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Curve Synthesis from Learned Refinement Models
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Abstract
We present a method for generating refined 2D illustrations from hand drawn outlines consisting of only curve
strokes. The system controllably synthesizes novel illustrations by augmenting the hand drawn curves’ shape,
thickness, color and surrounding texture. These refinements are learned from a training ensemble. Users can select
several examples that depict the desired idealized look and train the system for that type of refinement. Further,
given several types of refinements, our system automatically recognizes the curve and applies the appropriate
refinement. Recognition is accomplished by evaluating the likelihood the curve belongs to a particular class based
on both its shape and context in the illustration.

Categories and Subject Descriptors(according to ACM CCS): I.3.3 [Computer Graphics]: Line and Curve Genera-
tion

1. Introduction

We present a system to beautify curves: i.e. to take curves
that roughly depict some property of interest and make them
look more like what experts would draw. Our approach con-
sists of learning properties from a database of ideal examples
and transform a coarse input curve to make itlook like those
in the database. The key scientific issue is:in what sense are
these curves ’like’ one another? In our work, this likeness
is expressed statistically. However, unlike other approaches
in statistical modeling2, 1, 5 which are typically based on
single-layered Markovian methods, our method usesHidden
Markov Models (HMM). This two-layered approach (akin
to and LDS system) allows us to learn not only the statisti-
cal properties of the desired look, but also to learn drawing
habits and control schemes for that look. Specifically, this
modeling formalism allows us to express the relationship be-
tween aspects of a system we can observe directly (the curve
drawn by the user) and variables that cannot be observed, but
which determine the output (in this case, the curve the user
“really wants”).
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In additions to beautifying curves on an individual basis,
when we are given outlines consisting of many strokes, we
must also be able to automatically detect which beautifica-
tions model should be applied on what curve. Our HMM
framework allows us to this by evaluating the likelihood that
a curvebelongsto an HMM based on its shape. This recog-
nition step is further refined by also considering high-level
semantic constraints on the viable sequences of refinements
that can apply, including constraints on their associated po-
sition. For example, we should never apply a terrain refine-
ment on a curve that is drawn above another curve that looks
like a cloud.

Learning and synthesis in this fashion is accomplished us-
ing aHierarchical Hidden Markov Model (HHMM) where
the levels in the hierarchy consist of HMMs that can encode
both low-level individual curve refinements and high-level
constraints on the refinements themselves. We present a two
level hierarchy in which the refinement process is applied at:
the curve level and the scene level. At the curve level, each
HMM learns from examples the desired behavior of a stroke
by associating it’s shape to a refined look. At the scene level,
the HMM encodes semantic constraints on the sequence in
which objects are drawn, including constraints on their rel-
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ative position. Finally, synthesis is performed by first prop-
agating information from the user inputs up the hierarchy
and then decoding the most likely path down the hierarchy
to enforce the learned constraints of all levels.

2. Related Work

Recent advancements in texture synthesis methods6, 1, 5 sug-
gest that we can learn the regular properties of example im-
ages and generate new ones that exhibit the same statistics.
Work by Hertzmannet al. 2 show how such methods can
be applied to synthesizing stylized curves. Curve styles are
learned from the statistics of example styles and new curves
exhibiting those styles are generated following the shape of
an input curve. Analogies between the inputs and outputs are
computed by calculating a rigid transformation offset that
best matches the input curve and the partial synthesis to a
coupled training example (similar to a texture map).

In our work, we provide three key components that extend
the approaches cited above. First, using a Hierarchy of Hid-
den Markov Models allows us to capture multiple stochas-
tic functions and representing scene dynamics over various
scales and context. Secondly, individual HMMs are them-
selves two-layered systems and allow us to model acontrol-
lable process. That is, the synthesis is driven by the input
curve where the actual features generated aredirectly de-
pendent on the shape of the input. This allows us to model
examples with localized features that are tied to the shape
about a given region (such as a roof ledge that extends only
at the corner of the roof). Finally, most approaches to syn-
thesis mainly consider greedy type strategies, choosing the
best match at the current point. When we are given a se-
quence of inputs, the best immediate points may not provide
the global optimum. Inputs further down the sequence of-
ten bias the likelihood of earlier points, for example, when
drawing a vertical line we do not know whether to apply
brick features for a wall or bark features for a tree until we
see what will be drawn later. Our approach, based on the
Viterbi algorithm, takes into account the entire sequence of
inputs while also avoiding exponential run time complexity.

