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Abstract
We have implemented a non-photorealistic rendering system which simulates the placement of paint/pencil/pastel
strokes to produce representational artworks from digital images. The system is able to record an image of each
paint stroke independent of the overall picture, in addition to some details about each stroke. Working with sets
of paint strokes from paintings of different images, we investigate how to determine which stroke from one picture
most closely resembles a given stroke from another picture. This enables the paint strokes from one picture to be
used to paint a different painting. This further enables the animation of one picture morphing into another, as the
paint strokes move and rotate into new positions and orientations. Using a K-means clustering approach, we can
extract a set of representative strokes from a series of paintings/drawings, and animate the same set of strokes
moving around a picture in order to represent different scenes at different times. We call such animations “paint
dances”. We apply this technique to sets of portraits and we present the resulting paint dances in an artistic context
as video art. We describe here the various methods we experimented with in order to determine an optimal stroke
matching and extraction approach.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image
Generation—Line and curve generation

1. Introduction

The Painting Fool (www.thepaintingfool.com) is a computer
program that we hope will one day be taken seriously as
a creative artist in its own right. Leaving aside the com-
putational creativity issues involved with this project, The
Painting Fool is at heart a non-photorealistic rendering sys-
tem which is able to produce painterly renditions of digital
images, similar to a plethora of academic and commercial
systems, such as those described in [GG01] or [SS02]. The
Painting Fool places simulated paint/pencil/pastel strokes on
a canvas, and as described in section 2, we have implemented
the ability to record both a bitmap image of each stroke
and certain details about the stroke. This facilitates the re-
construction of pictures at a later date (possibly with alter-
ations); the comparison of pictures in terms of the strokes
that they contain; and the animation of strokes moving on
a canvas, which is the focus of the work here. We define a
paint dance to be an animation depicting the movements of
a set of simulated paint/pencil/pastel strokes. In particular,

we are interested in the production of paint dances where
the strokes periodically come together in a representational
way, i.e., to produce a painterly rendition of a digital im-
age. For our particular aesthetic considerations, we have re-
stricted our attention to paint dances where strokes can only
translate and rotate on the canvas. However, in future, we
may enable changing the colours or performing non-linear
transformations of the strokes during the paint dances.

There are two major hurdles to producing paint dances.
The first difficulty is to determine how to paint pictorial rep-
resentations of multiple images using the same set of paint
strokes. In section 3, we describe a method for mapping one
set of strokes onto another such that the mapping pairs up
visually similar pairs of strokes. Given a set of pictures de-
scribed in terms of the strokes they contain, the second diffi-
culty comes in extracting from the overall set of paint strokes
a representative sample which can be used to reconstruct
each picture to an acceptable level of fidelity. In section 4, we
describe methods which use K-means clustering to identify
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Figure 1: Example drawings produced with setup 1.

a set of exemplar strokes from which multiple pictures can
be painted with relatively good fidelity. In section 5, we de-
scribe various experiments with stroke matching and stroke
set extraction in order to determine optimal settings for these
methods. In section 6, we describe how we constructed the
animated paint dances. To conclude, we place this approach
in context with non-photorealistic rendering projects involv-
ing animation, and we discuss future directions for this work.

2. Generating and Recording Rendered Strokes

The Painting Fool’s non-photorealistic rendering system is
straightforward in conception, and is described in detail
in [CVP08]. The process starts with hand-annotated im-
ages, where regions of interest are drawn around and la-
beled with various tags, e.g., eye, mouth, etc. For each
labeled region, the software segments the image using a
neighbourhood-growing algorithm followed by a rationali-
sation of the boundary of each region. For each region, the
user can specify different parameters for the segmentation
process. The parameters control the number required and the
nature of the regions, and the edge smoothing process. The
segments from a region are tagged with the labels for that
region, and the segment colour is set to the average of the
RGB values over the pixels in the original neighbourhood
from which it was derived. Segment colours can be mapped
to the hue and/or saturation and/or brightness of the closest
colour from a user-supplied colour palette.

