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Abstract

Processing point clouds often requires information about the point neighbourhood in order to extract, calculate and determine
characteristics. We continue the tradition of developing increasingly faster neighbourhood query algorithms and present a highly
efficient algorithm for solving the exact neighbourhood problem in point clouds using the GPU. Both, the required data structures
and the KNN query, are calculated entirely on the GPU. This enables real-time performance for large queries in extremely
large point clouds. Our experiments show a more than threefold acceleration, compared to state-of-the-art GPU based methods
including all memory transfers. In terms of pure query performance, we achieve over 10° answered neighbourhood queries per
millisecond for 16 nearest neighbours on common graphics hardware.
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1. Introduction

A multitude of algorithms in various domains rely on finding the
k nearest neighbours (kKNN) of a query in a data set, including
databases, machine learning, computer vision, computational ge-
ometry, robotics, computer graphics or physical simulations. The
size of data sets has increased enormously in recent years. Improved
scanning technologies have led to the ability to scan huge envi-
ronments or objects in extremely high resolution. Since such point
clouds rarely have more information than an additional vertex nor-
mal, various algorithms have to be applied to the scan data, e.g.
registration of several data sets, calculation or smoothing of sur-
face normals, removal of residual noise and outliers from the scan-
ning process, sub-sampling, segmentation, reconstruction and fea-
ture matching. These almost always require finding the k nearest
neighbours for each data set point, which is a very expensive and
time-consuming step and a challenge for real-time capability. To
cope with a large amount of data in as little time as possible, the
trend is to use GPUs to accelerate such costly steps, as they have
established themselves as a reliable co-processor of the CPU for
highly data-parallel applications.

Our contribution is a performance improvement over previous
solutions running on the GPU to enable real-time performance for

exact kNN queries even in dynamic scenarios. To achieve this, we
create and optimize a spatial acceleration data structure for point-
clouds and use a SIMD register-memory based priority queue for
kNN search. Both, construction of the data structure and the query
are executed entirely on graphics hardware, thus, avoiding expen-
sive memory-copy bottlenecks. Our experiments with synthetic as
well as real-world data sets show that our approach is scaleable
and on average about 3.3 times faster compared to state-of-the-art
methods.

2. Problem Statement

Nearest neighbour search describes the similarity search in data
sets. Consider the metric space S, a data set X = (x;,...,x,) C
S, a query set Q=1(q,...,9,) € S and a distance metric
m: §? — 9. The k-nearest neighbour search then is the task of
finding the k closest (w.r.t. m) data points to each g € Q from the
data set X.

High-dimensional metric spaces, memory and/or runtime restric-
tions and the number of query points as well as regular data set
changes are challenging for any algorithm. In the last decades,
several approaches have been proposed with proven upper bounds
of computational complexity [Ben75, AMN*98], that generally

© 2020 The Authors Computer Graphics Forum © 2020 Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and nggduaion T any medium,
\

provided the original work is properly cited.

delivere

124

DIGITAL LIBRARY
diglib.eg.org

EG EUROGRAPHICS

www.eg.org



https://orcid.org/0000-0002-6230-1402
https://orcid.org/0000-0002-9472-2535
http://creativecommons.org/licenses/by/4.0/

J. Jakob & M. Guthe / Stochastic Volume Rendering of Multi-Phase SPH Data 125

seek to reduce the number of distance computations using dif-
ferent types of trees. However, for many methods based on k
nearest neighbours the computation time needed to find these
for all input points, still remains the bottleneck. For this rea-
son, many algorithms are specially designed for certain application
areas.

In this paper, we consider applications that require the k near-
est neighbours (kNN) or k approximate neighbours (<ANN) where
S is a low-dimensional euclidean space (d = 3) and m is the L,-
norm. This occurs especially in the context of real-time process-
ing of 3D data. Examples are simulations, e.g. SPH [GIM77],
point-cloud registration [BM92, PCS15] and processing or real-
time photon-mapping [PDC*03, MLM13], which must find the
kNN for at least each individual data point in the data set. In var-
ious cases this set changes constantly (e.g registration, simulations,
photon-mapping), which also requires any index structures to be
updated or rebuilt each time and forbids any expensive off line
preprocessing.

Our main contributions addressing these problems in this paper
are:

* A highly parallel bottom up LBVH optimization step, specialized
on point-cloud data.

¢ A stackless BVH traversal algorithm that can find all exact kNN
using a register based priority queue.

3. Related Work

Since the literature for finding the kNN is vast, we limit ourselves to
GPU based kNN techniques. The methods developed so far can be
divided into two main classes: Brute force approaches and selection
based procedures.

3.1. Brute-force methods

There are many techniques to solve the kNN problem via a brute-
force approach using the GPU. Generally, for each query these
methods initiate a calculation of the distance to all data points in
the data set. The two most important approaches for calculating the
distance matrix are a direct implementation with a self-developed
kernel [GDB08, ZHWGO08, KZ09, LLWJ09, LWLJ09, LLWIJ10,
BGTP10, KH10, BGT*11, KH12, SPS12, ARBM12, DKMD13],
and the use of an already well optimized matrix multiplication rou-
tine [BDHKO06, GDB08, SPS12, DKMD13, LA15, THE*15,JDJ17,
KD18], e.g using cuBLAS. User-defined direct implementations are
typically optimized by tiling, which divides the distance matrix into
several submatrices (tiles) of equal size. The used tile size is opti-
mized in such a way, that a group of query and reference points can
be stored in fast shared memory and reused by threads within the
same compute block. The calculated distances must then be sorted
and the nearest k extracted.

