
Per Christensen and Daniel Cohen-Or (Editors)

Interactive Time-Dependent Tone Mapping Using
Programmable Graphics Hardware

Nolan Goodnight, Rui Wang, Cliff Woolley, and Greg Humphreys

Department of Computer Science, University of Virginia

Abstract

Modern graphics architectures have replaced stages of the graphics pipeline with fully programmable modules.
Therefore, it is now possible to perform fairly general computation on each vertex or fragment in a scene. In
addition, the nature of the graphics pipeline makes substantial computational power available if the programs
have a suitable structure. In this paper, we show that it is possible to cleanly map a state-of-the-art tone mapping
algorithm to the pixel processor. This allows an interactive application to achieve higher levels of realism by
rendering with physically based, unclamped lighting values and high dynamic range texture maps. We also show
that the tone mapping operator can easily be extended to include a time-dependent model, which is crucial for
interactive behavior. Finally, we describe the ways in which the graphics hardware limits our ability to compress
dynamic range efficiently, and discuss modifications to the algorithm that could alleviate these problems.

Categories and Subject Descriptors (according to ACM CCS): I.3.1 [Computer Graphics]: Hardware Architecture—
Graphics Processors I.3.3 [Computer Graphics]: Picture/Image Generation—Display Algorithms I.4.8 [Image
Processing and Computer Vision]: Scene Analysis—Photometry I.4.1 [Image Processing and Computer Vision]:
Enhancement—Digitization and Image Capture

1. Introduction

Dynamic range is defined as the range of light intensities
present in a scene. In the real world, very large dynamic
ranges are commonplace, sometimes exceeding ten orders
of magnitude. It is quite easy to produce such an image on a
computer by using either a physically-based rendering sys-
tem or a combination of multiple photographs taken at differ-
ent exposures7. However, displaying these images presents
a challenge for computer graphics since most output de-
vices have a relatively small displayable dynamic range; fre-
quently only integer intensities between 0 and 255 are per-
mitted. This disparity has given rise to the field of tone map-
ping, whose broad goal is to optimize the mapping from an
image with a large dynamic range to a display with a small
dynamic range. Although the algorithms used to achieve this
goal are diverse, they all typically operate as an offline pro-
cess rather than in real-time: a high dynamic range (HDR)
image is either synthesized by a rendering system or re-
covered from multiple photographs, and then the tone map-
ping algorithm processes that image, eventually producing a

low dynamic range version. Improvements in CPU process-
ing power have recently led to impressive advancements in
this field, producing nearly artifact-free images that closely
mimic the local adaptation abilities of the human eye.

We have also seen a recent revolution in high-performance
graphics architecture. Previously fixed stages of the graph-
ics pipeline have been replaced with fully programmable
ones, giving the user complete control over the processing
of vertices or fragments. The primary purpose of this de-
sign change is to enable complex visual effects in interac-
tive graphics applications. Because of the streaming nature
of graphics hardware, the graphics processing unit (GPU)
is able to achieve extremely high computational rates; the
pixel pipeline on NVIDIA’s GeForce FX card are capable of
sustaining 51 GFLOPS24, which is roughly 8 times the com-
putational power of the fastest Pentium 4 available today.
Very recently, these programmable graphics pipeline stages
have become sufficiently general that non-traditional tasks
have been implemented on the GPU, such as ray-tracing,
sparse matrix solving, and motion planning12. These algo-

c© The Eurographics Association 2003.

Eurographics Symposium on Rendering 2003

26

http://www.eg.org
http://diglib.eg.org

Goodnight, Wang, Woolley, and Humphreys / Interactive Time-Dependent Tone Mapping Using Programmable Graphics Hardware

rithms perform extremely well on the GPU because they
are able to take advantage of the parallelism available in the
pixel-processing portion of the pipeline.

In this paper, we explore the potential for using this
programmability to add real-time tone mapping to interac-
tive graphics applications. This allows a substantial increase
in flexibility of application design and brings considerable
added realism to interactive visual simulation. Because of
the enormous computational power present in the GPU, we
have been able to implement a state-of-the-art tone mapping
algorithm at interactive rates. In our experiments, we found
that some algorithms are better suited to implementation on
a GPU than others. In particular, the photography-inspired
techniques of Reinhard et al.27 are especially well-suited to
an interactive GPU implementation; we will describe our
implementation in detail. We will also describe an alternate
algorithm for computing photographic zones that produces
qualitatively similar results but is much more amenable to a
fragment processor implementation.

Finally, we show that a GPU-based tone mapping algo-
rithm can easily be extended to contain a time-dependent
term using a technique very similar to the one described by
Durand and Dorsey9. This is important in an interactive set-
ting, because the average luminance in a scene can change
quickly (for example, when a bright light source suddenly
comes into view), and we would like to avoid temporal dis-
continuities in brightness. In practice, we have found that
having some amount of temporal adaptation is more impor-
tant than the details of the algorithm used to achieve it.

2. Background and Related Work

Scenes in the real world have a dynamic range that far ex-
ceeds the capabilities of 8-bit-per-channel output devices.
This is especially true of scenes that contain a combination
of indoor and outdoor elements, such as a room illuminated
through a window. A variety of tone mapping (or “tone re-
production”) algorithms exist to display these high dynamic
range (HDR) images on a low dynamic range device. Devlin
et al. give an excellent comprehensive review of research in
this area8.

2.1. Tone Mapping

Tone mapping operators are usually classified as either
global (spatially uniform) or local (spatially varying). Global
operators apply a single luminance transform function to ev-
ery pixel in the image. The simplest global operator is a
linear map between the HDR image and the range of the
output device. Linear scaling preserves relative contrast but
removes most details contained in the image due to uni-
form scaling. Tumblin and Rushmeier first proposed the idea
of tone mapping based on human perception; their method
preserves the overall impression of perceived brightness34.
Ward then proposed preservation of perceived contrast rather

than brightness36: his visibility-preserving operator maps the
smallest perceptible luminance difference in the HDR image
to the smallest perceptible luminance difference of the dis-
play device. In a later paper, Ward Larson et al. presented a
histogram adjustment technique based on the distribution of
local luminance adaptation in a scene20. This technique also
improves image realism by incorporating models for human
contrast sensitivity, glare, spatial acuity and color sensitiv-
ity. Tumblin et al. then introduced a new operator based on
the human visual adaptation process. Their operator decom-
posed an image into illumination and reflectance layers, then
compressed the illumination layer while preserving details
contained in the reflectance33.

Global operators are simple and computationally efficient,
but they have difficulty effectively preserving local contrast
in most HDR images. Local operators solve this problem by
using a spatially varying mapping, so two identical input lu-
minances may be mapped to different output values based
on properties of their local neighborhood.