Hidden Markov Models are analogous to LDS methods
which have been readily applied to motion synthesis tech-
niques4. In 4, several example motion patterns are used as an
ensemble to train an LDS system. Their synthesis procedure
controllably generates novel motions as consistentmixtures
of the original sets based on key-frame points. An alternative
approach for mixture models3 uses a graph to encode the al-
lowable curve transitions and how those transitions should
take place. Similar in spirit to these approaches, we generate
novel multi-dimensional curve attributes (shape, color, pen-
thickness, texture fill) as locally consistent mixtures of ex-
amples in an ensemble. Although, our synthesis procedure
is controlled by an input of lower dimension (the shape of
stroke).

3. Hidden Markov Model

A Hidden Markov Model encodes the dependencies of suc-
cessive elements of a set ofhiddenstates along with their
relationship toobservablestates. It is typically used in cases
where a set of states, that exhibit the Markov property,
are not directly measurable but only their effect is visible
through other observable states. Formally, a Hidden Markov
Model Λ is defined as follows:

Λ = {M,B,π} (1)

whereM is the transition matrix with transition probabilities
of the hidden states,p{hi(t) | h j (t −1)}, B is the confusion
matrix containing the probability that a hidden stateh j gen-
erates an observationoi , p{oi(t) | h j (t)}, andπ is the initial
distribution of the hidden states. In this work the user curve
plays the role of the observations while the hidden states ex-
press what we can think of as the Platonic ideal the user
might have had in mind at that point along the curve (the
refined shape, color etc.).

There is an abundance of literature on Hidden Markov
Models and the domain is frequently decomposed into three
basic problems of interest:

• Evaluation: Given a modelΛ and a sequence of observa-
tions o1,o2, ...,oT , what is the probability that those ob-
servations are generated by that model?

• Decoding: Given a modelΛ and a sequence of observa-
tionso1,o2, ...,oT , what is the most likely hidden state se-
quenceh1,h2, ...,hT that produces those observations?

• Learning: Given an observed set of examples, what
modelΛ best represents that observed set.

Solutions to the above three problems are key to our work.
Learning allows us to model various illustration styles by
simply providing the examples. Decoding allows us to syn-
thesize new curves based on a coarse user input. Evaluation
allows us to detect the appropriate class of illustration types
that an input stroke belongs to, determining the likelihood
that the input curve would be generated by the model in
question.

4. Two-Level Hierarchical Hidden Markov Model

At the first level of the hierarchy (curve level), we construct
a setSconsisting of HMMs where each individual HMM is
trained using a particular training ensemble:

S= {Λ0
0,Λ

0
1, ...,Λ

0
N} (2)

The training ensemble consists of a collection of refines
curves (the idealized look) associate to a a set of control
curve (what the user would draw). In most of our experi-
ments, the control curve is simply a blurred version of the
refined curve. Figure 1 shows an example set. The state
space of the HMM’s corresponds to the values that the sam-
ple points of the curve can take on. We sample a curve uni-
formly over the arc-length and represent it by a sequence of
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Figure 1: Some samples from a training set used for leaf
refinement. The left shows the control curves while the right
shows the detailed curves.

tangent angles. We quantize the values to one degree (360
values). Additionally, we extend the state space dimension-
ality to allow for supplementary attributes such as thickness
or color (these can take on any value).

At the second level (scene level), we encode constraints
on the models in the first level. Thus, the state space repre-
sents the possible models inS. Figure 2 shows an example
graph used to represent the allowable sequences of HMMs
in the curve level (i.e. users tend to draw curves in particular
orders) and include constraints on where they can be applied
(as a supplementary attribute). Several such graphs are used
to train HMMs at the scene level of the hierarchy:

G = {Λ1
0,Λ

1
1, ...,Λ

1
M} (3)

Each model inG depicts different kinds of scenes. For ex-
ample, you can have face scenes that suggest the sequence
f orehead→ nose→mouth→ chinor landscape scenes that
suggestgrass→ ( f lower,above),cloud → (tree,below).
When we do not wish to have constraints on the order in
which curves are drawn, a graph can suggest that every
model can be followed by any other model, with only their
relative positioning as a constraint.

