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Abstract

The SHREC’13 Track: Retrieval of Objects Captured with Low-Cost Depth-Sensing Cameras is a first attempt at
evaluating the effectiveness of 3D shape retrieval algorithms in low fidelity model databases, such as the ones
captured with commodity depth cameras. Both target and query set are composed by objects captured with a
Kinect camera and the objective is to retrieve the models in the target set who were considered relevant by a
human-generated ground truth. Given how widespread such devices are, and how easy it is becoming for an
everyday user to capture models in his household, the necessity of algorithms for these new types of 3D models is
also increasing. Three groups have participated in the contest, providing rank lists for the set of queries, which is
composed of 12 models from the target set.

Categories and Subject Descriptors (according to ACM CCS): H.3.3 [Information Storage and Retrieval]: Informa-
tion Search and Retrieval—Relevance feedback I.3.5 [Computer Graphics]: Computational Geometry and Object
Modeling—Geometric algorithms, languages, and systems

1. Introduction

The advent of low-cost scanners in the consumer market,
such as the Microsoft Kinect, has made this technology
available to the everyday user and is fast becoming a sta-
ple in many households. While designed for a different pur-
pose, such devices have proven able to digitize 3D objects in
real time with acceptable quality [NIH∗11], at least consid-
ering a myriad of contexts where before the presence of 3D
capturing devices was virtually null. As a result, the prolifer-
ation of 3D models on the Internet is growing and expected
to keep on that path as new and innovative ways of captur-
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ing and sharing 3D information are trusted to develop in the
future.

Up to this moment, little research has been made regard-
ing the retrieval of 3D models captured with commodity
depth sensing cameras, being this the first attempt at such an
endeavor in the Shape REtrieval Contest (SHREC). Previous
versions of SHREC had their evaluations mostly focused on
well-defined geometric or semantic classification of objects
contained in the dataset, along with their ground-truth.

In this track, we propose a method based on the human
classification of the original set of objects, using the real
models that are used for the retrieval contest. We pretended
to test the algorithms against real, although subjective, hu-
man expectations of the queries they were presented with.
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Therefore, there are some challenges that must be ad-
dressed which are prone to skew the results of retrieval ap-
proaches. The first difficulty is the aforementioned subjec-
tivity of the human evaluation. A second is the low degree
of accuracy low-cost depth cameras present [KE12], which
can be thousands lower when compared to some of the more
expensive range scanners available today.

2. The Dataset

Our dataset is composed of 192 scanned models, which were
acquired through the real-time capture of 224 collected ob-
jects. Of these, 32 were rejected due to low quality or mate-
rial incompatibility. The range images were captured using
a Microsoft Kinect camera (Fig. 2) and the ReconstructMe
software for image capture. Some post-processing was done
to extract the meshes and make them watertight (Fig. 3). The
collection is presented in three different ASCII file formats:
PLY, OFF and STL, representing the scans in a single trian-
gular mesh.

Figure 1: Sample from the collection

2.1. Target Set

The target database is composed by the collection of 192
models with varying degrees of accuracy over the original
respective objects. Of these, those with higher degree of
unique features tend to present much better digitizations.
Samples can be seen in Figures 1 and 4.

The collection itself is uncategorized and the objects were
collected with unrestricted regulations. All of these were
kindly lent by 26 distinct collaborators from their house-
holds to suit the track’s theme of ubiquity. The dataset, along
with other details on the collection is available at
http://3dorus.ist.utl.pt/research/BeKi/.

2.2. Query Set

The query set is simply a subset of the target set. It features
12 significantly distinct models to which we constructed a
human-generated ground truth in a series of user tests. The

Figure 2: Capture setup

Figure 3: Capture process

query objects can be seen in the Figure 4. To evaluate the
user agreement, we calculated the kappa statistic [F∗71] for
our tests. Since the users were asked to retrieve the top re-
sults amongst the complete database, the general agreement
is overwhelmingly high, given the high rate of accordance
on non-relevant retrievals (κ≈ 0.995%). Therefore, we track
only the relevant category of the results, which can be seen
in Table 1. Queries with higher percentage of agreement are
naturally expected to yield better retrieval results.

