
1

A hardware architecture for video rate smooth shading of

Volume data

Michael C. Doggett* and Graham R. Hellestrand

School of Computer Science and Engineering

The University of New South Wales t

Abstract

This paper describes a new architecture for generat­
ing smoothly shaded two dimensional images of volume
data. This architecture fits into an image synthesis
pipeline and uses only simple arithmetic operations and
a look-up table to generate two dimensional images in
real time. The shading algorithm is an extensioll of the
grey-level gradient algorithm for shading volume data.
The shading technique produces smooth images for vox­
elized geometrical data and sampled volume data. Im­
age synthesis from volume data in real time is an impor­
tant technique in visualization and graphics systems.

Additional Key Words and Phrases: real-time
shading, volume visualization, graphics hardware, im­
age generation

Introduction

The generation of two dimensional (2D) images from
volumetric data sets containing either measured data
or voxelized geometrical primitives is creating a new
alternative for image synthesis techniques [8]. The abil­
ity to synthesize 2D images in real time, that is at
video presentation rate, will allow the interactive ex­
ploration of these data sets through several interfaces
including Virtual Reality. Many aspects of real time
volume imaging require improved technology, including
processing power for image analysis and synthesis, and
data sampling techniques for rapid image data acqui­
sition in modalities, such as·magnetic resonance imag­
ing (MRI). Improvements in processing power can be
achieved through the creation of special-purpose graph­
ics imaging hardware [9].

The ability to generate two dimensional images from
volumetric data, based on voxelized geometrical prim­
itives, provides an alternative to surface based graph­
ics. Image synthesis from voxelized data is independent

·Ema.il: miked@vast.unsw.edu.au

t Sydney 2052, AUSTRALIA

of the original scene complexity once voxelization has
been completed. This paper is concerned with the sur­
face shading of voxel data in real time using a graphics
pipeline.

Three dimensional sampled magnetic resonance
(MR) data of the human body is used daily in the diag­
nosis of medical conditions. Real time MRI of the mov­
ing internal organs of the body will further assist med­
ical treatment, in particular, heart conditions. Imaging
technology of this nature will generate large amounts of
data to be rendered for human inspection in real time.
The technology described in this paper is intended for
this type of application.

2 	 Shading techniques for Volume
data

Image generation involves the calculation of interaction
between light rays and surfaces to create recognisable
three dimensional objects [3]. Shading of Volume data is
accomplished in a similar fashion with the construction
of surfaces being the key factor. Due to the large volume
of data, processing speed is limited by the complexity
of calculating the normals to the constructed surfaces.

Direct volume rendering involves shading volume
data without producing intermediate image states and
numerous algorithms exist for this purpose [10]. In this
paper we will deal with the shading technique called
gradient shading [4] and an extension which uses data
contained in each voxel [6]. This extension is commonly
referred to as grey-level gradient shading and produces
images with smooth shading of high quality, but is lim­
ited due to its inability to display thin objects and fail­
ure where the grey-level is inappropriate for locating
the surface in volume data.

The generation of images using volume data in real
time is made practical by low complexity shading al­
gorithms and application specific hardware [10, 12]. A
hardware algorithm called congradient sha.ding, which
is capable of shading volume data in real time using

95

http://www.eg.org
http://diglib.eg.org

ROTAnONstlI!SYSTIiM

RIIbti•• ~

Figure 1: Top level diagram of system architecture

gradients and look-up tables is presented in [1]. This
architecture only uses the x and y gradients and not
the z gradient, and hence the quality of normals gener­
ated is impaired. The Verve system [11] uses gradient
shading to determine the normals for shading and is
capable of generating images in real time by employing
several units in parallel to create Phong shaded sur­
faces. The Verve system casts a viewing ray through
the volume for each pixel on the view plane and has a
long arithmetic pipeline for vector normalisation.

