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Abstract 

This paper describes a new architecture for generat­
ing smoothly shaded two dimensional images of volume 
data. This architecture fits into an image synthesis 
pipeline and uses only simple arithmetic operations and 
a look-up table to generate two dimensional images in 
real time. The shading algorithm is an extensioll of the 
grey-level gradient algorithm for shading volume data. 
The shading technique produces smooth images for vox­
elized geometrical data and sampled volume data. Im­
age synthesis from volume data in real time is an impor­
tant technique in visualization and graphics systems. 

Additional Key Words and Phrases: real-time 
shading, volume visualization, graphics hardware, im­
age generation 

Introduction 

The generation of two dimensional (2D) images from 
volumetric data sets containing either measured data 
or voxelized geometrical primitives is creating a new 
alternative for image synthesis techniques [8]. The abil­
ity to synthesize 2D images in real time, that is at 
video presentation rate, will allow the interactive ex­
ploration of these data sets through several interfaces 
including Virtual Reality. Many aspects of real time 
volume imaging require improved technology, including 
processing power for image analysis and synthesis, and 
data sampling techniques for rapid image data acqui­
sition in modalities, such as·magnetic resonance imag­
ing (MRI). Improvements in processing power can be 
achieved through the creation of special-purpose graph­
ics imaging hardware [9]. 

The ability to generate two dimensional images from 
volumetric data, based on voxelized geometrical prim­
itives, provides an alternative to surface based graph­
ics. Image synthesis from voxelized data is independent 
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of the original scene complexity once voxelization has 
been completed. This paper is concerned with the sur­
face shading of voxel data in real time using a graphics 
pipeline. 

Three dimensional sampled magnetic resonance 
(MR) data of the human body is used daily in the diag­
nosis of medical conditions. Real time MRI of the mov­
ing internal organs of the body will further assist med­
ical treatment, in particular, heart conditions. Imaging 
technology of this nature will generate large amounts of 
data to be rendered for human inspection in real time. 
The technology described in this paper is intended for 
this type of application. 

2 	 Shading techniques for Volume 
data 

Image generation involves the calculation of interaction 
between light rays and surfaces to create recognisable 
three dimensional objects [3]. Shading of Volume data is 
accomplished in a similar fashion with the construction 
of surfaces being the key factor. Due to the large volume 
of data, processing speed is limited by the complexity 
of calculating the normals to the constructed surfaces. 

Direct volume rendering involves shading volume 
data without producing intermediate image states and 
numerous algorithms exist for this purpose [10]. In this 
paper we will deal with the shading technique called 
gradient shading [4] and an extension which uses data 
contained in each voxel [6]. This extension is commonly 
referred to as grey-level gradient shading and produces 
images with smooth shading of high quality, but is lim­
ited due to its inability to display thin objects and fail­
ure where the grey-level is inappropriate for locating 
the surface in volume data. 

The generation of images using volume data in real 
time is made practical by low complexity shading al­
gorithms and application specific hardware [10, 12]. A 
hardware algorithm called congradient sha.ding, which 
is capable of shading volume data in real time using 
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Figure 1: Top level diagram of system architecture 

gradients and look-up tables is presented in [1]. This 
architecture only uses the x and y gradients and not 
the z gradient, and hence the quality of normals gener­
ated is impaired. The Verve system [11] uses gradient 
shading to determine the normals for shading and is 
capable of generating images in real time by employing 
several units in parallel to create Phong shaded sur­
faces. The Verve system casts a viewing ray through 
the volume for each pixel on the view plane and has a 
long arithmetic pipeline for vector normalisation. 

3 System Overview 

An architecture has been proposed for the creation of 
video rate images, and is described in [2]. The architec­
ture was designed as an integrated processing element 
for generating screen pixels and the organisation of the 
processing element is shown in Figure 1. In this figure, 
the rotation and shading subsystems are independent 
which allows them to operate in parallel. Processing of 
the volume data set is done in a plane by plane, scan­
line fashion. This style of processing allows the system 
to be adapted to work from a standard memory ar­
rangement or a stream of input data from a variety of 
sources. The plane by plane, scanline processing style 
also reduces the calculation complexity for projections. 
The output from these two concurrently operating sub­
systems is synchronized prior to display by a control 
unit which also controls the operations in both the ro­
tation and shading subsystems. The authours are inves­
tigating the possibilities of supporting translucency by 
incorporating image compositing calculations into the 
shading subsystem and screen control unit. 

