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1. Introduction

1.1 Overview and goals

Computer graphics is a field of art and science concerned with computer-

assisted creation of visual imagery. Photorealistic image synthesis, in

particular, aims to reproduce the visual appearance of reality by simu-

lating the interaction of light and matter in a scene, so as to mimic the

image formation process that gives rise to our visual sensations. This

process is called rendering. The task is difficult, as humans are accus-

tomed to viewing the real world, and hence quick to spot poor imitations

of reality. Nevertheless, the behavior of light is well understood theo-

retically, and highly accurate practical rendering algorithms have been

known for decades [73, 125]. These methods are capable of producing im-

ages that are indistinguishable from photographs. In recent years, they

have found widespread adoption in film and visualization industry, as ad-

vances in computational capabilities of hardware have made their use

feasible. Real-time applications such as games and virtual reality must

still resort to approximations and shortcuts for performance reasons, but

the field is advancing rapidly [62, 122].

The results from these methods are, however, only as good as the in-

put data: one also needs high-quality content as an input to the renderer.

Roughly speaking, a renderer uses geometry, materials and lighting to

produce the image, as illustrated in Figure 1.1. This content is typi-

cally created by skilled artists in a time-consuming manual modeling pro-

cess. A typical goal is to create high-quality virtual replicas of real-world

scenes. With this in mind, it would make sense to bypass the manual

work by directly capturing this content from real-world examples. Indeed,

a large body of research exists on capturing each of the types of content

11
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Geometry

Materials

Lighting Rendered image

Figure 1.1. A renderer computes a photorealistic synthetic image out of the description
of geometry, materials and lighting. Image c© 2012 20th Century Fox.

enumerated above.

In this thesis, we are concerned with capturing and reproducing the

appearance of real-world materials. In other words, we are looking to

capture mathematical descriptors that predict how a given surface looks

when seen under arbitrary lighting and viewing conditions. This includes

effects such as color, shininess, bumpiness and translucency of a material,

and the spatial variation of these properties. While impressive results

have been demonstrated in previous work on appearance capture, these

methods generally require complex physical devices and capture proce-

dures, or are limited in their fidelity and applicability. Consequently, they

find limited use among practitioners.

Our goal in this thesis is to extend this work by simplifying the task for

the user. In particular, we are looking to design low-cost physical setups

with simple capture procedures and no custom hardware or moving parts.

However, this limits the quantity and type of the data we can collect:

the raw data no longer directly reveals the information we are looking

to recover. The major theme in this work is the use of advanced data

analysis techniques for extracting material appearance descriptors out

of scarce measurement data — in effect, shifting the complexity from the

measurement acquisition stage to the measurement interpretation stage.

In particular, steps are made towards solving for rich material properties

from a single photograph alone — an elusive long-term goal in the field.

1.2 Materials

All solid objects are composed of molecules bound together. In everyday

situations, it is convenient to distinguish between material and shape:

material is the “continuous” substance from which an object is built, whereas
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a) b)

Figure 1.2. Examples of real-world materials.

shape describes the macroscopic form into which it is arranged. The mate-

rial determines the chemical and many physical properties of the object:

for example, at what temperature does it melt, how it responds to me-

chanical stress, and how it interacts with electromagnetic radiation — in

particular, visible light. The latter determines the visual appearance of

the surface.

The exact division is context-dependent. For example, woven fabric

might be considered as a material when designing clothes, but from an

ant’s point of view the individual threads are large-scale shapes. At an

opposite extreme, a satellite might consider “forest” and “city” to be mate-

rials covering the Earth’s surface. Most objects are composed of multiple

materials with various degrees of heterogeneity. Consider the hammer

in Figure 1.2a: it consists of a wooden handle and a steel head, and the

head is partially rusted. Likewise, many materials are combinations of

multiple sub-materials: tarmac consists of countless small rocks embed-

ded in tar, as seen in Figure 1.2b. One typically considers any sufficiently

repeating detail, such as microscopic porosity or surface roughness, or

macroscopic texture, to be a property of the material.

Interaction between materials and light is of particular interest to com-

puter graphics and vision. The very reason we are able to see objects is

because light has scattered from them towards our eyes. The manner of

this scattering gives strong clues about the identity of the material, in the

form of effects like color, shininess, bumpiness, translucency, and spatial

variations thereof. In computer graphics, these effects must be simulated,

and their visual plausibility is of central interest.

The task of simulating these interactions is typically divided between

light transport and appearance modeling. The former is concerned with

keeping track of the global distribution of the scattered light in a scene.

The latter is concerned with the local scattering events themselves. A typ-
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Figure 1.3. Mechanism of diffuse and specular reflectance at microscopic scale. Diffuse
reflectance (left) arises when the light penetrates into the material, bounces
around randomly, and emerges at a nearby location. The random walk within
the material interior scrambles the exitant directions perfectly, giving rise to
a uniform distribution of reflections (shown as a polar plot in bottom left).
Specularity (right) is caused by immediate reflection at the surface boundary.
The microscopic roughness of the surface randomly scrambles the reflection
directions, giving rise to a distribution that is typically biased towards the
perfect mirror direction (bottom right). A part of the rays are absorbed by
the surface. The absorption probability is wavelength-dependent, and gives
the surface its apparent color. Typical dielectric materials exhibit both spec-
ular and diffuse reflectance. Reflections from metallic surfaces are purely
specular.

ical appearance model must be able to predict the distribution of outgoing

scattered light from a surface, given a distribution of incoming light.

In most materials, light scatters at or very near the object’s surface and

does not penetrate deeply into the interior. Hence, in typical applications

it suffices to model an object as its two-dimensional exterior surface, in-

stead of a full three-dimensional solid. Similarly, it suffices to endow this

surface with a surface material, which describes the material properties

that are relevant for modeling local surface reflections and refractions.

More general phenomena, such as non-local sub-surface scattering, are

relevant in some important special cases such as human skin [69]. Sim-

ilarly, complex volumetric structure of e.g. hair, fur and many fabrics re-

quires specialized techniques for plausible visual reproduction [72, 134].

In this thesis, the focus is on surface reflectance, and we leave these gen-

eralizations out of our scope.
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Figure 1.4. Top row shows the appearance of a material decomposed into the diffuse

and specular components. The diffuse component is perfectly matte, and
describes the base color of the surface. The specular component is respon-
sible for the highlights against light sources, and (possibly blurry) reflections
of the surrounding environment. The bottom row shows corresponding dis-
tributions of reflectance directions. Note however that the distribution of
reflectance varies from point to point on the surface, as the material depicted
is not homogeneous.

1.2.1 Modeling surface reflectance

Two mechanisms of surface reflection tend to dominate in most materials.

These are illustrated in Figure 1.3. In diffuse reflectance, the light does

penetrate into the material, but it re-emerges at practically the same po-

sition. However, as the light makes multiple random bounces within the

material, its exitant direction becomes uniformly randomized, resulting

in an appearance that does not depend on viewing direction. This gives

rise to the “base color” of a surface. The second common mechanism is

specular reflectance, where the reflection occurs directly at the surface

boundary. The roughness of the surface scrambles the exitant directions,

typically giving rise to a smoothened reflection distribution. Note in par-

ticular that the observed specular reflection does depend on the viewing

direction. Intuitively, this gives the surface its “shininess”. The appear-

ance caused by these types of reflections is demonstrated in Figure 1.4.

These notions are formalized by a reflectance descriptor called the bidi-

rectional reflectance distribution function (BRDF). It is a function that

describes this angular distribution of reflections as depicted in Figure 1.3.

It also varies with respect to the angle of incidence of the light. In to-

tal, the BRDF is a four-dimensional function, as its value depends on the

incoming and outgoing light directions, each characterized by a pair of
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angles.

This dimensionality is high. Exhaustively tabulating the BRDF value

for every pair of angles is prohibitively expensive for most applications.

Dividing a four-dimensional grid to 100 points along each dimension, for

example, results in 10 million values that need to be specified. Fortu-

nately, the space of naturally occurring reflectance functions is not ar-

bitrary. They exhibit significant amounts of structure and redundancy,

which suggests that a lower-dimensional characterization should suffice

to describe the key features of any BRDF. As noted above, most BRDFs

are superpositions of two simpler components, namely the diffuse and

specular part. The diffuse component is characterized by its color and

intensity (albedo). The main features of the specular component are like-

wise the albedo, and also the glossiness which characterizes the “open-

ing angle” of the reflected lobe. Some materials also exhibits anisotropy,

which results in elongated specular highlights such as seen in brushed

metal. Typical isotropic materials do not have this property. These con-

siderations have inspired a large body of research in parametric BRDF

models [103, 9, 25, 130, 4, 84, 14], which model BRDFs using such low-

dimensional characterizations.

Spatial variation The BRDF only describes the angular variation of the

reflectance at a single point, or for a homogeneous material as seen in

Figures 1.5a and 1.5b. Almost all real-world materials also exhibit signif-

icant spatial variation, as illustrated in Figure 1.5c. Arguably, it is often

the most prominent feature of a surface material. Most everyday surfaces

are well modeled by a small set of angular variation effects; it is the spa-

tial variation of these properties that really sets different materials apart

and gives them their distinctive characters.

The BRDF can be straightforwardly extended with two spatial dimen-

sions, yielding the six-dimensional spatially varying BRDF, or SVBRDF.

Exhaustive tabulation of these high-dimensional functions is out of the

question for most practical applications. Instead, it is common to use

“texture maps” that describe the variation of the parameters of a low-

dimensional BRDF model across the surface. An additional normal map

is often used to model small-scale surface shape variations. Figure 1.6

shows an example of such a representation. These kinds of surface ap-

pearance descriptors are widely used in industry [15]. Most software

modeling packages and real-time rendering engines use them by default,

although the specifics of the models vary.
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Figure 1.5. a) Object with a homogeneous plastic material with no spatial variation, suf-
ficiently described by BRDF alone. b) A homogeneous metal material. How-
ever, on closer inspection, the surface has visible small-scale roughness and
wear and tear. Such details are often critically important for visually plausi-
ble images. An SVBRDF or a similar spatially varying material descriptor is
required for modeling these effects. c) A general spatially varying material.

The methods in this thesis are concerned with capturing SVBRDF maps

of this kind.

1.3 Capturing surface reflectance

This thesis is concerned with capturing SVBRDFs from real-world sur-

faces. Given that the SVBRDF predicts the proportion of light reflected

between each pair of incoming and outgoing angles at each surface point,

capturing it is in fact straightforward in principle. One merely needs to

translate a light source and a camera to each angle in turn, and record

the amount of light reflected by each surface point by taking a photo-

graph. Figure 1.7 illustrates this principle. A device built for this purpose

is known as a gonioreflectometer [96, 27].

However, this approach is not very practical due to the high dimension-

ality of the functions: a very large number of photographs need to be

captured in order to sample the angular space with sufficient resolution.

Furthermore, the device requires precise robotic mechanical control and

careful calibration to ensure the reliability of the measurements.

Fortunately, real-world reflectance exhibits significant structure, which

can be exploited in order to extract the relevant information from a smaller

amount of measurement data. As a very simple example, due to the reflec-

tion mechanisms described above, surfaces tend to reflect most strongly
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Figure 1.6. An example of the kind of parametric SVBRDFs we aim to capture. On the
left is a photograph of the physical material. Notice the shininess hinted by
the specular highlights, and the embossed gold lettering. On the right is an
SVBRDF “texture map” representation of the material (in fact, captured us-
ing the method in Publication I). The diffuse albedo map (top left) describes
the base diffuse color of the material. The specular albedo map (top right)
describes the intensity of the specular highlight: there is some specularity
across the entire material, but the gold letters stand out as bright yellow.
The glossiness map (bottom left) describes the glossiness of the specular re-
flection. Note how the golden parts, again, are more mirror-like, and in par-
ticular the deeper creases are rather dull. Finally, the normal map (bottom
right) describes the variations of the surface shape.

towards the perfect mirror direction, and the reflectance falls of smoothly

towards other viewing angles. It is unlikely (if possible in theory) that

one would find a pocket of strong reflectance in some completely unre-

lated direction. This suggests that certain directions may be sampled less

densely, as well as the possibility of interpolating and extrapolating re-

flectance information from incomplete measurements. On the other hand,

one does not necessarily need to make direct point measurements of in-

dividual BRDF values — for example, large area light sources illuminate

the surface from a wide range of angles, and may help us to collect re-

flectance information from multiple angles simultaneously.

Besides angular variation, also the spatial variation is typically struc-

tured. For example, the surface of a given object typically only exhibits

a small number of different reflectances, and consequently measured in-

formation can often be shared across surface locations. Consider e.g. Fig-

ure 1.6: the shininess properties of the cardboard are roughly similar

across the surface, even though the specific spatial features vary.

Incorporating knowledge about such regularities into the design of the

method, often in highly indirect and non-trivial ways, is a central under-
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Figure 1.7. Photographs of a book cover under various viewing and illumination direc-
tions. Notice how different aspects of the surface color, glossiness, and shape
are revealed under the different conditions. These photographs represent
only a tiny fraction of the number of photographs required for exhaustive
sampling of the reflectance functions. Careful calibration and mechanical
control are required to ensure reliability of the measurements.

lying theme in this thesis. Indeed, similar consideration have inspired a

variety of exotic capture devices (e.g. [44, 48, 64, 50, 35, 21]) that make

strategic measurements most likely to reveal the desired reflectance in-

formation. For example, Gardner et al. [44] translate a linear light source

(fluorescent tube) over a surface and infer the material properties from

its reflections. Another problem arises with these approaches, however:

the measurements often do not directly reveal the values of the SVBRDF.

Instead, they need to be disentangled algorithmically.

In this thesis, we model the task of recovering the reflectance descrip-

tors from indirect measurements as an inverse problem. The idea is to

form a mathematical predictive (or forward) model, which is essentially a

virtual replica of the real-world measurement setup. This model can be

used to test different hypotheses about the reflectance of the underlying

material. Specifically, we use a principled process of optimization to drive

a search for a material descriptor that would produce the same measure-

ments as those we observed in the real world. The assumption is that

such a descriptor is the underlying explanation behind the real-world ob-

servations as well, and hence represents the true reflectance properties of

the surface. Figure 1.8 illustrates this process. A canonical example is op-
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Figure 1.8. A schematic overview of the capturing and data fitting process by optimiza-
tion. First, a set of measurements is captured by a physical setup that records
images of the physical material sample under varying conditions. Then, a
rough initial guess about the underlying appearance descriptor is made. A
virtual predictive model is used to simulate the appearance of this descriptor
under the same conditions as those used in the measurements. The predic-
tions of the model are compared with the physical measurements, and the
estimate of the descriptors is refined in a way that improves the match. This
process of prediction and refining is repeated iteratively until it converges to
a descriptor solution that accurately reproduces the physical input data. The
physical capture setup depicted is fictional but reminiscent of a gonioreflec-
tometer [96, 27].

timizing for the unknown surface color, shininess and bumpiness param-

eters (such as shown in Figure 1.6), so that the renderings of the surface

end up matching the input photographs, the latter taken under various

controlled lighting and viewing conditions (e.g. as in Figure 1.7).

1.3.1 Mathematical challenges

A central theme in this thesis is the joint design of the physical measure-

ment setup and the corresponding interpretation model. On one hand, the

captured data must sufficiently well encode the reflectance information of

interest, without being too cumbersome to acquire. On the other hand,

it must also be interpretable using a tractable and reasonably efficient

algorithm.
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The ultimate goal of capturing material appearance is reproduction: we

are looking to use the captured appearance under novel viewing and light-

ing conditions. Our desire to build practical low-cost physical setups pre-

vents us from exhaustively measuring every possible combination of re-

flection directions. For example, if we constrain the camera and the ma-

terial sample to fixed positions (as we do in all the methods in this the-

sis), we only obtain reflectance information from a single exitant angle

at any given point. This leaves a large portion of the angles unexplored.

Thankfully, as outlined above, the angular behavior of reflectance func-

tions is somewhat predictable, and plausible extrapolations can be made

from well-chosen slices of the functions. This requires care due to the high

dimensionality and non-linearity of the functions involved.

The key problem is ill-posedness: the data is often ambiguous and ad-

mits to multiple explanations. A basic example is the difficulty of re-

flectance recovery from a single photograph. One can easily find an in-

finite number of different material models that precisely match any given

photo. However, vast majority of them fail to generalize to novel view-

ing and lighting conditions, and without additional information there is

no way to choose a good one. An example of a trivial solution is an en-

tirely flat and diffuse surface, with the image of the input photograph

printed on it. While this solution looks correct from the original angle, it

falls apart when the camera and the light are moved: for example, any

specular highlights remain fixed to their original positions. Similarly, the

shading variations caused by surface bumps may also be interpreted as

alternating dark and light regions on a flat surface. See Figure 1.9 for

an illustration. This difficulty carries over to more complex setups — for

example, it might be difficult to determine the relative amount of diffuse

and specular reflectance at a given point, because both parameters may

have a similar visual effect under the measurement setup used. In gen-

eral, solutions to ill-posed problems can be much worse than that that

decipted in Figure 1.9, as the optimizer is free to almost arbitrarily mix

the various shading parameters unless care is taken.

A related difficulty is non-convexity. Optimization methods typically

make greedy improvements to the solution in each iteration, and once

they end up with a solution that cannot be improved by small nudges to

the parameters (a “local minimum”), they finish. Ideally, this happens

when the solution parameters correspond to the physical reality, and can-

not be improved any further. Unfortunately, the mathematical form of
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Figure 1.9. Generalizing to novel viewing and lighting angles from a single photograph.
a) An input photograph taken of a real-world surface with a mobile phone
camera and flash. Notice the specular highlight, bumpiness, and the red dif-
fuse color. b) Proper generalization to new viewing and lighting conditions
using a material descriptor where the shading effects have been disentan-
gled. In particular, the specular highlight position and the shading of the
individual bumps have responded to the new position of the light source. c) A
trivial material descriptor that merely paints the surface with the input pho-
tograph fails to generalize properly. Notice how the position of the specular
highlight and the shading of the bumps still correspond to the original light-
ing conditions of the photo. However, for this same reason, the descriptor
successfully reproduces the appearance of the input photograph under the
original viewing conditions, and it is therefore a possible solution to the in-
verse problem unless we somehow rule it out. The difference is significantly
more pronounced in motion.

most optimization problems also leads to the existence of additional spu-

rious local minima. These minima are often clearly sub-optimal, i.e. they

are a poor numerical fit to the measurements. Nonetheless, an optimizer

is unable to escape them once it falls into them, because in doing so it

would need to temporarily accept an even worse numerical fit. The under-

lying mathematical reason for this phenomenon is the non-convex multi-

modal shape of the function being optimized [11]. The nature of these

local minima is often very difficult to reason about in practice — in the

end, one tends to accept their existence, but finds that with careful design

decisions and tuning a method becomes “good enough” at avoiding them.

While not always explicitly discussed in the publications, these consid-

erations are highly relevant to all of the methods presented in this thesis.

The final design of the algorithms, and the specific configurations of the

details, are often products of a long period of experimentation. Unfortu-

nately, quite little can be explicitly quantified about this procedure; the

design space is very large, and intuition of the algorithm designer plays

a definite role. Nevertheless, once a good configuration is found, it is of-

ten quite robust: same design choices and parameter values yield good

results for a wide range of inputs. One of the goals in these introductory

chapters is to shed some light on these issues, and how they relate to the
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algorithms presented (often by necessity quite tersely) in the publications.

1.3.2 Natural materials

The problem of generalizing from incomplete and ambiguous measure-

ments is closely related to the difficulty of incorporating “common sense”

into algorithms. Humans are skilled at inferring material properties from

scarce data: we often easily recognize the material of an object even from

a single photo, and we can predict how it would look like under different

conditions. Most candidate explanations are immediately dismissed as

implausible. Returning to the example above, a human viewer rarely con-

fuses specular highlights with white blotches of paint. We observe count-

less such bright blotches on objects every day, and they almost never turn

out to stick to the surface when we shift our heads. Consequently, we have

learned that the “painted-on” hypothesis is extremely unlikely, and apply

this assumption to any similar blotches a priori. In contrast, computer

algorithms based on mathematical reasoning lack this kind of knowledge,

and consider either explanation to be equally likely until proven other-

wise. While empirical studies in human visual perception (e.g. [123])

have found rather subtle and sophisticated patterns of reasoning involved

in related tasks, arguably these processes are nonetheless automatic, in

the sense that in vast majority of cases we do not need to stop and explic-

itly perform logical reasoning in order to interpret the scene presented to

us.

We do have some computational tools at our disposal. By using so-called

priors, we can assign a “plausibility score” to any proposed solution, and

use it to resolve ill-posedness without having to capture more data. The

idea is to guide the optimizer towards choosing a solution that simulta-

neously explains the data, and satisfies our a priori beliefs about what a

good solution should be like. For example, most methods presented in this

thesis use smoothness priors that favor solutions consisting of smoothly

varying regions (as opposed to e.g. rapidly oscillating noise). This encodes

our belief that surface points close to one another tend to also have similar

properties. However, despite their usefulness, these tools are ultimately

rather blunt.

Ideally, a prior would encode human-like understanding of what it means

for a solution to be plausible, so that it might be used, for example, to

choose a plausible generalization in the deeply ambiguous single-photograph

capture problem demonstrated in Figure 1.9. The simple priors we presently
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apply are far too weak for this task.

The manifold viewpoint posits that naturally occurring materials are

concentrated on a tiny but extremely complicated subset of the space of

all “mathematically valid” materials. In particular, a randomly chosen

SVBRDF is overwhelmingly likely to depict random noise, and fall outside

this manifold. Priors may be interpreted as tools for characterizing this

manifold.

The modern machine learning approach to similar problems is to in-

stead emulate human learning by repeated observation of real-world ex-

amples [54]. The use of deep neural networks has recently lead to break-

throughs in applications such as image [117, 119] and speech recogni-

tion [63]. These techniques hold a promise for material appearance cap-

ture as well. Publication III presents some first steps towards this direc-

tion by taking advantage of natural image understanding encoded into

such networks.

1.4 Overview of methods

This thesis introduces three publications, each of which describes a method

for capturing parametric SVBRDF maps, as illustrated in Figure 1.6.

To keep the methods practical, we aim to perform this task using only

commodity hardware, in particular avoiding any moving parts that need

to be robotically controlled. We aim to avoid fragile calibration procedures

to the extent possible, often choosing to use algorithms that tolerate e.g.

photometric distortions in the data and gracefully absorb them into the

solutions, rather than taking laborous steps towards completely eliminat-

ing them. In a similar vein, we aim to produce appearance descriptors

that plausibly explain and generalize from the scarce observations. While

such extrapolations cannot always be an exact match to the photometric

ground truth, they are in practice useful in many applications, and may

also serve as useful starting points for manual editing and authoring.

In order to focus fully on reflectance, we make the common restriction of

assuming that the captured surface is a flat plane, as opposed to general

3D model. Some methods do perform joint capture (e.g. [65, 124]), but

this necessarily leads to either a significantly more complicated hardware

setup, or compromises in both sub-tasks.

Let us briefly review the ideas behind the methods. They will be dis-

cussed more thoroughly in Chapters 5 and 6, as well as in the publica-

24



Introduction

tions.

1.4.1 Publication I: Fourier basis measurements

The first publication presents a method for low-cost capture of a wide

range of spatially varying materials, using only off-the-shelf commodity

hardware in a simple physical setup with no moving parts. The method

works by displaying a sequence of Fourier basis functions on an LCD mon-

itor and photographing their reflections off the captured surface. These

measurements can be viewed as pointwise measurements of the Fourier

transforms of slices of the unknown reflectance functions. They are in-

terpreted by an algorithm that directly renders the corresponding slices

in the Fourier domain, and fits the predictions of this model to the data

by optimization. The frequency domain data enables effective capture, as

many of the interesting features of typical reflectance functions become

readily apparent in this domain. The domain is also suited for capturing

extremely sharp mirror-like reflections, which are challenging for tradi-

tional methods. State of the art results are demonstrated for a variety of

example materials.

1.4.2 Publications II & III: Stationary materials

The key observation behind the two latter publications is that most real-

world surface materials are stationary, or “textured”, in the sense that

same features keep repeating across a surface. This redundancy sug-

gests an opportunity for tremendous reduction in the amount of required

input data. By illuminating the surface using a near-field light source,

the repeated features become observed under multiple lighting conditions

within a single image. Hence, the single photograph contains information

of dozens of traditional distantly viewed and lit photographs. The diffi-

culty lies in combining the information from the different image regions,

as identical pieces of material can no longer be directly identified by their

pixel values due to the varying lighting.

The methods in both publications measure the reflectance information

from a head-on flash photograph from a mobile phone. Aside from that,

they take vastly different approaches to solving this problem, resulting in

two-shot and single-shot methods, respectively.

In Publication II, this flash photograph is augmented with a second

photograph taken under distant environment illumination. This guide

25



Introduction

photo is used to find explicit matches between points in distinct regions

of the surface. The linked points are considered to have the same mate-

rial, which is solved for by finding a set of parameters that predicts the

observed appearance by optimization.

While effective, this approach consists of a sequence of partly heuris-

tic steps, specifically engineered for this particular setup and purpose. A

more principled and flexible approach would be to simply optimize the vi-

sual match between renderings of the surface and the corresponding flash

photograph regions. This would also eliminate the need for a separate

guide photo. However, comparing similarity of textures is difficult. Naive

pointwise image difference fails as a metric, because the textural features

are most likely not aligned: for example, the lines in two images of a brick

wall are unlikely to coincide when the images are overlaid, resulting in a

large numerical difference. Indeed, at the time of writing of Publication

II, no suitable high-quality method existed for this task.

Soon after the publication, Gatys et al. [46] introduced a texture synthe-

sis method based on continuously optimizing the similarity of neural net-

work activation statistics between the solution and a texture exemplar.

This resulted in state of the art quality in parametric texture synthe-

sis. The key component in their approach is a textural similarity metric

which can be used directly as a part of general optimization problems. In

Publication III we use this metric to directly optimize the similarity of

our material solution and the input data, essentially synthesizing a small

piece of an SVBRDF that summarizes the reflectance information in the

flash photo. The approach of combining texture synthesis and material

appearance acquisition is novel.

Another intersting aspect about Publication III is its unconventional use

of a pre-trained convolutional neural network. In order to perform its

original task of classifying images into categories, the network seems to

have formed a strong internal understanding about the structure of nat-

ural images. Our algorithm takes advantage of this knowledge implicitly.

This has potential implications in terms of modeling the space of natural

materials.
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2. Appearance modeling

We assume that the reader is familiar with the general concepts regarding

light transport and material models. We will briefly review these topics

from the viewpoint relevant for appearance capture, and in particular for

the work in this thesis.

2.1 Radiometry

Cameras and eyes are sensitive to visible light, which is electromagnetic

radiation with wavelengths from roughly 400 to 700 nanometers. Ra-

diometry is a field of study concerned with measuring electromagnetic

radiation.

Computer graphics and vision typically adopt the model of geometric op-

tics, where radiation (light) is assumed to propagate along straight paths.

Phenomena related to the wave and quantum nature of radiation are ig-

nored, as their effect is negligible at visible wavelengths in vast majority

of macroscopic scenes. Similarly, effects such as phosphorescence and flu-

orescence are ignored.

2.1.1 Radiometric quantities

Let us derive some key radiometric quantities by considering radiation

as being composed of quantified “photons” (inspired but not exactly corre-

sponding to the concept in physics), each traveling towards some direction

in a straight line at a fixed speed, and each carrying some fixed amount

of energy measured in Joules [J]. The actual radiometric quantities arise

from a somewhat informal limit argument, where we consider the number

and velocity of photons to approach infinity, so as to result in a “contin-

uous” stream of energy. For a more thorough treatment from a similar

viewpoint, see Veach [125].
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Figure 2.1. A visualization of radiation in terms of photons. The arrows depict the path
taken by individual photons during a unit time interval. The light source
emits new photons at a constant rate. As they travel away from the light
source, they move further apart from one another, and their distribution be-
comes thinner. The irradiance on a surface is proportional to the expected
number of photons traveling through the surface in unit time. Notice how
the number of photons that intersected the surface patch (a) is higher than
the corresponding number for a distant patch (b) and a patch that is oriented
obliquely against the light source (c). In the continuous limit of “infinite
amount of photons” and irradiance through an infinitesimally small patch,
these effects explain the attenuation of irradiance according to the inverse
square distance and to the cosine of the incidence angle.

Point light sources emit photons at a fixed rate per unit time. Hence,

we may express the expected rate of emission as power, or radiant flux

Φ = dQ
dt in the unit of Joules per second [J/s], or Watts [W].

Consider a virtual surface patch in space, as seen in Figure 2.1. The ex-

pected number of of photons per unit time traveling through a unit area

of this surface is called irradiance and it is measured in units [ W
m2 ]. We

typically consider the irradiance on an infinitesimal surface patch (which

is hence characterized solely by its surface normal), E = dΦ
dA . In partic-

ular, if the surface patch represents an infinitesimal region of a physical

surface, irradiance expresses the radiant power hitting the surface point.

Notice in particular that this quantity depends on the distance from the

emitter, and the orientation of the surface normal.

Consider now a more selective version of irradiance, that only counts the

photons that strike the virtual surface from some small cone of directions

around the normal ω of the patch. The cone may be characterized as a

region on the unit sphere, as in Figure 2.2. The size of the opening is

called solid angle, and it is measured simply as the area of the region on

the unit sphere. This unit is called steradian [sr]. Notice that it simply
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ω

Figure 2.2. A cone of directions visualized on a unit sphere. The size of the opening of
this cone is measured as a solid angle, and corresponds to the area of the
region subtended by the cone on the unit sphere. Note that this definition is
only concerned with the measure of the angles within the cone, not its shape.

generalizes the notion of angles measured in radians (i.e. arc length on

unit circle). Our selective irradiance measures the power per unit area

per unit solid angle. Hence, its units are [ W
sr m2 ].

Letting the surface area and the solid angle shrink towards zero, we ar-

rive at radiance L = dΦ
dω dA⊥ . Here, the notation dA⊥ highlights the fact

that the infinitesimal area is oriented perpendicularly towards ω. Intu-

itively, radiance is proportional to the number of photons per unit time

passing towards a given direction at a given position in space. This is vi-

sualized in Figure 2.3. Contrary to irradiance, radiance from a direction ω

is conserved along the straight unoccluded line in that direction, because

the same “pencil” of photons is responsible for the radiance at any position

along the line.

Note that eyes and cameras are sensitive not only to the amount of light

hitting them, but also its direction of arrival. Indeed, a typical perspective

image is simply a map of the radiance incident towards the position of

the camera from a cone of directions. The typical rendering procedure

boils down to computing the distribution of radiance in the scene, and

evaluating it at the camera pixels. To determine this distribution, one

follows the radiance from light sources as it alternatingly travels to the

visible surfaces in free space, and becomes reflected upon hitting these

surfaces.

