
Eurographics Symposium on Parallel Graphics and Visualization (2004)
Dirk Bartz, Bruno Raffin and Han-Wei Shen (Editors)

Parallel Multiresolution Volume Rendering of
Large Data Sets with Error-Guided Load Balancing

Chaoli Wang, Jinzhu Gao and Han-Wei Shen

The Ohio State Univeristy
Columbus, Ohio 43210, USA

E-mail: {wangcha, gao, hwshen}@cis.ohio-state.edu

Abstract
We present a new parallel multiresolution volume rendering algorithm for visualizing large data sets. Using the
wavelet transform, the raw data is first converted into a multiresolution wavelet tree. To eliminate the parent-child
data dependency for reconstruction and achieve load-balanced rendering, we design a novel algorithm to parti-
tion the tree and distribute the data along a hierarchical space-filling curve with error-guided bucketization. At
run time, the wavelet tree is traversed according to the user-specified error tolerance, data blocks of different res-
olutions are decompressed and rendered to compose the final image in parallel. Experimental results showed that
our algorithm can reduce the run-time communication cost to a minimum and ensure a well-balanced workload
among processors when visualizing gigabytes of data with arbitrary error tolerances.

Categories and Subject Descriptors (according to ACM CCS): E.4 [Coding and Information Theory]: Data com-
paction and compression; I.3.1 [Computer Graphics]: Parallel processing; I.3.3 [Computer Graphics]: Picture and
Image Generation - Viewing algorithms; I.3.6 [Computer Graphics]: Methodology and Techniques - Graphics data
structures and data types

1. Introduction

An increasing number of scientific applications are now
generating high resolution three-dimensional data sets on
a regular basis. The sizes of those data sets are often so
large that it is almost impossible to perform interactive
data analysis using only a single PC or workstation. Take
the time-dependent Richtmyer-Meshkov turbulence simula-
tion [MCC∗99] as an example, at each time step the sim-
ulation produced about 7.5 gigabytes of data defined on a
2048× 2048× 1920 rectilinear grid. Not surprisingly, data
of this scale can not be handled easily by a single machine
with limited computational resources. A viable solution to
address this challenge is to utilize a cluster of PCs to dis-
tribute the data and perform the computation and rendering
in parallel.

As visualization is an iterative and exploratory process,
rendering a lower resolution of data sometimes is sufficient
for the purpose of obtaining an overview of the data before
the user can query further details in selected regions. Given
the physical limitation in the current generation of display

devices, it is also not always desirable to render the entire
data set at the finest resolution considering that the projec-
tion of such a large data set can be far beyond the highest
screen resolution currently available. For this reason, many
visualization algorithms provide the user with the capability
of multiresolution rendering so that it is possible to perform
interactive data navigation in an adaptive manner.

In this paper, we present a parallel algorithm for multires-
olution volume rendering. Although researchers previously
have proposed various techniques for multiresolution encod-
ing and rendering of large scale volumes on a single graph-
ics workstation [ZCK97, LHJ99, GWGS02], fewer studies
were focused on designing parallel algorithms for such a
purpose using PC clusters. Several issues need to be ad-
dressed in order to achieve efficiency and scalability when
parallel multiresolution volume rendering is performed. One
is the issue of designing an effective data distribution scheme
that can minimize both space and run-time computation
overheads for storing and reconstructing the multiresolution
volumes. When hierarchical encoding schemes such as the

c© The Eurographics Association 2004.

http://www.eg.org
http://diglib.eg.org

C. Wang & J. Gao & H. W. Shen / Parallel Multiresolution Volume Rendering of Large Data Sets with Error-Guided Load Balancing

wavelet transform is used, the multiresolution data are often
represented in the form of a hierarchical tree [GWGS02].
Obviously, the sheer size of the data prohibits the replica-
tion of the entire tree in every processor so it is necessary to
partition and distribute the multiresolution hierarchy. Since
there is often a great deal of dependency among the parent
and child nodes in the data hierarchy, it is critical to design
an efficient partitioning and distribution algorithm to mini-
mize such dependency and thus reduce the run time inter-
processor communication cost for data reconstruction. An-
other issue that needs to be addressed is load balancing. At
run time, when the user specifies arbitrary error tolerance
to visualize the volume, different spatial subvolumes will
be reconstructed with various levels of detail, which could
cause uneven rendering workloads among the processors.
It is important to design an effective workload distribution
scheme so that the rendering subtasks can be evenly dis-
tributed among the processors for any given error tolerance
used to traverse the multiresolution data hierarchy. It is also
crucial for the workload distribution algorithm to work hand-
in-hand with the data distribution scheme so as to avoid ex-
pensive data redistribution dynamically at run time.