3.1 Shading Subsystem 

The shading subsystem is made up of several sections 
including, the plane buffer, the gradient calculator, and 
the Look Up Table (LUT). The plane buffer stores voxel 
values to be fed into the cubic window inside the gra­

dient calculator. The cubic window is a buffered set 
of registers representing a three dimensional 3 x 3 x 3 
window through which voxel data is streamed. The gra­
dient is calculated for the voxellocated at the centre of 
this 26 connected neighbourhood and represents a sur­
face normal at the centre voxel which is used as the 
index for the LUT. The result from the LUT is used 
to generate the final value for the screen. This paper 
is concerned with the gradient calculator and uses an 
architecture not previously reported. 

3.2 Rotation Subsystem 

The rotation subsystem projects three dimensional co­
ordinates to a two dimensional viewing plane, using an 
axollometric orthographic projection [3] which requires 
a three dimensional rotation of the data set to the view­
ing plane. The mathematical formula for the X com­
ponent of the projection is: X = aXtl + bYtI +cz", where 
X is the x value in the viewing space, a, b, c are con­
stants associated with the current viewing position, and 
x,,, y", z" are the positions of the current voxel being 
processed in the volume data. The rotation subsystem 
takes advantage of the traversal of voxel memory by 
only having to recalculate the increment along one axis, 
the scanline direction, for each voxel processed, since 
values of the data set only change along the sca.uline. 
The critical calculation per voxel for a parallel projec­
tion is reduced to three parallel multiplys and adds per 
voxel. 

3.3 Light sources and shadows 

A limitation in this system is the restriction on the 
placement of light sources, which can be located at an 
infinite distance from the object, and only on one of the 
three cartesian axes. This placement means occlusion 
calculations can be performed while the volume data is 
processed and up to three light directions can be used. 
The shading calculation for 3 light directions can take 
advantage of the pre-calculated LUT by rearranging the 
gradient components to create a llew LUT index for the 
other two light sources [2]. Ifa single light source is used 
and no shadowing is calculated, the system supports an 
arbitrary light direction for shading calculations in the 
LUT. The feasibility of a parallel implementation that 
uses shadowing and limited multiple light sources has 
not been investigated. 

4 Surface Shading 

The shading of three dimensional volume data is done 
using the grey-level gradient technique which calculates 
the gradient at a voxel on the surface, using local neigh­
bourhood voxels, and then uses that gradient as a sur­
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face normal. For a surface voxel at location i, j, k, 
within the volume data, the calculations for the orthog­
onal components of the gradient G are : 

Gx = 9(Hl,j,k) - 9(i-l,j,k) 

Gy = 9(i,j+l,k) - 9(i,j-l,k) 

Gz = 9(i,j,k+l) - 9(i,j,k-l) 

9 represents the grey scale value at the coordinate spec­
ified by the coordinate indices. The light intensity is 
calculated using standard lighting calculations. 

4.1 	 Lighting calculations 

The calculation of light intensity reflected from a par­
ticular surface in a three dimensional scene is depen­
dent on many factors [3]. To simplify this calculation in 
hardware, and also to allow other shading calculations 
to be used, an LUT is used in the shading subsystem. 
The following uses the gradient as a surface normal to 
calculate the light intensity reflected by a surface : 

where 	fp is the light source intensity 
kd is the diffuse-reflection coefficient 
G is the normalised gradient 
L is the direction toward the light source. 