1) Squared Distance matrix: Bustos et al. [BDHK06] were one
of the first using GPUs for NN computation. They computed the
squared distance matrix using custom shaders and performed mul-
tiple texture reductions to obtain the final nearest neighbour. By
using the latest GPGPU architecture, it was possible for Garcia

et al. [GDBO8] to assign one thread per query for distance sort-
ing after the brute force step. Instead of using one thread per query,
Sismantis et al. [SPS12] used a parallelized truncated bitonic sort
per query, while Dashti et al. [DKMD13] relied on radix sort from
Nvidias thrust library. Li et al. [LA15] decided to integrate a trun-
cated merge sort directly into the matrix multiplication routine,
which discards candidates as it becomes clear that they cannot be-
long to the top k. A k-selection by Tang et al. [THE*15] was accel-
erated by using a merge queue, a buffered search, and hierarchical
partition to better support the SIMD architecture of GPUs. Johnson
et al. [JDJ17] were able to handle data sets that are too large for
current GPU main memory by relying on cuBLAS and a special-
ized k-selection algorithm. A multi GPU approach was proposed
by Klusek et al. [KD18], which also computes the squared distance
matrix with a subsequent sort operation to extract the kNN, but offer
a better data distribution among the available GPUs.

2) custom distance kernel: Garcia [GDBO08], Zhao [ZHWGOS]
and Kuang et al. [KZ09] use a custom matrix multiplication, paired
with an insertion sort or radix sort algorithm respectively to find
the kNN, leveraging the speed of modern sort libraries. Many ap-
proaches split the distance computation of each query into blocks.
Liang et al. [LLWJ09, LWLJ09] find the local kNN within each
block by simultaneously testing each distance against all others. A
single thread per query then merges the lists using heap selection.
Liang, Kato and Barrientos [LLWJ10, BGTP10, KH10, BGT*11,
KH12] proposed different heap-based approaches for the kNN se-
lection process, using one thread with a max heap per query or a
heap-based reduction over multiple blocks [BGT*11]. Truncated
sort was introduced by Sismanis et al. [SPS12]. Elements are re-
moved from the vector when it is clear that they cannot belong to
the set of smallest k. They describe several algorithms and show that
their truncated bitonic sort has excellent performance on the GPU.
Arefin et al. [ARBM12] maintain an unsorted array of size k for
each query and a pointer to the largest element in the array. A sin-
gle thread maintains this structure on each level with a linear scan.
Dashti et al.[DKMD13] also use a radix-sort approach but on the
whole distance matrix. Query-distances of the candidates are first
sorted collectively and then sorted by search index to separate the
results for each query. Then only the top k elements have to be ex-
tracted.

All brute-force approaches have in common, that they are only
suitable for small data- and query-sets due to high memory require-
ments and only perform competitively on high dimensional data.

3.2. Selection based procedures

Selection based kNN methods are more diverse and can be fur-
ther divided into either hashing, graph-based or spatial subdivision
strategies bringing also some asymptotically more efficient algo-
rithms to the GPU.

1) Hashing based approaches: Most of the used hashing-based al-
gorithms are variants of locality-sensitive hashing (LSH) [PLM10,
PMI11, PM12, LZIS]. LSH uses several hash functions of the
same type, which are location-sensitive. This enables neighbour-
ing points to be more likely to fall into the same hash bucket than
points that are far apart from each other. During the query stage,

© 2020 The Authors Computer Graphics Forum © 2020 Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd



126 J. Jakob & M. Guthe / Stochastic Volume Rendering of Multi-Phase SPH Data

the search point is hashed with all hash-functions and then a lin-
ear search is performed in the set of data points with which the
query matches. Pan et al. [PM11] additionally use a parallel RP-
tree or random projections [PM12] to pre-partition their data sets
into several groups, so that items similar to each other are clus-
tered together. Subsequently Bi-Level LSH is executed on each
partition tree and the kNN are then extracted via short-list search.
Lukac et al. improve the efficiency of existing LSH approaches by
using Multi-Probe LSH [LZ15], that also scans the nearby hash
buckets of the one into which a query point is hashed. There-
fore, a smaller number of hash tables is required to achieve a cer-
tain accuracy. Choosing the hash function affects performance and
must be done carefully. For kANN a deterministic skip-list data
structure is used to hold the kKANN neighbours indices and dis-
tances. Wiechollek et al. [WWSHL16] introduced a two level prod-
uct quantization tree (built upon a combination of inverted multi-
index and hierarchical PQ) for high dimensional data sets. They
combine their method with a new re-ranking algorithm based on
closest-line projections and a bin ordering heuristic, which results
in good performance for very high dimensional data sets. However,
most hashing based approaches only provide approximate nearest
neighbours.

2) kNN-Graph based algorithms: Fast kNN queries can be
achieved by using a kNN-Graph as acceleration data structure. Fu
et al. [FC16] use a hierarchic divide-and-conquer algorithm to con-
struct an initial kNN graph using eight randomized truncated k-d
trees for graph-initialization. A nearest neighbour descent is then
applied to refine the graph. They report fast query and build times,
but only produce approximate results.

3) Spatial partitioning methods: Spatial partitioning methods
solve the kNN problem by constructing a spatial index. The index
generation can be roughly categorized into those that partition the
data and those that partition the space. The former try to cluster data
on the basis of their spatial proximity as, i.e. Li et al. [LSP*12],
which create multiple lists of the data set with shifted points. These
are then sorted using a space filling curve. The kANN can be thus
found by considering only the k preceding and k succeeding points
in each shifted list. Hachisuka et al. [HJ10] use only a single hash
list with exactly one data point per hash entry and can therefore
only provide approximate kNN results. Space partitioning based ap-
proaches on the other hand make use of grids [PDC*03, LTF*09,
SBMNI16], octrees [GGGOS] and k-d trees [ZHWGO08, QMNO09,
MLO09]. The kNN are searched by backtracking [QMNO09] or heap-
based priority search in the underlying tree-structure. Grid based
methods [MB17] have the advantage of a very good and fast ra-
dius search, but can degenerate to a full search for exact kNN. This
in turn is the strength of hierarchical techniques like octrees or k-
d trees. However, all these methods are limited to low dimensional
problems but provide unbeatable performance compared to the pre-
vious approaches in these cases.