Chiu et al. and Schlick presented early experiments in lo-
cal tone mapping4, 30. Jobson et al. and Pattanaik et al. later
presented multi-resolution techniques (such as a retinex-
based method) that attempted to mimic the behavior of the
human visual system16, 25. Tumblin and Turk developed the
Low Curvature Image Simplifier (LCIS) method, which uses
a formula inspired by anisotropic diffusion to detect gra-
dient discontinuities, thereby preserving much of the local
detail35. Their method works well, but can overemphasize
details and also requires the user to set many parameters.

Recently, Fattal et al. presented a new method based on at-
tenuating magnitudes of large luminance gradients10. Their
method is conceptually simple and computationally effi-
cient, although it does require the solution of a Poisson equa-
tion. Goodnight et al.11 have implemented this algorithm on
the GPU, though it does not run at interactive rates. Another
recent paper by Reinhard et al. uses an approach inspired by
Ansel Adams’s photographic “zone system”27. A summary
of their algorithm is presented in Section 2.3. This algorithm
maps particularly well to programmable graphics hardware
with a few modifications; our implementation of Reinhard’s
method is the primary focus of this paper.

Because of the computational complexity of tone map-
ping algorithms, interactive tone mapping techniques have
received relatively little attention to date. Scheel intro-
duced the application of tone reproduction in interactive
walkthroughs29. This was done by modifying Ward Lar-
son’s operators36, 20 and using textures to represent the lumi-
nance produced by global illumination rendering. However,
Scheel’s operator is still computationally demanding, and
this approach does not incorporate any time-dependent adap-
tation. The interactive tone mapping framework presented
by Durand and Dorsey9 uses a multi-pass scheme that in-
corporates adaptation, glare, and loss of acuity. They use a
global operator with time-dependent adaptation, incorporat-

c© The Eurographics Association 2003.

27

Goodnight, Wang, Woolley, and Humphreys / Interactive Time-Dependent Tone Mapping Using Programmable Graphics Hardware

ing a simple model for both light and chromatic adaptation.
We adopt their time-dependent light adaptation to simulate
the eye’s adaptation in a dynamic setting, but apply it in the
context of Reinhard’s local tone mapping operator.

2.2. Programmable Graphics Hardware

Modern graphics hardware such as the NVIDIA GeForce
FX24 and the ATI Radeon 9700 and 98002 provides a flex-
ible programming interface to the vertex and fragment por-
tions of the graphics pipeline. Programs specified to these
stages (known as shaders) execute in lockstep on a SIMD ar-
chitecture and enjoy substantially higher peak floating-point
performance than CPU programs. Although this computa-
tional horsepower has traditionally been used to enhance the
visual appearance of interactive 3D rendering, GPUs have
sufficient computational expressiveness to implement very
different algorithms, as demonstrated by Purcell et al.’s ray-
tracer that runs completely on graphics hardware26.

Programmable vertex processing has limited applicabil-
ity to general-purpose computation, because it cannot cur-
rently access memory (such as textures). Therefore, most
general-purpose GPU computation work to date has con-
centrated exclusively on the programmable pixel pipeline.
Even before programmability was added, special rasteriza-
tion techniques were used to accelerate such diverse ap-
plications as motion planning21, Voronoi diagrams15, and
radiosity6, 17. The addition of true fragment programmabil-
ity has enabled the acceleration of myriad applications, in-
cluding non-linear diffusion for solving partial differential
equations28, coupled-map lattices used to simulate boiling13,
and matrix multiplication19, 32.

Many of these techniques had to work around or toler-
ate quirks of the programmable graphics hardware, such as
limited precision or awkward programming models. Much
less awkward programming techniques and interfaces are
now possible, especially with the introduction of floating-
point support in the GeForce FX and Radeon 9700 and of
NVIDIA’s high-level Cg programming language22.

There has been little published research to date on in-
tegrating HDR images with a high-performance render-
ing pipeline. Cohen et al. represented and displayed high
dynamic range texture maps (HDRTMs) using graphics
hardware5. They first decompose 16-bit high dynamic range
textures into two 8-bit texture maps and then perform
dynamic exposure adjustment and gamma-correction of
HDRTMs using programmable multitexturing. While this
technique works well, it only uses a direct mapping from
a slice of the HDRTM’s range to the display, without per-
forming any sophisticated tone mapping algorithms.

2.3. Review of Reinhard’s Operator

We have chosen to implement the tone mapping operator of
Reinhard et al.27, although other operators could certainly be

implemented as well. Reinhard’s operator is based loosely
on the “zone system” in photography1. First, a global scaling
is applied that is analogous to setting an exposure level in a
camera. Suppose Lw(x,y) is world luminance of each pixel.
The log average luminance is then given by

Lw = exp

(

1
N ∑

x,y
log(δ+Lw (x,y))

)

(1)

where N is the number of pixels in the image, δ is a small
constant used to avoid numerical underflow when taking the
logarithm of black pixels. Lw is then mapped to the middle-
grey zone by scaling pixel luminance with:

L(x,y) =
a

Lw
Lw(x,y) (2)

where a is a “key value” indicating whether a given image
is subjectively light (high-key), normal, or dark (low-key). A
normal-key image typically uses a = 0.18, which is the same
value used by automatic exposure control in cameras.

Next, a simple global tone mapping operator is applied,
obtaining display luminances Ld(x,y):

Ld(x,y) =
L(x,y)

1+L(x,y)
(3)

This simple tone mapping operator appears to be sufficient
to preserve details in low contrast areas, and it is guaranteed
to bring all luminance within a displayable range of 0 to 1.
However, Reinhard observes that details can be lost in im-
ages with very high dynamic range, especially in very bright
regions. To counteract this effect, he uses a local contrast en-
hancement technique that is similar to photographic “dodg-
ing and burning”.

First, the image is convolved with a set of Gaussian con-
volution kernels defined at multiple spatial scales, giving a
set of responses Vi. Subtracting adjacent responses gives an
estimate of the local contrast at multiple spatial scales. Rein-
hard uses a center-surround function given by

Activity(x,y,si) =
V (x,y,si)−V (x,y,si+1)

2φa/s2
i +V (x,y,si)

(4)

to measure local contrast at a given scale si, using φ, which
is a sharpening parameter controlling edge enhancement (set
to 8.0 in the paper). Reinhard considers 8 scale levels; the
smallest scale s1 = 0.35 and si+1 = 1.6× si.