Given the set of segments from all the regions, The Paint-
ing Fool simulates the usage of various natural art materi-
als to colour in the body and/or edge of each segment. Each
segment can be rendered repeatedly, and the entire set of seg-
ments can be rendered repeatedly in multiple layers. As de-
scribed in [CVP08], the software can simulate acrylic paints,
pencils, pastels, charcoals, felt-tip pens, watercolour paints
and chalks with differing levels of visual success. For the ex-
periments described here, we employ only the simulation of
graphite pencil strokes and acrylic paint strokes. The Paint-
ing Fool has various methods for filling in a segment with
strokes, but we only employ one here, namely the random
fill method. This chooses two points randomly within the

Figure 2: Example paintings produced with setup 2.

area defined by the segment and attempts to paint a stroke
starting at one and ending at the other. The stroke stops if it
leaves the region area, and the user can specify the length of
the smallest stroke allowed, the percentage of the area cov-
ered by the region that should be filled, and the amount that
the stroke can wobble along a line as it is drawn (leading to
curved strokes). The user is also able to specify the maxi-
mum and minimum stroke width allowed (denoted by brush
size). For a particular segment, the brush size is chosen in
proportion to the size of the segment, hence larger brushes
are used to fill in segments covering a larger area.

For the experiments described below, we produced draw-
ings and paintings from 32 images of faces, as per the fol-
lowing two rendering setups. For setup 1, we hand-annotated
each image by drawing a region around the whole ‘person’,
the ‘face’, and the facial features: the ‘eyes’, ‘nose’, ‘mouth’,
‘ears’ and ‘eyebrows’. We specified that the whole person
should be segmented into 50 regions, the face into 50 re-
gions, the eyes and mouth into 50 regions, the nose into 25
regions (with the outer regions removed) and the eyebrows
and ears into 10 regions. Each drawing was rendered onto an
approximately 1200 × 1200 pixel image, and graphite pen-
cil strokes with a fixed width were simulated to produce the
pictures. Regions were filled using the random fill approach.
In particular, regions annotated with the ‘person’ label were
filled until 50% of the region was covered, as were the fa-
cial feature regions. Regions annotated with the ‘face’ label
were filled until 40% of the region was covered. Two exam-
ple drawings are given in figure 1.

For setup 2, we used the same segmentation scheme as in
setup 1. However, in order to give the portraits something
of a fauvist look, we mapped the hue and saturation of seg-
ments to the those of the closest colour from a palette of pri-
mary and secondary colours, as prescribed in [Kra02], with-
out changing the segment’s brightness. (Les Fauves were a
group of artists from the early 1900s, called wild beasts by
critics because of their use of bold colours [Whi91]). Re-
gions were randomly filled as before (with the same per-
centages), but using simulated acrylic paints strokes. For
regions tagged with the ‘person’ label, wide brush strokes
of between 30 and 50 pixels were used. For ‘face’ regions,
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Figure 3: Extract from an example strokes file, along with
the anchor points recorded in the XML file for each stroke..

medium brush strokes of between 20 and 30 pixels were
used, and for facial feature regions, thin strokes of between
5 and 15 pixels were used. Two example paintings are given
in figure 2.

To facilitate the kinds of paint dances mentioned above,
during the rendering session, The Painting Fool records the
following details about each paint stroke:

• The co-ordinates for the top left corner of the stroke’s
bounding box

• The average colour of the pixels rendered for the stroke
• The width of the brush that was used for the stroke
• The length of the curve that the stroke was rendered on
• Five anchor points distributed evenly along the curve that

the stroke was rendered on

At the end of the rendering session, an XML file is generated
and saved which contains all the stroke information. In ad-
dition, a bitmap file with the stroke images delineated from
each other is recorded, as in figure 3. Using these stroke im-
ages with the co-ordinate information from the XML file en-
ables the faithful reconstruction of the picture at a later date.

3. Matching Stroke Sets

The starting point for our paint dances is a set of paint-
ings/drawings (pictures) like those in figures 1 and 2 above.
The dance is performed by sequentially morphing one pic-
ture into another, with the paint strokes from the first becom-
ing those of the next, and so on. Moreover, as mentioned pre-
viously, we do not allow the paint strokes to be transformed
other than with rotations and translations. To facilitate the
animation, we start with a generic set of strokes (calculated
using techniques described in section 4), and work out how
best to use them to re-paint each picture in the series. In par-
ticular, we suggest below a way in which one set of strokes
may be equated with another set, so that the first set can be
used to paint a facsimile of the picture originally produced
by the second set.