4. Design and Implementation

In the following, we discuss design and implementation of our ap-
proach. As already stated, spatial subdivision methods are very suit-
able for low-dimensional data and allow asymptotically efficient
queries. Our proposed method is therefore based on a k-d tree.

Algorithm 1. LBVH Construction

: procedure CONSTRUCTTREE

: for each leaf with global index i € [0, n) in parallel

: COMPUTELEAFBOUNDS1eaves [i]

: curr < FINDPARENT [ — 1, i, leaves[i] .id

: while (AToMICXORworker_flag[curr], 1) do

: MERGECHILDRENAABBcurr

:left < rangeOfKeys [curr] .x

: right < range0fKeys [curr] .y

. curr < FINDPARENT left, right, curr

10: THREADFENCE

Pseudocode for choosing the correct parent node. n is number of
points in data set. Pointer, bounding boxes and per node primitive
count are computed and set in the findParent (.) function. For
implementation details of methods and needed data-structures we
refer to [Apel4].

(o e e R R S R S R
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Figure 1: Example LBVH according to [Apel4]. Leaf nodes are
numbered from 0 to 7 and internal nodes from 0 to 6. Leaves were
previously sorted based on their Morton code. The range of Morton
keys covered by each node is indicated by a horizontal red bar.

4.1. LBVH construction

For the initial spatial acceleration structure we use the fast LBVH
construction of Apetrei et al. [Apel4], which is based on ordering
primitives along a space-filling curve. Compared to previous meth-
ods, this bottom-up construction algorithm is able to generate both
tree-hierarchy and enclosing bounding boxes in one single and sim-
ple kernel launch as shown in Algorithm 2.

We first compute a Morton code for each item in the data set
and sort all points accordingly using a parallel radix-sort. Subse-
quently, after creating the leaf nodes, an initial LBVH is built in a
single bottom-up traversal by choosing the parent and simultane-
ously computing the bounding box at each step. The resulting tree
is shown in Figure 1.

Our implementation of the kernel proposed by Apetrei et al. dif-
fers only in that we store explicit parent pointers per node, the sum of
all points in the current subtree (used during optimization), and force
an explicit synchronization of the global memory write accesses as
outlined in line 10 of Algorithm 2. This is required as Nvidia GPUs
use a weakly-ordered memory model. The order in which a thread
writes data to global (or shared) memory is not necessarily the order
in which the data written by another thread is observed. Depending
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Figure 2: Example hierarchy merge. On the left side leaf nodes at
full Morton resolution are shown. On the right we fused some leaf
nodes (based on the underlying z-curve) to achieve a more homoge-
neous point density per node.

on the graphics card used (memory read/write ordering is different
in different architectures), this leads to nondeterministic behaviour
and invalid hierarchies since the pointers and keys set by the FIND-
PARENT method in line 9 are read directly in the next iteration during
bottom up traversal. For implementation details of the listed meth-
ods, we refer to [Apel4].

4.2. Tree optimization

By using Morton codes for fast hierarchy generation, however, the
space is discretized into a grid. Depending on the data set size and
Morton code resolution, the point density and distribution within the
data set, it may occur that many points share the same Morton key
and are thus placed in the same leaf node, while the majority of the
remaining leaves contain only one or very few data points. In terms
of data-parallel processing this effect is adverse as it causes diverg-
ing threads during a tree traversal and thus a performance drop.

In order to alleviate this problem, we try to create a more shallow
hierarchy with leaf nodes of ideally equal data density, as outlined
in Figure 2. This is achieved by a second bottom-up traversal of
the initial LBVH. At each inner node we decide whether to reduce
it into a leaf node (depending on the data density of the left and
right children) and continue upwards, or to do nothing and stop the
traversal. Merged nodes, that are no longer needed are flagged ac-
cordingly. To prevent race conditions between two threads coming
from a left and right subtree, only one thread is allowed to collapse
and continue (see line 6 in Algorithm 3). The procedure is outlined
in Algorithm 3.

This way we incrementally fuse spatially related parts of the data
set without destroying the underlying tree and at the same time can
reuse the pre-calculated bounding volumes, which results in ex-
tremely fast processing. A visual example of this procedure applied
to the tree in Figure 1 is shown in Figure 3. During the bottom-up
traversal a heuristic ¢ decides whether an internal node becomes a
leaf node. The necessary pointer adjustments are then performed by
the MAKELEAF(...)-method. In the following both are described in
detail:

Collapse heuristic. The heuristic ¢ (node) decides whether the cur-
rent node becomes a leaf node or not. We use a very simple point

Algorithm 2. Tree optimization kernel

: procedure OPTIMIZETREEbVA

: for each leaf / in constructed bvh in parallel

: curr <— bvh.GETPARENT!

: while do true traverse hierarchy bottom up

: parent <— bvh.GETPARENT!/

if (pcurr and (thread;p < curr))

: buh.MAKELEAFcurr, |

:is_valid[curr] <« false

9: curr < parent

10: else if (¢pcurr and (thread;p, > curr)) then

11: is_valid[l] <« false

12: return

13: else

14: return

Pseudocode of our optimization kernel. As each leaf/node can be
identified with a global index, we just flag only the deleted ones.
This simplifies computing new memory positions for all nodes in
the subsequent compaction step.