For each pixel, the center surround function is computed
from the lowest scale s1, until the first scale sm is found
which satisfies |Activity(x,y,sm)| > ε, where threshold ε is
set to 0.05 by default. Essentially, sm gives the largest area
around a given pixel where no sudden contrast changes oc-
cur. Hence V (x,y,sm) can be used as local area luminance,
replacing L(x,y) in the denominator of Equation 3:

Ld(x,y) =
L(x,y)

1+V (x,y,sm)
(5)

Because of the potential difference between Ld(x,y) and

c© The Eurographics Association 2003.

28

Goodnight, Wang, Woolley, and Humphreys / Interactive Time-Dependent Tone Mapping Using Programmable Graphics Hardware

Figure 1: Three images demonstrating different levels of lo-
cal contrast preservation. The left image is compressed with
the global transfer function, the middle with four adaptation
zones, and the right with eight zones.

V (x,y,sm), this new operator can retain substantial detail in
very bright or dark regions.

This operator is particularly attractive for hardware imple-
mentation for two reasons. First, the global transfer function
(Equation 3) is both simple to evaluate and highly effective
at compressing HDR into a viewable range. If we use only
the global operator, we can compress an image’s dynamic
range using a small number of rendering passes, simple frag-
ment programs, and without any context switching. In addi-
tion, Equation 3 involves only one global computation: the
log average luminance. Global computations are not partic-
ularly amenable to graphics hardware. For example, mod-
ern GPUs do not provide a mechanism for computing the
average pixel value in a buffer. In Section 4 we discuss a
straightforward reduction method that can be used to solve
this problem. However, the technique is relatively expensive
and so we would like to avoid operators that require even
more global information about the image.

Second, while the local dodging and burning technique
can be computationally expensive, the process lends itself to
adaptive refinement. In other words, we can vary the number
of adaptation zones depending on the level of detail we wish
to preserve. This allows us to trade off efficiency and accu-
racy, which can be crucial for interactive applications. This
idea is illustrated in Figure 1, which shows three images tone
mapped using Reinhard et al.’s operator. As we increase the
number of zones (from left to right) the computation time
also increases. However, we are able to better preserve the
detail in book text.

3. System Overview

Tone mapping algorithms require no high-level geometric or
textural information from the application in order to com-
press the final output. We can therefore decouple our tone
mapping system from any application that wants to use it.

3.1. Library API

Our system is implemented in a library that exports a small
API (shown in Table 1). The API can be used by an applica-
tion to compress its output prior to display. The application

tmInit Initializes the tone mapping system and
allocates video memory for storing in-
termediate results.

tmEnable Marks the start of rendering to be
compressed. This function retargets
all OpenGL calls to the floating-point
buffer allocated by tmInit.

tmDisable Turns off the tone mapping system and
returns the application’s rendering con-
text to the exact OpenGL state that ex-
isted at the time of tmEnable.

tmCompress Executes the actual tone mapping algo-
rithm. The compressed image is held in
a buffer local to the tone mapping sys-
tem.

tmBind Binds the output buffer of the tone
mapping system to a specified texture
unit. The application can then use that
texture to display the result or read the
data back for further processing or stor-
age.

Table 1: The interface between the application and our
tone mapping system. The system exports a simple API that
allows the application to control when its output is com-
pressed.

must first call tmInit() once during startup to initialize
the tone mapping system. During the application’s display
routine, a call to tmEnable() causes all OpenGL calls
to be redirected into an off-screen buffer in video memory
that is local to the tone mapping system. Once all rendering
is completed, the application uses tmCompress() to in-
voke the dynamic range compression algorithm. The results
of this algorithm are placed in another buffer, which can ei-
ther be bound to a texture unit using the tmBind() function
for display by the application or sent to the display on behalf
of the application by the library itself.

3.2. Data Layout

In many cases, it is not possible to represent high dynamic
range imagery using only 8-bit color precision. Floating-
point support is required to store the full range of the image
as well as to resolve small differences between pixel val-
ues. Because many tone mapping algorithms involve multi-
ple passes over the image, high precision is also necessary to
avoid the visual artifacts of error propagation. Fortunately,
graphics vendors have recently started to provide flexible
pixel buffers (pbuffers) that support multiple pixel formats,
including floating-point color representation. Pbuffers can
be rendering targets as well as texture inputs. Additionally,
each pbuffer can have several surfaces, which are exactly
akin to the front and back surfaces used for double-buffered

c© The Eurographics Association 2003.

29

Goodnight, Wang, Woolley, and Humphreys / Interactive Time-Dependent Tone Mapping Using Programmable Graphics Hardware

�������

����	��

����	�����

������

�����������

����������

������������

������

��������

�����������������

��������

����

�������

� !""!�#$%

��������

������

&��'����
�
(

������

��������

��������

������

&��'����
���
(

������

��������

�������

� !) !�%��*�����

+���������������

��������

���������

���'������� ���'�������

��������

���	����������

,������

,������-,������$

�������
���

��

Figure 2: A block diagram of our system for interactive tone mapping. Circular blocks represent shaders (or groups of shaders)
that perform a particular part of the algorithm; rectangular blocks represent intermediate data storage. The global operator
(Equation 3) is implemented using a single buffer (Buffer0) with multiple rendering surfaces. The local operator (Equation 5)
requires two additional buffers (Buffer1 and Buffer2) to compute the Gaussian convolutions. Note that the local operator dia-
gram illustrates one zone calculation (using level si and si+1 in the Gaussian pyramid); this process is repeated for subsequent
zones until all zones have been accumulated (0, ..., i + 1 in the figure). In general, the arrows represent data flow as governed
by the shaders. We only execute the dashed arrow paths (and all paths in Buffers 1 and 2) if we are running the local operator.

rendering. In our tone mapping system, we store all image
data in the surfaces of several floating-point pbuffers.

A high-level view of our shaders and the dataflow be-
tween them is presented in Figure 2. The system is divided
into two conceptual components. The first uses a single
pbuffer to store the initial HDR input from the application
as well as several intermediate calculations needed to com-
pute Reinhard’s global transfer function (Equation 3). The
second component requires two additional pbuffers, which
are used to compute Gaussian convolutions and accumulate
local adaptation zones for the local dodging-and-burning op-
erations. Arrows in the figure represent render passes, where
pixel data is manipulated and transferred between buffers.

4. Implementation

In this section we describe in detail how we compute Equa-
tion 3 (the global operator) and Equation 5 (the local op-
erator) in graphics hardware. All of our algorithms are im-
plemented using the OpenGL Architecture Review Board
(ARB) fragment and vertex instruction sets. In the follow-
ing text we frequently use the term buffer quite generally to
denote any form of rendering target. These buffers, as de-
scribed in the previous section, can be composed of multiple
4-channel surfaces. In many cases, implementation of the al-
gorithms will require rendering back and forth among these
surfaces to avoid reading from and writing to the same block

of memory, but we omit these details in our explanation of
the algorithms.