Figure 2: Example relationships in a scene. The labels cor-
respond to HMMs in the curve level and the letters above
correspond to the allowable relative position (i.e. A: above,
B: below, L:left R:right).

5. Synthesis Overview

Given the two-level hierarchyH = (S,G), we first propa-
gate information from the input curve strokes (at the curve
level) up the hierarchy and then propagate the model con-
straints at the scene level down the hierarchy. Let us as-
sume that we are given the desired scene modelΛ1

d in G,
ScontainsN refinement models and there areM user drawn

curve strokesO0
0,O

0
1, ...,O

0
M . For each HMM inS, using the

forward-backwardalgorithm, we canevaluateits likelihood
of generating the sample point sequence for the current curve
O0

k:

o1
ki = p{O0

k | Λ0
i } (4)

This identifies how well the input stroke’s shape can be rep-
resented by the model in question. Calculating this for all
N models gives rise to a classification vectorO1

k where the
elements of the vector are theN probabilitieso1

k0,o
1
k1...o

1
kN

corresponding to the likelihoods of each refinement model
in S. Indeed we can stop here and choose the most likely re-
finement model to use (in a greedy fashion). But we must
also consider the higher level constraints in the modelΛ1

d,
how the current curve relates to the likelihood of models on
the previously drawn curves. Using the current observation
vector along with the previous ones (generated in the same
fashion)O1

0,O
1
1, ...,O

1
k, we apply theViterbi algorithm tode-

codeΛ1
d and generate the best sequence of models inS. (This

sequence is consistent with both the shape of the curves and
the high-level constraints.) We then further decode each indi-
vidual model in this maximum likelihood sequence of mod-
elsΛ0

0,Λ
0
1, ...,Λ

0
k, using the associated drawn curve stroke in

O0
0,O

0
1, ...,O

0
k. This is performed up to theM′th input stroke

to synthesize the refined set of curves.

Because the multi-dimensional state space is extremely
large, in practice we can not explicitly store the probability
matrices or the complete distribution for all states. Instead,
we only maintain a list of the top candidate states. Further
rather than having the random access of a probability matrix,
at each iteration we must search the training set for matches
and compute the likelihoods. Additionally, to avoid quan-
tization issues in matching and provide some control and
flexibility over themixing tendency, we do not constrain our
system to exact matches. Instead, we update the probabilities
based on the goodness of the matches using a Gaussian blur.

6. Results

All of our experiments were executed on a Linux PC with a
1GHz Pentium IV processor and 1GB of RAM. The results
were generated in real time.

Figure 3: Samples from a training set for simple shapes.
Curves on the left show the control curves while curves on
the right show the associated refined ones that include color.
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Figure 4: Example of synthesis using training set in Figure
3. The left shows the inputs and right shows the result.

Figure 5: Generating coastlines with texture fill seeds.
Training examples consisted of 25 coastlines. Left shows in-
put, middle shows novel coastlines generated with texture
seeds, right shows results using a Markov texture filler (akin
to 5) with the texture image shown above.

Figure 6: Synthesis of a beach scene.

7. Conclusion

We have described an approach for the synthesis of stylized
drawings from coarse outlines. This process is based on the
representation of coarse to fine refinements as a Hierarchical
Hidden Markov Model. The desired refinements are learned
by example sets and the semantic constraints on those refine-
ments are learned by a semantic graph. Novel full colored
illustrations are generated from noisy curves based on this
hierarchy of constraints, including scene level, curve level
and, as a post processing step, pixel level constraints.

Figure 7: Top left shows the input sketch, top right shows
the output using a greedy method in the scene-level HMM,
bottom left shows the output using Viterbi and bottom right
shows the result using the Markovian texture filler.

Figure 8: Training data used for the skyline model in Figure
7. The two left shapes show the control curves and the two
right shapes show the refined ones. It can be seen that from a
simple set such as this, a novel skyline can be automatically
classified and generated.
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