[o e I e R I O B N R

Figure 3: Example tree layout after optimization of tree depicted
in Figure 1. From bottom up, subtrees were collapsed into a single
new leaf node.

count limit: we compare the sum of the number of stored points in
the left and right node with a user specified threshold and return true
if this node should become a leaf node:

true if
false else

(/J('U) — { ZAABB(U) S @

with > = #points in current volume (AABB)
® = threshold points in volume.

This is trivial as we computed and stored the number of total con-

tained points in each node during initial hierarchy buildup.

MakeLeaf. The key to an efficient hierarchy adjustment is in two
aspects: First, during hierarchy construction we temporarily store
the number of contained points in each internal node by adding the
primitive number of left and right children during bottom up traver-
sal. Second, the data set items are sorted according to their Morton
code in memory. An internal node is thus easily turned into a leaf
node by simply replacing it with the leftmost leaf node of its subtree.

Since we start the bottom up traversal at the tree leaves, each
thread needs to remember the leaf-id it came from. The MAKE-
LEAF(...) method then just adjusts pointers, the bounding box and
the primitive count, as outlined in Algorithm 4 and visualized on
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Algorithm 3. make internal to leaf node

: procedure MAKELEAFcurr, leaf

: parent < parent [curr]

: parent[leaf] <« parent

: aabblleaf] < aabb [curr]
:primitive_cnt[leaf] < subtree_size [curr]
:if (Left [parent] = curr) then

:left[parent] <« leaf

: else

i right [parent] < leaf

Pseudo code of the function which merges an internal node into a
leaf by reusing the leftmost leaf node of the subtree.

O 01NN B W=

the right. In this example, the depicted leaf with number 5 will con-
tain all stored primitives of the leaves 5 and 6 of the initial tree.

4.3. Tree compaction

Due to the fact that entire subtrees collapse into a single leaf node,
the memory layout of the LBVH fragments. This impacts query per-
formance, which is why we compact it in a final phase to allow bet-
ter coalescing memory accesses. As usually only a few parts of the
tree are removed and data ordering in memory does not necessar-
ily have to be preserved, we use a highly modified parallel in-place
compaction [DMG10]. This allows us to avoid a complete duplicate
of the hierarchy and also maximizes memory throughput. It would
also be possible to perform a simple compaction by copying the
tree to a new memory location and adjusting the pointers on the fly.
However, this includes nearly doubling the required memory for the
hierarchy and requires expensive de-/allocations. We opted for the
in-place method to achieve the fastest possible compaction and a
low memory footprint.

4.4. Neighbourhood query

The main problem with hierarchical traversal-methods on a GPU is
that only the most coherent part of the operations near the tree root
are accelerated (everything cached, nearly no thread divergencies).
Consequently, a multitude of highly incoherent per-thread work-
loads have to be processed.

In the following, two key aspects, which lead to increased query
performance when combined, are discussed in more detail: traver-
sal scheme and register based priority queue. We will also briefly
explain how to modify our approach to allow a radius and an ap-
proximate k nearest neighbour search.

4.4.1. Backtracking traversal

Usually, on the CPU side heap-based traversal strategies are pre-
ferred, which use the quadratic distance of a bounding volume to
the query point as priority key. On a GPU, however, this heap would
have to be kept in global or shared device memory. Due to the nec-
essary data-dependent heap updates this leads to random and ir-
regular memory movements. The resulting latencies, warp diver-
gencies and/or bank conflicts then cause the SIMD units to not

Algorithm 4. Register Priority Queue

#define min(x,y) (x<y?x:y)

#define max (x,y) (x<y?y:x)

#define CAS(x,y) { auto tmp=min(x,y); y=max(x,Vy);
X = tmp; }

template < typename KEY, int SIZE >
struct StaticInsertionSortPQ
{

KEY _k[SIZE];

int _size = 0;

void push (KEY const key) {

++_size;
_k[0] = key;
sort ();

}

void sort () {
#pragma unroll
for (int i(0); i< (SIZE-1); ++i)
CAS (_k[i], _k[i+1]);

being saturated. For this reason, we opted for a backtracking ap-
proach [HDW*11]. The main difference between a backtracking or
heap-based traversal is that more nodes need to be visited, compared
to using a latency-heavy binary heap of nodes not yet visited. In
principal, this is the same as a depth-first search while using the in-
formation of the current found nearest neighbours to decide whether
a subtree needs to be traversed or not. For further implementation
details, the reader is referred to the supplemental material.

4.4.2. Register based priority queue

To keep track of the currently found nearest neighbours usually a
second (maximum-) heap is used. For small k, a CPU can usually
keep the entire heap in L1 cache, which enables extremely low la-
tency and high bandwidth. However, as mentioned above, heaps
generally do not show good data parallelism on GPUs.

We were inspired by the idea of utilizing registers for sorting net-
work primitives on the GPU as proposed by Johnson et al. [JDJ17].
Our approach differs in that we use a simple array in device regis-
ter memory for our currently found neighbours and keep it sorted
using insertion sort. For different kNN sizes we use a compile-time
unrolled insertion sort as shown in Algorithm 5. Consequently the
compiler can create the code directly and we do not have to provide
complex sorting networks for every possible array size and also emit
less instructions. Each time, before inserting a new point, we test
whether its distance is smaller than the current largest in the heap
and insert it only if this is the case. Therefore it can safely be over-
written.

With this approach we benefit from vector parallelism, extremely
low memory latency and easy implementation. To enable the CUDA
compiler into keeping a sorted list in register only, everything must
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be known at compile time and enough device registers must be avail-
able. During runtime we then choose the appropriate kernel.