In our algorithm, we exploit the wavelet transform and
convert the data into a hierarchical multiresolution repre-
sentation, called a wavelet tree. To alleviate the long chains
of parent-child node dependencies when reconstructing vol-
umes of different resolutions, we partition the wavelet tree
into distribution units which can eliminate the data depen-
dency among processors and also limit the reconstruction
cost. To avoid run-time data redistribution and balance the
workload of volume rendering, we utilize a hierarchical
space-filling curve to distribute the data and the rendering
tasks, guided by a hierarchical error metric.

The remainder of the paper is organized as follows. First,
we review related work in Section 2. From Section 3 to Sec-
tion 6, we describe our parallel multiresolution volume ren-
dering algorithm, including the construction of the wavelet
tree with hierarchical error metric calculation, data distribu-
tion with error-guided bucketization, and the run-time paral-
lel multiresolution volume rendering algorithm. Results on
multiresolution rendering and load balancing among differ-
ent processors are given in Section 7 and the paper is con-
cluded in Section 8 with future work for our research.

2. Related Work

Having the ability to visualize data at different resolutions
allows the user to identify features in different scales, and to
balance image quality and computation speed. Along this di-
rection, a number of techniques have been introduced to pro-
vide hierarchical data representation for volume data. Burt
and Adelson [BA83] proposed the Laplacian Pyramid as a
compact hierarchical image code. This technique was ex-
tended to 3D by Ghavamnia and Yang [GY95] and applied
to volumetric data. Their Laplacian pyramid is constructed
using a Guassian low-pass filter and encoded by uniform

quantization. Voxel values are reconstructed at run time by
traversing the pyramid bottom up. To reduce the high recon-
struction overhead, they suggested a cache data structure.
LaMar et al. [LHJ99] proposed an octree-based hierarchy
for volume rendering where the octree nodes store volume
blocks resampled to a fixed resolution and rendered using
3D texture hardware. A similar technique was introduced
by Boada et al. [BNS01]. Their hierarchical texture mem-
ory representation and management policy benefits nearly
homogeneous regions and regions of lower interest.

Wavelets are used to represent functions hierarchically,
and have gained much popularity in several areas of com-
puter graphics [SDS96]. Over the past decade, many wavelet
transform and compression schemes have been applied to
volumetric data. Muraki [Mur92, Mur93] introduced the
idea of using the wavelet transform to obtain a unique shape
description of an object, where 2D wavelet transform is ex-
tended to 3D and applied to eliminate wavelet coefficients
of lower importance. The use of single 3D [IP98, KS99] or
multiple 2D [Rod99] Haar wavelet transformations for large
3D volume data has been well studied, resulting in high com-
pression ratios with fast random access of data at run time.
More recently, Guthe et al. [GWGS02] presented a hierar-
chical wavelet representation for large volume data sets that
supports interactive walkthrough on a single commodity PC.
Only the levels of detail necessary for display are extracted
and sent to texture hardware for viewing.

Parallel computing has been widely used in large vol-
ume visualization. Hansen and Hinker [HH92] proposed a
parallel algorithm on SIMD machines to speed up isosur-
face extraction. Ellsiepen [Ell95] introduced a parallel im-
plementation for unstructured isosurface extraction with a
dynamical block distribution scheme. Crossno and Angel
[CA97] gave an isosurface extraction algorithm using par-
ticle systems and its parallel implementation. An isosurface
extraction algorithm in span space and the corresponding
parallelization were described in [SHLJ96]. To speed up
the volume rendering process, Ma et al. [MPHK94] pro-
posed a parallel algorithm that distributes data evenly to
the available computing resources and produces the final
image using binary-swap compositing. Schulze and Lang
[SL02] provided a parallelized version of perspective shear-
warp volume rendering algorithm [LM94]. A scalable vol-
ume rendering technique was presented in [LMC02], utiliz-
ing lossy compression to render time-varying scalar data sets
interactively. To further reduce the rendering time of large-
scale data sets, several parallel visualization algorithms
[HSC∗00, GS01, GHSK03] with visibility culling were in-
troduced to render only visible portion of a data set in paral-
lel.

Balancing the workload among the processors is always a
key issue in a parallel implementation. In [CDF∗03], Camp-
bell et al. showed a load-balanced technique using the space-
filling curve [Sag94] traversal. In this method, the spatial lo-

c© The Eurographics Association 2004.