Suppose we have two lists of strokes, S1 and S2, of
equal size, which have been produced via the rendering and
recording of pictures P1 and P2 respectively, using the pro-
cesses described in section 2 above. For any stroke s, let
centre(s) be the third point in the set of five recorded for
it, i.e., the central anchor point for the strokes in figure 3.
We define a stroke-mapping, 〈M,R〉, to be composed of a
bijective mapping M : S1 → S2, and a set of rotation an-
gles R = {r1, ...,r|S1|}, where ∀r,r ∈ R and 0 ≤ r < 360.

Let pos(s) denote the position of stroke s in S1, let M(s)
denote the stroke in S2 that M maps s ∈ S1 onto, and let
R(s) denote the rotation angle in R at position pos(s). We
define the repainting of P2 using 〈M,R〉, denoted P2(M,R),
as the image produced by taking each s ∈ S1 and translating
it so that centre(s) = centre(M(s)), then rotating it around
centre(M(s)) by R(s) degrees.

Note that images P2 and P2(M,R) may have different di-
mensions, and suppose that w is the largest of the two widths,
and h is the largest of the two heights, and that the two pic-
tures have been registered within an image, Im, of dimension
w×h pixels, so that the centre points of each original stroke,
s, and each mapped stroke, M(s), co-incide. Let sp(Im) de-
note the set (without repetitions) of positions of the stroke
pixels in either P2 or P2(M,R), i.e., the position of pixels
which the placement of any stroke changes. We define the
fidelity, f (M,R) of the stroke mapping 〈M,R〉 as follows:

1−
∑

w
x=1 ∑

h
y=1 (||rgb(P2,x,y),rgb(P2(M,R),x,y)||)

|sp(Im)| ∗
√

3∗2562

where ||rgb(P2,x,y),rgb(P2(M,R),x,y)|| is the Euclidean
distance in RGB-space between the colour of pixel P2 at co-
ordinate (x,y) and the colour of pixel P2(M,R) at co-ordinate
(x,y). Note that

√
3∗2562 is a normalisation factor: it is the

distance between black and white in RGB space.

In algorithmic terms, given a stroke-mapping 〈M,R〉, to
produce a repainting of P2 using the strokes from S1, each
stroke in S1 is translated so that its centre point is at the same
co-ordinate of the centre point of a corresponding (according
to M) point from S2, and then the stroke is rotated according
to R. We can approximate how closely the repainted image
looks like the original picture by first registering one image
over the other so that every pair of stroke centres co-incide
properly, and then calculating the average distance between
the RGB values of corresponding non-background pixels.

In order to determine methods for generating stroke map-
pings which achieve acceptably high fidelity, we start with a
random method, which assigns the strokes from S1 to those
from S2 randomly to construct the bijective mapping M, and
then randomly assigns rotation values to R. This gives us a
base-line for fidelity on which to improve, and some val-
ues determined experimentally for this base-line are given in
section 5. At the other end of the spectrum, the best stroke
map generating algorithm would work out the RGB dis-
tance between each pair of centre-registered strokes under
every possible rotation. However, such a method is compu-
tationally expensive. In order to find a computationally sen-
sible middle ground, upon examination of the repaintings
achieved using the random approach, we noted that there are
four factors which effect fidelity. In particular, strokes s and
M(s) will be a poor match if (i) their colours differ too much
(ii) their lengths differ too much (iii) their brush sizes differ
too much or (iv) there is no suitable rotation which can move
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the anchor points of M(s) into positions close to the anchor
points of s.

