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Abstract
In interactive physical simulation, contact forces are applied to prevent rigid bodies from penetrating each other.
Accurate contact force determination is a computationally hard problem. Thus, in practice one trades accuracy for
performance. The result is visual artifacts such as viscous or damped contact response. In this paper, we present a
new approach to contact force determination. We reformulate the contact force problem as a nonlinear root search
problem, using a Fischer function. We solve this problem using a generalized Newton method. Our new Fischer–
Newton method shows improved qualities for specific configurations where the most widespread alternative, the
Projected Gauss-Seidel method, fails. Experiments show superior convergence properties of the exact Fischer–
Newton method.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Physically based modeling
I.3.7 [Computer Graphics]: Animation G.1.6 [Mathematics of Computing ]: Nonlinear programming

Keywords: Contact Force Problem, Complementarity Formulation, Newton Method, Fischer Function

1. Shortcomings of State-of-Art

Most open source software for interactive real-time rigid
body simulation uses the widespread Projected Gauss–
Seidel (PGS) method, examples are Bullet and Open Dy-
namics Engine. However, the PGS method is not always
satisfactory, it suffers from two problems: the linear con-
vergence rate [CPS92] and inaccurate friction forces in
stacks [KSJP08]. The linear convergence results in viscous
motion at contacts and loss of high frequency effects. The
viscous appearance results in a time delay in the contact re-
sponse and reduces plausibility [ODGK03]. This has mo-
tivated us to develop a new numerical method, based on a
nonsmooth reformulation of the contact force problem. The
reformulation transforms a nonlinear complementarity prob-
lem (NCP) formulation into a nonsmooth root search prob-
lem. Our method is compared to the PGS method for inter-
active simulation.

Rigid body simulation was introduced to the graph-
ics community in the late 1980’s [Hah88, MW88] using
penalty based and impulse based approaches to describe the

physical interactions. Penalty based simulation is not eas-
ily adopted to different simulations without parameter tun-
ing. The impulse based approach was extended and im-
proved [Mir96], however stacking was a problem and it suf-
fered from creeping, these problems has since been rec-
tified [GBF03]. Constraint based simulation has received
much attention as an alternative [Bar94] to penalty and im-
pulse based simulation. Constraint based simulation can be
classified into two groups: maximal and minimal coordinate
methods [Fea98]. The focus of this paper is maximal coor-
dinates methods, which are dominated by complementarity
formulations. There are alternatives to complementarity for-
mulations, based on kinetic energy [MS01, MS04] and mo-
tion space [RKC03]. However, the former solves a more gen-
eral problem and is not attractive for performance reasons,
and the latter does not include frictional forces.

Complementarity formulations come in two flavors: ac-
celeration based formulations [TTP01] and velocity based
formulations [ST96]. Acceleration based formulations can-
not handle collisions [AP97, CR98]. Further, acceleration
based formulations suffer from indeterminacy and inconsis-
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Figure 1: Contact force computations using our Fischer–Newton method are more efficient for large mass ratios. In (a) we
illustrate a random configuration of mixed objects, (b) a pile of non-convex gears, (c) a wall of boxes, and in (d) a pyramid of
boxes.

tency [Ste00]. The velocity based formulation suffers from
none of these problems and is the formulation we use in this
work. [KEP05] presented a velocity based method based on
limit surfaces and an approximation of momentum conser-
vation.

The approach we present here is more simple in the sense
that we reformulate the frictional problem as a system of
nonlinear equations, which we then solve using a Newton
method.

2. The Fischer Function Reformulation

The problem of computing contact forces can be formu-
lated as a linear complementarity problem (LCP). However,
in interactive physical simulations a different formulation is
used, both will be derived shortly. In the following we will
compare the two formulations, and thereafter derive our re-
formulation. We will keep the notation general and simple to
enhance readability. Without loss of generality, we will only
consider a single contact point to make the differences more
visible. The contact force model is the focus of our work and
we refer the reader to [Erl07] for details on the time-stepping
scheme and the assembly of the matrices used.

