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Abstract. We present a novel point rendering primitive, calledDifferential
Point (DP), that captures the local differential geometry in the vicinity of a sam-
pled point. This is a more general point representation that, for the cost of a
few additional bytes, packs much more information per point than the traditional
point-based models. This information is used to efficiently render the surface as
a collection of local neighborhoods. The advantages to this representation are
manyfold: (1) it delivers a significant reduction in the number of point primi-
tives that represent a surface (2) it achieves robust hardware accelerated per-pixel
shading – even with no connectivity information (3) it offers a novel point-based
simplification technique that has a convenient and intuitive interface for the user
to efficiently resolve the speed versus quality tradeoff. The number of primitives
being equal, DPs produce a much better quality of rendering than a pure splat-
based approach. Visual appearances being similar, DPs are about two times faster
and require about75% less disk space in comparison to splatting primitives.

1 Introduction

Point-based rendering schemes [5, 12, 13, 17, 19, 21] have evolved as a viable alter-
native to triangle-based representations. They offer many benefits over triangle-based
models: (1) efficiency in modeling and rendering complex environments, (2) hierar-
chical organization to efficiently control frame-rates and visual quality, and (3) zero-
connectivity for efficient streaming for remote rendering [20].

Current point primitives store only limited information about their immediate local-
ity, such as normal, bounding ball [19], and tangent plane disk [17]. These primitives
are then rasterized with flat shading and hence such representations require very high
sampling to obtain a good rendering quality. In other words, the rendering algorithm
dictates the sampling frequency of the modeling stage. This is clearly undesirable as it
may prescribe very high sampling even in areas of low spatial frequency, causing two
significant drawbacks: (1) slower rendering speed due to higher rendering computation
and related CPU-memory bus activity, and (2) large disk and memory utilization.

In this work we propose an approach of storing local differential geometric infor-
mation with every point. This information gives a good approximation of the surface
distribution in the vicinity of each sampled point which is then used for rendering the
point and its approximated vicinity. The extent of the approximated vicinity is deter-
mined by the curvature characteristics of the surface: points in a flat or a low curvature
region approximate larger vicinities. Our approach has many benefits to offer:
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1. Rendering: Our approach achieves high rendering quality with per-pixel shading.
We reduce the number of rendering primitives and push more computation into each
primitive. This reduces the CPU-memory bus bandwidth and the overall amount of
computation resulting in a significant speed-up. As the processor-memory speed
gap increases we expect this method to get even more attractive.

2. Storage: The reduction in the number of primitives more than compensates for the
extra bytes of information stored with each point primitive. This leads to an overall
reduction in the storage requirements. This reduction also benefits faster streaming
of information over the network.

3. Generality: The information stored with our point primitives is sufficient to derive
(directly or indirectly) the requisite information for prior point primitives. Our work
is primarily a focus on the efficiency of per-point rendering computation. It can
potentially be used in conjunction with larger point-based organization structures -
hierarchical [1, 17, 19] or otherwise [13, 21].
In the following sections, we first mention some related works and then outline the

terminology from the differential geometry literature that will be used to describe our
approach. This is followed by a discussion of differential points. We then describe
our rendering algorithm and compare it with some splatting schemes. We conclude the
paper with a discussion of this approach and its potential extensions.

2 Related Work

Classical differential geometry gives us a mathematical model for understanding the
surface variation at a point. Surface curvatures can be accurately computed for paramet-
ric surfaces and can also be estimated from discrete sampled representations.Taubin [22]
estimates curvature at a mesh vertex by using the eigenvalues of an approximation
matrix constructed using the incident edges. Desbrun et al. [3] define discrete oper-
ators (normal, curvature, etc.) of differential geometry using Voronoi cells and finite-
element/finite-volume methods.

Various hierarchical organization schemes have been used that develop lower fre-
quency versions of the original set of point samples [1, 17, 19]. We use a simplification
process that prunes an initial set of points to greatly reduce the redundancy in surface
representation. Turk [23] uses a point placement approach with the point density being
controlled by the local curvature properties of the surface. Witkin and Heckbert [24]
use physical properties of a particle system to place points on an implicit surface.

