety of face
poses, facial expressions, and lighting conditions are included in the dataset. For each
face in the database, information about the person’s gender, age, and race (black, white,
asian, and others) are given. We categorized the age labels into four classes (20-29,
30-39, 40-49, and 50+ years) to create age-balanced dataset. This allows an effective
training of the function creep estimators. The Adience dataset [EEH14] consists of 26,580
images from over 2,284 different subjects under uncontrolled imaging conditions. Adience
contains additional information about the individual’s gender and age. The age labels
come from human investigations and are divided into eight age classes (0-2, 4-6, 8-13,
15-20, 25-32, 38-43, 48-53, 60+). We choose these databases because they were captured
under controlled and uncontrolled conditions and provide information of soft-biometric
attributes and information about the identities. The soft-biometric information is only
used during the evaluation. Using the soft-biometric and the identity information allows
to deeply investigate the privacy-enhancing technologies by analysing the recognition
performance, as well as the suppression performance of privacy-sensitive attributes.

Evaluation metrics

Enhancing soft-biometric privacy describes a trade-off between the desired degradation
of the attribute estimation performance by function creep attackers and the desired
preservation of the recognition ability. In this work, we report our verification performances
in terms of false non-match rate (FNMR) at fixed false match rates (FMR). We also
report the equal error rate (EER), which equals the FMR at the threshold where FMR =
1−FNMR. This acts as a single-value indicator of the verification performance. In order to
evaluate the attribute suppression performance, we report our results in terms of attribute
classification accuracy on balanced test labels and in terms of attribute suppression rates.
The suppression rate

sr = accorg − accmod

accorg
(5.21)

describes the reduction of the attribute-prediction accuracy of the unmodified (original)
templates accorg in comparison to the accuracy of the templates accmod with privacy-
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enhancement. A higher suppression rate indicates an advanced privacy-improvement.

Basic face recognition model

The proposed negative face recognition approach builds on arbitrary face embeddings. In
this work, we utilize the widely used FaceNet model2 [SKP15], which was pretrained on
MS-Celeb-1M [Guo+16]. In order to extract an embedding of a face image, the image
is aligned, scaled, and cropped as described in [KS14] and then passed into the model.
The output of this network is a 128-dimensional embedding. The comparison of two such
embeddings is performed using cosine-similarity.

Enlargement-network training

Figure 5.27.: Enlargement-network and positive/negative template generation: the
enlargement-network structure is shown without softmax layer. Given a
face embedding (FaceNet) a larger representation of this embedding is
computed. A positive template is created by discretisation and replacing
each feature entry with an item its complementary set, a negative template
is generated.

2https://github.com/davidsandberg/facenet
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Our approach requires high-dimensional face embeddings, in order to create discrimi-
native negative templates. As described in Section 5.5.1, an enlargement-network is used
to expand the low-dimensional face embeddings to size L. This network has an input size
of 128, corresponding to the used face embeddings, and an output size of L = 4096. It
consists of three layers with 256, 512, and 4096 neurons, and is shown in Figure 5.27. The
first layers are activated by a ReLU function, while the forth layer holds a tanh activation,
such that the output-features are within the range of [−1, 1]. To train the network, a
softmax layer is added to classify the identities in the test set with a binary cross-entropy
loss. The training is done with an AdaDelta optimizer (learning rate lr = 0.5) over 50
epochs of training. Dropout (p = 0.5) [Sri+14] and Batchnormalization [IS15] is applied
on every layer. After the training the softmax layer is removed.

Function creep attacks

For the evaluation of the attribute suppression, we simulate the critical scenario of a
function creep attacker that adapts to the system’s privacy mechanism. The adaptation
step is done by training (function creep) classifiers on the transformed (normalized and
scaled) templates to predict the privacy-sensitive attributes. These classifiers include
random forest (RF), support vector machines (SVM), k-nearest neighbors (kNN), and
logistic regression (LogReg). The hyperparameters of these classifiers are fine-tuned with
Bayesian optimization.

Baseline approaches

In Section 5.2, we mentioned that many privacy-enhancing methods were proposed that
manipulate the face images itself using supervised approaches. However, most biometric
systems store face templates instead of images [Dey+14; SRB16] and furthermore,
supervised approaches are vulnerable to attacks on attributes that were unconsidered
during training. Therefore we proposed an unsupervised privacy-enhancing approach
working on template-level and compare it against two state-of-the-art solutions with the
same working principles. In this work, we use similarity-sensitive noise transformations
[Ter+19b] as baselines. More precisely, we compare our proposed NFR approach against
cosine-sensitive noise (CSN) and euclidean-sensitive noise (ESN).
We calibrate the hyperparameters of these baselines in such a way that they reach

similar verification EER performances. By doing so it is possible to fairly compare these
methods in terms of suppression rates. For all experiment scenarios, subject-disjoint 5-fold
cross-validation is utilized to use all the data available for independent testing and training.
Therefore, we divide the database in five folds of approximately equal sizes such that the
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identities of one fold do not appear in other folds. The validation is performed in five
rounds. In each round, one fold is used for testing while the others are used from training.
The performance over all folds is reported as the average performance and its standard
deviation.

Investigations

The investigations of this work are divided in five parts:

1. We show the need for a privacy-enhancing technology by demonstrating that there
is a significant leakage of privacy-sensitive information from face templates on both
databases.

2. We analyse the face verification performance of our privacy-enhancing solution to check
to which degree the recognition ability is maintained and compare it with previous
works.

3. We investigate the attribute suppression performance of our solution and the baselines
in the critical scenario of a function creep attacker that adapts to the system’s privacy
mechanism. This evaluates the soft-biometric privacy-protection.

4. We analyse the parameter space of our solution to provide a deeper understanding of
our solution.

5. Lastly, we provide an empirical validation of the theoretical reasoning and validate its
correctness.

5.5.3. Results

Analysis of the function creep performance

Table 5.2 shows the attribute prediction performance of three privacy-sensitive attributes in
a scenario without privacy-preservation. The performance of four function creep classifiers
is shown under controlled (ColorFeret) and uncontrolled (Adience) circumstances using
the original and positive embeddings. Especially gender and race can be determined
with very high accuracies. This holds for the original embeddings as well as the (high
dimensional and discrete) positive embeddings. The table demonstrates that there is a
significant information leakage of privacy-sensitive information from face templates and
thus, a great need for privacy-enhancing technologies.
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Face verification performance

In Table 5.3 and 5.4, the recognition performance of the baseline approach is shown in
comparison to state-of-the-art [Ter+19b] and our approach. In order to make a fair com-
parison of the attribute suppression analysis, the hyperparameters of both unsupervised
state-of-the-art approaches, CSN and ESN, are calibrated such that it matches the EER of
our approach for k = 3 and k = 4 bins. In Table 5.3, the recognition performance is shown
for the ColorFeret database. While the EER of templates without privacy-enhancement
is about 2%, our approach with k = 3 (k = 4) bins leads to an EER around 3% (4%).
Even if CSN and ESN are calibrated to have a comparable EER, their FNMR for low FMR
is significantly higher than our approach. In Table 5.4, the recognition performance is
shown for the Adience database. It is observed that the recognition performance for our
approaches (k = 3 and k = 4) is very close to the original performance, while the CSN
and ESN show a strongly degraded performance. While CSN and ESN are based on noise
injections that leads to a partial identity loss, our approach is based on a complementary
representations, which keeps the identity information, but transforms it irreversibly.

(a) ColorFeret (b) Adience

Figure 5.28.: Face recognition performance comparing the performance of the original
templates, our approach and related work. Our solution is able to maintain
the verification performance to a higher degree then previous works.

To get a more detailed look in the recognition performances over a wider range of
decision thresholds, Figure 5.28 shows ROC curves on both datasets. In Figure 5.28a, the
performance is shown under controlled face image capture conditions, while in Figure
5.28b the same is shown under uncontrolled conditions. In both cases, it can be observed
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that recognition performance is very close to the performance of the original representa-
tions, while the CSN and ESN shows a strongly degraded performance. Especially under
uncontrolled conditions (Figure 5.28b) the performance even surpasses the performance
of the original representations by a small amount due to its error correction ability. This
demonstrates, in contrast to previous work, that our solution is can maintain identity
information to a large degree.

Privacy-sensitive attribute suppression

In order to compare the soft-biometrics privacy-enhancement, Table 5.5 shows the suppres-
sion rates for four classifiers on three privacy-sensitive attributes. The attribute suppression
performances of our approach are shown and compared with state-of-the-art approaches
(CSN, ESB) [Ter+19b] calibrated to the same verification EER. In [Ter+19b], CSN showed
significantly better performance than ESN, especially in suppressing attribute prediction
performance for SVM and LogReg. However, CSN transforms each feature vector to a
random length r ∈ [1, 100], which makes it hard to handle for classifiers such as SVM and
LogReg. This is not the case in our experiments since we simulated a committed function
creep attacker that does not only train on transformed data but also rescales the feature
vectors to unit-length. This prevents classifiers, such as SVM and LogReg, from unstable
estimations. On both databases, our solution achieves relatively high suppression rates
on all classifiers and all attributes. Generally, our privacy-enhancement approach leads
to 2-4 times higher suppression rates compared to previous work under different attack
mechanisms and attributes.

Investigation of the parameter space

In the following, the parameter space is analysed to increase the understanding of our
solutions behaviour. More precisely, the two parameters of our solution, the template size
L and the number of bins k, are varied and for every parameter combination the face
verification performance (in terms of EER) and the attribute prediction performance from
different function creep estimators are shown. Figure 5.29 and 5.30 show the results
for k = 3, 4 on ColorFeret. Figure 5.31 and 5.32 show the same on Adience. In these
Figures the number of bins k and the embedding sizes L are analysed in the ranges of
k = [3, 4] and L = [64, 4096]. All these scenarios show that a bigger embedding size L
leads to a lower face verification error. This observation agrees with the nature of positive-
negative template comparisons. Higher dimensional templates reduce the effect of random
collisions for the positive-negative template comparison. In lower dimensions, a random
collision for an imposter comparison has a high impact on the resulting comparison score.
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(a) Gender (b) Age (c) Race

Figure 5.29.: On ColorFeret the face verification EER and the attribute estimation perfor-
mances of function creep estimators are shown for different embedding
sizes and a fixed bin size of k = 3. The estimation performance is anal-
ysed for the attributes of gender, age, and race.

(a) Gender (b) Age (c) Race

Figure 5.30.: On ColorFeret the face verification EER and the attribute estimation perfor-
mances of function creep estimators are shown for different embedding
sizes and a fixed bin size of k = 4. The estimation performance is anal-
ysed for the attributes of gender, age, and race.