So far we have assumed monochromatic radiation. As the radiomet-

ric picture is essentially independent between different wavelengths, the

quantities discussed above can be straightforwardly extended to consider

the wavelength by adding it as a parameter λ. Hence, for example the

spectral radiance is described by a function L(x, ω, λ). While in principle
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Figure 2.3. Visualization of radiance in terms of discrete photons (see Figure 2.1 for an
explanation of the setup). In general scenes, any region of space typically con-
tains photons traveling to all directions. In this simple scene, two collimated
“beams” of photons are crossing at a region of space. They are marked with
red and green for clarity. This scene might be physically arranged by crossing
two laser beams in an otherwise perfectly dark room. Radiance is (again, in
the limit) the rate of photons passing through an infinitesimal patch in space
from an infinitesimally small set of angles perpendicular to the patch. Hence,
no radiance is registered from the green photons by the patch depicted in the
figure.

λ is an arbitrary positive real number, practical renderers typically use

a discrete spectrum consisting of some chosen set of wavelengths — often

only three, corresponding to the red, green and blue components. To avoid

notational clutter, we will often assume monochromatic radiation in the

formulas and discussion. The extension to the spectral case is generally

straightforward.

2.2 Reflection and light transport

Consider Figure 1.3. The photons arriving at an infinitesimal surface re-

gion either become absorbed, or scatter towards a random direction. The

scattering follows some probability distribution over the outgoing angle

ωo ∈ Ω, determined by the physical properties of a material, along with

its microscopic shape variations. Here, Ω is the upper unit hemisphere

above the surface point. The shape of the scattering distribution itself is

a function of the incoming angle of the photon, ωi ∈ Ω. In terms of the

continuous radiometric quantities, the same distribution expresses the

amount of radiance re-emitted towards each direction ωo, in proportion

to the irradiance received from each direction ωi. The distribution is en-
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Figure 2.4. BRDF parameterization. The BRDF describes the amount of light reflected
from any illumination direction ωi towards any viewing direction ωo. This
is a function of four angles (highlighted in red). The surface normal n and
the tangent t determine the local coordinate system. In a spatially varying
BRDF (SVBRDF) the reflectance also varies as a function of the position p

on a surface, i.e. as a function of the two spatial coordinates (green). This
results in a total of 6 dimensions. For isotropic materials, the BRDF only
depends on the difference of the azimuth angles, and hence one dimension
may be dropped.

coded by the bidirectional reflectance distribution function, or BRDF at

that surface point [100]:

fr(ωi → ωo) =
dL(ωo)

dE(ωi)
(2.1)

Figure 2.4 illustrates the parameterization of this function. Figures 1.3

and 1.4 show some examples of BRDFs for a fixed incidence angle ωi.

Figure 2.5 illustrates several different angular slices of a same BRDF,

corresponding to different incidence angles.

Physically valid BRDFs We may compute the proportion of power re-

emitted and the power received by the surface from the direction ωi by

integrating over the outgoing angles:

α(ωi) =

∫
Ω
fr(ωi → ωo) cosωo dωo (2.2)

(Recall that irradiance received by a surface depends on the angle of inci-

dence. The cosine of the angle between ωo and the surface normal in this

formula follows from this foreshortening effect.) In order for the BRDF to

be physically plausible, it must not reflect out more power than what it
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Figure 2.5. A BRDF visualized as a function of ωo for three different incoming angles ωi.
The full BRDF cannot be visualized at once, due to its high dimensionality.

receives. In other words, α(ωi) must not exceed 1 for any ωi. The value

1− α(ωi) represents the absorption probability.

The BRDF must also obey Helmholtz reciprocity: it must be symmetric

with respect to the incoming and outgoing angles, i.e. fr(ωi → ωo) =

fr(ωo → ωi).

Reflection equation The BRDF can be used to predict reflections from ar-

bitrary distributions of radiance incident upon a surface point. Because

photons arriving from different directions do not interact with one an-

other, their contributions to the distribution of outgoing radiance are inde-

pendent and simply summed together. Integrating over the contributions

of incident differential irradiance from the hemisphere above a point, and

accumulating the exitant radiance according to Eq. 2.1, we obtain the re-

flection equation:

Lo(ωo) =

∫
Ω
fr(ωi → ωo) cosωi Li(ωi) dωi (2.3)

The radiance function is divided into the incoming radiance Li and exi-

tant radiance Lo to model the distribution of light prior to and after the

reflection. Essentially, this formula states that (for a fixed surface point p

and surface normal n) the radiance towards an outgoing direction is the

“continuous sum” of all radiance arriving at the point, weighted by the

cosine of the incidence angle and the corresponding BRDF value. Note

in particular that this is a linear transformation from incident radiance

functions to exitant radiance functions:∫
Ω
fr(ωi → ωo) cosωi [αL1(ωi) + βL2(ωi)] dωi =

α

∫
Ω
fr(ωi → ωo) cosωi L1(ωi) dωi + β

∫
Ω
fr(ωi → ωo) cosωi L2(ωi) dωi

Essentially, the equation is an infinite-dimensional analogue of a matrix

product, where the BRDF supplies the entries of the matrix. In fact, due
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to the typical shape of BRDFs, the operation can for some models be seen

as a convolution [106]. This explains the intuitive observation that glossy

reflections tend to blur (i.e. filter) the reflected image of the surrounding

environment.

The equation is linear with respect to the BRDF as well. This is use-

ful when the BRDF is represented as a sum of diffuse and specular sub-

BRDFs: each component contributes to the exitant radiance additively.

We will often need to consider reflections at an explicitly specified sur-

face position p and a corresponding normal orientation n. The formula is

then:

Lo(p, ωo) =

∫
Ω
fr(p, ωi → ωo) max(0, ωi · n) Li(p, ωi) dωi (2.4)

Here, the BRDF fr is taken to be rotated to the local coordinate system

around the specified surface normal n (and if needed, an orthogonal sur-

face tangent direction t that fixes the remaining axes).

This equation can be developed into the full rendering equation which

models the global light transport in the scene by identifying the incoming

and outgoing radiance functions, and adding a radiance emission term

to model light sources. This makes the equation recursive and difficult to

evaluate. Algorithms such as path tracing [73] and radiosity [56] are used

to solve the equation by numerical means. We leave these developments

out of our scope, as none of the methods we design involve complex multi-

bounce light transport.

2.2.1 Primary reflections from light sources

We will, however, need to model single-bounce reflections for light emitted

from different types of sources, as this is the means by which we gather

information about the BRDFs of the physical surfaces.

Point light source A point light source is an infinitely concentrated light

source, as depicted in Figure 2.1. In Publications II and III, we use it to

model a camera flash.

Because a point light is infinitely concentrated (it may be modeled as

a Dirac delta distribution), the integral in reflection equation (Eq. 2.4)

reduces to a point evaluation:

Lo(p, ωo) = fr(p, ωi → ωo) max(0, ωi · n) P

‖q − p‖22
(2.5)

Here, P is the power of the emitter, ωi is the unit vector q−p
‖q−p‖ from the

surface point p towards the light source at q. The squared inverse distance
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nlight x

Figure 2.6. Change of variables from the hemisphere to the emitter plane. The geometric
terms represent the ratio of the areas of an infinitesimal region dω on the
hemisphere, and its projection dA onto the emitter plane. This boils down
to the inverse square of the distance (red), times the cosine of the angle of
incidence to the light source (green).

from the surface point to the light source models the distance decay of the

irradiance as illustrated in Figure 2.1.

Area light source with spatially varying emission pattern In Publication I,

we use a flat-panel monitor to emit a sequence of illumination patterns

onto the material surface. We will briefly present a change of coordinate

system that is underlies the mathematical formulation of the method. For

a more thorough account, see for example Veach [125].

We model the monitor as an area light source with a spatially vary-

ing emission power pattern E(x), where x indexes the coordinates on the

emitter plane. Recall that the reflection equation Eq. 2.4 is an integral

over the upper unit hemisphere Ω above the surface point. In these coordi-

nates, the incoming radiance Li from the area light source is represented

by a rectangle with curved sides. This function is difficult to integrate

over directly. Instead, we can perform a change of variables to the pla-

nar coordinates of the area light source, as depicted in Figure 2.6. The

reflection equation becomes an integral over R
2:

Lo(p, ωo) =

∫
R2

fr(p, ωi(x) → ωo) max(0, ωi(x) · n) E(x) G(x) dx(2.6)

Note that the incidence angle ωi becomes a function of the emitter surface

point x. The function G(x) is the standard Jacobian determinant that

arises in changes of variables in integration. It has a simple geometric

interpretation in this case: it is the product of the inverse square distance

from the emitter point x to the surface point p, and the cosine of the ex-

itant angle from the emitter, as illustrated in Figure 2.6. They are often
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called the geometric terms. Intuitively, they model the fact that distant

and obliquely viewed emitters appear smaller when viewed from p, and

hence contribute less. In general, whether this transformation helps us

to evaluate the integral depends on context. It plays a key role in Publi-

cation I.

2.3 BRDF models

In theory, a BRDF can be almost arbitrary: any function that obeys en-

ergy conservation and reciprocity is a physically valid BRDF. Neverthe-

less, only a small subset of all physically valid BRDFs are encountered in

real world. In practical applications BRDFs are chosen from parametric

families of functions, which we refer to as BRDF models. These families

are indexed by a finite-dimensional set of parameters, which is convenient

for practical use on finite computers. Secondly, the family is typically cho-

sen as to span as many different plausible real-world BRDFs as possible

(and preferably, little else). Sometimes models are specifically designed

for specific classes of materials — such as wood [92] or fabrics [113] — to

model their unique characteristics. The functions should preferably also

have a mathematically convenient form, for example to enable effective

importance sampling for Monte Carlo rendering applications.

2.3.1 Tabulated BRDFs

A naive BRDF model is obtained by extensive tabulation of the BRDF

values: the four dimensions of a BRDF are subdivided into a fine grid,

and the “parameters”1 of the model are the values of the BRDF at each

grid point. The BRDF is evaluated at any pair of angles by interpolating

between the supplied parameter values at the nearest grid points.

While highly expressive, this model suffers from various shortcomings.

As discussed in Section 1.2.1, fine subdivision of the four-dimensional

function potentially results in millions of parameters for a single BRDF.

While significant portions of the parameters may be eliminated by re-

striction to isotropic BRDFs (3-dimensional functions), dropping the mir-

rored parts due to reciprocity, and concentrating grid points at typical

angles with high-frequency content, the representation remains unwieldy

1Tabulation is often considered to be a non-parameric model as it directly speci-
fies the BRDF values; however, we use this term here in reference to the previous
section.
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for most practical applications.

Furthermore, the model is too expressive: while it can accurately rep-

resent any real-world BRDF imaginable, the vast majority of choices for

the grid values result in a nonsensical BRDF. Analogous to natural im-

ages, one is overwhelmingly unlikely to ever obtain a plausible real-world

BRDF by choosing the parameters at random. This makes authoring and

editing BRDFs in tabulated format difficult. For similar reasons, tabu-

lated format is of little help in extrapolation of reflectance data from in-

complete measurements (which is one of the goals of the methods in this

thesis), because a vast space of nonsensical solutions are often compatible

with the measurements.

Certain devices based on brute-force point sampling [42, 132] produce

BRDF data in a tabulated format. In some applications, this data is used

directly for rendering. However, the tabulated data is most commonly

fitted to a lower-dimensional model instead.

Carefully chosen changes of angular parameterization [112] often reveal

significant redundancy in the BRDF values along the parameter axes. For

example, Lawrence et al. [81] exploit this by tabulating BRDF values as

one-dimensional slices along chosen axes in a factored representation, sig-

nificantly reducing the dimensionality of the model while partly retaining

it expressiviness.

2.3.2 Low-dimensional parametric models

As discussed in Section 1.2.1, plausible real-world BRDFs constitute a

small subset of the space of physically valid BRDFs.

Everyday experience indicates that most BRDFs have some common

characteristics. As demonstrated in Figures 1.3 and 1.4, they tend to

consist of two roughly distinct parts: the diffuse component that looks

the same regardless of the viewing angle and gives the surface its base

color, and the specular component that describes the shiny highlights

seen against light sources. This effect is modeled by a peak in the BRDF

around the ideal mirror direction. The color, intensity and spread of this

peak, or lobe, may vary. The tighter the spread of the lobe, the more glossy

(shiny) the material appears. Some materials, such as brushed metal, ex-

hibit anisotropy, which manifests as elongation of the specular highlight.

Certain physical properties, such as the index of refraction, also affect the

appearance of the material. These high-level observations suggest that

most BRDFs are characterized by a few distinct features, to which we
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Figure 2.7. A typical parametric model controls the magnitudes of the diffuse and
the specular lobes via albedos, and the opening angle of the specular
lobe via glossiness. Some parametric models also model effects such as
anisotropy [130]. This would correspond to a flattening of the specular lobe
along some axis.

could assign numerical parameterization. Indeed, this approach is widely

used (e.g. [103, 9, 25, 130, 4, 84, 14]).

Phong model One of the earliest parametric BRDF-like models is due to

Phong [103]:

fPhong(ωi, ωo; ρd, ρs, α) =
1

π
ρd + ρsmax(0, R(ωi) · ωo)

α (2.7)

where R(ω) reflects the vector ω with respect to the surface normal vector.

The Phong model is based on the simple empirical considerations above.

For a given user-supplied choice of a diffuse albedo (intensity and color)

ρd, specular albedo ρs and glossiness α, it is a function of the incoming and

outgoing angle. Note that the dot product reaches value 1 when the in-

coming angle is at a perfect reflection configuration towards the outgoing

angle, and smoothly falls off towards zero elsewhere. The exponentiation

by α controls the sharpness of this falloff. Figure 2.7 illustrates the effect

of these parameters on a representative slice of the BRDF.

The model was very popular in early days of computer graphics. Visually

it has a somewhat plastic-like appearance. However, it is flawed as a

BRDF: it does not obey reciprocity, and only satisfies energy conservation

within certain combinations of parameters.

In general, energy conservation of a BRDF model can be enforced by

normalizing the specular lobe with the integral in Eq. 2.2 and requiring

that ρd+ρs ≤ 1 (this is also the reason for the factor 1/π in the diffuse com-

ponent). For some models, this normalization constant can be computed

analytically as a function of the model parameters.
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Microfacet models The lack of reciprocity of the Phong model is addressed

by the Blinn-Phong model [9]:

fBlinn(ωi, ωo; ρd, ρs, α) =
1

π
ρd + ρsmax(0,n · h)α (2.8)

Here, h = ωi+ωo

|ωi+ωo| is the halfway vector between the incoming and out-

going angles. This seemingly odd formulation stems from physically in-

spired considerations: while the Phong model is based on empirical rea-

soning and mathematical convenience, the Blinn-Phong model is a simple

instance of a physically-inspired idea known as microfacet theory.

As illustrated in Figure 1.3, a BRDF is a statistical representation of

scattering events occurring below a cut-off scale between the microscopic

and macroscopic worlds. Stochastically repeating surface structure that

is much smaller than the pixel pitch has no visible spatially varying ap-

pearance. Its effects manifest as angular variations only. The idea of

microfacet theory is to derive BRDF models based on this principle, with-

out having to explicitly model the specific microgeometry of the surface,

or simulate the full light transport within it.

The typical assumption, due to Cook and Torrance [25], is as follows. At

microscopic scale, the surface has a very simple BRDF: typically it is as-

sumed to be a mirror (i.e. a perfectly glossy surface, described by a Dirac

delta function BRDF), with a physically-based model F (ωi) that describes

the intensity of this reflection as a function of incidence angle (F denoting

Fresnel). However, the microscopic shape of the surface is rough. Specifi-

cally, it is a stationary height field, giving rise to a microfacet distribution

D(h) that describes the probability of each surface normal occurring. It

is parameterized by the halfway vector: given an incoming and outgo-

ing angle, whatever light is transmitted between them must have been

reflected from facets that are exactly at halfway between them (assum-

ing perfectly specular microfacets). Finally, a shadowing and masking

function G(ωi, ωo) encodes the self-shadowing and visibility effects. It is

derived from the microgeometry. The full BRDF model is then

fCook-Torrance(ωi, ωo) =
1

π
ρd + ρs

D(h)F (ωi)G(ωi, ωo)

4(ωi · n)(ωo · n) (2.9)

This formulation is general: the specifics and the parameters of the D,

F and G terms vary across models [25, 130, 4, 84, 14].

In this thesis, we generally use relatively simple models such as the

Blinn-Phong, and include the Fresnel effects via the Schlick approxima-

tion [114].
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Dimensionality of the BRDF space Matusik et al. [93] explored the under-

lying dimensionality of the BRDF space by using non-linear dimensional-

ity reduction techniques on a wide selection measured tabulated BRDFs.

The results indicate that isotropic real-world BRDFs lie on a roughly 10-

dimensional non-linear manifold. In other words, 10 real numbers should

suffice to uniquely describe any naturally occurring isotropic BRDF. This

is in line with the fact that most hand-engineered parametric models use

a comparable number of parameters. However, while the model itself is

potentially useful for e.g. navigation and editing in the BRDF space, it is

somewhat impractical for general rendering purposes.

2.3.3 Spatial variation

The BRDF models discussed in the previous subsection describe the angu-

lar variation of the reflectance only. Few real-world objects are covered by

a perfectly homogeneous BRDF. Rather, the BRDF typically varies across

the surface. Photographic examples of both cases can be seen in Fig-

ure 1.5. As seen, spatial variation is a critically important component of

visual realism — arguably, in many cases more so than the angular varia-

tion.

Generally, any BRDF representation can be extended to handle spatial

variation by simply introducing two new spatial dimensions. In the case

of tabulated BRDFs, this exacerbates the storage requirements of the al-

ready unwieldy representation. Parametric models offer a good balance

between expressiveness, computational cost and authoring effort. Indeed,

in practical visual effects work, most material authoring efforts are di-

rected towards so-called texture maps2 that describe the spatial variation

of the parameters of some chosen general-purpose BRDF model. This the-

sis is concerned with low-cost automatic capture of precisely this type of

data. Figure 1.6 shows an example of this type of an SVBRDF.

Normal maps In addition to variations of the BRDF, most surfaces also

exhibit geometric roughness which is spatially large-scale enough as to be

visible to the eye, but small-scale enough as to be inconvenient to model

as explicit geometry. This variation is very commonly modeled by a cheap

and effective approximation to actual geometry, using a normal map that

describes the orientation of the local surface normal at each point [10].

2Not to be confused with the property of texturedness in the sense of stationarity,
discussed later in this thesis.
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At render-time, the BRDF and the cosine in the rendering equation are

simply evaluated with the local coordinate system rotated accordingly;

no explicit tessellation is needed to create the appearance of the surface

bumps. The illusion breaks down with extreme height variations, as the

model cannot account for silhouette changes, self-shadowing and mask-

ing, or interreflections within the small-scale geometry. Nevertheless, the

model is successful for a wide range of materials. Each of the methods in

this thesis also captures a normal map of the surface. See the lower-right

map in Figure 1.6 for an example.

One technical requirement related to normal maps is integrability. Any

height field can be converted to a (tangent plane parameterized) normal

map by differentiating it along the x- and y-axes. Conversely, a normal

map may be considered plausible if there exists a height field that cor-

responds to it — this is not the case for most vector fields. This property

may be enforced without explicit formation of a height field by requiring

that the vector field have a vanishing curl.

Use in this thesis In summary, each publication in this thesis is con-

cerned with capturing parametric SVBRDF maps, which are essentially

multi-channel images in R
w×h×c, of width w, height h, and c parame-

ters per pixel. The parameters describe the diffuse and specular albe-

dos, glossiness, normal orientation and other model parameters for each

pixel. The publications vary in specific details, as each one uses a slightly

different BRDF model and parameterization.

While the capture real-world targets and the representation of the so-

lution are assumed to be planar, the maps can be used on arbitrary 3D

objects using standard computer graphics techniques such as UV map-

ping. These questions are largely orthogonal to our problem of capturing

the SVBRDF in the first place; we leave them outside our scope.

2.3.4 Generalizations

For completeness, let us briefly review some generalizations to (SV)BRDFs.

While many techniques in literature focus on capturing these representa-

tions, they are beyond the scope of the publications in this thesis.

The framework reviewed above can also handle refractions in addition

to reflections. The BRDF, defined on the upper hemisphere, can be gener-

alized to the full sphere, giving rise to the BSDF or bidirectional scattering

distribution function.
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Strong three-dimensional surface shape variations and translucency may

cause visible self-shadowing, interreflections, masking and long-range sub-

surface scattering effects, which are not well modelled by the combination

of low-resolution geometry and BRDF and normal variations.

Bidirectional Texture Functions (BTFs) [27] use the same six-dimensional

spatial and angular parameterization as SVBRDFs. However, instead of

assigning an independent BRDF to each surface point, an entire patch

of the material is lit and photographed from a large number of of angles

(often using a spatial gonioreflectometer). At render-time, the patch with

the appropriate viewing and lighting angles is placed on the surface. This

enables non-local effects such as self-shadowing and masking to become

“baked” into the representation. The representation can give highly re-

alistic results for difficult materials. However, BTFs generally require

a tabulated representations, and they are much more difficult to author

than SVBRDFs. Consequently, they find much less use in practice.

BSSRDF [69] generalizes the BRDF to non-local subsurface scattering

by adding extra spatial dimensions that describe the scattering to distant

surface locations. This effect is particularly important for human skin,

which appears unnaturally hard when rendered with a BRDF.

Considering the radiance in free space, aggregate light transport ef-

fects in scenes are sometimes encoded and captured in e.g. reflectance

fields [30].
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3. Mathematical preliminaries

In this chapter, we review key ideas from inverse problems, optimization

and other mathematical tools employed in the methods of this thesis. The

treatment is not comprehensive, and we assume the reader is generally

familiar with the subject matter; the focus is on the topics relevant to our

viewpoint.

3.1 Reflectance capture as an inverse problem

The formulas introduced in the previous chapter also govern light trans-

port in the real world, assuming that the models of geometric optics and

surface reflection hold. The general strategy in appearance capture is

to arrange the physical sample, sensors and lights in a controlled setup

which can be analyzed under this framework. In many cases, the quan-

tities of interest cannot be directly read off the measurements; rather,

involved mathematical techniques must be used to estimate them. In

this section, we review a general mathematical framework for this pur-

pose [121].

One can generally view the problem of recovering unknown scene infor-

mation from indirect observations as an inverse problem. In this view-

point, the model of light transport describes a forward model F that can

be used to predict an image y, given the scene parameters x. Conceptually,

rendering an image of a known scene means simply evaluating y = F (x).

The forward model is the predictive model discussed in Section 1.3

An inverse problem turns this problem on its head: given an observation

(or measurement) y, for example a photo, an inverse problem asks what

are the unknown parameters x that explain it, assuming that y = F (x).

In other words, we are looking to solve the equation y = F (x) with respect

to x instead of y.
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More generally, we typically have K observations yi. The scene parame-

ters can be divided into two categories: the unknown parameters x ∈ R
L,

and auxiliary parameters qi which we control during the measurement

process to obtain a variety of different measurements. We then seek a

solution x for the system of equations⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F (x; q1) = y1

F (x; q2) = y2

F (x; q3) = y3

...

F (x; qK) = yK

(3.1)

Concretely, x might be a vector of unknown SVBRDF parameters, yi

might be observed intensities of pixels in various photographs (one for

each pixel, potentially totaling millions of observations), and qi might de-

scribe the light and camera position used in each measurement.

Overdetermined and underdetermined problems Solving the inverse prob-

lem is typically a much more difficult task than the (relatively) straight-

forward evaluation of the corresponding forward model. While the for-

ward operator F may also be difficult to evaluate in practice (for example,

it might represent a full Monte Carlo light transport simulation), it is

nevertheless a unique and well-defined procedure. In contrast, there is

no universal way of obtaining an inverse solution given a forward opera-

tor. Indeed, an exact solution often does not even exist: when there are

more measurements than unknowns in Eq. 3.1 (i.e. it is overdetermined),

there is generally no x that satisfies each of the equations simultaneously.

Instead, one typically seeks a solution that satisfies Eq. 3.1 as closely as

possible, according to some error metric:

argmin
x

‖F (x; q1)− y1‖+ ‖F (x; q2)− y2‖+ ...+ ‖F (x; qK)− yK‖ (3.2)

When there are fewer observations than unknowns, the problem is un-

derdetermined. This leads to another difficulty: Eq. 3.1 can often be sat-

isfied exactly by an infinite number of different solutions. Typically the

vast majority of them are mathematical artifacts instead of meaningful

solutions to the underlying real-world problem. This type of a problem

is ill-posed. To eliminate these excessive degrees of freedom, one typi-

cally introduces extra constraints, such as favoring the solution with the

smallest norm. These “tie-breakers” can be interpreted as specifications

of a priori beliefs, or priors, about the properties of favorable solutions.
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Ill-conditioned problems and regularization Complex real-world problems

often have characteristics of both: it is easy to collect an overdetermined

number of measurements, but they might nevertheless be uninformative

or ambiguous about some of the unknowns. For example, to uniquely

identify shininess properties of a piece of surface, it must be observed

in a suitable lighting angle as to cause a specular highlight (or a lack

thereof). If measurement under such conditions is not provided, a solu-

tion to Eq. 3.2 may choose arbitrary values for the related parameters, as

they have no effect on the error. In these cases the solution is sometimes

extremely sensitive to distortions in the measurements: meaningless fea-

tures in the data, such as noise, can often be reproduced by setting the

“underdetermined” variables to extremely unnatural values. In this case

the problem is said to be ill-conditioned.

Again, when the data contains insufficient information about the un-

derlying reality, priors can be used to regularize the problem by explicitly

specifying desirable properties a solution should have. The typical proce-

dure involves simply adding a terms onto Eq. 3.2, with the aim of penal-

izing undesirable values of the unknowns independently of the data:

argmin
x

∑
i

‖F (x; qi)− yi‖+ P (x) (3.3)

For example, we might use a prior to penalize very large values of the un-

knowns, hence discouraging the solution from overfitting to noise. How-

ever, careful balancing is required: exceedingly strong priors tend to bias

the solution, overriding subtle features present in the data. Ideally the

priors should let the data decide when it is unambigous, but step in where

the data is insufficient. We will discuss priors in more depth in Sec-

tion 3.1.5.

Solving inverse problems The practical means for solving an inverse prob-

lem depend on its mathematical characteristics. Many interesting phe-

nomena are modeled by functions that possess significant structure, which

can be exploited by applying techniques aimed towards restricted classes

of problems. In particular, many problems are linear or can be closely

approximated as such. In this case a meaningful inverse problem often

reduces to a matrix-vector equation that can be solved by standard tools

in numerical linear algebra.

However, this is not always the case. A general methodology for solv-

ing inverse problems is optimization, where an initial guess of a solution

is iteratively improved in a principled manner. These methods are dis-
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cussed in more detail in Section 3.2. We briefly note an additional layer of

difficulty introduced by optimization: in many cases the globally optimal

solution to the inverse problem is difficult to find, as an optimizer may

become stuck into locally optimal solutions that cannot be improved by

any small changes. The existence of these spurious minima is a property

of the objective function, and should be considered in the design of the

problem.

3.1.1 An example

Let us sketch a concrete example of a canonical inverse problem in ma-

terial appearance capture. Let us assume that we have photographed a

material from multiple distant viewing angles under distant point light

illumination, as shown in Figure 1.7. This sort of data might be acquired

for example by using a spatial gonioreflectometer [96, 27]. We have per-

formed thorough calibration, and know the viewing and lighting angles

γj and δj , and the irradiances Rj of the light precisely for each of the J

photographs indexed by j. Denote by yj ∈ R
I a vectorized representa-

tion of the input photograph consisting of I = width×height observations

(assuming monochromatic measurements for simplicity of exposition).

We also assume that we have rectified the input photographs into a com-

mon coordinate system by undoing any perspective distortions, as shown

in Figure 3.1. Hence, the same pixel corresponds to the same surface point

in each photo, and consequently, the same BRDF and surface normal.

We are looking to fit an SVBRDF using the Blinn-Phong BRDF model

(Section 2.3.2) with normal variation to this data. The SVBRDF is de-

scribed by a vector x ∈ R
I×6, where the 6 parameters per pixel correspond

to the diffuse albedo ρd ∈ R, specular albedo ρs ∈ R, the glossiness α ∈ R,

and the normal orientation n ∈ R
3 of each pixel. In other words, the goal

is to solve for a set of parameter maps as in Figure 1.6.

Using the equation for reflections from point lights (Eq. 2.5) and the

formula for the Blinn-Phong model (Eq. 2.8), we arrive at a forward model

where each pixel is rendered using the formula:

f(ρd, ρs, α, n; γ, δ, R) = Rmax(0, n · δ)
[
ρd + ρsmax

(
0, n · γ + δ

|γ + δ|
)α]

(3.4)

The full forward model F (x; γ, δ, R) : R
I×6 �→ R

I simply evaluates this

model at every pixel using the local values of the variables. In other

words, it renders the SVBRDF into an image under the specified light-

ing and viewing conditions.
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Figure 3.1. Examples of images yj from the rectified input data. The perspective distor-
tions in the input photographs (Figure 1.7) have been cancelled by a homog-
raphy transformation [58] using known (calibrated) information about the
geometric configuration of the camera and object. Each pixel now represents
a fixed point on the surface across the set of the rectified images. Each image
is associated with a viewing angle γj and a lighting angle δj .

The inverse problem, then, might be:

argmin
x

∑
j

‖yj − F (x; γj , δj , Rj)‖22 (3.5)

In other words, we are looking to find an SVBRDF F that, when rendered,

reproduces the input photographs as accurately as possible, as measured

by the pointwise squared difference of pixel values. We might also add a

smoothness prior, for example:

argmin
x

∑
j

‖yj − F (x; γj , δj , Rj)‖22 + λ‖∇x‖22 (3.6)

Here, ∇ : RI×6 �→ R
2I×6 is a linear operator that evaluates finite differ-

ences of the parameter maps along x- and y-directions. λ is a weighting

that determines the relative importance of the data fit and the prior. The

idea is to penalize differences between the values of the neighboring pix-

els. This discourages spurious oscillations and abrupt jumps in the solu-

tion maps.

In practice, we would also need some mechanism for constraining the

surface normal n to be a unit vector. One possibility is to express it in a

tangent-plane parameterization ñ ∈ R
2, from which the unit vector can

be recovered when needed as n = [ñx, ñy, 1]
T/(ñ2

x + ñ2
y + 1). Any choice of

values for ñ will then result in a valid unit vector.

We might also introduce a prior to penalize the curl of this vector field

in order to enforce the integrability of the normal map (this approach is
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used in Publications I and II). Alternatively, we may internally represent

the entire normal map as a height field, and differentiate it to obtain a

tangent-plane parameterized normal map that is by definition integrable.

This approach is used in Publication III.

3.1.2 Probabilistic viewpoint

Besides the forward model, the typical specification of an inverse problem

also includes the error metric to be used in Eq. 3.2, and as briefly alluded,

the specification of prior beliefs. Thus far, we have justified the formu-

las heuristically, as “penalizing” the solution according to how much its

predictions differ from the observations, or from preferred values. This

viewpoint gives little insight into the justification, meaning and practical

consequences of different choices.

