
T A YRA-A 3D Graphics Raster Processor

Marcus Waller, Graham Dunnett, Mike Bassett, Shaun MCCann,

Alex Makris, Martin White, Paul Lister

Centre for VLSI and Computer Graphics

Abstract

This paper describes the Junctionality oj a 3D
Graphics Raster Processor called TAYRA.
TA YRA consists in the most part oj Graphics
Raster Pipeline with five major external
interfaces: PCI Master/Target, Depth, Texture,
Colour and Video Interfaces.

The Graphics Raster Pipeline perform'S' all the
major OpenGL style (not necessarily compliant)
raster functions: scan conversion; lines, spans,
triangles, rectangles, perspective correction of
texture coordinates. mip map jevel selection, and
many other texture modes, alpha blending, and
other Junctionalities. Further, through TAYRA's
fast host to buffer access mechanisms it can do
advanced stencilling, multi-pass antialiasing, and
other algorithms; all accelerated in hardware
with a sustained pixel write speed of 29
MPixels/sec (peak of 33 MPixels/sec). This
translates to a peak 25 pixel triangle drawing
speed oj 890K Triangles/sec, limited bv PCI bus
bandwidth. '

1. Introduction

TAYRA is a 3D Graphics Rasteriser Processor
that is specified to compete in the high end 3D
graphics application markets on PCs, and the
arcade video games market. To penetrate this
market effectively it has been determined that
TA YRA should have a large range of 3D
functionalities that exceeds the perceived
competition, but at a lower price versus
performance ratio. Accordingly, TA YRA is
specified with a fully compliant PCI Local Bus
Specification Revision 2.1 Interface, and other

interfaces to 3D graphics depth, texture and
colour buffers.

In the following sections we describe TA YRA' s
functional requirements or features. That is, what
T A YRA will do, not how it does it. More than a
brief overview of TAYRA's architecture is
beyond the scope of this paper. The reader is
invited to access TAYRA's web page via:
http://www.susse~.ac.uklengg/researchlvlsil, over
the coming months to see more detailed
descriptions of TAYRA's architecture
components, external interface definition and
programming specification.

2. Feature Summary

TA YRA is based fundamentally on algorithms
found in standard texts and research papers on
computer graphics with novel features and
implementation techniques. TA YRA' s scan
conversion algorithm uses linear edge functions
similar to Pineda [1], but with special look ahead
logic [2] used to determine in advance the next
pix~l during scan conversion. Also pixel clipping
IS Incorporated as part of the scan conversion.
Floating point number representations are used
where the dynamic range of numerical data can
vary greatly, especially in the rational linear
interpolation of texture coordinates.

Table 2-1 compares TAYRA's features with that
of the Lockheed Martin R3DIl 00 chipset. This
serves to illustrate not only TAYRA's impressive
features but also its high level of integration
compared with the R3D/IOO.

I I

http:http://www.susse~.ac
http://www.eg.org
http://diglib.eg.org

Features TAYRA ruD/IOO

32 bit PC! Local Bus Interface R2.1 R2.0

High Peljormance Communication FIFOs ./ ./

Scan Conversion ofLines, Spans, Triangles and Rectangles ./ ./

Integrated Depth Test and Buffer Controller ./ ~

OpenGL Fogging ./ ~

Fast Context Switching Program Register Set ./ X

Colour Buffer Controller RGBA RGB

True Colour Double Buffer (Up to 16 bit, 1600x1200) ./ 24 Bit

Display Resolution (320x240 to 1600x1200) ./ ~

Depth Buffer Controller 32 24 bit

True Floating Point Perspective Correction FLP FXP

Hardware Mip Mapped Level ofDetail ./ ~

32 Bit RGBA Texture Mip Mapping ./ X

Square, Linear, Point2D Mip Map Support ./' Square

Wrap (lfj, Invert (In), Ignore (Ig), Clamp (C) Texture Tiling W, In, Ig,C W,C

Texture Colour Map Format Modes ./ ~

OpenGL Texture Decal and Modulate ./ ?