Towards the bin sizes k, it can be observed that k = 3 has a lower face verification error
than k = 4, but also higher prediction accuracies from all function creep estimators.
Higher k leads to more variabilities, which affects verification as well as the estimation of
privacy-sensitive attributes. These observations hold for both datasets and all function
creep estimators. Consequently, parameter k and L have to be chosen to accomplish the
desired trade-off between attribute suppression and verification performance.
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(a) Gender (b) Age

Figure 5.31.: On Adience the face verification EER and the attribute estimation perfor-
mances of function creep estimators are shown for different embedding
sizes and a fixed bin size of k = 3. The estimation performance is anal-
ysed for the attributes of gender and age.

Theoretical Reasoning Analysis

In Section 5.5.1, a theoretical reasoning for our negative face recognition approach was
developed. Here, we want to prove its correctness by empirically predicting the score
distributions of our approach and comparing it with the achieved scores distributions. For
each comparison score in the positive domain, Equation 5.19 is used to calculate the most
probable score in the negative-positive domain. Repeating this process with every score
in the distribution results in the score distributions in Figure 5.33. This figure shows the
distributions of the genuine and imposter scores of our proposed approach with k = 3, as
well as its theoretically predicted distribution. It can be seen that on both databases, the
predicted distributions accurately correspond to the empirical score distributions. This
validates our theoretical considerations from Section 5.5.1.

5.5.4. Interim Conclusion

In this section, we successfully proposed negative face recognition, a privacy-enhancing
face recognition solution operating on the template-level. It prevents function creep
attackers from successfully predicting privacy-sensitive information from stored face
templates. Our novel solution is based on the comparison of positive probe templates with
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(a) Gender (b) Age

Figure 5.32.: On Adience the face verification EER and the attribute estimation perfor-
mances of function creep estimators are shown for different embedding
sizes and a fixed bin size of k = 4. The estimation performance is anal-
ysed for the attributes gender and age.

negative reference templates. While positive templates contain the facial properties of an
individual, negative templates contain random complementary information, i.e. properties
that the face does not have. Since only negative templates are stored in the database,
a reliable function creep estimation of privacy-sensitive information is prevented. To
guarantee a certain recognition performance, we further provided a theoretical foundation
of our solution and proved its correctness empirically. The experiments were conducted
on two publicly available databases and on three privacy-sensitive attributes. In the
experiments, we simulated function creep attackers that know about the system’s privacy
mechanism and adapt their attacks based on it. The experiments demonstrated the
effectiveness of our approach under both, controlled and uncontrolled image capturing
conditions. Our proposed unsupervised solution significantly outperforms comparable
approaches from previous work, while maintaining a significantly higher recognition
performance. In the uncontrolled scenario, negative face recognition fully retains the
recognition performance while achieving suppression rates of up to 36%. Our solution is
characterized by the fact that it prevents the accumulation of privacy-sensitive information
during the training and offers more comprehensive privacy-protection. Unlike previous
works, negative face recognition is not limited to the suppression of single attributes.
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(a) ColorFeret (b) Adience

Figure 5.33.: Validation of the theoretical reasoning: score distribution of the empirical
data versus the theoretical predictions. The distributions show the genuine
and imposter scores for k = 3 bins. The theoretical score predictions are
done with Equation 5.19 on the positive score distributions. The theoretical
predictions accurately match the experimental scores.
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Table 5.3.: Face recognition performance on ColorFeret. The original face recognition
performance is compared against three privacy-enhancing approaches, our
proposed negative face recognition approach, cosine-sensitive noise (CSN),
and euclidean-sensitive noise (ESN).

FNMR@10−2 FMR FNMR@10−3 FMR EER
Original 3.65% ± 0.95% 14.22% ± 3.49% 1.97% ± 0.21%

Ours (k = 3) 6.50% ± 1.10% 18.32% ± 4.23% 3.18% ± 0.20%
CSN (Θ = 0.80) 7.61% ± 1.01% 23.54% ± 4.42% 3.25% ± 0.19%
ESN (r = 0.75) 7.47% ± 1.12% 23.55% ± 3.93% 3.21% ± 0.25%

Ours (k = 4) 8.65% ± 1.22% 20.26% ± 2.81% 4.15% ± 0.40%
CSN (Θ = 0.73) 11.18% ± 1.24% 32.16% ± 5.03% 4.20% ± 0.23%
ESN (r = 0.93) 11.56% ± 0.99% 33.01% ± 4.54% 4.24% ± 0.19%

Table 5.4.: Face recognition performance on Adience. The original face recognition per-
formance is compared against three privacy-enhancing approaches, our pro-
posed negative face recognition approach, cosine-sensitive noise (CSN), and
euclidean-sensitive noise (ESN).

FNMR@10−2 FMR FNMR@10−3 FMR EER
Original 13.68% ± 5.24% 45.71% ± 6.88% 3.83% ± 0.72%

Ours (k = 3) 13.42% ± 4.79% 43.14% ± 9.14% 4.43% ± 0.80%
CSN (Θ = 0.84) 19.36% ± 6.30% 59.04% ± 6.90% 4.48% ± 0.75%
ESN (r = 0.62) 18.60% ± 5.76% 57.56% ± 6.59% 4.49% ± 0.72%

Ours (k = 4) 16.35% ± 4.20% 47.93% ± 8.69% 5.44% ± 0.78%
CSN (Θ = 0.74) 28.29% ± 7.49% 71.79% ± 6.59% 5.57% ± 0.80%
ESN (r = 0.88) 28.16% ± 6.91% 71.27% ± 5.73% 5.49% ± 0.70%
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5.6. PE-MIU: Privacy-Enhancement via Minimum Information
Units

Previous works proposed privacy-enhancing solutions based on supervised [Mir+18;
MR17; OR14] and unsupervised approaches [Ter+19b; Ter+20c]. While unsupervised
approaches show a more comprehensive but weaker privacy-enhancement, supervised
approaches are limited to the suppression of pre-defined attributes and thus, are vulnerable
to unconsidered function creep attacks.
In this section, we propose PE-MIU [Ter+20h], a privacy-enhancing face recognition

approach based on minimum information units. PE-MIU is a novel, training-free, and
privacy-enhancing face recognition approach that works on the biometric template-level.
Exploiting the structural differences between face recognition (use-case) and the estimation
of facial attributes (attack scenario), our approach divides face templates into small blocks
of minimal information units and randomly changes their positions in the templates. Since
the information of privacy-sensitive attributes is usually distributed across the template,
this approach significantly reduces the chance of function creep attackers to successfully
estimate privacy-sensitive information from the modified face templates. To compare two
modified templates, and thus verify if these belong to the same identity, we introduce
an optimal assignment protocol. In this protocol, the minimal information units of both
templates are assigned based on their optimal matching. This assignment is used to align
and compare the templates.

The experiments were conducted on three publicly available databases in the context of
function creep attackers who know and adapt to the used privacy mechanism. To put the
results in a broad perspective, we compare our proposed solution against five state-of-the-
art approaches that try to suppress the attribute gender on template-level. The experiments
show that PE-MIU outperforms all other approaches in terms of suppressing privacy-risk
attributes and maintaining recognition performance. It is able to reach significantly higher
gender suppression rates than previous works in all investigated cases, and, at the same
time, reaches a face recognition performance close to the unmodified face recognition
system.

5.6.1. Methodology

Enhancing soft-biometric privacy aims at preventing function creep attackers from suc-
cessfully predicting privacy-risk characteristics. This task is further challenged by simulta-
neously maintaining a high recognition ability. With our PE-MIU approach, we exploit the
structural differences between a face recognition scenario and the scenario of a function
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creep attacker. While the function creep attacker aims at the predicting privacy-sensitive
information from one template, in face recognition two templates are compared to decided
if they belong to the same identity or not. In this section, we propose a training-free
approach for privacy-preserving face recognition, PE-MIU. Our PE-MIU approach divides
face templates into small blocks and randomly changes their positions. These blocks are
noted as minimum information units (MIU). Consequently, it is hard to reliably predict
these characteristics. For the purpose of recognition, two templates are given and their
relation to each other can be used to find corresponding MIUs. In the first step, the optimal
assignment between the MIU’s per template are calculated, to verify if two MIU-based
templates belong to each other. In the second step, this assignment is used to align the
templates and further compute their comparison score. This idea is illustrated in Figure
5.34 and detailed in the rest of this section.

Figure 5.34.: Illustration of the comparison of two MIU templates. In the first step, an
optimal assignment of the MIU blocks per template are computed. In the
second step, this assignment is used to align both templates such that they
can be compared with a standard similarity function.

Enrolment phase

In the enrolment phase, given a face image I, the corresponding MIU template v is
computed and stored in the database. The computation of the MIU-based template is
described in Algorithm 3. Given a face image I, the corresponding face embedding x ∈ RL
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is extracted (createEmbedding) from I, where L is the size of the embedding. This face
embedding x is divided (divideMIU) into L/s MIU blocks of size s. Then, the positions of
these units are exchanged randomly (shuffle) resulting in a face template v where every
entry consists of a feature block. This MIU template is then stored in the database. The
process of dividing the embedding into MIU blocks and shuffling the block positions is
illustrated in Figure 5.35.

Algorithm 3 - ComputeMIUTemplate(I, s)
Input: Face image I, bin size s = 16
Output: Face template v to be stored in the database
1: x← createEmbedding(I)
2: vorg ← divideMIU(x, s)
3: v ← shuffle(vorg)
4: return v

Figure 5.35.: Illustration of the key parts during enrolment: first, the face embedding x is
divided into equally-sized blocks, the MIUs. Second, the position of these
MIU blocks are randomly shuffled.
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Verification phase

In the verification phase, anMIU reference template vref stored in the database is compared
with an MIU probe template vprobe from a captured individual. The verification is done in
two steps: first, the MIU-blocks of vprobe and vref have to be assigned such that there is
an optimal pair-wise matching between the blocks of both templates. Second, the probe
template vprobe is aligned to vref such that the matched MIUs are at the same entries of the
templates. The aligned probe template v̂probe is then compared to vref using a similarity
metric. In our case, as will be explained later, we use the cosine similarity metric as it was
recommended to be used with the original templates in our experiments.

MIU-Block assignment In order to compare a probe embedding x with a block-wise
reference template vref , an MIU representation of x have to be computed and the optimal
matching of the MIU-blocks of each template has to be found. Similarly to the block
partitioning during the enrolment (see Figure 5.35), the probe face embedding x is
divided into MIU of size s, resulting in vprobe. Then, the best matching between the two
MIU templates is computed. In graph theory, this problem is known as weighted bipartite
matching problem [RT12] and is equivalent to the following optimization

min
χ

∑︂
i,j

Ci,j χi,j . (5.22)

Applied to our problem, the cost matrix Ci,j describes the euclidean distance between
then MIU i and j and χi,j is the resulting binary assignment matrix with χi,j = 1 if and
only if the ith probe MIU is assigned to the jth reference MIU. This problem can be solved
via the Hungarian [KY55] or the Ford-Fulkerson [FF10] algorithm.