Principled probabilistic considerations shed some light into these issues.

The sum of independent measurement-wise deviations in Eq. 3.2 is typi-

cal; we will see that it naturally arises from a Maximum Likelihood esti-

mation perspective. Augmenting this framework with Bayesian consider-

ations, we arrive at Maximum A Posteriori estimation, which proposes a

natural justification for specifying additional prior terms. [59, 87, 121, 8]

3.1.3 Maximum likelihood estimation

Consider the problem in Eq. 3.1. Let us assume that the forward model

F and the parameters qi perfectly model the physical reality in which the

measurements were made. Let x∗ denote the true values of the unknown

parameters x we are seeking to recover. Further, let y∗i := F (x∗; qi) be the

values of the measurements predicted by this model, assuming perfect

knowledge.

Assume now that the measurements yi we possess are corrupted by

noise: yi = y∗i + ni, where ni are mutually independent random vari-

ables with known distributions. In particular, let us for now assume that

ni ∼ N (·; 0, σ2), i.e. each observation is corrupted by a zero-mean Gaus-

sian random variate of known standard deviation σ.

Given these assumptions, the joint probability density of the observa-
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tions y, given the variables x, is

p(y|x) = N (y|y∗, σ2I) (3.7)

=
∏
i

N (yi|y∗i , σ2) (3.8)

=
∏
i

N (yi|F (x, qi), σ
2) (3.9)

= C
∏
i

exp

{
−(yi − F (x, qi))

2

2σ2

}
(3.10)

= C exp

{
− 1

2σ2

∑
i

(yi − F (x, qi))
2

}
(3.11)

where C is a normalization constant that only depends on σ.

The probability density is a function of the observations y, given the

unknowns x. We can also take an alternative perspective without chang-

ing anything about the function itself. Interpreted as a function of the

parameters x, given the observations y, the function is called likelihood.

This appears to be useful, as it is the observations y that are known to us.

Indeed, maximum likelihood estimation is a commonly used method for

finding the most likely x to explain y. It simply calls for finding an xML

for which the likelihood is maximized:

xML = argmax
x

p(y|x) (3.12)

= argmax
x

C exp

{
− 1

2σ2

∑
i

(yi − F (x, qi))
2

}
(3.13)

Clearly, the maximizer is not affected by the constant factor C; hence it

may be dropped. Similarly, the maximizer remains the same when the op-

timized function is mapped by a pointwise strictly monotonous function —

specifically, the logarithm:

xML = argmax
x

C exp

{
− 1

2σ2

∑
i

(yi − F (x, qi))
2

}
(3.14)

= argmax
x

log exp

{
− 1

2σ2

∑
i

(yi − F (x, qi))
2

}
(3.15)

= argmax
x

− 1

2σ2

∑
i

(yi − F (x, qi))
2 (3.16)

= argmin
x

1

2σ2

∑
i

(yi − F (x, qi))
2 (3.17)

(3.18)

Observe that this final expression (often referred to as the negative log-

likelihood) is of the form of Eq. 3.2; the above derivation explicitly identi-

fies the underlying assumptions. While the initial assumptions are often
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not exactly met in realistic settings, the probabilistic viewpoint does of-

ten offer a useful guideline in designing inverse problems. Other types of

minimization tasks can also be derived from different assumptions — for

example, weightings according to estimated reliability can be introduced

in a principled manner by using a different noise variance for each mea-

surement.

Error metrics Of specific interest is the emergence of the squared differ-

ence metric. It is inherited from the quadratic term inside the exponential

in the density function of the normal distribution. Not coincidentally, min-

imization problems involving squared deviations enjoy a variety of special

mathematical properties, making these problems generally easier to solve

than those involving other metrics.

Certain alternative metrics enjoy some interesting properties, at the ex-

pense of more difficult optimization problems. In particular, squared error

is known to be sensitive to outliers in data: a large corruption in a single

data point can throw the entire solution off, as the squaring unduly mag-

nifies their importance. A popular and effective remedy for this is the use

of (non-squared) absolute value of the difference (the �1-metric). Indeed,

this metric also enjoys surprising properties and applications related to

robust estimation and the notion of sparsity [110, 37, 36, 19]. Working

backwards from the result of above derivations, we can interpret the use

of this metric as an implicit assumption that the errors are Laplace dis-

tributed, as this distribution has a density function of shape exp(−|x|).
In Publications I and II we make use of a smoothed (i.e. differentiable)

version of the �1 error metric, called the Huber loss [67].

3.1.4 Bayesian viewpoint

Viewing the parameter recovery problem from a Bayesian perspective,

and leaving the associated philosophical implications out of our scope, we

recover what is in practice an extension of the Maximum Likelihood esti-

mation framework. Let us briefly review the underlying ideas. Figure 3.2

shows a visual example of the procedure.

The Bayesian viewpoint is based on quantifying uncertainty about the

state of the world. Let p(x, y) be a joint probability density over all possi-

ble values of the unknown parameters x and the measurements y. From

the standpoint of p, there is nothing special about either group of vari-

ables. We make a distinction between them to highlight the assumed
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Figure 3.2. An example of Bayesian inference for one unknown variable x and one obser-
vation y. We specify the prior P (x) that describes our a priori beliefs about
the probabilities of the values of the unknown variables, and the conditionals
P (y|x) that for each possible value of x describe how the measurements are
distributed (i.e. the mapping from the unknowns to the observations, plus
the measurement noise; this is analogous to the likelihood function). Here,
we show an example of a conditional at x = 1.34. Together, these distribu-
tions define the joint probability distribution P (x, y). Notice how the prior
is simply the joint probability density marginalized (integrated) over y, and
the likelihoods are (normalized) vertical slices of this density. Let us now as-
sume that we perform a measurement, and observe the value y = 1.87. The
posterior distribution is the conditional P (x|y = 1.87), and corresponds to an
individual horizontal line in the joint probability density. It is visualized on
the right. We find that this (multimodal) density peaks at x = 2.28: this is
the Maximum A Posteriori estimate xMAP.

causal structure (i.e. x having some underlying values, and subsequently

giving rise to y). The Bayesian approach is to implicitly construct p assum-

ing this causality and supplying the relevant probability distributions.

The marginal p(x) =
∫
p(x, y)dy is of special interest: it is the probability

of the unknowns having a given values, when nothing is known about

y. In the Bayesian interpretation, this marginal is known as the prior

distribution of the unknowns — as in, prior to any measurements. The

Bayesian approach calls for explicit specification of p(x) (without explicitly

specifying the integrand in the marginal); it encodes our a priori beliefs

about the plausible values of x.

The main object of interest is the conditional probability distribution

p(x|y) of the unknowns, once particular values of the measurements have

been made. The measurements are seen as narrowing down our uncer-

tainty. This distribution is known as the posterior distribution: the state

of our knowledge, post-measurement. From basic laws of probability, we
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have

p(x|y) = p(x, y)

p(y)
(3.19)

Multiplying by p(y) and applying the resulting formula in two different

ways, we find:

p(x|y)p(y) = p(x, y) = p(y|x)p(x) (3.20)

Rearranging, we arrive at the Bayes’ rule for computing the posterior:

p(x|y) = p(y|x)p(x)
p(y)

(3.21)

Here, p(x) is the prior distribution discussed above, and p(y|x) can be in-

terpreted as describing the distribution of observations, given the values

of the unknowns. Notice that this is precisely the same function as in

Maximum Likelihood estimation. This distribution, too, must be speci-

fied. p(y) also has a specific, less commonly used interpretation; we leave

it outside our scope, as we find below that it vanishes in practical compu-

tations of our interest.

Maximum a posteriori estimation Despite of thoroughly encoding our state

of knowledge about the world (assuming a model encoded by p(x) and

p(y|x)), the full posterior distribution is often difficult to interpret in mean-

ingful ways. Maximum a posteriori estimation calls for finding the value

of x that maximizes the posterior distribution, hence being the “most prob-

able” explanation in some sense:

xMAP = argmax
x

p(y|x)p(x)
p(y)

(3.22)

In finding this minimum, we may apply the same trick as in ML estima-

tion: the constant (with respect to x) factor 1
p(y) may be dropped, and the

expression is transformed by the negative logarithm.

xMAP = argmin
x

− log p(y|x)− log p(x) (3.23)

Observe that this minimization task is precisely the same as in ML esti-

mation, but with an added prior term − log[p(x)]. ML estimation can be

seen as MAP estimation with a perfectly uninformative prior: in this case

the prior term becomes constant and may be dropped from the minimiza-

tion.

In particular, with the same assumptions for p(y|x) as in Section 3.1.3,

and p(x) taken as a normal distribution with mean μp and covariance Σp,

we find

xMAP = argmin
x

1

2σ2

∑
i

(yi − F (x, qi))
2 +

1

2
(x− μp)

TΣ−1
p (x− μp) (3.24)
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In summary, MAP estimation justifies the addition of data-independent

penalty terms in Eq. 3.3. While the publications in this thesis generally

state the prior terms without explicit reference to their probabilistic in-

terpretations, the viewpoint provides valuable insights and guidance for

design decisions.

3.1.5 Priors

Publications I and II make use of two types of priors in particular: point-

wise specifications of plausible ranges of values, and smoothness constraints

that bind the solutions at neighboring points together. Publication III in-

troduces a special type of a prior that enforces stationarity of image statis-

tics, which is to our knowledge novel. We discuss this prior in more detail

in Section 6.3.3.

Pointwise priors We often have a some idea about what kind of values

the solution variables should take. Even a very loose preference is often

useful to specify, as highly ill-conditioned problems may lead to solutions

with numerical values several orders of magnitude outside any reason-

able range.

For example, the surface normals in typical surfaces we capture should

vary within a few dozen degrees. Hence, it makes sense to favor sur-

face normals with the x- and y-components close to zero. However, if

the data overwhelmingly supports an extreme normal deviation, it should

be allowed. This type of behavior is often sufficiently well enforced by a

quadratic prior term, i.e. an assumption that the values are normally dis-

tributed with some specified mean and variance. Sometimes other norms,

such as absolute difference, or a Huber norm, might be favored instead.

Smoothness priors Most real-world signals with a natural spatial ar-

rangement (such as a pixel grid) exhibit continuity: neighboring values

are not fully independent from each other. For example, a pixel in a nat-

ural image is highly likely to have a similar value with its neighbor. This

also applies to parametric SVBRDF maps, which are the main object of

interest in this thesis.

It often makes sense to explicitly enforce this behavior by priors when

solving ill-conditioned estimation problems concerning image-like data.

Solving the unknown parameters independently at each pixel may re-

sult in noise, as the rapidly varying measurement noise becomes am-

plified. Furthermore, extreme noise or structured spatial artifacts may
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occur when the solution is not unique: neighboring pixels may randomly

choose completely different but apparently equally good solutions. In our

SVBRDF recovery problems, this sort of an ambiguity is particularly ev-

ident in the diffuse-specular separation, as the observed data can some-

times be explained by either component.

Priors explicitly favoring similar values for neighboring pixels signifi-

cantly help with these problems by enabling a rough form of information

sharing within neighborhoods: nearby pixels must jointly negotiate a so-

lution that satisfies both their individual data and prior constraints, as

well as the requirement of spatial consistency.

A basic smoothness prior is obtained by assuming a joint normal distri-

bution between the neighboring variables. This is implemented by intro-

ducing two prior terms of the form of Eq. 3.24, with Σp = Dx and Σp = Dy,

respectively, and μp = 0. Here, Dx and Dy are finite difference matrices.

This encodes a preference that the difference between two neighboring

pixels should be close to zero. The example presented in Section 3.1.1

used a prior of this kind.

Unsurprisingly, excessively strong smoothness priors lead to excessively

blurry solutions lacking fine spatial detail. Natural images are in fact

poorly modeled by the assumption of normally distributed neighbor dif-

ferences, i.e. the quadratic norm. They are characterized by smooth re-

gions interspersed with abrupt edges. The quadratic difference imposes a

very large penalty on discontinuities, and strongly discourages their for-

mation. A better model is obtained by the use of absolute �1 differences

(or the smoothed version, Huber loss), which retain some mathematically

convenient properties of the quadratic norm (in particular convexity) but

do not incur the amplified penalty on large differences [110, 19].

Interpretation According to the probabilistic interpretation, priors such

as above can be seen as defining a probability distribution over SVBRDFs.

The pointwise priors alone assume independence between pixels: hence,

they implicitly encode a “belief” that the space of plausible materials is

the space of white noises of certain expectation and variance. While rea-

sonable SVBRDFs fit this description in a statistical sense, the assump-

tion is not very restrictive. The smoothness prior with a squared norm

adds dependencies between neighbors (and by transitivity, global depen-

dencies). The space of SVBRDFs assumed by this prior is that of Brow-

nian noise, i.e. a generalized random walk. While more reasonable than

white noise, this model is still very loose, and as discussed, does not con-
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tain signals with sharp edges.

While often very useful, these priors are nevertheless very coarse char-

acterizations of the space of naturally occurring SVBRDFs. They only

manage to rule out the most grossly implausible solutions. While more

advanced priors have been presented in literature — for instance, Bar-

ron and Malik [5] manage to recover surprisingly plausible geometry and

reflectance data from a single photograph using a strongly prior-driven

model — the problem is far from solved. We alluded to this issue in the

introductory section, and we will discuss it further in the conclusions.

3.2 Optimization

Numerical optimization is a widely used methodology for solving inverse

problems. Optimization algorithms aim to find minima of scalar-valued

functions by starting from an initial guess, and iteratively improving the

solution. The function is seen as a black box that can be queried at in-

dividual points for its value and derivatives. More concretely, they solve

problems of type

argmin
x

F (x) (3.25)

by producing a sequence of improved iterates x1, x2, ..., until further progress

cannot be made. The scalar-valued function F : RL �→ R is called the ob-

jective or loss function. It typically measures the “badness” of the solu-

tion: high values indicate significant deviation from the data or the prior

assumptions.

Notice that the typical inverse problem in Eq. 3.2 is precisely of this

form. In restricted cases a solution can be obtained by more direct means —

for example, if the minimization task reduces to a linear least squares

problem, it may be solved using a set of standard tools in linear alge-

bra [121, 53]. 1 However, problems involving complicated non-linear func-

tions, such as parametric BRDF models, rarely yield to such approaches

without significant simplifying assumptions and a corresponding reduc-

tion in solution quality.

The methods introduced in this thesis make heavy use of optimization.

We will briefly review some particularly relevant algorithms and their

common background. A thorough discussion of these and many other op-

1Internally, many linear algebra solvers also perform optimization in a special
context. However, the problem types and solution methods are highly standard-
ized and well understood.
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Figure 3.3. Progress of gradient descent optimization in a function of two variables, vi-
sualized as a contour plot. The initial guess is [−0.3,−0.7]. From there, the
optimization proceeds by stepping along the direction of the gradient at the
current iterate. Notice that the gradients are always perpendicular to the
contour lines of the function. In an elongated valley, they rarely point to-
wards the minimum, which leads to slow zig-zag convergence.

timization methods is presented by Nocedal and Wright [101].

3.2.1 Gradient descent

Most commonly used optimization strategies are based on using deriva-

tive information. The idea is natural: to find the bottom of a valley sur-

rounded by hills, it makes sense to always walk towards a descent direc-

tion. The direction of the steepest descent is given by the gradient of the

height field (i.e. the objective function). This suggests the gradient de-

scent algorithm, where an initial guess x0 and a differentiable objective

function F are supplied, and the iterates are given sequentially by

xt+1 = xt − γ∇F (xt). (3.26)

γ is a step length, which must be small enough to ensure that the step

results in an actual reduction in the objective function, but large enough

to give meaningful progress. In practice, one often needs to use adaptive

step length choice with back-tracking line search. The sequence then has

the property that the values F (xt) decrease monotonically with t. The

iteration is terminated once the improvements become insignificant, by

some specified threshold.
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3.2.2 Second-order methods

Gradient descent is inefficient. Somewhat unintuitively at first glance, de-

scending along the steepest direction usually does not lead to the shortest

path to the bottom of a valley. This is clearly seen in Figure 3.3. Second-

order methods use second-order partial derivatives of the objective func-

tion to determine improved step directions.

Gradient descent as a first-order method. Let us first view gradient de-

scent in this context. Gradient descent can be seen as a procedure where

the objective function is replaced by its first-order approximation at the

current iterate p := xt, which is then minimized. The idea is that mini-

mizing this surrogate function is easier than minimizing the original. We

start from the full Taylor expansion of the objective function:

F (x) = F (p) +∇F (p)T(x− p) +
1

2
(x− p)T∇2F (p)(x− p) + ... (3.27)

Here, ∇2F (p) ∈ R
L×L is the symmetric Hessian matrix of second-order

partial derivatives of F at p. We obtain the first-order approximation by

dropping the higher-order terms:

F̃ (x) = F (p) +∇F (p)T(x− p) (3.28)

Minimizing this raw surrogate function with respect to x is fruitless, how-

ever: no minimum exists as the function obtains arbitrarily large negative

values along the direction −∇F (p). The magnitude of the jump can be con-

trolled by introducing a trust region around p, for example via a quadratic

form:
˜̃F (x) = F (p) +∇F (p)T(x− p) +

1

2γ
(x− p)T(x− p) (3.29)

The idea is that the extra term “penalizes” the approximation at far-away

distances from p (as controlled by the scaling parameter γ). The term

becomes insignificant near p, where F̃ is believed to be an accurate ap-

proximation to F . Minimizing this function with respect to x by finding

the critical point (which is necessarily a minimum) yields the gradient

descent step in Eq. 3.26.

Newton’s method. Second-order methods are based on the same reason-

ing, with the exception that also the second-order term in Eq. 3.27 is re-

tained:

F̂ (x) = F (p) +∇F (p)T(x− p) +
1

2
(x− p)T∇2F (p)(x− p) (3.30)
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Figure 3.4. Visualization of the progress of Newton’s method. Notice the significantly
improved step directions compared to gradient descent (Figure 3.3).

Jumping to the critical point of this second-order surrogate function yields

Newton’s method (denoting xt := p):

xt+1 = xt − (∇2F (xt))
−1∇F (xt) (3.31)

If the Hessian matrix is positive definite, this critical point is the bottom

of a “bowl” defined by the quadratic form. Otherwise the step is meaning-

less. Furthermore, like in gradient descent, excessively long steps may

result in increase of the objective value. This problem can similarly be

solved by using a quadratic trust region with an adaptive size. With

a large enough weight, it is guaranteed to raise the eigenvalues of the

quadratic form enough as to make it positive definite. We will review

this approach in more detail below. Figure 3.4 shows an example of the

convergence of Newton’s method; notice the significant improvement over

gradient descent.

Gauss-Newton and Levenberg-Marquardt methods. Least-squares optimiza-

tion problems are characterized by an objective function that is a sum of

squared residuals provided by a function r : RL �→ R
K :

F (x) =
1

2

[
r1(x)

2 + r2(x)
2 + ...+ rN (x)2

]
(3.32)

=
1

2
‖r(x)‖22 (3.33)

=
1

2
r(x)Tr(x) (3.34)
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Many interesting problems fall into this category: for example, Eq. 3.2 is a

least-squares problem when the error metric is the squared �2-norm ‖ · ‖22.
As discussed in Section 3.1.2, this metric arises naturally in the maximum

likelihood and maximum a posteriori estimation when it is assumed that

the measurement noise is normally distributed. Similarly, Bayesian prior

beliefs expressed as normal distributions result in squared terms.

Functions with this structure admit to a highly useful approximation to

their Hessian matrices. Let J(x) ∈ R
K×L denote the full Jacobian ma-

trix of the function r at x. Then, ∇2F (x) ≈ J(x)TJ(x), and ∇F (x) =

J(x)Tr(x). This approximation becomes increasingly accurate as x ap-

proaches a minimum with the value 0 (which is not always the case; nev-

ertheless, the approximation is often efficient). Computing the Jacobian

is often significantly much easier than computing the Hessian. Using

this matrix in place of the Hessian in Newton’s method yields the Gauss-

Newton method:

xt+1 = xt − (J(xt)
TJ(xt))

−1(J(xt)
Tr(xt)) (3.35)

There is no guarantee that this step results in a reduced objective value.

Adding a soft quadratic trust region of weight λ as in Eq. 3.29 and rear-

ranging, we arrive at the Levenberg-Marquardt step:

xt+1 = xt − (J(xt)
TJ(xt) + λI)−1(J(xt)

Tr(xt)) (3.36)

A refinement of this approach uses a trust region scaled according to the

matrix diagonal D := diag JTJ to roughly compensate for the magnitude

of variation of the variables:

xt+1 = xt − (J(xt)
TJ(xt) + λD(xt))

−1(J(xt)
Tr(xt)) (3.37)

The trust region size parameter λ is adaptively adjusted according to the

optimization progress: it is increased whenever a step fails to reduce the

objective value, and decreased when a step succeeds. The step is guaran-

teed to succeed for high enough values of λ, unless the current iterate is

already a local minimum. This approach has proven very successful for a

wide range of problems; we use it in Publications I and II.

Structure of the Hessian The quadratic problem H−1g in second-order

methods is typically solved directly by Cholesky decomposition, or by pre-

conditioned Conjugate Gradient method [53]. The structure of the Hes-

sian (or JTJ) determines how difficult this sub-problem is. Because the
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number of entries in these matrices is quadratic with respect to the num-

ber of variables in the problem, the matrix must in practice be sparse for

large-scale problems. Because any direct interaction between two vari-

ables (i.e. occurrence in the same equation) creates an entry to the corre-

sponding position in the Hessian, sparse connectivity should be preferred.

Fortunately, a wide range of problems relating to 2D image topologies are

of this type: often the equations concern local variables at pixels, or re-

lations between neighboring pixels. The former induces a sparse block

diagonal structure on the Hessian, and the latter a sparse set of “bands”.

Sparse matrices often contain only a few non-zero elements per row, de-

spite having dimensions in the millions. Many linear algebra software

packages and libraries provide support for construction, storage and com-

putations with sparse matrices.

Quasi-Newton methods In many problems, the computation of a full Hes-

sian matrix, or even the JTJ approximation (when applicable), is practi-

cally impossible due to memory and performance constraints. In high-

dimensional problems with dense variable interactions, the number of

nonzero entries in these matrices might be orders of magnitude larger

than the amount of available memory. It is common to fall back to first-

order methods such as gradient descent in such cases. However, a hybrid

approach has proven effective for many problems: quasi-Newton methods

accumulate first-order gradient information to compute estimates of the

(inverse) Hessian. The per-iteration input to these methods at each step

is the same as in gradient descent. Quasi-Newton methods often achieve

a similar asymptotic convergence rate as the regular Newton methods.

Publication III takes advantage of the L-BFGS method [102] to drive

an extremely complex and unstructured optimization task. The method

is based on carefully chosen low-rank updates to an estimate of the in-

verse Hessian. Furthermore, the application of the Hessian is based on

stored gradients from previous steps, and the matrix is never formed ex-

plicitly. An example of the convergence of the L-BFGS method is shown

in Figure 3.5.

3.2.3 Convexity

A fundamental property of gradient-based methods is that they only con-

verge to a local minimum of the objective function — that is, the bottom

of some valley, not necessarily the deepest one (the global minimum). The
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Figure 3.5. L-BFGS method often retains much of the favorable convergence behavior of
Newton’s method (Figure 3.4), but only uses the same first-order gradient
information as the gradient descent method (Figure 3.3).

basin into which the solution falls is largely determined by the initial

guess. It is sometimes also affected in unpredictable ways by the finite-

length steps, as the iterates may inadvertently jump over a ridge of higher

objective values.

There is, however, a wide and useful class of scalar-valued functions for

which gradient descent based methods are guaranteed to find a global

minimum. Convex functions are characterized by the property that con-

necting any two points on the (possibly high-dimensional) graph of a func-

tion by a line segment, it always lies at or above the graph:

∀x1, x2, ∀θ ∈ [0, 1] : θF (x1) + (1− θ)F (x2) ≥ F (θx1 + (1− θ)x2). (3.38)

For a twice differentiable function, this is equivalent to the condition that

the Hessian matrix of the function is nonnegative definite at every point.

Intuitively, a convex function always “curves upwards”. Any local mini-

mum of a convex function is necessarily also the global minimum. Hence,

a local optimizer cannot get stuck in a sub-optimal minimum. Due to this

property, convex functions are often considered to be the class of “easy”

problems: finding a good solution is guaranteed, and often an efficient

special solver algorithm is available. Various interesting and surprisingly

non-trivial problems can be formulated and effectively solved as convex

optimization tasks. [11]
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Figure 3.6. A non-convex function of two variables, visualized with surface and contour
plots. Notice that the region above the graph of the function (the epigraph)
is not a convex set; this is the origin of the name. The function has two local
minima. The minimum on the left has the smaller value: it is the global
minimum. Gradient-based optimization may converge to either minimum
depending on the initial guess. An optimization task was started from each of
the initial guesses marked by blue dots. The red lines indicate the minimum
to which each of the tasks converged. Notice how a significant portion of the
optimizations converged to the sub-optimal local minimum on the right.

Our interest in convexity is mainly negative: problems related to inter-

pretation of appearance measurements are often non-convex. In particu-

lar, parametric BRDF models are generally not convex functions. Related

optimization tasks tend to inherit this property. Figure 3.6 illustrates a

non-convex function, and the behavior of gradient-based optimization in

presence of multiple local minima. Designing the measurements and the

objective functions in a way that admits to reliable optimization is a sig-

nificant challenge.

3.2.4 Preconditioning

Preconditioning is a process of transforming a numerical problem into a

form that is easier to solve, without changing the expected solution itself.

It is often done by transforming the space that the unknown variables are

presented in. [53, 121]

For a simple example, consider again the poor gradient descent steps

shown in Figure 3.3. If we were to possess an estimate of how the ob-

jective function is elongated — say, we had an estimate about the axes

and the amount of the elongation — we could form a linear transforma-

tion P ∈ R
2×2 that approximates this stretch. Transforming the space

by the inverse of P brings the objective function into a roughly isotropic
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Figure 3.7. The original and the preconditioned version of the function in Figure 3.3,
and the progress of gradient descent optimization in both. The function on
the right is a diagonally squeezed version of the function on the left. Re-
call that the gradients of a function are always perpendicular to the contour
lines. Intuitively, the goal of this operation is to make the contour lines more
isotropic, so that they more readily point towards the minimum. This signif-
icantly improves the convergence behavior of the gradient descent method.

shape. Gradient descent steps in this transformed function point more

directly towards the minimum, leading to rapid convergence, as shown in

Figure 3.7. Hence, instead of solving the problem argmin
x

F (x), we solve

argmin
x̃

F (P (x̃)), and once converged, recover the un-preconditioned solu-

tion by x = P (x̃).

Many linear algebra algorithms take advantage of similar ideas. In par-

ticular, preconditioned Conjugate Gradient method, used to solve linear

systems of equations Ax = b (for positive-definite A), uses a carefully cho-

sen estimate P ≈ A−1 as a preconditioner. The problem is transformed

into an equivalent problem PAx = Pb by left multiplication. Note that

now PA ≈ A−1A = I, which makes it easier to find good steps. [53]

While not strictly about preconditioning, Newton’s method (Section 3.2.2)

can also be derived from similar ideas: at each step, the Hessian is used

to form a linear estimate of the local elongation of the objective function.

The Newton step is then simply a gradient descent step in a space where

this elongation has been inverted. [11]

3.2.5 Constraints

One often needs to constrain the values of the variables in a minimization

problem. For example, negative glossiness and albedo values are phys-

ically meaningless, but an optimizer might propose such values as solu-

tions if it leads to lower values of the objective function. Various exten-
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sions of the methods discussed above can explicitly enforce constraints [16,

17]. However, these methods tend to be either much more computation-

ally intensive and difficult to use, or much slower to converge.

One approach for enforcing constraints is to transform the space of the

variables in a way that prevents them from reaching the forbidden values.

For example, the constrained problem

argmin
x

F (x)

subject to x ≥ 0

might be transformed into the unconstrained problem

argmin
x̃

F (exp(x̃)) (3.39)

Notice that no value of x̃ will result in a negative-valued argument to F .

Given the solution x̃∗, the solution to the original problem is recovered

as x∗ = exp x̃∗. Effectively, we are then optimizing for the logarithm of

x instead of x itself. We use this kind of transformations in all of the

publications to enforce different constraints.

3.2.6 Alternative methods

It should be noted that the class of gradient-based methods discussed here

is not the only approach to optimization. In the interest of completeness,

we briefly discuss a couple of examples of alternative methods below.

In the absence of available gradient information (or when it is not ap-

plicable, or it is essentially useless due to discreteness or extreme fluc-

tuations of the objective function), a class of methods known as meta-

heuristics are sometimes used. For example, in simulated annealing [78]

an optimization step is performed by making a random perturbation to

the iterate according to some carefully chosen distribution, and accepting

or rejecting the step based on a principled criterion. While theoretical

guarantees about convergence do apply, in practice the behavior of the

algorithm is very difficult to reason about.

Certain methods based on combinatorial optimization allow one to main-

tain a segmentation of an image into regions based on some well-defined

objective function, and simultaneously maintain a set of per-region pa-

rameters. These are updated in an alternating fashion. Such approaches

have found success in various related tasks, and could prove useful in

our problems as well, as the spatial variation in many materials consists
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of continuous regions separated by sharp transition boundaries. [79, 12,

120]

3.3 The Fourier transform

Publication I relies heavily on the Fourier transform. We review the rele-

vant concepts directly in a general multivariate setting. A comprehensive

review of the topic can be found in e.g. Bracewell [13].

The Fourier transform is a deeply fundamental object in mathematics.

It decomposes a function into its constituent frequencies. This decom-

position is also a function, with respect to the frequency variable. The

representations are dual to each other: both the original primal domain

function and its frequency domain counterpart are alternative views of

the same object. Operations on a function often have a corresponding

expression in the other domain: for example, differentiation in primal do-

main becomes pointwise multiplication in the frequency domain. Often, a

problem that is difficult in one domain becomes easy in the other. This is

the case in Publication I as well.

Definition and basic properties Concretely, the Fourier transform F is a

mapping from a complex-valued function f : R
K �→ C to its frequency

representation f̂ : RK �→ C via an integral transform:

f̂(ω) = Ff(ω) =

∫
e−iωTxf(x)dx. (3.40)

Conversely, an inverse transform is obtained by a similar formula

f(x) = F−1f̂(x) =
1

2π

∫
eiω

Txf̂(ω)dω. (3.41)

The conventions with leading multipliers vary in literature. Note that

these transforms are linear: for any two functions f, g and scalars α, β, we

find F{αf + βg}(ω) = αFf(ω) + βFg(ω).