Based on these observations, we can suggest a weighted
sum estimate for how visually different stroke s1 ∈ S1 is to
stroke s2 ∈ S2, which does not involve calculating an RGB
distance between the two strokes. Before doing so, we first
need to define length_distance(s1,s2) as:

|length(s1)− length(s2)|
maxsa∈S1∪S2,sb∈S1∪S2 |length(sa)− length(sb)|

where length(s) is the stroke length recorded for stroke
s. The length distance is therefore the difference between
the stroke length of s1 and s2, normalised via division
by the difference between the longest and shortest strokes
in either picture. We define brush_distance(s1,s2) simi-
larly (with length(si) substituted by brush_size(si), i.e.,
the size of the brush recorded for si). We similarly define
colour_distance(s1,s2) as the Euclidean distance between
the recorded colour of stroke s1 and the recorded colour of
stroke s2, normalised by division by the maximum colour
distance between any pair of strokes from either picture.
Given weights w1, w2 and w3, the weighted sum estimate
of stroke difference (sd) for strokes s1 and s2 can now be
defined as:

sd(s1,s2,w1,w2,w3) = w1 ∗ length_distance(s1,s2) +
w2 ∗brush_distance(s1,s2) +
w3 ∗ colour_distance(s1,s2)

Given stroke lists S1 and S2 as above, and a prescribed
set of weights w1, w2 and w3, we use this estimation in a
greedy algorithm to determine a suitable stroke-mapping as
follows. Firstly, we order the strokes in S2 by descending
stroke area, where stroke area is calculated as the stroke’s
length multiplied by the stroke’s brush width. We then take
each s2 ∈ S2 in this order, and find the s1 ∈ S1 which min-
imises sd(s1,s2,w1,w2,w3). We then remove s1 from S1, so
that it cannot be paired with any other stroke from S2. In this
manner, we can build up a bijective mapping M which finds
the best matches for the strokes from S2, with the largest
strokes being matched earlier than the smaller ones. Then,
for each pair (s,M(s)), once s has been registered so that
its centre co-incides with that of M(s), we calculate the ro-
tation angle R(s) as the integer angle r between 0 and 360
which minimises ∑

5
i=1 ||pi(s), pi(M(s))||, where pi(s) is the

i-th anchor point recorded for stroke s, and ||x,y|| denotes
the straight line distance between points x and y in a 2D
plane. To summarise, we determine a stroke mapping 〈M,R〉
of strokes S1 onto picture P2 by looking at each stroke of
S2 (in decreasing stroke area), and estimating which stroke,
s, of S1 looks the most like it, in terms of a weighted sum
of stroke length difference, brush size difference and stroke
colour difference. For each match, we work out how best to
rotate s so that its anchor points are as close as possible to
the anchor points of the original stroke from S2.

In practice, we do not prescribe the weights for the

Figure 4: Images A and B are the original drawings. Image
C was produced by mapping the strokes of B onto A with a
random stroke mapping (vice-versa for image D). Likewise
for images E and F, but the stroke maps were produced us-
ing the exhaustive greedy method. The fidelity of the maps
producing the images are: C = D = 0.8, E = F = 0.86.

weighted sum, as we have found experimentally that it is dif-
ficult to know in advance what weightings will produce the
highest fidelity repainting for any pair of pictures. Hence,
we perform an exhaustive search over the sets of weights
(w1,w2,w3) in:

{(w1,w2,w3) ∈ {0,0.1, . . . ,1.0}3 : w1 +w2 +w3 = 1}

in order to find the optimal set of weights. That is, for each
set of weights, we produce the map 〈M,R〉 using the greedy
algorithm above, and then calculate the fidelity f (M,R). We
record the weights which maximise f (M,R). We call this the
exhaustive-greedy method. While it is fairly computationally
expensive, time is not particularly an issue in the production
of the paint dances. We compare the results of the random
versus the exhaustive-greedy search in section 5. In figure 4,
we present the results of the random generation of a stroke
mapping against the exhaustive greedy method for rendering
setup 1. We see that the increase in fidelity is clearly marked.
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4. Extracting Generic Stroke Sets