Image-assisted organization of points [5, 13, 21] are efficient at three-dimensional
transformations as they use the implicitness of relationship among pixels to achieve fast
incremental computations. They are also efficient at representing complex real-world
environments. The multiresolution organizations [1, 17, 19] use their hierarchical struc-
ture to achieve block culling, to control depth traversals to respect the image-quality
or frame-rate constraints, and for efficient streaming of large datasets across the net-
work [20].

Darsa et al. [2], Mark et al. [14] and Pulli et al. [18] use a triangle mesh overlaid
on the image sampling plane for rendering. It can be followed by a screen space com-
positing process. However, such systems can be expensive in computation and storage
if high resolutions are desired. Levoy and Whitted [12] introduced points as a rendering
primitive. It has been used by Shade et al. [21] and Grossman and Dally [5] for syn-
thetic environments. However, raw point primitives suffer from aliasing problems and
holes. Lischinski and Rappoport [13] raytrace a point dataset. Oliveira et al. [15] use



image space transformations to render point samples. Rusinkiewicz and Levoy [19] use
splatting of polygonal primitives for rendering. Pfister et al. [17] follow up the splatting
with a screen-space filtering process to handle holes and aliasing problems. Zwicker
et al. [25] derive a screen-space formulation of the EWA filter to render high detail
textured point samples with a support for transparency.

3 Differential Geometry for Surface Representation

Fig. 1. Neighborhood of a Differential Point

Classical differential geometry is a study
of the local properties of curves and sur-
faces [4]. It uses differential calculus of
first and higher orders for this study. In this
work we use the regular surface model which
captures surface attributes such as continu-
ity, smoothness, and degree of local surface
variation. A regular surfaceis a differen-
tiable surface which is non self-intersecting
and which has a unique tangent plane at each
point on the surface. Every pointp on the
regular surface has the following properties:
the normalNp, the direction of maximum
curvatureûp, thedirection of minimum cur-
vature v̂p, the maximum normal curvature

�up , and theminimum normal curvature�vp . They have the following relation amongst
them: (1)j�up j � j�vp j, (2) hûp; v̂pi = 0, and (3)ûp � v̂p = Np whereh�; �i denotes the
dot product and� is the cross product operator. The differential of the normal atp is
denoted bydNp. Given any tangent̂t (= tuûp + tvv̂p), dNp(̂t) is the first-order normal
variation aroundp and is given by [4]:

dNp(̂t) = �(�uptuûp + �vptvv̂p) (1)

Similarly the normal curvature alonĝt, �p(̂t), is given by [4]:

�p(̂t) = �upt
2
u + �vpt

2
v (2)

The normal variation and the normal curvature terms give us second order information
about the behaviour of the regular surface around the pointp. These properties are
illustrated in Figure 1.

A salient feature of the regular surface model is that it gives complete independence
to a point to describe its own neighborhood without any reliance, explicit or implicit,
on the immediate sampled neighborhood or on any other global property [6, 7, 8]. Even
though a surface has to be differentiable to have a regular surface representation, we
need the surface to be only second-order continuous to extract properties that will be
used for rendering. Discontinuities of third or higher order, in most instances, are not
easily discernible and thus we do not make any effort towards reproducing them visu-
ally here. However discontinuities of the zeroth, first, and second order are visually
noticeable and even important. We sample at the second-order continuous neighbor-
hood of these points. Discontinuities are maintained implicitly by the intersection of
the region of influence of the adjacent sampled points.



4 Sampling and Processing

Our fundamental rendering primitive is a point with differential geometry information.
These are derived by sampling points on the surface and extracting differential geometry
information per sampled point. This is followed by a simplification process that greatly
reduces the redundancy in surface representation. This is a pre-process and the output is
saved in a render-ready format that will be an input to our rendering algorithm outlined
in Section 5.

4.1 Differential Points

Fig. 2. Tangent plane parameterization of a
Differential Point

We call our rendering primitive adifferential
point (DP). A DP, p, is constructed from a
sample point and has the following parame-
ters: xp (the position of the point),�up and
�vp (the principal curvatures), and̂up andv̂p
(the principal directions). They derive the
unit normal,̂np, and the tangent plane,�p, of
p. We extrapolate this information to define
a surface,Sp, that will be used to approxi-
mate the neighborhood ofxp. The surfaceSp

is defined as follows: given any tangentt̂, the
intersection ofSp with the normal plane ofp
that is co-planar witĥt is a semi-circle with
a radius of 1

j�p (̂t)j
with the center of the circle

being located atxp +
n̂p

�p (̂t)
and oriented such

that it is cut in half byxp (if �p(̂t) is 0, then
the intersection is a line alonĝt). These terms are illustrated in Figure 2.