4.4.3. Radius search

Closely related to the kNN search is the radius search, which re-
turns all nearest neighbours within a specified search radius. Our
approach can be easily modified to use this radius as the abort cri-
terion during traversal. The only change to the backtracking algo-
rithm is, that elements which are smaller than or equal to the current
search radius are always inserted. The traversal is aborted if no sub-
tree within the search radius is available. This is only limited by
the fact, that the size of the kNN heap must be set in advance and
remains fixed during the query.

4.4.4. Approximate kNN

If an exact kNN search is not necessary and to further accelerate our
approach, our method can be easily extended to support an approx-
imate k nearest neighbour search. This can be achieved by setting a
limit for the number of visited nodes during the query phase. If this
threshold is exceeded, the current traversal is aborted.

4.5. Algorithm parameters

Our approach therefore only depends on two selectable parameters,
which influence hierarchy quality and thus LBVH construction and
query runtime. In the following, we discuss their effects in detail:

MMorton code resolution The Morton code resolution (number
of quantization bits per dimension) affects the initial bin size
of the LBVH leaves. The higher the resolution, the fewer
points will fall into the same bin, which increases size and
build time of the initial LBVH and more subtrees have to
be merged in the subsequent optimization phase. But with
very inhomogeneous distributed point clouds or large-scale
3D scans with fixed scanning positions, it often occurs that an
extremely high number of points collide into the same Mor-
ton cell, causing extremely unbalanced workloads.

Per Node point-threshold The selected point threshold during the
optimization step influences the final hierarchy and thus the
query- and optimization runtime. A small threshold per leaf
node leads to more visited tree-nodes and therefore to longer
traversal times and thread divergencies. A too large threshold
results in a major part of the runtime during traversal being
spent on pointless sorting of found points, which are later dis-
carded anyway.

5. Results

To ensure a performance analysis that is as extensive as possible,
we used both synthetic and real-world data sets from different areas
of computer vision and graphics in the following tests. The selected
data-sets, shown in Figure 4, provide a broad range of distribution
patterns: from uniformly to extremely irregularly distributed (e.g.
terrestrial laser scan with extreme densities in close proximity, as
well as widely scattered individual measurements).

Figure 4: Visualization of our test data set. The shown point clouds
(about 70) have different characteristics and are either real 3D
scans (airborne, hand-held and stationary) with noise and outliers
or synthetically obtained by sampling polygon meshes.
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Figure 5: Runtime plot showing construction of initial
LBVH. [Apel4] without any optimizations followed by a kNN
query (with k = 16) for each point in the input data set without
memory transfer times. Shown are different Morton code resolu-
tions in bits per dimension. For large models (> 5 - 10°) a Morton
code with less or equal to 32 bits in total was not sufficient, which
is why no measurement results are available here. The prominent
runtime peaks are caused by uneven distributed data-sets.

All measurements were performed on an AMD Ryzen™ 7 2700X
CPU @ 3.7 GHz, 32 GB RAM with a NVIDIA GeForce™ GTX
2080TI, running under Linux 5.4.14 with NVIDIA driver version
440.44. We implemented and compiled our hierarchy construction
and traversal algorithm with CUDA 10.2.

5.1. Hierarchy optimization analysis

In the following we discuss the parameter selection of our approach
in detail and show that all presented optimizations contribute to the
performance of our approach.

Morton code resolution: To achieve a good initial LBVH quality
we tested different quantization resolutions and measured algorithm
runtime, as shown in Figure 5. As expected, low resolutions are
suitable for small point clouds as this reduces sorting overhead and
creates a smaller hierarchy. For larger point clouds or severely in-
homogeneous distributed ones, higher quantization resolutions are
absolutely necessary. Due to massive differences between the point
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Figure 6: Runtime plot showing hierarchy construction (without
compaction) and kNN query (with k = 16) for each point in the
input data set without memory transfer times. Shown are runtimes
achieved with LBVH by Apetrei et al. [Apel4] vs. our optimization
step enabled using two different thresholds. Our proposed optimiza-
tion step delivers faster and more consistent runtimes throughout the
entire benchmark data set.

clouds in terms of their properties and characteristics, there are sig-
nificant runtime differences visible. For simplicity, we chose a quan-
tization resolution of 10 bits per dimension for all point clouds. If
they are larger than 5 x 10°, we use 17 bits. This results in relatively
balanced and favourable initial hierarchies, which can cope with
very inhomogeneous data and can be optimized in the next step. Due
to word size restrictions, a 64 bit key was used in these cases. Per
node point threshold: To show the improvement of our optimiza-
tion step, we compared the query performance using the initial hi-
erarchy of Apetrei et al. [Apel4] to ours using different thresholds.
Figure 6 shows the total runtime of hierarchy construction, with and
without the optimization step and kNN query (with k = 16) for each
point in the input data set without memory transfer times. This way
it can be easily estimated whether the optimization overhead is justi-
fied. Furthermore the plot depicts, that the initial hierarchy does not
scale well for point clouds with different characteristics. Especially
with highly inhomogeneous data sets, there are abrupt runtime out-
liers. Our proposed optimization improves exactly these negative
aspects and delivers faster results throughout the whole benchmark
data set. We use a threshold value of 32, since higher values did
not lead to any significant improvement. Hierarchy memory com-
paction As outlined in Section 4.3 we compact the memory lay-
out after the optimization step using an in-place compaction to pre-
vent memory fragmentation. In the following benchmark, we com-
pare the query performance after the hierarchy optimization with a
threshold of 32 using no compaction, a default out of place com-
paction and our used in-place compaction. Figure 7 shows the to-
tal runtime of hierarchy construction, optimization, compaction and
kNN query (with k = 16) for each point in the input data set without
memory transfer times for the three different profiles.