32 Bit RGBA Texture Point, Linear, Bilinear, Trilinear Filtering ./ ~

OpenGL Blending (Transparency, Antialiasing) ./ ./

Multi-pass Antialiasing ./ ./

OpenGL Stencilling ./ ./

Clipping to regions ./ ./

Host to Depth, Texture, Colour Buffer Access ./ X

Fast 8.5 GByte/sec Depth Buffer Clear Operation ./ ?

Fast 8.5 GByte/sec Colour Buffer Clear Operation ./ ?

Depth Buffer support (TAYRA-SGRAM or SDRAM) 8 MBytes 5 MBytes

Texture Buffer support (TAYRA-SGRAM or SDRAM) 16 MBytes 8 MBytes

Colour Buffer support (TAYRA-VRAM or WRAM) 8 MBytes 10 MBytes

Global Depth, Texture, Colour Refresh Controller ./ ~

Table 2-1 Comparison ofTAYRA and R3D/IOO

12

3. Performance

Table 3-1 compares the performance figures of
TAYRA versus the Lockheed Martin R3D/IOO
chip set [3]. The Lockheed Martin R~D/lOO Chip
set consists of about six chips includmg a 32 bIt
floating point processor. T A YRA is a fully
integrated single chip solution, needing only the
host processor for Geometry and Setup
computations.

TA YRA can achieve the performance figures
given in Table 3-1 because of the highly efficient
memory controller designs for the depth, texture
and colour buffers. For the depth and texture
buffers we use the latest SGRAM and SDRAM
technologies, for which we have designed
memory controllers that make optimal use of page
mode cycles. Although, in general for textur~ ~e
can not exploit the coherency that depth exhIbIts,
we can arrange"-texture maps in memory to make
the best use of page mode cycles. The colour
memory controller is the worst case bottleneck.
This is because it is very difficult (within
reasonable design constraints) to perform a read,
modify, write in a single graphics pipeline clock
cycle, we can of course still do read, modify,
write but at a significant performance decrease.

However, we can achieve the above performance
figures for write only operations. These
operations would include transparency where the
current pixel is blended with an on-chip
background colour, antialiasing with background
colour, transparent textures, etc. Also, we should
consider that not all objects are alpha blended in a
typical scene. For example, an illuminated,
shaded and textured scene represents an high
quality image. This can be rendered at the above
rates requiring only colour writes.

The performance figures above are based on a 33
MHz graphics pipeline clock and 66 MHz
memory controller clocks. However, we are still
PCI input bandwidth limited to a peak 890
KTriangles/sec. A future solution to this
bottleneck could be the Accelerated Graphics Port
(AGP) architectur~. AGP is an extension. to the
PCI architecture which adds a demultIplexed
address bus, pipeli~ed transfers and 133 MHz
transfer rates to boost graphics performance.
Another solution is to integrate a s~tup engine and
vertex level interface to allow triangle strips to be
processed. This effectively decreases primi~ive
vertex data crossing the PCI from three vertIces
per triangle to about one.

13

Perfonnance Equivalents

Pixel Writes 25 Pixels/Triangle 50 Pixels/Triangle

TAYRAI 3D Triangles

32 bit RGBA Gouraud shaded, 32 bit depth 890 Kfsec 515 Kfsec
buffered, clipped, stencilled, alpha blended,
mip mapped, texture mapped

Lockheed Martin2 3D Triangles

32 bit RGBA Gouraud shaded, 24 bit depth 375 Kfsec750 Kfsec
buffered, clipped, stencilled, alpha blended,
mip mapped, texture mapped