4.1. Global Operator

The global operator (Equation 3) is a monotonic, per-pixel
transfer function that maps world luminance to display lu-
minance. It is therefore quite simple to implement on the
GPU, requiring only a few render passes. This is illustrated
in the left half of Figure 2. Starting with the output from the
application, we transform into the luminance domain. In the
same pass, we compute the log luminance for every pixel,
storing the luminance in one output channel and the log lu-
minance in another. Unfortunately, computing the global av-
erage of the log luminance values requires a multi-pass ap-
proach in current hardware, which lacks any sort of global
accumulator. The most straightforward approach is to per-
form repeated downsamplings, averaging four neighboring
values down to one in each pass with a fragment shader; this
is exactly equivalent to building a mipmap for traditional tex-
tures and is the approach also used by Krüger et al.18. With
this method, the log(n)th pass (where n is width of the im-
age) results in a single value which is the log average lumi-
nance. This value is then read back into system memory and
bound as a parameter to the fragment processor. In a final
render pass, we access the world luminance Lw at each pixel
(as calculated in the first pass), scale it according to Equa-
tion 2, and then convert it to display luminance Ld accord-

c© The Eurographics Association 2003.

30

Goodnight, Wang, Woolley, and Humphreys / Interactive Time-Dependent Tone Mapping Using Programmable Graphics Hardware

������

���	

�
��
�

��
�
�
�

������

�
��
�

��
�
�
�

������

�
��
�

��
�
�
�

� �

�	 ���	�	 ���	�	

����������� ��������������������������

����

����

���� ����

��������

��������

Figure 3: A block diagram illustrating how we perform
Gaussian convolutions on the GPU. We store each 4-vector
element of a 1× n filter kernel in system memory and bind
the values as parameters to the fragment pipeline. Likewise,
we compress the image (scalar luminance) into a 4-channel
texture map (shown in the bottom right). In this figure, the
register used to store each element of the kernel is labeled c0.
We bind the source image to texture unit 0 and accumulate
previous results from texture unit 1. Arrows that correspond
to the same render pass share the same drawing pattern.

ing to Equation 3. To recover the compressed RGB display
value, we scale the display luminance according to:

Rd =

(

Rw

Lw

)α
Ld ,Gd =

(

Gw

Lw

)α
Ld ,Bd =

(

Bw

Lw

)α
Ld (6)

where α controls the saturation of the recovery; typical val-
ues of α are 0.4∼0.8.

4.2. Local Operator

Reinhard’s local tone mapping operator (Equation 5) pre-
serves detail by adding a local-area luminance term to Equa-
tion 3. In order to evaluate the center-surround function
(Equation 4) used to determine local adaptation, we must
first perform a series of Gaussian convolutions on the GPU.
For large images or large kernels, it would be more efficient
to perform this calculation in frequency space, where the
convolutions can be replaced with a per-pixel multiplication,
but this would require an implementation of FFT in hard-
ware, and such a method has only recently been developed;
see Moreland and Angel23 for details. The OpenGL image
subset extension provides methods for performing separable
convolutions in the frame buffer31 as an alternative, but sup-
port for this extension is missing on our target platform. We
therefore found it necessary to implement an algorithm for
performing arbitrary-sized convolutions on the GPU.

For example, given a 1× n filter kernel, we can express
convolution at a point as a sum of 4-vector products. Since
most GPU assembly languages provide a highly optimized

4-vector dot product instruction, we can perform convolu-
tions efficiently by transforming a scalar-valued image into
an array of 4-vectors. We start by binding four offsets as pa-
rameters to the vertex processor. These offsets correspond to
the position of the filter kernel relative to the image. For ex-
ample, in each dimension we define offsets that start at −n/2
and ultimately span the interval −n/2 to n/2. We then ras-
terize an image-sized quad to generate fragments. The off-
sets are used by the rasterizer to generate four sets of texture
coordinates for every pixel in the source image, each corre-
sponding to an adjacent pixel. We load those four adjacent
pixel values into a single 4-vector floating-point register. By
storing part of the filter kernel in another register we can
compute a portion of the convolution with a simple dot prod-
uct. In the next render pass, we repeat this process using the
next 4-vector element of the kernel and corresponding ver-
tex offsets, accumulating the results of each of these passes
as we go along. The entire process is illustrated in Figure 3,
which shows the three render passes required to convolve
with a 1× 11 Gaussian kernel. The process is identical for
arbitrary-sized filters; for symmetry, we pad each kernel with
zeros until it is a multiple of four.

Using the method just described, we can filter an image
with an n × n separable kernel in n/2 + 2 render passes.
We found that in some cases, however, it is more efficient
to compute multiple 4-vector products per render pass. This
approach reduces the number of passes required to compute
a convolution, thus reducing any overhead associated with
binding new shaders, parameters, or textures. As an exam-
ple, consider a 49× 49 Gaussian kernel. Using the method
above, it would take 26 passes to convolve this kernel with
any size image. By exploiting the rasterizer’s capability of
generating multiple texture coordinates per fragment and
binding multiple 4-vector components of the kernel as frag-
ment pipeline parameters, we can perform three dot products
per pass instead of the single one described above. This re-
duces the total number of passes by more than half. Note,
however, that the speedup in practice is only about 25%; we
have not fundamentally reduced the number of computations
required or the amount of memory accessed.

We also experimented with storing several kernels in a
single 2D RGBA floating-point texture rather than in system
memory. In this context, we can use the texture coordinate
in one dimension to choose the appropriate kernel, while us-
ing the other dimension to access specific 4-vector elements
of the kernel. While this eliminates the need to repeatedly
transfer the kernel from system memory to GPU registers, it
requires that we perform an extra texture lookup in the frag-
ment program. This additional texture memory access actu-
ally caused the algorithm to run slower, suggesting that the
system is memory-bandwidth limited. Further optimizations
would therefore require that we reduce texture memory ac-
cesses in some way, perhaps by combining reads in a method
similar to the one used by Bolz et al.3. We discuss this further
in Section 6.1.

c© The Eurographics Association 2003.

31

Goodnight, Wang, Woolley, and Humphreys / Interactive Time-Dependent Tone Mapping Using Programmable Graphics Hardware

While performing any kind of convolution, it is im-
portant to properly deal with boundary conditions. In our
current implementation, we use the common approach
of replicating boundary pixels for all data access that
falls outside the bounds of the image. In graphics hard-
ware, all access to the image domain is through normal-
ized (0 to 1) texture coordinates. We replicate boundary
pixels by setting the GL_TEXTURE_WRAP parameter to
GL_CLAMP_TO_EDGE, which guarantees that all texture
coordinates outside the normal range return boundary val-
ues for a given texture.