The graph clearly shows that the successive memory compaction
step provides an increased global device-memory bandwidth during
the query (and compaction) and accelerates the total runtime notice-
ably. In most cases, apart from a few negligible exceptions, in-place
compaction is the fastest option. This allows for larger models and
eliminates the need for further expensive memory de-/allocations.
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Figure 7: Runtime plot showing hierarchy construction, optimiza-
tion (® = 32), and kNN query (with k = 16) for each point in the
input data set without memory transfer times. In-place compaction
is in nearly all cases the fastest method due to increased memory-
bandwidth.
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Figure 8: This plot shows the overall runtime using two different
heap datastructures for the currently found kKNN. Shown is total
runtime (hierarchy construction, optimizationa and KNN query with
k = 16 without memory transfer times. Using our register based ap-
proach delivers. By using our approach a significantly shorter run-
time is achieved.

5.2. Traversal optimization analysis

In this subsection, we discuss the performance gains we achieved
through our register-based heap approach, compared to a binary-
heap that resides in global memory and our decision to use a back-
tracking traversal scheme. For this purpose, we also implemented a
binary heap that resides in global device memory.

Register based kKNN-Heap To demonstrate the advantage of sort-
ing and storing the currently found kNN in register memory instead
of global device memory, we compared the runtime of both ap-
proaches. The results are shown in Figure 8. As before, we compare
the total runtime: the sum of hierarchy construction, optimization
and a full kNN query (k = 16) for each point without any memory
transfer times. The massive advantage of using device register mem-
ory for neighbour search only is evident. Traversal-scheme Heap-
based traversal strategies are typically used on CPUs, since they ex-
pand and examine fewer nodes overall. This generally leads to a
faster runtime compared to backtracking approaches. On the GPU,
however, due to its possible size, this node heap must be stored and
sorted in slow global device memory, which leads to random mem-
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Figure 9: Runtime plot showing different traversal strategies.
Shown is total runtime (hierarchy construction, optimization and
kNN query with k = 16 without memory transfer times. The back-
tracking strategy is faster in nearly all cases using our proposed
optimized hierarchy and register heap.

10*
103

heap approach (gl. memory)
) - - - register based approach
10

20 40 60 80 100
neighborhood size k

runtime [ms]

Figure 10: Algorithm runtime comparison of our register based ap-
proach vs. a binary-heap in global memory with increasing neigh-
bourhood size. The used point cloud is a very inhomogeneously dis-
tributed large scale city scan (Zagreb001) from the Robotics 3D
Scan Repoisitory. To make the large queries possible, the query-
vector was split into up to four parts, such that point cloud, query
and results could fit entirely on the GPU. Measurements do not in-
clude memory transfer times.

ory accesses, low bandwidth and thus longer runtime. We therefore
use a backtracking approach. Figure 9 shows that the overhead of ad-
ditional expanded nodes can be compensated for by the lower mem-
ory latency. The decision for a backtracking approach thus delivers
a faster result in almost all cases.

5.3. Register limit analysis

Two main components limit the scalability of our approach:

* The available number of registers is limited (amount differs from
GPU to GPU). If more registers are requested than available the
compiler spills addresses to global and slow GPU main memory.

* The number of compare-and-swap (CAS) operations increases
linearly with the size of the requested neighbourhood (k), which
generates a significant compute overhead with large k.

Therefore we compared our register-based method with a heap-
based approach using global memory. Figure 10 shows the query
runtimes of both methods with increasing k. As benchmark point

Happy Buddha
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v: 1.105352
Statuette

Lucy

027.872]

0 20 40 60 80 100
runtime [ms]

mm [ BVH construction msm LBVH optimization
mm LBVH compaction kNN query (k = 16)

Figure 11: Algorithm runtime break down. Shown are all parts of
LBVH construction and KNN-Query (with k = 16) on four differ-
ent sized pointclouds without memory transfer times. Our proposed
LBVH optimization and compaction step occupy are lightning fast
and only needs a tiny fraction of the overall runtime.

cloud we used a very inhomogeneously distributed large scale city
scan. It can be clearly seen that our algorithm runtime approaches
more and more the heap-based method with increasing neighbour-
hood size. However, the runtime difference remains significant. This
is due to the fact that each insert operation of the heap leads to
many global memory accesses and incoherent thread loads. The
small runtime bumps, occurring at k = 24, 49 and 69 also happen
with other data-sets. This indicates a significantly different emitted
kernel code. We cannot provide measurements beyond a neighbour-
hood size of 114, as the kernels did not provide correct results on
our graphics card with a neighbourhood larger than that, because of
local memory corruptions. This indicates that the compiler cannot
allocate enough memory and/or register addresses and represents a
hard upper limit of our approach.

5.4. Runtime break down

In Figure 11a runtime break down of our approach without any
memory transfer times is shown. As usual a kNN-query with k = 16
(for each point in the input cloud) was used on four different point
clouds from the benchmark set. Our proposed LBVH optimization
takes only a fraction of the total runtime. For a data set the size of 14
million points (Lucy from the Stanford 3D Repository), the LBVH
can be constructed and optimized in less than 18 milliseconds. A
kNN query with a neighbourhood search size of k = 16 for each of
the 14 million points thus takes 79 milliseconds on average. This
corresponds to a query performance of over 10° answered neigh-
bourhood queries per millisecond. Downloading the results of this
query alone would take longer than the kernel needs for the calcula-
tion. For a runtime break down including all memory transfer times,
we refer the reader to the supplemental material.