This calculation is completed for each possible gradient 
and stored in the LUT. The LUT is also capable of 
storing more realistic values such as those for specular 
reflection [3] : 

where 	fa is the ambient light 
ka is the ambient coefficient 
fp is the light source intensity 
kd is the diffuse-reflection coefficient 
G is the normalised gradient 
L is the direction toward the light source 
ks is the material specular-reflection coefficient 
R is the direction of reflected incident light 
if is the halfway vector 

(between light source and viewer) 
n is the material specular reflection exponent 

4.2 	 Neighbourhood grey-level gradient 
shading 

The shading in this paper uses all of the 26 neighbours 
of the centre voxel in a 3 x 3 x 3 window containing voxel 
data. This neighbourhood of voxels is referred to as the 
cubic window and contains the voxels used for surface 
shading in the architecture described in this paper. The 
use of a 3 x 3 x 3 neighbourhood of voxels surrounding a 
surface voxel for shading is also described in [13] where 
a biquadratic surface is interpolated through the neigh­
bourhood. The grey-level gradient shading algorithm 
has an extension which uses a 3 x 3 neighbourhood of 
each voxel adjacent to the centre voxel to calculate the 
gradient. We call this algorithm extension cubic shad­
ing. The inclusion of aU 26 neighbours in the calculation 
ofthe gradient is described in [6] and used in [7], where 
it was used for non real time shading. The hardware 
described in this paper deals with the application of 26 
neighbour grey-level gradient shading to a video rate 
hardware system. 

5 Hardware design 

This section deals mainly with the shading subsystem 
and particular attention is drawn to the pipeline for 
gradient calculation. The gradient calculator is an inte­
gral part of the shading subsystem of the architecture 
depicted in Figure 1, where it calculates a value which 
is used as an index to the LUT, which stores shading 
information. The volume data used in the calculation of 
the gradient is reused by storing it in the plane buffer, 
which holds approximately two adjacent planes of the 
original data. 

The calculation of the gradient involves all of the el­
ements in the cubic window. Figure 2 shows a three 
dimensional perspective of the flow of data into and out 
of the cubic window, where the coordinate axes are used 
to describe the positions of voxels, rows, columns and 
sides. To calculate the LUT index, which is a similar 
calculation to the gradient calculation described previ­
ously, the sums of the sides of t.he cubic window, made 
up of either three rows or three columns, are computed 
accordillg to the following equations : 

SOy;; :::: Cooz + Cab + CO2;; 

S2y;; = C20z + C21z + C22z 

Sxoz =C20z + C10z + Cooz 

Sx2z = C22z + C12z + C02z 

S:cyO = Rx20 + Rx10 + Rxoo 

Sxy2 = R:t:22 + R:cl2 + R x02 

97 




c_ 


~~ 1 7~ ~ ~! }-­7:< ftj-l-ii };; 
~. 

Figure 2: Cubic window showing input and output 
points and the coordinate axis used for indices. 

where Sryz is the summation of a side 
Siyz is the side where z = i 
8 r iz is the side where y = i 
8rlli is the side where z =i 

Cijz =gijl + gij2 + gijS 

is the column where z = i, y = j 
Rxij =gUj +g2ij + g3ij 

is the row where y =i, Z =j 
9r1/z is the grey scale value of the voxel 

The coordinate values in the variable subscripts are 
taken from the axis for the cubic window shown in Fig­
ure 2. The summation of each side is the sum of nine 
voxels in a 3 x 3 two dimensional window of voxels sit­
uated adjacent to the surface voxel. There are six of 
these windows and they represent the six sides of the 
three dimensional cubic window depicted in Figure 2. 

The x, y and z components of the modified gradient 
equation are now calculated as : 

G:r: =821/z 801/z 

Gy = 8x 2z - 8roz 

Gz =8r 1/2 - 8r 1/0 

This gradient value is normalised and used as the sur­
face normal in the lighting calculations that are stored 
in the LUT. 

5.1 Gradient Calculator 

Figure 3 shows the top level of the architecture used 
to calculate gradient values at voxel data rate in the 
shading unit. The cubic window is made up of 27 reg­
isters which are laid out in a horizontal line, where the 
line is subdivided into groups of 3 registers represent­
ing columns in the cubic window. The volume data 
passes into the start of a column, through the column 
and leaves the cubic window at the other end of the 

.:i (t'+:l~e:+,I:IJ 1:1:, ,'1:,,1:1: 1,1:1:1, i: C, 
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Figure 3: Gradient Module 

same column. The data flow through the cubic window 
is shown in the voxel shift register at the top of Figure 
3. The voxel values are passed from the registers in the 
cubic window into the appropriate calculating section 
for each of the X, Y and Z components, as determined 
by the gradient equations. 