Pixel Writes 10 PixelslLine

TAYRA3 Lines
1.6 Mlsec32 bit RGBA Gouraud shaded, 24 bit depth

buffered, antialiased

Lockheed Martin2 Lines .
1.5 Mlsec32 bit RGBA Gouraudshaded, 24 bit depth

buffered, antialiased
I;' ~r ,

TAYRA4 Block Moves
132 MBytes!sec

32 bit RGBA and 32 bit Depth

Lockheed Martin2 Block Moves
132 MBytes/sec

32 bit pixels

Table 3-1 TAYRA Peak Performance Comparison

I These peljormanceJigures are based all TA YRA 's PCI bandwidth and Z-BuJJer memory colllroller. For example, if TA YRA 's pipeline is clocked
at 33 MHz (66 MHz memory cOlllro/ler) then for a triangle whose pixels exhibit no page faults TAYRA can output 33 MPixelslsec. However,
TA YRA has to buJ/er 12% ofa triangles pixels due to Z-BuJ/er page faulTs TAYRA, therefore outputs 29 MPixelslsec. Thus, TA YRA can stream 29
MNrelslsec.,. 25 PixelslTriangle = 1.16 MTtriangleslsec past the Z-Bujter controller. BUf an average fI!x/ured and illuminated triangle at (he PCI
input consists of J48 Bytes a/data loaded by the host. Thus, with a peak PCI bandwidth at 132 MByles/sec we can see that jor 25 Pixel triangles
TAYRA is limited by the PCl bandwidth to 132 MByteslsec.,. 148 Bytes/Triangle =890 KTriangles/sec .. Similarly, 50 Pixel triangles are limited by
the pipeline bandwidth.

2 Lockheed Martins R3DIIOO architecture peak perJormance figures are quotedfi'om their brochure.

3 Limited by the peak PCI bandwidth at 132 MByteslsec. A line on aFerage is composed orabou! 84 byres ofdata. Therejore. 132 MByteslsec 84
Bytes =1.6 MLineslsec.

4 TAYRA's block move drawing performance is based on the PCI input bandwidth of 132 MBytes.·sec and TAYRA's HIRAM colour memOlY
controller output bandwidth at 132 MByteslsec. The datapath through TA YRA can also si/swin 132 MBHes/sec.

14

4. T A YRA Architecture

The objectives for T A YRA were to design a high
performance 3D Graphics Raster Processor which
implements all the common 3D graphics raster
functionalities. Further, TA YRA should interface

5. Interface Specification

TA YRA employs five major interfaces to the
system environment:

1. 	 PCI MasterlTarget
2. 	 Depth Buffer
3. 	 Texture Buffer
4. 	 Colour Buffer
5. 	 Video Interface

5.1 PCI Master/Target Interface

TA YRA implements a 32 bit MasterlTarget PCI

to the latest memory technologies in order to
achieve unrivalled performance. All this is to be
integrated in a single VLSI package interfaced to
a PCI based host. An abstraction of the T A YRA
architecture which fulfils these objectives is
illustrated in Figure 1.

Local Bus Revision 2.1 Interface. More detailed
descriptions can be found in our PCI data sheet
[4]. TAYRA's PCI MasterlTarget Interface has
the following functions:

• 	 Full PCI Revision 2.1 compliant MasterlTarget
Interface

• 	 Full 32 bit data path for internal read and write
data

• 	 Four base address registers of 3x256 NIByte
and 2x4 KByte memory space

• 	 Full optional parity error detection. and
creation ,

• 	 High performance FIFO write operation to

Communication FIFOs

Figure 1 T A YRA Architecture

IS

texture, colour and depth memory interfaces,
operating in excess of 120 MBytesisec

• 	 A further FIFO provides write access to the 3D
graphics pipeline at over 120 MBytesisec

• 	 A low cost read interface provides single word
read access to all T A YRA internal registers
and T A YRA memory buffer domains

• 	 Special configuration control registers that
improve performance for different applications

• 	 Transparent Big and Little Endian access to
T A YRA memory domains

• 	 Sequential and context register set primitive
ports

• 	 Full function PCI bus mastering primitive list
retrieval engine

• 	 Full function PCI bus mastering texture and
colour buffer retrieval engine

5.2 Memory Interfaces

TA YRA memory clock frequency is always twice
that of the graphics pipeline, which helps to
remove the traditional memory access bottleneck.
Both the graphics pipeline and the m~mOfy'"
systems are clocked independently from the PCI
bus which goes towards making the chips
performance more independent of the system bus.

T A YRA has three memory interfaces: texture,
depth and colour, giving complete independence
between the access protocol used by each and
enabling a dedicated and optimised memory
system to be configured for each system's
particular requirements. It also means that the
latest memory technology can be employed. For
example, the advanced block write feature of
SGRAM is useful for buffer clear operations in
the depth memory and the advanced BitBL T
capabilities and block write functions of the new
Window RAM (WRAM) can be employed to best
advantage in the colour buffer. The dual port
capability of the WRAM can also be used to
optimise the display of the colour data.