3 System Overview

An architecture has been proposed for the creation of
video rate images, and is described in [2]. The architec­
ture was designed as an integrated processing element
for generating screen pixels and the organisation of the
processing element is shown in Figure 1. In this figure,
the rotation and shading subsystems are independent
which allows them to operate in parallel. Processing of
the volume data set is done in a plane by plane, scan­
line fashion. This style of processing allows the system
to be adapted to work from a standard memory ar­
rangement or a stream of input data from a variety of
sources. The plane by plane, scanline processing style
also reduces the calculation complexity for projections.
The output from these two concurrently operating sub­
systems is synchronized prior to display by a control
unit which also controls the operations in both the ro­
tation and shading subsystems. The authours are inves­
tigating the possibilities of supporting translucency by
incorporating image compositing calculations into the
shading subsystem and screen control unit.

3.1 Shading Subsystem

The shading subsystem is made up of several sections
including, the plane buffer, the gradient calculator, and
the Look Up Table (LUT). The plane buffer stores voxel
values to be fed into the cubic window inside the gra­

dient calculator. The cubic window is a buffered set
of registers representing a three dimensional 3 x 3 x 3
window through which voxel data is streamed. The gra­
dient is calculated for the voxellocated at the centre of
this 26 connected neighbourhood and represents a sur­
face normal at the centre voxel which is used as the
index for the LUT. The result from the LUT is used
to generate the final value for the screen. This paper
is concerned with the gradient calculator and uses an
architecture not previously reported.

3.2 Rotation Subsystem

The rotation subsystem projects three dimensional co­
ordinates to a two dimensional viewing plane, using an
axollometric orthographic projection [3] which requires
a three dimensional rotation of the data set to the view­
ing plane. The mathematical formula for the X com­
ponent of the projection is: X = aXtl + bYtI +cz", where
X is the x value in the viewing space, a, b, c are con­
stants associated with the current viewing position, and
x,,, y", z" are the positions of the current voxel being
processed in the volume data. The rotation subsystem
takes advantage of the traversal of voxel memory by
only having to recalculate the increment along one axis,
the scanline direction, for each voxel processed, since
values of the data set only change along the sca.uline.
The critical calculation per voxel for a parallel projec­
tion is reduced to three parallel multiplys and adds per
voxel.

3.3 Light sources and shadows

A limitation in this system is the restriction on the
placement of light sources, which can be located at an
infinite distance from the object, and only on one of the
three cartesian axes. This placement means occlusion
calculations can be performed while the volume data is
processed and up to three light directions can be used.
The shading calculation for 3 light directions can take
advantage of the pre-calculated LUT by rearranging the
gradient components to create a llew LUT index for the
other two light sources [2]. Ifa single light source is used
and no shadowing is calculated, the system supports an
arbitrary light direction for shading calculations in the
LUT. The feasibility of a parallel implementation that
uses shadowing and limited multiple light sources has
not been investigated.

4 Surface Shading

The shading of three dimensional volume data is done
using the grey-level gradient technique which calculates
the gradient at a voxel on the surface, using local neigh­
bourhood voxels, and then uses that gradient as a sur­

96

face normal. For a surface voxel at location i, j, k,
within the volume data, the calculations for the orthog­
onal components of the gradient G are :

Gx = 9(Hl,j,k) - 9(i-l,j,k)

Gy = 9(i,j+l,k) - 9(i,j-l,k)

Gz = 9(i,j,k+l) - 9(i,j,k-l)

9 represents the grey scale value at the coordinate spec­
ified by the coordinate indices. The light intensity is
calculated using standard lighting calculations.

4.1 	 Lighting calculations

The calculation of light intensity reflected from a par­
ticular surface in a three dimensional scene is depen­
dent on many factors [3]. To simplify this calculation in
hardware, and also to allow other shading calculations
to be used, an LUT is used in the shading subsystem.
The following uses the gradient as a surface normal to
calculate the light intensity reflected by a surface :

where 	fp is the light source intensity
kd is the diffuse-reflection coefficient
G is the normalised gradient
L is the direction toward the light source.