The best matching task can be formulated and solved as a minimum cost maximum-
network-flow problem [BDM12]. Therefore, an acyclic graph is constructed as shown in
Figure 5.36. The edge weights from source q to the nodes (MIU blocks) of vprobe are set
to 1. The same applies for the weights of the edges from the vref nodes to the sink z. The
weights for the edges connecting the blocks between vprobe and vref are determined by its
euclidean distances resulting in the cost matrix C. The optimal assignment of these MIUs
is then defined by the maximum flow from source q to sink z.

Aligned comparison score After the optimal block assignment is found, the order of
the blocks of the probe template are chosen such that the matched blocks are at the
same positions. This results in an aligned probe template vprobe. After the MIU-blocks of
the probe and the reference templates vprobe and vref are aligned, the comparison score
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Figure 5.36.: The MIU-block assignment can be solved as a maximum-flow problem
where the maximum flow from source q to sink z is defined by the opti-
mal matchings. The weights between the MIU-blocks of vprobe and vref are
given by their euclidean distances. Broader edges represent higher weight
values.

cs(vprobe, vref ) of these templates is computed. In this work, we use cosine similarity for
this comparison score calculation. However, this metric should be chosen according to the
utilized face embeddings.

Summary of the verification phase To summarize the verification phase using MIU-
templates, Algorithm 4 describes how a comparison score between a probe face image I of
an identity and a reference template vref (stored in the database) of the claimed identity
is computed. First, a MIU-based template vprobe is computed from image i using Algorithm
3 (computeMIUTemplate). Then, the probe template vprobe is aligned to vref (align) as
described in Section 5.6.1. Finally, the aligned probe template vprobe is compared with
vref using a pre-defined comparison score metric cs(vprobe, vref ) such as cosine similarity.
This comparison score is then used to determine if the person belongs to the claimed
identity.
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Algorithm 4 - Compare(Iprobe, vref )
Input: Face image Iprobe, claimed-identity template vref
Output: Comparison score score
1: vprobe ← computeMIUTemplate(I, s = 16)
2: vprobe ← align(vprobe, vref )
3: score← cs(vprobe, vref )
4: return score

Properties of block-wise representations

The soft-biometric privacy-protection of the proposed method lies in the randomized
nature of the MIU representation. Due to the fact that the previous order of the MIU-
blocks is unknown and can only be reconstructed with an unmodified face embedding of
the same identity, function creep attackers can only use the set of the minimal information
units for their attacks.

Soft-biometric privacy usually describes a trade-off between suppressing privacy-sensitive
attributes and maintaining the recognition ability of its templates. In this work, this trade-
off is determined by the size of the MIU blocks s. Higher MIU sizes result in a weaker
privacy-protection, due the fact that higher block sizes contain more attribute information.
However, higher MIU sizes also leads to less misassigned MIU-blocks and thus, it leads
to a lower recognition errors as well. For this work, we choose an MIU size of s = 16 to
balance these two points. The effect of changing this parameter is investigated in Section
5.6.3.

The key part of verifying a persons identity with the proposed method is the MIU-
block assignment. As indicated in Figure 5.34, the comparison of two not-aligned MIU
templates results in a weak recognition performance. The block assignment, needed
for the computation of the aligned MIU templates, is done via the Hungarian algorithm
[KY55], since it provides stable and optimal assignments. This method scales with O(n3),
where n = L/s is the number of MIU-blocks per template. Consequently, higher privacy-
protection (smaller s) comes at the cost of higher computation times. However, this can be
mapped to a complexity of O(n2 log n) by using the approach presented from Ramshaw
and Tarjan [RT12].
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5.6.2. Experimental Setup

Database

We conduct experiments on the publicly available ColorFeret [Phi+00] and Adience
[EEH14] and Labeled Faces in the Wild (LFW) [Hua+07] databases to evaluate and
compare our solution to related works. ColorFeret [Phi+00] consists of 14,126 images
from 1,199 different individuals with different poses under controlled conditions. The
Adience dataset [EEH14] consists of 26,580 images from over 2,284 different subjects
under uncontrolled imaging conditions. Labeled Faces in the Wild (LFW) [Hua+07]
provides 13,233 face images from 5749 identities. The databases cover a wide range of
variations in illumination, focus, blurriness, pose, and occlusions. Moreover, the databases
include information about the identities and their gender. This allows to deeply investigate
the privacy-preservation techniques of the attribute gender, as well as their recognition
performances.

Evaluation metrics

Preserving soft-biometric privacy is challenged by a trade-off between the desired degra-
dation of the attribute estimation performance by function creep attackers and the desired
preservation of the recognition ability. In the experiments, we report the verification
performances in terms of false non-match rate (FNMR) at fixed false match rates (FMR).
We further report the equal error rate (EER), which equals the FMR at the threshold
where FMR = 1−FNMR. Both verification performance measures are defined in the ISO
standard [06]. In order to evaluate the attribute suppression performance, we report
the results in terms of balanced attribute classification accuracy, since this allows an
unbiased performance measure on testing data with unbalanced attribute information.
This balanced accuracy is equivalent to the standard accuracy with class-balanced sample
weights. A value of 50% is the best possible case for a privacy-preserving methodology
and the worst outcome for a function creep attacker. In order to evaluate if the privacy
enhancing method is beneficial, we use the privacy-gain identity-loss coefficient (PIC)
defined in Section 5.4 and reported in recent works [Ter+19b; Bor+20]. The PIC is
defined as

PIC =
AE′ −AE

AE
− RE′ −RE

RE
. (5.23)

The value is defined by attribute prediction errors AE′ and AE and the verification
errors RE′ and RE with and without the privacy-preserving methodology. Positive
values indicate that the privacy gain is higher than the loss in the identity preservation
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performance. Since it measures how beneficial it is to apply the privacy transformation, a
higher PIC coefficients indicates a better privacy-enhancing technique.

Face recognition model

In this work, our block-assignment-based approach builds on arbitrary face embeddings
of certain dimensions. In the experiments, we utilize the widely used FaceNet model3
[SKP15] pretrained on MS-Celeb-1M [Guo+16]. In order to extract an embedding of
a face image, the image is aligned, scaled, and cropped as described in [KS14]. The
preprocessed face image is then passed into the face recognition model to obtain a 128-
dimensional face embeddings. The comparison of two such embeddings is performed
using cosine-similarity.

Function creep attacks

In this work, we consider two kinds of function creep attacks, the standard attack (S-ATK)
and the advanced attack (A-ATK). We decided to introduce A-ATK due to the limited
effectiveness of S-ATK on our proposed approach. Both attacks evaluate the attribute
suppression performance and simulate the critical scenario of a function creep attacker
that knows the systems privacy mechanism and adapts to it.
For the S-ATK, the adaptation is done by training (function creep) classifiers on the

privacy-enhanced templates to predict the privacy-sensitive attributes. Before the training
of these classifiers, the transformed templates are further normalized and scaled to unit-
length. The utilized classifiers include random forest (RF), support vector machines
(SVM), k-nearest neighbours (kNN), and logistic regression (LR). The hyperparameters of
these classifiers are fine-tuned with Bayesian optimization.
During the experiments, we realized that these naive function creep attacks (S-ATKs)

show only a very limited effect on our proposed approach, meaning that the classification
performance with optimized function creep classifiers show a close to random behaviour.
Therefore, we additionally considered more challenging attack classifier approaches for
our proposed solution that is directly customised to achieve the highest classification
accuracies. The most successful kind of attacks were the ones that learn to predict the
gender for each MIU-block separately. During prediction, each of these blocks of a face
template is classified separately and the predicted scores per classed are fused with a
mean-fusion-rule [Ter+19c; Ter+18a]. In this work, we refer to this attack as A-ATK.
For the evaluation, we consider function creep attacks to the privacy-sensitive at-

tribute gender as done in previous works [Mir+18; MRR18; MRR19; Ter+19b; Ter+20c;
3https://github.com/davidsandberg/facenet
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Ter+19a; Ter+19b; MFV19; Bor+20]. The reason for this choice is that gender informa-
tion can be estimated from face templates with very high accuracies [Ter+19d; Ter+19c].
Moreover, it requires only a binary decision, which makes it an easy target for function
creep attackers and a challenge for privacy-preserving methodologies.

Baseline approaches

To evaluate our proposed training-free and template-based solution in a broad setting, we
compare it against 5 recent template-based privacy-preserving face recognition approaches.
These include the two supervised solutions PFRNet [Bor+20] and IVE [Ter+19a] and three
unsupervised solutions NFR [Ter+20c], CSN [Ter+19b], and ESN [Ter+19b]. PFRNet
[Bor+20] aims at learning a feature representation that disentangle identity from gender.
The original network was optimized for an embedding size of 512. In our evaluation
setting an embedding size of 128 is used. Consequently, the network was adapted such
that the encoder consists of two layer with size 128 and 100+28 dimensions and the
decoder consists of two layer with 128 dimensions as this adaptation showed the best
privacy-preserving performance while maintaining high verification rates. As proposed in
Section 5.3, IVE [Ter+19a] incrementally eliminate the most privacy-risk features from a
face template to suppress the attribute information. CSN and ESN [Ter+19b] are based
on geometric-inspired noise-injections that alter the inherent identity information in a
controlled manner as introduced in Section 5.4. In contrast to mentioned approaches, NFR
[Ter+20c] stores only complementary information about an individual in a face template
and during deployment, it compares the probe template with a reference template in the
complementary domain by calculating its dissimilarity. This solution was introduced in
Section 5.5.
In order to make the experiments as comparable as possible, we calibrated the hyper-

parameters of these baselines in such a way that they reach a similar verification EER
performance if possible. For all experiment scenarios, the same subject-exclusive 5-fold
cross-validation setup is utilized. This includes training the function creep classifiers, as
well as training the baseline approach for privacy-enhancing face recognition. The setup
is shown in Table 5.6. For the three utilized databases, it provides details about each fold
properties. It should be noted that for LFW, the gender distribution is unbalanced. For this
reason, we choose the balanced attribute classification accuracy as described in Section
5.6.2.

Investigations

The investigations of this work are divided in four parts:
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A. We analyse the face verification performance of our privacy-enhancing solution in
comparison to previous works.

B. We investigate the attribute prediction performance in a qualitative and quantitative
manner.
1) The qualitative investigation provides a qualitatively aided analysis of the gender

separability of the original and the MIU-based templates. This is done by providing
a visual understanding of the proposed approach.

2) The quantitative investigation analyses the attribute prediction performance of
the original template, on our solution, and on state-of-the-art. This is done in the
critical scenario of a function creep attacker that adapts to the systems privacy
mechanism using the attack scenarios S-ATK and A-ATK.

C. We analyse the parameter space of our solution to provide a deeper understanding of
the influence of the MIU-block size on several aspects of our methodology.

D. Lastly, we focus on the strongest attack for each method and summarize the methods
recognition ability, as well as the privacy-protection in a joint manner. This includes
reporting the privacy-gain identity-loss coefficients (PIC) to measure and compare the
usefulness of the studied approaches in the context of the most successful function
creep attacks.