5.2.1 Depth Buffer Interface

TAYRA implements a programmable generic
depth buffer memory controller, which will

support both SGRAM and SDRAM, for accessing
the local depth buffer. This memory controller
will arbitrate between the host (via T A YRA' s PCI
interface through the on-chip communication
FIFOs), and the graphics pipeline.

The depth buffer Interface has the following
features:

• 	 Intelligent arbitration scheme designed to
support the advantages of PCI and memory
burst mode operation

• 	 Built-in depth test for fast read, compare, write
cycles at graphics pipeline speed

• 	 264 MByte/sec read/write bandwidth
performance at 66 MHz

• 	 66 MHz memory clock frequency nominal
• 	 Memory operations supported include read,

write, super page mode buffer clear at 8.5
GBytes!sec arid 2.125 GBytes/sec for SGRAM
and SDRAM respectively (8 mel}1ory chips),
masked write, and proprietary" block write
functions

,,'it 	 Supports from 1 to 8 MBytes of SGRAM or
SDRAM

• 	 Global refresh controller.
• 	 Memory access latency is absorbed by FIFOs
• 	 Small FIFO in the memory controller absorbs

read-modify-write access dependencies

Some memory planes of the depth buffer can be
configured for use as stencil planes.

5.2.2 Texture Buffer Interface

T A YRA implements a programmable, generic
texture buffer memory controller, which will
support both SGRAM and SDRAM, for accessing
the local texture buffer. This memory controller
will arbitrate between the host (via TAYRA's PC!
interface through the on-chip communication
FIFOs), and the graphics pipeline.

The texture buffer interface includes all the
features of the depth buffer, bar the integrated
depth test, with the addition of the following
texture specific features:

16

• 	 Textures can be stored in 32 bit, 16 bit or 8 bit
formats to support efficient point, linear,
bilinear, and trilinear texturing modes using
minimum memory accesses.

• 	 Accesses per pixel
• 	 Point: 1 (32 bit) or Y2 (16 bit) or Y4 (8 bit)

accesses
• 	 Linear: 2 (32 bit) or 1 (16 bit) or Y2 (8 bit)

accesses
• 	 Bilinear: 4 (32 bit) or 2 (16 bit) or 1 (8

bit) accesses
• 	 Trilinear: 8 (32 bit) or 4 (16 bit) or 2 (8

bit) or 1 (paUetised) access
• 	 Textures are spread over the same page in

multiple devices to reduce page change
overheads.

• 	 PCI to texture memory controller high
bandwidth path

5.2.3 Colour Buffer Interface

T A YRA implements a programmable generic
colour buffer memory controller, which will
support both VRAM and WRAM, for accessing
the local colour buffer. This memory controller
will arbitrate between the host (via TAYRA's PCI
interface through the on-chip communication
FIFOs), and the graphics pipeline.

The colour buffer WRAM interface has the
following functions:

• 	 Parallel bandwidth
• 	 132 MBytes/sec at 66 MHz

• 	 Serial bandwidth
• 	 1.1 GBytes/sec

• 	 Memory operations supported include
• 	 Read and write
• 	 Page mode read and write
• 	 Masked write
• 	 Block masked write

• 	 Buffer clear bandwidths
• 	 1.1 GBytes/sec for 1 memory chip

(WRAM)
• 	 8.5 GBytes/sec for 8 memory chips

(WRAM)
• 	 Supports 1 to 16 MBytes of WRAM

• 	 Supports 1 to 8 MBytes of VRAM for low cost
lower performing systems

• 	 Global refresh controller
• 	 Interaction with 2D Graphics chips

• 	 Off-chip mUltiplexing of 2D and 3D
pixel streams

• 	 Shared Frame Buffer Protocol
• 	 Advantages gained from using off­

shelf 2D chips
• 	 Existing SVGA drivers
• 	 TA YRA is compatible with

standard VESA modes
• 	 3D update rate tuned to display refresh to

avoid artefacts
• 	 Programmable single and double buffering

5.3 Video Interface and Refresh
Controller

T A YRA has a video ir:terface which synchronises
with the display refresh. This video interface
supports video Vsync, Hsync, Blank inputs and
outputs Dot Clock and Active Area signals.