First, a derivation of the LCP formulation for computing
contact forces. Given the generalized mass matrix, M, the
generalized velocity vector, u, and the generalized external
force vector, F , we write the discretized Newton-Euler equa-
tion,

Mu− JT
n λn − JT

DλD = F , (1)

where Jn is the Jacobian corresponding to normal constraints
and JD is the Jacobian corresponding to the tangential con-
tact forces, λn and λD are the normal and frictional Lagrange
multipliers. The actual discretization variables are contained
within the Lagrange multipliers, this is a slight abstraction
to keep the expression simple. Using (1), we isolate the gen-

eralized velocities,

u = M−1F +M−1JT
n λn +M−1JT

DλD. (2)

The non-penetration constraints on a velocity-based form
can be written as

Jnu ≥ 0, (3a)

λn ≥ 0, (3b)

λn (Jnu) = 0. (3c)

We use a scalar, β, as a measure of the most negative contact
velocity along a given positive direction in the contact plane,

(βe+ JDu) ≥ 0, (4a)

β ≥ 0, (4b)

where e is a vector of ones. The contact velocity along the ith

direction in the contact plane is equivalent to the dot prod-
uct of the ith row of JD and the generalized velocity, u. A
positive span of tangent vectors ensures symmetric behavior.
This is not explicit in the equations, but lies in the construc-
tion of the JD-matrix. One can have any number of direc-
tional tangent vectors in the contact plane. A friction pyra-
mid approximation corresponds to two orthogonal vectors in
the contact plane, t1 and t2. In this case the Jacobian matrix
JD has four rows. The first two rows correspond to the direc-
tions t1 and t2 and the last two rows correspond to −t1 and
−t2. We will bound the friction force by the friction polyhe-
dra cone approximation,

µλn − eT λD ≥ 0 and λD ≥ 0. (5)

For the friction pyramid approximation one would have four
components of λD. Finally contact velocity and frictional
force are coupled through the complementarity conditions,

λT
D (βe+ JDu) = 0 and β

(
µλn − eT λD

)
= 0. (6)

Essentially, the first equation will try to pick a friction di-
rection that is closest to the maximum dissipation direc-
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tion. The last condition ensures that a non-zero friction force
is found if slipping occurs. If we have a non-zero relative
contact velocity then β > 0 and the last equation requires(

µλn − eT λD

)
= 0. This results in a friction force that lies

on the boundary of the friction polyhedra cone approxima-
tion. This is in agreement with Coulomb’s friction law, in
the case of sliding friction. Finally, we can assemble the en-
tire problem by substituting (2) into (3a) and (4a). Rewriting
results in the matrix-vector formulation,⎡
⎣JnM−1JT

n JnM−1JT
D 0

JDM−1JT
n JDM−1JT

D e
µ −eT 0

⎤
⎦

︸ ︷︷ ︸
Alcp

⎡
⎣λn

λD
β

⎤
⎦

︸ ︷︷ ︸
xlcp

+

⎡
⎣JnM−1F

JDM−1F
0

⎤
⎦

︸ ︷︷ ︸
blcp

≥ 0,

(7)
and we get the traditional LCP formulation,

Alcpxlcp +blcp ≥ 0, (8a)

xlcp ≥ 0, (8b)

xT
lcp(Alcpxlcp +blcp) = 0. (8c)

Now we turn to the nonlinear formulation of the contact
force computation. For the nonlinear case we have the
Newton-Euler equations,

Mu− JT
n λn − JT

t λt = F, (9)

where Jn is the Jacobian corresponding to normal con-
straints. We do not use the JD matrix from the LCP formula-
tion instead we use Jt , which is the Jacobian corresponding
to the tangential contact forces. Since the contact plane is
two dimensional, we choose to span this plane by two or-
thogonal unit vectors, t1 and t2. Any vector in this plane can
be written as a linear combination of these two vectors. Thus,
Jt has only two rows corresponding to the two directions.
From (9) we can obtain the generalized velocities,

u = M−1F +M−1JT
n λn +M−1JT

t λt . (10)

Let the Lagrange multipliers λ =
[
λn λT

t

]T
and contact

Jacobian J =
[
Jn Jt

]T
, then we write the relative contact

velocities as y =
[
yn yT

t

]T
,

y = Ju = JM−1JT︸ ︷︷ ︸
Ancp

λ+ JM−1F︸ ︷︷ ︸
bncp

. (11)

To compute the frictional component of the contact force,
we need a model of physical friction. We base our model on
Coulomb’s friction law. In one dimension Coulomb’s fric-
tion law can be written as,

y < 0 ⇒ λt = µλn, (12a)

y > 0 ⇒ λt = −µλn, (12b)

y = 0 ⇒−µλn ≤ λt ≤ µλn. (12c)

This can be proven by algebraic manipulation.