5.6.3. Results

Face verification performance

In Figure 5.37, the face verification performance is shown on three databases. The
performance of the original FaceNet embeddings is shown along the performance of six
privacy-enhancing approaches including our proposed approach. It can be seen that
all approaches show a degraded face verification performance compared to the original
embeddings. This is shown in every privacy-enhancing work [Ter+19b; Ter+19a; MRR19;
MFV19], since soft-biometric privacy defines a trade-off between maintaining identity
information and suppressing privacy-sensitive attributes. For lower FMR, NFR [Ter+20c] is
an exception of this trade-off. Since in the NFR approach the comparison score is computed
by the dissimilarity between the positive probe and the negative reference template, it
is more robust to embeddings with more intra-class variations. In total, our proposed
approach shows the most similar verification performance to the original templates. This
can be noticed by both, the ROC curves and the EER values. The recognition performance
is mostly maintained, due to nearly error-free MIU assignments.
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Figure 5.37.: Face recognition performance of our MIU-based solution in comparison
with five state-of-the-art approaches on three databases. In addition, the
face verification performance of the unmodified (original) face templates
are shown.

Attribute suppression performance

Qualitative Analysis In order to provide a visual understanding of the proposed ap-
proach towards the suppression of gender characteristics, Figure 5.38 represents a 2D-
visualization of 1000 randomly chosen identity-embeddings. The visualization was done
by utilizing t-distributed stochastic neighbour embeddings (t-SNE) [MH08]. Female sam-
ples a characterized by orange dots, while male samples are represented by blue points.
The visualizations are provided on three databases for the unmodified (original) templates
(a, d, g), for the MIU-based templates of our PE-MIU approach (b, e, h), and for individual
MIU-blocks individually (c, f, i). A clear separation is observed in the visualizations of the
unmodified images (a, d, g) indicating that the attribute gender can be correctly predicted
to a high degree. In contrast, the plots visualizing our approach (b, e, h) show highly
randomized patterns indicating that it is hard to reliably estimate the correct attribute. In
order to show that the same applies for individual MIUs separately, Figure 5.38 (e, f, i)
show the same visualization per MIU. Similarly as for our full approach (e, f, i), no pattern
between the different gender classes is easily observable.

Quantitative Analysis To deeply understand the privacy-enhancement of our solution
along with previous works, Table 5.7 shows the balanced accuracies for four optimized
function creep classifiers on the three databases. The gender prediction performance is
shown for the unmodified (original) templates, for the our PE-MIU approach (Ours), and

220



for five state-of-the-art solutions. Moreover, the results for a highly challenging attack
methodology (A-ATK), directly designed to maximize successful attacks on our approach,
is shown as Ours*.
The gender decision accuracies of the original FaceNet embeddings show high val-

ues, demonstrating the need for privacy-enhancing technologies. The state-of-the-art
privacy-preserving face recognition approaches lead to degraded estimation performances.
However, the gender decision accuracies, and thus the resulting attribute suppression,
varies a lot depending on the utilized database and function creep classifier. Generally,
the highest privacy-improvement is observed for our proposed approach. The function
creep classifiers achieve correct classification performances close to a random decision
behaviour of 50% in most cases. One exception is the scenario where the KNN estimator
was used on the Adience database. Here, PFRNet reaches a slightly more randomized
behaviour (54.53%) than our proposed approach (45.45%). However, this comes at the
cost of a lower verification performance, e.g in terms of EER where the original templates
achieve an EER of 3.27%, our PE-MIU approach reaches an EER of 3.63%, and PFRNet
reaches an EER of 6.31%.
In the last row of Table 5.7, the suppression performance of our PE-MIU approach

(Ours*) in the context of an highly advanced and adapted attack methodology (A-ATK) is
shown. It demonstrates a strong gender suppression performance can be achieved even in
this more critical and challenging attack scenario.

Parameter Analysis

The block size s of PE-MIU is the key to determine the privacy trade-off between reach-
ing high attribute suppression rates and maintaining a high recognition performance.
Therefore, this parameter is investigated in this Section on the three databases ColorFeret,
Adience, and LFW. Figure 5.39 analyses the influence of the block size on the two aspects
of the mentioned trade-off. High block sizes lead to lower recognition EER, since the
number of possible wrongly-assigned MIU-blocks is lower. At the same time, high block
sizes contain more patterns that allow function creep classifiers to successfully predict
privacy-risk attributes. Figure 5.39 shows that a block size s = 16 represents a good
balance between both aspects of the soft-biometric privacy trade-off.
The block size s also determines the computational complexity of our proposed MIU-

based privacy-preserving face recognition approach. Table 5.8 shows the average compu-
tation time needed for the different MIU-steps. All computational efficiency analyses are
based on using a personal computer with an Intel(R) Core(TM) i7-7700 processor. During
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enrolment, the MIU-template must be generated. This can be implemented efficiently4
and thus, can be performed in the order of a few microseconds per template. During
the verification phase, the MIU-blocks are assigned5 and then, the aligned templates
are compared6. The biggest part of the computation time is needed for the MIU-block
assignment. The average comparison time of previous works [Ter+19b; Bor+20] is
around 0.10ms using the same CPU. Consequently, the strong privacy-enhancement and
recognition performance of our proposed approach comes at the cost of higher comparison
times.
In order to analyse the susceptibility to errors, Figure 5.40 shows the average ratio of

misassigned blocks per genuine pair comparison. These statistics are shown for different
block sizes s and for the three utilized datasets. For small block sizes (e.g. s = 4), the
MIU-blocks contain few information for a reliable assignment. In this case, around 50% of
the blocks are incorrectly assigned, explaining the relatively low recognition performance
for s = 4 in Figure 5.39. On the other hand, for large block sizes (e.g. s = 32, 64), the
ratio of misassigned blocks is close to zero (0.5% on ColorFeret, 0% on Adience and
LFW, when s = 64) and thus, the templates are perfectly aligned in nearly all cases. The
perfect alignment leads to low recognition errors. However, it also leads to higher gender
decision accuracies of the function creep estimators, as it is demonstrated in Figure 5.39.
In this work, beside analysing different block sizes, we decided to use a block size of
s = 16, since it provides a suitable trade-of between maintaining the recognition ability
and achieving a high privacy-enhancement, as supported by the information presented
in Figure 5.40. For s = 16, the ratio of misassigned blocks varies between 1-5% on the
different databases (5% on ColorFeret containing profile face images). This shows that in
most cases, two genuine MIU-templates are close to perfectly aligned. At this block size,
genuine MIU-blocks that are very similar can be wrongly assigned. However, since these
are very similar to each other, the aligned MIU-templates are similar as well and thus,
these misassigned blocks have only a minor impact on genuine comparisons.

Summary and Usability

Soft-biometric privacy is challenged by maintaining a high recognition performance and
degrading the prediction performance of privacy-sensitive attributes. In Figure 5.41, both
aspects can be observed simultaneously under the critical scenario of the most successful
individual function creep attack. This is shown for each of the three databases. The x-axes
represents the recognition error in terms of EER while the y-axes shows the balanced
4In this work, we implemented this part with Numpy [WCV11].
5For the block assignment, the Hungarian algorithm implementation from SciPy [Vir+20] was used.
6The comparison calculation with cosine similarity was computed with Scikit-learn [Ped+11].
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gender prediction error. Consequently, a highly successful privacy-enhancing solution can
be found in the top left corner. Moreover, the PIC coefficient is calculated and represented
by the radius of the shaded area around a marker. Since PIC measures the advantages of
applying the privacy-preserving methodology (see Section 5.6.2, a bigger shaded area
represents a high usefulness of applying a solution. As demonstrated our proposed solution
achieves the lowest recognition error on all scenarios. Moreover, it also leads to the highest
gender prediction errors in most cases and to the highest PIC coefficients in all cases.
Consequently, the PIC values (represented as the shaded areas) indicate that our proposed
approach is significantly more effective than previous work.

5.6.4. Interim Conclusion

In this section, we proposed PE-MIU, a training-free and privacy-preserving face recog-
nition approach based on minimum information units (MIUs). Our solution exploits the
structural differences between the different setups of face recognition (use-case) and
facial attribute estimation (attack scenario). This is achieved by dividing a face template
into several MIU-blocks and randomly changing their position in the template. This kind
of randomized representations changes the pattern of its attributes for each template.
Consequently, it is hard for function creep attackers to predict these privacy-sensitive
attributes. The experiments were conducted on three publicly-available databases com-
paring our solution to five state-of-the-art approaches. In the experiments, we simulated
function creep attackers that know about the systems privacy mechanism and adapt their
attacks based on it. The results show that our novel face recognition approach is able to
consistently reach low attribute prediction rates in all investigates scenarios, outperform-
ing all state-of-the-art approaches in most cases. Simultaneously, our solution maintains
its recognition ability to a significantly higher degree than previous work. Consequently,
unlike previous work, the proposed methodology is characterized by its ability to maintain
a high recognition performance while reaching high attribute suppression rates which are
not limited to the suppression of predefined attribute.
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(a) ColorFeret - Unmodified (b) ColorFeret - Ours (c) ColorFeret - Ours per block

(d) Adience - Unmodified (e) Adience - Ours (f) Adience - Ours per block

(g) LFW - Unmodified (h) LFW - Ours (i) LFW - Ours per block

Figure 5.38.: Visualization of different face representations of the three databases,
ColorFeret (5.38a - 5.38c), Adience (5.38d-5.38f), and LFW (5.38g-5.38i).
For the visualizations, 500 female and 500 male identities were chosen
randomly and their templates are reduced to two dimensions using t-
distributed stochastic neighbour embedding (t-SNE) [MH08]. The first row
(a, d, g) shows the t-SNE plots for the original facenet embeddings. The
second row (b, e, h) shows the same plots for templates modified by our
PE-MIU approach. The last row represents the t-SNE plots created from
each block of the templates. The lower separability introduced by PE-MIU
in comparison to the unmodified templates is demonstrated by the increas-
ingly overlapping samples.
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Figure 5.39.: Investigation of the block size: the gender decision performance and the
recognition EER over the different block sizes are shown for the three
databases. The gender decision accuracy comes from the most success-
ful function creep estimator in Table 5.7, the SVM.

Table 5.8.: Average computational time (in ms) of the different MIU steps for different
block sizes s. The values represent the computational time on for an Intel(R)
Core(TM) i7-7700 CPU with 3.60 GHz on 128-dimensional templates. The
template generation refers to the enrolment phase, while the other steps refer
to the verification phase.