TA YRA has a global memory refresh controller
which, discounting any memory refresh accesses,
refreshes every row every 17 ms.

6. Graphics Pipeline
Features

TA YRA implements a large set of graphics raster
algorithms in a 33 MHz pipeline. A key feature
of this graphics pipeline is its communication
mechanism to T A YRA' s external interfaces, and
pipeline modules. This communication
mechanism is based around several FIFOs and an
asynchronous protocol called MICE [5]. These
FIFOs also allow fast loading of the Program
Register Sets and the depth, texture and colour
buffers.

6.1 Command and Data FIFO

TA YRA implements an input command and data
FIFO (CDFIFO) to buffer input commands and

17

data sent from the host CPU. This CDFIFO will
store a number of primitives waiting to be
rasterised. The CDFIFO will store sufficient
primitives to cope with worst case PCI bus
latency in the order of 12-15 flS.

6.2 Host to Depth, Texture and
Colour Buffer Access FIFOs

T A YRA implements FIFOs between the depth,
texture and colour memory controller, which
provides fast access to these buffers by the host
processor. This fast access is only limited by the
PCI bandwidth of 132 MBytes/sec. This direct
access to the depth, texture and colour buffers
allows TA YRA to implement advanced graphics
functions, such as stencilling and multi-pass
antialiasing. Also, 3D scenes can be loaded
extremely fast into the colour buffer to serve as a
rendered background colour. This is very useful
for video backdrops., .

6.3 Depth Test

TA YRA implements eight different depth
comparison tests, which provides for a very
flexible Z-buffer algorithm. This depth buffer test
is also used in transparency, and stencil based
algorithms. TAYRA's depth test operations are:

1. If (TRUE) always write Znew
2. If (FALSE) never write Znew
3. If (Znew > Zold) write Znew
4. If(Znew >= Zold) write Znew
5. If (Znew < Zold) write Znew
6. If (Znew <= Zold) write Znew
7. If (Znew == Zold) write Znew
8. If (Znew Zold) write Znew

TAYRA's depth test is tightly integrated in the
depth memory controller allowing a single cycle
read, depth compare, write operation.

6.4 Program State Registers

T A YRA implements a large register set that
constitutes the 'state' of the chip. Setup
operations for T A YRA involve writing values

into some or all of these registers. These registers
are referred to as the program state registers.
TAYRA's program register set is associated with
three main functionalities: PCI Interface,
Graphics Pipeline and the three memory
controllers. Two types of data are loaded into
these registers: commands and data.

The program state registers can be loaded with
special modes:

• 	 Context addressing to speed up primitive
loading

• 	 DMA burst transfers with or without context
addressing

6.5 Graphics Raster Pipeline

T A YRA' s graphics raster pipeline implements
many common rasterisation algorithms and
graphics primitives:

.;: * 	 .'"'
• 	 Scan conversion of lines, spans, triangles and

rectangles
• 	 Flat and Gouraud shading
• 	 Specular shading
• 	 Hidden surface elimination through depth

buffering
• 	 Texturing including colour mapping, tiling,

bill boarding, mip map support, etc.
• 	 OpenGL alpha blending including antialiasing

and transparency
• 	 Stencilling

6.5.1 Primitive Scan Conversion

T A YRA scan converts four basic geometric
primitives for drawing. These are the line
segment, span, triangle and rectangle. The same
data path hardware is leveraged to draw variations
of all four primitives.

6.5.1.1 Lines

T A YRA implements options for drawing lines
with the following attributes: constant colour,
colour interpolated (depth cued), constant depth,
depth interpolated. TA YRA can also implement

18

wireframe objects with the following attributes:
hidden lines removed, colour interpolated.

6.5.1.2 Wide Lines

TA YRA also implements wide lines with the
same features as for normal lines. This achieved
by a special setup procedure which divides a wide
line in two and then draws both halves
sequentially. Also, antialiasing can be switched
on for wide lines.

6.5.1.3 Spans

TA YRA has the option to implement horizontal
and vertical spans when texture mapping with
perspective correction disabled. Drawing of
textured spans.!s common is many games
applications. Spans do not need to be
perspectively "corrected at pixel rates, and so
computational savings are made by the host··'
during setup.