C. Wang & J. Gao & H. W. Shen / Parallel Multiresolution Volume Rendering of Large Data Sets with Error-Guided Load Balancing

cality preserved by a space-filling curve was utilized to bal-
ance the workload. Gao et al. [GHSK03] also showed that,
even after visibility culling, the parallel volume rendering
algorithm can still achieve well-balanced workload by dis-
tributing volume blocks to processors along a space-filling
curve.

3. Algorithm Overview

Our parallel multiresolution volume rendering algorithm
consists of two stages - preprocessing and run-time ren-
dering. The purpose of the preprocessing stage is to cre-
ate a multiresolution hierarchy for the input volume using
the wavelet transform. It also partitions and distributes the
wavelet multiresolution hierarchy to different processors.
Based on the preprocessed information, our run-time algo-
rithm performs multiresolution volume rendering in parallel,
ensuring high performance and balanced workload distribu-
tion for any user-specified error tolerance.

In the preprocessing stage, we first construct a hierarchi-
cal wavelet tree and then compress the wavelet coefficients
using a combination of run-length and Huffman encoding.
Coupled with the construction of the wavelet tree, a hier-
archical error metric is used to calculate the approximation
error for each of the tree nodes, which will be used to con-
trol the tradeoff between image quality and rendering speed
at run time. This error metric can be rapidly computed, and
also guarantees that the error value of a parent node will
be greater than or equal to those of its eight child nodes.
The data blocks associated with the wavelet tree nodes are
then distributed among different processors along a hierar-
chical space-filling curve with an error-guided bucketization
scheme to ensure load balancing.

At run time, our parallel multiresolution volume render-
ing algorithm is performed according to a user-specified er-
ror tolerance. The wavelet tree is first traversed front to back
to identify the nodes with varied resolutions that satisfy the
error tolerance. Then, the wavelet-compressed data associ-
ated with those nodes are decompressed and the data blocks
are reconstructed on the fly. Finally, the processors render
the selected data blocks with various levels of detail in par-
allel. The final image is generated by compositing the partial
images rendered at different processors.

In the following, we describe each stage of our algorithm
in detail. We first present the multiresolution wavelet tree
construction algorithm and the error metric. Then, we dis-
cuss our data distribution scheme for the purpose of mini-
mizing the dependency among processors and ensuring run-
time load balancing. Implementation details about our par-
allel volume rendering will follow.

4. Wavelet Tree Construction with Hierarchical Error
Metric Calculation

Our hierarchical wavelet tree construction algorithm is sim-
ilar to the methods described in [GWGS02, WS04], where

a bottom-up blockwise wavelet transform and compression
scheme is used. The algorithm starts with subdividing the
original three-dimensional data into a sequence of blocks.
We assume each raw volume block has n voxels. Without
loss of generality, we also assume n = 2i

× 2 j
× 2k, where

i, j, k are all integers and greater than zero. These raw vol-
ume blocks form the leaf nodes of the wavelet tree. After
performing a 3D wavelet transform to each block, a low-
pass filtered subblock of size n/8 and wavelet coefficients
of size 7n/8 are produced. The low-pass filtered subblocks
from eight adjacent leaf nodes in the wavelet tree are then
collected and grouped into a single block of n voxels, which
will become the low resolution data block associated with
the parent node in the next level of the wavelet hierarchy.
We recursively apply this 3D wavelet transform and sub-
block grouping process until the root of the tree is reached,
where a single block of size n is used to represent the entire
volume. As we arrive at the root of the wavelet tree, since
the root node has no parent, no 3D wavelet transform is per-
formed. To save space and time for the wavelet tree con-
struction, unnecessary wavelet transform computation could
be avoided by checking the uniformity of the data block. If
the data block is uniform, we can skip the 3D wavelet trans-
form process and set the low-pass filtered subblock to that
uniform value and all its corresponding wavelet coefficients
to zero.

To reduce the size of the coefficients stored in the wavelet
tree, the wavelet coefficients associated with a tree node re-
sulting from the 3D wavelet transform will be compared
against a user-provided threshold and set to zero if they are
smaller than the threshold. These wavelet coefficients are
then compressed using run-length encoding combined with a
fixed Huffman encoder [GWGS02]. This bit-level run-length
encoding scheme exhibits good compression ratio if many
consecutive zero subsequences are present in the wavelet co-
efficient sequence and is very fast to decompress. The com-
pressed bit stream is saved into an individual file.

Figure 1: Calculating the error metric of a wavelet tree node
S. B is the low resolution data block associated with S, repre-
senting the raw data subvolume V . The three colored nodes
and their associated data blocks are examples used to illus-
trate the data relationship of the parent node S and it child
nodes Si, where 0 ≤ i ≤ 7.

c© The Eurographics Association 2004.