Table 1: κ values per query:

Query κ Query κ

17 41,38% 117 62,68%
52 47,97% 145 74,45%
55 65,83% 160 56,31%
64 48,32% 172 73,08%
83 44,26% 200 53,91%

100 60,97% 202 54,75%
Average κ 56,99%

3. Evaluation

All participants submitted, for the requested queries, at least
one rank listing (one for each run). Each rank list has the
length of the size of the target database. We employed the
following evaluation measures on the results: Nearest Neigh-
bor (NN), First-Tier (FT), Second-Tier (ST) and Discounted
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Figure 4: Query list

Cumulative Gain (DCG) [SMKF04]. These measures are
based on the Precision and Recall evaluations of the queries
and were chosen to give a general overview of the proposed
methods in this first approach to this problem. As an addi-
tional visual indicator, the precision-recall curves were plot-
ted as well.

Precision quantifies the ratio of retrieved models that are
relevant to the search. For example, for a given search that
returns 6 valid results in the first 12, the precision is 0.5 or
50%. Recall represents the ratio of relevant results retrieved
against the total of valid results. For the previous query, if the
class size is 10, the Recall would be 0.6 or 60%. The NN, FT
and ST evaluations try the recall at different search depths.
The Discounted Cumulative Gain is a measure that effec-
tively grades the relevance of a result according to its posi-
tion in the retrieval list. Top relevant results have a higher
gain than models retrieved in a lower position.

4. Submissions

For this contest, three different groups participated with their
respective methods.

• A. Tatsuma and M. Aono from the Toyohashi Univer-
sity of Technology have participated with a shape feature
called Local Feature Correlation Descriptor (LCoD), pro-
ducing just one run.

• B. Li, Y. Lu (Texas State University) and H. Johan from
Nanyang Technological University present several ap-
proaches on Hybrid Shape Descriptors largely based on
the ZFDR [LJ13]. They submitted five sets of lists each
using a different combination of features: 1) ZFDR, 2)
ZF, 3) ZFD, 4) ZFR and 5) ZFDSR.

• M. Abdelrahman, M. El-Melegy and A. Farag from the
University of Louisville consider the 3D models captured
with a commodity low-cost depth scanner as non-rigid,
deformed objects, and propose an approach based on
Scale Invariant Heat Kernels (SI-HKS) [BK10] for which
they have submitted one run.

4.1. Local Feature Correlation Descriptor (LCoD)

A. Tatsuma and M. Aono propose a new 3D shape feature
called Local Feature Correlation Descriptor (LCoD). The
overview of how the method defines the proposed LCoD is
illustrated in Figure 5. They developed this algorithm on the
premise that in the field of image classification, the meth-
ods that consider high-order statistics of local features ob-
tain a higher accuracy [PSM10, PG11]. Based on that, they
expected that the shape feature based on the correlation of
local features achieves high search performance. LCoD con-
sists of the correlation of the local features extracted from
depth-buffer images.

Extract local features!Render depth-buffer images! Calculate correlation matrices! LCoD!

!!!!

Figure 5: Overview of the Local Feature Correlation De-
scriptor (LCoD).

In LCoD, the first step is pose normalization, since 3D
objects are usually defined by different authors with distinct
authoring tools, which makes the position, size, and orienta-
tion of 3D objects quite different from each other. To solve
this problem, they used their own [TA09] Point SVD that
aligns the centroid and principal axes by generating random
points on the surface of 3D shape objects, and Normal SVD
that aligns the surface normals with respect to principal axes.
In LCoD, a combination of Point SVD and Normal SVD is
adopted for pose normalization.

Once pose normalization is done, the 3D object is en-
closed within a regular octahedron where, from each vertex
and midpoint of each edge, a depth-buffer image rendering
with 256× 256 resolution is performed. Note that a total of
18 viewpoints are defined.

After image rendering, Scale Invariant Feature Transform
(SIFT) features [Low04] are extracted as local features from
each depth-buffer image, and regular dense sampling [LP05]
is employed on the interest point detection. SIFT features
are extracted from 80× 80 pixel patches arranged every 8
pixels.