4.3. Calculating adaptation zones on the GPU

With a GPU-based method for performing large kernel con-
volutions, we can easily compute V (x,y,si) for any level si
in a Gaussian pyramid. We could start by pre-allocating the
entire pyramid s0,s1, ...,si, storing each level in a separate
buffer, but this could result in the use of large amounts of
video memory, especially if the image is screen-size. All that
is necessary to determine a pixel’s zone is the difference be-
tween neighboring levels in the pyramid, so we can perform
all filtering computation using just two buffers. In addition to
being memory-efficient, this approach makes it easy to dy-
namically decide how many zones to calculate without hav-
ing to transfer pixel data among several rendering contexts.

Although we can compute all the adaptation zones using a
single pass given sufficient hardware resources, this requires
extensive use of conditionals in the fragment shader. We
would need to evaluate the center-surround function at ev-
ery resolution in the Gaussian pyramid, using conditionals at
each level. Because fragment programs execute in lock-step
on a SIMD architecture, conditionals are very expensive; all
execution paths are evaluated on all fragments. Furthermore,
such a fragment shader would have to have simultaneous ac-
cess to all levels in the Gaussian pyramid, meaning we would
have to precompute every filtered image and bind them as in-
put textures before calculating zones. In order to avoid these
complications, we build the adaptation zone map in multiple
passes using a cumulative process.

In a given render pass, we mark all pixels correspond-
ing to a single zone. This process involves four buffers: two
buffers used to store adjacent levels in the Gaussian pyramid
and two buffers for accumulating adaptation zones. For ex-
ample, if we have already calculated zone i, we can calculate
zone i+1 using the following steps:

1. Filter the scaled luminance according to level si+2 in the
Gaussian pyramid.

2. Set the zone buffer used to store zones 0, ..., i−1 as the
render target.

3. Bind Gaussian pyramid level si+1 (filtered in the previous
pass) and si+2 as well as the remaining zone buffer as
input textures.

4. Render an image-sized quad with the zone computation
fragment shader activated.

��������

��������

��������

��������

	�

	�

	

	�

	����

	����

�������

��������

�������

	����

Figure 4: An illustration of how we accumulate adaptation
zones in graphics hardware. We use two buffers to store ad-
jacent levels in a Gaussian pyramid, which is labeled s0
through s3. The zone information is accumulated using an-
other two buffers which we use as alternating render targets.
The arrows in the figure are drawn with different patterns
to distinguish each render pass. Arrows entering the shader
block represent input textures for that particular pass.

The shader we use to calculate zones is a straightforward
implementation of a center-surround threshold. For every
pixel where |Activity(x,y,si)| > ε, we output the luminance
from level si to the target buffer. A texture lookup on the in-
put zone buffer allows us to determine whether each pixel
has already been assigned a zone; those that have are copied
through to the target buffer. Pixels for which no zone has
previously been selected and which are not chosen for the
current zone by the above inequality are left unmodified and
empty in the target buffer using the fragment kill operation
of the graphics hardware. This process is illustrated in Fig-
ure 5 for the calculation of three zones using a total of four
levels in the Gaussian pyramid.

Figure 5 shows false-color visualizations of a zone map;
one image is computed using our software implementation
of Reinhard’s local operator (Equation 5), and the other is
computed in hardware. A total of eight zones is shown;
darker region represent larger discontinuities in the lumi-
nance. The images are nearly identical; the small disparity
is due to floating-point imprecision on the GPU (see Sec-
tion 5.2 for an error analysis).

4.4. Time-Dependent Model

Interactive applications can often suffer from large temporal
discontinuities in dynamic range (when, for example, a light
source comes into view). We would like our tone mapping
algorithm to smooth those discontinuities over time in or-
der to create a more natural and plausible-looking animation.
To do this, we have incorporated a model of time-dependent
adaptation proposed by Durand and Dorsey9. The details of

c© The Eurographics Association 2003.

32

Goodnight, Wang, Woolley, and Humphreys / Interactive Time-Dependent Tone Mapping Using Programmable Graphics Hardware

Figure 5: False-color visualizations of the adaptation zones
map as generated using Reinhard’s local operator (Equa-
tion 5). Each of the eight zone values is normalized between
0 and 1, where darker regions represent lower levels in the
Gaussian pyramid. We use 0.05 for the activity threshold.
The image on the left is generated in software, and the image
on the right is from our GPU implementation. The two im-
ages are nearly identical; differences arise due to the GPUs
limited floating-point precision.

this model can be found in their paper; we summarize the
key points below.

This model simulates both multiplicative and subtractive
light adaptation by applying a global multiplicative scale
factor m during the mapping from world luminance Lw
to display luminance Ld (Ld = mLw). When the dynamic
range changes suddenly, sensitivity recovery is simulated by
changing m with an exponential filter: dm

dt = m∗

−m
τ , where

m∗ is the unmodified scale factor that would be used without
time-dependent adaptation, and τ is a parameter controlling
how fast the viewer will adapt to changes in light intensity.

To use this model in our GPU-based system, we apply the
exponential filter to the log average luminance (Lw) for each
frame. Recall that Reinhard’s operator first scales world lu-
minance by a

Lw
(see Equation 2), mapping the overall bright-

ness of the image to a subjective key value a for display.
Modulating the log average luminance by the exponential
filter is therefore equivalent to controlling the gain m in Du-

rand’s case. We therefore use dLw
dt =

L∗

w−Lw
τ to simulate light

adaptation, where L∗

w is the target log average luminance.

Although this is a simple model of adaptation and is not
physically based (Durand and Dorsey give more involved
models that more closely mimic the human eye), it pro-
duces qualitatively reasonable results. Our experience has
been that the presence of a time adaptation model is much
more important than the details of the model itself, since the
visual content often changes much more quickly than the
dynamic range.

5. Results

All of our experiments have been conducted using the ATI
Radeon 9800 Pro graphics card. This architecture supports
medium-precision (24-bit) floating-point computations and
texture maps. All example images and timing reports were
recorded on a dual-processor AMD Athlon 1800+ MP sys-
tem with 512MB of memory running Windows XP.

To test our implementation, we developed an OpenGL ap-
plication that uses high dynamic range textures. The appli-
cation first creates a window of the same size as the HDR
image to be compressed. The application then renders a full-
window quad that is textured with the HDR image. Without
tone mapping, the output is clamped to the range of 0 to 1.
Our application allows the user to pan a “tone map window”
over the image to run our algorithm on a subset of the full
HDR image. This allows us to test our time-dependent model
easily by panning between dark and bright regions. Our algo-
rithms are invoked simply by drawing the tone map window
quad with our pixel shaders. Figure 6 shows a screenshot of
this test application. The background image is a direct output
to the application’s frame buffer; the smaller viewport shows
the tone mapped portion of the image.