For any fixed frequency ω ∈ R
K , the value of the Fourier transform

can be seen as an inner product < f, e−iωTx > between f and a complex-

valued plane wave basis function. Expanding the complex exponential,

the plane waves are seen to be of the form cos(ωTx) − i sin(ωTx). The

real and imaginary parts of this function are unit-amplitude sine waves

oscillating at wavelength 2π
|ω| along the direction ω

|ω| , at 90 degree phase

offset to one another. Alternatively, the complex magnitude is a constant

1, and the phase rotates at a constant rate.
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The basis functions are orthogonal to one another. Hence, the Fourier

transform is a unitary linear transformation, up to multiplicative con-

stants: F−1 = 1
2πF∗, where F∗ is the adjoint of F .

The frequency domain representation of a function is generally complex-

valued. However, when the primal domain function is real-valued, the

frequency representation has redundancy in the form of conjugate sym-

metry: f̂(ω) = f̂(−ω).

Frequency decomposition The basis functions, as mutually orthogonal

waves of different frequencies, can be seen as measuring the “frequency

content” of the primal-domain function. In particular, if the primal-domain

function is a plane wave itself, the Fourier transform is merely a con-

centrated peak at the frequency of the wave. Superpositions of multiple

waves result in multiple peaks. Such signals are particularly common in

audio processing, where the Fourier transform and its variants are used

to analyze the frequencies present in recorded signals, or conversely, to

synthesize novel sounds. A particularly useful tool for these purposes is

the power spectrum |Ff |2, which reveals how the power in the signal is

distributed across different frequencies.

In general, functions with slow variation consist mainly of low-frequency

content. Conversely, rapidly varying functions also have high-frequency

content. An audio analogy is again helpful: the rapidity of the vibration

of an object determines the frequency (pitch) of the sound it emits.

Convolution theorem Perhaps the most important feature of the Fourier

transform is convolution theorem. Convolution is an operation where a

(mirrored) function is “slid” past another one, and their inner products

are accumulated:

(f ∗ g)(x) =
∫

f(y)g(x− y)dy. (3.42)

Convolutions are often used to express filtering operations: for example,

for f an image and g a blur kernel, the convolution f∗g is a blurred version

of the image. For one operand fixed, convolution is a linear transform on

the other.

The convolution theorem states that convolution in primal domain cor-

responds to pointwise multiplication in frequency domain:

F{f ∗ g}(ω) = Ff(ω) · Fg(ω). (3.43)

The latter operation is often significantly easier to handle both in theoret-

ical analysis and numerical computations.
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Dirac delta impulses An interesting and useful property of the Fourier

transform is that it enables principled handling of Dirac delta impulses,

i.e. “functions” δ(x) which have an infinitely tall and narrow spike at

x = 0. The key property is that these functions perform point evaluation

in inner products:
∫
δ(x− a)f(x)dx = f(a). The related machinery can be

formally derived using the theory of tempered distributions. Inserting the

point evaluation formula into Eq. 3.40, we find that the FT of a shifted

Dirac delta impulse is:

Fδa(ω) =

∫
e−iωTxδ(x− a)dx = e−iωTa (3.44)

Note that this family of functions is the set of basis functions of the Fourier

integral transform itself.

In particular, for an impulse at the origin, the FT is a constant function

1. This is indicative of the behavior of the transform in general: roughly

speaking, it tends to convert “narrow” functions into “wide” ones, and vice

versa. Indeed, one can show F{f(Ax)}(ω) = 1
|A|Ff(A−Tω), where f̂ = Ff

and A is a non-singular square matrix. In other words, linearly stretching

a function results in an inverse stretch to its frequency domain represen-

tation.

Shifting Fourier transform turns shifting into pointwise multiplication:

F{f(x− a)} = e−iaTωFf(ω) (3.45)

This follows from considering the shift as a convolution with a Dirac delta

impulse at a.

Differentiation Fourier transform also simplifies differentiation. The di-

rectional derivative along a vector q in frequency domain reduces to a

pointwise multiplication2:

F{∇qf}(ω) = iqTωFf(ω) (3.46)

The underlying reason is that differentiating a complex exponential ba-

sis function results in another complex exponential, phase-shifted by 90

degrees and scaled by its frequency. Basis functions that oscillate rapidly

along the the direction of the vector q obtain the full effect; conversely,

oscillations in directions orthogonal to q are zeroed out.

2The pointwise multiplication suggests a convolutional nature for this operation.
Indeed, differentiation may be seen as convolution with an “infinitely tightly
spaced finite difference” of Dirac delta type. This notion can be made rigorous
using the theory of tempered distributions.
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Publication I makes an unusual application of a dual version of the dif-

ferentiation formula to analytically evaluate Fourier transforms of a spe-

cific class of functions. Thanks to the close relation between the forward

and inverse Fourier transforms, the differentiation formula can be turned

on its head, stating instead that the pointwise product of an affine func-

tion and f corresponds to a directional differentation in the frequency

domain:

F{qTxf}(ω) = i∇qFf(ω) (3.47)

Special cases Various related transforms can be seen as special cases of

the full Fourier transform.

Fourier series arise when f is periodic, as the FT reduces to an infinite

but discrete sequence of spikes.

Discrete Fourier Transform (DFT) arises when f is a finitely periodic

sequence of discrete spikes. In this case its FT is of a similar form, and

the entire transform reduces to a finite-dimensional linear transform (i.e.

it is represented by a matrix). The Fast Fourier Transform (FFT) is an

algorithm for computing the DFT in O(n log n) time, as opposed to O(n2)

for a naive matrix-vector product.

In Publication I, we do not make use of these special cases, but rather

work in terms of the full Fourier transform, i.e. assuming continuous

functions in an infinite domain. In Publication III, we apply DFT and

FFT to discrete pixel images for specific sub-tasks.

3.4 Gaussian functions

Another key component of Publication I is the use of Gaussian functions

(or Gaussians in short). They arise in various contexts in mathematics

and engineering. In particular, the density function of a (non-degenerate)

normally distributed random variable is a Gaussian. Normally distributed

random variables emerge from the Central Limit Theorem as limits of

sums of independent random variables. Given this fundamental role, it is

not surprising that the distribution enjoys various special mathematical

properties. Publication I makes heavy use of the property that the Fourier

transform of a Gaussian is another Gaussian. Ahrendt [2] presents an

overview of the properties we use.

Definition and basic properties Intuitively, a Gaussian function is a fuzzy,

possibly elongated “blob”, examples of which are shown in Figure 3.8. Its
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Figure 3.8. Bivariate Gaussian functions in [−3, 3]× [−3, 3]: a standard zero-mean Gaus-
sian with unit covariance; a non-zero mean Gaussian with diagonal covari-
ance matrix (i.e. no “tilt”), and a general Gaussian.
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Figure 3.9. The level curves of a Gaussian are ellipsoids. The mean μ determines their
centerpoint. The directions of the axes are determined by the eigenvectors
of the covariance matrix Σ, and their lengths are proportional to the square
roots of the respective eigenvalues.

level curves are elliptical. A k-dimensional Gaussian is defined by a cen-

terpoint (expectation or mean) vector μ ∈ R
K , and a covariance matrix

Σ ∈ S
+
k , which defines its orientation and elongation along the axes. Here,

S
+
k is the space of symmetric positive definite matrices of size k×k. Given

these, the Gaussian is a scalar-valued function

Nμ,Σ(x) = |2πΣ|− 1
2 exp

(
−1

2
(x− μ)TΣ−1(x− μ)

)
(3.48)

Figure 3.9 illustrates the geometric interpretation of the parameters.

A Gaussian is essentially a negative-definite quadratic form (“downward

opening paraboloid”), exponentiated and normalized as to integrate to

1. This makes it a probability density function. When considering the

Gaussian as a general probability distribution, Σ may also be singular

(i.e. only nonnegative definite); in this case the density formula is un-
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defined, as the probability mass becomes “infinitely concentrated” on a

lower-dimensional subspace.

We often consider weighted Gaussians with a leading multiplier z, and

simply use the term Gaussian for these functions as well.

Fourier transform The Fourier transform3 of a zero-mean Gaussian is an-

other (unnormalized) zero-mean Gaussian with covariance inverted. Fur-

ther applying Eq. 3.45 to shift the center to μ, we find:

F{Nμ,Σ}(ω) = exp

(
−iμTω − 1

2
ωTΣω

)
(3.49)

Pointwise product The set of Gaussian functions is closed under point-

wise multiplication. The underlying reason is simple: under multiplica-

tion, the quadratic forms inside the exponentials are summed, yielding

another quadratic form. The formulas work out to

Nμa,Σa(x) · Nμb,Σb
(x) = zcNμc,Σc(x) (3.50)

where

Σc = (Σ−1
a +Σ−1

b )−1, (3.51)

μc = Σc(Σ
−1
a μa +Σ−1

b μb), (3.52)

zc = |2π(Σa +Σb)|−
1
2 exp

(
−1

2
(μa − μb)

T(Σa +Σb)
−1(μa − μb)

)
.(3.53)

Linear mixtures A Gaussian mixture model (GMM) is a linear combina-

tion of Gaussian functions:

G(x) =

N∑
i=1

ziNμi,Σi(x) (3.54)

Figure 3.10 shows an example of a GMM. These models are useful for

approximating functions and probability distributions. The key observa-

tion in Publication I is that in a plane parameterization, a typical BRDF

consisting of a specular and diffuse part is well approximated by such a

mixture.

Gaussian mixtures inherit many of the useful properties of Gaussian

functions. In particular, thanks to linearity the Fourier transform of a

GMM is simply the weighted sum of the Fourier transforms of the compo-

nent Gaussians. A product of two Gaussian mixtures is another Gaussian

mixture with MN components (for mixtures of M and N components, re-

spectively).
3In general, Fourier transform corresponds (up to sign and normalization con-
ventions) to the notion of characteristic function in probability theory literature.
Formulas for the latter can easily be translated to the usual Fourier transform
conventions.
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Figure 3.10. A mixture of three Gaussians.

Products with affine functions Publication I makes use of Gaussian func-

tions modulated by affine functions of form aTx+b. While straightforward

in primal domain, somewhat surprisingly these functions also have an ex-

plicit Fourier transform formula. Using Eq. 3.47, we find

F{(aTx+ b)Nμ,Σ}(ω) =
[
(−iΣa)Tω + (−μTa+ b)

]FNμ,Σ(ω) (3.55)

3.5 Neural networks

Publication III uses a neural network based approach for comparing tex-

tured image patches. It is based on a texture synthesis method by Gatys

et al. [46]. In this section, we will briefly review the key ideas and appli-

cations of convolutional neural networks. Goodfellow et al. [54] present a

comprehensive recent overview on the topic.

Machine learning is a field of computer science and applied mathematics

that studies algorithmic learning from examples. In particular, supervised

learning is concerned with learning to map inputs to outputs, based on a

finite set of examples. In contrast to traditional engineering, the idea is to

sidestep the explicit manual construction of an internal rule-based model.

It is replaced by a “black box” that is first trained using the example data,

and thereafter used to make novel predictions. [59, 87, 8]

Some problems are well modeled by traditional engineering methods.

For example, Newtonian physics is governed by a small set of unambigu-

ous equations that predict the future positions and velocities of objects (for

practical purposes) exactly. On the other hand, it is extremely difficult to

hand-engineer a program that discriminates between photographs of cats

and photographs of dogs: the raw pixel values provide scarce clues, and

inventing suitable feature descriptors has proven challenging. Indeed,

hand-engineered computer vision approaches have met with success only
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on a limited set of problems.

Continuing to use the recognition task as an example, we can model it as

that of building a function f : RM×N×3 �→ R
K , where the input is an RGB

photo, and the output is a list of probabilities of the image belonging to

given K categories (e.g. “dog”, “cat”, “tractor”, “ostrich”, ...) The task of su-

pervised learning is to formulate such an f from being shown a sequence

of (possibly millions of) images accompanied by the expected output (i.e.

a vector with the value 1 on the correct category and zero elsewhere).

General neural networks Neural networks are a framework for building

functions such as this. The idea is to compose the function from a se-

quence of very simple operations (often called layers): mostly affine trans-

formations alternating with simple non-linear pointwise activations func-

tions such as a(x) = max(0, x) or a(x) = tanh x. The parameters of a

neural network are the weight matrices and the bias vectors of the affine

transformations. Sufficiently deep compositions of these elementary op-

erations can in principle approximate arbitrarily complicated functions,

assuming that suitable parameters can be found.

A network is trained by optimizing the agreement of the predictions of

the network with the desired values in the training set. In practice, this

is done using variants of stochastic gradient descent, where only a small

part of the training set (which is potentially huge, or even infinite) is used

to compute the derivatives on each iteration. The derivatives themselves

are evaluated using an algorithm known as backpropagation, which es-

sentially consists of sequential application of the chain rule. The inter-

mediate derivatives — and consequently the derivative of the entire net-

work — are easy to compute thanks to the simple form of the elementary

operations.

Convolutional neural networks General neural networks are ill-suited for

most tasks involving images. First of all, the linear transformations be-

come enormous, due to the large number of pixels. Aside from storage

issues, the astronomical number of parameters leads to overfitting: even

a large training set cannot sufficiently constraint it, and consequently the

network generalizes poorly to previously unseen input. Such issues of

capacity and generalization are central to the study of neural networks;

however, they are beyond the scope of our discussion. Finally, image fea-

tures tend to be shift-invariant: an edge is an edge, no matter which part

of the image it resides in. The same holds for higher-level features, such

as, say, circles, eyes, or ostriches. A general neural network is not required
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to respect this property.

Convolutional neural networks are a restriction on the general neural

network model that elegantly address all of these issues. The general

affine transformations are replaced by convolutions. In this context, a

convolution is understood as an affine transformation performed on each

small image neighborhood in a sliding window fashion. The number of

“channels”, or activations, in the convolved image may change. Due to

the small spatial extents of the convolution kernels, the dimensionality

of the parameter space becomes manageable. Furthermore, the excessive

capacity in the network is eliminated, and the shift invariance is enforced

in a natural manner.

3.5.1 VGG-19 network

The texture synthesis method of Gatys et al. [46], and consequently Pub-

lication III, takes advantage of a specific convolutional network architec-

ture known as VGG-19 [117]. It is designed for image recognition and

trained using a large-scale image dataset based on ImageNet [32], con-

sisting of 1.2 million images manually classified into 1000 categories. Most

widely used convolutional neural networks follow similar principles.

The VGG network architecture is simple; it consists of a few types of

elementary functions, connected as layers in a linear chain. The input

to the network is an image a0 ∈ R
224×224×3. Each layer performs some

function

f l : RSl−1×Sl−1×nl−1 �→ R
Sl×Sl×nl (3.56)

on its input image stack, possibly modifying its dimensions. Hence, the

activation of the l’th layer is computed as the composition

al = f l ◦ f l−1 ◦ ... ◦ f2 ◦ f1(a0). (3.57)

The functions are chosen as to gradually contract the spatial dimensions

Sl while expanding the number of activations nl, so as to ultimately yield

the vector aL ∈ R
1×1×nL of class membership probabilities (where nL =

1000 for the ImageNet, and L is the total number of layers). The functions

f l are of four types:

• Convolutions compute the sliding-window affine transformation discussed

above. Specifically, the formula for this is

ali =
∑
j

al−1
j ∗ klij + bli (3.58)
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Here, ali denotes the i’th feature map of the l’th layer, ∗ is the discrete

convolution operator as traditionally understood in signal processing, klij
is a m × m convolution kernel (typically with m = 3), and bl is a vector

of per-activation biases. The number of kernels (and biases) determines

the number of output activations nl. Fully connected layers, towards the

end of the network, can be seen as convolutions with 1× 1 kernels. The

kernels k and biases b are the free parameters of the network, subject to

learning.

• Rectified activation functions are simple pointwise functions of the form

al = max(0, al−1) that always follow a convolution. They are the main

source of nonlinearity in the network.

• Pooling layers are used to reduce the spatial dimensions of the acti-

vations. The network uses max-pooling, which simply cuts the spatial

dimensions to half by retaining only the maximum value of each 2 × 2

region.

• The very final layer of the network is a softmax layer which normalizes

the activations of the previous layer into a discrete probability distribu-

tion. We will not be using it in our application.

Figure 3.11 illustrates the arrangement of these operations in the VGG-

19 network.

Significance of the activations The hope behind deep convolutional neu-

ral network models is that the layers learn a hierarchy of increasingly

complex and meaningful feature detectors. Indeed, this behavior emerges

in trained networks.

The first layers tend to represent simple filters, such as edge, corner

and blob detectors, the results of which can be read in the different ac-

tivation channels. They are somewhat analogous to traditional hand-

engineered computer vision feature descriptors, such as SIFT [85] and

BRIEF [18]. They are also reminiscent of filters found in visual cortices

of mammals [66, 90, 1]. The higher layers combine this information to

detect increasingly complex geometric and semantic features: first, cor-

ners of eyes, eyebrows, pupils — then, entire eyes, noses and ears — then,

faces, arms, legs — from these, cats, dogs, humans — and ultimately even

fine-grained sub-species of animals and objects.
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Figure 3.11. Structure of the VGG-19 network (with a few intermediate layers omitted).
The input RGB image (top left) is seen as a 224× 224× 3 activation map. It
is fed through a sequence of 3× 3 convolution filters, rectified linear activa-
tion units (ReLU), and max-pooling operations. The spatial dimensions are
gradually shrunk by pooling, whereas the number of activations gradually
grows in convolutions. In the last layers, the image is collapsed into a vector,
which may be seen as an 1× 1×n image. The fully connected (FC) transfor-
mations are hence special cases of convolutions. Finally, the softmax layer
normalizes the result into a probability distribution over classes.

3.5.2 Backpropagation

We do not train neural networks in any of the presented methods. How-

ever, we do take advantage of a component that is centrally important for

the training procedure: the backpropagation algorithm [111].

Consider a chain of composited functions such as in Eq. 3.57. Let us

assume that the last function fL is scalar-valued, i.e. aL ∈ R (in training

it would evaluate a loss value that compares the prediction of the network

with the training data).

As an illustration of the backpropagation algorithm, let us evaluate the

partial derivatives of the network scalar output aL with respect to each

pixel in the input activation layer a0. These are enumerated in the Jaco-

bian matrix J ∈ R
1×N of the entire composite function, evaluated at a0.

Here, N is the number of entries in a0, i.e. 224∗224∗3 for the VGG-19 net-

work. The chain rule states that J can be computed as the matrix product

of the Jacobians of the functions in the composition (Eq. 3.57):

J = JL JL−1 ... J2 J1 (3.59)

Here, Jl is the Jacobian of f l, evaluated at the point al−1 = f l−1 ◦ ... ◦
f2 ◦ f1(a0). These points are obtained in the first (forward) pass of the

algorithm by simply evaluating the entire composition in sequence, and

storing the intermediate results.
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While this product can be used to compute the partial derivatives of

interest, in practice constructing the full Jacobians and computing the

matrix products is prohibitively expensive. Fortunately, it is unnecessary.

The key trick behind the backpropagation algorithm is to instead consider

the transpose of the Jacobian. This seemingly trivial modification flips the

order of the matrix multiplications:

JT = (JL JL−1 JL−2 ... J2 J1)
T (3.60)

= JT
1 JT

2 ... JT
L−2 J

T
L−1 J

T
L (3.61)

= JT
1

(
JT
2

(
...
(
JT
L−2(J

T
L−1 J

T
L )
)
...
))

(3.62)

Notice that the innermost matrix JT
L is in fact a column vector, because

the corresponding function fL is scalar-valued. Hence, Eq. 3.62 is a se-

quence of matrix-vector products. In the second (backward) pass of the

backpropagation algorithm, these matrix-vector products are computed

by sequentially multiplying JT
L from the left with the transpose Jacobians,

starting from JT
L−1 and ultimately ending at JT

1 . Notice that the interme-

diate result is always a vector, and no matrix-matrix products need to be

computed.

This procedure relies only on our ability to compute the transpose Jaco-

bians of the elementary operations f l in the network. This is (by design)

straightforward for the kinds elementary operations discussed above. Fur-

thermore, the transpose Jacobians are usually structured enough that the

effect of the multiplication can be implemented as a suitable piece of pro-

gram code, and no matrix ever needs to be built explicitly. Note that the

code that implements multiplication by JT is sometimes quite different

than that for J .

As a side effect, this procedure also computes the partial derivative of

the loss with respect to the intermediate layers. Training uses this in-

formation to update the parameters of the layers. More generally, the

algorithm can be applied to networks where the layers are connected in

a directed acyclic graph (DAG), as the chain rule also handles branching

of this kind. We make use of this in Publication III, where the additional

operations attached to the VGG network — in particular, rendering — are

expressed as a composition of operations arranged in a DAG.
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4. Related work in appearance capture

In this chapter, we will review relevant previous work on appearance

capture. Weyrich et al. [131] present a relatively recent comprehensive

overview on appearance acquisition.

4.1 Direct sampling

Classical reflectance capture methods are based on arranging point lights,

sensors (cameras) and the material sample into geometric configurations

that directly reveal BRDF values. Given known convex geometry, pinhole

camera and a point light, the integral in the reflection equation (Eq. 2.4)

for a given pixel reduces to the value of the BRDF at a pair of angles,

times known constants from the light and exposure parameters. The re-

maining “inverse problem” is trivial: a raw point sample of the BRDF

value is recovered by dividing away the constant. A dense tabulated rep-

resentation of the BRDF can be obtained by collecting these measure-

ments from a large number of view and light angles. The challenge in

these methods lies in physical arrangements: a wide range of geometric

configurations must be covered to obtain a good sampling of the BRDF,

often requiring complex hardware and delicate calibration procedures. In

some approaches the sampling is left incomplete, and other computational

techniques are used to fill in the gaps; we will review such approaches in

later subsections.

4.1.1 Gonioreflectometry

A classical device for this purpose is the gonioreflectometer [42, 132]. It

typically consists of a robotically controlled gantry, with a camera and a

light source attached to two arms. Pairs of directions are sampled exhaus-

tively.
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While highly accurate BRDFs can be captured (given careful calibra-

tion), the process is cumbersome. The number of samples required to

get a sufficient covering of the angular space is very large. As a general

BRDF is a four dimensional function of angles, one needs roughly 1004,

or 100 million samples to cover it with a relatively dense grid. Assuming

one measurement per second, the process would take years. Reciprocity

of the BRDF can be used to cut the required samples to half. In prac-

tice, by cutting down on the density of the sampling along dimensions

and regions of (typical) low variation, and dropping the fourth dimension

in case of isotropic materials, the capture time can be brought down to

more reasonable numbers. Besides the slowness of the process, building

and using the required hardware is challenging and is rarely undertaken

by practitioners.

The gonioreflectometer in its classical form only measures the BRDF of

a homogeneous piece of material. The same idea can be extended to cap-

turing an SVBRDF, by photographing and illuminating a spatially vary-

ing surface from various angles [96, 27]. Figure 1.7 illustrates the kind

of input captured by these devices. The setup inherits the difficulties of

single-point capture, and poses additional calibration and storage chal-

lenges.

For practical purposes, the tabulated representations are often fitted

to lower-dimensional parametric BRDF models such as those reviewed in

Section 2.3.2. This comes at the cost of losing some accuracy. Section 3.1.1

sketched an example of this procedure. This procedure also interpolates

and extrapolates the reflectance function to cover angles that were not

included in the captured dataset — however, the caveats on generalization

apply.

4.1.2 Alternative geometries

Significant savings in capture effort can be made by more clever physi-

cal arrangements of the measuring device and the measured surface. For

example, suitably shaped and aligned curved mirrors [26, 28] or curved

geometry [91] allow one to observe extended slices of a BRDF in a single

image. This reduces the physical complexity of the motions needed to ob-

tain samples from the relevant angles. Furthermore, it allows one to use

each pixel of a photograph as a separate measurement of the BRDF, yield-

ing a large number of tightly-spaced measurements in bulk. In particu-

lar, Matusik et al. [93, 94] applied the technique of Marschner et al. [91]
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to measure a set of 100 isotropic BRDFs from spherical specimens. The

resulting dataset, known by the name MERL1, has since been used as

the basis of a number of studies on material appearance. Homogeneous

anisotropic BRDFs have been captured by attaching slices of differently

oriented material samples onto a rotating cylinder [99].

4.2 Indirect sampling

Direct point sampling of the BRDF function results in readily usable mea-

surements. The complexity lies in the physical setup, which must be care-

fully engineered to isolate individual light paths from the source to the

sensor, and to cover a wide range and quantity of angles. The goniore-

flectometer and related techniques are hence at one extreme of a tradeoff:

their measurements are difficult to obtain, but simple to interpret.

The methods we present in this thesis are based on indirect sampling

of the reflectance. Publication I uses area light sources with controlled

illumination patterns. The measured values are no longer proportional to

the value of the (SV)BRDF at any single pair of angles. Rather, they are

complicated mixtures of these values. On the other hand, Publications

II and III do use point samples, but because the structure of the spatial

variation is unknown, they cannot be directly assigned to any individual

surface point.

4.2.1 Extended light sources

The effect of the material is also apparent under other lighting conditions

than point lighting. Under more general illumination, the reflected radi-

ance from the surface is no longer directly proportional to an individual

value of the BRDF. Rather, it is typically a weighted integral over the val-

ues — in other words, an inner product of a measurement function and

the (cosine-weighted) BRDF. Recalling the reflection equation (Eq. 2.4),

we have:

Lo(ωo) =

∫
Ω
Li(ωi) fr(ωi → ωo) cosωi dωi (4.1)

= < Li, fr(ωi → ωo) cosωi > (4.2)

where Li and Lo are the incident and exitant radiance functions, respec-

tively. By controlling Li, we can make linear “queries” into the content of

1Publicly available at ������������	
���
���
���
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the BRDF. In general Li can be arbitrary.

Seen in this light, a direct point sample simply corresponds to an inner

product with a Dirac delta distribution at the sample direction. Such a

measurement gives the value of the BRDF (up to other known multiplica-

tive factors) exactly at the measured angles, and no information about

other parts of the function. A measurement with lighting angle ωm and

viewing angle ωo is then given by the reflectance equation with a corre-

sponding Delta distribution substituted for the incoming radiance:

Lo(ωo) =

∫
Ω
δωm(ωo) E(ωi) fr(ωi → ωo) cosωi dωi (4.3)

= < δωm , fr(ωi → ωo)E(ωi) cosωi > (4.4)

= fr(ωm → ωo)E(ωi) cosωm (4.5)

As the known cosine factor cosωm and irradiance from the light source

E(ωi) can be divided out, this directly reveals the value of the BRDF at

the given angles. The same ideas generalize to spatially varying BRDFs

by considering each surface position in isolation.

In contrast, a more general measurement against e.g. an area light

source gives the average of the BRDF values over a finite region of the an-

gular space. It provides information about the reflectance across a wider

range of angles, but cannot directly pinpoint the exact value (which is ul-

timately of interest) at any individual point. However, because BRDFs ex-

hibit many types of regularity and structure, a small number well chosen

measurements often suffice to reveal the significant features. The trade-

off is that interpreting such measurements is harder. The framework in

Section 3.1 is designed to deal with this type of problems. However, previ-

ous work often relies on collecting measurements that can be interpreted

by more direct means, at the expense of added acquisition complexity.

The method of Gardner et al. [44] is an illustrative example. They pro-

pose a device that translates a linear light source over a flat surface sam-

ple. The camera is stationary. The temporal intensity profile of each pixel

is recorded, and a spatially varying isotropic Ward BRDF [130] is fitted

to the trace by a heuristic procedure. Surface normals can be estimated

by performing a second pass with the surface rotated. Conceptually, the

underlying idea is to exploit the angular redundancy in isotropic BRDFs:

the linear light source essentially marginalizes the BRDFs along one of

the angular dimensions. This sampling captures the width and the di-

rection of the peak, while losing only little information since the BRDF

is close to radially symmetric. Due to the fixed camera position, most
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viewing angles are never observed. However, because the observed slice

suffices to identify key properties of the BRDFs, the measurements are

plausibly extrapolated to the missing angles by the parametric model fit.

4.2.2 Basis illumination

Carefully choosing the illumination used for sampling can help to ensure

that the measurements reveal maximal amount of information about the

reflectance while admitting to a tractable interpretation procedure. This

is more likely when the illumination enjoys some special mathematical

properties — in particular, area lights emitting different basis function

patterns, such as spherical harmonics [106, 118], have been applied in

literature.

Basis function transformations are generally used to obtain an alterna-

tive “perspectives” into functions in mathematics and engineering. Many

of them change the role of local and global features in a signal. Globally

supported basis functions, such as spherical harmonics and the Fourier

plane waves, generate response to arbitrarily sharply concentrated peaks.

The angular dimensions of SVBRDFs are often of precisely this type: a

tight unimodal specular peak is pointing towards some direction, depend-

ing on the surface normal. In contrast, direct pointwise measurements

almost always miss these features: without extensive sampling, sharply

peaked specular lobes may fall between the measured angles, or cause

aliasing patterns.

Simple examples of this idea are the constant and linear gradient basis

function; the former measurement reveals the integral over the function,

and the latter its centroid. Applying this principle, Ma et al. [86] estimate

the surface normals of an object by surrounding it with a spherical dome

that emits spherical gradients. The average direction of the reflections

can be estimated from this data. Ghosh et al. [50] extend this to second-

order gradients, which are used to simultaneously extract also spatially

varying glossiness values. The method relies on polarization to separate

the diffuse and specular components. The spherical gradient functions are

closely related to spherical harmonics, which is the natural Fourier basis

on a spherical domain. Ghosh et al. [48] use a curved mirror setup to emit

zonal basis patterns closely related to spherical harmonics to accurately

capture homogeneous BRDFs. Tunwattanapong et al. [124] emit spher-

ical harmonic patterns using a rotating arc of LED lights; a full spheri-

cal pattern is emitted by modulating the LED intensities over a revolu-
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tion, and integrated by long camera exposure. Full geometry and spatially

varying BRDF is recovered. Spherical harmonics have also proven useful

in analyzing reflectance phenomena in a signal processing context [106].

Malzbender et al. [89] capture visually rich re-lightable images of objects

using a polynomial basis. However, their re-lightings are limited to the

original viewing angle.

While effective at reducing the number of measurements, previous ap-

proaches in basis function measurements require complicated hardware

in order to emit the patterns in a suitable domain — often, a spherical

dome surrounding the sample. This complication stems from the desire to

make the measurements in the spherical domain, which is most natural

to BRDFs. In Publication I, we present an alternative approach: by rep-

resenting the BRDFs on a plane-projected domain, we can use a standard

LCD monitor to emit the patterns. While mathematically more compli-

cated, this choice of domain admits to a natural use of the Fourier basis,

which enjoys several useful properties that facilitate the interpretation.

4.3 Exploiting spatial redundancy

A significant number of approaches, based on both direct and indirect

sampling, take advantage of spatial redundancy of surfaces to reduce the

amount of measurements needed. Many surfaces consist of a small num-

ber of different BRDFs mixed and scattered across the surface. Hence,

even if each surface location is insufficiently sampled in isolation, infor-

mation from other parts of the surface can be used to fill in the miss-

ing data. The challenge in these approaches lies in identifying the re-

dundancies. Publications II and III use this general approach to capture

SVBRDFs from a very low number of input photographs.