Each component calculator consists of a three stage 
pipeline with registers separating each stage. The or­
ganisation of the X, Y and Z component pipelines is 
shown in Figure 4. To show how the pipeline works, 
the stages of the Y gradient calculator are taken sep­
arately and shown in Figure 5. The first stage of the 
pipeline consists of values from the cubic window pass­
ing through a Triple Input Adder (TIA) which gener­
ates a result that is placed in a column total register. 
In the Y gradient calculator, the first column on the left 
is taken from the cubic window, the components added 
together and the result placed in a column total reg­
ister, as shown in Figure 5(a). The second stage uses 
the values from the column total registers as inputs to a 
second TIA which passes its output to a side total reg­
ister, as shown for the Y gradient in Figure 5(b). The 
final stage takes the values from the side total registers 
and finds the difference and stores the result in one of 
the component registers. For the Y gradient calculator 
a side total calculated in the Y gradient calculator and 
a side total from the X gradient calculator are used to 
find the difference for the Y gradient register as shown 
in Figure 5(c). 

The third stage of the pipeline which calculates the 
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Figure 4: Gradient component pipelines 
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Figure 5: Pipeline stages in Y Gradient Calculator (a) 
Column total calculation stage (b) Side total calculation 
stage (c) Y gradient component calculation stage 

Z component of the gradient is different from the X 
and Y component calculator pipelines. This difference 
is due to the manner in which data moves through the 
cubic window. The direction of the z axis is the same 
as the direction of data moving through the columns 
within the cubic window. Therefore the sum of the side 
on which data enters the cubic window will be equal 
to the sum of the side on which data leaves the cubic 
window after the cubic window has processed two centre 
voxels. To reuse this side total, when it arrives at the 
other side of the cubic window, the value is buffered 
twice. The difference between the current side total and 
the buffered side total is taken to calculate the final Z 
gradient component. 

After calculation of the X, Y and Z components of 
the gradient, the gradient is used as the LUT index. 

____ N _______________________ _ 

· ·· I · 
· 
:· ··:· ·· · · 

·:ZOAADIENT 

: CALC1JLATOR 
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The number of bits used from the result of the gradient 
calculator determines the size of the LUT. Better shad­
ing is possible by using a full 8-bit result, but a large 
LUT is required. If the LUT has an index of 15 bits then 
the five most significant bits are used from each gradi­
ent component result. The size of the LUT can vary 
with requirements for memory size, speed and render­
ing quality for a particular application. A 15 bit LUT 
would require 215 bytes or 32KB to store the precalcu­
lated shading values and would be required to operate 
at the same speed as the pipeline. The calculated values 
in the LUT use the shading equations described above. 

6 Results 

To test the image results from the design presented in 
this paper, a software simulation was written to in­
spect images derived from a geometrically constructed 
smooth object, a sphere, and sampled medical data. 
The sphere was voxelized into a volume size of 64 x 
64 x 64 with each voxel being divided into a smaller 
16 x 16 x 16 grid. Each discrete point on the smaller 
16 x 16 x 16 grid was tested to see if it was inside the 
sphere or outside the sphere. The number of discrete 
points at each voxel which are inside the sphere is cal­
culated and stored as volume data. This volume data 
was reduced to eight bits and rendered using both typ­
ical grey-level gradient shading and cubic shading. The 
results are shown in Figure 6, where the top two spheres 
use double precision floating' point calculations for shad­
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Figure 6: Comparison of shading techniques with look­
up tables. 

ing, and the lower two spheres use a IS-bit LUT for 
each shading algorithm. Visually, the cubic shading 
produces images which are closer to the expected look 
of rendered spheres. 

To test the algorithms on sampled data, a common 
public domain MRI data set of 109 image slices through 
a human head, (each with a resolution of 256 x 256 pix­
els, 8 bits per pixel, and a pixel size of approximately 
1mm x Imm) was used. Figure 7 shows the results of 
gradient shading and the results of cubic shading are 
shown in Figure 8. While the cubic shaded image ap­
pears smoother in comparison with the gradient shaded 
image, it is difficult to determine whether fine detail has 
been lost in either or both shading processes. 