5.1. Performance

In this section we discuss the performance of our GPU-based
tone mapping system. The graph in Figure 7 gives frame

Figure 6: A 1024× 1024 HDR image from inside the Ro-
tunda at U.Va. The dynamic range is roughly 150,000:1. The
background is clamped to the range of 0 to 1; the smaller
image (512×512) is compressed using our hardware imple-
mentation of Equation 3.

c© The Eurographics Association 2003.

33

Goodnight, Wang, Woolley, and Humphreys / Interactive Time-Dependent Tone Mapping Using Programmable Graphics Hardware

0 2 4 6 8
Number of Adaptation Zones

0.1

1

10

100

1000

Fr
am

es
 P

er
 S

ec
on

d
256x256 (GPU) 256x256 (CPU)

512x256 (GPU) 512x256 (CPU)

512x512 (GPU) 512x512 (CPU)

Figure 7: A log graph of frame rate achieved by our sys-
tem compared to frame rate of a CPU implementation of the
same algorithms. The curves show data for three different
image resolutions and zones ranging from zero to eight. For
the 256× 256 case, we can maintain >20 fps in all cases.
However, for 512× 512 the frame rate is not quite interac-
tive for a large number of zones.

rates achieved by our system as well as frame rates for the
same algorithms implemented in software. We should note
that our CPU implementation is by no means highly opti-
mized, but it is reasonably efficient. As with the GPU, we
build the Gaussian pyramid using spatial convolutions in-
stead of more efficient frequency space techniques (as used
by Reinhard et al.). In addition to this we use a relatively
expensive recovery function (Equation 6). However, the two
implementations are consistent with regard to complexity.

In the case of the global operator (zero zones), we are able
to achieve extremely high frame rates for all of the listed im-
age resolutions. This is not really surprising considering the
simplicity of the transfer function. In fact, we found that for
the global operator a substantial portion of the computation
is spent building the mipmap. For example, disabling this
step resulted in roughly a 60% speedup in some cases. How-
ever, as the number of zones increases, adding local adapta-
tions, the Gaussian convolutions quickly become the bottle-
neck. To compute eight zones we must convolve with filter
kernels ranging from 3 × 3 pixels to 49 × 49 pixels. Even
with an efficient GPU-based convolution algorithm, such
large kernels prevent us from maintaining real-time frame
rates on today’s hardware. With eight adaptation zones, our
system runs at around 5 Hz for a 512×512 image and 20 Hz
at 256× 256. While 5 frames per second is not interactive,
it does showcase the sheer computational power of the frag-
ment hardware, and real-time frame rates (>30 Hz) are eas-
ily achievable if we limit ourselves to smaller image reso-
lutions or a smaller number of zones. A gallery of results

at 512× 512 generated at roughly 30 Hz each is shown in
Plate 1.

The given frame rates are calculated from the time taken
to run the tone mapping algorithm in hardware. The overall
frame rate would obviously be lower when we factor in the
time taken by the application itself. The sudden falloff in
frame rate when we move from the global operator to the
local one is simply due to additional overhead incurred in
the local case (significantly more memory reads and writes
must occur to prepare for the zone calculations).

5.2. Accuracy

Tone mapping algorithms can be quite susceptible to nu-
meric imprecision, and this is especially true for local oper-
ators because of their computational complexity. For exam-
ple, without sufficient precision when evaluating the center-
surround function, it is possible that some pixels will be
assigned incorrect adaptation zones. This can introduce un-
pleasant visual artifacts such as halos in the compressed im-
age. Because local operators tend to require significantly
more computation that global operators, any shortcomings
in precision can bring about compounded error. In order
to avoid these problems, software implementations of tone
mapping algorithms typically store data and perform all cal-
culations using IEEE (32-bit) single-precision floats. How-
ever, our target GPU architecture, ATI’s Radeon 9800, only
supports 24-bit floating-point computations. In an effort to
quantify the effects of this limited precision, we have run a
series of experiments comparing output from the GPU to a
software implementation of the same algorithm. To compare
the results, we evaluate Root Mean Squared (RMS) percent
error between the CPU and GPU implementations as:

errorRMS % =

√

√

√

√

1
n ∑

x,y

[

pcpu(x,y)− pgpu(x,y)
pcpu(x,y)

]2

(7)

where n is the number of pixels in the image and p(x,y) is
the pixel value. We also evaluate the mean percent error as:

errorMean % =
1
n ∑

x,y

∣

∣

∣

∣

pcpu(x,y)− pgpu(x,y)
pcpu(x,y)

∣

∣

∣

∣

(8)

Table 2 gives error calculations for images resulting from
several stages in the algorithm.

The scaled luminance error takes into account all numeric
inaccuracies accumulated by the repeated averaging tech-
nique as well as the transform to luminance space. Given
the simplicity of these computations, we would expect this
error to be small, and our experiments verified that this is
in fact the case. The convolution examples show the effects
of 24-bit floating-point precision over the course of many
rendering passes. Naturally, the image that was filtered with
the larger kernel contains more error. The local area lumi-
nance image has a much higher percent error than the previ-
ous examples. This is due to the fact that even small errors

c© The Eurographics Association 2003.

34

Goodnight, Wang, Woolley, and Humphreys / Interactive Time-Dependent Tone Mapping Using Programmable Graphics Hardware

Image (computation) RMS % error mean % error

Scaled luminance 0.022 % 0.022 %
Convolution (5×5) 0.026 % 0.026 %
Convolution (49×49) 0.032 % 0.032 %
Local area luminance 4.552 % 0.764 %
Final image 1.051 % 0.177 %

Table 2: RMS percent error and mean percent error for dif-
ferent stages in our GPU implementation of Reinhard et al’s
local tone mapping operator. These values are calculated by
treating the output from our CPU implementation as the ac-
cepted value. The relatively large RMS percent error for the
local area luminance image can be attributed to slight vari-
ation in the number of pixels in each zone.

in the threshold comparison can cause slight variations in the
boundaries between zones. In other words, if the width of the
Gaussian kernel increases significantly between levels in the
pyramid (as it does in this algorithm), small finite difference
errors can result in large errors in the local area luminance
image. Fortunately, we have found that the visual impact of
this is more or less negligible, and the error in the final tone
mapped image is significantly smaller.