As mentioned previously, stroke dances require the sequen-
tial rendering of multiple pictures, P = P1, . . . ,Pn by a sin-
gle set of paint strokes. If we label the entire set of strokes
E = {s : s∈ Pi for some i}, then we need to extract a generic
set, G, from E in such a way that the fidelity of the stroke
mappings from G to each picture Pi is as high as possible.
We chose to do this using a K-means clustering approach to
cluster the strokes in E, and then to extract exemplars from
the clusters to form G. K-means clustering [Mac67] is a well
known method which groups together objects represented by
a vector of numerical values into a given number, k, of clus-
ters. It works by randomly choosing a set of k objects as the
initial means for the clusters. Then, each object is assigned
to the cluster it is closest to (in terms of the Euclidean dis-
tance between it and the mean of the cluster). The mean of
each cluster is then replaced by the centroid of the cluster,
and each object is re-assigned to (possibly different) clus-
ters, etc. This continues until no object is re-assigned. The
K-means++ clustering algorithm [AV07] more intelligently
chooses the initial means, and converges twice as fast on av-
erage as K-means, while consistently producing lower error
clusterings (in terms of the average distance between the ob-
jects and the centroid of the cluster to which they belong).

We represent each stroke with a vector of its length, brush
size and the R,G,B values of its average colour. Letting k
be the maximum number of strokes in any Pi of P, and n =
|E| be the total number of strokes to cluster, we produce k
clusters using either K-means or K-means++ clustering. We
then extract strokes from the clusters in one of three ways:

• simple method: a random cluster is chosen, and the closest
stroke to its centroid is extracted. Each cluster supplies a
stroke before the second closest stroke from a previous
cluster is extracted, etc. (which doesn’t happen when the
required number of strokes, q, is the same as the number
of clusters, but does happen when q increases – see later).

• proportional method: the t closest strokes to the centroid
of each cluster are extracted, where t is proportional to the
the size, c, of the cluster, i.e., t = c∗ k/n.
• distribution method: a cluster is chosen at random with

probability, p, proportional to the size, c, of the cluster,
i.e., p = c/n. Then, the closest stroke to the centroid is
extracted. If a cluster is revisited, the second closest stroke
to the centroid is chosen, and so on. The method repeats
until k strokes have been extracted.

In section 5, we describe experiments where the cluster-
ing and extraction techniques are altered, and we compare
the fidelity of the resulting stroke mappings. As an example,
in figure 5, there are 16 drawings comprising 59,983 pen-
cil strokes overall, with lengths from 12 to 280 pixels. The
most strokes in any drawing is 4,373. We used K-means++
with simple extraction to extract this number of generic
strokes. Placing the extracted strokes in their original posi-
tions/orientations gives the composite image of figure 5.

Figure 5: 16 drawings and the composite image of the
generic strokes extracted using the clustering method.

Figure 6: Paintings used in the experiments.

5. Experiments and Results

We work here with a set of 32 drawings, half of which are
shown in figure 5, and a set of 32 paintings, as portrayed in
figure 6. The original portraits capture a likeness of the sit-
ters which we wanted to maintain during the paint dances.
Hence, we concentrated on increasing the fidelity of the
stroke mappings, so that during the paint dances, the peo-
ple being portrayed appear with an acceptable likeness.

We first compared different stroke mapping generators,
using a base-line of the random generator as described
above. We compared the exhaustive-greedy generator with
fixed weight schemes where one of the stroke properties
(brush size, colour, length) were fully weighted with the oth-
ers being zero-weighted, and where the three properties were
equally weighted. To perform the comparison, we took a
pair of random pictures and the one with the most strokes
in had strokes randomly removed until it had exactly the
same number as the other. For each stroke map generating
method, we produced a stroke mapping so that the strokes of
the first picture were used to repaint the second picture, and
we recorded the fidelity of the mapping. We repeated this
100 times for both drawings (rendering setup 1) and paint-
ings (setup 2). Note that the brush size in rendering setup
1 was fixed, hence we fixed the brush size weight for the
drawings experiments at zero, and we did not experiment
with a weighting scheme where only brush size has a non-
zero weight. Moreover, in each case, the exhaustive-greedy
method determined a best set of weights for the weighted
sum estimate. We recorded the average of these over the

c© The Eurographics Association 2010.