A. Tatsuma and M. Aono then calculate the correlation
matrix of local features for each depth-buffer image. Let
I1, . . . , I18 be 18 depth-buffer images rendered from the 3D
object, and v(m)

i ∈ Rd(i = 1, . . . ,n) be the d-dimensional lo-
cal features extracted from a depth-buffer image Im. The cor-
relation matrix R(m) is obtained of local features as follows:

R(m) =
1
n

n

∑
j,k=1

v(m)
j v(m)

k

T
. (1)
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The vector r(m) consists of concatenating the elements in the
upper triangular part of the correlation matrix R(m):

r(m) = [R(m)
1,1 , . . . ,R

(m)
1,d ,R

(m)
2,2 , . . . ,R

(m)
2,d , . . . ,R

(m)
d,d ]. (2)

The vector f is generated, consisting of vector r(m) calculated
for each depth-buffer image:

f = [r(1) . . . ,r(18)]T . (3)

Finally, to obtain the proposed LCoD feature, the vector f is
normalized with the power-norm and the `2-norm [PSM10].

For LCoD similarity between two 3D objects, a simple
calculation of inner product is required.

LCoD consists of concatenating the correlation matrix of
the local features extracted from each depth-buffer image.
This definition of LCoD leads to high dimensional shape
feature. Since the dimension of SIFT extracted as a local
feature is d = 128, the total dimension of LCoD becomes
18× (d(d +1)/2) = 148,608.

4.2. ZFDR

3D models reconstructed from 3D images captured by low-
cost cameras, such as Microsoft Kinect, are only approxi-
mate representations of real objects. The accuracy is highly
dependent on the cameras and the 3D reconstruction algo-
rithms employed. Therefore, compared to the 3D models
in existing benchmarks, there are many errors in the geo-
metrical properties of these models, such as normals, cur-
vatures and connectivity. Topological errors are also easy
to be found. Because of these issues, compared to view-
based retrieval approaches, it will be relatively more chal-
lenging for many geometry-based and topology-based 3D
model retrieval approaches to deal with the retrieval of these
models. On the other hand, most view-based methods and
many hybrid techniques are more robust to the errors in ge-
ometry or topology. Motivated by this, they mainly adopt
a view-based approach to extract visual information-based
features, such as Zernike moments, Fourier descriptors and
2D Fourier Transform coefficients features, to retrieve these
models.

Their algorithms and the corresponding five runs are
largely based on the hybrid shape descriptor ZFDR pro-
posed in [LJ13], which comprises both visual and geomet-
rical features of a 3D model: Zernike moments and Fourier
descriptor features of 13 sample silhouette views, Depth in-
formation of six depth buffer views, and Ray-based features
of the model based on a set of ray-based feature vectors
shooting from the center to the utmost intersections on the
surface of the model. Based on ZFDR and for a comparative
evaluation, they further test its three reduced versions: ZF,
ZFD and ZFR, which will partially or completely reduce the
contribution of geometrical features. D and R are two com-
ponents of the hybrid shape descriptor DESIRE (also men-
tioned as DSR, that is D+S+R) proposed by Vranic [Vra04].

The third component S denotes the Silhouette-based com-
ponent shape descriptor which extracts 1D Fourier trans-
form features of the three canonical silhouette views of a
3D model. Similarly, to compete with the above descriptors,
they also test the shape descriptor ZFDSR which combines
ZF and DSR. They graphically demonstrate their feature ex-
traction process in Figure 6. Some details are mentioned be-
low.

They normalize the 3D models by utilizing the Contin-
uous Principle Component Analysis (CPCA) [Vra04] al-
gorithm before feature extraction. Their cube-based view
sampling approach samples 13 views for an aligned 3D
model with CPCA by setting cameras on the 4 top cor-
ners, 3 adjacent face centers and 6 middle edge points of
a cube. For each sample view, they compute 35 Zernike
moments [KH90] in total and its first 10 centroid distance-
based Fourier descriptors [ZL01]. They utilize the exe-
cutable file [Vra04] to extract the features of D, R and S.