6.5.1.4 Triangles

TA YRA implements triangles which can be
rasterised in many modes: wireframe, hiddenline,
flat shaded, Gouraud shaded, alpha blended
(antialiased and transparent) texture mapped,
perspectively corrected, etc.

6.5.1.5 Rectangles

T A YRA implements rectangles which can be
used in buffer clearing or background fill modes.

6.5.2 Pixel Clipping

TAYRA clips pixels to regions. Each TA YRA
primitive has a bounding box defined by xmin,
ymin and xmax, and ymax. Also a screen region
in which T A YRA rasterises is loaded. T A YRA
clips pixels to the region of the bounding box
which lies inside the screen region. This
eliminates the generation of invalid pixels which
would lie outside the screen region. This pixel
clipping can be leveraged by multiple TAYRA

architectures using screen space subdivision
where the host can simply send primitives which
cross screen space subdivision boundaries to more
than one TA YRA, saving the host from clipping.

6.5.3 Fogging

TA YRA implements OpenGL style fogging,
which can also be adapted for other atmospheric
effects. OpenGL GL_EXP, GL_EXP2 and
GL_LINEAR fogging hardware is implemented.

6.5.4 Sbading

TA YRA implements both Flat shading and
Gouraud shading.

6.5.5 Hidden Surface Elimination

• 	 T A YRA implements hidden surface elimination
with a Z-buffer algorithm and hardware operating
on a 32 bit Z-buffer, see depth test above.

6.5.6 Perspective Correctio~

TAYRA implements a per-pixel true floating
point perspective correction on-chip. This
corrects for perspective distortion when texture
mapping arbitrary projected polygons.

6.5.7 Texture Mapping

TA YRA implements a wide variety of texture
mapping modes:

-,Jt"..C-(i).l\lur mapping
• 	 Environment mapping
• 	 Tiling
• 	 Transparent textures
• 	 Mip maps
• 	 Three different mip map organisations
• 	 Many texture colour modes

6.5.7.1 Colour Mapping

T A YRA implements mlXlng of texture
information and shaded pixels using the OpenGL
decal or modulate modes. These modes are
selected on a per-triangle basis.

19

6.5.7.2 Environment Mapping

T A YRA uses the OpenGL decal mode to
implement environment or reflection mapping.
This mode is selected on a per-triangle basis.

6.5.7.3 Tiling Modes

T A YRA implements four tiling operations which
can be specified independently for the two texture
coordinates:

1. 	 Wrap mode
• 	 Implements a bathroom tile effect

2. 	 Invert mode
• 	 Alternate tiles are inverted to ensure

texture continuity at tile boundaries
3. 	 Ignore

• 	 Outside of the unit square a background
. colour is used. 	 The background colour
can be specified on a per-triangle b!lSis.
The background colour is stored in' the
background colour register

4. 	 Clamp " ..
• 	 The texture colour at the periphery of the

texture image is extended across the
surface outside of the unit square

6.5.7.4 Mip Map Filter Modes

T A YRA implements texture mapping with mip
maps and provide the following point sampling
and filtering operations.

1. 	 Point Sampling (at pixel rate)
• 	 The user can program T A YRA to point
· . sample texture maps for small primitives,

and primitives with small slopes in Z. A
single sample is taken from the texture
mip map.

2. 	 Linear Filtering (at pixel rate)
• 	 TA YRA has the option to linearly filter

the mip map. Two samples, one from
each of two adjacent mip map levels, are
taken from the texture mip map. These
two samples are then linearly
interpolated.

3. 	 Bilinear Filtering (at pixel rate)

• 	 T A YRA has the option to bilinearly filter
the mip map. Four samples from a single
mip map level are taken. The four
samples are then bilinearly interpolated.

4. 	 I ril inear Filtering (at half pixel rate)
• 	 T A YRA has the option to trilinearly filter

the mip map. Four samples are taken
from a single mip map level, and four
more samples are taken from an adjacent
level. The eight samples are then
trilinearly interpolated.

6.5.7.5 Mip Map Organisation

IAYRA supports three different mip map
organisations.