Timings [ms] Block size s

4 8 16 32 64
MIU-template generation 0.0039 0.0022 0.0014 0.0010 0.0008
MIU-block assignment 7.10 2.23 0.67 0.33 0.06
Comparison score calculation 0.10 0.10 0.10 0.10 0.10
Complete MIU-verification 7.20 2.33 0.77 0.43 0.16
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Figure 5.40.: Analysis of misassigned MIU-blocks. The average ratio of misassigned
blocks per genuine pair comparison is shown for different block sizes on
the used databases. Higher block sizes reduce the possibility of misas-
signments.

Figure 5.41.: Joint analysis of the privacy-risk attribute suppression performance (in
terms of balanced accuracies) and the verification performance (in terms
of EER). The performance of the unmodified (original) templates (grey dot)
is shown in comparison with our MIU-based approach (ours) and five ap-
proaches from previous work. The prediction errors refer to the individu-
ally most successful attack classifier. To visually encode the usefulness in
this challenging attack scenario, PIC values are calculated and represented
as shaded areas around the method markers. Negative PIC values are ne-
glected in the plot.
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5.7. Summary

The face is a widely used biometric modality [Dam+18d; Wan+18a] that does not require
an active user-participation [Dam+18a; Tri17]. A typical face recognition system contains
feature representations (templates) for each individual enrolled. Comparing two templates
allows to verify a claimed identity or to identify an unknown subject [PKB16]. However,
recent work showed that more information than just the person’s identity can be deduced
from these templates [DER16]. With the use of soft-biometric estimators, information
about gender, age, ethnicity, sexual orientation or the health status can be obtained
[DER16; WK18]. Since in many applications the users do not permit to have access to
this information, this shows a major invasion of privacy. In many systems, the stored
data should be exclusively used for recognition purposes [MR17] and extracting such
information without a person’s consent can be considered as a violation of their privacy
[Kin13]. Soft-biometric privacy-enhancing technologies aim at hiding or suppressing
privacy-sensitive information in face templates to prevent function creep.
Soft-biometric privacy is challenged by maintaining a high recognition performance

while effectively suppressing privacy-sensitive attributes. Unlike previous works, in this
chapter, we (a) proposedmainly unsupervised privacy-enhancing face recognition solutions
that (b) are not restricted to the suppression of pre-defined attributes, and (c) operates
on template-level. Moreover, (d) we investigate the privacy performance in a more critical
and challenging scenario of a function creep attacker that adapts his attacks to the systems
privacy mechanism.
In Section 5.3, we proposed IVE [Ter+19a], an Incremental Variable Elimination that

determines and eliminates the highest privacy-risk variables in face templates. Although
it was able, by design, to suppress binary, categorical, and continuous attributes, similar
to previous works, it is restricted to the suppression of pre-defined attributes.
In Section 5.4, we proposed Similarity-Sensitive Noise Transformations [Ter+19b].

These unsupervised privacy-enhancing face recognition approaches inject geometric-
inspired noise to biometric templates. Despite that it offers a more comprehensive privacy-
enhancement, higher suppression performance came at the cost of a low recognition
ability.
In Section 5.5, we proposed negative face recognition [Ter+20c]. This unsupervised

and privacy-enhancing face recognition approach introduces negative templates that,
in contrast to ordinary (positive) face templates, contain only random complementary
information about the individual. Consequently, storing only negative templates in the
database, prevents function creep attackers from reliably predicting privacy-sensitive
attributes. Although this approach preserves the recognition performance to a high degree,
it still leaves space for improvements concerning the attribute suppression.
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Finally, we proposed the main contribution of this chapter in Section 5.6, privacy-
enhancement based on minimum information units (PE-MIU) [Ter+20h]. This training-
free and privacy-enhancing face recognition approach prevents function creep attackers
from successfully predicting privacy-sensitive information from face templates. PE-MIU
exploits the structural differences between face recognition (use-case) and facial attribute
estimation (attack scenario). It creates templates consisting of minimum information
units (MIUs) in a random order. This makes the estimation of privacy-sensitive attributes
a hard task for function creep attacks. During verification, the MIUs of a probe template
are assigned to the MIUs of a reference template by solving an optimal best-matching
problem. This allows an alignment of both templates and thus, a meaningful comparison.
The results demonstrate that on both, maintaining recognition rates and suppressing
attribute information, PE-MIU consistently reaches high performances and outreaches
state-of-the-art solutions.
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6. Conclusion and Future Work

This thesis has been guided by five research questions as defined in Section 1.1. Detailed
responses to these questions were given in the previous Chapters 3, 4, and 5. This chapter
summarizes the conclusions of this work and presents an outlook for future research.

6.1. Conclusion

Face recognition systems have a growing effect on everybody’s daily life including critical
decision-making processes. The wide-spread of these systems is based on the advances
in extracting deeply-learned templates of face images that provide a strong identity-
discriminablity. However, the success of these templates comes at the cost of two major
concerns caused by soft-biometric attributes.

Bias concerns - The performance of current biometric solutions are often strongly
dependent on the user’s soft-biometric attributes. This lead to remarkable differ-
ences in the recognition performance for different individuals and thus, to strong
discriminatory effects.

Privacy concerns - The deeply-learned template of an individual is extracted to verify
a person’s identity. However, also privacy-sensitive information is encoded in such a
template. For many applications, these templates should be used for recognition
only. This raises major privacy issues since this information can be extracted without
authorization.

This work aims at mitigating soft-biometric driven bias and privacy concerns from
face recognition systems to enhance the reliability, trust, and dissemination of these
systems. The mitigation of these concerns is guided by a set of five unsolved research
questions. These are designed to first understand the influence of specific soft-biometric
attributes on these concerns and then, to use the gained knowledge for the development
of effective mitigation mechanisms. Unlike previous works, the proposed solutions are
easily-integrable into existing systems and aim for comprehensive mitigation that is not
limited to pre-defined attributes.
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The thesis is divided into three parts focusing on (1) the investigation of soft-biometric
driven bias and privacy concerns, (2) the mitigation of soft-biometric bias, and (3) the
mitigation of soft-biometric privacy issues in face recognition.

Investigation of soft-biometric driven concerns The first part of this work (Chapter 3)
aims at investigating soft-biometric attributes and their influence on soft-biometric privacy
and bias issues in face recognition. The investigations demonstrate the need for more
generalized solutions beyond the mitigation of demographic attributes only. Moreover, the
findings guided the development of the solutions for mitigating these concerns.
In order to analyse soft-biometric driven concerns in face recognition, these soft-

biometric attributes have to be reliably estimated. Answering RQ1, a novel reliability
measure is proposed to quantify the confidence of the model’s prediction. Utilizing multi-
ple stochastic forward passes through dropout-reduced neural networks, the centrality and
dispersion of these predictions are used to derive a prediction confidence. The method-
ology was shown to be highly successful for the estimation of soft-biometric attributes.
Moreover, it creates the basis of the investigations on the soft-biometric driven bias and
privacy concerns (RQ2 and RQ4).

To analyse the influence of soft-biometric attributes on the behaviour of face recognition
systems, as stated in RQ2, the proposed reliability measure is used to create the MAAD-
Face database. The proposed MAAD-Face annotations database consists of 123.9Mio
high-quality attribute annotations of 47 different binary attributes for 3.3Mio face images.
Consequently, it provides 15 and 137 times more attribute labels than related databases,
such as CelebA and LFW, and further provides annotations of higher quality. These
characteristics make MAAD-Face highly suitable for a comprehensive analysis of face
recognition bias.

The next contribution of this work was an investigation of the influence of soft-biometric
attributes on the performance of face recognition systems. This aims to partially answer
RQ2 "How do specific soft-biometric attributes affect the behaviour of face recognition
systems?". The investigation is built on the MAAD-Face database and investigates the
influence of 47 attributes on the verification performance of two popular face recogni-
tion models. To prevent misleading statements about the effect of an attribute on the
performance differences, control group based validity values are introduced to decided if
unbalanced test data causes the performance differences and the correlations between
annotations are analysed to emphasize if an attribute bias might originate from correlating
annotations. The results demonstrate that also many non-demographic attributes strongly
affect the recognition performance, such as accessories, hairstyles and colors, face shapes,
or facial anomalies.
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To fully analyse the behaviour of soft-biometric attributes on face recognition systems,
also the soft-biometric bias in face quality assessment is investigated. Face quality assess-
ment aims at estimating the utility of a face image for the purpose of recognition and
plays a major role in the enrolment of face images. The analysis focused on the correlation
between face recognition bias and bias in face quality assessment. It was shown that
current face quality assessment solutions have to deal with the same bias-related issues
than in face recognition models caused by unintended bias-transfers during the training
phases.
Lastly, RQ4 is answered by analysing what (soft-biometric) information is stored in

biometric face templates. This aims to support the development of privacy-enhancing
face recognition technologies. The question is answered by investigating the predictability
of 113 attributes from face templates at different difficulty-levels with the help of the
reliability measure of RQ1. Understandable statements about the stored attribute infor-
mation are derived by categorizing each attribute into one of three predictability classes.
The results show that up to 74 attributes can be accurately predicted from face templates
demonstrating the need for privacy-enhancing solutions in face recognition. Despite that
face templates are learned to be robust to non-permanent factors, the results demonstrate
that especially these attributes are easily-predictable. This includes information about age,
hairstyles, haircolors, beards, and accessories, such as make-up, lipstick, and glasses. The
results show that much more information is stored in biometric templates than reported
in previous works demonstrating the need for more generalized solutions to enhance the
soft-biometric privacy in face recognition systems.

This part of this work answered RQ 2 and 4 (What soft-biometric attributes are stored
in biometric face templates and how do these affect the behaviour of face recognition sys-
tems?). Unlike previous works that focused their investigations on demographic attributes,
it was shown that also a large number of non-demographic attribute are stored in face
templates and that these significantly affect the behaviour of face recognition systems.
This demonstrate the strong need for face recognition solutions mitigating soft-biometric
bias and privacy concerns beyond demographics.

Mitigation of soft-biometric bias in face recognition The second part (Chapter 4) of
this work deals with the mitigation of soft-biometric bias in face recognition. Previous
works developed solutions for this problem that mitigate demographic bias and require
computationally heavy database replacements when integrated into existing systems.
Answering RQ3, in this thesis, two solutions are proposed that operate on the comparison-
and the score-level of a recognition system and thus, can be easily-integrated in an
existing system. Moreover, the proposed solutions are not limited to the mitigation of
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demographic-bias.
The first contribution for bias-mitigation is a supervised fair template comparator that

integrates different notations of fairness at the comparison-level of the system by replacing
the deployed similarity function with a fairness-driven similarity estimator. A fairness-
term is integrated into the loss function and forces the score distributions of different
groups (e.g. ethnicities) to be similar. The solution achieved bias reduction rates between
15.35% and 52.67% while only marginally affecting the recognition performance.