71



S. Colton / Stroke Matching for Paint Dances

100 runs, and found that the average best set of (brush
size, colour, stroke length) weights for setups 1 and 2 were:
(0,0.424,0.573) and (0.251,0.226,0.523) respectively. We
generated stroke mappings for a further 100 random pairs of
pictures as before, but using these fixed best weights. The
results are recorded in table 1(a). We see that achieving fi-
delity is more difficult for the paintings (setup 2) than for
the drawings, and that in both cases, the average fidelity of
the mappings produced randomly is lower than for all but
one non-random methods, with the exception being colour
only weights for the pencil drawings, where colour is the
least important aspect. We further see that the exhaustive-
greedy, equal weighting and best weightings methods per-
form better than the others on average, which was expected.
For our aesthetic purposes, the fidelity of every picture in
the paint dance series is important, i.e., every portrait needs
to have a good likeness. Hence, we are most interested in the
worst case scenario with a mapping generator. For the worst
mappings, we see in table 1(a) that the exhaustive, equal and
best methods again outperform the others. Interestingly, for
paints, the brush, colour and length methods perform worse
than random with respect to worst-case mappings.

We next addressed the question of being given a set of
pictures, and extracting a subset of strokes from the total-
ity of strokes which achieves acceptably high fidelity when
used to repaint all the pictures. In practice for a given clus-
tering/extraction method pairing, we determine the largest
number of strokes needed to render any single picture in
the set, extract this many from the overall set, and use the
exhaustive-greedy method to calculate a stroke mapping
from a subset of the extracted strokes to the strokes in the
picture. We varied both the clustering approach (K-means
and K-means++) and the exemplar extraction method (sim-
ple, proportional and distribution), by generating a cluster-
ing, then using the three different extraction methods on it.
We then checked the fidelity of the stroke mapping gener-
ated for each extraction method, when using the exhaustive-
greedy mapping generator. The results are recorded in table
1(b), and we see that there is no discernible difference in fi-
delity for any of the clustering and extraction setups, with the
possible exception of the pairing of K-means++ and the sim-
ple extraction method outperforming the other pairings for
the paints setup. These results possibly highlight the value
of the clustering method, i.e., however the exemplars are ex-
tracted, the clustering method itself has the most effect on
the fidelity of the mappings which result.

Concentrating on the repaintings produced using the K-
means++ and simple extraction method, on visual inspec-
tion of the drawings, the majority of the repaintings retained
enough fidelity for an acceptable likeness of the person in the
portrait, with the example provided in figure 8(a) exhibiting
the highest fidelity (0.901). The same was not true for the
paintings. For instance, the example in figure 8(a) has a high
fidelity of 0.912, but does not sufficiently capture the facial
features of the sitter. Moreover, as mentioned previously, the

S. Colton / Stroke Matching for Paint Dances

Mapping Setup 1 (Pencils) Setup 2 (Paints)
Generator worst av. best worst av. best
Random 0.744 0.802 0.840 0.627 0.694 0.794
Exhaustive 0.799 0.859 0.894 0.653 0.788 0.889
Equal 0.798 0.857 0.894 0.635 0.773 0.889
Brush n/a 0.626 0.702 0.805
Colour 0.777 0.740 0.877 0.610 0.744 0.858
Length 0.754 0.819 0.864 0.625 0.711 0.812
Best 0.775 0.867 0.894 0.656 0.792 0.871
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[Whi91] WHITFIELD S.: Fauvism. Thames and Hudson, 1991.

Clustering Extraction Setup 1 (Pencils) Setup 2 (Paints)
Method Method worst av. best worst av. best
k-means Simple 0.860 0.890 0.901 0.784 0.876 0.919
k-means Dist. 0.865 0.891 0.903 0.782 0.877 0.922
k-means Prop. 0.862 0.891 0.902 0.786 0.878 0.924
k-means++ Simple 0.865 0.892 0.904 0.814 0.889 0.918
k-means++ Dist. 0.862 0.890 0.901 0.782 0.877 0.921
k-means++ Prop. 0.863 0.891 0.901 0.780 0.877 0.919

c� The Eurographics Association 2010.