5.5. Kernel Performance Analysis

The main performance limiting factors of k£ nearest neighbour calcu-
lation using trees on a GPU are SIMD efficiency and latency caused
by memory access and instruction dependencies. We profiled our
query kernel on Apetrei’s [Apel4] as well as our proposed BVH,
using different combinations of traversal strategies and a global as
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Table 1: Latency and cache efficiency analysis of the query-kernel using a real-world data set (3D laser scan). Shown are different query runs (k = 16) with
different combinations of BVH, traversal-scheme and KNN-heap. (Obtained with NVIDIA Nsight Compute).

Method IPC L1 L1+L2 fetch mem. dep.

[Apel4] + hp.trav. + glb.heap 0.15 47.9% 75.3% 0.6% 87.6% 1.5%
our BVH + hp.trav. 4 glb.heap 0.23 63.7% 90.2% 0.9% 86.3% 2.3%
our BVH + hp.trav. + reg.heap 1.80 70.9% 93.4% 5.0% 62.5% 7.9%
our BVH + backtr. + reg.heap 2.82 70.3% 99.0% 8.5% 31.9% 12.8%

well as the proposed register-based kNN-heap. Table 1 shows the
number of executed instructions per clock cycle, cache efficiency,
and the warp-stall reasons.

The analysis clearly shows that each of our optimization decisions
contributes to the overall performance improvement, since the is-
sued instructions per clock cycle (IPC) increase significantly. This
is especially evident when switching from the global memory to
the register-based kNN-heap. Using the optimized BVH the cache
efficiency increases massively. In combination with the register-
heap and a backtracking strategy the warp-stall reasons shift from
memory- to instruction-dependency. Random memory access and
memory latency are still very present but significantly decreased.
This is only a logical consequence of the way data is now processed.
It is mainly fetched from registers and stored again after the in-
struction has been executed. Our analysis also shows, that the kernel
usage and memory bandwidth changes from 5% and 40%, respec-
tively, for Apetreis BVH with heap-traversal and a global kANN-heap
to about 70% and 35% using our proposed approach. The massive
increase of compute-usage at almost the same memory bandwidth
is our main source of performance improvement.

5.6. Comparison

We compared our approach to different existing and publicly
available methods and also included one approximate algorithm
(GPULSH) to show the high query performance of our exact ap-
proach. In the following, we give a brief description of the used
reference algorithms and the used parameters or adjustments:

FAISS is a library for efficient similarity search and clustering of
high dimensional dense vectors, that also delivers GPU im-
plementations as drop-in replacements for their CPU equiv-
alents [JDJ17]. Because we want exact results, and no data
set training, we build and use the IndexFlatL2 entirely on the
GPU that only performs brute-force L2 distance search.

KNNCUDA by Garcia et al. [GDBO08] is a kNN brute force tech-
nique for high-dimensional feature-data, based on distance
matrix calculation and an optimized insertion sort method.
The knn_cuda_global-kernel was used, as it was the fastest
of the three available implementations. Also, due to the mas-
sive GPU memory requirements, we had to split the query
vector into several parts depending on its size, so that the en-
tire query could be processed.

ExactCUDAKNN proposed by Ktusek et al. [KD18], represents
another brute force approach, computing the squared distance
matrix with a subsequent sort operation to extract the KNN.

BFKNN is the fourth brute force method to compute the kNNs on
a GPU [LA15]. Similar to KNNCUDA, we had to split the
query vector into several parts to be able to fit everything into
GPU main memory.

GPUFLANN [MLO09] is a nearest neighbour library for high- and
low-dimensional data also featuring a GPU implementation
that was written by Andreas Miitzel. Is based on a top-down
constructed k-d tree and a heap-based traversal.

GPULSH presents a GPU-based locality sensitive hashing
(LSH) algorithm, to perform an approximate kNN search
in high dimensional spaces. The used data-structure of Pan
et al. [PM11] avoids expensive operations like sort and at-
tempts to reduce the search space by partitioning it into sev-
eral groups using LSH.

All methods were tested with the same benchmark data set, shown
in Figure 4. To ensure a fair comparison, the runtime was aver-
aged over 10 iterations including a preceding device warm-up (to
disable a possible GPU power save state). For all methods the to-
tal algorithm runtimes were measured, including memory transfer
times, but without IO-timings, which required adjustments for some
methods.

Additionally, we validated our results with a brute force approach
on the CPU. Our implementation yields identical results except in
cases in which adjacent distances are equal and the order is un-
defined. That is, the returned indices are sorted in the increasing
order of the corresponding distances. This also applies to the ra-
dius search.

5.6.1. KNN-Search runtime comparison

In the following, we compare the runtimes for the kNN search of
our approach for different neighbourhood sizes over a wide range
of highly diverse point clouds with the aforementioned reference
algorithms. For each single point in each point cloud the k nearest
neighbours are searched. Figure 12 shows the achieved runtimes.
All brute-force algorithms are in some cases more than one order
of magnitude slower than the approximate approach (GPULSH),
as well as both spatial subdividing methods, which include GPU-
FLANN and our approach which provides the fastest results. Our
method is mostly independent of data set characteristics and thus
point distribution, respectively point density. We achieve an almost
linear runtime behaviour depending on the input data set. Compared
to the fastest reference algorithm GPUFLANN we achieve an aver-
age speedup of about 3.3. For a detailed speedup analysis we refer
the reader to the supplemental material.
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Figure 12: Algorithm runtimes of all state-of-the-art reference algorithms in comparison to our approach including memory transfer. Each
algorithm was configured to calculate the k = 1, 16, and 64 exact nearest neighbours of each point in the input data set. Except for GPULSH,
which only provides approximate results! GPUFLANN and GPULSH were not able to process large point clouds with large queries, leading
to less measuring points. Our approach is on average 3.3 times faster than the fastest reference algorithm: GPUFLANN.