The second contribution for mitigating bias in face recognition is an unsupervised fair
score normalization approach. The proposed solution integrates the notation of individual
fairness at the score-level of the system and thus, aims at treating similar individuals
similarly. This is achieved by clustering training samples in the embedding space and
computing optimal local thresholds for each cluster. For calculating the comparison score
of two samples, it normalizes this score based on the optimal local thresholds of the
sample-associated clusters. This ensures a more individual, unbiased, and fair treatment.
The results on three publicly available databases demonstrate that the proposed solution
mitigates bias by up to 82.7%. Moreover, it reduces the bias more consistently than existing
works and enhances the overall recognition performance by 53.2% at an FMR of 10−3

and by 82.9% at an FMR of 10−5. In contrast to previous works, the proposed fair score
normalization solution jointly (a) operates on unlabelled training data, (b) effectively
mitigates bias of unknown origins, and (c) strongly improves the overall recognition
performance of the system.

Mitigation of soft-biometric privacy concerns in face recognition The third part (Chap-
ter 5) of this thesis aims at enhancing the soft-biometric privacy in face recognition systems.
Previous works developed solutions for this problem that focus on the suppression of
specific demographic attributes and are further hardly-integrable into existing systems.
Answering RQ5, four easily-integrable solutions are proposed that aim at suppressing
privacy-risk information of various origins from face templates while maintaining a high
recognition ability. The proposed solutions either manipulate existing face templates
directly or change the template-representation including inference-process for verification.
Incremental variable elimination identifies and eliminates privacy-risk variables from

face templates to reduce the encoded privacy-sensitive information. The approach is based
on a decision tree ensemble that allows deriving a variable importance measure. This
measure is used to incrementally find and delete variables that allow predicting sensitive
attributes. In contrast to previous works, this approach is, by design, able to suppress
binary, categorical, and continuous attributes.
Similarity-sensitive noise transformations inject geometric-inspired noise to face tem-
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plates to enhance soft-biometric privacy in an unsupervised manner. This aims at achieving
a more comprehensive soft-biometric privacy-enhancement than previous works that is
not limited to pre-considered attributes. Moreover, the degradation of the recognition
performance can be directly controlled by the transformation parameters.

Negative face recognition is a proposed unsupervised recognition approach that stores
negative templates of the users containing only information that the individuals do not
have. Storing only negative templates in the database, prevents function creep attackers
from successfully leaking privacy-risk information. For verification, the positive template
of an individual is compared with the stored negative template of the claimed identity by
measuring their dissimilarity. Even in unconstrained scenarios, negative face recognition
fully retains the recognition performance while achieving suppression rates of up to 36%
outperforming related solutions.

PE-MIU is a proposed solution to enhance the soft-biometric privacy in face recognition
based on minimum information units. This training-free approach exploits the structural
differences between face recognition and facial attribute estimation by creating templates
in a mixed representation of minimal information units. These representations contain
patterns of privacy-sensitive attributes in a highly randomized form and thus, the esti-
mation of these attributes becomes hard for function creep attacks. During verification,
these units of a probe template are assigned to the units of a reference template by
solving an optimal best-matching problem. This allows our approach maintaining a high
recognition ability. The results demonstrate that PE-MIU is able to consistently reach
higher suppression rates in all investigated scenarios, outperforming all state-of-the-art
approaches in most cases. Simultaneously, PE-MIU maintains its recognition ability to
a significantly higher degree than state-of-the-art solutions. Unlike previous works, the
proposed solution offers a strong and comprehensive privacy-enhancement without the
need for training or modification of the deployed face recognition model.

In this thesis, I investigated soft-biometric driven bias and privacy concerns in face
recognition systems and proposed solutions for their mitigation. Previous investigations on
these concerns focused on demographics only. The analysis of this work demonstrated that
soft-biometric attributes beyond demographics affect these concerns and thus, solutions
are needed that consider soft-biometric attributes in general. However, current solutions
for mitigating these concerns are limited to single attributes and are further hard to
integrate into existing systems. Therefore, in this work, I proposed several highly-effective
solutions for mitigating these concerns that are not limited to single attributes and are
easily-integrable into existing systems. This aims at enhancing the reliability, trust, and
dissemination of these systems. In addition, the proposed solutions of this work are not
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limited to face biometrics.

6.2. Future work

This thesis analysed soft-biometric driven bias and privacy concerns in face recognition
systems and proposed several solutions to mitigate these. The findings of the investiga-
tions not only affected the design of the proposed solutions but might also have strong
implications on the development of future works. Moreover, the concepts of the proposed
solutions might be successfully transferable to different domains such as the concept shift
to different biometric modalities.

Implications of the investigations In this work, the performed investigations on soft-
biometric driven bias and privacy concerns in face recognition demonstrated the research
gaps that future works have to address. It was shown that also a wide range of non-
demographic attributes is causing these concerns. Therefore, future works have to propose
more generalized solutions that are not limited to pre-defined (demographic) attributes.

Moreover, it is shown that the influence of soft-biometric attributes is not limited to the
performance of face recognition systems. Rather, it is shown that soft-biometric attributes
affect the general behaviour of face recognition systems including the assessment of face
image quality. The investigations of this work demonstrate that current face recognition
solutions possess similar bias-related issues than for face verification. Consequently, future
work might work on making the face image quality assessment, and thus the enrolment
process in general, fairer.

Futurework onbiasmitigation in face recognition This work focuses on easily-integrable
solutions for mitigating soft-biometric driven bias in face recognition systems. The high
integrability was achieved by the development of solutions beyond the template-level.
Representation-learning approaches operate closer to the origin of the bias and thus, might
mitigate bias to a higher degree. Moreover, mitigating bias on the representation-level also
reduces the bias in the face quality assessment since the use of face recognition models
as a basis for face quality assessment leads to an unintended bias-transfer as shown in
this thesis. Current representation-learning approaches for mitigating bias in face recog-
nition focus on the mitigation of demographic attributes. To extend the generalizability
of these approaches, future works might include the notation of individual fairness into
the network training. The proposed fair score normalization approach demonstrated the
effectiveness of this fairness notation to achieve bias mitigation not limited to pre-defined
attributes.
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Future work on the enhancement of soft-biometric privacy The proposed privacy-
enhancing approach based on minimum information units (PE-MIU) demonstrates that it
is able to maintain the face recognition performance while comprehensively suppressing
privacy-risk information in face templates even in the critical scenario of a function creep
attacker that knowns and adapts to the systems privacy mechanism. This success comes
at the cost of a long comparison time. Future works might elaborate on this issue, for
instance by providing a faster approximative algorithm to solve the optimal best matching
problem of the minimum information units.

To make privacy-enhancing methodologies more easily comparable, privacy benchmarks
and evaluation protocols are needed for soft-biometric privacy in face recognition. This
might additionally accelerate the development of such solutions since less time is spent
on re-implementing existing approaches leaving more time for the privacy-enhancement.

Joint mitigation of bias and privacy concerns Although the same soft-biometric at-
tributes causing the bias and privacy concerns in face recognition, current solutions either
focus on the mitigation of bias or privacy concerns separately. Consequently, many solu-
tions can not be applied simultaneously and thus, does not allow joint mitigation of both
concerns. Future work might explore synergy effects of solutions for both concerns and
merge these concepts to develop a coherent framework that jointly mitigates soft-biometric
driven bias and privacy concerns in face recognition.
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A. Appendix

Section 3.4 investigates bias in face quality assessment solutions answering RQ2. In this
investigation, one of the most important quality assessment solutions is SER-FIQ. SER-FIQ
is an unsupervised face quality assessment concept that uses the robustness of a face
representation as its quality indicator. In Section 3.4, this is only shortly summarized
since it does not fit into the general theme of this thesis. To enable a full understanding of
the results on bias in face quality assessment, in the following, the proposed face quality
assessment concept is introduced in more details [Ter+20g].

SER-FIQ: Stochastic Embedding Robustness for Face Image
Quality

Introduction

Face images are one of the most utilized biometric modalities [Wan+18a] due to its high
level of public acceptance and since it does not require an active user-participation [Tri17].
Under controlled conditions, current face recognition systems are able to achieve highly
accurate performances [GNH18]. However, some of the most relevant face recognition
systems work under unconstrained environments and thus, have to deal with large variabil-
ities that leads to significant degradation of the recognition accuracies [GNH18]. These
variabilities include image acquisition conditions (such as illumination, background, blur-
riness, and low resolution), factors of the face (such as pose, occlusions and expressions)
[11; 15] and biases of the deployed face recognition system. Since these variabilities lead
to significantly degraded recognition performances, the ability to deal with these factors
needs to be addressed [Her+19].

The performance of biometric recognition is driven by the quality of its samples [BJ18].
Biometric sample quality is defined as the utility of a sample for the purpose of recognition
[Her+19; Phi+13; Gao+07; BJ18]. The automatic prediction of face quality (prior to
matching) is beneficial for many applications. It leads to a more robust enrolment for
face recognition systems. In negative identification systems, it prevents an attacker from
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getting access to a system by providing a low quality face image. Furthermore, it enables
quality-based fusion approaches when multiple images [DSN14] (e.g. from surveillance
videos) or multiple biometric modalities are given.

Current solutions for face quality assessment require training data with quality labels
coming from human perception or are derived from comparison scores. Such a quality
measure is generally poorly defined. Humans may not know the best characteristics for
the utilized face recognition system. On the other hand, automatic labelling based on
comparison scores represents the relative performance of two samples and thus, one
low-quality sample might negatively affect the quality labels of the other one.
In this work, we propose a novel unsupervised face quality assessment concept by

investigating the robustness of stochastic embeddings. Our solution measures the quality
of an image based on its robustness in the embedding space. Using the variations of
embeddings extracted from random subnetworks of the utilized face recognition model,
the representation robustness of the sample and thus, its quality is determined. Figure
A.1 illustrates the working principle.

We evaluated the experiments on three publicly available databases in a cross-database
evaluation setting. The comparison of our approach was done on two face recognition
systems against six state-of-the-art solutions: three no-reference image quality metrics,
two recent face quality assessment algorithms from previous work, and one commercial
off-the-shelf (COTS) face quality assessment product from industry.
The results show that the proposed solution is able to outperform all state-of-the-art

solutions in most investigated scenarios. While every baseline approach shows performance
instabilities in at least two scenarios, our solution shows a consistently stable performance.
When using the deployed face recognition model for the proposed face quality assessment
methodology, our approach outperforms all baseline by a large margin. Contrarily to
previous definitions of face quality assessment [BJ18; 11; 15; Her+19] that states the
face quality as a utility measure of a face image for an arbitrary face recognition model,
our results show that it is highly beneficial to estimate the sample quality with regard to a
specific (the deployed) face recognition model.