1. 	 Square mip maps
• 	 Each mip map has dimensions (2n x 2n)

with each mip map having half the
resolution of-the previous mip map. For
example, a mip map. with map level
dimensions of 16x16, 8x8, 4x4, 2x2, lxl
is a square mip maps

2. 	 Linear mip maps
• 	 Ihis mip map has only a single

dimension, with each map level having a
dimension with a power of 2. For
example, a mip map with map level
dimensions of 32xI, 16xI, ... 2xI, Ixl is
a linear mip map

3. 	 Point2D mip maps
• 	 This mip map has maps of the form (2n x

21n). In this mode the filtering operations
of section 6.5.7.4 are not supported. The
mip map with map levels 8x8, 8x4, 8x2;
8xI,4x8 ... 2x2, 2xI, Ix8, Ix4, .lx2, Ixl
is a Point2D mip map

The T A YRA 1.0 Program Register Set
Specification defines the mip map organisation
registers.

6.5.7.6 Texture Colour Modes

TA YRA implements the following texture colour
formats::

20

RGBA: 32 bits per texel, channel A is used for
transparency

2 RGB5551: 16 bits per texel, with 5 bits per

RGB and 1 bit for A to support transparency

3 RGB565: 16 bits per texel, with 5 bits for the

Rand B channel, and 6 bits for the G channel.

4 RGB676: 8 bits per texel, with 6 levels of R
and Band 7 levels of G

5 RGB666: 8 bits per texel, with 6 levels for
each R, G and B channel

6 	 RGB6761: 8 bits per texel, with 6 levels of R
and Band 7 levels of G, and 1 level with value
255 decoded to mean non-visible

7 	 RGB6661: 8 bits per texel, with 6 levels for
each R, G and B channel, and 1 level with
value 255 decoded to mean non-visible

6.5.8 Blending

TA YRA will implement blending algorithms for
antialiasing and transparency based on the
blending equations in the OpenGL specification,
see the OpenGL Programming Guide [6]. For
example, T A YRA implements source and
destination blending factors as follows:

1. 	 Source Blending Factors

• 	 GL_ZERO
• 	 GL_ONE
• 	 GL_DST_COLOR
• 	 GL_ONE_MINUS_DST_COLOUR
• 	 GL_SRC_ALPHA
• 	 GL_ONE_MINUS_SRC_ALPHA
• 	 GL_DST_ALPHA
• 	 GL_ONE_MINUS_DST_ALPHA
• 	 GL_SRC_ALPHA_SATURATE

2. 	 Destination Blending Factor

• 	 GL_ZERO
• 	 GL_ONE
• 	 GL_DST_COLOR
• 	 GL_ONE_MINUS_DST_COLOUR
• 	 GL_SRC_ALPHA
• 	 GL_ONE_MINUS_SRC_ALPHA
• 	 GL_DST_ALPHA
• 	 GL_ONE_MINUS_DST_ALPHA

The implementation of these source and
destination factors provide T A YRA with a
flexible alpha blending strategy.

6.s.B.1 Antialiasing

Antialiasing is implemented in T A YRA for lines,
spans and triangles using the appropriate source
and destination blending factors given above, see
the OpenGL Programming Guide [6].

6.s.B.2 Transparency

T A YRA implements transparency using the
appropriate source and destination blending
factors given above, see the OpenGL
Programming Guide [6]. For example, TAYRA
can implement transparency with a single pass.
However, it does require that the scene is sorted
by opaque (Alpha =1.0)polygons al)d.transparent
(Alpha < 1.0) polygons before rasterisation. All
opaque polygons are drawn first, with the depth
buffer enabled. Then transparent polygons are
drawn next, with depth buffer test enabled but
depth buffer write disabled.

6.6 Pixel Colour Resolution

T A YRA will implement colour resolutions
compatible with SVGA colour resolutions as
follows:

• 	 True colour
• 	 32 bit 8:8:8:8 RGBA, (16 M

simultaneous colours)
• 	 24 bit 8:8:8 RGB, (16 M simultaneous

colours)
• 	 Hi-Colour

• 	 16 bit 5:6:5 RGB, (64 K simultaneous
colours)

• 	 15 bit 5:5:5 RGB, (32 K simultaneous
colours)

6.7 Pixel Format Conversion

T A YRA implements several pixel format
conversions between the host and the texture and
colour buffers. Although the texture and colour

21

~ '0:'

buffers are set to 15, 16,24 and 32 bit colours, the
host or any device such as an MPEO decoder can
write transparently YUV 4:2:2, YUV 4:4:4, RGB
15, 16, 24 or 32 bit. For example, if the colour
buffer is set to 16 bit and the host writes 32 bit,
the pixel conversion module converts from 32 to
16 bit transparently. Similarly, YUV 4:2:2 would
be converted to 16 bit and so on.