single query for 16 nearest neighbors
103
o
+

therefore measured the total algorithm runtime to find all nearest
neighbours within a search-radius of 0.5%, 1%, and 5% of the cur-
rent point cloud bounding box extent. As only GPUFLANN and our
implementation offer the possibility to launch a radius-search, we
configured both algorithms for a maximum neighbourhood count
of 64 for a fair comparison. In Figure 14 the achieved runtimes are
plotted. Again, our approach consistently delivers a faster runtime
over the whole benchmark set and achieves an average speedup of
about 3.3, similar to the kNN query. For a detailed speedup analysis
we refer the reader to the supplemental material once more.
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Figure 13: Algorithm runtimes (including memory transfer) of a
single query (k = 16) in each point cloud. Even in this (very brute-
force advantageous) scenario, our method is on average four times
faster than all reference algorithms. Some algorithms could not pro-
vide any or incomplete measurements due to internal errors or mem-
ory limitations.

5.6.2. Query performance

Many parallelized brute-force methods are well suited to quickly
answer a few kNN queries in a huge data set. Figure 13 shows the
advantage of our method over existing ones even for answering just
a single kNN query.

Despite the required LBVH construction and optimization be-
forehand, our approach delivers a significant speedup of 4.3 on av-
erage. ExactCUDAKNN was not able to answer a single query and
the reference algorithms KNNCUDA and BFKNN could not provide
valid results for all data sets due to internal errors or memory restric-
tions.

5.6.3. Radius-search runtime comparison

Another very important query for point cloud driven algorithms is
to get all closest neighbours of a point within a given radius. We

In our attempts to further improve our approach, we have tested and
implemented additional methods, which have not led to any accel-
eration. Two important methods are discussed in more detail below.

6.1. Hilbert codes

As already stated in Section 4.1, we use Morton keys to sort and
organize the input data. Instead of Morton keys we also tested
Hilbert codes, as they have a better memory locality of spatially
close data [MJFSO1]. However, this only led to a minimal runtime
improvement during the query phase, which was eliminated by the
additional overhead of the Hilbert code calculation. The bottleneck
here is not the memory access to the raw point-cloud data itself,
but the randomized and highly divergent access to the traversed tree
data structure.

6.2. Tree optimizations

For this reason we tested further LBVH algorithms, which deliv-
ered comparable hierarchy construction times but showed a different
storage pattern [Kar12] or methods that perform a tree optimization
after initial construction [KA13] and [DP15]. However, none of the
tested methods achieved a noticeable acceleration either, since each
further tree optimization consumed the previously gained time in
the later query phase.
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Figure 14: Runtime comparison of a radius-query of our approach compared to GPUFLANN [ML09]. All other reference methods do not
offer a radius query. As search radius we have chosen 0.5%, 1% and 5% of the bounding box diagonal of each data set. For the times shown
here, all neighbours of each point in each input data set are searched. Both our approach and GPUFLANN are configured to return a maximum
of 64 (sorted) nearest neighbours within the search radius. Our method is on average over three times faster than GPUFLANN. As with the
kNN query, GPUFLANN is not able to process large point clouds with large queries, so there is little measurement data missing.

6.3. Overlapping Kernel/Memcpy

We also experimented with overlapping query computation and re-
sult transfer. But to allow asynchronous memory transfer, pinned
host memory must be allocated. In all of our experiments the mas-
sive overhead of allocating pinned memory on our test machine was
higher than the achieved speedup during the query. However, with
a different operating system or a more advanced hardware configu-
ration this could change in the future, and thus bring a notable per-
formance boost.

7. Conclusion

We have proposed an optimized massively parallel method for ex-
tremely fast k nearest neighbour search in point clouds. We proposed
anew technique to optimize an existing LBVH and to accelerate the
required kNN-heap during the query phase by using a heap, which
is directly implemented on hardware registers instead of using slow
off-chip memory.

In order to demonstrate the effectiveness of our optimizations,
we performed multiple benchmarks on a data set from very dif-
ferent point clouds and created by different acquisition modalities,
to obtain an analysis that was as realistic and diversified as possi-
ble. Compared to other state-of-the-art algorithms, our benchmarks
show that the proposed method is on average about 3.3 times faster
than the fastest reference algorithm, and thus offers almost real-time
performance even with extremely large data sets.

Due to the extremely fast hierarchy construction and its optimiza-
tion, our method is also suitable for dynamic scenes, simulations or
real-time ICP. It is also robust against extremely inhomogeneously
distributed point sets and can easily handle large neighbourhood
queries. In addition, it is possible to optimize our approach to spe-
cific point cloud properties using the available parameters.

Due to its robustness and high query performance, our approach
represents an important advance in many areas where algorithms
rely on fast kNN or radius queries.

One of the main limitations of our presented work is the restricted
data set size due to the available GPU memory. This could be elim-

inated by using out-of-core streaming techniques, which we want
to address in future research. Another disadvantage is the restricted
neighbourhood size due to the number of existing device registers,
which depends on the GPU used.

A possible future project is to develop a better collapse heuris-
tic, which leads to even more homogeneous hierarchies, and thus
faster queries.
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Supporting Information Figure 2: Total algorithm runtime break-down.
Additional supporting information may be found online in the Sup- Figure 3: Algorithm runtimes of the fastest reference algorithm
porting Information section at the end of the article. GPUFLANN vs.

Figure 4: Algorithm runtimes of the fastest reference algorithm

Figure 1: Overall runtime of our approach using different graph- GPUFLANN vs.

ics cards.
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