Proof Coulomb’s friction law is defined as,

µλn −
√

λ2
t ≥ 0, (13a)

‖y‖
(

µλn −
√

λ2
t

)
= 0, (13b)

‖y‖
√

λ2
t = −yλt . (13c)

The first equation yields a maximum bound on the fric-
tion force. The second equation models sticking and slip-
ping friction, while the last ensures that friction is opposing
motion in the case of slipping friction. We perform a case-
by-case analysis. If y �= 0 then from (13b) we must have,

µλn −
√

λ2
t = 0. (14)

If y > 0 then from (13c) we must have λt < 0 and if y < 0
we have that λt > 0. So putting it together,

y < 0 ⇒ λt = µλn and y > 0 ⇒ λt = −µλn. (15)

If y = 0 then (13b) and (13c) are trivially fulfilled and
from (13a) we have,

−µλn ≤ λt ≤ µλn. (16)

This concludes the proof.

We split y into positive and negative components,

y = y+ − y−, (17)

where

y+ ≥ 0, y− ≥ 0 and
(

y+
)T (

y−
)

= 0. (18)

In case of friction we define the bounds −lt(λ) = ut(λ) =
µλn and for normal force ln(λ) = 0 and un(λ) = ∞. Using
the bounds (12), (17) and (18), yields the final NCP formu-
lation,

y+ − y− = Ancpλ+bncp, (19a)

y+ ≥ 0, (19b)

y− ≥ 0, (19c)

u(λ)−λ ≥ 0, (19d)

λ− l(λ) ≥ 0, (19e)(
y+

)T
(λ− l(λ)) = 0, (19f)

(
y−

)T
(u(λ)−λ) = 0, (19g)

(
y+

)T (
y−

)
= 0. (19h)

The advantages are

• There is no need for the auxiliary variable β
• There is no need for a positive span of tangent vectors, we

just use two orthogonal directions in the contact plane.
• For two tangent directions Jt is one fourth the size of JD.
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Thus the NCP formulation has a much lower memory foot-
print. To make the connection to the LCP formulation more
clear one could define,

JDu =
[

Jtu
−Jtu

]
,λD =

[
λ+

t
λ−

t

]
, and β = max

j
|y j|. (20)

The main problem with the nonlinear formulation as pre-
sented, is that t1 and t2 are independent. The disadvantage
is that it solves the friction problem as two decoupled one-
dimensional Coulomb friction models. This results in an
outer friction pyramid approximation, where the LCP for-
mulation uses an inner diamond shape approximation. Thus
the NCP formulation overestimates the magnitude of the
friction force whereas the LCP formulation underestimates
the magnitude of the friction force. Using the NCP formula-
tion, the corner directions of the friction pyramid are favored
in case of unaligned contact velocities. The LCP formulation
favors the tangent direction that best approximates the direc-
tion of maximum dissipation. The NCP formulation is at-
tractive for interactive simulations where performance is of
greater importance than accuracy. In practice the problem of
accuracy can be remedied by choosing t1 parallel to the slid-
ing direction. Using such a heuristic would make both the
LCP and NCP formulations accurate in the case of sliding
friction.

We have shown that the formulation (12) is equivalent to
the coupled complementarity problems given in (19). We can
reformulate those complementarity problems using a Fischer
function. The Fischer function, φ : R×R �→ R is defined as,

φ(a,b) =
√

a2 +b2 −a−b. (21)

Notice that solutions of the complementarity problem corre-
sponds to the roots of the Fischer function,

a ≥ 0, b ≥ 0, a ·b = 0, iff φ(a,b) = 0. (22)

This allows us to rewrite a complementarity problem into
a root search problem, which again allows us to compute
solutions using a Newton method. The real valued function
φ(a,b) is trivially extended to a vector function. Using the
Fischer function, (19) can be written as,

φ
(

y+,λ− l(λ)
)

= 0, (23a)