• Fonnat Conversions
• YUV 4:2:2 to 15, 16,24,32
• YUV 4:4:4 to 15, 16,24,32
• RGB 15 bit to 16,24,32
• RGB 16 bit to 15,24,32
• ROB 24 bit to 15, 16,32
• ROB 32 bit to 15, 16,24

6.8 Block Move

T A YRA implements a 3D Block Move from
system memory to the colour buffer. This can be
perfonned by the host with TAYRA in PCI Target
mode, or by T A YRA when in Master mode. This
allows, for example, a 3D scene to be used as the
background colour. This Block Move can be
done at 132 MBytes/sec, limited only by the PCI
bandwidth.

6.9 Display Resolutions

Table 6~2 indicates the amount of display memory
needed for the TAYRA's Display and pixel
colour resolutions.

7. Conclusions

T A YRA is now well into the synthesis and final
verification phase. We are opening up
negotiations with ES2 for fabrication in a 0.5 or
0.6 micron process. TAYRA consists of about
270K gate equivalent logic and about 18 Kbits
memory for FIFOs, registers, etc. We hope to
have first sample chips by 1 Q97.

We are also considering an extensive range of
extra features for consideration in a future
T A YRA 2 version. Most notable is a setup
engine and vertex level interface which is nearing
design completion. The emergence of
Accelerated Graphics Port (AGP) has also
focused our attention for use as ~he interface I a
future T A YRA 2 chip. This is not a big step for
us because we already have a fully compliant PCI
MasterlTarget interface.

Display
Resolution

Single Buffer Colour Display Memory Requirement (Bytes)

8 Bits 16 Bits 24 Bits 32 Bits

310x200 64,000 128,000 192,000 256,~

640x480 307,200 614,400 921,600 1,228,800

800x600 480,000 960,000 1,440,000 1,920,000

1024x768 786,432 1,572,864 2,359,296 3,145,728

1152x864 995,328 1,990,656 2,985,984 3,981,312

1280xlO24 1,310,720 2,621,440 3,932,160 5,242,880

1024x1536 1,572,864 3,145,768 4,718,592 6,291,456

1600x1200 1,920,000 3,840,000 5,760,000 7,680,000

Table 6~2 TAYRA colour buffer memory requirements

22

8. Acknowledgements

T A YRA is part of the ESPRIT Monograph

project funded by the European Commission. We

are grateful to our Monograph partners (IBM

Germany, Universitat Tubingen and Caption), for

their contributions to this project. We extend our

gratitude to Joachim Binder of IBM for his

detailed contribution while at Sussex.

9. References

[1] Pineda, Juan, "A Parallel Algorithm for

Polygon Rasterization", pp.l7~20 in Computer

Graphics, Volume 22, Number 4, Addison

Wesley (1988).

[2] Marcus Waller, Paul Lister, "TAYRA
, 	 Scan Conversion Module ", .Technical Report

Sussex/Monographl044, Centre for VLSI and
Computer Graphics, University of Sussex, BNl
9QT, October 12, 1995.

[3] Lockheed Martin, "R3D/lOO Real Time.

Real 3D-Ultimate Graphics Pelformance for the

PC", Brochure by Lockheed Martin.

[4] Paul Lister, "PCl Bus Toolkit VO.l Data

Sheet ", Centre for VLSI and Computer Graphics,

University of Sussex, BN 1 9QT.

[5] Simon Pearce, Paul Lister, "Modular

Interconnect Communication Environment

(MICE) ", Technical Report UOS_OOIOO_VLSI,

Centre for VLSI and Computer Graphics,

University of Sussex, BNI 9QT, October '95.

[6] Jackie Neider, Tom Davis, Mason Woo,

"OpenGL Programming Guide It, The Official

Guide to Learning OpenGL, Release 1, Addison

Wesley, 1993.

23