To aid our rendering algorithms we define a coordinate system on�p andSp. The
tangent plane�p is parameterized by(u; v) coordinates in the vector space of(ûp; v̂p).
A point on�p is denoted byxp(u; v) andt̂(u; v) denotes the tangent atp in the direction
of xp(u; v). We parameterizeSp with the same(u; v) coordinates as�p, with Xp(u; v)
denoting a point onSp. The pointsXp(u; v) andxp(u; v) are related by a mapping,
Pp, with xp(u; v) being the orthographic projection ofXp(u; v) on �p along n̂p. The
arc-length betweenXp(0; 0) andXp(u; v) is denoted bys(u; v) and is measured along
the semi-circle ofSp in the direction̂t(u; v). The (un-normalized) normal atXp(u; v)
is denoted byNp(u; v). Note thatxp = Xp(0; 0) = xp(0; 0) and n̂p = Np(0; 0).
We use lower case characters or symbols for terms related to�p and we use upper case
characters or symbols for terms related toSp. A notable exception to this rule iss(u; v).

Consider the semi-circle ofSp in the direction̂t(u; v). As one moves out ofxp along
this curve, the normal change per unit arc-length of the curve is given by the normal
gradientdNp(̂t(u; v)). So, for an arc-length ofs(u; v), the normal atXp(u; v) can be
obtained by using a Taylor’s expansion on each dimension to get:

Np(u; v) � Np(0; 0) + s(u; v) dNp(̂t(u; v)) (3)

Sp andNp(u; v) give an approximation of the spatial and the normal distribution
aroundxp. (Note thatNp(u; v) is not the approximation of the normal ofSp.) We use
two criteria to determine the extent of the approximation:



1. Maximum Principal Error(�): This specifies a curvature-scaled maximum ortho-
graphic deviation ofSp along the principal directions. We lay down this constraint
as:j�up(Xp(u; 0)�xp(u; 0))j � � � 1 andj�vp(Xp(0; v)�xp(0; v))j � � � 1. Note
that sinceSp is defined by semi-circles, we have thatkXp(u; 0)�xp(u; 0)k � 1

j�up j
.

In other words, the extrapolation is bounded by the constraintsjuj � u�;p =
p
2���2
j�up j

andjvj � v�;p =
p
2���2
j�vp j

as shown in Figure 2. This defines a rectangler p on �p

and boundsSp accordingly since it uses the same parameterization. The� constraint
ensures that points of high curvature are extrapolated to a smaller area and that the
“flatter” points are extrapolated to a larger area.

2. Maximum Principal Width(Æ): If �up is closer to0, thenu�;p can be very large. To
deal with such cases we impose a maximum-width constraintÆ. Sou�;p is computed

asmin(Æ;
p
2���2
j�up j

). Similarly,v�;p is min(Æ;
p
2���2
j�vp j

).

We call the surfaceSp bounded by the� andÆ constraints, the normal distribution
Np(u; v) bounded by the� andÆ constraints together with the rectangler p as a Differ-
ential Point because all of these are constructed from just the second-order information
at a sampled point.

4.2 Sampling and Simplification

Given a 3D model, it is first sampled by points. Currently, we sample uniformly in the
parametric domain of a NURBS surface and standard techniques outlined in the differ-
ential geometry literature [4] are used to extract the differential geometry information
at each sampled point. This work can be extended to triangle meshes using ideas of
Taubin [22] and Desbrun et al. [3]. Alternately, a NURBS surface can be fit into the
triangle mesh [11] and the points can be sampled using this representation.

Initially the surface is super-sampled so that the rectangle of each differential point
overlaps sufficiently with its neighbors without leaving holes in the surface coverage.
This is followed by the simplification process which prunes the redundant points that
are adequately represented by its neighbors. Simplification has two main stages: (1)
ordering and (2) pruning. In the first stage, we compute theredundancy factorof each
DP: the closer it resembles its neighbors in curvature values and directions, the higher
the redundancy factor. All the DPs are then ordered in a priority heap with their redun-
dancy factor as the key. In the second stage, we iteratively pop the top of the heap (the
most redundant DP of the lot) and check if the rectanglesr p of its neighbors cover up
the surface if it is pruned: if so we prune it and re-order the heap, otherwise we mark
the DP to be saved. Figure 3 illustrates the effectiveness of the simplification process.
Due to page limit constraints we are unable to discuss the details of our simplification
algorithm here. Full details can be found in [9].