φ
(

y−,u(λ)−λ
)

= 0. (23b)

Observe, for any arbitrary positive scalar k, (23a) is equiva-
lent to,

φ
(

ky+,λ− l(λ)
)

= 0. (24)

Further, there always exists a positive scalar k such that,

ky+ = φ
(

y−− y+,u(λ)−λ
)

. (25)

This is proven by a case-by-case analysis. If y+ = 0 then (25)
reduces to (23b) which trivially holds for any value of k. If

y+
i > 0, then we must have y−i = 0 and (25) reduces to,

ky+
i =

√(
y+

i

)2 +(u(λ)i −λi)
2 − (u(λ)i −λi)︸ ︷︷ ︸

c

+y+
i . (26)

Using the triangle inequality, we always have c > 0 so k =
c/y+ +1 > 1. Thus, for any given y+ > 0 we can always find
a k > 1 such that (25) holds. We can now substitute (25) into
(24) and obtain the Fischer reformulation of our problem,

φ(λ− l(λ),φ(−y,u(λ)−λ)) = 0. (27)

Notice our formulation differs from the mixed complemen-
tarity problem formulation [Bil95]. We are using variable
bounds and not fixed bounds. Our derivation do not rely
on explicitly enforcing u(λ) ≥ l(λ) at all times, instead this
holds implicitly for any solution of the problem.

3. The Nonsmooth Newton Method

Numerical solutions to complementarity problems can be
computed using well known iterative methods. In [CPS92],
the authors describe matrix splitting methods similar to
well known relaxation methods for linear systems: Jacobi,
Gauss–Seidel, and successive over–relaxation (SOR). These
methods enforce the complementarity constraints by doing
a projection following a relaxation. Projected Gauss–Seidel
solvers have previously been used [Mor99, Jea99] although
in a blocked version. Krylov subspace methods like the
Conjugate Projected Gradient (CPG) can be used in a
similar manner [RAD05] or together with an active set
method [Mur88]. The CPG has quadratic convergence rate
for frictionless contacts, but erratic convergence rate when
friction is considered [RA04]. Two other types of iterative
algorithms are based on Newton and Interior Point (IP)
methods. The theoretical convergence rates of the Newton
and IP methods are quadratic, which is a clear improvement
over relaxation schemes. Complexity can be reduced even
further if one considers a multilevel preconditioner for the
Newton equation [Ort07]. Direct methods are costly and
often limited to LCP formulations. When using incremental
matrix factorization, Lemke’s and Keller’s methods need n
iterations resulting in a total complexity of O(n3) [Lac03].
We choose the Newton method due to the quadratic conver-
gence rate and do not consider IP methods due to the nature
of root search problems.

In the following, we will describe our Newton based
method, which we have named the Fischer–Newton (FN)
method to reflect the use of a Fischer reformulation.

We will now extend our model to support multiple con-
tacts. Let the normal and frictional Lagrange multipliers of

the ith contact point λi =
[
λn,i λt1,i λt2,i

]T
. For the ith

contact point we have from (27),

φi(λ) = φ(λi − li(λi),φ(−yi,ui(λi)−λi)) = 0, (28)
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where li(λi) =
[
0 −µiλn,i −µiλn,i

]T
and ui(λi) =[∞ µiλn,i µiλn,i

]T
are the normal and frictional lower

and upper bounds. The relative contact point velocity yi is
an affine function of the agglomerated Lagrange multiplier

vector λ =
[
λT

1 λT
2 . . . λT

N

]T
. Now we can agglomer-

ate all contact problems (28) into one vector valued prob-
lem, given by the vector valued function Φ : R

n → R
n with

n = 3N,

Φ(λ) =

⎡
⎢⎣

φ1(λ)
...

φN(λ)

⎤
⎥⎦ , (29)

which is almost everywhere Frechét differentiable. We de-
fine the set ΩΦ to be the set of all λ for which Φ is not
Frechét differentiable. The B-subdifferential of Φ at λ is,

∂BΦ = {H : R
n → R

n|H = limJΦ(λi) : λi → λ, λ /∈ ΩΦ},
(30)

where JΦ is the usual Jacobian. Using the B-subdifferential,
the generalized Newton equation is,

HkΔλk = −Φ(λk), (31)

where Hk is any nonsingular element in ∂BΦ [Bil95]. The
Newton update is then

λk+1 = λk +Δλk. (32)

The convergence behavior of the numerical method is de-
scribed by the following Theorem.