C. Wang & J. Gao & H. W. Shen / Parallel Multiresolution Volume Rendering of Large Data Sets with Error-Guided Load Balancing

Coupled with the construction of the wavelet tree, an error
value is calculated at every tree node. Our error metric is
based on the mean square error (MSE) calculation. As shown
in Figure 1, let us assume that the current wavelet tree node
in question is S, the ith child node of S is Si, i ∈ [0,7], and the
data block of n voxels associated with S that approximates
the original subvolume V is B. One way to calculate the error
metric is to compute the MSE between the low resolution
data block B and the corresponding raw data in subvolume
V using the following formula:

E =

(∑
(x,y,z)∈V

(v(x,y,z)− f (x,y,z))2)

m

where v(x,y,z) is the original scalar data value at the loca-
tion (x,y,z) in V . f (x,y,z) is the interpolated data value at its
corresponding position in B. m is the total number of voxels
in V . The interpolation function for obtaining the approxi-
mated data value can be either nearest neighbors or linear.
For any wavelet tree leaf node, we define E = 0.

The main drawback of calculating the error metric this
way is that when the underlying data set is large, it can be
very slow to perform the error computation. The MSE cal-
culation will become progressively more expensive as we
traverse toward the wavelet tree root since the size of the
volume covered by a tree node will increase proportionally.
Furthermore, a large I/O overhead is involved because the
computation requires retrieving the raw data as well as the
approximated data.

To overcome these problems, we propose a much faster
way to calculate the error metric which considers the MSE
between the data in a parent node and the data in its eight im-
mediate child nodes, taking the maximum error value of the
child nodes into account. We compute the error as follows:

E =

7
∑

i=0
(∑
(x,y,z)∈B

(bi(x,y,z)− f (x,y,z))2)

8n
+maxE

where bi(x,y,z) is the data value at location (x,y,z) in the
data block associated with Si. f (x,y,z) is the interpolated
data value at its corresponding position in B. maxE is the
maximum error of Si, where 0 ≤ i ≤ 7. Again, the interpo-
lation function for getting the approximated data value can
be either nearest neighbors or linear. Essentially, the error
E of a parent node S is calculated by adding maxE to the
MSE between eight data blocks associated with child nodes
Si and their corresponding low-pass filtered data in B. For
any wavelet tree leaf node, we define E = 0.

A nice feature of this error metric is that it guarantees that
the error value of any parent node is greater than or equal
to those of its corresponding eight child nodes. Our design

of this hierarchical error metric is useful for flexible error
control when we perform the wavelet tree traversal during
the actual rendering.

5. Hierarchical Data Distribution with Error-Guided
Bucketization

For large scale data sets, the resulting wavelet hierarchy
needs to be partitioned and distributed among the proces-
sors since it is impractical to replicate the data everywhere.
To ensure the scalability of the parallel algorithm, it is im-
portant that the partitioning result will minimize the depen-
dency among the processors and ensure a balanced work-
load. In this section, we describe our data distribution and
load balancing algorithm in detail.

Figure 2: Only the nodes at every k levels starting from the
root (drawn in blue) store the data blocks. The red ellipsis
show examples of the distribution units. In the figure, k = 2
and h = 6. A binary tree rather than an octree tree is drawn
here for illustration purpose only.

One of the primary issues to be addressed when designing
the data distribution scheme is to minimize the dependency
among the processors. In the wavelet tree structure men-
tioned above, there exist long chains of parent-child node
dependencies - a node needs to recursively request the low-
pass filtered subblock from its parent node in order to re-
construct its own data. When nodes with such dependencies
are assigned to different processors, expensive communica-
tions at run time become inevitable. To eliminating such de-
pendency among processors, we design the following stor-
age strategy to arrange the multiresolution data blocks in
the wavelet tree. Instead of having the leaf and intermedi-
ate nodes store wavelet coefficients, and only the root node
store the low resolution data block, we reconstruct and store
low resolution data blocks for nodes at every k levels start-
ing from the root, where k < h, and h is the height of the
wavelet tree. (In practice, h may not be an exact multiple
of k and this can be easily handled.) We call a node that
stores the reconstructed data block a representative node,
while a node that stores only wavelet coefficients an asso-
ciated node. By default, the root of the wavelet tree is a rep-

c© The Eurographics Association 2004.