5 Rendering

Since graphics hardware do not supportSp as a rendering primitive,r p is used as an
approximation toSp when rasterizingp. However, the shading artifacts are more readily
discernible to the human eye and the screen-space normal distribution aroundp has to
mimic the normal variation aroundp on the original surface. This is done by projecting
the normal distributionNp(u; v) onto r p and rasterizingr p with a normal-map of this
distribution.



(a) (b) (c)

Fig. 3. Effectiveness of Simplification: (a) Rectangles of the initial set of DPs representing the
teapot. (b) Rectangles of the differential points that are retained by the simplification algorithm.
Simplification is currently done within a patch and not between patches. The strips of rectangles
represent the differential points on the patch boundaries. (c) A rendering of the simplified model.

5.1 Normal Distribution

Consider the projection ofNp(u; v) onto�p using the projectionPp discussed in Section
4.1. The area of projection on the tangent plane is limited by the nature of the surfaceSp

and includes all(u; v) such that
p
u2 + v2 � 1

j�p (̂t(u;v))j
. The (un-normalized) normal

distribution,np(u; v), on�p can then be expressed using equation (3) as:

np(u; v) � Np(0; 0) + s(u; v) dNp(̂t(u; v)) (4)

where tangent̂t(u; v) =
(u ûp+v v̂p)p

u2+v2
and arc-lengths(u; v) =

sin�1(�p (̂t(u;v))
p
u2+v2)

�p (̂t(u;v))

(the range of the arcsin function being[��
2
; �
2
]). Using these terms, and equations (1)

and (2) as well, equation (4) can be re-written as:

np(u; v) � Np(0; 0)�
�

(�up u ûp + �vp v v̂p)

(�upu
2 + �vpv

2)=
p
u2 + v2

sin�1

�
�upu

2 + �vpv
2

p
u2 + v2

��

It can be expressed in the local coordinate system(êx; êy; êz) of (ûp; v̂p; n̂p) as:

np(u; v) � êz �
�

(�up u êx + �vp v êy)

(�upu
2 + �vpv

2)=
p
u2 + v2

sin�1

�
�upu

2 + �vpv
2

p
u2 + v2

��
(5)

whereêx = (1; 0; 0), êy = (0; 1; 0), andêz = (0; 0; 1) are the canonical basis inR3 .
Note thatnp(u; v) is independent of̂up, v̂p, andNp(0; 0) in the local coordinate frame.
Hence DP is shaded in its local coordinate frame so that the normal distribution is com-
puted for each combination of�u and�v and reused for all DPs with that combination.

The only hardware support to specify such a normal distribution is normal mapping.
We pre-computed normal-maps in the local coordinate frame for various quantized val-
ues of�u and�v. However, since�u and�v are unbounded quantities it is impossible
to compute all possible normal-maps. To get around this problem we introduce a new

term�p =
�vp

�up
, and note that�1 � �p � 1 becausej�up j � j�vp j. Equation (5) can be

rewritten using�p as follows:

np(u; v) � êz � (u êx + �p v êy)
sin�1(�up p(u; v))

 p(u; v)
(6)



where p(u; v) = (u2 + �pv
2)=

p
u2 + v2. Now consider a normal distribution for a

differential pointm whose�um = 1: the only external parameter tonm(u; v) is �m.
Since�m is bounded, we pre-compute a set,M, of normal distributions for discrete
values of� and store them as normal-maps. Later, at render-time,rm is normal-mapped
by the normal map whose� value is closest to�m. To normal-map a general differential
pointp using the same set of normal-maps,M, we use the following Lemma.

Lemma 1 When expressed in their respective local coordinate frames,np(u; v) �
nm(�upu; �upv), wherem is any DP with�um = 1 and�m = �p.