Figure 6: Flowchart of computing five hybrid shape descrip-
tors: ZFDR, ZF, ZFD, ZFR and ZFDSR.

After obtaining the component shape descriptors Z, F, D,
R and S, they assign appropriate distance metrics to measure
the component distances dZ , dF , dD, dR and dDSR between
two models. These component distances are linearly com-
bined accordingly to form five hybrid descriptor distances
dZFDR, dZF , dZFD, dZFR and dZFDSR, which correspond to
their five funs: ZFDR, ZF, ZFD, ZFR and ZFDSR. For
more details about the feature extraction and retrieval pro-
cesses, please refer to [LJ13] and [LGA∗12].

4.3. Scale Invariant Heat Kernels (SI-HKS)

M. Abdelrahman, M. El-Melegy and A. Farag faced the
contest by considering the models captured with a com-
modity low-cost depth scanner as deformed objects, which
in itself is a challenging problem as it needs more work
to compensate for the degrees of freedom resulting from
local deformations. They quote Reuter et al [RWSN09]
who used the Laplacian spectra as intrinsic shape descrip-
tors, and employed the Laplace-Beltrami spectra as ’shape-
DNA’ or a numerical fingerprint of any 2D or 3D mani-
fold (surface or solid). That publication proved that ’shape-
DNA’ is an isometry-invariant shape descriptor. Recently
Sun et al. [SOG09] proposed heat kernel signatures (HKS)
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as a deformation-invariant descriptors based on diffusion of
multi-scale heat kernels. HKS is a point based signature
satisfying many of the good descriptor properties, but suf-
fers from sensitivity to scale. Bronstein et al [BK10] solved
the HKS scale problem through a series of transformations.
The same research group has recently introduced the Shape
Google approach [BBGO11] based on the scaled-invariant
HKS. The idea is to use HKS at all points of a shape, or
alternatively at some shape feature points, to represent the
shape by a Bag of Features (BoF) vector. Sparsity in the time
domain is enforced by preselecting some values of the time.

In this work, the participants propose an approach for
shape matching and retrieval based on scale invariant heat
kernel signature (SI-HKS). Sun et al. [SOG09] proposed to
use the HKS as a local shape descriptor

h(x, t) = Ht(x,x) =
∞
∑
k=1

e−λit
φi(x)

2 (1)

where λi and φi are the eigenvalues and eigenfunctions of the
Laplace-Beltrami operator. HKS has several desired proper-
ties [SOG09]: it is intrinsic and thus isometry-invariant (two
isometric shapes have equal HKS), multi-scale and thus cap-
ture both local features and global shape structure, and also
informative: under mild conditions, if two shapes have equal
heat kernel signatures, they are isometric. The proposed de-
scriptor in this work is based on BoF representation of the
HKS in frequency domain combined with the first 15 nor-
malized eigenvalues of the Laplace-Beltrami operator. The
novelty introduced by the proposed method is to achieve
scale-invariance of HK which is shown to be noise-robust.

Scale invariance is a desirable property of the shape de-
scriptor, which can be achieved by many ways. A novel lo-
cal scale normalization method is proposed based on sim-
ple operations. It was shown [BBGO11] that scaling a shape
by a factor β results in changing H(x, t) to β

2H(x,β2t). The
participants propose to apply the Fourier transform (FT) di-
rectly

H′(w) = β
2H(w)exp( j2πws). (2)

Then taking the amplitude of the FT,

|H′(w)|= β
2|H(w)| (3)

The effect of the multiplicative constant β
2 is eliminated

by normalizing the |H′(w)| by the sum of the amplitudes
of the FT components. The amplitudes of the first signifi-
cant FT components (normally 6) are employed to construct
the scale-invariant shape descriptor. This proposed method
eliminates the scale effect without having to use the noise-
sensitive derivative operation or the logarithmic transforma-
tion that both were used in [BBGO11]. This method is sim-
pler, more computational-efficient and more robust to noise.
Eventually the classification is done with the L1-Norm.