Related Work

Several standards have been proposed for insure face image quality by constraining the
capture requirements, such as ISO/IEC 19794-5 [11] and ICAO 9303 [15]. In these stan-
dards, quality is divided into image-based qualities (such as pose, expression, illumination,
occlusion) and subject-based quality measures (such as accessories). These mentioned
standards influenced many face quality assessment approaches that have been proposed
in the recent years. While the first solutions to face quality assessment focused on analytic
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Figure A.1.: Visualization of the proposed unsupervised face quality assessment con-
cept. We propose using the robustness of an image representation as a
quality clue. Our approach defines this robustness based on the embed-
ding variations of random subnetworks of a given face recognition model.
An image that produces small variations in the stochastic embeddings (bot-
tom left), demonstrates high robustness (red areas on the right) and thus,
high image quality. Contrary, an image that produces high variations in the
stochastic embeddings (top left) coming from random subnetworks, indi-
cates a low robustness (blue areas on the right). Therefore, it is considered
as low quality.

image quality factors, current solutions make use of the advances in supervised learning.
Approaches based on analytic image quality factors define quality metrics for facial

asymmetries [Gao+07; Fer+12], propose vertical edge density as a quality metric to
capture pose variations [Was+17], or measured in terms of luminance distortion in com-
parison to a known reference image [ZG17]. However, these approaches have to consider
every possible factor manually, and since humans may not know the best characteristics
for face recognition systems, more current research focus on learning-based approaches.
The transition to learning-based approaches include works that combine different

analytical quality metrics with traditional machine learning approaches [Phi+13; Aba+14;
HSM06; AHB12; DVS14].
End-to-end learning approaches for face quality assessment were first presented in

2011. Aggarwal et al. [Agg+11] proposed an approach for predicting the face recognition
performance using a multi-dimensional scaling approach to map space characterization
features to genuine scores. In [Won+11], a patch-based probabilistic image quality
approach was designed that works on 2D discrete cosine transform features and trains a
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Gaussian model on each patch. In 2015, a rank-based learning approach was proposed by
Chen et al. [Che+15]. They define a linear quality assessment function with polynomial
kernels and train weights based on a ranking loss. In [KLR15], face images assessment
was performed based on objective and relative face image qualities. While the objective
quality metric refers to objective visual quality in terms of pose, alignment, blurriness,
and brightness, the relative quality metric represents the degree of mismatch between
training face images and a test face image. Best-Rowden and Jain [BJ18] proposed an
automatic face quality prediction approach in 2018. They proposed two methods for
quality assessment of face images based on (a) human assessments of face image quality
and (b) quality values from similarity scores. Their approach is based on support vector
machines applied to deeply learned representations. In 2019, Hernandez-Ortega et al.
proposed FaceQnet [Her+19]. This solution fine-tunes a face recognition neural network
to predict face qualities in a regression task. Beside image quality estimation for face
recognition, quality estimation has been also developed to predict soft-biometric decision
reliability based on the investigated image [Ter+19d].

All previous face image quality assessment solutions require training data with artificial
or manually labelled quality values. Human labelled data might transfer human bias into
the quality predictions and does not take into account the potential biases of the biometric
system. Moreover, humans might not know the best quality factors for a specific face
recognition system. Artificially labelled quality values are created by investigating the
relative performance of a face recognition system (represented by comparison scores).
Consequently, the score might be heavily biased by low-quality samples.

The solution presented in this paper is based on our hypothesis that representation
robustness is better suited as a quality metric, since it provides a measure for the quality
of a single sample independently of others and avoids the use of misleading quality labels
for training. This metric can intrinsically capture image acquisition conditions and factors
of the face that are relevant for the used face recognition system. Furthermore, it is not
affected by human bias, but takes into account the bias and the decision patterns of the
used face embeddings.

Methodology

Face quality assessment aims at estimating the suitability of a face image for face recogni-
tion. The quality of a face image should indicate its expected recognition performance. In
this work, we based our face image quality definition on the relative robustness of deeply
learned embeddings of that image. Calculating the variations of embeddings coming from
random subnetworks of a face recognition model, our solution defines the magnitude of
these variations as a robustness measure, and thus, image quality. An illustration of this
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methodology is shown in Figure A.2.

Figure A.2.: Illustration of the proposed methodology: an input I is forwarded to dif-
ferent random subnetworks of the used face recognition modelM. Each
subnetwork produces a different stochastic embedding xs. The variations
between these embeddings are calculated using pairwise-distances and de-
fine the quality of I.

Sample-quality estimation More formally, our proposed solution predicts the face qual-
ity Q(I) of a given face image I using a face recognition modelM. The face recognition
model have to be trained with dropout and aims at extracting embeddings that are well
identity-separated. To make a robustness-based quality estimation of I, m = 100 stochas-
tic embeddings are generated from the modelM using stochastic forward passes with
different dropout patterns. The choice for m is defined by the trade-off between time
complexity and stability of the quality measure as described in Section A. Each stochastic
forward pass applies a different dropout pattern (during prediction) producing a different
subnetwork ofM. Each of these subnetworks generates different stochastic face embed-
dings xs. These stochastic embeddings are collected in a set X(I) = {xs}s∈{1,2,...,m}. We
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define the face quality

q(X(I)) = 2σ
(︂
− 2

m2

∑︂
i<j

d(xi, xj)
)︂
, (A.1)

of image I as the sigmoid of the negative mean euclidean distance d(xi, xj) between all
stochastic embeddings pairs (xi, xj) ∈ X × X. The sigmoid function σ(·) ensures that
q ∈ [0, 1]. Since Gal et al. [GG16] proofed that applying dropout repetitively on a network
approximates the uncertainty of a Gaussian process [Ras06], the euclidean distance is
a suitable choice for d(xi, xj). A greater variation in the stochastic embedding set X
indicate a low robustness of the representation and thus, a lower sample quality q. Lower
variations in X indicate high robustness in the embedding space and is considered as a
high sample quality q. The quality prediction strategy is summarized in Algorithm 5.

Algorithm 5 Stochastic Embedding Robustness - SER(I,M, m = 100)
Require: preprocessed input image I, NN-modelM
Ensure: quality value Q for input image I
1: X ← empty list
2: for i← 1, . . . ,m do
3: xi ←M.pred(I, dropout = True)
4: X = X.add(xi)
5: end for
6: Q← q(X)
7: return Q

Properties The aim of SER-FIQ is to estimate the face image quality from the perspective
of utilisation in recognition tasks, which might be different than estimating the notion
of image quality. An image that produces relatively stable identity-related embeddings
despite various variations (here caused by dropout) is an image with high utilisation in a
recognition task, given that the recognition network training aims at being robust against
intra-identity variations.

Face recognition algorithms are trained with the aim of learning robust representations
to increase inter-identity separability and decrease intra-identity separability. Assuming
that a face recognition network is trained with dropout and the quality of a sample
correlates with its embedding robustness, different subnetworks can be created from the
basic model so that they possess different dropout patterns. The agreement between the
subnetworks can be used to estimate the embedding robustness, and thus the quality.
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If the m subnetworks produce similar outputs (high agreement), the variations over
these random subnetworks (the stochastic embedding set X) are low. Consequently, the
robustness of this embedding, and thus the quality of the sample, is high. Conversely, if
the m subnetworks produce dissimilar representations (low agreement), the variations
over the random subnetworks are high. Therefore, the robustness in the embedding space
is low and the quality of the sample can be considered low as well.

Our approach has only one parameter m, the number of stochastic forward passes. This
parameter can be interpreted as the number of steps in a Monte-Carlo simulation and
controls the stability of the quality predictions. A higher m leads to more stable quality
estimates. Since the computational time t = O(m2) of our method grows quadratically
with m, it should not be chosen too high. However, our method can compensate for this
issue and can easily run in real-time, since it is highly parallelizable and the computational
effort can be greatly reduced by repeating the stochastic forward passes only through the
last layer(s) of the network.
In contrast to previous work, our solution does not require quality labels for training.

Furthermore, if the deployed face recognition system was trained with dropout, the
same network can be used for determining the embedding robustness and therefore, the
sample quality. By doing so the training phase can be completely avoided and the quality
predictions further captures the decision patterns and bias of the utilized face recognition
model. Therefore, we highly recommend utilizing the deployed face recognition model
for the quality assessment task.

Experimental Setup

Databases The face quality assessment experiments were conducted on three publicly
available databases chosen to have variation in quality and to prove the generalization of
our approach on multiple databases. The ColorFeret database [Phi+00] consists of 14,126
high-resolution face images from 1,199 different individuals. The data possess a variety
of face poses and facial expressions under well-controlled conditions. The Adience dataset
[EEH14] consists of 26,580 images from over 2,284 different subjects under unconstrained
imaging conditions. Labeled Faces in the Wild (LFW) [Hua+07] contains 13,233 face
images from 5749 identities. For both datasets, large variations in illumination, location,
focus, blurriness, pose, and occlusion are included.

Evaluation metrics To evaluate the face quality assessment performance, we follow the
methodology by Grother et al. [GT07] using error versus reject curves. These curves
show a verification error-rate over the fraction of unconsidered face images. Based on the

245



predicted quality values, these unconsidered images are these with the lowest predicted
quality and the error rate is calculated on the remaining images. Error versus reject
curves indicates good quality estimation when the verification error decreases consistently
when increasing the ratio of unconsidered images. In contrast to error versus quality-
threshold curves, this process allows to fairly compare different algorithms for face quality
assessment, since it is independent of the range of quality predictions. The cruve was
adapted in the approved ISO working item [20] and used in the literature [BJ18; TG15;
GNH19a].

The face verification error rates within the error versus reject curves are reported in
terms of false non-match rate (FNMR) at fixed false match rate (FMR) and as equal error
rate (EER). The EER equals the FMR at the threshold where FMR = 1−FNMR and is well
known as a single-value indicator of the verification performance. These error rates are
specified for biometric verification evaluation in the international standard [16]. In our
experiment, we report the face verification performance on three operating points to cover
a wider range of potential applications. The face recognition performance is reported in
terms of EER and FNMR at a FMR threshold of 0.01. The FNMR is also reported at 0.001
FMR threshold as recommended by the best practice guidelines for automated border
control of Frontex [Fro17].

Face recognition networks To get face embedding from a given face image, the image
is aligned, scaled, and cropped. The preprocessed image is passed to a face recognition
models to extract the embeddings. In this work, we use two face recognition models,
FaceNet [SKP15] and ArcFace [Den+19]. For FaceNet, the image is aligned, scaled, and
cropped as described in [KS14]. To extract the embeddings, a pretrained model1 was used.
For ArcFace, the image preprocessing was done as described in [Guo+18] and a pretrained
model2 provided by the authors of ArcFace is used. Both models were trained on the
MS1M database [Guo+16]. The output size is 128 for FaceNet and 512 for ArcFace. The
identity verification is performed by comparing two embeddings using cosine-similarity.

On-top model preparation To apply our quality assessment methodology, a recognition
model that was trained with dropout [Sri+14] is needed. Otherwise, a model containing
dropout need to added on the top of the existing model. The direct way to apply our
approach is to take a pretrained recognition model and repeat the stochastic forward
passes only in the last layer(s) during prediction. This is even expected to reach a better

1https://github.com/davidsandberg/facenet
2https://github.com/deepinsight/insightface
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performance than training a custom network, because the verification decision, as well as
the quality estimation decision, is done in a shared embedding space.