Proof: First, we make an observation that�up p(u; v) =  p(�upu; �upv). Using this
observation, the tangent plane normal distribution atp (equation (6)) becomes:

np(u; v) � êz �
�
((�upu)êx + �p(�upv)êy)

sin�1( p(�upu; �upv))

 p(�upu; �upv)

�

= êz �
�
((�upu)êx + �m(�upv)êy)

sin�1( m(�upu; �upv))

 m(�upu; �upv)

�

� nm(�upu; �upv) �

Using Lemma1, a generalr p is normal-mapped with an appropriate normal mapnm(�; �)
with a scaling factor of�up .

5.2 Shading

For specular shading, apart from the local normal distribution, we also need a local half
vector distribution. For this we use the cube vector mapping [10] functionality offered
in the nVIDIA GeForce GPUs which allows one to specify un-normalized vectors at
each vertex of a polygon and obtain linearly interpolated and normalized versions of
these on a per-pixel basis. Using this feature we obtain normalized half-vectors on a
per-pixel basis by specifying un-normalized half vectors at the vertices ofr p. Per-pixel
shading is achieved by using the per-pixel normal (by normal map) and half or light
vector (by cube vector map) for illumination computations in the register combiners.

Let ĥp denote the (normalized) half vector atxp and letHp(u; v) denote the (un-
normalized) half vector atXp(u; v) whereHp(0; 0) = ĥp. Let hp(u; v) be the (un-
normalized) half vector atxp(u; v) obtained by applying the projectionPp onHp(u; v).
Similarly, let l̂p denote the (normalized) light vector atxp and letlp(u; v) andLp(u; v)
denote the (un-normalized) light vector distribution on�p and Sp respectively with
Lp(0; 0) = l̂p. Also, letŵp denote the (normalized) view vector atxp and letwp(u; v)
andWp(u; v) denote the (un-normalized) view vector distribution on�p andSp respec-
tively with Wp(0; 0) = ŵp. Similar to equation (4),hp(u; v) can be written as:

hp(u; v) � Hp(0; 0) + s(u; v) dHp(̂t(u; v))

� Hp(0; 0) +
p
u2 + v2 dHp(̂t(u; v))

= Hp(0; 0) + u
@

@u
Hp(u; v)

����
u=0

v=0

+ v
@

@v
Hp(u; v)

����
u=0

v=0

(7)

Let a be the position of the light andb be the position of the eye. The partial



(a) (b) (c)

Fig. 4. Illumination and per-pixel Shading: (a) Diffuse Illumination. (b) Specular Illumination.
(c) Diffuse and Specular Illumination

differential of equation (7) can then be re-written as follows:

@

@u
Hp(u; v)

����
u=0

v=0

=
@

@u

�
Lp(u; v)

kLp(u; v)k
+

Wp(u; v)

kWp(u; v)k

�����
u=0

v=0

=
((̂lp � ûp)̂lp � ûp)

ka� xpk
+

((ŵp � ûp)ŵp � ûp)

kb� xpk
When expressed in the local coordinate frame, we get:

@

@u
Hp(u; v)

����
u=0

v=0

=
((̂lp � êx)̂lp � êx)

ka� xpk
+

((ŵp � êx)ŵp � êx)
kb� xpk

(8)

the other partial differential of equation (7) can be computed similarly. The subtraction
and the dot products in equation (8) are simple and fast operations. The square root and
the division operations are combined together by the fast inverse square root approxima-
tion [16] which in practice causes no compromise in the visual quality. The light vector
distribution on�p can be derived similarly and is given bylp(u; v) � l̂p � uêx � vêy.

The tangent plane normal, half vector, and the light vector distribution aroundp are
used for shadingp which essentially involves two kinds of computation: (1) mapping
of the relevant vectors and (2) per-pixel computation. The overall rendering algorithm
is given in Figure 5. The rectangler p is mapped by the normal map and the half vector
(or light vector) map. Normal mapping involves choosing the best approximation to the
normal distribution from the set of pre-computed normal mapsM. Half-vector mapping
involves computing un-normalized half vectors at the vertices ofr p using equation (7)
and using them as the texture coordinates of the cube vector map that is mapped onto
r p. Per-pixel shading is done in the hardware register combiners using the (per-pixel)
normal and half vectors [10]. If both diffuse and specular shading are desired then
shading is done in two passes with the accumulation buffer being used to buffer the
results of the first pass. The accumulation buffer can be bypassed by disabling depth
writes in the second pass, but it leads to multiple writes to a pixel due to rectangle
overlaps and depth quantization which results in bright artifacts. If three textures are
accessible at the combiners then both illuminations can be combined into one pass.