The sampling of Marschner et al. [91] can be seen as a trivial exam-

ple of this principle: the measurements are insufficient for any individual

point on the sphere, but the knowledge that the sphere has a homoge-

neous BRDF allows us to combine the measurements across the spatial

locations, yielding a complete sampling.

The presence of multiple BRDFs on a single object leads to a much

more challenging task: simultaneously determining the BRDFs, and what

points they are present at, is a difficult chicken-and-egg problem. Lensch

et al. [83] obtain a sparse sampling of an object of known shape under

varying point lighting. The assumption is that a few different paramet-
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ric BRDFs are present on the surface. The algorithm alternatingly clus-

ters the surface points to the current set of estimated BRDFs, and refines

the BRDF estimates based on the most recent clustering. The resulting

SVBRDF a linear combination of a global set of few representative BRDFs

at each surface point. Goldman et al. [52] use a similar idea of a small set

of basis BRDFs in combination with a fixed camera, to simultaneously es-

timate the surface shape along with the BRDFs. Alldrin et al. [3] extend

these methods to support non-parametric BRDF models.

Dong et al. [35] explicitly measure a basis of high-fidelity representa-

tive BRDFs (including anisotropy) directly from a surface using a cus-

tom portable scanning device. A separate set of coarse measurements

are made from the full surface, and this data is used to assign the basis

BRDFs. Ren et al. [108] introduce a lightweight linear light source based

SVBRDF capture method that uses a physical chart of exemplar materials

that is assumed to represent the BRDFs present on the surface.

Wang et al. [128] recover SVBRDFs exhibiting anisotropic reflectance

from a set of measurements that cover the angular space relatively densely,

but only from a limited angular range. Measurements from surface points

with same BRDF but different anisotropy orientation are combined to

fill in the missing angular data at each point. The linear light source

method of Gardner et al. [44] was extended by Chen et al. [21] to handle

anisotropic materials using similar ideas.

Zickler et al. [136] exploit the joint redundancy in angular and spatial

dimensions. The input to the method is a sparse set of variously illumi-

nated images of a known geometric object. The SVBRDF is viewed as a

6-dimensional function with no hard division between spatial and angu-

lar dimensions, and the input data is interpolated in this domain using

radial basis functions.

Wang et al. [127] estimate a coarse bi-scale roughness model (i.e. a mi-

crofacet BRDF with stochastic meso-scale normal variation) from a pho-

tograph of a stochastically repeating surface material under step-edge il-

lumination. Hence, unlike most previous work, the method takes advan-

tage of recurrence of spatial features in the material: the underlying as-

sumption is that points with identical material properties are surrounded

by similar neighborhoods. However, their model is only accurate for a

very narrow class of Perlin noise type surface shapes with constant glossi-

ness and albedo, and cannot be extended in any obvious way to support

more general surfaces. Publications II and III apply a similar underlying
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idea to recover full detailed SVBRDF maps from a much wider range of

stochastically repeating surfaces.

4.4 Strong assumptions and heuristics

A number of approaches simplify the capture procedure by relying on

strong assumptions, user input and heuristic tricks to extract plausible

reflectance representations from the data. These approaches usually re-

quire only a small amount of input data. The stationarity assumption

behind Publications II and III can be seen as falling into this category.

Depth-from-shading methods are based on the assumption that pixel

intensities in a photograph of a surface are correlated with the surface

depth due to shading effects. Glencross et al. [51] use this assumption to

extract height and albedo maps from a flash/no-flash photograph pair of

a diffuse surface. However, only a narrow range of surfaces is expected

to accurately correspond to their assumptions, and the reconstructions

rarely match the ground truth despite their visual plausibility.

A popular software package CrazyBump [24] extracts a normal map

from a single photograph by proprietary heuristic algorithms, guided by

user-controlled sliders. While sometimes surprisingly plausible visually,

these reconstructions do not accurately match the input data or the un-

derlying reality.

Dong et al. [34] propose a user-aided method for assigning BRDFs onto

photographs of materials. The pixel values and a set of user-provided

sparse strokes are used to compute blending weights. Finally, a heuris-

tic normal recovery procedure is applied based on user’s estimate of the

lighting direction.

Barron and Malik [5] use a large set of carefully engineered priors to

estimate shape and diffuse reflectance of arbitrary surfaces from a single

image.

“Blind” methods recover BRDFs and SVBRDFs from objects viewed un-

der unknown environment illumination [109, 33]. The idea is to find the

most plausible explanation of the observed reflections by making assump-

tions about the space of typical environments (i.e. natural images with

strong step edges) and the space of commonly occurring BRDFs.
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4.5 Exploiting physical properties of reflectance

Helmholtz stereopsis [135] takes advantage of the reciprocity of BRDFs.

Pairs of photographs of a scene, with the placements of the camera and

the light source exactly swapped, can be used to extract the depth and

the normal maps independently of surface BRDF, and subsequently to

reconstruct the geometry of the object. This idea was used by Holroyd et

al. [65] to jointly recover full geometry and reflectance of 3D objects.

Many methods (e.g. [86, 50]) rely on the fact that polarization of first-

surface specular reflection differs from that of diffusely reflected light.

This observation can be used to separate the diffuse and specular compo-

nents. Ghosh et al. [49] explore the use of different types of polarization

to extract full SVBRDF information from a few photographs of an object

with known geometry. Having a readily separated mesurements of the dif-

fuse and specular components of an SVBRDF greatly simplifies the data

interpretation.

On the other hand, working with polarizers adds hardware complexity

and manual steps to the capture procedure, and we choose to avoid it

in our methods. The diffuse-specular separation is a relevant problem

in this thesis, as the methods all use a fixed viewpoint, and hence clues

from camera motion cannot be used. The methods perform the separation

computationally, by considering the mixture as a part of the unknown

parameters to be recovered. The main clue that we rely on is the fact

that the specular component is often significantly more peaked than the

diffuse component.

Our methods also make implicit use of the dichromatic model of re-

flectance [115], and hence benefit from colored measurements. The chro-

maticity of the diffuse and specular components in isolation typically do

not depend on the viewing angle. Hence, the chromaticities of the observa-

tions of a surface point implicitly constraint the space of possible diffuse-

specular decompositions. Furthermore, the specular component tends to

be monochromatic across the surface. Publications II and III explicitly

enforce this property on the solution in order to cut down the degrees of

freedom in the problem.
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5. Frequency domain measurements

Publication I continues the tradition of basis function measurement ap-

proaches [86, 48, 50, 124]. As discussed in Section 4.2.2, basis func-

tions with global support are effective at isolating the relevant features of

BRDFs. Successful SVBRDF capture has previously been demonstrated

using natural basis functions of the spherical domain of BRDFs. However,

emitting these patterns typically requires the sample to be surrounded

by a custom spherical light dome — a major engineering effort. Ghosh

et al. [50] also present a low-cost alternative, where an LCD monitor is

placed above the sample, and a small slice of the distant spherical en-

vironment is approximately simulated by displaying projections of the

spherical basis on the monitor plane. The approach is limited to glossy

specular materials with limited normal variation. Furthermore, it re-

quires the use of polarizers to separate the diffuse and specular compo-

nents from one another. The main focus of their paper is, however, on

spherical dome setups.

The desire to match the domain of the measurements with the natural

spherical domain of BRDFs is a major source of physical complexity. The

measurements from dome-based basis functions are in the “correct for-

mat” and hence relatively easy to interpret, but acquiring them requires

the use of custom hardware or delicate calibration and approximations.

Publication I takes a different approach: it uses an LCD monitor for emit-

ting basis function patterns, but instead of emulating a spherical domain,

it uses a basis that is natural for the planar emitter itself. The physical

setup is simple, but the difficulty is shifted towards the measurement in-

terpretation step. Fortunately, the natural basis in a planar domain is

the Fourier basis, which enjoys a rich set of mathematical properties — in

particular, it turns out to be well suited for modeling the relevant slices of

the BRDFs. This in turn enables direct parametric SVBRDF model fitting
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by optimization, as opposed to the heuristic (and polarization-dependent)

interpretation approaches in previous work.

In this chapter, we will present a brief high-level overview of the key

ideas of the method. The reader is referred to the attached publication

for the details. In the remaining chapters, we will refer to the sections,

appendices, equations and figures in the three publications by suffixing

them with the Roman numerals I, II and III.

5.1 Measurements

The physical setup presented in Publication I uses a camera and a flat-

panel monitor, obliquely arranged around the flat physical sample. The

setup and the notation for the coordinates is illustrated in Figure 5.1. The

camera and the monitor are controlled by an attached computer. The idea

is to display a sequence of plane wave basis functions on the monitor, and

record the reflections off the physical sample using the camera.

The monitor and the camera are in a near-field configuration, and we

do not make any distant illumination approximations. Instead, we fully

account for the effect of the geometry of the capture setup in the inter-

pretation stage. This allows us to place the monitor close to the sample,

which results in a wide coverage of illumination directions for each sur-

face point.

Figure 5.2 shows examples of the photographs captured. The plane wave

patterns that were displayed on the monitor can still be observed in the

reflections. The BRDF at each surface point affects the reflected pattern

in various ways. In particular, the pattern is diminished and colored by

albedos, and high-frequency patterns tend to be diminished by low-gloss

reflections. Surface normal variations cause spatial distortions in the re-

flected waves. Intuitively, the goal of the method is to disentangle these

effects by finding an SVBRDF that explains them across a variety of ob-

served reflections.

5.1.1 Basis function patterns

Specifically, the displayed patterns are windowed Fourier basis functions.

Parameterizing the monitor as a rectangle covering [−π, π]× [−π/a, π/a] of

the R
2 plane, where a is the monitor aspect ratio, the pattern correspond-
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e

p
x

Figure 5.1. Physical capture setup. We denote the position of the camera as e ∈ R
3,

positions on the material sample plane as p ∈ R
2, and positions on the mon-

itor plane as x ∈ R
2. Depending on context, we use the same notation for

the corresponding three-dimensional world space coordinates. The relevant
positions and coordinate systems are established in a separate geometric cal-
ibration stage. The general strategy is to emit light from the monitor using
a pattern that varies as a function of x, and observe its reflections from each
point p on the material towards the camera at e. Each pixel on the image
plane receives measurements from a different surface point p.

ing to the frequency ω ∈ R
2 is

bω(x) = w(x) exp(−iωTx) = w(x) cos(ωTx)− iw(x) sin(ωTx) (5.1)

Windowing Here, w(x) is a windowing function that smoothly fades the

edges of the pattern to black towards the edge of the monitor. The reason

for using such a function is that the finite spatial extent of the monitor

itself necessarily imposes a box windowing function with an abrupt jump

at the monitor edges. This distorts the measurements in a manner that is

difficult to control. By using a carefully chosen windowing function that

approximately fits within the box, we essentially replace the window with

something we can more readily model mathematically. Specifically, we

use a Gaussian window with a diagonal covariance and a zero mean —

the reason for this choice will become obvious later.

Displaying complex-valued images Physical monitors can only display

real-valued non-negative images. To simulate the display of the complex-

valued patterns, we split them to four parts that are shown separately, as

shown in Figure 5.3. Thanks to the linearity (and lack of complex-valued

multipliers) of light transport, the same summation of any photographs

illuminated by the corresponding patterns results in the correct hypothet-

ical image of the complex-valued radiance reaching the eye. As a welcome
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Figure 5.2. Two examples of raw input photographs for the method. A part of the monitor
and the emitted patterns is seen at the top of the image. Below, the patterns
are seen reflected off the material sample.

(       -       ) - i(      -      ){
w(x)cos(ωTx)

{
w(x)sin(ωTx)

Figure 5.3. Four non-negative real-valued partial patterns are combined into the full
complex-valued windowed Fourier basis functions. The complex-valued re-
sult is difficult to visualize; we will use real-valued patterns in figures for
illustrative purposes in this section. The result is a function with constantly
rolling phase, and the windowing function as its magnitude (notice how the
patterns fade towards the edge due to the windowing). The 2D frequency of
this pattern is ω = (4, 0): it makes four cycles horizontally, and none verti-
cally.

side effect, the subtractions also cancel out any ambient illumination, as

long as it remains constant between the measurements.

Time integration As a practical trick, we display each pattern over a long

exposure of a couple of seconds, using only pure black and pure white

pixels. Gray values are implemented by turning each pixel on for a pre-

cisely controlled amount of time. The reason for this arrangement is that

the pixel activation time is easier to control than the non-linear emission

from commodity LCD screens. Hence, we may skip an additional delicate

photometric calibration stage.

Format of the data We rectify (see Figure 3.1) and crop the region of in-

terest from the input photographs. The input data zi,j is then an I × J

array of complex-valued RGB triplets, where I is the number of pixels in

the cropped and rectified images, and J is the number of measured fre-

quencies. Associated with each surface point is also a coordinate pi in

world space. This is obtained from a separate calibration step (Appendix

I.A).
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Figure 5.4. The magnitudes and phases of three rectified complex-valued input images
shot under different illumination patterns. Roughly speaking, the high fre-
quencies isolate the specular component of the reflections, and the phase ab-
sorbs the normal variation of the surface. Notice how the magnitude response
of the white paper (top, and left of center in the images) has faded out in the
highest-frequency measurement. In contrast, the extremely glossy packag-
ing tape (below center) has a strong response to the pattern. Other materials
in the sample (various types of cardboard, tape and pencil markings) fall be-
tween these two extremes. The surface normal variations are expressed as
distortions in the phases.

We make the measurements at x-axis frequencies (1, 0), (2, 0), (3, 0),

(4, 0), (6, 0), (8, 0), (10, 0), (20, 0), and (40, 0), the corresponding sequence

on the y-axis, (0, 1), (0, 2), ..., and on the two diagonals, (1, 1), (2, 2), ... and

(1,−1), (2,−2), ... Additionally, we make a measurement at the zero (DC)

frequency (0, 0), i.e. just the window function without a frequency pattern.

The set is heuristically chosen so as to cover a wide range of frequencies

and orientations.

Visualizing the input data This complex-valued image data can be visual-

ized by evaluating the magnitude and phase angle of the complex number

at each pixel. Figure 5.4 shows such plots for a few different frequencies of

a dataset. The magnitudes indicate the strength of the response at a pixel

to a given pattern. Intuitively, if the pattern were to be shifted across the

monitor over time, the magnitude would reveal how much the intensity

of the pixel would oscillate in response. The phases, in turn, express the

“position” in the wave that the reflection originated from.

91



Frequency domain measurements

High-frequency patterns tend to isolate the glossy parts of the material.

The intuitive reason for this is that diffuse and low-gloss materials “blur”

their reflections strongly, and consequently any rapidly varying patterns

in the illumination environment become diminished. In contrast, a mir-

ror would replicate the pattern perfectly, no matter what frequency, and

hence show strong response also at the high frequencies.

The phases tend to absorb the effect of normal variations, as they indi-

cate the position on the monitor that was seen by the reflection. These

effects are discussed in more depth in Section I.4.4 in the publication.

These observations were the original inspiration for research into the

method. Unfortunately, these heuristic considerations cannot be used to

extract the reflectance information from general surfaces. The main prob-

lem is that the simultaneous presence of the diffuse and specular com-

ponents results in arbitrary distortions in the magnitudes and phases,

particularly at low frequencies. Disentangling them properly requires

the use of data analysis techniques discussed in Chapter 3. Note that

if we did make measurements with readily separated diffuse and specu-

lar components, the magnitudes and phases could be used to infer much

of the material properties directly. Indeed, the approach used by Ghosh

et al. [49] (who use polarization for the separation) is based on somewhat

similar reasoning in the context of spherical harmonics.

5.1.2 Image formation model

Let us examine the properties of these measurements, with the goal of

building a predictive forward model for use in data fitting. The detailed

derivation and formulas can be found in Section I.4.

The use of Fourier basis functions leads one to expect that the measure-

ments are closely related to the Fourier transform of the BRDF. Below, we

show that this is indeed the case: at each pixel, they are point samples of

the Fourier transform of a slice of the BRDF at the corresponding surface

point, projected onto the monitor plane.

The image formation model is in principle simple: the surface points

are illuminated by a near-field area light source with a spatially varying

emission pattern. A standard change of variables for the reflection equa-

tion (Eq. 2.6) predicts the reflected radiance from a surface point p ∈ R
3

towards the camera at e ∈ R
3 (i.e. the value of the pixel that sees p) is:

L(p → e) =

∫
R2

bω(x)ρ(p, x → e;u)E(x → p)G(x)dx (5.2)

92



Frequency domain measurements

=
F ρ w E G

Figure 5.5. The plane-projected BRDF F at some fixed surface point is a product of four
terms, expressed in the coordinates of the monitor: a slice of the BRDF itself,
the windowing function, the monitor angular emission, and the geometric
terms.

The integral is taken over the surface of the monitor plane. Here, bω(x) is

the emission pattern described in the previous section, and ρ(p, x → e;u)

is the BRDF at p (to reduce notational clutter, we use x and e to denote

unit vectors towards the emitter point and the camera in the BRDF ar-

guments). We assume that it is described by a set of parameters u. For

convenience, we also assume that it has absorbed the cosine term from

the rendering equation. The term G(x) contains known geometric trans-

formation terms related to the hemisphere-to-plane change of domain, as

discussed in Section 2.2.1. We also introduce a spatially invariant but

angularly varying emission term E, which models the uneven emission

of typical LCD monitors. It is obtained in a separate calibration stage

(Appendix I.A).

Substituting the emission pattern of Eq. 5.1 into the above formula, we

find

Lω(p → e) =

∫
R2

exp(−iωTx) ρ(p, x → e;u)w(x)E(x → p)G(x)︸ ︷︷ ︸
F (x;p,u)

dx (5.3)

See Figure 5.5 for an illustration of the terms in this integral.

Note that this formula now has a very special form: it is simply the

Fourier transform of the product of functions jointly denoted by F :

Lω(p → e) = F{F (x; p, u)}(ω) =: F̂ (ω; p, u) (5.4)

Hence, displaying patterns corresponding to different frequencies ω ∈
R
2, we obtain point samples of the Fourier transform of F . Figure 5.6

illustrates this idea. Knowledge of F , in turn, provides information about

the slice of the unknown BRDF ρ, as all other functions constituting F are

known. This enables us to fit a parametric BRDF model to it.

The image formation process can also be understood via reversibility of

light transport. If we were to replace the camera sensor pixel by a “laser”

that illuminates a surface point, and the monitor by a diffuse plane, we

93



Frequency domain measurements

=dx
exp(-iωTx)

magnitude and phase of F̂
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F

Figure 5.6. Measuring the inner product of the Fourier basis function (here correspond-
ing to the frequency ω = (4, 0)) and the BRDF slice F is equivalent to mea-
suring the Fourier transform of F at position (4, 0) in the frequency plane
(shown as the yellow dot). Here, F̂ is illustrated using the magnitude and
phase.

would find that the light reflected off the surface point forms a similar

BRDF slice as predicted by F onto the diffuser. See Figure 5.7 for an

illustration of this principle.1

5.2 The inverse problem

In terms of recovering the unknown BRDFs, the first idea might be to in-

vert the Fourier transform of the measurements, so as to obtain a primal

domain slice of the BRDF, to which a parametric model could be fitted

using classical techniques. Unfortunately, this cannot be done: the sam-

pling is highly incomplete, as the value of the FT is only known at a sparse

set of frequencies. Assuming a sparse spectrum with zero values outside

the sampled locations results in a highly oscillating signal with key fea-

tures lost (see Fig. I.3 in the publication). Naive interpolation attempts

between the sample points are also likely to fail, as the behavior of func-

tions in Fourier domain tends to be complicated. The missing frequency

content should be filled with data that is consistent with the frequency

content of typical BRDFs — but this behavior is difficult to characterize,

other than by explicitly evaluating Fourier transforms of actual BRDF

models.

Indeed, at this point a more natural approach would be to keep the data

in the frequency domain, and instead compute the Fourier transform for

the model predictions. The data fitting can then be performed directly

in the Fourier domain. This is the approach we adopt. The main diffi-

1These ideas can be made precise by a well known transformation of the ren-
dering equation: instead of light being emitted from the light sources, we may
consider so-called importance [125, 22] as being emitted from the camera. Im-
portance behaves exactly like light, and we may consider it to represent “vision
rays”. Conversely, light emitters act as “sensors” for importance.
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Figure 5.7. The image formation model from the reversed light transport viewpoint. The
camera emits “vision rays” through the pixel under consideration. The ray
hits the surface and becomes reflected according to the local BRDF. A slice
of the BRDF is projected onto the monitor, forming what is essentially the
function F . We make measurements of this slice by displaying basis func-
tion patterns on the monitor. Notice how the projected BRDF depends on the
BRDF on the surface. In particular, its colors, intensity and specular high-
light size are determined by the albedos and the glossiness of the BRDF. Its
position is determined by the surface normal, along with the relative geomet-
ric configuration of the camera, sample and the monitor.

culty of lies in evaluating Fourier transforms of BRDF slices (in the plane-

projected form of Eq. 5.3). Before tackling this challenge, let us formulate

the optimization problem. We employ the framework of prior-guided data

fit optimization developed in Sections 3.1 and 3.2. Given the BRDF ρ,

the model developed in the previous section predicts the observed Fourier

transform value: it is our forward model. We assume that the model also

holds in the real world, and hence describes our measurements. Our prob-

lem is the inverse problem of finding, for each pixel, a ρ that predicts the

observed values.

We assume that there exists some underlying set of parameters u∗i that

for each of the I pixels describes the true real-world BRDF at that lo-

cation. The measurements zi,j are assumed to be randomly corrupted

predictions of the forward model, i.e. zi,j ≈ F̂ (ωj ; pi, u
∗
i ). Following the

general reasoning in Section 3.1, we seek to solve the following problem

to recover these unknown parameters:

argmin
u

I∑
i=1

J∑
j=1

‖F̂ (ωj ; pi, ui)− zi,j‖22 + P (u) (5.5)

Here, here the first term corresponds to the data fit, and the second term

P (u) corresponds to priors, which we will describe later.

The problem is solved by Levenberg-Marquardt optimization (Section 3.2.2).

The required Jacobian matrices are computed by finite differences. The
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optimization is initialized based on heuristic estimates about the param-

eters, which can be read directly off the data (Appendix I.D). For perfor-

mance reasons, the optimization is performed in a sequence of coarse-

to-fine stages, with a special spatial upsampling procedure in between

(Section I.7.2).

5.2.1 Approximate Fourier transforms of BRDF models

Fourier transforms of most functions do not admit to a closed form ex-

pression. This holds for BRDF models as well. While transforms can be

evaluated numerically, this approach would be unwieldy for the kind of

optimization problems we are looking to solve. In particular, quadrature-

based approaches would require a very fine sample point spacing, and

consequently a very large number of BRDF and pattern function evalua-

tions even for just evaluating the Fourier transform value at a single sur-

face point and a single frequency. The requirement of computing deriva-

tives for optimization would further exacerbate the computational diffi-

culty. Furthermore, the use of fixed grid patterns would likely result in

structured artifacts in the results.

Fortunately, BRDFs in the plane-projected slice form of Eq. 5.3 can be

closely approximated by a class of functions that has a simple analytic

Fourier transform formula: Gaussian mixture models. Please refer to

Section 3.4 for a review of the relevant properties of these functions. No-

tice in particular the similarity of the slices in Figure 5.5 and the general

shape of Gaussian functions in Figures 3.8 and 3.10

Let us see how the function F in Eq. 5.3 could be approximated as a

weighted sum of Gaussians. Note that it is a product of four terms. Be-

cause Gaussians are closed under multiplication, approximating each of

the terms by Gaussians separately will yield a Gaussian mixture approx-

imation for the entire formula.

Windowing and angular emission terms The windowing function w(x),

as described in Section 5.1.1, is already a Gaussian. This is the reason

why we chose to use a Gaussian window. The angular emission func-

tion E is typically a broad, smoothly falling off function, which is well

approximated by a Gaussian. The apparent position and size of the lat-

ter varies as a function of the surface point p under consideration; the

function scaled and translated accordingly (Section I.4.2).
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Specular term The remaining terms — namely, the geometric terms and

the BRDF itself — have a somewhat more complex interplay. We split the

BRDF into a sum of diffuse and specular components.

We approximate the specular part as a sum of two Gaussians — a wide

and a narrow one — centered around the ideal reflection hit point on the

monitor, with the surface normal orientation parameter considered. The

overall width of the lobe is controlled by a glossiness parameter. The

hemisphere-to-plane projection also induces a geometric transformation

that stretches the lobe according to the distance and the angle of the inci-

dence to the monitor. We formulate a first-order affine approximation to

this transformation, as affine transformations preserve the Gaussianity

of a function. The approximation is based on microfacet theory, and hence

also reproduces the narrowing of the reflection lobe depending on the

surface incidence angle. In particular, it approximates the Blinn-Phong

BRDF (Section 2.3.2).

We use a sum of two coinciding Gaussians for the specular term to simu-

late a commonly observed effect, where the specular lobe is highly peaked

around the center, but falls of slowly at the outer edges. This behavior is

not well captured by a single Gaussian (nor by many classical paramet-

ric models, which very closely resemble Gaussians; recent research has

identified this problem and proposed models with heavier tail falloff [84]).

The width ratio of the two Gaussians is controlled by a parameter we call

kurtosis.

The intensity and color of the lobes is controlled by and albedo param-

eter. The intensity is also modulated based on geometric considerations.

For simplicity and computational performance reasons, we drop the ge-

ometric terms G(x) from the specular term, as their main intended ef-

fect — preservation of measure in the hemisphere-to-plane projection (see

Figure 2.6) — is readily achieved by simply using normalized Gaussians

as the lobe components.

The details of the specular model are discussed in Section I.5.2 and Ap-

pendix I.C.

Diffuse term The diffuse component is simply the cosine term absorbed

from the rendering equation, times an albedo multiplier parameter. The

orientation of this lobe depends on the surface normal parameter. This

component turns out to possess a favorable structure in the plane param-

eterization: it decomposes into a product of a smooth lobe and an affine

function. We absorb the former into the geometric terms G(x), and ap-
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proximate the resulting smooth, peaked lobe by a mixture of three pre-

determined Gaussians. The position, intensity and scale of this lobe de-

pends on the geometric configuration of the point and the monitor. Some-

what surprisingly, the affine function can be handled analytically: mul-

tiplication by an affine function corresponds to directional differentiation

in the Fourier domain, and Gaussian functions are easily differentiated,

as discussed in Section 3.4.

See Section I.5.1 and Appendix I.B in the publication for the details on

the diffuse model and the handling of the geometric terms.

5.3 Priors

The main difficulty in the optimization process stems from the ambigu-

ity between the diffuse and specular components. As the camera is sta-

tionary, we cannot use the cue that the diffuse component is invariant to

the viewpoint. We also choose not to use polarization for the separation,

as this would introduce significant complexity to the acquisition setup.

Hence, we base the separation on the apparent shapes of the reflectance

components: typical specular components are narrow, whereas typical dif-

fuse components conform to the shape of the cosine lobe. Furthermore, we

are aided by chromaticity differences, as the lobes often have different col-

ors.

The separation problem becomes ill-posed at points with very dull spec-

ular reflectance, as the appearance of the diffuse and specular lobes then

becomes very similar. In the worst case, very wide specularity is ran-

domly interpreted as diffuse in some pixels, resulting in extreme noise in

the solution.

It is also generally useful to restrict the range of values the parameters

should prefer, as sometimes extremely unnatural values can be used to

satisfy the data fit term. These solutions are highly unlikely to correspond

to the underlying reality.

To discourage this behavior, we use a combination of pointwise priors

and smoothness constraints. The former are relatively standard: for each

variable, we state a preferred value and a spread around it.

The input data contains significant clues about the positions of abrupt

edges in the albedo maps. On the other hand, regions with low variation

in the input data are unlikely to contain abrupt jumps in the underlying

explanation. Based on these observations, we use data-derived spatially
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varying weights for the smoothness priors.

Finally, we enforce the integrability of the normal map by a separate

prior that penalizes the curl of the vector field.

The details of the priors are discussed in Section I.7 and Appendix I.E.

5.4 Results and discussion

Implementation We implemented the computations in Matlab, and per-

formed the capture using a relatively high-quality LCD monitor and a

high-end Canon SLR. We also tested the method for one dataset using a

laptop monitor. The details are discussed in Section I.8.

Test cases and results The method was tested on a variety of surfaces,

illustrated in Figure I.6. Figure I.7 in the publication shows the solved

parameter maps for each of the captured datasets. Figure I.9 shows a

set of novel-angle photographs of the surfaces, with our synthetic ren-

derings made under similar lighting and viewing conditions. The project

webpage2 contains a more complete set of results, including videos of the

novel-angle comparisons. An additional result from the method (captured

using somewhat different hardware) is also shown in Figure 1.6.

As demonstrated by the results, the captured material descriptors suc-

cessfully reproduce a wide range of reflectance effects in the datasets. Sur-

face normal variation plays a significant role in all of them. The samples

contain a variety of degrees of glossiness and specularity. In particular,

the Crumpled dataset, which contains a low-gloss white piece of paper

overlaid with extremely glossy clear tape, demonstrates two extremes at

once. Similar extremes can be seen in the Mix dataset, which contains

several pieces of paper, cardboard and tape, with wear and tear and pen-

cil markings.

Degrees of glossiness The method is particularly well suited for captur-

ing the extreme gloss in mirror-like reflections. Classical methods based

on point sampling struggle with such materials, as the angular space

would need to be sampled at an extremely fine resolution. These methods

also generally need high dynamic range bracketing [31], as the apparent

intensities of reflections from point sources can vary greatly.

The success with highly glossy materials can be seen as a result of the

tendency of Fourier transform to reverse the roles of narrow and broad
2����������	
�����
�����
������
���
���������
�������
���������

99



Frequency domain measurements

functions. The cost of this is that we sometimes suffer from an opposite

problem: very wide specular lobes can be difficult to distinguish from the

diffuse component. This is also related to the fact that the monitor only

subtends a limited solid angle above each surface point. Some variations

in the specular albedo and glossiness in e.g. the Crumpled dataset are

most likely mathematical artifacts resulting from this ambiguity. In prac-

tice, their visual effect in re-renderings is small, but we cannot claim exact

photometric accuracy.

The Gaussian approximation framework would in fact readily support

certain other types of patterns as well — in particular, localized Gaus-

sians, optionally modulated by plane waves (i.e. Gabor functions [82]).

Such hybrid measurements could be used in addition to the frequency

measurements to resolve some of these ambiguities.

It should be noted that certain other kinds of variations of the patterns

would not be helpful in our problem. In particular, colored patterns (as

opposed to the monochrome patterns we use) would merely multiply the

entire measurement value by the known pattern color, which would then

be trivially divided out during the optimization. Hence, no new informa-

tion would be revealed.

Angular effects The method gains its efficiency by focusing on some of

the most commonly occurring materials: dielectrics that are well mod-

elled by a combination of a diffuse and specular lobe, the characteristics

of which can be inferred from a single viewing angle slice. Materials with

complex angular behavior may not generalize correctly — the goal with

respect to these is merely plausible generalization. In particular, the mea-

surements contain little evidence about the behavior of the Fresnel term.