C. Wang & J. Gao & H. W. Shen / Parallel Multiresolution Volume Rendering of Large Data Sets with Error-Guided Load Balancing

resentative node and all the leaf nodes of the tree are asso-
ciated nodes. Figure 2 shows an example of such schemes
where k = 2 and h = 6. It is clear that data reconstruction
only needs to be performed for the associated nodes by re-
cursively requesting their parent nodes up to the closest rep-
resentative node, where the low resolution data has already
been reconstructed. We define a distribution unit as the data
at a representative node along with the wavelet coefficients
at all its descendent nodes which depend on the representa-
tive node. This definition implies that there must be one and
only one representative node in a distribution unit and all the
nodes in one distribution unit are independent of nodes in
any other distribution units. We use the distribution units to
form a partition of the wavelet tree, and a distribution unit
is used as the minimum unit to be assigned to a processor.
Since there is no data dependency among distribution units
during wavelet reconstruction, we are able to eliminate the
dependency among processors at run time.

Figure 3: A simplified 2D example of data distribution along
the hierarchical space-filling curve. All the wavelet tree
nodes are traversed level by level in a breadth-first search
manner. The numbers associated with the tree nodes indi-
cate the traversal order given by the space-filling curve. A
popular space-filling curve, the Hilbert curve, is used in this
example.

An optimal data distribution scheme should ensure that
all the processors have an equal amount of rendering work-
load at run time. However, when multiresolution rendering
is performed, different data resolutions, and thus different
rendering workload, will be chosen to approximate the lo-
cal regions. This makes the workload distribution task more
complicated. In the following, we describe a static load dis-
tribution scheme to solve the load balancing problem.

In general, a volumetric data set usually exhibits strong
spatial coherence. Given an error tolerance, if a particular
data resolution is chosen for a subvolume, it is more likely

that a similar resolution will also be used for the neighboring
subvolumes. In our multiresolution algorithm, this means if
a block at a certain level is selected to be rendered, it is
most likely that its neighboring blocks in the same tree level
will also be rendered. Thus, if neighboring data blocks at
a similar resolution are evenly distributed to different pro-
cessors, each processor will receive approximately the same
rendering workload in that local neighborhood. Based on
this idea, a space-filling curve [Sag94] is utilized in our data
distribution scheme to assign the distribution units to differ-
ent processors. The space-filling curve is used for its ability
to preserve spatial locality, i.e., the traversal path along a
space-filling curve always visits the adjacent blocks before
it leaves the local neighborhood. The hierarchical property
of a space-filling curve also makes it suitable to be applied
to a hierarchical algorithm. In Figure 3, we give a simplified
2D example of a wavelet tree and its corresponding space-
filling curve at each level. The numbers in the figure show
the traversal order along the hierarchal space-filling curve.

Figure 4: An example of data distribution along the hier-
archical space-filling curve with error-guided bucketization.
The numbers associated with the distribution units shown in
the figure indicate the traversal order given by the space-
filling curve. In this example, a total of 21 distribution units
with three different resolutions are distributed among four
processors.

To ensure load balancing at run time under different error
tolerances, data blocks with similar error values should be
distributed to different processors since they are most likely
to be selected together for rendering. To achieve this, in ad-
dition to the hierarchal space-filling curve traversal, we in-
clude an error-guided bucketization mechanism in our data
distribution scheme. As illustrated in Figure 4, our algorithm
works as follows: The whole error range [errmin,errmax]
is first partitioned into several error intervals, where errmin
and errmax are the minimum and maximum error values of
the representative nodes from all the distribution units. Then,
we traverse along a hierarchical space-filling curve, where
every distribution unit encountered is sorted, according to

c© The Eurographics Association 2004.

C. Wang & J. Gao & H. W. Shen / Parallel Multiresolution Volume Rendering of Large Data Sets with Error-Guided Load Balancing

the traversal order, into a bucket associated with an error in-
terval when the error value of its representative node falls
into that interval range. The intervals of the buckets will be
adjusted so that each bucket holds similar number of dis-
tribution units. Finally, all sorted distribution units in each
of the buckets are distributed among processors in a round-
robin manner.

Utilizing our hierarchical error-guided data distribution
scheme, neighboring distribution units with similar errors
will be distributed to different processors. As demonstrated
in Section 7, our error-guided hierarchical data distribution
scheme can achieve well-balanced workload among proces-
sors.

6. Parallel Multiresolution Volume Rendering

Before rendering each frame, the wavelet tree is traversed
if the viewing parameter or the error tolerance has been
changed. This could be done either by the host processor
and then broadcasting the traversal result to all the other pro-
cessors, or by all processors simultaneously (each processor
only needs to have a copy of the wavelet tree skeleton with
error at each node regardless of whether it actually has been
assigned the data block or not), obviating the communica-
tion among the processors. Our error-guided tree traversal
algorithm allows the user to specify an error tolerance as the
stopping criterion so that regions having smaller errors can
be rendered at lower resolutions. The nodes in the wavelet
tree are recursively visited in the front-to-back order accord-
ing to the viewing direction and a series of subvolumes with
different resolutions that satisfy the error tolerance are iden-
tified. If the data blocks associated with those selected sub-
volumes have not been reconstructed, we need to perform
reconstruction before the actual rendering begins.