Theorem 3.1 (Qi & Sun [QS98, Theorem 2.2]) Suppose that
Φ(λ∗) = 0 and that all H ∈ ∂BΦ(λ∗) are nonsingular. Then
the generalized Newton method (31) is Q-superlinearly con-
vergent in a neighborhood of λ∗ if Φ is semismooth at λ∗,
and quadratically convergent at λ∗ if Φ is strongly semis-
mooth at λ∗.

We know from [Bil95, Theorem 3.2.8] that Φ is strongly
semismooth everywhere when l and u are fixed bounds. This
is easily extended to hold for our version, where the bounds
are functions of λ. The only limitation we must impose on
l(λ) and u(λ) is that they are both semismooth functions.
This follows since any sum, product or composite of semis-
mooth functions is also semismooth [Bil95]. Figure 2 shows
that quadratic convergence is not only a theoretical property
but is achievable in practise as well. The test case used for
Figure 2 is a small 6×6 problem. It takes 0.0033 seconds on
average to compute the solution. For interactive usage – 30
frames per second – using 10 % of the time for contact force
solving [YFR06], this restricts the FN method to problems
of small dimensions.
Solving the generalized Newton equation exact is an oper-
ation that has a time complexity of O(n3), a cheaper alter-
native should improve the overall performance of the FN
method.
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Figure 2: The Fischer–Newton method on a well behaved
problem displaying quadratic convergence. Average time
used on solution is 0.0033 seconds for this test case.

Quasi Nonlinear Conjugate Gradient Method for Inter-
active Frame Rates The conjugate gradient (CG) method
is the usual choice for iteratively solving equation systems
like (31) approximately. It is guaranteed to converge to the
solution in at most n iterations. Unfortunately, this only
holds for symmetric and positive definite matrices. We can-
not guarantee that this holds for Hk. However, it is appeal-
ing to use one of the other CG like methods due to the nice
properties. The biconjugate gradient method does not re-
quire symmetry of the matrix, instead it uses the matrix and
its transposed to compute a search direction. For this reason
it yields the same result as the CG for symmetric matrices,
but at twice the cost. For interactive usage the extra cost is
undesired, so a third CG like method is considered. The stan-
dard CG method can be considered as the minimization of a
quadratic function,

min
λ

1
2

λT Hkλ−Φ(λ)T λ︸ ︷︷ ︸
γ(λ)

, (33)

where the gradient is ∇γ(λ) = Hkλ−Φ(λ) when Hk is sym-
metric. The gradient is used in the computation of the new
search direction. The nonlinear conjugate gradient (NCG)
method makes no such assumption, instead it just minimizes
the general function f (λ). To do this we need the gradi-
ent ∇ f (λ) for the computation of new search directions.
However, such a gradient is computationally expensive and
the aim of interactivity forces us to take the less expensive
choice. Instead of using the exact ∇ f we use a finite differ-
ence approximation,

∇ f (λ) ≈ f (λ+h)− f (λ)
h

. (34)

Thus, our method can be perceived as a quasi Fletcher–
Reeves [NW99] method where we use finite difference ap-
proximations for the gradient and a line-search similar to the
exact minimizer used in the Conjugate Gradient method.
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Figure 3: Motivation for including a line search method.
The test case is a pyramid configuration, having 103 con-
tact points resulting in 309 variables. Using line search, a
smoother convergence is achieved. The frictional component
has the additional benefit of an improved accuracy.