6 Implementation and Results

All the test cases were run on a 866MHz Pentium 3 PC with 512MB RDRAM and
having a nVIDIA GeForce2 card supported by 32MB of DDR RAM. All the test win-



Display( )
(ComputeM and load them into texture memory at the program start time)

1 Clear the depth and the color buffers
2 Configure the register combiners for diffuse shading
3 8 DP p
4 Mp = normal-map2M whose� is closest to�p
5 MapMp ontor p
6 Compute the light vector,lp(�; �), at the vertices ofr p
7 Use the light vectors to map a cube vector map ontor p
8 Renderr p
9 Clear the color buffer after loading it into the accumulation buffer
10 Clear the depth buffer
11 Configure the register combiners for specular shading
12 8 DP p
13 Mp = normal-map2M whose� is closest to�p
14 MapMp ontor p (The details from the last pass can be cached)
15 Compute the half vector,hp(�; �), at the vertices ofr p
16 Use the half vectors to map a cube vector map ontor p
17 Renderr p
18 Add the accumulation buffer to the color buffer
19 Swap the front and the back color buffers

Fig. 5. The Rendering Algorithm

dows were 800�600 in size. We used 256 normal maps (jMj=256) corresponding to
uniformly sampled values of�p and we built a linear mip-map on each of these with a
highest resolution of 32�32. The resolution of the cube vector map was 512�512�6.

We demonstrate our work on three models: the Utah Teapot, a Human Head model,
and a Camera prototype. The models are in the NURBS representation. The component
patches are sampled uniformly in the parametric domain and simplified independent
of each other. The error threshold� is the main parameter of the sampling process.
Æ ensures that the rectangles from the low curvature region do not block the nearby
rectangles in the higher curvature regions and also ensures that the rectangles do not
overrun the boundary significantly. Simplification can lead to an order-of-magnitude
speed-up in rendering and can save substantial storage space as reported in Table 1. In
our current representation, each DP uses 62 bytes of storage: 6 bytes for the diffuse
and specular colors, 12 floats (48 bytes) for the point location, principal directions and
the normal, and 2 floats (8 bytes) for the two curvature values. We anticipate over 80%
compression by using quantized values, delta differences, and index colors. Both the
specular and diffuse shading are done at the hardware level. However, accumulation
buffer is not supported in hardware by nVIDIA and is implemented in software by the
OpenGL drivers. So the case of both diffuse and specular illumination can be slow.

On an average, about330; 000 DPs can be rendered per second with diffuse illumi-
nation. The diffuse and specular illumination passes take around the same time. The
main bottleneck in rendering is the bus bandwidth. This can be seen by noting that
specular and diffuse illumination give around the same frame rates even though the cost
of computing the half vectors is higher than the cost of computing the light vectors and
that per-pixel computation is higher for specular illumination. The pixel-fill rate was
not a bottleneck as the frame rates did not vary with the size of the window.



Table 1. Summary of results: NP = Number of points, SS = Storage Space, PT = Pre-processing
time, FPS = Frames per second. (Illumination is done with a moving light source)

Statistical Without Simplification With Simplification
Highlights Teapot Head Camera Teapot Head Camera

NP 156,800 376,400 216,712 25,713 64,042 46,077
SS (in MB) 9.19 22.06 12.69 1.51 3.75 2.70
PT (in sec) 22.5 22.2 15.25 146.5 485.5 178.17
FPS (Diffuse) 2.13 0.89 1.59 12.51 5.26 6.89
FPS (Specular) 2.04 0.88 1.52 11.76 5.13 6.67

Table 2. Comparison with Splatting Primitives: (Test 1) Same Number of Rendering Primitives,
(Test 2) Approximately similar rendering quality. DP = Differential Points, SP = Square Primi-
tive, RP = Rectangle Primitive, and EP = Elliptical Primitive.