A data block is reconstructed as follows: the low-pass fil-
tered subblock of size n/8 is first retrieved from its parent
node. This may entail a sequence of recursive requests of
the low resolution data blocks associated with its ancestor
nodes. Reconstructions will be performed in those nodes if
necessary. Our wavelet tree partition and data distribution
scheme ensures that such data dependencies could only ex-
ist within a distribution unit. This will reduce the overall re-
construction time since the cost of retrieving the low-pass
filtered subblock is bounded by the height of the subtree
corresponding to a distribution unit, which is usually a small
number, two or three in our experiments. The high frequency
wavelet coefficients of size 7n/8 are obtained by decoding
the corresponding bit stream. Finally, we group the low-pass
filtered subblock and the wavelet coefficients and then ap-
ply an inverse 3D wavelet transform to reconstruct the data
block.

During the actual rendering, each processor only renders
the data blocks preassigned to it during the data distribu-
tion stage, so there is no expensive data redistribution be-
tween processors. The screen projection of the entire vol-

ume’s bounding box is partitioned into smaller tiles with the
same size, where the number of the tiles equals the number
of processors. Each processor is assigned one tile and is re-
sponsible for the composition of the final image for that tile.
Each time a processor finishes rendering one data block, the
resulting partial image is sent to those processors whose tiles
overlap with the block’s screen projection. After rendering
all the data blocks, the partial images received at each pro-
cessor are composited together to generate the final image
for its assigned tile. Finally, the host processor collects the
partial image tiles and creates the final image.

7. Results

In this section, we present the experimental results of our
parallel multiresolution volume rendering algorithm running
on a PC cluster that consists of 32 1.53GHz AMD Athlon
1800MP processors connected by Myrinet. The test data set
was the 7.5GB 2048×2048×1920 Richtmyer-Meshkov In-
stability (RMI) data set from Lawrence Livermore National
Laboratory.

The dimensions of the leaf node blocks in our wavelet
tree were set to be 128×128×64, or 1MB in the total size.
This is a tradeoff between the cost of performing the wavelet
transform for a single data block, and the rendering and com-
munication overheads for final image generation. Since each
voxel value is represented using a single byte, Haar wavelet
transform with a lifting scheme was used to construct the
data hierarchy for simplicity and efficiency reasons. Loss-
less compression scheme was used with the threshold set to
zero. We considered one voxel overlapping boundaries be-
tween neighboring blocks in each dimension when loading
data from original brick data files in order to produce cor-
rect rendering results. The wavelet tree we constructed has a
depth of six with 10,499 non-empty nodes. We chose the EV-
ERY2 scheme (storing the reconstructed data blocks at every
two levels of the wavelet tree) to partition the tree and form
the distribution units. The construction of the wavelet tree
was performed on a 2.0GHz Intel Pentium 4 processor with
768MB main memory. It took about an hour to complete and
the compressed data size was 2.65GB. The data associated
with the wavelet tree nodes were distributed using the hier-
archical data distribution scheme with error-guided bucketi-
zation described in Section 5. The space-filling curve used
in our implementation was the Hilbert curve.

Figure 5 shows several results with different levels of de-
tail for the RMI data set rendered using software raycasting.
When the error tolerance became higher, data of lower res-
olutions were used, which resulted in a smaller number of
blocks being rendered. It can be seen that, although more
delicate details of the data are revealed when lowering the
error tolerance, images of reasonable quality can still be ob-
tained at lower resolutions. The use of wavelet-based com-
pression also allowed us to produce images of good visual
quality with much smaller space overhead.

c© The Eurographics Association 2004.

C. Wang & J. Gao & H. W. Shen / Parallel Multiresolution Volume Rendering of Large Data Sets with Error-Guided Load Balancing

(a) A rendering of the data set (b) E = 40,000, 21 blocks rendered (c) E = 30,000, 120 blocks rendered

Figure 5: Multiresolution rendering of the RMI data set. The resolution of the output images is 512 × 512. Image (a) shows a
rendering of the data. Images (b) and (c) were zoomed-in views using different error tolerances with the same viewing setting.
As can be seen, the lower the error tolerance was, the more delicate details of the data were revealed.

Figure 6: The number of data blocks distributed to each of
the 32 processors for the EVERY2 scheme.