We simply assume a reasonable default behavior for this component.

Failure cases Figure I.11 demonstrates failures resulting from violations

of the model assumptions. As we do not support anisotropy, the capture

of the brushed metal tray results in a graceful isotropic approximation of

the specularity. The fabric is an example of a material that is generally

difficult to model using the typical diffuse-specular-normals model. In the

case of our algorithm, the strong self-shadowing of the three-dimensional

structure of the surface has given rise to spurious high-frequency content,

which the optimizer incorrectly interprets as specularity.

Priors The priors, while useful and necessary for reliable capture, are

also somewhat heuristic. Their role is also mixed: in addition to enforc-
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ing desired qualities of the solution, they guide the convergence of the

optimization in a way that prevents the formation of certain types of ar-

tifacts related to the non-convexity of the problem. In particular, without

smoothness priors, low-gloss surfaces may sometimes become split into

distinct regions where a “specular explanation” and a “diffuse explana-

tion” dominate, respectively. Sometimes this gives rise to a “frontline”

between the regions that moves as the iteration proceeds. The priors ef-

fectively prevent the formation of such artifacts, but this also requires

them to be quite strong — possibly exceedingly so for some materials. It

would be interesting to explore some alternative ideas — in particular, the

preconditioning ideas we discuss in connection with Publication III in Sec-

tion 6.3.4 might suggest more gentle ways for guiding the convergence

(obviously the details would differ significantly).3

Design choices The ideas could also be extended to other physical se-

tups. For example, addition of a second or even multiple cameras, shoot-

ing measurement simultaneously, could eliminate much of the need for

the priors due to the easier diffuse-specular separation problem, and pro-

vide clues about the presently missing angular information.

The geometric calibration procedure presented in the paper is relatively

simple, but in practice requires the monitor and the sample to fit within

the captured photographs simultaneously. This is wasteful in terms of

the capture resolution, as the full image area cannot be devoted to the

material sample. Alternative calibration procedures could probably be

devised. Presently it is not clear how sensitive the method is to errors in

both the geometric calibration, and the calibration of the monitor emission

pattern. Similarly, the effects of many other configuration parameters

have not been explored thoroughly. For example, the set of measured

frequencies is somewhat heuristically chosen.

3In fact, we have found some success in experimenting (in the context of an-
other algorithm) with the idea of using a different trust region for the Levenberg-
Marquardt algorithm. Instead of the usual addition of the λD term in Eq. 3.37,
we can use a term λ(D + κ∇), where ∇ is a finite difference matrix and κ is a
weight. The idea is to make the optimization steps themselves spatially smooth.
While we have not studied this procedure in detail, we have tentatively found
that it results in a “smooth-to-fine” convergence, where the optimizer first finds
a blurry solution and gradually fills in fine detail as the weight λ is driven down.
The advantage over smoothness priors is that the expected solution itself is not
biased towards smoothness. This might prove useful in context of the algorithm
in Publication I, and Publication II as well.
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Performance The solver takes roughly two hours per dataset in our un-

optimized Matlab implementation. Tentative experiments with a C++-

based solver suggest that 10×, or even 100× faster solution times might be

achievable with reasonable optimization efforts and possible use of GPU

acceleration.
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6. Stationary materials

A significant portion — arguably the majority — of real-world materials

exhibit significant repetition: large swathes of objects are covered by vari-

ations of essentially the same piece of material. Man-made objects in

particular are often covered “by the metre” by materials such as fabric,

wood, stone or leather. These surfaces often look uniform from afar — the

only spatial variation occurs below a small characteristic scale.

When the characteristic scale is microscopic, the material can be mod-

eled by a homogeneous microfacet-based BRDF: spatial variation exists

but it is invisible at the macroscopic scale. Its aggregate effect is com-

pletely summarized in the angular variation encoded in the BRDF, and

the underlying spatial features need not be modeled explicitly. Indeed,

doing so would be prohibitively expensive.

At the other extreme — implicitly assumed by most spatially varying ap-

pearance capture methods — the material varies globally (on macroscopic

scale), and individual features in the material are unique. An example of

this is the wrapping paper in Figure 1.6. For example, even full knowledge

of the bottom half of the paper would yield little clue about the specific

content of the top half.

In between these two extremes is a very common case, where the char-

acteristic scale is large enough to cause visible spatial variation, but small

relative to the size of the object itself. This domain is sometimes referred

to as meso-scale. Consider a typical leather sofa, as seen in Figure 6.1: ig-

noring large-scale geometric shape, the surface material consists of tens

of thousands of small bumps, few millimeters in size, separated by small

ridges. This structure is well modeled by spatially varying BRDF (with

surface normal variation included). However, due to the spatial repeti-

tion, the full SVBRDF is highly redundant: any few-centimeter exam-

ple patch (exemplar) suffices to describe the material almost entirely, as
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Figure 6.1. A typical man-made object covered by a stationary material. While the
macroscopic shape of the sofa varies, its surface material is essentially the
same everywhere. The only spatial variation in the material occurs within
the scale of a few millimeters. A small local neighborhood (e.g. as marked by
the rectangle) suffices to describe the key features of the entire material.

the remainder can be seen as random variations of the same piece. In

other words, each neighborhood has the same material, up to some textu-

ral permutation (characterizing which turns out to be non-trivial). From

an appearance modeling standpoint, one is rarely interested in the pre-

cise placement of the individual bumps, as long as their overall statistical

appearance is faithfully reproduced. We call this type of repetition sta-

tionarity, or texturedness. [57, 71, 104]

The above observation is the underlying idea of texture synthesis: a va-

riety of powerful synthesis methods exist for amplifying a small exemplar

into an extended seamlessly repeating texture. The techniques can be ap-

plied to RGB images as well as SVBRDF maps; however, the exemplar

must first be authored or captured by other means.

Publications II and III apply these ideas in an unusual fashion to aid

appearance capture. Their scope is limited to stationary materials. In

exchange, they offer a dramatically simplified capturing pipeline, recon-

structing detailed SVBRDF representations from only two photographs,

and a single photograph, respectively. Both methods use a head-on flash

photograph as an input, as shown in Figure 6.2. The underlying idea is

simple: the photograph contains hundreds of repetitions of what is es-

sentially the same piece of material. However, due to the near-field flash

configuration, each of these pieces is illuminated from a slightly different

direction. Recall that this is exactly what is needed in appearance cap-

ture: the solution material will be an SVBRDF that reproduces each of

these appearances under corresponding illuminations. Figure 6.2 illus-

trates the various different appearances observed in a single flash image.
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Figure 6.2. A head-on flash image of a stationary leather material. On the right are four
blow-ups of local regions of the photograph. Notice how each piece shows
the same material under a different lighting condition. However, the pieces
cannot be used directly for SVBRDF fitting, because the textural features (i.e.
the bumps and the ridges of the leather) do not coincide across the tiles.

The challenge, however, lies in the qualification “essentially the same

piece of material”. The situation is not entirely analogous to having mul-

tiple lighting observations of a single, fixed piece of material. Were it so,

the task of fitting an SVBRDF would be relatively easy: the setup would

essentially be equivalent to a spatial gonioreflectometer with a somewhat

restricted angular range. However, as described above, the similarity only

applies in a textural sense, up to some unknown permutation of the pixels.

The two methods take alternative routes in dealing with this problem.

Publication II explicitly undoes the unknown permutation using a sep-

arate no-flash guide image that reveals the particular spatial arrange-

ment of the textural features in the material. This information is used to

rearrange the observed pieces into a synthetic “gonioreflectometer-like”

set of observations conductive to direct pointwise BRDF fitting as in Sec-

tion 3.1.1.

In contrast, Publication III sidesteps the need for explicit undoing of

the permutations by adopting a novel approach to SVBRDF fitting itself.

Whereas traditional approaches work by essentially reducing the prob-

lem to a set of independent BRDF fitting tasks at disjoint pixels (perhaps

loosely coupled via priors), our approach drives an entire SVBRDF patch

towards textural similarity with pieces of the input photograph when ren-

dered. The idea of a textural similarity metric is to compare the appear-

ance of images in a manner that is invariant to textural permutations; in

other words, two differently arranged pieces of the same texture should

register a high similarity. However, the metrics traditionally used in tex-
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ture synthesis have suffered from either low image quality, or unwieldy

mathematical formulations. A key component of our approach is the re-

cent neural network based texture descriptor of Gatys et al. [46], which

for the first time demonstrated high-quality parametric texture synthesis

results via direct gradient-based optimization.

6.1 Texture synthesis

The methods in Publications II and III lean heavily on ideas and methods

applied in texture synthesis. Let us briefly review some relevant back-

ground on the topic.

The typical goal of texture synthesis is to produce new instances of an

existing texture exemplar. The most common application is amplification:

returning to the leather sofa example above, a texture artist can save a

significant amount of time by merely authoring a small, detailed piece of

the leather material, and using texture synthesis to seamlessly replicate

it to the remaining square meters. Other applications include for exam-

ple inpainting, where a missing region of a texture is filled in using the

information in the surroundings.

On the other hand, quantifying and analyzing texture is an interest-

ing question in itself. Researchers in visual perception have long been

interested in texture [57, 71, 6, 88]. Nevertheless, a fully satisfying and

practical definition of texture remains elusive.

The underlying idea behind most texture synthesis methods is to extract

a feature representation of the input exemplar, and to “forget” the particu-

lar spatial arrangement of these features by summarizing them into a set

of position-invariant statistics. The synthesis step then consists of gener-

ating a novel image with the same feature statistics. The success of this

procedure depends on how sensitive the feature representation and its

statistical characterization is to visually meaningful patterns in natural

images. On the other hand, it also depends on the ability of the synthesis

procedure to actually find an image that simultaneously satisfies all of the

statistics.

6.1.1 Non-parametric methods

Texture synthesis algorithms can roughly be divided into two classes:

parametric and non-parametric methods.
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Non-parametric methods consider the exemplar as a collection of rep-

resentative pixel neighborhoods, and perform the synthesis by directly

copying pixels or continuous patches into the target image. Methods in

this category have traditionally produced textures of higher visual qual-

ity than the alternatives.

The method of Efros and Leung [40] is a successful non-parametric tex-

ture synthesis method based on growing a texture from an initial seed. At

each step, a new pixel is copied from the exemplar onto the yet to be filled

outer edge of the synthesized image. The pixel is chosen by finding a best

match in the exemplar to the already-filled part of the local pixel neigh-

borhood. This greedy procedure is surprisingly successful and produces

plausible repetition for a wide range of textures. However, the repeti-

tion can sometimes be monotonic: in particular, the method sometimes

gets stuck into repeating a tiny part of the exemplar in a regular high-

frequency pattern. Efros and Freeman [39] proposed an improvement

called Image Quilting, where a larger patch of the exemplar is copied at

once. A dynamic programming approach is used to determine a ragged

seam that best hides the transition between the old part and the new.

Non-parametric methods can be motivated as Markov Random Field

models [77, 47]: an exemplar defines a probability distribution over the

occurrence of different pixel neighborhoods. This induces a textural sim-

ilarity metric, where the distance between two images is the sum of the

pixel differences between best-matching neighborhoods.

Non-parametric methods can be seen as heuristics that optimize the

value of this type of a metric between the resulting image and the exem-

plar. Some methods take this viewpoint explicitly [80, 74]. However, given

the combinatorial nature of the metric, principled optimization is difficult,

and most approaches resort to greedy heuristics that sequentially pick

small discrete improvements that yield immediate improvement. Note

that, analogous to non-convex continuous optimization, this kind of a pro-

cedure is not guaranteed to converge to a global optimum. In fact, finding

global optima even for seemingly simple models of this type is difficult,

as evidenced by e.g. Ising models. [77, 87] This makes it difficult to adapt

these algorithms to other contexts. Indeed, our early attempts at applying

these methods to SVBRDF recovery met with little success.

Note however that while these methods are typically formulated in terms

of two-dimensional RGB images, they can also be applied on other multi-

dimensional multi-channel signals — in particular, SVBRDF maps expressed
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as multi-channel 2D images of BRDF parameters.

6.1.2 Parametric methods

Parametric texture synthesis methods are based on summarizing the im-

age features into a set of parametric statistics, as opposed to the direct

pixel values.

A very naive example of a parametric method would be to compute the

mean and variance of the pixel values in the exemplar, and to output

an image of normally distributed noise scaled and shifted according to the

measured parameters. Clearly, this model is too weak to reproduce almost

any texture of interest.

A more useful textural descriptor is the Fourier modulus. Here, the

statistics are the absolute values of the Discrete Fourier Transform of the

exemplar. An image with the same statistics can be synthesized by aug-

menting these values with a random phase, after which an inverse Fast

Fourier Transform produces the synthesized texture. [43] The resulting

images lack higher-level image features such as edges, but they regard-

less reproduce some simple textures well.

The method of Heeger and Bergen [61] uses histograms of steerable

pyramid coefficients [116] as the statistics. The steerable pyramid is an

overcomplete linear basis representation consisting of oriented localized

directional derivative -like kernels in a hierarchy of sizes. The statistics

are imposed on an initial noise seed image by an iterative procedure. The

method often yields a distinct improvement over random phase synthe-

sis. However, the image quality of the results remains clearly inferior to

non-parametric methods.

Portilla and Simoncelli [104] take the idea of steerable pyramid coeffi-

cient histograms further, by also including various correlation statistics.

The synthesis begins from noise and proceeds by iteratively enforcing

each kind of statistic in turn. The quality is clearly improved over Heeger

and Bergen, but it still lags behind non-parametric methods. Neverthe-

less, the method can be seen as an interesting experiment regarding the

meaning and structure of texture.

The method of Portilla and Simoncelli [104], from the year 2000, was

essentially the state of the art in parametric teture synthesis up to 2015,

when Gatys et al. [46] introduced a synthesis method based on matching

the statistics of convolutional neural network activations. The results

of the method rival those of non-parametric methods. Furthermore, in
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Flash Guide

Figure 6.3. Representative input data for the two-shot method.

contrast with most previous work, the synthesis step is based on a well-

defined continuous optimization procedure. This opens up possibilities for

combining texture synthesis with other data-fitting tasks, which is indeed

the approach we take in Publication III. We will review the method in

more detail in Section 6.3.1.

6.2 Two-shot method (Publication II)

Publication II presents a method that solves for SVBRDF parameter maps

from a pair of photographs: a flash photograph, and a coincident no-

flash guide photograph. The implementation in the publication uses pho-

tographs acquired using a mobile phone camera. Higher-quality cameras

could alternatively be used if accuracy is desired at the cost of some conve-

nience. Figure 6.3 shows representative examples of the input photograph

pairs.

The input photographs are first split into a regular grid of tiles. The

tiles must be large enough as to each contain a representative piece of
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Figure 6.4. Steps of the two-shot algorithm.

the texture, but small enough that the flash lighting is roughly constant

within each. The idea is to “summarize” the appearance of all these tiles

into a single tile of SVBRDF parameters, in the sense that re-rendering

the SVBRDF tile under the same illuminations should reproduce the ap-

pearance of the original tiles, up to a textural permutation.

To achieve this, we permute the pixels of each flash photograph tile into

a common spatial structure. The guide image is used to find the permu-

tations. The permuted flash tiles are essentially synthetic re-lightings

of the same tile under different illuminations (with known illumination

directions, due to the simple acquisition geometry). The image stack is

analogous to that obtained by a spatial gonioreflectometer, and hence a

BRDF can be fitted to each pixel. Finally, the contents of the SVBRDF

summary tile are copied back across the entire input image.

6.2.1 Algorithm

Practical implementation of these ideas is less than straightforward. In

particular, an additional refinement step is needed due to the noisiness of

the permutation estimates.

The algorithm can roughly be divided into five steps. Please refer to the

publication for the detailed description of the method; below, we review

the key ideas and reasoning behind the steps. The intermediate results

corresponding to these steps are illustrated in Figure 6.4. A selection of

the input flash photograph tiles is shown in Figure 6.4a.
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Figure 6.5. The permutation between a source tile and a master tile is found by compar-
ing the corresponding guide images using greedy BRIEF descriptor matches.
The result is a “transport map” that describes the closest match for each pixel
between the source and the master tile. This map is used to permute the
source flash tile pixels into the structure of the master tile. Notice how the
result combines the illumination of the source tile with the spatial structure
of the master tile.

Initial reflectance transport In the first step, we bring the tiles into a com-

mon spatial structure. The key idea is to use the no-flash guide image to

find a suitable permutation.

First of all, we need to fix some spatial structure to which the flash

tiles are permuted. This is easy: because all of the tiles are assumed

to represent the texture, we simply choose any one of them as the spatial

reference. We call this tile the master tile.

The spatial permutations are computed using the guide image. It is

taken in a precisely coincident position with the flash photo, and hence

any permutation of the guide tiles is also valid for the flash tiles. Further-

more, it is shot under uniform lighting conditions, so that the appearance

of the material is uniform across the photo. The key assumption is that

local pixel neighborhoods that look identical in the guide photograph also

share the same SVBRDF. The permutations are computed by greedily1

finding the best matching neighborhood between each tile and the master

tile, using a feature descriptor [18] that is robust to small discrepancies.

Figure 6.5 illustrates a typical pair of tiles and the permutation map be-

tween them.

Finally, the pixels of each flash photograph tile are rearranged according

to the permutations. The end result is illustrated in Figure 6.4b.

1The resulting mapping is not one-to-one, and hence not exactly a permutation;
however, we use the term as it describes the general intent of the procedure. We
did in fact enforce a convex relaxation of the one-to-one condition at an earlier
stage of the project, but found that the benefits did not justify the computational
expense of the procedure. Specifically, we solved for a transport map between
the tiles using a linear program formulation of the Monge-Kantorovich optimal
transport problem [126], with the image feature distances as the pairwise dis-
tance matrix. Furthermore, we used an apparently novel spatial continuity prior
that favors matches between continuous spatial regions. The problem was solved
using the primal-dual proximal method of Chambolle and Pock [19].
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Initial reflectance fit Following the permutation, the flash tiles possess

the same spatial structure. Hence, the same pixel position in each tile

now corresponds to a light sample of the same BRDF. This allows us to

fit a parametric BRDF model (the BRDF Model A of Brady et al. [14],

extended with anisotropy) to each surface point. The input data and the

optimization task are conceptually similar to the example presented in

Section 3.1.1.

Plotting the value of the same pixel in different tiles results in a visual-

ization of the estimated BRDF slice at the surface point. See Figure II.6

for an illustration of these slices, and how subsequent processing steps

improve them.

The input data to the fitting step is very noisy due to misalignments

and false matches in the permutations. Performing the BRDF fit inde-

pendently at each point leads to a noisy solution with occasional gross

outliers. Hence, we use smoothness priors that essentially enable the

neighboring pixels to share data between one another: when an individual

pixel does not have sufficient data to determine the BRDF, it may choose a

plausible solution that appears to be favored by other pixels in the neigh-

borhood. Additionally, we use pointwise priors to specify plausible values

of the parameters, and also enforce the normal map integrability by a

prior. The data fit problem is solved by Levenberg-Marquardt optimiza-

tion using finite differences for the derivatives where needed. The process

is reminiscent of the optimization in Publication I.

The result of the fitting is a single tile of SVBRDF parameters, shown

in Figure 6.4c. Due to the low quality of the input data, the solution tends

to be excessively smooth and low-contrast.

Refinement In the third step, we refine the result of the SVBRDF fitting

to restore the original crispness of the input photo. First, we re-render

the SVBRDF into a flash-illuminated image stack, like the original tiling.

The washed-out appearance of the tiles is apparent in Figure 6.4d. Our

strategy is to copy high-quality detail onto these tiles from the correspond-

ingly lit input flash photograph tiles, while retaining the consistent spa-

tial structure we achieved in the previous steps.

We achieve this by applying the texture synthesis algorithm of Heeger

and Bergen [61] (See Section 6.1.2) in an unusual fashion. Previous work [95,

98] has demonstrated that the algorithm can be used to transfer high-

frequency textural detail from one image onto another, by using the latter

as a seed image for the synthesis (as opposed to noise). Figure 6.6 illus-
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trates this process. We find that applying the same operation on our tiles

often almost perfectly restores the appearance of the originals.
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Figure 6.6. Texture synthesis algorithm of Heeger and Bergen [61] applied with different
types of seed images. a) Typical use of the algorithm: the steerable pyramid
statistics of the exemplar (first row) are iteratively imposed on an initial seed
image of noise (second row). The result is a noise with some textural char-
acteristics of the exemplar (third row). b) If an image is used as the seed in
place of noise, a hybrid image is produced. The spatial structure of the seed
image is combined with the fine details of the exemplar. c-e) In the refine-
ment step, we use the same idea to combine the fine detail from the original
flash tiles (first row) with the spatial structure represented by the low-quality
relit tiles (second row). Notice that the result image (third row) has inherited
the spatial structure of the seed.

The result, shown in Figure 6.4e, is a stack of high-quality images de-

picting the same piece of material under a variety of lighting conditions.

Final reflectance fit To obtain an SVBRDF corresponding to this stack,

we again repeat the fitting procedure of the second step, this time using

the refined tiles as the input, and the SVBRDF solution of the second

stage as the initial guess. The result is shown in Figure 6.4f.

Reverse reflectance transport The high-quality SVBRDF solution tile from

the previous step only covers a small spatial region of the original input

photographs. In the final step, we propagate this information to the en-

tire input image. This is done using the same kind of permutations as in

the first stage, only computed in the reverse direction. To obtain a smooth

solution despite the raggedness of the permutations, we copy not only

the SVBRDF values, but their spatial gradients as well. After copying,
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Figure 6.7. The gradient-domain reverse transport procedure visualized for the normal
map. The solution SVBRDF, along with its horizontal and vertical finite dif-
ference maps (a), is copied to the full-size image using a rough reverse trans-
port map. The result (b) is a spatially extended coarse version of the map
and the gradients. Finally, the “primal” map and the gradients are fused to-
gether by solving a screened Poisson equation. The result (c) is a high-quality
SVBRDF map without visible seams from the transport.

the primal and the derivative values are reconciled by solving a screened

Poisson problem [7]. Figure 6.7 illustrates the process. Prior to copying,

we also filter the transport map to smoothen the noisy boundaries of the

regions, as explained in Section II.4.2.3.

The solution tile could alternatively be used as an exemplar for classi-

cal texture synthesis methods such as Image Quilting [39]. In fact, we

used this approach before we implemented the reverse transport method

described above. It works relatively well, but the texture often becomes

somewhat monotonous. The gradient-domain transport idea can be ap-

plied for further hiding the seams in Image Quilting as well. To our knowl-

edge, this idea of gradient-domain non-parametric synthesis has not been

presented in literature before.

6.2.2 Results and discussion

Implementation We implemented the method in Matlab, and used CUDA

to accelerate the brute-force feature matching in the reflectance transport

stages. The datasets were captured using the standard camera and flash

on an iPhone 5.

Datasets Section II.5 presents the results of the method. We captured

a relatively large dataset of 72 flash/no-flash photograph pairs. The full

dataset, images of the solved SVBRDF maps, video renderings of the re-

sults, and the method source code are available at the project webpage2.

The captured samples represent a wide range of materials, including

2
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plastics, paint, leather, wood, paper, metals, fabrics and a few odd ones

such as a bowl of seeds. Many of them exhibit significant normal vari-

ation, as well as anisotropy. Several datasets violate some of the basic

model assumptions, in particular stationarity. We find that the method

often tolerates these violations well — see for example Figure II.9, which

demonstrates the result from a material with non-stationarities.

We find good results on most of the datasets. Figure II.8 demonstrates

a selection of SVBRDF maps solved using the method, along with corre-

sponding pieces of the input data with a re-rendering. Most of the solu-

tions are visually pleasing and appear plausible on an informal examina-

tion.

Validation experiments We performed more rigorous evaluations on some

of the datasets. In Figure II.10, we compare renderings of the materi-

als side-by-side with photographs of the corresponding physical samples,

both in the original as well as novel illumination and viewing conditions.

While a good visual agreement is found, the results are not photometri-

cally accurate. This is not surprising, given the fact that the materials

were solved from consumer camera phone JPEG images that have gone

through an unknown non-linear color processing pipeline.

We conducted two validation expeeriments to examine the effect of the

quality of the data on the solutions. In Figure II.13, we demonstrate re-

sults from materials captured using a high-quality SLR camera. The gen-

eral appearance of the solutions is slightly sharper, but qualitatively sim-

ilar. This experiment also confirms that we have not overfitted our model

to the characteristics of the iPhone photographs.

The second experiment was conducted using synthetically rendered data.

An SVBRDF was authored in an image editing program, and rendered

using our forward model. This rendering was used as an input to the

method. Figure II.12 shows that the method recovers an SVBRDF map

that matches the known ground truth well. Of course, this experiment

is liable to produce overly optimistic results, as the data is free of errors

and perfectly conforms to the model assumptions. As a stress test, we

introduced various severe distortions (including noise, non-linear color

processing, overexposure, stray ambient light, and misalignment of in-

put photographs) into the rendered synthetic data prior to feeding them

into the method. The results are robust: while the method obviously has

no mechanism for undoing the distortions, it gracefully absorbs them into

the solution and preserves the qualitative character of the ground truth.
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Finally, to examine how well our solutions correspond to the true phys-

ical characteristics of the materials, we used the GelSight scanner [70] to

measure sub-micron accurate normal maps for a selection of the samples.

We find good qualitative agreement. Figure II.11 shows the results.

Limitations Besides the obvious requirement of stationarity, the limita-

tions of the method are somewhat similar to those of Publication I. We

only observe the material from a fixed camera position, and hence mea-

sure only a two-dimensional slice of the full four-dimensional angular

space. Again, we aim for plausible generalization, and assume reason-

able standard behavior for e.g. the Fresnel term. Note however that the

Fresnel model is added as a post-process to the optimization. The user is

free to specify another Fresnel model, for example if it is known that the

material is a metal.

Our observations are made from a limited range of viewing and illumi-

nation angles within this slice. These angles are determined by the field of

view of the camera (roughly 66 degrees diagonally on the iPhone 5). Spec-

ular highlights wider than this opening may be confused with the diffuse

component. At the other extreme, we do assume that the appearance of

the material is roughly constant within a tile. Hence, specular lobes with

an opening of less than a few degrees may not be reliably resolved.

6.3 Neural one-shot method (Publication III)

As discussed, Publication III addresses a similar problem of recovering a

representative SVBRDF tile from a flash photo. However, it takes a vastly

different approach than Publication II. Instead of using a separate no-

flash photograph to undo the permutation of the spatial structures of the

tiles, we use a similarity metric that is invariant to such permutations.

6.3.1 Neural texture synthesis

The method builds on a recent texture synthesis approach by Gatys et

al. [46]. We will review it here. For a review of relevant concepts on

convolutional neural networks, see Section 3.5.

As discussed, the methods of Heeger and Bergen [61], and Portilla and

Simoncelli [104] use statistics of steerable pyramid decompositions as de-

scriptors of visually salient features in the exemplar. The steerable pyra-

mid essentially decomposes the image into responses of variously sized
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and oriented edge-detection filters. This addresses many properties of

natural images: their salient features tend to be variously oriented edges,

and they exhibit structure at multiple scales. Indeed, mammalian early

visual cortices are known to use oriented bandpass filters with similar

characteristics [90, 6, 1, 88]. Portilla and Simoncelli in particular explore

a variety of statistics related to the decomposition, and identify how they

help at e.g. recovering regular structure, or representing directional shad-

ing. Despite significant improvements upon Heeger and Bergen’s more

straightforward approach, the method is only partially successful in terms

of image quality typically expected in computer graphics applications.

As noted in Section 3.5, the activations produced by image recognition

neural networks are analogous to traditional manually engineered fea-

ture descriptors — only, wildly more successful at recognition tasks. This

leads one to suspect that they might have wider applicability as well, and

this is indeed the case. Razavian et al. [107] demonstrate that the activa-

tions beat traditional descriptors by a large margin in tasks such as image

retrieval.

Method of Gatys et al. These considerations suggests that neural activa-

tions might also be good descriptors for texture synthesis. Indeed, there

is some indication that the human visual pathways rely on a hierarchi-

cal abstraction of features similar to neural networks [133, 76]. Gatys et

al. [46] base their texture synthesis method on this idea.

Their method is based on feeding the exemplar into a pre-trained VGG-

19 network, and collecting statistics of the activations from various layers.

The statistics are very simple — they are Gram matrices (essentially co-

variance matrices for non-centered data) of the activations. For l’th layer

(having nl activations) the Gram matrix Gl ∈ R
nl×nl consists of averages

of pointwise products of each pair of activation channels:

Gl
ij = mean{ali � alj}, (6.1)

where alk is the k’th activation map of the l’th layer, � is the pointwise

product, and mean computes the average over the two spatial dimensions

of the layer. For example, if a given layer has the spatial resolution of

64 × 64 and consists of 256 activation channels, the Gram matrix sum-

marizes its activations into 256 × 256 values (where half the values are

redundant due to symmetry). This statistic roughly captures the indi-

vidual magnitudes and pairwise co-occurrences of the activations, while

discarding the information about their particular spatial arrangement.

117



Stationary materials

A full statistical descriptor is obtained by evaluating the Gram matrices

for a desired set of convolutional layers and collecting their entries into a

vector (optionally with weighting). We denote the full descriptor evalua-

tion function for an image x by TG(x). Note that the fully-connected layers

at the end of the VGG network can be dropped. This also means that the

descriptor is not tied to the original resolution (224 × 224) at which the

network was trained, because the activation map size no longer needs to

reach 1× 1 at the end of the convolutions.

The synthesis procedure calls for finding a novel image that has the

same activation statistics. This is implemented by gradient-based contin-

uous optimization of the similarity of the above-defined descriptor:

argmin
x

‖TG(x)− TG(y)‖ (6.2)

where y is the exemplar image and x is the synthesis result. This opti-

mization is performed using the L-BFGS algorithm (see Section 3.2.2).3

Conveniently, the gradients of this objective function can be evaluated us-

ing the same backpropagation machinery that is used for training the net-

works. Consequently, the method is readily implemented using standard

neural network frameworks, and is directly amenable to GPU accelera-

tion.

Figure 6.8 illustrates some results from the method. The results signif-

icantly improve upon the state of the art in parametric texture synthesis,

reaching a similar level of image quality with non-parametric methods.

Interestingly, Gatys et al. also find that an extension to the method can

be used to transfer artistic styles from paintings onto photographs [45].

This application is essentially texture synthesis augmented with a con-

tent matching term that also uses (non-statistical) neural activations.

6.3.2 Textural data fitting

The fact that the synthesis step of Gatys et al. [46] uses gradient-based

optimization is unusual. Almost all other texture synthesis methods are

based on heuristic steps; they are essentially hard-coded to perform a

given narrow task, and extending them to other contexts is difficult.