This calculation is completed for each possible gradient
and stored in the LUT. The LUT is also capable of
storing more realistic values such as those for specular
reflection [3] :

where 	fa is the ambient light
ka is the ambient coefficient
fp is the light source intensity
kd is the diffuse-reflection coefficient
G is the normalised gradient
L is the direction toward the light source
ks is the material specular-reflection coefficient
R is the direction of reflected incident light
if is the halfway vector

(between light source and viewer)
n is the material specular reflection exponent

4.2 	 Neighbourhood grey-level gradient
shading

The shading in this paper uses all of the 26 neighbours
of the centre voxel in a 3 x 3 x 3 window containing voxel
data. This neighbourhood of voxels is referred to as the
cubic window and contains the voxels used for surface
shading in the architecture described in this paper. The
use of a 3 x 3 x 3 neighbourhood of voxels surrounding a
surface voxel for shading is also described in [13] where
a biquadratic surface is interpolated through the neigh­
bourhood. The grey-level gradient shading algorithm
has an extension which uses a 3 x 3 neighbourhood of
each voxel adjacent to the centre voxel to calculate the
gradient. We call this algorithm extension cubic shad­
ing. The inclusion of aU 26 neighbours in the calculation
ofthe gradient is described in [6] and used in [7], where
it was used for non real time shading. The hardware
described in this paper deals with the application of 26
neighbour grey-level gradient shading to a video rate
hardware system.

5 Hardware design

This section deals mainly with the shading subsystem
and particular attention is drawn to the pipeline for
gradient calculation. The gradient calculator is an inte­
gral part of the shading subsystem of the architecture
depicted in Figure 1, where it calculates a value which
is used as an index to the LUT, which stores shading
information. The volume data used in the calculation of
the gradient is reused by storing it in the plane buffer,
which holds approximately two adjacent planes of the
original data.

The calculation of the gradient involves all of the el­
ements in the cubic window. Figure 2 shows a three
dimensional perspective of the flow of data into and out
of the cubic window, where the coordinate axes are used
to describe the positions of voxels, rows, columns and
sides. To calculate the LUT index, which is a similar
calculation to the gradient calculation described previ­
ously, the sums of the sides of t.he cubic window, made
up of either three rows or three columns, are computed
accordillg to the following equations :

SOy;; :::: Cooz + Cab + CO2;;

S2y;; = C20z + C21z + C22z

Sxoz =C20z + C10z + Cooz

Sx2z = C22z + C12z + C02z

S:cyO = Rx20 + Rx10 + Rxoo

Sxy2 = R:t:22 + R:cl2 + R x02

97

c_

~~ 1 7~ ~ ~! }-­7:< ftj-l-ii };;
~.

Figure 2: Cubic window showing input and output
points and the coordinate axis used for indices.

where Sryz is the summation of a side
Siyz is the side where z = i
8 r iz is the side where y = i
8rlli is the side where z =i

Cijz =gijl + gij2 + gijS

is the column where z = i, y = j
Rxij =gUj +g2ij + g3ij

is the row where y =i, Z =j
9r1/z is the grey scale value of the voxel

The coordinate values in the variable subscripts are
taken from the axis for the cubic window shown in Fig­
ure 2. The summation of each side is the sum of nine
voxels in a 3 x 3 two dimensional window of voxels sit­
uated adjacent to the surface voxel. There are six of
these windows and they represent the six sides of the
three dimensional cubic window depicted in Figure 2.

The x, y and z components of the modified gradient
equation are now calculated as :

G:r: =821/z 801/z

Gy = 8x 2z - 8roz

Gz =8r 1/2 - 8r 1/0

This gradient value is normalised and used as the sur­
face normal in the lighting calculations that are stored
in the LUT.

5.1 Gradient Calculator

Figure 3 shows the top level of the architecture used
to calculate gradient values at voxel data rate in the
shading unit. The cubic window is made up of 27 reg­
isters which are laid out in a horizontal line, where the
line is subdivided into groups of 3 registers represent­
ing columns in the cubic window. The volume data
passes into the start of a column, through the column
and leaves the cubic window at the other end of the

.:i (t'+:l~e:+,I:IJ 1:1:, ,'1:,,1:1: 1,1:1:1, i: C,

YO,odi.1II XGtadio.. ZOnel...
Cal_,Cak:ulttor Cal",laIor

LIlT;

Figure 3: Gradient Module

same column. The data flow through the cubic window
is shown in the voxel shift register at the top of Figure
3. The voxel values are passed from the registers in the
cubic window into the appropriate calculating section
for each of the X, Y and Z components, as determined
by the gradient equations.