Figure 7: The number of data blocks rendered at each of the
32 processors for the EVERY2 scheme with three different
error tolerances. A total of 1,510, 2,640, and 3,850 blocks
were rendered for error tolerances of 5,000, 3,000, and 500
respectively.

The error-guided hierarchical data distribution allowed
our parallel multiresolution volume rendering algorithm to
effectively balance the workload. Figure 6 shows the number
of data blocks distributed to each of the 32 processors. Fig-
ure 7 shows the numbers of data blocks rendered at each of
the 32 processors when three different error tolerances were
used. Since the processors rendered approximately an equal
number of blocks, it can be seen that good load-balancing

was achieved. The well-balanced workload implies that our
parallel algorithm is highly scalable. When the error tol-
erance was set to 3,000, it took 48.74 seconds to render
2,640 128×128×64 blocks using 32 processors, which in-
cluded the time to perform wavelet reconstruction and disk
I/O (26.35sec), software raycasting (22.36sec), and image
composition (0.03sec). Our algorithm can achieve approxi-
mately 97.6%, 96.8% and 87.3% parallel CPU utilization for
8, 16 and 32 processors respectively.

8. Conclusion and Future Work

We have presented an efficient parallel multiresolution vol-
ume rendering algorithm. A multiresolution wavelet tree is
used to allow for interactive analysis of large data and flex-
ible run-time tradeoff between image quality and render-
ing speed. To ensure the algorithm’s scalability, we propose
a unique tree partitioning and distribution algorithm and
utilize a hierarchical space-filling curve with error-guided
bucketization scheme to eliminate the parent-child node
wavelet reconstruction dependencies, balance the rendering
workload, and reduce the run-time communication cost to a
minimum. The experimental results demonstrate the effec-
tiveness and utility of our parallel algorithm. Future work
includes utilizing graphics hardware to perform wavelet re-
construction and rendering, and extending our parallel mul-
tiresolution volume rendering algorithm to large scale time-
varying data visualization.

Acknowledgements

The work was supported by NSF ITR grant ACI-0325934,
DOE Early Career Principal Investigator award DE-FG02-
03ER25572, and NSF Career Award CCF-0346883. The
RMI data set was provided by Mark Duchaineau at
Lawrence Livermore National Laboratory. Special thanks to
Don Stredney and Dennis Sessanna from Ohio Supercom-
puter Center for providing the test environment.

c© The Eurographics Association 2004.

C. Wang & J. Gao & H. W. Shen / Parallel Multiresolution Volume Rendering of Large Data Sets with Error-Guided Load Balancing

References

[BA83] BURT P. J., ADELSON E. H.: The Laplacian Pyra-
mid as a Compact Image Code. IEEE Transactions on
Communications 31, 4 (1983), 532–540. 2

[BNS01] BOADA I., NAVAZO I., SCOPIGNO R.: Multiresolu-
tion Volume Visualization with a Texture-Based Oc-
tree. The Visual Computer 17, 3 (2001), 185–197. 2

[CA97] CROSSNO P., ANGEL E.: Isosurface Extraction Using
Particle Systems. In Proceedings of IEEE Visualization
’97 (1997), pp. 495–498. 2

[CDF∗03] CAMPBELL P. C., DEVINE K. D., FLAHERTY J. E.,
GERVASIO L. G., TERESCO J. D.: Dynamic Octree
Load Balancing Using Space-Filling Curves. Tech.
Rep. CS-03-01, Williams College Department of Com-
puter Science, 2003. 2

[Ell95] ELLSIEPEN P.: Parallel Isosurfacing in Large Un-
structed Datasets. In Visualization in Scientifc Com-
puting (1995), pp. 9–23. 2

[GHSK03] GAO J., HUANG J., SHEN H. W., KOHL J. A.: Vis-
ibility Culling Using Plenoptic Opacity Functions for
Large Data Visualization. In Proceedings of IEEE Vi-
sualization ’03 (2003), pp. 341–348. 2, 3

[GS01] GAO J., SHEN H. W.: Parallel View-Dependent
Isosurface Extraction Using Multi-Pass Occlusion
Culling. In Proceedings of IEEE Symposium in Par-
allel and Large Data Visualization and Graphics ’01
(2001), pp. 67–74. 2

[GWGS02] GUTHE S., WAND M., GONSER J., STRASSER W.:
Interactive Rendering of Large Volume Data Sets. In
Proceedings of IEEE Visualization ’02 (2002), pp. 53–
60. 1, 2, 3

[GY95] GHAVAMNIA M. H., YANG X. D.: Direct Render-
ing of Laplacian Pyramid Compressed Volume Data.
In Proceedings of IEEE Visualization ’95 (1995),
pp. 192–199. 2