This system offers the ability to incorporate original 
greysca.le data into rendered surfaces as shown in Figure 
9. This type of image generation is accomplished eas­
ily by setting volumes in the original data where voxels 
are transparent and planes where voxels are not to be 
rendered, but the original data is to be passed through 
to the final image. This process allows the inspection of 
the original data for finer detail that may have been lost 
in the shading process, and particularly, for a quantita­
tive evaluation of the differences between the rendered 
and the original data. 

Figure 7: Rendering of MRI data set using gradient 
shading and a 2I-bit LUT. 

Figure 8: Rendering of MRI data set using cubic shad­
ing and a 2I-bit LUT. 
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Figure 10: Rendering of a sphere with normals calcu­
lated directly from the equation of a sphere. 

Original image i s:t. :c2 

Gradient..5haded..5phere 
Cubic..5haded..5phere 
Gradient..5haded..using..LUT 
Cubie-Shaded..using_LUT 

-7.6 
-2.1 
-8.1 
-6.2 

214.6 
102.3 
237.0 
199.0 

272.1 
106.6 
302.2 
237.2 • 

Figure 9: Rendering of MID data with cut-away show­
ing original scan. 

6.1 Quantitative analysis 

To compare the rendered results in a quantitative fash­
ion the spherical images in Figure 6 are subtracted from 
an image of a sphere shown in Figure 10. The normals 
used in the shading of the sphere in Figure 10 are calcu­
lated using the equation of a sphere. Each voxel which 
the surface of the sphere passes through has its nor­
mal calculated from the spherical equation and shading 
is completed using the same double precision lighting 
calculations as used for the other spheres. 

Once the difference between images is found, all pixel 
differences are used as a sample space to find means, 
variances and mean squares. These are shown in Ta­
ble 1. The values in the table are based on grey-scale 
images which have pixels with values ranging from 0 to 
256. The table shows there is a reduction in all sta­
tistical measures when using cubic shading instead of 
gradient shading. The reduction in mean, variance and 
mean square demonstrates that the normal construction 
used in cubic shading has final pixel values which are 
closer to the pixel values for a sphere using normals cal­
culated from the sphere equation. When comparing the 
results without an LUT and the results with an LUT, 
the improvement due to cubic shading is not as signifi­
cant with an LUT. This shows that in general shading 
is less accurate with an LUT and that an LUT reduces 
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Table 1: Sample mean (i), sample variance (82) and 
mean square (i2) for image difference. 

the effect of cubic shading. 

6.2 Hardware Simulation 

To test the function and timing of the gradient calcu­
lator pipelines, the gradient calculator was described 
and simulated using a Hardware Description Language 
and an event driven simulator [5]. The slowest stage in 
the pipeline, the TIA, is simulated using an 8-bit ripple 
carry adder design with a resultant minimum clock cy­
cle of 8ns. This simulation result does not take account 
of interconnect delays, but considering the speed im­
provements of using faster carry techniques, a slightly 
faster clock speed would be possible. Memory reading is 
also required to run at this rate for the retrieval of vol­
ume data, and for the LUT. To process data sets of the 
size of 256 x 256 x 256 at 20 frames per second requires 
each subsystem to produce a result every anB. A sin­
gle processing element implemented in a non-aggressive 
technology ma.y not be capable of video rate processing. 
In order to achieve this and higher speeds several pro­
cessing elements may be used and run in parallel, with 
volume data being subdiVided into equal volumes to 
achieve approximately linear speedup. Implementa.tion 
of the design in a single element in 0.5 micron technol­
ogy or as parallel processing elements would provide the 
video rate performance reqUired. 



7 Conclusion 

This paper has presented an architecture for the shad­
ing module of a hardware system capable of producing 
video rate images with a quality suitable for interactive 
volume visualization. The shading of both voxelized 
spheres and MRI data has a natural appearance com­
parable with other volumetric shading techniques. The 
LUT design allows the changing of pixel values gener­
ated for various lighting situations, surface values and 
volume data processing applications. The processing 
method offers simple techniques for mixing original data 
with rendered surfaces and adds shadowing efrects to 
direct rendered voxel systems. 

Further work will be carried out on the investigation 
of animation techniques for multiple frame renderings 
and the application of this system to cardiac imaging. 
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