5. Results

The three groups of participants of the SHREC’13 Retrieval
of objects captured with low-cost depth-sensing cameras
contest have submitted 7 sets of rank lists in total. The re-
sults for these submissions are summarized in Figure 7 and
in the precision-recall curves in Figure 8. Figures 9, 10 and
11 shows the individual results for the LCoD, ZFDR and
SI-HKS shape descriptors, respectively.

In the Local Feature Correlation Descriptor (LCoD), the
participants use a view-based approach to the problem using
Dense SIFT to perform the feature extraction, which seems
to be an appropriate candidate. This descriptor proved to be
averagely the most effective of the 3 submissions in all the
evaluated retrieval measures. It is important to note that the
results are being compared against potentially idiosyncratic
evaluations by human subjects, so it stands to reason to con-
clude this approach is the one that best suited the human
expectations for the results.

Figure 8: Precision-recall curves

For the hybrid approach, the participants submitted 5
different runs, composed by distinct linear combinations
of their 5 shape descriptors, while every run included the
Zernike moments and Fourier descriptor features. From
these runs, ZFDR produced the best overall results while ZF
had the lowest scores, which hints against underestimating
the contribution of geometrical features in such approaches.
Ray-based features of the models seem to also play an im-
portant part on the retrieval of these models, as ZFR comes
close to ZFDR in the comparison. Interesting to note that
the DCG outcomes are stable across the different implemen-
tations.

The Scale Invariant Heat Kernel Signatures (SI-HKS) pre-
sented the lowest average scores in all categories, save for
queries 117 (plate) and 202 (wrench). These exceptions can
be explained by the contents of the target set, which includes
apparently scaled-down variants of the mentioned queries
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Figure 7: Retrieval performances of the algorithms

Figure 9: Individual results for LCoD

Figure 10: Individual results for ZFDR

(smaller plates and wrenches). This algorithm seems to work
well in the context of transformations of non-rigid objects,
which is not the case with this dataset, where every model is
unique.

Although it would be logical to consider that the queries
that yield better agreement among human judges, would also
have slightly better results across runs, such fact could not
be correlated with the results from this track. Comparing the
numbers from Table 1 and Figures 10 and 11, a direct match

Figure 11: Individual results for SI-HKS

between agreement and algorithm performance can not be
extrapolated and further study on this topic is required.

6. Conclusions

In this paper, we have described and compared the algo-
rithms from each of the three different research groups that
participated in the SHREC’13 Track: Retrieval of Objects
Captured with Low-Cost Depth-Sensing Cameras. Each par-
ticipant was presented with a subset of the target collection
to pose as the query set, and asked to submit a full-depth list
of results for each of their respective algorithms and possible
variants.

While the levels of precision reached by these submis-
sions are relatively low, that was to be expected, both by the
subjectivity of the proposed ground truth, and by the lower
quality of the dataset, when compared with all other existing
3D-shape benchmarks. The state of the art of low-cost depth
scanners shows that, although promising in its potential of
3D model scanning, it still lacks a degree of accuracy that
lets its results be usable for many different purposes. As it
is, it seems more interesting to understand its usability as a
fast scan and query device than as a benchmark modeler, as
it was used for this track.

The method that demonstrated best overall performance
was the Local Feature Correlation Descriptor (LCoD). From
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the set of different configurations of Hybrid Descriptors pre-
sented, ZFDR had the best results in average, while ZF
shows promising numbers while the search-depth is still low.
Finally, the SI-HKS was able to match the previous algo-
rithms for a small number of queries, while providing the
worst average values overall. Generally, view-based and hy-
brid approaches seem to be better choices for 3D-shape re-
trieval of objects captured with low-cost depth sensing cam-
eras than topological or geometrical feature algorithms.

This is just a first step into this topic of research. Other
approaches can be considered, such as the retrieval of mod-
els in a larger and more accurate database, using full queries
captured with low-cost depth cameras like the ones in this
benchmark, or just range scans captured with these devices.
Such work could provide grounds for the use of low-cost
cameras in object retrieval and environment recognition in
real-time settings.
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