[HH92] HANSEN C., HINKER P.: Massively Parallel Isosur-
face Extraction. In Proceedings of IEEE Visualization
’92 (1992), pp. 189–195. 2

[HSC∗00] HUANG J., SHAREEF N., CRAWFIS R., SADAYAPPAN

P., MUELLER K.: A Parallel Splatting Algorithm with
Occlusion Culling. In Proceedings of Eurographics
Workshop on Parallel Graphics and Visualization ’00
(2000), pp. 125–132. 2

[IP98] IHM I., PARK S.: Wavelet-Based 3D Compression
Scheme for Very Large Volume Data. In Proceedings
of Graphics Interface ’98 (1998), pp. 107–116. 2

[KS99] KIM T. Y., SHIN Y. G.: An Efficient Wavelet-Based
Compression Method for Volume Rendering. In Pro-
ceedings of Pacific Graphics ’99 (1999), pp. 147–157.
2

[LHJ99] LAMAR E., HAMANN B., JOY K. I.: Multiresolution
Techniques for Interactive Texture-Based Volume Vi-
sualization. In Proceedings of IEEE Visualization ’99
(1999), pp. 355–362. 1, 2

[LM94] LACROUTE P., MARC L.: Fast Volume Rendering Us-
ing a Shear-Warp Factorization of the Viewing Trans-
formation. In Proceedings of ACM SIGGRAPH ’94
(1994), pp. 451–458. 2

[LMC02] LUM E., MA K. L., CLYNE J.: A Hardware-Assisted
Scalable Solution for Interactive Volume Rendering of
Time-Varying Data. IEEE Transactions on Visualiza-
tion and Computer Graphics 8, 3 (2002), 286–301. 2

[MCC∗99] MIRIN A. A., COHEN R. H., CURTIS B. C., DAN-
NEVIK W. P., DIMITS A. M., DUCHAINEAU M. A.,
ELIASON D. E., SCHIKORE D. R., ANDERSON S. E.,
PORTER D. H., WOODWARD P. R., SHIEH L. J.,
WHITE S. W.: Very High Resolution Simulation of
Compressible Turbulence on the IBM-SP System. In
Proceedings of ACM/IEEE Supercomputing Confer-
ence ’99 (1999). 1

[MPHK94] MA K. L., PAINTER J. S., HANSEN C. D., KROGH

M. F.: Parallel Volume Rendering Using Binary-Swap
Compositing. IEEE Computer Graphics and Applica-
tions 14, 4 (1994), 59–68. 2

[Mur92] MURAKI S.: Approximation and Rendering of Vol-
ume Data Using Wavelet Transforms. In Proceedings
of IEEE Visualization ’92 (1992), pp. 21–28. 2

[Mur93] MURAKI S.: Volume Data and Wavelet Transforms.
IEEE Computer Graphics and Applications 13, 4
(1993), 50–56. 2

[Rod99] RODLER F. F.: Wavelet-Based 3D Compression with
Fast Random Access for Very Large Volume Data. In
Proceedings of Pacific Graphics ’99 (1999), pp. 108–
117. 2

[Sag94] SAGAN H.: Space-Filling Curves. Springer-Verlag,
New York, 1994. 2, 5

[SDS96] STOLLNITZ E. J., DEROSE T. D., SALESIN D. H.:
Wavelets for Computer Graphics: Theory and Appli-
cations. Morgan Kaufmann, 1996. 2

[SHLJ96] SHEN H. W., HANSEN C. D., LIVNAT Y., JOHNSON

C. R.: Isosurfacing in Span Space with Utmost Effi-
ciency (ISSUE). In Proceedings of IEEE Visualization
’96 (1996), pp. 287–294. 2

[SL02] SCHULZE P., LANG U.: The Parallelization of the
Perspective Shear-Warp Volume Rendering Algorithm.
In Proceedings of Eurographics Workshop on Parallel
Graphics and Visualization ’02 (2002), pp. 61–69. 2

[WS04] WANG C., SHEN H. W.: A Framework for Rendering
Large Time-Varying Data Using Wavelet-Based Time-
Space Partitioning (WTSP) Tree. Tech. Rep. OSU-
CISRC-1/04-TR05, Department of Computer and In-
formation Science, The Ohio State University, January
2004. 3

[ZCK97] ZHOU Y., CHEN B., KAUFMAN A.: Multiresolution
Tetrahedral Framework for Visualizing Regular Vol-
ume Data. In Proceedings of IEEE Visualization ’97
(1997), pp. 135–142. 1

c© The Eurographics Association 2004.