6. Discussion

We have shown that the graphics pipeline has sufficiently
evolved to support sophisticated tone mapping algorithms
and compress images at interactive rates. This is not a
panacea, however. Many questions remain, including when
interactive tone mapping is most effective, and which tone
mapping algorithms are best suited to interactive applica-
tions.

6.1. Optimizations

A troublesome aspect of GPU programming is that it re-
quires exceedingly careful optimization in order to extract
the performance we would expect. A number of factors con-
tribute to this problem, such as memory bandwidth, driver
overhead (especially context-switching overhead), etc. Ap-
proaches to these problems have been explored at length in
several recent papers, including Bolz et al.3 and Goodnight
et al.11.

Of particular note is a caveat to the use of pbuffers, which
is that they cannot share a rendering context with the applica-
tion. Context switching can become a serious bottleneck for
an algorithm that must transfer data among a large number
of buffers. We have minimized context switching by allocat-
ing pbuffers with multiple rendering surfaces (GL_FRONT,
GL_BACK, GL_AUXi, etc.), all of which share the same ren-
dering context. While we have been able to implement large
portions of our tone mapping algorithm using only a small

number of buffers for data storage, some amount of context
switching is unavoidable.

The remaining major bottleneck is certainly memory
bandwidth, as we would expect in these types of algorithms.
Memory accesses can be reduced somewhat by more tightly
packing the data3, a technique that works well for a number
of general-purpose GPU algorithms. In the case of interac-
tive tone mapping, however, this data packing step (and the
associated unpacking afterward) would have to occur once
per frame, making it unclear that such a technique would
give a significant speedup.

6.2. The Effect of Varying Frame Rate on Our
Time-Dependent Model

Obviously, we only have an opportunity to apply our tone
mapping algorithm once per frame. When we apply the ex-
ponential filter described in Section 4.4, we need an estimate
of the elapsed time ∆t in order to determine how much to
change the gain m. If the frame rate is very high, then ∆t is
low and m changes smoothly over time, giving a very con-
vincing impression of adaptation.

If, however, the application’s frame rate is low, then using
elapsed wall-clock time in our time-dependent model gives
rise to large luminous discontinuities. Although applications
with low frame rates tend to have large spatial discontinu-
ities which severely detract from the user experience, com-
pounding that problem with visual adaptation discontinuities
seems to make the experience quite unpleasant.

It is therefore advisable to establish some maximum es-
timate of elapsed time when applying a time-dependent
model. If the frame rate drops below some threshold, the
estimated elapsed time will then remain fixed. This has the
effect of slowing down the adaptation with respect to wall-
clock time, but the effect appears much less upsetting to the
user. Other heuristics such as boosting the value of τ if the
frame rate gets too low might be fruitful as well, but the key
is to avoid severe adaptation discontinuities.

7. Conclusion and Future Work

We have described our implementation of a state-of-the-
art tone mapping algorithm using programmable graphics
hardware. Our time-dependent version of Reinhard’s pho-
tographic tone reproduction algorithm achieves high refresh
rates. In addition, our ability to add a time-dependent term
to the tone mapping algorithm makes it quite suitable for in-
teractive simulation.

There are a number of directions for future work. First,
we would like to implement our algorithm as a non-
invasive add-on for unmodified OpenGL applications using
the Chromium framework14. It should be straightforward to
allow an unmodified application to render directly into a
floating-point texture, and we can then apply our algorithm

c© The Eurographics Association 2003.

35

Goodnight, Wang, Woolley, and Humphreys / Interactive Time-Dependent Tone Mapping Using Programmable Graphics Hardware

whenever the application swaps buffers. This would allow
anyone to experiment with the use of high dynamic range
textures in an interactive application. We could thus allow
existing games like Id Software’s Quake III: Arena to use
special floating-point texture maps to draw very bright re-
gions such as explosions or the sun. In addition, our OpenGL
replacement could enable a vertex program to compute a
standard OpenGL lighting model without clamping, allow-
ing an ordinary OpenGL program to benefit from HDR ren-
dering without requiring selective texture replacement. Be-
cause the tone mapping algorithms require no high-level in-
formation from the application, any application could imme-
diately benefit from a real-time tone adaptation model.

Second, it would be useful to design an extended API so
that HDR-aware applications could control the tone mapping
subsystem. For example, the API could allow users to con-
trol tone mapping parameters such as the “key level” a and
threshold ε in Reinhard’s algorithm. Applications might also
desire to damp the HDR compression level near the extremes
of the dynamic range to let more or less of the image wash
out. More generally, we would like to explore the extent to
which rapid interactive change affects the perceptual utility
of precise tone mapping. Providing a feedback mechanism
for the application to control performance by specifying how
aggressively to preserve detail would be would be necessary
to conduct such experiments.

Acknowledgments

We would like to thank Mark Segal and James Percy at ATI
and David Kirk, Pat Brown, Matt Papakipos, Nick Triantos,
and Matt Pharr at NVIDIA for providing early cards and ex-
cellent driver support; Mark Harris, Aaron Lefohn, and Ian
Buck for productive discussions on general-purpose GPU
computation; and the anonymous reviewers for their thor-
ough and constructive comments.

References

1. Ansel Adams. The Print. Little, Brown and Company,
1983.

2. ATI. Radeon 9700 Pro, 2002. http://mirror.
ati.com/products/pc/radeon9700pro/.

3. Jeff Bolz, Ian Farmer, Eitan Grinspun, and Peter
Schröder. Sparse matrix solvers on the GPU: Conjugate
gradients and multigrid. ACM Transactions on Graph-
ics, 22(3), July 2003.

4. Ken Chiu, Michael Herf, Peter Shirley, S. Swamy,
Changyaw Wang, and Kurt Zimmerman. Spatially
nonuniform scaling functions for high contrast images.
In Proceedings of Graphics Interface 1993, pages 245–
253, May 1993.

5. Jonathan Cohen, Chris Tchou, Tim Hawkens, and Paul

Debevec. Real-time high-dynamic range texture map-
ping. In Proceedings of Eurographics Workshop on
Rendering, pages 313–320, June 2001.

6. Michael F. Cohen, Donald P. Greenberg, David S. Im-
mel, and Philip J. Brock. An progressive refinement ap-
proach to fast radiosity image generation. In Proceed-
ings of SIGGRAPH 1988, pages 75–84, August 1988.

7. Paul Debevec and Jitendra Malik. Recovering high dy-
namic range radiance maps from photographs. In Pro-
ceedings of SIGGRAPH 1997, pages 369–378, August
1997.

8. Kate Devlin, Alan Chalmers, Alexander Wilkie, and
Werner Purgathofer. STAR: Tone reproduction and
physically based spectral rendering. In Proceedings of
Eurographics 2002, pages 101–123, September 2002.