Globalization using Line Search The Newton method is
not globally convergent from an arbitrary starting point. It
has to be initialized within a small enough neighborhood of
the solution. To achieve global convergence, a line search
method is often used. Experiments indicate that it is benefi-
cial to use a line search method when including friction, see
Figure 3. We use a backtracking line search with an Armijo
condition to ensure sufficient decrease and that the chosen
step length is not too small [NW99]. The line search uses
the natural merit function of Φ(λ) as a measure of conver-
gence. The natural merit function is defined as,

Ψ(λ) =
1
2
||Φ(λ)||2. (35)

The gradient is,

∇Ψ(λ) = HT
k Φ(λ). (36)

The Armijo condition is used as a termination criteria for the
line search method. Applied to Ψ(λ), the Armijo condition
is,

Ψ(λ+Δλ) ≤ Ψ(λ)+ cα∇Ψ(λ)T Δλ, (37)

where c ∈ (0,1). The object of the line search method is
to find an α such that (37) is satisfied. To avoid computing
∇Ψ(λ) we insert the definition from (36) into (37) and make
a substitution using (31),

Ψ(λ+Δλ) ≤ (1−2αc)Ψ(λ). (38)

The step length is used when updating λk+1 such that

λk+1 = λk +αΔλk. (39)

Semi-Staggered Warm Starting to Accelerate Conver-
gence The frictional upper and lower bounds depend on
the magnitude of the normal forces. Intuition suggests that
given a good estimate of the normal forces, the computa-
tion of frictional forces will be more feasible. The idea is

0 50 100 150 200 250 300 350
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Iterations

M
er

it 
F

un
ct

io
n

 

 

Ψ
n
(λ) w. warm start

Ψ
t
(λ) w. warm start

Ψ
n
(λ) w/o warm start

Ψ
t
(λ) w/o warm start

Figure 4: Two convergence plots for the large mass ratio
test case showing how warm starting the Fischer–Newton
method provides improved convergence.

similar to a staggered approach [KSJP08]. However, instead
of continuously iterating, we simply start the FN method
with the frictional components disabled and use an absolute
threshold termination criteria. Once convergence is detected,
the frictional components are enabled and the full contact
force problem is solved until convergence or a maximum
allowed iteration count is reached. Figure 4 illustrates the
added convergence benefit from this semi-staggered warm
starting technique.

4. Newton Method in Action

We have constructed three test cases to test different prop-
erties of the FN method. All three test cases use simple box
geometries to aid the visual detection of physical anomalies,
which might be hard to detect if more complex geometries
were used.
Further the Jacobian – and subsequently the Newton equa-
tion – inherits a lot of the properties of the Ancp matrix. We
expect that our method struggles when applied to problems
where Ancp is badly conditioned. The three test cases are
therefore designed to “stress” the Ancp matrix.

Large Mass Ratios This is a small configuration consist-
ing of only three objects, two boxes and a floor. A heavy
box is placed on top of a lighter box. The desired effect is
for the boxes to remain still with no additional movement
after the initial settlement. This setup results in a Ancp ma-
trix which has an unfortunate distribution of eigenvalues, as
seen in Figure 7(a). This gives an ill-conditioned Ancp ma-
trix, making the Newton equation singular. In addition to
“stressing” our method, this setup is notoriously difficult for
the PGS method to handle. The PGS method has a tendency
to undershoot the magnitudes of the contact forces, resulting
in severe penetrations.

Sparse Structure For the sparse structure, a stack of iden-
tical boxes are simulated. This setup poses some of the same
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(a) (b) (c)

Figure 5: The three test cases (a) A heavy box placed on top of a light box (b) A stack of equal sized boxes of equal density (c)
A dense structured stack of equal sized boxes of equal density.

difficulties as the large mass ratio setup. The bottommost
box suffers from the accumulated effect of the remaining
boxes on top, acting as one large mass. Furthermore, all con-
tact normals are parallel, which results in an over-determined
system.

Dense Structure When the complexity of the physical sys-
tem increases, people become less competent at noticing
dynamic anomalies [ODGK03]. Thus structured stacking is
very helpful for visual confirmation of complex configura-
tions. The dense structure covers the above mentioned diffi-
culties. Further this setup tests scalability.

4.1. The Qualities of the Newton Method

Figure 6 shows the fill patterns for the three test cases, vi-
sualized by a gray scale image. It confirms that the Ancp

is symmetric and that sparsity increases with configuration
size. The diagonal entries appear to be larger than off diago-
nal entries, although not enough for the matrix to be diago-
nally dominant. Studying the eigenvalue spectrums in Figure
7, reveals multiplicity greater than one for some non-zero
eigenvalues and a large number of zero eigenvalues, roughly
60 % for all three cases. The poor eigenvalue properties are
a direct result from over-determined systems and large mass
ratios. By this analysis, we expect non-unique solutions to
exist and to observe convergence to local minima.