This is useful because we are not constrained to merely solving the prob-

3Interestingly, practical experiments suggest that basic gradient descent fails
to reach the same synthesis quality as L-BFGS, despite of optimizing the same
objective function. The method terminates due to failure to make meaningful
progress beyond some early stage (i.e. the gradient becomes very small). It is not
clear why L-BFGS avoids this problem.
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20 iterations 100 iterations 1500 iterations Exemplar

Figure 6.8. Results from the texture synthesis method of Gatys et al. [46] after 20, 100
and 1500 iterations of L-BFGS optimization. For reference, the exemplar is
shown on the right. The optimization begins by establishing colors, edges
and other low-level features, and gradually builds higher level content out
of them. Much of the large-scale content is coarsely established already at
around 100 iterations. However, like texture synthesis methods in general,
it sometimes struggles with large-scale features. This can be seen in the
potatoes, which have not quite found the clean, round shapes present in the
exemplar.

lem in Eq. 6.2. The differentiable texture descriptor TG can be used in

a variety of gradient-based optimization tasks where images need to be

compared “up to textural permutation”.

Recall that this is precisely the capability we were missing in Publi-

cation II, which necessitated the manual shuffling of the pixels into a

compatible spatial arrangement.4 Conceptually, Publication II solves the

problem

argmin
u

∑
k

‖R(u; lk)− Pk→m(yk)‖ (6.3)

where u is the SVBRDF parameter map we are looking to solve for, k

loops over the tiles, yk is a flash photograph tile, and lk represents its

lighting conditions. R(u; lk) renders the SVBRDF under these lighting

4Note that Publication II was submitted prior to the publication of Gatys et
al. [46]. In fact, during early stages of development of Publication II, we aimed
for a method that would use the flash photograph only, but failed to reach this
goal as there existed no high-quality method for comparing textures in a suitable
manner. The guide photograph was only then introduced to solve this problem.
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conditions. The function Pk→m permutes the data of each tile into some

common spatial structure (that of some chosen master tile m).

Data fit term The key idea in Publication III is that we may drop the

explicit permutation by considering the permutation-invariant textural

difference instead of a pointwise difference:

argmin
u

∑
k

‖TG(R(u; lk))− TG(yk)‖ (6.4)

This is essentially the problem we solve in Publication III (aside from

some additional terms described in the subsequent sections; see Eq. III.11

for the complete objective). Hence, we are seeking an SVBRDF whose ren-

derings are texturally similar to chosen pieces of the flash photo, as mea-

sured by the statistics of neural network activations. Figure III.1 illus-

trates this principle. Instead of the full regular tiling used in Publication

II, we find that matching the appearance at 15 tiles scattered around the

specular highlight suffices for solving the problem.

Implementation of the optimization This problem is highly ill-posed and

non-convex. It is not clear a priori that the optimization procedure should

in practice find a solution that satisfies the appearance constraints, nor

that the constraints are strict enough as to pinpoint a well-generalizing

SVBRDF. We nevertheless find this to be the case — however, certain ad-

ditional priors and pre-conditioning transformations must be introduced

to ensure the success of the process. We will discuss these in subsequent

sections.

As noted, the method of Gatys et al. [46] can be implemented using

the standard building blocks of neural networks — in particular, the back-

propagation algorithm for computing the derivatives of the objective func-

tion with respect to the unknown variables. We find that this also applies

to our significantly more complex objective function: we can break it down

into a directed acyclic graph (DAG) of simple operations, each of which is

easy to differentiate in isolation. In particular, the neural network is noth-

ing but a sequence of nodes within this graph. The derivative of the entire

objective function can be evaluated by the backpropagation algorithm us-

ing the same machinery as in neural network training. Following Gatys

et al. [46], we use the L-BFGS algorithm to run the optimization. Fig-

ure III.6 shows the computational graph for the full problem. Please refer

to Eq. III.12 and the Appendix of Publication III for the details.
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Rendering model The rendering operator R is very similar to that in

Publication II: we optimize for spatially varying albedos, glossiness and

normals, and render the maps under headlight configuration. However,

instead of the more advanced anisotropic BRDF model, we restrict the

complexity of the problem somewhat by using an isotropic Blinn-Phong

BRDF model [9], specified in Eq. III.9.

Pre-processing Gatys et al. [46] pre-process the exemplar textures by

subtracting their mean prior to feeding them to the CNN. Once the opti-

mization is complete, the mean is added back onto the result. Our experi-

ments confirm that this significantly improves the synthesis results. The

reasoning is that the original VGG-19 was trained using roughly zero-

mean images, and hence its activations are tuned to represent features of

such images.

For the same reason, we individually subtract the mean off each of the

input tiles yk, and perform the same subtraction on the rendered tiles dur-

ing the optimization. Furthermore, we normalize the contrast of each tile

to the range of a typical training photo. Besides better matching the net-

work’s expected input, this normalization also roughly equalizes the con-

tributions of each tile to the data fit term, resulting in better convergence

behavior. Note that this does not bias the expected result of the optimiza-

tion (e.g. by leading to a “whitened” appearance of the solution), because

the same fixed set of transformations is applied to both the input data

and the predictions, and used throughout the optimization. The practical

implementation of these operations is described in Section III.4.2.

6.3.3 Stationarity priors

In practice, optimizing the data fit described in the previous section leads

to uneven results due to the non-convexity and ill-posedness of the prob-

lem.

Generally speaking, the issue of non-convexity in neural networks is

subtle. While it has long been known that neural networks can in prin-

ciple model extremely complicated functions efficiently, until recent years

it was thought that finding good parameters for large-scale networks was

essentially impossible due to the extreme non-convexity of the training

problem. The success of neural networks in recent years has demon-

strated this to be, surprisingly, false. The non-convexity is there, but it

appears to manifest mostly as symmetries (that is, arbitrary choices of
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Non-stationary

initial guess
Non-stationary

result
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Figure 6.9. On the left is a non-stationary initial guess for the method of Gatys et al. [46],
and a resulting non-stationary synthesis. On the right we have used a sta-
tionary noise as the initial guess. The objective function value is the same for
each case, indicating that the textural similarity metric TG has no means to
detect and eliminate the forcibly introduced non-stationarity.

permutation regarding which activation represents which feature). Once

the symmetry is randomly broken, the training tends to converge robustly

to a near-global minimum. [29, 55, 75]

Gatys et al. [46] appear to inherit this property: their objective function

is extremely non-convex, to the extent that one might expect the opti-

mization to often become stuck at a poor solution. Regardless, we observe

very robust results in practice. In particular, the synthesis results tend

to be stationary, in the sense that the textural features become evenly

distributed across the synthesized image, and that the solution quality

does not vary spatially. This desirable behavior is not guaranteed: for ex-

ample, contrived initial guesses can lead to non-stationary results, as in

Figure 6.9. Nevertheless, stationarity emerges robustly enough, and no

specific mechanism is used to enforce it.

Unfortunately, this state of affairs is broken by the insertion of the ren-

dering operator R (which is non-convex and non-injective) and the pres-

ence of multiple simultaneous matching targets in Eq. 6.4. We found that

solving the problem directly by optimization leads to poor results. The

major problem is that the result is often non-stationary even within the

small SVBRDF tile we solve for. It often appears that one region of the

map is well-developed (or even “over-developed” as in exhibiting excessive

contrast) while others are left washed out or suffer from visual artifacts.

The optimizer apparently finds that it can quickly improve the objective

value at an early stage by developing individual regions within the tile. It

later fails to connect these regions into a coherent and stationary whole.

The convergence of Gatys et al. [46], in contrast, tends to be spatially

even: similar features emerge concurrently across the image as the opti-

mization proceeds. Indeed, if non-stationarities are introduced during the
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Figure 6.10. A sequence of images of the same tile, blurred with increasingly large blur
kernels. Beyond the characteristic scale of the texture, the local averaging
destroys all textural detail, and only a constant-colored image remains.

optimization, they may persist; the key to obtaining a stationary solution

seems to be to never let non-stationarity appear in the first place.

Based on these considerations, we introduce a stationarity prior, which

to our knowledge is novel in literature. Additionally, we introduce a com-

plementary preconditioning procedure that enables the optimizer to effi-

ciently explore solutions that are consistent with the prior. Let us first

discuss the prior.

Characteristic scales of spatial variation As discussed in the introduction

to this chapter, a central notion behind the methods is that of characteris-

tic scale: the size of any spatial features on the surface should not exceed

some length scale s. The tiles are chosen to be a few times larger than s,

so as to capture some variety.

Another way to formulate the principle is that measuring any image

statistic over a neighborhood of size s should produce the same result,

regardless of the location of the neighborhood. In particular, measuring

the local mean over each neighborhood of size s corresponds to computing

the average value of the pixels over each s-sized region in a sliding window

manner. Plotting these average values at the region centers, we simply

obtain a blurred version of the image. Indeed, the operation is nothing

else than the convolution between the original image and a circular filter

kernel. If the image is stationary, all features in it vanish beyond some

filter size. This is the characteristic scale. Figure 6.10 illustrates this

effect.

A practical stationarity prior This suggests a practical way to detect and

penalize non-stationarity within the tile: measure a set of key statistics of

every neighborhood of some fixed size (by a sliding window), and require

that the the statistics agree at every point. In particular, we require the

stationarity of the mean, variance, inter-variable correlations, skewness,

and kurtosis of the SVBRDF maps.
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Recalling the example above, we penalize non-stationarity of the mean

by penalizing non-constancy in a blurred version of the SVBRDF maps.

To penalize non-stationarity of variance, we first center the parameter

maps by subtracting the mean, and raise the result to the second power.

Spatial averages over this quantity correspond to local measurements of

variance. Again, we penalize deviations from constancy. A similar pro-

cedure, for whitened images raised to third and fourth powers, reveals

non-stationarities in skewness and kurtosis, respectively. Finally, non-

stationarities in correlations between variables are penalized by requiring

stationarity of their pointwise products (after whitening).

These filtering operations, and consequently the entire priors, are ef-

fectively implemented using the Fast Fourier Transform. Indeed, non-

stationarity is directly visible as low-frequency content in the variously

processed maps. Section III.4.3 presents the priors from this viewpoint,

and describes them in more detail.

6.3.4 Preconditioning

With the addition of the stationarity prior Q (and a weight λ), our opti-

mization problem is now

argmin
u

∑
k

‖TG(R(u; lk))− TG(yk)‖+ λQ(u) (6.5)

In practice, the optimizer struggles to find steps that improve the textural

data fit objective while satisfying the stationarity priors. These two terms

in the objective function often suggest mutually incompatible steps. Re-

call that in gradient descent the step direction is simply the sum of the

(negative) gradients of each term in the objective function:

−
∑

k

∂‖TG(R(u; lk))− TG(yk)‖
∂u

− ∂λQ(u)

∂u
(6.6)

A “step direction” in this context is simply an update to the pixel values

in the SVBRDF map, i.e. of the same format as the SVBRDF itself. Often,

the data fit term suggests the kind of greedy local updates outlined in the

introduction to the previous section. These steps violate the stationarity

priors, unless a very short step length is chosen. The progress grinds to

a sequence of short back-and-forth steps that very slowly lead towards

mutually agreeable solutions. The situation is somewhat analogous to

the example in Figure 3.3. The use of the L-BFGS algorithm in place of

vanilla gradient descent improves the convergence, but only to an extent.
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Note that the converse does not hold. The data fit term would not object

to stationary steps in general — it merely finds the greedy local steps to

be slightly more appealing in the short term. If we had a way to “propose”

stationary steps, it would go along. This section presents a principled

mechanism for precisely this purpose. By bringing the stationary direc-

tions to the forefront via a process of preconditioning, we aid the optimizer

at discovering them. This leads to a significantly improved convergence

behavior without biasing the solution.

Fourier domain preconditioner To facilitate efficient optimization within

the space of stationary SVBRDF maps, we introduce a Fourier domain

preconditioning procedure. In the standard (“primal”) representation of

the optimization problem, each optimization variable controls a single

BRDF parameter at a single surface point. Instead, we optimize for coef-

ficients of the Discrete Fourier Transforms of the SVBRDF maps. In this

parameterization the variables control magnitudes of plane waves, which

at high enough frequencies are by definition stationary. Updating such

variables is more likely to retain the stationarity of the current SVBRDF

estimate, and to satisfy the stationarity prior.

In practice, we transform the variables as follows. Instead of directly op-

timizing over the SVBRDF parameters u, we optimize for a set of precon-

ditioned parameters ũ. The actual SVBRDF parameters u are computed

from ũ as u = P (ũ). Here, P is a preconditioner that performs an inverse

Fast Fourier Transform (with some weightings we describe below). The

optimization task of Eq. 6.5 then becomes:

argmin
ũ

∑
k

‖TG(R(P (ũ); lk))− TG(yk)‖+ λQ(P (ũ)) (6.7)

To discourage the use of the non-stationary low frequencies in optimiza-

tion steps, we include a downweighting for these frequencies in P prior to

evaluating the IFFT. While combinations of high-frequency plane waves

may still cause higher-order non-stationarities, the preconditioning elim-

inates the majority of poor step proposals. What remains is kept in check

by the stationarity prior itself.

Notice that this procedure is directly analogous to the toy example of

preconditioning discussed in Section 3.2.4. The effect of the per-frequency

scaling is a high-dimensional analogue to the simple “squeezing” illus-

trated in Figure 3.7.

Per-frequency weightings from input data We also include in the precon-

ditioner a heuristic per-frequency weighting by the average frequency
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leather_wine wallpaper_3 plastic_cutting

a)

b)

Figure 6.11. Examples of per-frequency weights used for different datasets. Note in par-
ticular the strong downweighting of the very lowest frequencies (center of
the spectrum). The spectral weightings (b) are computed from the average
local spectral magnitude content of the input photographs (a). The regu-
lar structure in wallpaper_3 and plastic_cutting is clearly visible as peaks
at individual frequencies. This encourages the optimizer to seek steps that
reproduce similar regular content in the SVBRDF maps.

content of the input flash photo. See Figure 6.11 for an illustration. While

we cannot reliably tell a priori which SVBRDF parameters are respon-

sible for the spatial variation in the illuminated appearance of the flash

photograph (solving for this information is the problem in the first place),

it does nevertheless provide clues about where some kind of variation is

taking place.

Observe that the underlying idea of heuristically taking advantage of

hints in the input data is similar to that applied in spatially varying

smoothness prior weights of Publication I (Section 5.3). However, the lat-

ter approach is more dangerous, as it more directly attributes effects to

individual features of individual variables. In contrast, preconditioning

does not require the optimizer to converge towards a solution with the

same frequency content; at worst, it slows down the convergence. In prac-

tice the weighting often significantly accelerates the convergence, and is

particularly helpful for materials that exhibit regularly repeating struc-

ture.

Discussion We stated above that preconditioning merely changes the

convergence behavior, without changing the expected solution. This is
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Figure 6.12. The effect of the priors and the preconditioning on the normal map of a
leather material, after 100 L-BFGS iterations.

not exactly accurate when dealing with highly non-convex problems such

as ours. The path taken may significantly affect the local minimum that

the optimizer ultimately converges into. Even the choice of optimization

method often has a similar effect. This effect is very difficult to quantify,

but we do believe that the preconditioning often significantly improves

the quality of the solutions.

Figure 6.12 shows a comparison of results with and without precondi-

tioning, as well as with and without the stationarity priors. As expected,

it is the combination of both that reaches a high-quality stationary so-

lution in a timely manner. The figure also contains a comparison to a

Laplacian pyramid based preconditioner, which is similar to what Barron

and Malik [5] propose; clearly, it is not optimally suited for our problem.

We have omitted some technical details concerning the use of precon-

ditioning. In particular, we also transform some variables in a way that

enforces optimization constraints such as non-negativity of albedos, and

the integrability of the normal map. For a detailed account, please refer

to Section III.4.4.2 in the publication.
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6.3.5 Results and discussion

Implementation We implement the method in Matlab using the MatCon-

vNet package that implements the general neural network machinery. In

particular, it automatically maps the computations to the GPU. Hence,

the time-consuming parts of the computations are all GPU accelerated.

Input data and results We tested the algorithm using the dataset of flash

photographs from Publication II. Please refer to Section 6.2.2 for the de-

tails. The project webpage5 contains a complete set of the results and

rendered videos.

The results of the method are presented in Section III.5. Full results are

available in the supplemental material of the publication. Figure III.10

shows a selection of SVBRDF maps solved by the method, along with a

piece of the input data and a corresponding re-rendering. We find good

overall agreement between the two.

Figure III.11 shows a selection of images of the input flash photographs,

with renderings of the solution tile overlaid at the tiles that were used

in the data fitting. The tiles embed well into their surroundings, both

in terms of overall color and intensity, as well as the character of the

spatial variation. Note that they are not expected to tile seamlessly into

the surrounding material, as the spatial structures are not expected to

match.

Generally, the results are often of a good quality considering the the

difficulty of the problem, and the fact that we are only using a single pho-

tograph as an input. In fact, to our knowledge our method is the first

single-shot method (of which there are very few in general) to apply prin-

cipled data-fit optimization in solving the problem. However, on closer

inspection, the results do not quite reach the quality of the solutions in

Publication II.

We perform two different validation experiments. In Figure III.14, we

again compare the the normal maps to the ground truth obtained from

the GelSight scanner [70] (see Section 6.2.2 for an explanation of this

experiment). Although somewhat more rough, the results show a good

qualitative agreement.

We also conduct an experiment with synthetic data. To obtain plausible

synthetic data, we use re-renderings of the solution SVBRDFs from Pub-

lication II. The main objective of this experiment is to explore whether the
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shading constraints posed by the flash photograph tiles are strong enough

as to guide the solution towards the ground truth, and secondly, whether

the algorithm manages to recover it in practice. The results of the exper-

iment in Figure III.15 demonstrate this to be the case: the solutions are

generally a good match to the underlying ground truth.

Failure cases and limitations The method shares the same general lim-

itations as the method in Publication II, with the added restriction to

isotropic reflectance. The model could, in principle, be extended with

anisotropy, but it is possible that the added degrees of freedom would

make the optimization problem significantly more difficult. We did, never-

theless, also include the anisotropic datasets in the results. Figure III.11

demonstrates some: while the method often manages to find an SVBRDF

that superfically reproduces the appearance from the original angle, close

inspection and renderings in novel conditions quickly reveal the solution

as incorrect.

Among the datasets that do fulfill the model assumptions, the most com-

mon failure the inability to reproduce regular structure. This is clearly

visible in e.g. wallpaper_3 dataset in Figure III.10: the solution has not

quite managed to reproduce the regular grid pattern of the input data.

While this behavior is common also for classical texture synthesis (see

Figure 6.8), the extra complexity in our problem is likely to exacerbate it.

Related to this, there are cases where the constraints posed by the flash

photograph are probably insufficient for uniquely identifying the surface

structure. This is apparent in the result on plastic_cutting dataset in Fig-

ure III.14. The input data is somewhat degenerate, because in most image

regions it mainly consists of evenly spaced dots (the specular highlights).

The method appears to be somewhat more sensitive to the diffuse-specular

separation issues than the method of Publication II. This can be seen in

the result on the brown leather in the synthetic dataset experiment (Fig-

ure III.15): there is some visible cross-talk between the diffuse and the

specular albedos due to the very wide specular lobe. It is possible that

this problem could be fixed, for example, by simply introducing some ba-

sic smoothness priors — note that we have not used any, as we wanted to

avoid the added layer of complexity introduced by them.

Discussion An interesting question is to what extent the success of the

method depends on the texture descriptor of Gatys et al. [46]. Note that

the general idea of solving for SVBRDFs using textural data fitting is

novel, even if the texture descriptor were replaced with something else.
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We explored this question by simply drop-in replacing the neural descrip-

tor by a simple comparison of power spectra (as used in random phase

noise texture synthesis, see Section 6.1). Interestingly, we find that the

method still works. However, as expected, the simple descriptor fails to

reproduce structured image detail in the inputs, and produces a Perlin

noise -like variation in the SVBRDF maps. This is illustrated in Figure

III.12.

6.4 Discussion

The two methods presented in this chapter demonstrate that the idea of

taking advantage of stationarity can lead to successful high-quality cap-

ture of a wide range of SVBRDFs. While the number of input photographs

for both methods is very low compared to traditional methods, the results

often rival those of significantly more complex approaches.

Perhaps not surprisingly, the quality of the results produced by the two-

shot method of Publication II is generally better than that of the single-

shot method in Publication III. Nevertheless, both have their place. Aside

from the general idea of taking advantage of stationarity, the techniques

applied in Publication II are more traditional: pointwise data fitting, tra-

ditional texture synthesis, and the use of classical computer vision feature

descriptors. While, of the two, Publication II may presently be the method

of choice for practical low-cost high-quality SVBRDF capture, the use of

neural networks in the manner demonstrated in Publication III has little

precedent in previous work, and has the potential for interesting follow-up

work. The method is also potentially easier to adapt to different problems

and configurations, as it follows the ideal optimization model (Figure 1.8)

closely.

Furthermore, the VGG-19 network [117] applied as the texture descrip-

tor in Publication III was the state of the art roughly two years ago at

the time of writing — a long time in the rapidly advancing field. It will be

interesting to see what kind of improvements might be obtained by sim-

ply drop-in replacing the VGG network with more advanced networks to

come. We also expect the widely publicized work of Gatys et al. [46, 45]

to lead to renewed interest in texture synthesis and related applications.

Future work along these lines is likely to have direct relevance for our

problems as well.

In terms of practical capture setups, the cell phone camera head-on flash
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approach demonstrated in the publications should not be taken as set in

stone. The stationarity idea has a much wider applicability — in princi-

ple, it could be combined with almost any SVBRDF acquisition setup to

potentially significantly reduce the amount of data needed. Whether this

is feasible in practice of course depends the particular details of the given

method. For example, it would be interesting to combine the idea with

the frequency domain measurement setup on Publication I. In particular,

because the surface points are seen from different viewpoints due to the

near-field camera, this would increase the effective range of viewing an-

gles that contribute to the BRDFs due to the global measurement sharing.

Obviously, the cost of this is that the method would then be restricted to

stationary materials.

A particularly interesting question is whether the methods could be ap-

plied on more general 3D geometry as well. This poses some challenges.

In terms of Publication II, obtaining a clean guide image may be difficult

due to significantly varying lighting and viewing angles on objects with

curvature. Publication III has the potential to side-step this issue, as no

guide photograph is needed. Another challenge is the parameterization

of the “texture coordinates”: what is the local orientation and scale of

the texture at any given surface location? While direct application of the

methods to this context is difficult due to these challenges, there is clear

potential for future work.

One possible extension to the methods would be to incorporate camera

motion into the capture procedure: instead of capturing still photos, we

might capture a video where the user translates the camera and flash over

a short path on the surface. Recent work (e.g. [20, 129]) has demonstrated

that even small motions may provide useful additional constraints on the

surface shape. This information might be useful in extending the methods

to more general geometries, in particular.

The stationarity priors of Publication III are particularly interesting.

To our knowledge, they are novel in literature. We can envision many ap-

plications and extensions for them, and expect them to lead to interesting

future work. For example, could a stronger model be obtained by using the

idea to require stationarity of the neural activation statistics themselves,

instead of the simple moment statistics we currently use? While the neu-

ral texture descriptor cannot directly model texturedness of SVBRDFs (as

it assumes RGB input data), this could have some interesting applications

in other texture-related problems. It would also be interesting to experi-
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ment with direct SVBRDF fitting to the entire input flash photo, without

any tiling schemes, instead with a stationarity prior enforcing the global

consistency.

Finally, the use of neural networks in Publication III raises some in-

teresting questions about other applications they might have in related

problems. We will touch upon this issue again in Section 7.2.
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7. Discussion and conclusions

In this thesis, we have presented three successful methods for captur-

ing rich surface material appearance descriptors from real-world surfaces.

The trend in our research has been towards ever scarcer input data: go-

ing from roughly a hundred photographs and a controlled although simple

hardware setup, to two photographs in a loosely controlled mobile phone

setup, and finally, to just a single photograph.

We will conclude with some reflection and speculation pertaining to the

topics discussed in this thesis.

7.1 Characterization of uncertainty

A central theme in this thesis has been generalization — that is, produc-

ing a plausible estimate of the material appearance under novel viewing

conditions, given only a partial sampling of the space of reflection direc-

tions. The methods presented, as well as the vast majority of the prior

work in the field, produce a point estimate, i.e. an individual SVBRDF (or

some other descriptor) that represents the “most plausible” explanation

of the data. When the input data is scarce, the choice is sometimes quite

arbitrary, as a wide range of solutions might explain the observations al-

most equally well. In these cases the chosen solution often depends on

pre-specified priors and other model parameters. While the user can in

principle tweak the priors so as to choose the desired kind of generaliza-

tion, in practice the parameters are unintuitive, and the procedure is slow

due to the need to re-run the solver. The goal of producing a definite point

estimate may therefore be questioned: would it not be more principled

and useful to instead produce a probability distribution over SVBRDFs?

Given such a distribution, the space of the plausible SVBRDFs consis-

tent with the input could perhaps be browsed and edited by interactive
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means. The user could flexibly supply domain knowledge that isn’t cap-

tured by the data or the priors. Similarly, subsequent algorithms (perhaps

only tangentially related to materials) could use the distribution as an in-

termediate representation, without needing to be tightly integrated with

the appearance capture algorithm itself (an essentially impossible task in

many cases). Finally, it is generally useful to be aware about the degree of

certainty of a given solution. Sometimes the data and the priors pinpoint

a solution with little ambiguity; at other times, the solution is little more

than a guess. Presently, the solution contains no information about this.

It is not clear how any of this could be achieved in practice.

Bayesian interpretation of the objective functions In fact, we do possess

a sort of probability distribution over the unknowns given the data. Re-

call that we presented a probabilistic justification for point estimation

as Bayesian Maximum A Posteriori (MAP) estimation in Section 3.1.4.

Thereafter we largely set the underlying probabilistic interpretation aside,

and formulated the optimization tasks from pragmatic considerations.

However, now that we have formulated some objective functions for our

methods, let us briefly return to this interpretation and work backwards

to recover the probability distributions that the objective functions implic-

itly define.

Recall that we formulated a posterior distribution for the unknown pa-

rameters x given the data y in Eq. 3.21 as

p(x|y) = p(y|x)p(x)
p(y)

(7.1)

The MAP point estimate was obtained as xMAP = argmin
x

− log[Cp(x|y)].
In that context, C = p(y) is an irrelevant normalization constant, as the

minimizer is not affected by constant factors.

According to this interpretation, when we minimize an objective func-

tion F (x|y) over unknown parameters x given fixed measurements y, such

as e.g. in Eq. 6.7 in connection with Publication III, we are in fact mini-

mizing this negative log-posterior. In other words, F (x|y) = − log[Cp(x|y)].
Conversely, this means that by specifying F , we have implicitly defined a

posterior

p(x|y) = 1

C
exp[−F (x|y)] (7.2)

The leading constant 1
C is problematic. In MAP estimation it can be

ignored, but if we wanted to use this function as a probability density (i.e.

a non-negative function that integrates to 1), we would need to know the
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value. In fact, C can be nothing else than the integral that normalizes the

density. That is, C(y) =
∫
exp[−F (x|y)]dx. It is a function of the data y.

Unfortunately, it is most likely intractable: we have no reasonable means

for evaluating this integral for an objective function as complex as ours.

Consequently, we have only managed to recover the posterior up to an

unknown constant, which limits its usability.

It is not clear if these considerations lead to a dead end, but they do raise

some questions. If we could normalize the implicit posterior distributions

of our methods, would they be sensible in the sense that drawing realiza-

tions from the distribution would yield a selection of different plausible so-

lutions to the problem? Or are our objective functions merely “heuristics”

designed to drive an optimizer towards good MAP estimates? Would a sen-

sible posterior be beneficial for the quality of the MAP estimates? Could

the unnormalized density be sampled e.g. by the Metropolis-Hastings al-

gorithm [60], and would this yield any insight, or perhaps practical ways

to characterize the uncertainty around the MAP solution? Could any in-

sights be derived by considering the second-order Taylor expansion of F

at the MAP estimate, and building the implicit posterior around this ap-

proximation? This results in a Gaussian distribution over all variables

and pixels. Is it expressive enough as to be useful?

7.2 Priors and machine learning

Publications II and III are probably close to the limit in terms of how

little input data can be used to capture reasonably general SVBRDFs

based on mathematical constraints. In particular, the single-photograph

approach of Publication III clearly could not be simplified much further.

Dropping the stationary requirement (and the corresponding algorithmic

machinery) would reduce the method to a straightforward but extremely

ill-posed per-point data fitting task, with merely one light sample per sur-

face point — a guaranteed failure. On the other hand, the stationarity

assumption is only useful if the input data contains a wide range of light-

ing and/or view directions, such as in the flash photo. Hence, it does not

help us to solve SVBRDFs from, say, a single photograph of a directionally

lit surface, or a surface with unknown lighting.

While the methods certainly leave room for variations and improve-

ments, it seems unlikely that significant further simplifications in capture

setups could come from additional mathematical constraints. In particu-
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lar, the problem assigning plausible SVBRDFs on a single photograph of

a non-stationary material under loosely controlled illumination is funda-

mentally ill-posed. The only way to choose among the vast space of valid

solutions is the said plausibility: a plausible explanation is quite simply a

one that a human observer might expect to find upon examining the ma-

terial further. As briefly discussed in Section 1.3.2, this ability is learned

by life-long observation of the behavior of surface appearance.

Note that this corresponds precisely to the notion of priors. Indeed,

the smoothness constraints and pointwise priors we have applied are at-

tempts at characterizing the space of plausible solutions. While important

for the success of the methods in practice, they are nevertheless somewhat

unsatisfactory. As discussed in Section 3.1.5, they encode only a loose

characterization of the space of SVBRDFs (essentially, “plausible materi-

als have a Perlin noise -like variation”). They are too weak to be of much

help for tasks like the single-photograph problem described above.

As already briefly noted, neural networks have proven successful in

many learning tasks of this kind. It could be speculated that current

neural network architectures are good at solving visual problems that hu-

mans can solve “at a glance”, i.e. without having to stop and perform

logical reasoning. Such examples include recognition [119, 117], depth

perception from monocular cues [41], optical flow [38], color assignment

to black and white images [68], and many others. It would be reasonable

to expect similar success in material-related tasks. Indeed, some work on

e.g. material labeling has already been done [23].

Arguably, Publication III takes some steps in this direction. While we

do not train a neural network, we do use the features a previously trained

network has learned. Hence, it takes advantage of a characterization of

the space of natural images in order to find a plausible solution. On the

other hand, the reason it finds natural-appearing materials is that it is

supplied with natural input photographs. The Gatys et al. [46] texture

descriptor merely facilitates this process.

Possible avenues of research What material-related tasks would one train

a neural network for, then?

The somewhat obvious approach would be to teach the network to map

local patches of images of surfaces to their corresponding SVBRDF maps.

Clearly this task is ill-posed, because many different SVBRDFs can plau-

sibly explain such data. Consider for example the local tiles shown in

Figure 6.2. Even without any explicit knowledge about the lighting con-
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ditions, visual inspection of any of them in isolation suggests a moderate

degree of gloss, and a relatively constant brown diffuse color, and surface

normal variation as the primary explanation of the apparent variation.