Table 1: (a) Fidelity of generated stroke mappings (b) Fi-
delity of different stroke extraction methods.Paints

1.0
1.25
1.5
1.75
2.0

1.0
1.25
1.5
1.75
2.0

Worst Average Best Worst Average Best

86.846 50.176 34.340 0.8041362201173 0.8868380694632 0.9225529995489

69.847 40.010 30.169 0.8424740640505 0.9097654488047 0.9319598556608

63.321 34.916 25.809 0.8571921515562 0.9212539467749 0.9417929634641

57.390 31.719 24.226 0.8705683355886 0.9284641407307 0.9453631032927

58.617 29.907 23.158 0.867801082544 0.932550744249 0.9477717636446

Pencils
58.486 47.662 41.683 0.8680965268381 0.8925078935498 0.9059923319802

48.625 44.020 39.982 0.8903360396933 0.9007216959856 0.9098285972034

46.834 42.463 38.420 0.8943752819125 0.9042331980153 0.913351375733

45.975 41.699 37.262 0.8963125845737 0.9059562471809 0.9159630130807

45.085 40.914 36.519 0.8983198015336 0.9077266576455 0.9176387009472
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Figure 7: Fidelity versus stroke number multiplication. First
graph: setup 1 (pencils). Second graph: setup 2 (paints).

Figure 8: (a) best repaintings (b) worst repaintings (c) im-
proved results achieved with 2.0 stroke multiplications. The
original pictures are on the left of each pair.

paint dance will be judged as a whole, and the worst fidelity
needs to be taken seriously. The worst repaintings for both
paintings and drawings are given in figure 8(b), along with
the original picture. Subjectively, we found that these were
not of sufficiently quality to be included in the paint dances.

To improve matters, we experimented with extracting
more than the minimum number of strokes required, i.e., if
the largest number of strokes required to paint any one pic-
ture was n, we increased the number of strokes extracted to
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Figure 9: Example paint dances using simulated acrylic paints; example paint dance using simulated graphite pencils; stills
from the ‘Meeting of Minds’ video piece; stills from the ‘Eye to Eye’ video piece.

1.25n,1.5n,1.75n and 2n to see how much fidelity would
be improved over the set of pictures. The improvement in
fidelity – as recorded in the charts of figure 7 – is due to hav-
ing more strokes to choose from for each picture, with the
payoff being the difficulty of handling the surplus strokes
during the paint dances (as described in section 6). We see
that in both rendering setups, there is a marked increase in
the worst fidelity when the number of extracted strokes is in-
creased to 1.25n. The increases for the larger multiplicands
are less marked, but overall, the quality of the repaintings
improves. In figure 8(c), the improved versions of the worst
fidelity repaintings are supplied, and we can see a marked
improvement visually. For stroke multiplication factor 2.0,
we were satisfied with all the repainted drawings, but still
somewhat unsatisfied with a few of the repainted paintings.
We will address this via further experimentation, and by pro-
ducing different original paintings, because the unsatisfying
repaintings align with outliers from the original paintings.
In particular, the two portraits in figure 6 with orange faces
have particularly bad repaintings, even with stroke multipli-
cation factor 2.

6. Paint Dance Animations

To recap, we have implemented methods for (a) rendering
paint/pencil strokes and storing them independently of the
overall picture (b) extracting a representative set of strokes
from those of a set of pictures, and (c) determining how to
repaint each of the pictures using this representative set of
strokes. Given a set of strokes and a set of stroke mappings
to a set of n pictures, we specify an overall number of clock
ticks, t, for the animation. The Painting Fool then constructs
a series of still images of the strokes which at regular in-
tervals (of t/n clock ticks), come together at the correct co-
ordinates and at the correct orientations to repaint the next
in the series of pictures. We then use the ffmpeg software
(http://ffmpeg.org) to compile the stills into an animation.

There are numerous ways to specify the paths that the
strokes take between repaintings. The simplest of these is

to move each stroke in equal increments at each clock tick
directly from its current position to the position required of
it in the next repainting, and to similarly rotate the stroke
in equal angles at each clock tick so that it ends in the cor-
rect orientation when it gets to its destination. Starting with
the centre of the first and second pictures registered, fig-
ures 9(a) and 9(b) show two paint dances constructed in this
way. We have enabled the user to specify delay ranges for
the strokes leaving and joining a repainting, hence the paint
strokes arrive and leave at slightly different times to each
other, which appears more natural. Similarly, the user is able
to specify a trail (semi-transparent renderings of the previous
positions/orientations of the stroke) which gives a motion ef-
fect. The correct layering of strokes on top of each other is
key to achieving high fidelity repaintings. This means that
the render ordering of strokes has to change during a paint
dance. Doing so all at once causes a jarring animation arte-
fact, hence we move each stroke from its current list position
to its target one in random intervals as it travels from one re-
painting to the next. This smoothes the transition, but is not
an entirely satisfactory solution, as there are still occasional
artefacts where one stroke bubbles up past another unnatu-
rally. We are investigating ways to improve this situation.