9. Frédo Durand and Julie Dorsey. Interactive tone map-
ping. In Eurographics Workshop on Rendering, pages
219–230, June 2000.

10. Raanan Fattal, Dani Lischinski, and Michael Werman.
Gradient domain high dynamic range compression.
ACM Transactions on Graphics, 21(3):249–256, July
2002.

11. Nolan Goodnight, Cliff Woolley, Gregory Lewin,
David Luebke, and Greg Humphreys. A multi-
grid solver for boundary value problems using pro-
grammable graphics hardware. In Proceedings of SIG-
GRAPH/Eurographics Workshop on Graphics Hard-
ware, July 2003.

12. Mark Harris. GPGPU: General-purpose computation
using graphics hardware, 2003. http://www.cs.
unc.edu/~harrism/gpgpu.

13. Mark J. Harris, Greg Coombe, Thorsten Scheuermann,
and Anselmo Lastra. Physically-based visual simula-
tion on graphics hardware. In Proceedings of SIG-
GRAPH/Eurographics Workshop on Graphics Hard-
ware, pages 109–118, August 2002.

14. Greg Humphreys, Mike Houston, Ren Ng, Sean Ah-
ern, Randall Frank, Peter Kirchner, and James T.
Klosowski. Chromium: A stream processing frame-
work for interactive graphics on clusters of worksta-
tions. ACM Transactions on Graphics, 21(3):693–702,
July 2002.

15. Kenneth E. Hoff III, John Keyser, Ming C. Lin, Dinesh
Manocha, and Tim Culver. Fast computation of gener-
alized Voronoi diagrams using graphics hardware. In
Proceedings of SIGGRAPH 1999, pages 277–286, Au-
gust 1999.

16. Daniel J. Jobson, Zia ur Rahman, and Glenn A. Wood-
ell. A multiscale retinex for bridging the gap between
color images and the human observation of scenes.

c© The Eurographics Association 2003.

36

Goodnight, Wang, Woolley, and Humphreys / Interactive Time-Dependent Tone Mapping Using Programmable Graphics Hardware

IEEE Transactions on Image Processing, 6(7):965–
976, July 1997.

17. Alexander Keller. Instant radiosity. In Proceedings of
SIGGRAPH 1997, pages 49–56, August 1997.

18. Jens Krüger and Rüdiger Westermann. Linear algebra
operators for GPU implementation of numerical algo-
rithms. ACM Transactions on Graphics, 22(3), July
2003.

19. E. Scott Larsen and David K. McAllister. Fast matrix
multiplies using graphics hardware. In Proceedings of
IEEE Supercomputing 2001, November 2001.

20. Greg Ward Larson, Holly Rushmeier, and Chistine Pi-
atko. A visibility matching tone reproduction operator
for high dynamic range scenes. IEEE Transactions on
Visualization and Computer Graphics, 3(4):291–306,
October-December 1997.

21. Jed Lengyel, Mark Reichert, Bruce R. Donald, and
Donald P. Greenberg. Real-time robot motion planning
using rasterizing computer graphics. In Proceedings of
SIGGRAPH 1990, pages 327–335, July 1990.

22. William R. Mark, Steve Glanville, and Kurt Akeley. Cg:
A system for programming graphics hardware in a C-
like language. ACM Transactions on Graphics, August
2003.

23. Kenneth Moreland and Edward Angel. The FFT on a
GPU. In Proceedings of Graphics Hardware 2003, July
2003.

24. NVIDIA. GeForceFX, 2003. http://www.
nvidia.com/view.asp?PAGE=fx_desktop.

25. Sumanta N. Pattanaik, James A. Ferwerda, Mark D.
Fairchild, and Donald P. Greenberg. A multiscale
model of adaptation and spatial vision for realistic im-
age display. In Proceedings of SIGGRAPH 1998, pages
287–298, July 1998.

26. Tim Purcell, Ian Buck, William Mark, and Pat Hanra-
han. Ray tracing on programmable graphics hardware.
ACM Transactions on Graphics, 21(3):703–712, July
2002.

27. Erik Reinhard, Michael Stark, Peter Shirley, and Jim
Ferwerda. Photographic tone reproduction for digital
images. ACM Transactions on Graphics, 21(3):267–
276, July 2002.

28. Martin Rumpf and Robert Strzodka. Nonlinear dif-
fusion in graphics hardware. In Proceedings of Eu-
rographics/IEEE TCVG Symposium on Visualization,
pages 75–84, May 2001.

29. Annette Scheel, Marc Stamminger, and Hans-Peter Sei-
del. Tone reproduction for interactive walkthroughs.
Computer Graphics Forum, 19(3):301–312, August
2000.

30. Christophe Schlick. Quantization techniques for visual-
ization of high dynamic range pictures. In Proceedings
of Eurographics Workshop on Rendering, pages 7–20,
June 1994.

31. Mark Segal and Kurt Akeley. The OpenGL Graphics
System: A Specification (Version 1.2.1). 1999. ftp:
//ftp.sgi.com/opengl/doc/opengl1.2/.

32. Chris J. Thompson, Sahngyun Hahn, and Mark Os-
kin. Using modern graphics architectures for general-
purpose computing: A framework and analysis. In Pro-
ceedings of IEEE/ACM International Symposium on
Microarchitecture, pages 306–317, November 2002.

33. Jack Tumblin, Jessica K. Hodgins, and Brian K.
Guenter. Two methods for display of high contrast
images. ACM Transactions on Graphics, 18(1):56–94,
January 1999.

34. Jack Tumblin and Holly E. Rushmeier. Tone reproduc-
tion for realistic images. IEEE Computer Graphics and
Applications, 13(6):42–48, November 1993.

35. Jack Tumblin and Greg Turk. LCIS: A boundary hier-
archy for detail-preserving contrast reduction. In Pro-
ceedings of SIGGRAPH 1999, pages 83–90, August
1999.

36. Greg Ward. A Contrast-based Scalefactor for Lumi-
nance Display. In Graphics Gems IV, chapter VII.2,
pages 415–421. Academic Press, 1994.

c© The Eurographics Association 2003.

37

Goodnight, Wang, Woolley, and Humphreys / Interactive Time-Dependent Tone Mapping Using Programmable Graphics Hardware

4 : 1 53 : 1

56 : 1 140 : 1

621 : 1 905 : 1

Plate 1: A series of 512×512 HDR images that have been tone mapped on the GPU using Equation 5. Underneath each image
is the compression ratio achieved by our algorithm using two adaptation zones. All images were generated at nearly 30 Hz.

c© The Eurographics Association 2003.

295