To demonstrate that our solution can be applied to any arbitrary face recognition system,
in our experiments we show both approaches: (a) training a small custom network on top
of the deployed face recognition system, which we will refer to as SER-FIQ (on-top model),
and (b) using the deployed model for the quality assessment, which we will refer to as
SER-FIQ (same model).

The structure of SER-FIQ (on-top model) was optimized such that its produced embed-
dings achieve a similar EER on ColorFeret as that of the FaceNet embeddings. It consist of
five layers with nemb/128/512/nemb/nids dimensions. The two intermediate layers have
128 and 512 dimensions. The last layer has the dimension equal to the number of training
identities nids and is only needed during training. All layers contain dropout [Sri+14]
with the recommended dropout probability pd = 0.5 and a tanh activation. The training of
the small custom network is done using the AdaDelta optimizer [Zei12] with a batchsize
of 1024 over 100 epochs. Since the size of the in- and output layers (blue and green) of the
networks differs dependent on the used face embeddings, a learning rate of αFN = 10−1

was chosen for FaceNet and αAF = 10−4 for the higher dimensional ArcFace embeddings.
As the loss function, we used a simple binary cross-entropy loss on the classification of the
training identities.

Investigations To investigate the generalization of face quality assessment performance,
we conduct the experiments in a cross-database setting. The training is done on ColorFeret
to make the models learn variations in a controlled environment. The testing is done on
two unconstrained datasets, Adience and LFW. The embeddings used for the experiments
are from the widely used FaceNet (2015) and recently published ArcFace (2019) models.

To put the experiments in a meaningful setting, we evaluated our approach in compari-
son to six baseline solutions. Three of these baselines are well-known no-reference image
quality metrics from the computer vision community: Brisque [MMB12], Niqe [MSB13],
Piqe [Ven+15]. The other three baselines are state-of-the-art face quality assessment
approaches from academia and industry. COTS [Neu19] is an off the shelf industry product
from Neurotechnology. We further compare our method with the two recent approaches
from academia: the face quality assessment approach presented by Best-Rowden and
Jain [BJ18] (2018) and FaceQnet [Her+19] (2019). Training the solution presented by
Best-Rowden was done on ColorFeret following the procedure described in [BJ18]. The
generated labels come from cosine similarity scores using the same embeddings as in the
evaluation scenario. For all other baselines, pretrained models are utilized.

Our proposed methodology is presented in two settings, the SER-FIQ (on-top model) and
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the SER-FIQ (same model). SER-FIQ (on-top model) demonstrates that our unsupervised
method can be applied to any face recognition system. SER-FIQ (same model) make use of
the deployed face recognition model for quality assessment, to show the effect of capture
its decision patterns for face quality assessment. In the latter case, we apply the stochastic
forward passes only between the last two layers of the deployed face recognition network.

(a) COTS (b) FaceQnet (c) SER-FIQ
(on FaceNet)

(d) SER-FIQ
(on ArcFace)

Figure A.3.: Face quality distributions of the used databases: Adience, LFW, and Col-
orFeret. The quality predictions were done using the pretrained models
FaceQnet [Her+19], COTS [Neu19], and the proposed SER-FIQ (same model)
based on FaceNet and ArcFace.

Database face quality rating To justify the choices of the used databases, Figure A.3
shows the face quality distributions of the databases using quality estimates from four
pretrained face quality assessment models. ColorFeret was captured under well-controlled
conditions and generally shows very high qualities. However, it contains non-frontal head
poses and for COTS and SER-FIQ (on FaceNet) (Figure A.3a) this is considered as low
image quality. Because of these controlled variations, we choose ColorFeret as the training
database. Adience and LFW are unconstrained databases and for all quality measures,
most face images are far away from perfect quality conditions. For this reason, we choose
these databases for testing.

Results

The experiments are evaluated at three different operation points to investigate the face
quality assessment performance over a wider spectrum of potential applications. Following
the best practice guidelines for automated border control of the European Border and Coast
Guard Agency Frontex [Fro17], Figure A.4 shows the face quality assessment performance
at a FMR of 0.001. Figure A.6 presents the same at a FMR of 0.01 and Figure A.7 shows
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(a) Adience - FaceNet (b) Adience - ArcFace

(c) LFW - FaceNet (d) LFW - ArcFace

Figure A.4.: Face verification performance for the predicted face quality values. The
curves show the effectiveness of rejecting low-quality face images in terms
of FNMR at a threshold of 0.001 FMR. Figure A.4a and A.4b show the re-
sults for FaceNet and ArcFace embeddings on Adience. Figure A.4c and
A.4d show the same on LFW.

the face quality assessment performance at the widely-used EER. Moreover, Figure A.5
shows sample images with their corresponding quality predictions. Since the statements
about each tested face quality assessment approach are very similar over all experiments,
we will make a discussion over each approach separately.

No-reference image quality approaches To understand the importance of different
image quality measures for the task of face quality assessment, we evaluated three
no-reference quality metrics Brisque [MMB12], Niqe [MSB13], Piqe [Ven+15] (all repre-
sented as dotted lines). While in some evaluation scenarios the verification error decrease
when the proportion of neglected images (low quality) is increased, in most cases they
lead to an increased verification error. This demonstrates that image quality alone is
not suitable for generalized face quality estimation. Factors of the face (such as pose,
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Figure A.5.: Sample face images from Adience with the corresponding quality predic-
tions from four face quality assessment methods. SER-FIQ refers to our
same model approach based on ArcFace.

occlusions, and expressions) and model biases are not covered by these algorithms and
might play an important role for face quality assessment.

Best-Rowden The proposed approach from Best-Rowden and Jain [BJ18] works well
in most scenarios and reaches a top-rank performance in some minor cases (e.g. LFW
with FaceNet features). However, it shows instabilities that can lead to highly wrong
quality predictions. This can be observed well on the Adience dataset using FaceNet
embeddings, see Figure A.4a and A.6a. These mispredictions might be explained by the
ColorFeret training data that does not contain all important quality factors for a given
face embedding. On the other hand, these quality factors are generally unknown and
thus, training data should never be considered to be covering all factors.

FaceQnet FaceQnet [Her+19], proposed by Hernandez-Ortega et al., shows a suitable
face quality assessment behaviour in most cases. In comparison with other face quality
assessment approaches, it only shows a mediocre performance. Although FaceQnet was
trained on labels coming from the same FaceNet embeddings as in our evaluation setting,
it often fails in predicting well-suited quality labels on these embeddings, e.g. in Figure
A.4c on LFW. Also on Adience (e.g. Figure A.6a and A.7a), the performance plot shows a
U-shape that demonstrates that the algorithm can not distinguish well between medium
and higher quality face images. Since the method is trained on the same features, these
FaceNet-related instabilities might result from overfitting.
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(a) Adience - FaceNet (b) Adience - ArcFace

(c) LFW - FaceNet (d) LFW - ArcFace

Figure A.6.: Face verification performance for the predicted face quality values. The
curves show the effectiveness of rejecting low-quality face images in terms
of FNMR at a threshold of 0.01 FMR. Figure A.6a and A.6b show the results
for FaceNet and ArcFace embeddings on Adience. Figure A.6c and A.6d
show the same on LFW.

COTS The industry baseline COTS [Neu19] from Neurotechnology generally shows a
good face quality assessment when the used face recognition system is based on FaceNet
features. Specifically on LFW (see Figure A.4c, A.6c, and A.7c) a small U-shape can
be observed similar to FaceQnet. While it shows a good performance using FaceNet
embeddings, the face quality predictions using the more recent ArcFace embeddings are
of no significance (see Figure A.4b, A.4d, A.6b, A.6d, A.7b, and A.7d). Here, rejecting face
images with low predicted face quality does not improve the face recognition performance.
Since no information about the inner workflow is given, it can be assumed that their
method is optimized to more traditional face embeddings, such as FaceNet. More recent
embeddings, such as ArcFace, are probably intrinsically robust to the quality factors that
COTS is trained on.
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(a) Adience - FaceNet (b) Adience - ArcFace

(c) LFW - FaceNet (d) LFW - ArcFace

Figure A.7.: The face verification performance given as EER for the predicted face qual-
ity values. The curves show the effectiveness of rejecting low-quality face
images in terms of EER. Figure A.7a and A.7b show the results for FaceNet
and ArcFace embeddings on Adience. Figure A.7c and A.7d show the some
on LFW.

SER-FIQ (on-top model) On the contrary to the discussed supervised methods, our
proposed unsupervised solution that builds on training a small custom face recognition
network shows a stable performance in all investigated scenarios (Figure A.4, A.6, and
A.7). Furthermore, our solution is always close to the top performance and outperforms
all baseline approaches in the majority of the scenarios, e.g. in Figure A.4a, A.4d, A.6a,
A.6b, A.6d, A.7a, A.7b, and A.7d. Our method proved to be particularly effective in
combination with recent ArcFace embeddings (see Figures A.6b, A.6d, A.7b, and A.7d).
The unsupervised nature of our solution seems to be a more accurate and more stable
strategy.

SER-FIQ (same model) Our method that avoids training by utilizing the deployed face
recognition systems is build on the hypotheses that face quality assessment should aim
at estimating the sample quality of a specific face recognition model. This way it adapts
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to the models’ decision patterns and can predict the suitability of face sample more
accurately. The effect of this adaptation can be seen clearly in nearly all evaluated cases
(see Figure A.4, A.6, and A.7). It outperforms all baseline approaches by a large margin
and demonstrates an even stronger performance at small FMR (see Figures A.4a, A.4b,
A.4c, and A.4d at the Frontex recommended FMR of 0.001). This demonstrates the benefit
of focusing on the face quality assessment to a specific (the deployed) face recognition
model.

Conclusion

Face quality assessment aims at predicting the suitability of face images for face recognition
systems. Previous works provided supervised models for this task based on inaccurate
quality labels with only limited consideration of the decision patterns of the deployed
face recognition system. In this work, we solved these two gaps by proposing a novel
unsupervised face quality assessment methodology that is based on a face recognition
model trained with dropout. Measuring the embeddings variations generated from random
subnetworks of the face recognition model, the representation robustness of a sample and
thus, the sample’s quality is determined. To evaluate a generalized face quality assessment
performance, the experiments were conducted using three publicly available databases
in a cross-database evaluation setting. We compared our solution on two different face
embeddings against six state-of-the-art approaches from academia and industry. The
results showed that our proposed approach outperformed all other approaches in the
majority of the investigated scenarios. It was the only solution that showed a consistently
stable performance. By using the deployed face recognition model for verification and
the proposed quality assessment methodology, we avoided the training phase completely
and further outperformed all baseline approaches by a large margin. Our approach is
characterized by high parallelizability, its easy integration into existing face recognition
systems, and it is not limited to face biometrics.
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