As mentioned above, for our purposes, we chose to use a
stroke multiplication factor of 2.0, in order to increase the fi-
delity of the portraits. This means that at any stage, only half
the paint strokes are being used for a repainting, which begs
the question of where to place the non-critical strokes. For
the two examples in figures 9(a) and 9(b), the non-critical
strokes are placed in the centre of the image, at the back,
hence conveniently hidden. For our final paint dances – en-
titled “Meeting of Minds” and “Eye to Eye”, with extracts
in figure 9 – we have chosen to make a feature of the non-
critical strokes. In particular, in the former case, the strokes
are placed around the portraits randomly, and similarly move
around randomly between repaintings. In the latter case, the
strokes maintain a continually moving orbit around the por-
traits, moving into the centre when needed for a repainting,
and back out when not.
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7. Related Work

Our work is a form of morphing, as described in [GDCV98],
where one image is transformed into another in a seamless
transition, which has its origins in film art, dating back more
than a century [BT97]. Our approach differs in that the dig-
ital images are first represented as a series of paint/pencil
strokes in an NPR manner before the morphing occurs.
Other researchers have mixed NPR techniques with anima-
tions, e.g., Hertzmann and Perlin use NPR methods to paint
over successive video frames to produce animated pictures
[HP00]. Their approach only applies paint to the areas in
frames where the source video is changing, and uses op-
tical flow techniques to morph the strokes. In more recent
work, the authors of [Col05] describe a video paintbox for
transforming video clips into artistically stylised animations
using saliency-adaptive painterly renditions [CH06] of im-
ages to mitigate issues of artistically rendering video, such
as inherent flickering. Our approach could possibly be ap-
proximated by recording a video while morphing one digital
image into another, then applying the techniques of [HP00]
or [Col05] to the resulting video frames. Other researchers
have used 3D models to produce NPR renderings which are
animated in real-time while the model is moved and ro-
tated [MKT97]. For instance, in [LD06], the authors em-
ploy generative software normally used to produce photo-
realistic trees, plants and landscapes. This has an advantage
over video because the software provides detailed geometric
descriptions which support the automatic simplification and
segmentation of the 2D images, hence allowing efficient ap-
plication of NPR techniques, for instance to produce realistic
watercolour renditions of animated scenes, as in [LD06].

8. Conclusions and Future Work

We have developed and tested methods for matching sets
of paint/pencil strokes so that a series of pictures can be
repainted using only one set of strokes. This has facili-
tated the production of so-called paint dances as animations
of paint strokes which occasionally form portraits in a se-
quence. The main difficulty lay in maintaining an acceptable
level of fidelity with the repaintings, and we showed that
the exhaustive-greedy approach performed well alongside
a K-means clustering of the strokes, especially with an in-
crease in the number of strokes available. We showed that the
way in which strokes are sampled from the clusters does not
particularly effect the fidelity of the repaintings. The ‘Eye
to Eye’ and ‘Meeting of Minds’ video pieces mentioned
above have been produced at full resolution (1920×1200)
to be played on an iMac computer, with samples available at
www.thepaintingfool.com/galleries/paint_dances. However,
there are many other approaches we can envisage which
might improve upon the stroke matching and extraction pro-
cesses. In particular, we plan more experimentation with
variations of the methods here, for instance, changing the
order of the stroke matching, so that strokes in more salient

regions are matched first, and including rotation in the
weighted sum estimate of stroke likeness. As suggested by
a reviewer, it may be better to find a stroke set for produc-
ing all portraits at the start of the pipeline, eliminating much
work later on. However, this would mean automatically de-
termining how good the original portraits are, which raises
difficult technical issues of its own. As described in [Col08],
our ethos is to continually climb the meta-mountain by hand-
ing over creative responsibility to the software. Hence, part
of our future work will involve enabling The Painting Fool
to create its own animations with no aesthetic guidance.
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