Each component calculator consists of a three stage
pipeline with registers separating each stage. The or­
ganisation of the X, Y and Z component pipelines is
shown in Figure 4. To show how the pipeline works,
the stages of the Y gradient calculator are taken sep­
arately and shown in Figure 5. The first stage of the
pipeline consists of values from the cubic window pass­
ing through a Triple Input Adder (TIA) which gener­
ates a result that is placed in a column total register.
In the Y gradient calculator, the first column on the left
is taken from the cubic window, the components added
together and the result placed in a column total reg­
ister, as shown in Figure 5(a). The second stage uses
the values from the column total registers as inputs to a
second TIA which passes its output to a side total reg­
ister, as shown for the Y gradient in Figure 5(b). The
final stage takes the values from the side total registers
and finds the difference and stores the result in one of
the component registers. For the Y gradient calculator
a side total calculated in the Y gradient calculator and
a side total from the X gradient calculator are used to
find the difference for the Y gradient register as shown
in Figure 5(c).

The third stage of the pipeline which calculates the

98

V~c1

SIWI
Rcgilter

CoI• .,n)

,r-------------------------------------­
,

,,
£olamn :,

Total :
Register. :

Side

Total :
Regittet. :

,
~~~: 


~-: 

• 

• 


---.~---------~-~ 

Figure 4: Gradient component pipelines 

YGRADIENT 

CALCULATOR 

, 
I 
I 
I 
I 
I 

1 
I, 
I 
I,
: 
: 
I 
I 

~---------------------

XOAADIENT 

CALCULATOR 

(0.. 

(a) (b) (c) 

Figure 5: Pipeline stages in Y Gradient Calculator (a) 
Column total calculation stage (b) Side total calculation 
stage (c) Y gradient component calculation stage 

Z component of the gradient is different from the X 
and Y component calculator pipelines. This difference 
is due to the manner in which data moves through the 
cubic window. The direction of the z axis is the same 
as the direction of data moving through the columns 
within the cubic window. Therefore the sum of the side 
on which data enters the cubic window will be equal 
to the sum of the side on which data leaves the cubic 
window after the cubic window has processed two centre 
voxels. To reuse this side total, when it arrives at the 
other side of the cubic window, the value is buffered 
twice. The difference between the current side total and 
the buffered side total is taken to calculate the final Z 
gradient component. 

After calculation of the X, Y and Z components of 
the gradient, the gradient is used as the LUT index. 

____ N _______________________ _ 

· ·· I · 
· 
:· ··:· ·· · · 

·:ZOAADIENT 

: CALC1JLATOR 
• ;:-....L--,······~------------- -~.-.---------

The number of bits used from the result of the gradient 
calculator determines the size of the LUT. Better shad­
ing is possible by using a full 8-bit result, but a large 
LUT is required. If the LUT has an index of 15 bits then 
the five most significant bits are used from each gradi­
ent component result. The size of the LUT can vary 
with requirements for memory size, speed and render­
ing quality for a particular application. A 15 bit LUT 
would require 215 bytes or 32KB to store the precalcu­
lated shading values and would be required to operate 
at the same speed as the pipeline. The calculated values 
in the LUT use the shading equations described above. 

6 Results 

To test the image results from the design presented in 
this paper, a software simulation was written to in­
spect images derived from a geometrically constructed 
smooth object, a sphere, and sampled medical data. 
The sphere was voxelized into a volume size of 64 x 
64 x 64 with each voxel being divided into a smaller 
16 x 16 x 16 grid. Each discrete point on the smaller 
16 x 16 x 16 grid was tested to see if it was inside the 
sphere or outside the sphere. The number of discrete 