In particular, the directional shading is a strong clue. It is not unreason-

able to expect that a neural network might learn to identify properties

on this level. However, due to the ill-posedness, estimates might vary

wildly across an extended piece of the surface, where the shading might

vary. Perhaps the stationary priors could be applied in some way? Per-

haps the network architecture could consist of two processing paths — one

that produces a global set of reflectance features from the entire image,

and one for the local detail features are discussed above — the results of

which would be joined and reconciled in the final layers of the network.

Clearly, there is a large space of possible designs to be explored.

Another interesting application would be methods for modeling the space

of naturally occurring spatially varying reflectance. Ideally, we would be

interested in replacing the coarse, and generally somewhat unsatisfac-

tory manually specified priors (such as the smoothness constraints) with

a prior term that simply penalizes implausible SVBRDFs. Such a prior

could, in principle, be combined with any optimization-based SVBRDF

fitting task to manage their ill-posedness.

It is not at all clear how such ideas could be implemented in practice.

Clearly, image recognition networks such as VGG-19 [117] and GoogLeNet

[119] have learned something crucial about the structure of natural im-

ages, as evidenced by e.g. the success of the texture synthesis method

of Gatys et al. [46] and some interesting applications like “deep dream-

ing” [97]. The same holds for networks trained explicitly for random gen-

eration of natural-looking images [105]. The information about this struc-

ture is implicitly encoded in the mappings learned by these networks.

Could it be made more explicit? Could some specifically designed training

task produce the kind of information we are looking for, perhaps explicitly,

or perhaps as a “side effect” like in the recognition networks?

This discussion is, of course, speculative, and only scratches the surface

of the topic. We expect to see interesting future research around these

questions.

137



Discussion and conclusions

138



References

[1] Edward H. Adelson and James R. Bergen. The Plenoptic Function and the
Elements of Early Vision. In Computational Models of Visual Processing,
pages 3–20. MIT Press, 1991.

[2] Peter Ahrendt. The Multivariate Gaussian Probability Distribution, Jan-
uary 2005.

[3] N. Alldrin, T. Zickler, and D. Kriegman. Photometric stereo with non-
parametric and spatially-varying reflectance. In Proc. IEEE Conference
on Computer Vision and Pattern Recognition, pages 1=–8, June 2008.

[4] Michael Ashikhmin and Simon Premoze. Distribution-based BRDFs. Tech-
nical report, 2007.

[5] J. Barron and J. Malik. Shape, Illumination, and Reflectance from Shad-
ing. IEEE Transactions on Pattern Analysis and Machine Intelligence, (to
appear), 2015.

[6] James R. Bergen and Edward H. Adelson. Early vision and texture per-
ception. Nature, 333(6171):363–364, 05 1988.

[7] Pravin Bhat, Brian Curless, Michael Cohen, and C. Lawrence Zitnick.
Fourier Analysis of the 2D Screened Poisson Equation for Gradient Do-
main Problems. In Proceedings of the 10th European Conference on Com-
puter Vision: Part II, ECCV ’08, pages 114–128, Berlin, Heidelberg, 2008.
Springer-Verlag.

[8] Christopher M. Bishop. Pattern Recognition and Machine Learning.
Springer, 2006.

[9] James F. Blinn. Models of light reflection for computer synthesized pic-
tures. Computer Graphics (Proc. SIGGRAPH), 11(2):192–198, July 1977.

[10] James F. Blinn. Simulation of Wrinkled Surfaces. SIGGRAPH Comput.
Graph., 12(3):286–292, August 1978.

[11] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cam-
bridge University Press, New York, NY, USA, 2004.

[12] Yuri Boykov, Hossam N. Isack, Carl Olsson, and Ismail Ben Ayed. Volu-
metric Bias in Segmentation and Reconstruction: Secrets and Solutions.
CoRR, abs/1505.00218, 2015.

139



References

[13] R.N. Bracewell. The Fourier Transform and its Applications. McGraw-Hill
Kogakusha, Ltd., Tokyo, second edition, 1978.

[14] Adam Brady, Jason Lawrence, Pieter Peers, and Westley Weimer. gen-
BRDF: Discovering New Analytic BRDFs with Genetic Programming.
ACM Trans. Graph., 33(4):114:1–114:11, July 2014.

[15] Brent Burley. Physically-Based Shading at Disney, August 2012.

[16] Richard H. Byrd, Peihuang Lu, Jorge Nocedal, and Ciyou Zhu. A Limited
Memory Algorithm for Bound Constrained Optimization. SIAM J. Sci.
Comput., 16(5):1190–1208, September 1995.

[17] Paul H. Calamai and Jorge J. More:9A. Projected Gradient Methods for
Linearly Constrained Problems. Math. Program., 39(1):93–116, October
1987.

[18] Michael Calonder, Vincent Lepetit, Christoph Strecha, and Pascal Fua.
BRIEF: Binary Robust Independent Elementary Features. In Proceedings
of the 11th European Conference on Computer Vision: Part IV, ECCV’10,
pages 778–792, Berlin, Heidelberg, 2010. Springer-Verlag.

[19] Antonin Chambolle and Thomas Pock. A First-Order Primal-Dual Algo-
rithm for Convex Problems with Applications to Imaging. J. Math. Imag-
ing Vis., 40(1):120–145, May 2011.

[20] M. Chandraker. The Information Available to a Moving Observer on Shape
with Unknown, Isotropic BRDFs. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 38(7):1283–1297, July 2016.

[21] Guojun Chen, Yue Dong, Pieter Peers, Jiawan Zhang, and Xin Tong. Re-
flectance Scanning: Estimating Shading Frame and BRDF with General-
ized Linear Light Sources. ACM Transactions on Graphics, 33(4), August
2014.

[22] P. H. Christensen. Adjoints and Importance in Rendering: An Overview.
IEEE Transactions on Visualization and Computer Graphics, 9(3):329–
340, July 2003.

[23] M. Cimpoi, S. Maji, I. Kokkinos, and A. Vedaldi. Deep Filter Banks for Tex-
ture Recognition, Description, and Segmentation. International Journal of
Computer Vision (IJCV), 2016.

[24] Ryan Clark. CrazyBump, ����������	
����
, 2010.

[25] Robert L. Cook and Kenneth E. Torrance. A Reflection Model for Computer
Graphics. ACM Transactions on Graphics, 1(1):7–24, January 1982.

[26] K. J. Dana. BRDF/BTF measurement device. International Conference on
Computer Vision ICCV, 2:460–6, July 2001.

[27] Kristin J. Dana, Bram van Ginneken, Shree K. Nayar, and Jan J. Koen-
derink. Reflectance and Texture of Real-world Surfaces. ACM Trans.
Graph., 18(1):1–34, January 1999.

[28] Kristin J. Dana and Jing Wang. Device for convenient measurement of
spatially varying bidirectional reflectance. Journal of the Optical Society
of America A, 21(1):1–12, 2004.

140



References

[29] Yann N Dauphin, Razvan Pascanu, Caglar Gulcehre, Kyunghyun Cho,
Surya Ganguli, and Yoshua Bengio. Identifying and attacking the saddle
point problem in high-dimensional non-convex optimization. In Z. Ghahra-
mani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger, editors,
Advances in Neural Information Processing Systems 27, pages 2933–2941.
Curran Associates, Inc., 2014.

[30] Paul Debevec, Tim Hawkins, Chris Tchou, Haarm-Pieter Duiker, West-
ley Sarokin, and Mark Sagar. Acquiring the reflectance field of a human
face. In Proc. SIGGRAPH, pages 145–156, New York, NY, USA, 2000. ACM
Press/Addison-Wesley Publishing Co.

[31] Paul E. Debevec and Jitendra Malik. Recovering High Dynamic Range
Radiance Maps from Photographs. In Proceedings of the 24th Annual Con-
ference on Computer Graphics and Interactive Techniques, SIGGRAPH ’97,
pages 369–378, New York, NY, USA, 1997. ACM Press/Addison-Wesley
Publishing Co.

[32] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A
Large-Scale Hierarchical Image Database. In CVPR09, 2009.

[33] Yue Dong, Guojun Chen, Pieter Peers, Jiawan Zhang, and Xin Tong.
Appearance-From-Motion: Recovering Spatially Varying Surface Re-
flectance Under Unknown Lighting. ACM Transactions on Graphics, 33(6),
December 2014.

[34] Yue Dong, Xin Tong, Fabio Pellacini, and Baining Guo. AppGen: interac-
tive material modeling from a single image. ACM Transactions on Graph-
ics (Proc. SIGGRAPH ASIA), 30(6):146:1–146:10, December 2011.

[35] Yue Dong, Jiaping Wang, Xin Tong, John Snyder, Yanxiang Lan, Moshe
Ben-Ezra, and Baining Guo. Manifold bootstrapping for SVBRDF capture.
ACM Transactions on Graphics (Proc. SIGGRAPH), 29(4):98:1–98:10, July
2010.

[36] D. L. Donoho. Compressed sensing. IEEE Transactions on Information
Theory, 52(4):1289–1306, April 2006.

[37] David L. Donoho. For Most Large Underdetermined Systems of Linear
Equations the Minimal �1-norm Solution is also the Sparsest Solution.
Comm. Pure Appl. Math, 59:797–829, 2004.

[38] A. Dosovitskiy, P. Fischer, E. Ilg, P. Häusser, C. Hazirbas, V. Golkov, P. v.d.
Smagt, D. Cremers, and T. Brox. FlowNet: Learning Optical Flow with
Convolutional Networks. In IEEE International Conference on Computer
Vision (ICCV), Dec 2015.

[39] Alexei A. Efros and William T. Freeman. Image Quilting for Texture Syn-
thesis and Transfer. In Proceedings of the 28th Annual Conference on Com-
puter Graphics and Interactive Techniques, SIGGRAPH ’01, pages 341–
346, New York, NY, USA, 2001. ACM.

[40] Alexei A. Efros and Thomas K. Leung. Texture Synthesis by Non-
Parametric Sampling. In Proc. International Conference on Computer Vi-
sion (ICCV ’99), volume 2, pages 1033–1038, 1999.

141



References

[41] David Eigen, Christian Puhrsch, and Rob Fergus. Depth Map Prediction
from a Single Image using a Multi-Scale Deep Network. In Z. Ghahra-
mani, M. Welling, C. Cortes, N.d. Lawrence, and K.q. Weinberger, editors,
Advances in Neural Information Processing Systems 27, pages 2366–2374.
Curran Associates, Inc., 2014.

[42] Sing Choong Foo. A Gonioreflectometer For Measuring The Bidirectional
Reflectance Of Material For Use In Illumination Computation, 1997.

[43] B. Galerne, Y. Gousseau, and J. M. Morel. Random Phase Textures: Theory
and Synthesis. IEEE Transactions on Image Processing, 20(1):257–267,
Jan 2011.

[44] Andrew Gardner, Chris Tchou, Tim Hawkins, and Paul Debevec. Lin-
ear light source reflectometry. ACM Transactions on Graphics (Proc. SIG-
GRAPH), 22(3):749–758, July 2003.

[45] L. A. Gatys, A. S. Ecker, and M. Bethge. A Neural Algorithm of Artistic
Style. CoRR, abs/1508.06576, 2015.

[46] L. A. Gatys, A. S. Ecker, and M. Bethge. Texture Synthesis Using Convo-
lutional Neural Networks. In Advances in Neural Information Processing
Systems 28, 2015.

[47] Stuart Geman and Christine Graffigne. Markov random field image mod-
els and their applications to computer vision. In Proceedings of the Inter-
national congress of mathematicians 1986 Ed., pages 1496–1517, Berkeley,
California, 1987. American Mathematical Society.

[48] Abhijeet Ghosh, Shruthi Achutha, Wolfgang Heidrich, and Matthew
O’Toole. BRDF Acquisition with Basis Illumination. In Proc. IEEE In-
ternational Conference on Computer Vision, pages 1–8, 2007.

[49] Abhijeet Ghosh, Tongbo Chen, Pieter Peers, Cyrus A. Wilson, and Paul
Debevec. Circularly polarized spherical illumination reflectometry. ACM
Transactions on Graphics (Proc. SIGGRAPH ASIA), 29(6):162:1–162:12,
December 2010.

[50] Abhijeet Ghosh, Tongbo Chen, Pieter Peers, Cyrus A. Wilson, and Paul E.
Debevec. Estimating Specular Roughness and Anisotropy from Second Or-
der Spherical Gradient Illumination. Computer Graphics Forum (Proc. Eu-
rographics Symposium on Rendering), 28(4):1161–1170, 2009.

[51] Mashhuda Glencross, Greg Ward, C. Jay, J. Liu, F. Melendez, and R. Hub-
bold. A Perceptually Validated Model for Surface Depth Hallucination.
ACM Transactions on Graphics (Proc. SIGGRAPH), 27(3):59:1–59:8, Au-
gust 2008.

[52] D.B. Goldman, B. Curless, A. Hertzmann, and S.M. Seitz. Shape and
spatially-varying BRDFs from photometric stereo. In Proc. IEEE Interna-
tional Conference on Computer Vision, volume 1, pages 341–348, October
2005.

[53] Gene H. Golub and Charles F. Van Loan. Matrix Computations (3rd Ed.).
Johns Hopkins University Press, Baltimore, MD, USA, 1996.

142



References

[54] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. Book
in preparation for MIT Press, 2016.

[55] Ian J. Goodfellow and Oriol Vinyals. Qualitatively characterizing neural
network optimization problems. CoRR, abs/1412.6544, 2014.

[56] Cindy M. Goral, Kenneth E. Torrance, Donald P. Greenberg, and Bennett
Battaile. Modeling the Interaction of Light Between Diffuse Surfaces. SIG-
GRAPH Comput. Graph., 18(3):213–222, January 1984.

[57] R. M. Haralick. Statistical and structural approaches to texture. Proceed-
ings of the IEEE, 67(5):786–804, May 1979.

[58] R. I. Hartley and A. Zisserman. Multiple View Geometry in Computer
Vision. Cambridge University Press, ISBN: 0521540518, second edition,
2004.

[59] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements
of Statistical Learning. Springer Series in Statistics. Springer New York
Inc., New York, NY, USA, 2001.

[60] W. K. Hastings. Monte Carlo sampling methods using Markov chains and
their applications. Biometrika, 57(1):97–109, 1970.

[61] David J. Heeger and James R. Bergen. Pyramid-based Texture Analy-
sis/Synthesis. In Proceedings of the 22Nd Annual Conference on Computer
Graphics and Interactive Techniques, SIGGRAPH ’95, pages 229–238, New
York, NY, USA, 1995. ACM.

[62] Stephen Hill and Stephen McAuley. Siggraph 2015 Course: Physically
Based Shading in Theory and Practice, August 2015.

[63] Geoffrey Hinton, Li Deng, Dong Yu, George Dahl, Abdel rahman Mo-
hamed, Navdeep Jaitly, Andrew Senior, Vincent Vanhoucke, Patrick
Nguyen, Tara Sainath, and Brian Kingsbury. Deep Neural Networks for
Acoustic Modeling in Speech Recognition. Signal Processing Magazine,
2012.

[64] Michael Holroyd, Jason Lawrence, Greg Humphreys, and Todd Zickler.
A Photometric Approach for Estimating Normals and Tangents. ACM
Transactions on Graphics (Proc. SIGGRAPH), 27(3):133:1–133:9, Decem-
ber 2008.

[65] Michael Holroyd, Jason Lawrence, and Todd Zickler. A Coaxial Optical
Scanner for Synchronous Acquisition of 3D Geometry and Surface Re-
flectance. ACM Transactions on Graphics (Proc. SIGGRAPH), 29(4):99:1–
99:12, July 2010.

[66] David H. Hubel and Torsten N. Wiesel. Receptive Fields and Functional
Architecture of Monkey Striate Cortex. Journal of Physiology (London),
195:215–243, 1968.

[67] Peter J. Huber. Robust estimation of a location parameter. Annals of Math-
ematical Statistics, 35(1):73–101, March 1964.

143



References

[68] Satoshi Iizuka, Edgar Simo-Serra, and Hiroshi Ishikawa. Let there be
Color!: Joint End-to-end Learning of Global and Local Image Priors for Au-
tomatic Image Colorization with Simultaneous Classification. ACM Trans-
actions on Graphics (Proc. of SIGGRAPH 2016), 35(4), 2016.

[69] Henrik Wann Jensen, Stephen R. Marschner, Marc Levoy, and Pat Hanra-
han. A Practical Model for Subsurface Light Transport. In Proceedings of
the 28th Annual Conference on Computer Graphics and Interactive Tech-
niques, SIGGRAPH ’01, pages 511–518, New York, NY, USA, 2001. ACM.

[70] Kimo Johnson, Forrester Cole, Alvin Raj, and Edward Adelson. Microge-
ometry capture using an elastomeric sensor. ACM Trans. Graph., 30(4):Ar-
ticle 40, 2011.

[71] Bela Julesz. Textons, the elements of texture perception, and their inter-
actions. Nature, 290(5802):91–97, March 1981.

[72] J. T. Kajiya and T. L. Kay. Rendering Fur with Three Dimensional Tex-
tures. SIGGRAPH Comput. Graph., 23(3):271–280, July 1989.

[73] James T. Kajiya. The Rendering Equation. In Proceedings of the 13th An-
nual Conference on Computer Graphics and Interactive Techniques, SIG-
GRAPH ’86, pages 143–150, New York, NY, USA, 1986. ACM.

[74] Alexandre Kaspar, Boris Neubert, Dani Lischinski, Mark Pauly, and Jo-
hannes Kopf. Self Tuning Texture Optimization. Computer Graphics Fo-
rum, 34(2), 2015.

[75] K. Kawaguchi. Deep Learning without Poor Local Minima. ArXiv e-prints,
May 2016.

[76] Seyed-Mahdi Khaligh-Razavi and Nikolaus Kriegeskorte. Deep Super-
vised, but Not Unsupervised, Models May Explain IT Cortical Represen-
tation. PLoS Comput Biol, 10(11):1–29, 11 2014.

[77] R. Kinderman and S.L. Snell. Markov random fields and their applica-
tions. American mathematical society, 1980.

[78] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by Simulated
Annealing. Science, 220(4598):671–680, 1983.

[79] Philipp Krahenbuhl and Vladlen Koltun. Efficient Inference in Fully Con-
nected CRFs with Gaussian Edge Potentials. 2011.

[80] Vivek Kwatra, Irfan Essa, Aaron Bobick, and Nipun Kwatra. Texture Op-
timization for Example-based Synthesis. ACM Trans. Graph., 24(3):795–
802, 2005.

[81] Jason Lawrence, Szymon Rusinkiewicz, and Ravi Ramamoorthi. Effi-
cient BRDF Importance Sampling Using a Factored Representation. ACM
Trans. Graph., 23(3):496–505, August 2004.

[82] Tai Sing Lee. Image Representation Using 2D Gabor Wavelets. IEEE
Trans. Pattern Anal. Mach. Intell., 18(10):959–971, October 1996.

[83] Hendrik P. A. Lensch, Jan Kautz, Michael Goesele, Wolfgang Heidrich, and
Hans-Peter Seidel. Image-based Reconstruction of Spatial Appearance and
Geometric Detail. ACM Trans. Graph., 22(2):234–257, April 2003.

144



References

[84] J. Löw, J. Kronander, A. Ynnerman, and J. Unger. BRDF Models for Ac-
curate and Efficient Rendering of Glossy Surfaces. ACM Transactions on
Graphics, 31(1):9:1–9:14, January 2012.

[85] David G. Lowe. Distinctive Image Features from Scale-Invariant Key-
points. Int. J. Comput. Vision, 60(2):91–110, November 2004.

[86] Wan-Chun Ma, Tim Hawkins, Pieter Peers, Charles-Felix Chabert, Malte
Weiss, and Paul Debevec. Rapid Acquisition of Specular and Diffuse Nor-
mal Maps from Polarized Spherical Gradient Illumination. In Proceedings
of the 18th Eurographics Conference on Rendering Techniques, EGSR’07,
pages 183–194, Aire-la-Ville, Switzerland, Switzerland, 2007. Eurograph-
ics Association.

[87] David J. C. MacKay. Information Theory, Inference & Learning Algorithms.
Cambridge University Press, New York, NY, USA, 2002.

[88] Jitendra Malik and Pietro Perona. Preattentive texture discrimination
with early vision mechanisms. Journal of the Optical Society of America
A, 7:923–932, 1990.

[89] Tom Malzbender, Dan Gelb, and Hans Wolters. Polynomial Texture Maps.
In Proceedings of the 28th Annual Conference on Computer Graphics and
Interactive Techniques, SIGGRAPH ’01, pages 519–528, New York, NY,
USA, 2001. ACM.

[90] D. Marr. Early Processing of Visual Information. Philosophical Transac-
tions of the Royal Society of London B: Biological Sciences, 275(942):483–
519, 1976.

[91] S. R. Marschner, S. H. Westin, E. P. F. Lafortune, and K. E. Torrance.
Image-Based Bidirectional Reflectance Distribution Function Measure-
ment. 39:2592–2600, June 2000.

[92] Stephen R. Marschner, Stephen H. Westin, Adam Arbree, and Jonathan T.
Moon. Measuring and Modeling the Appearance of Finished Wood. ACM
Trans. Graph., 24(3):727–734, July 2005.

[93] Wojciech Matusik, Hanspeter Pfister, Matt Brand, and Leonard McMil-
lan. A Data-driven Reflectance Model. ACM Transactions on Graphics
(Proc. SIGGRAPH), 22(3):759–769, July 2003.

[94] Wojciech Matusik, Hanspeter Pfister, Matthew Brand, and Leonard
McMillan. Efficient Isotropic BRDF Measurement. In Proceedings of the
14th Eurographics Workshop on Rendering, EGRW ’03, pages 241–247,
Aire-la-Ville, Switzerland, Switzerland, 2003. Eurographics Association.

[95] Wojciech Matusik, Matthias Zwicker, and Frédo Durand. Texture Design
Using a Simplicial Complex of Morphable Textures. ACM Trans. Graph.,
24(3):787–794, July 2005.

[96] David Kirk Mcallister. A Generalized Surface Appearance Representation
for Computer Graphics. PhD thesis, 2002. AAI3061704.

[97] Alexander Mordvintsev, Christopher Olah, and Mike Tyka. Inceptionism:
Going Deeper into Neural Networks. ������������	�
���

�����
��

�������

�����
����
������
��������������
�����	������, last accessed Jun. 8, 2016.

145



References

[98] Addy Ngan and Frédo Durand. Statistical Acquisition of Texture Appear-
ance. In Proceedings of the 17th Eurographics Conference on Rendering
Techniques, EGSR ’06, pages 31–40, Aire-la-Ville, Switzerland, Switzer-
land, 2006. Eurographics Association.

[99] Addy Ngan, Frédo Durand, and Wojciech Matusik. Experimental Analysis
of BRDF Models. In Proc. Eurographics Symposium on Rendering, pages
117–226, 2005.

[100] F. E. Nicodemus, J. C. Richmond, J. J. Hsia, I. W. Ginsberg, and T. Limperis.
Radiometry. chapter Geometrical Considerations and Nomenclature for
Reflectance, pages 94–145. Jones and Bartlett Publishers, Inc., USA, 1992.

[101] J. Nocedal and S. J. Wright. Numerical Optimization. Springer, New York,
2nd edition, 2006.

[102] Jorge Nocedal. Updating quasi-Newton matrices with limited storage.
Mathematics of computation, 35(151):773–782, 1980.

[103] Bui Tuong Phong. Illumination for Computer Generated Pictures. Com-
mun. ACM, 18(6):311–317, June 1975.

[104] Javier Portilla and Eero P. Simoncelli. A Parametric Texture Model Based
on Joint Statistics of Complex Wavelet Coefficients. Int. J. Comput. Vision,
40(1):49–70, October 2000.

[105] Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised Repre-
sentation Learning with Deep Convolutional Generative Adversarial Net-
works. CoRR, abs/1511.06434, 2015.

[106] Ravi Ramamoorthi and Pat Hanrahan. A Signal Processing Framework
for Inverse Rendering. In Proc. SIGGRAPH, pages 117–128, 2001.

[107] Ali Sharif Razavian, Hossein Azizpour, Josephine Sullivan, and Stefan
Carlsson. CNN Features Off-the-Shelf: An Astounding Baseline for Recog-
nition. In Proc. IEEE Conference on Computer Vision and Pattern Recog-
nition, 2014.

[108] Peiran Ren, Jiaping Wang, John Snyder, Xin Tong, and Baining Guo.
Pocket reflectometry. ACM Transactions on Graphics (Proc. SIGGRAPH),
30(4):45:1–45:10, July 2011.

[109] Fabiano Romeiro and Todd Zickler. Blind Reflectometry. In Proceedings of
the 11th European Conference on Computer Vision: Part I, ECCV’10, pages
45–58, Berlin, Heidelberg, 2010. Springer-Verlag.

[110] Leonid I. Rudin, Stanley Osher, and Emad Fatemi. Nonlinear Total Varia-
tion Based Noise Removal Algorithms. Phys. D, 60(1-4):259–268, Novem-
ber 1992.

[111] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Neuro-
computing: Foundations of Research. chapter Learning Representations
by Back-propagating Errors, pages 696–699. MIT Press, Cambridge, MA,
USA, 1988.

[112] Szymon Rusinkiewicz. A New Change of Variables for Efficient BRDF Rep-
resentation. In George Drettakis and Nelson L. Max, editors, Rendering
Techniques, Eurographics, pages 11–22. Springer, 1998.

146



References

[113] Iman Sadeghi, Oleg Bisker, Joachim De Deken, and Henrik Wann Jensen.
A Practical Microcylinder Appearance Model for Cloth Rendering. ACM
Trans. Graph., 32(2):14:1–14:12, April 2013.

[114] Christophe Schlick. An Inexpensive BRDF Model for Physically-based
Rendering. Computer Graphics Forum, 13:233–246, 1994.

[115] Steven A. Shafer. Color. chapter Using Color to Separate Reflection Com-
ponents, pages 43–51. Jones and Bartlett Publishers, Inc., USA, 1992.

[116] E P Simoncelli and W T Freeman. The Steerable Pyramid: A Flexible
Architecture for Multi-Scale Derivative Computation. In Proc 2nd IEEE
Int’l Conf on Image Proc, volume III, pages 444–447, Washington, DC, Oct
23-26 1995. IEEE Sig Proc Society.

[117] K. Simonyan and A. Zisserman. Very Deep Convolutional Networks for
Large-Scale Image Recognition. CoRR, abs/1409.1556, 2014.

[118] Peter-Pike Sloan. Stupid Spherical Harmonics (SH) Tricks, February 2008.

[119] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,
Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Ra-
binovich. Going Deeper with Convolutions. In Computer Vision and Pat-
tern Recognition (CVPR), 2015.

[120] Meng Tang, Ismail Ben Ayed, Dmitrii Marin, and Yuri Boykov. Secrets of
GrabCut and Kernel K-means. CoRR, abs/1506.07439, 2015.

[121] Albert Tarantola. Inverse Problem Theory and Methods for Model Parame-
ter Estimation. Society for Industrial and Applied Mathematics, Philadel-
phia, PA, USA, 2004.

[122] Natalya Tatarchuk, Sebastien Hillaire, Tomasz Stachowiak, Andrew
Schneider, Huw Bowles, Daniel Zimmerman, Beibei Wang, Ari Silven-
noinen, Ville Timonen, Matt Pettineo, Alex Evans, Alex Evans, Ulrich
Haar, and Sebastian Aaltonen. Siggraph 2015 Course: Advances in Real-
Time Rendering, August 2015.

[123] James T. Todd, J. Farley Norman, and Ennio Mignolla. Lightness Con-
stancy in the Presence of Specular Highlights, 2004.

[124] Borom Tunwattanapong, Graham Fyffe, Paul Graham, Jay Busch, Xuem-
ing Yu, Abhijeet Ghosh, and Paul Debevec. Acquiring Reflectance and
Shape from Continuous Spherical Harmonic Illumination. ACM Trans.
Graph., 32(4):109:1–109:12, July 2013.

[125] Eric Veach. Robust Monte Carlo Methods for Light Transport Simulation.
PhD thesis, Stanford, CA, USA, 1998. AAI9837162.

[126] Cedric Villani. Optimal transport : old and new. Grundlehren der mathe-
matischen Wissenschaften. Springer, Berlin, 2009.

[127] Chun-Po Wang, Noah Snavely, and Steve Marschner. Estimating dual-
scale properties of glossy surfaces from step-edge lighting. ACM Transac-
tions on Graphics (Proc. SIGGRAPH ASIA), 30(6):172:1–172:12, December
2011.

147



References

[128] Jiaping Wang, Shuang Zhao, Xin Tong, John Snyder, and Baining Guo.
Modeling Anisotropic Surface Reflectance with Example-based Microfacet
Synthesis. ACM Trans. Graph., 27(3):41:1–41:9, August 2008.

[129] Ting-Chun Wang, Manmohan Chandraker, Alexei Efros, and Ravi Ra-
mamoorthi. SVBRDF-invariant shape and reflectance estimation from
light-field cameras. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2016.

[130] Gregory J. Ward. Measuring and Modeling Anisotropic Reflection. SIG-
GRAPH Comput. Graph., 26(2):265–272, July 1992.

[131] Tim Weyrich, Jason Lawrence, Hendrik Lensch, Szymon Rusinkiewicz,
and Todd Zickler. Principles of appearance acquisition and representation.
Foundations and Trends in Computer Graphics and Vision, 4(2):75–191,
2008.

[132] D. Rod White, Peter Saunders, Stuart J. Bonsey, John van de Ven, and
Hamish Edgar. Reflectometer for measuring the bidirectional reflectance
of rough surfaces. Appl. Opt., 37(16):3450–3454, Jun 1998.

[133] Daniel L. K. Yamins, Ha Hong, Charles F. Cadieu, Ethan A. Solomon, Dar-
ren Seibert, and James J. DiCarlo. Performance-optimized hierarchical
models predict neural responses in higher visual cortex. Proceedings of
the National Academy of Sciences, 111(23):8619–8624, 2014.

[134] Shuang Zhao, Wenzel Jakob, Steve Marschner, and Kavita Bala.
Structure-aware Synthesis for Predictive Woven Fabric Appearance. ACM
Trans. Graph., 31(4):75:1–75:10, July 2012.

[135] Todd Zickler, Peter N. Belhumeur, and David J. Kriegman. Helmholtz
Stereopsis: Exploiting Reciprocity for Surface Reconstruction. Interna-
tional Journal of Computer Vision, 49(2/3):215–227, 2002.

[136] Todd Zickler, Ravi Ramamoorthi, Sabastian Enrique, and Peter N. Bel-
humeur. Reflectance sharing: predicting appearance from a sparse set of
images of a known shape. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 28(8):1287–1302, 2006.

148



Errata

Publication III

• Eq. 3 is missing the addition of a per-layer bias term.

• Fig. 6 is missing a branch for the variance stationarity prior, correspond-

ing to a sequence �������� �	�
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