The plots in Figure 8 show the convergence properties of
the natural merit function (35) when using the FN and PGS
methods. The cost of FN iterations are presented in units of
PGS iterations in order to aid the comparison. The conver-
gence is divided into normal and frictional components. The
division helps to visualize the effect of the semi-staggered
warm start heuristic and whether convergence problem are
due to frictional or normal components. Figure 8(a) shows
an improvement in both convergence and accuracy in sev-
eral orders of magnitude, when using the FN method. As

the complexity of the scene increases the benefit of using
the FN method decreases. In Figure 8(b) the FN method re-
mains superior on both convergence and accuracy for the
frictional contribution. When given enough iterations, the
PGS method almost achieves the same level of accuracy.
Figure 8(c) shows the convergence results for the most com-
plex test case. Both methods converge to local minima for
this test case, but in terms of accuracy the minimizer chosen
by the FN method is poorer than the one chosen by the PGS
method. However, the FN method converged using fewer it-
erations than PGS.

4.2. Interactive Setting

Figure 10 shows image sequences of a comparison of the
handling of large mass ratios, the FN method versus the PGS
method. As the images show, the fidelity and consistency
break down for the PGS method, where the FN method pro-
duces plausible results. In Figure 9 still frames from a larger
configuration are shown, the FN method is used to compute
contact forces. The FN method is still capable of delivering
interactive frame rates for small to medium sized configura-
tions.

5. Conclusion and Discussion

We have presented a novel Fischer reformulation of a contact
force problem for interactive physical simulation. To solve
the problem we have developed a novel Fisher–Newton (FN)
type method. We have evaluated and compared the new
method against the Projected Gauss–Seidel (PGS) method.

The FN method was able to compute solutions compara-
ble to the PGS method, both in terms of solution accuracy,
and in terms of computational effort. Regarding small sized
configurations, the FN method demonstrated superior abili-
ties in handling large mass ratios. To a lesser extend, the FN
method showed good abilities when applied to smaller stacks
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Figure 6: Fill patterns for the Ancp matrices of the three test cases. The color corresponds to magnitude of values, white is zero
and black is max(Ancp). Observe mostly black diagonal entries and increasing sparsity as configuration size grows.
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Figure 7: Distribution of eigenvalues in Ancp for the three test configurations. Observe a large amount of zero-valued eigenval-
ues, multiplicity and poor distribution.
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(c) Dense Structure

Figure 8: Comparative convergence plots of the Fischer–Newton method versus the Projected Gauss–Seidel method. Notice the
improved convergence properties of the Fischer–Newton method for the cases of large mass ratios and sparse structure. The
vertical line indicates the point where friction is enabled in the warm start approach.

Figure 9: Still frames from an interactive simulation of a medium sized configuration, with approximately 280 contact points
yielding 840 variables. The Fischer–Newton method is implemented in Java and uses 6 milliseconds on average per frame. The
program utilizes one core on a 2.1 GHz CPU Duo Core.

c© The Eurographics Association 2009.

112



M. Silcowitz, S. Niebe& K. Erleben / Fischer–Newton Method

(a) The Fischer–Newton method. Newton iteration limit 10, sub-system iteration limit 15, line-search iteration limit 7

(b) The Projected Gauss–Seidel method. 150 iterations per frame

Figure 10: Still frames from two comparative movie strips showing the success of the Fischer–Newton method in opposition to
the failure of the Projected Gauss–Seidel method. Captures was done every 30 frames. Even with a 150 iterations per frame,
the Projected Gauss-Seidel method fails to support the upper heavy box.

of 3-4 objects. The FN method proved to have convergence
problems when applied to setup where large friction forces
were present. Inclusion of friction results in greater amount
of over-determinacy. This over-determinacy is inherited by
the Newton equation. We speculate that the increased over-
determinacy is the cause of the inability to handle more com-
plex and frictionally dependent problems. One may apply
matrix damping to counter the numerical problems coming
from over-determinacy. However, it results in a damping of
the solution and little is gained in accuracy compared to us-
ing the computationally cheaper PGS method. Thus, future
work on Newton methods for contact force problems should
focus on how to deal efficiently with the over-determinacy
in the contact force problem.
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