points at each voxel which are inside the sphere is cal­
culated and stored as volume data. This volume data 
was reduced to eight bits and rendered using both typ­
ical grey-level gradient shading and cubic shading. The 
results are shown in Figure 6, where the top two spheres 
use double precision floating' point calculations for shad­

99 




Figure 6: Comparison of shading techniques with look­
up tables. 

ing, and the lower two spheres use a IS-bit LUT for 
each shading algorithm. Visually, the cubic shading 
produces images which are closer to the expected look 
of rendered spheres. 

To test the algorithms on sampled data, a common 
public domain MRI data set of 109 image slices through 
a human head, (each with a resolution of 256 x 256 pix­
els, 8 bits per pixel, and a pixel size of approximately 
1mm x Imm) was used. Figure 7 shows the results of 
gradient shading and the results of cubic shading are 
shown in Figure 8. While the cubic shaded image ap­
pears smoother in comparison with the gradient shaded 
image, it is difficult to determine whether fine detail has 
been lost in either or both shading processes. 

This system offers the ability to incorporate original 
greysca.le data into rendered surfaces as shown in Figure 
9. This type of image generation is accomplished eas­
ily by setting volumes in the original data where voxels 
are transparent and planes where voxels are not to be 
rendered, but the original data is to be passed through 
to the final image. This process allows the inspection of 
the original data for finer detail that may have been lost 
in the shading process, and particularly, for a quantita­
tive evaluation of the differences between the rendered 
and the original data. 

Figure 7: Rendering of MRI data set using gradient 
shading and a 2I-bit LUT. 

Figure 8: Rendering of MRI data set using cubic shad­
ing and a 2I-bit LUT. 

100 


http:greysca.le


Figure 10: Rendering of a sphere with normals calcu­
lated directly from the equation of a sphere. 

Original image i s:t. :c2 

Gradient..5haded..5phere 
Cubic..5haded..5phere 
Gradient..5haded..using..LUT 
Cubie-Shaded..using_LUT 

-7.6 
-2.1 
-8.1 
-6.2 

214.6 
102.3 
237.0 
199.0 

272.1 
106.6 
302.2 
237.2 • 

Figure 9: Rendering of MID data with cut-away show­
ing original scan. 

6.1 Quantitative analysis 

To compare the rendered results in a quantitative fash­
ion the spherical images in Figure 6 are subtracted from 
an image of a sphere shown in Figure 10. The normals 
used in the shading of the sphere in Figure 10 are calcu­
lated using the equation of a sphere. Each voxel which 
the surface of the sphere passes through has its nor­
mal calculated from the spherical equation and shading 
is completed using the same double precision lighting 
calculations as used for the other spheres. 

Once the difference between images is found, all pixel 
differences are used as a sample space to find means, 
variances and mean squares. These are shown in Ta­
ble 1. The values in the table are based on grey-scale 
images which have pixels with values ranging from 0 to 
256. The table shows there is a reduction in all sta­
tistical measures when using cubic shading instead of 
gradient shading. The reduction in mean, variance and 
mean square demonstrates that the normal construction 
used in cubic shading has final pixel values which are 
closer to the pixel values for a sphere using normals cal­
culated from the sphere equation. When comparing the 
results without an LUT and the results with an LUT, 
the improvement due to cubic shading is not as signifi­
cant with an LUT. This shows that in general shading 
is less accurate with an LUT and that an LUT reduces 

101 

Table 1: Sample mean (i), sample variance (82) and 
mean square (i2) for image difference. 

the effect of cubic shading. 

6.2 Hardware Simulation 

To test the function and timing of the gradient calcu­
lator pipelines, the gradient calculator was described 
and simulated using a Hardware Description Language 