Rendering PrimitiveStatistical Highlights
DP SP RP EP

NP 156,800 156,800 156,800 156,800
Test 1 SS (in MB) 9.19 4.90 4.90 4.90

FPS (Diffuse) 2.13 11.76 10.52 2.35
NP 156,800 1,411,200 1,155,200 320,000

Test 2 SS (in MB) 9.19 44.10 36.10 10.01
FPS (Diffuse) 2.13 1.61 1.49 1.16

The main focus of this paper is the rendering quality and efficiency delivered by
DPs as rendering primitives. Previous works on point sample rendering have orthog-
onal benefits such as faster transformation [21] and multiresolution [1, 17, 19] which
can potentially be extended to DPs. To demonstrate the benefits of DPs we compare the
rendering performance of an unsimplified differential point representation of a teapot to
the splatting of unsimplified and unstructured versions of sampled points. For the splat-
ting test cases, we take the original point samples from which DPs were constructed
and associate each of them with a bounding ball whose radius is determined by com-
paring its distance from its sampled neighbors. From this we consider three kinds of
test rendering primitives for splatting:

1. Square Primitive: They are squares parallel to the view plane with a width equal
to the radius of the bounding ball [19]. They are rendered without blending.

2. Rectangle Primitive: Consider a disc on the tangent plane of the point, with a
radius equal to the radius of the bounding ball. An orthogonal projection on a plane
parallel to the view plane and located at the position of the point results in an ellipse.
The rectangle primitive is obtained by fitting a rectangle around the ellipse with the
sides of the rectangle being parallel to the principal axes of the ellipse [17]. The
rectangle primitives are rendered with Z-buffering but without any blending.

3. Elliptical Primitive : We initialize 256 texture maps representing ellipses (with a
unit radius along the semi-major axis) varying from a sphere to a nearly “flat” el-
lipse. The texture maps have an alpha value of0 in the interior of the ellipse and
1 elsewhere. At run time, the rectangle primitive is texture mapped with a scaled
version of the closest approximation of its ellipsoid. The texture-mapped rectangles
are then rendered with a small depth offset and blending [19]. This is implemented
in hardware using the register combiners.



DPs were compared with the splatting primitives for two test cases: (Test 1) same
number of rendering primitives and (Test 2) approximately similar visual quality of ren-
dering. ForTest 1, DPs were found to deliver a much better rendering quality for the
same number of primitives as seen in Figure 6 and summarized in Table 2. DPs espe-
cially fared well in high curvature areas which are not well modeled and rendered by the
splat primitives. Moreover, DPs had nearly the same frame rates as the elliptical primi-
tives. Sample renderings ofTest 2are shown in Figure 6 and the results are summarized
in Table 2. For this test the number of square, rectangle, and elliptical primitives were
increased by increasing the sampling frequency of the uniformly sampled model used
for DPs. InTest 2, DPs clearly out-performed the splatting primitives in both criteria.

7 Conclusions and Future Work

The results and the test comparisons clearly demonstrate the efficiency of DPs as ren-
dering primitives. The ease of simplification gives DPs an added advantage to get a
significant speed up. High rendering quality is achieved because the normal distribu-
tion is fairly accurate. The rendering efficiency of DPs is attributed to the sparse surface
representation that reduces bus bandwidth.

One shortcoming of DPs is that the complexity of the borders limit the maximum
width of the interior DPs through theÆ constraint. This leads to increased sampling
in the interior even though these DPs have enough room to expand within the bounds
laid down by the� constraint. A width-determination approach that uses third order
differential information (such as the variation of the surface curvature) should be able
to deal with this more efficiently. DPs are currently implemented for a NURBS rep-
resentation. The main challenge in extending them to polygonal models would be the
accurate computation of curvature properties and handling of discontinuities.

In its current form DPs are not efficient when a large set of points fall onto the same
pixel while rendering. We plan to explore a multiresolution scheme of DPs that will
efficiently render lower frequency versions of the original surface under such instances.
Texturing can be achieved by texturing the rectanglesr p and having a separate texture
pass while rendering. The texture coordinates of the vertices ofr p can be computed
with the aid of the object space parameterization ofSp.
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(a)DP (b)SP (c)RP (d)EP
Test 1: Comparison of rendering quality for the same number of rendering primitives

(a)DP (b)SP (c)RP (d)EP
Test 2: Approximately similar rendering quality achieved with different sampling frequency

Fig. 6. Selected areas of rendering of the teapot model for the two test cases: (a) Differential
Points. (b) Square Primitive. (c) Rectangle Primitive. (d) Elliptical Primitive

(a) (b) (c)

(a) (b) (c)

Fig. 7. Illumination and per-pixel Shading: (a) Diffuse Illumination. (b) Specular Illumination.
(c) Diffuse and Specular Illumination