and an event driven simulator [5]. The slowest stage in 
the pipeline, the TIA, is simulated using an 8-bit ripple 
carry adder design with a resultant minimum clock cy­
cle of 8ns. This simulation result does not take account 
of interconnect delays, but considering the speed im­
provements of using faster carry techniques, a slightly 
faster clock speed would be possible. Memory reading is 
also required to run at this rate for the retrieval of vol­
ume data, and for the LUT. To process data sets of the 
size of 256 x 256 x 256 at 20 frames per second requires 
each subsystem to produce a result every anB. A sin­
gle processing element implemented in a non-aggressive 
technology ma.y not be capable of video rate processing. 
In order to achieve this and higher speeds several pro­
cessing elements may be used and run in parallel, with 
volume data being subdiVided into equal volumes to 
achieve approximately linear speedup. Implementa.tion 
of the design in a single element in 0.5 micron technol­
ogy or as parallel processing elements would provide the 
video rate performance reqUired. 



7 Conclusion 

This paper has presented an architecture for the shad­
ing module of a hardware system capable of producing 
video rate images with a quality suitable for interactive 
volume visualization. The shading of both voxelized 
spheres and MRI data has a natural appearance com­
parable with other volumetric shading techniques. The 
LUT design allows the changing of pixel values gener­
ated for various lighting situations, surface values and 
volume data processing applications. The processing 
method offers simple techniques for mixing original data 
with rendered surfaces and adds shadowing efrects to 
direct rendered voxel systems. 

Further work will be carried out on the investigation 
of animation techniques for multiple frame renderings 
and the application of this system to cardiac imaging. 

References 

[1] 	 COHEN, D., KAUFMAN, A., BAKALASH, R., AND 

BERGMAN, S. Real time discrete shading. The 

Visual Computer 6, 1 (February 1990), 16-27. 


[2] 	 DOGGETT, M., AND HELLESTRAND, G. Video 

rate shading for volume data. In Digital Image 

Computing: Techniques and Applications (Decem­

ber 1993), Australian Pattern Recognition Society, 

pp. 398-405. 


[3] 	 FOLEY, J. D., VAN DAM, A., FEINER, S. IC, AND 

HUGHES, J. F. Computer Graphics: Principles 

and Practice. Addison Wesley, 1989. 


[4] 	 GORDON, D., AND REYNOLDS, R. A, Image space 

shading of 3-dimensional objects. Computer Vi­

sion, Graphics, and Image Processing 29 (1985), 

361-376. 


[5] 	 HELLESTRAND, G. R. Modal: A system for digital 

hardware description and simulation. Journal of 

Digital Systems 4, 3 (1980), 241-303. 


(6] 	 HOHNE, K. H., AND BERNSTEIN, R. Shading 3d­

images from ct using gray-level gradients. IEEE 

Transactions on Medical Imaging (March 1986). 

MI-5. 


[7] 	 HOHNE, IC H., BOMANS, M., POMMERT, A., 

RIEMER, M., SCHIERS, C., TIEDE, U., AND 

WEIBECKE, G. 3d visualization of tomographic 

volume data using the generalized voxel model. 

The Visual Computer 6, 1 (February 1990),28-36. 


[8) 	 KAUFMAN, A., COHEN, D., AND YAGEL, R. Vol­

ume graphics. IEEE Computer 26, 7 (July 1993), 

51-64. 


102 

[9] 	 KAUFMAN, A., HOHNE, IC H., KRUGER, W.: 
ROSENBLUM, L., AND SCHROEDER, P. Research 
issues in volume visualization. IEEE Compute1 
Gmphics and Applications 14, 2 (March 1994),63­
67. 

[10] 	 KAUFMAN, A. E., Ed. Volume Visualization. 
IEEE Computer Society Press, 1990. 

[11] 	 KNITTEL, G. Verve: Voxel engine for real-time 
visualization and examination. Computer Graphics 
Forum 12, 3 (1993), 37-48. 

[12] 	 STYTZ, M. R., AND FRIEDER, O. Volume­
primitive based three-dimensional medical image 
rendering: Customized architectural approaches. 
Computers and Graphics 16, 1 (1992),85-100. 

[13] 	 WEBBER, R. E. Ray tracing voxel data via bi­
quadratic local surface interpolation. The Visual 
Computer 6, 1 (February 1990), 8-15. 


